\documentclass{amsart} \title{The Dynkin diagrams package \\ Version 3.14} \author{Ben McKay} \date{24 July 2018} \usepackage{etex} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenx} \usepackage{etoolbox} \usepackage{lmodern} \usepackage[kerning=true,tracking=true]{microtype} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{array} \usepackage{xstring} \usepackage{longtable} \usepackage[listings]{tcolorbox} \tcbuselibrary{breakable} \tcbuselibrary{skins} \usepackage[pdftex]{hyperref} \hypersetup{ colorlinks = true, %Colours links instead of ugly boxes urlcolor = black, %Colour for external hyperlinks linkcolor = black, %Colour of internal links citecolor = black %Colour of citations } \usepackage{booktabs} \usepackage{colortbl} \usepackage{varwidth} \usepackage{dynkin-diagrams} \usepackage{fancyvrb} \usepackage{xspace} \newcommand{\TikZ}{Ti\textit{k}Z\xspace} \usepackage{filecontents} \usetikzlibrary{decorations.markings} \arrayrulecolor{white} \makeatletter \def\rulecolor#1#{\CT@arc{#1}} \def\CT@arc#1#2{% \ifdim\baselineskip=\z@\noalign\fi {\gdef\CT@arc@{\color#1{#2}}}} \let\CT@arc@\relax \rulecolor{white} \makeatother \newcommand{\C}[1]{\mathbb{C}^{#1}} \renewcommand*{\arraystretch}{1.5} \NewDocumentCommand\wdtA{}{.7cm} \NewDocumentCommand\wdtD{}{3cm} \NewDocumentCommand\wdtE{}{6cm} \NewDocumentCommand\wdtL{}{3cm} \newcolumntype{A}{@{}>{\columncolor[gray]{.9}$}m{\wdtA}<{$}} \newcolumntype{D}{>{\columncolor[gray]{.9}}m{\wdtD}} \newcolumntype{E}{>{\columncolor[gray]{.9}}m{\wdtE}} \newcolumntype{L}{>{\columncolor[gray]{.9}}p{\wdtL}} \newcolumntype{P}{>{\columncolor[gray]{.9}}p{10cm}} \NewDocumentCommand\textleftcurly{}{\texttt{\char'173}}% \NewDocumentCommand\textrightcurly{}{\texttt{\char'175}}% \NewDocumentCommand\csDynkin{omom}% {% \texttt{\detokenize{\dynkin}\!\!\!% \IfNoValueTF{#1}{}{[#1]}% \textleftcurly#2\textrightcurly% \IfNoValueTF{#3}{}{[#3]}% \textleftcurly#4\textrightcurly% }% }% \NewDocumentCommand\dynk{omom}% {% \dynkin[#1]{#2}[#3]{#4}&\csDynkin[#1]{#2}[#3]{#4}\\ }% \NewDocumentCommand\typesetSubseries{m}% {% \IfInteger{#1}{#1}{\IfStrEq{#1}{}{n}{#1}} }% \NewDocumentCommand\dyn{omom}% {% {#2}_{\typesetSubseries{#4}}^{\IfInteger{#3}{#3}{\IfStrEq{#1}{extended}{1}{}}} & \dynk[#1]{#2}[#3]{#4}% }% \NewDocumentEnvironment{dynkinTable}{mmm}% {% \RenewDocumentCommand\wdtD{}{#2} \RenewDocumentCommand\wdtL{}{#3} \begin{longtable}{ADL} \caption{#1}\\ \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{2}{c}{continued \dots}\\ \endfoot \endlastfoot }% {% \end{longtable} }% \definecolor{example-color}{gray}{.85} \definecolor{example-border-color}{gray}{.7} \tcbset{coltitle=black,colback=example-color,colframe=example-border-color,enhanced,breakable,pad at break*=1mm, toprule=1.2mm,bottomrule=1.2mm,leftrule=1mm,rightrule=1mm,toprule at break=-1mm,bottomrule at break=-1mm, before upper={\widowpenalties=3 10000 10000 150}} \makeatletter \def\@tocline#1#2#3#4#5#6#7{\relax \ifnum #1>\c@tocdepth% \else \par \addpenalty\@secpenalty\addvspace{#2}% \begingroup \hyphenpenalty\@M \@ifempty{#4}{% \@tempdima\csname r@tocindent\number#1\endcsname\relax }{% \@tempdima#4\relax }% \parindent\z@ \leftskip#3\relax \advance\leftskip\@tempdima\relax #5\leavevmode\hskip-\@tempdima #6\nobreak\relax ,~#7\par \endgroup \fi} \makeatother \fvset{fontsize=\small} \begin{document} \maketitle \begin{center} \begin{varwidth}{\textwidth} \tableofcontents \end{varwidth} \end{center} \setlength{\arrayrulewidth}{1.5pt} \section{Quick introduction} \begin{tcolorbox}[title={Load the Dynkin diagram package (see options below)}] \begin{verbatim} \documentclass{amsart} \usepackage{dynkin-diagrams} \begin{document} The Dynkin diagram of \(B_3\) is \dynkin{B}{3}. \end{document} \end{verbatim} \end{tcolorbox} \begin{tcblisting}{title={Invoke it}} The Dynkin diagram of \(B_3\) is \dynkin{B}{3}. \end{tcblisting} \begin{tcblisting}{title={Inside a \TikZ statement}} The Dynkin diagram of \(B_3\) is \tikz[baseline=-0.5ex] \dynkin{B}{3}; \end{tcblisting} \begin{tcblisting}{title={Inside a \TikZ environment}} The Dynkin diagram of \(B_3\) is \begin{tikzpicture}[baseline=-0.5ex] \dynkin{B}{3} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Indefinite rank Dynkin diagrams}} \dynkin{B}{} \end{tcblisting} \begin{dynkinTable}{The Dynkin diagrams of the reduced simple root systems \cite{Bourbaki:2002} pp. 265--290, plates I--IX}{2.25cm}{2.5cm} \dyn{A}{} \dyn{C}{} \dyn{D}{} \dyn{E}{6} \dyn{E}{7} \dyn{E}{8} \dyn{F}{4} \dyn{G}{2} \end{dynkinTable} \section{Set options globally} \begin{tcolorbox}[title={Most options set globally \dots}] \begin{verbatim} \pgfkeys{/Dynkin diagram,edgeLength=.5cm,foldradius=.5cm} \end{verbatim} \end{tcolorbox} \begin{tcolorbox}[title={\dots or pass to the package}] \begin{verbatim} \usepackage[ ordering=Kac, edge/.style=blue, mark=o, radius=.06cm] {dynkin-diagrams} \end{verbatim} \end{tcolorbox} \section{Coxeter diagrams} \begin{tcblisting}{title={Coxeter diagram option}} \dynkin[Coxeter]{F}{4} \end{tcblisting} \begin{tcblisting}{title={gonality option for \(G_2\) and \(I_n\) Coxeter diagrams}} \(G_2=\dynkin[Coxeter,gonality=n]{G}{2}\), \ \(I_n=\dynkin[Coxeter,gonality=n]{I}{}\) \end{tcblisting} \begin{dynkinTable}{The Coxeter diagrams of the simple reflection groups}{2.25cm}{6cm} \dyn[Coxeter]{A}{} \dyn[Coxeter]{B}{} \dyn[Coxeter]{C}{} \dyn[Coxeter]{E}{6} \dyn[Coxeter]{E}{7} \dyn[Coxeter]{E}{8} \dyn[Coxeter]{F}{4} \dyn[Coxeter,gonality=n]{G}{2} \dyn[Coxeter]{H}{3} \dyn[Coxeter]{H}{4} \dyn[Coxeter,gonality=n]{I}{} \end{dynkinTable} \section{Satake diagrams}\label{section:Satake} \begin{tcblisting}{title={Satake diagrams use the standard name instead of a rank}} \(A_{IIIb}=\dynkin{A}{IIIb}\) \end{tcblisting} We use a solid gray bar to denote the folding of a Dynkin diagram, rather than the usual double arrow, since the diagrams turn out simpler and easier to read. \begin{dynkinTable}{The Satake diagrams of the real simple Lie algebras \cite{Helgason:2001} p. 532--534}{2.75cm}{3cm} \dyn{A}{I} \dyn{A}{II} \dyn{A}{IIIa} \dyn{A}{IIIb} \dyn{A}{IV} \dyn{B}{I} \dyn{B}{II} \dyn{C}{I} \dyn{C}{IIa} \dyn{C}{IIb} \dyn{D}{Ia} \dyn{D}{Ib} \dyn{D}{Ic} \dyn{D}{II} \dyn{D}{IIIa} \dyn{D}{IIIb} \dyn{E}{I} \dyn{E}{II} \dyn{E}{III} \dyn{E}{IV} \dyn{E}{V} \dyn{E}{VI} \dyn{E}{VII} \dyn{E}{VIII} \dyn{E}{IX} \dyn{F}{I} \dyn{F}{II} \dyn{G}{I} \end{dynkinTable} \section{Labels for the roots} \begin{tcblisting}{title={Label the roots by root number}} \dynkin[label]{B}{3} \end{tcblisting} \begin{tcblisting}{title={Make a macro to assign labels to roots}} \dynkin[label,labelMacro/.code={\alpha_{#1}}]{D}{5} \end{tcblisting} \begin{tcblisting}{title={Label a single root}} \begin{tikzpicture} \dynkin{B}{3} \dynkinLabelRoot{2}{\alpha_2} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Use a text style}} \begin{tikzpicture} \dynkin[text/.style={scale=1.2}]{B}{3}; \dynkinLabelRoot{2}{\alpha_2} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Access root labels via TikZ}} \begin{tikzpicture} \dynkin{B}{3}; \node[below] at (root 2) {\(\alpha_2\)}; \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={The labels have default locations}} \begin{tikzpicture} \dynkin{E}{8}; \dynkinLabelRoot{1}{\alpha_1} \dynkinLabelRoot{2}{\alpha_2} \dynkinLabelRoot{3}{\alpha_3} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={The starred form flips labels to alternate locations}} \begin{tikzpicture} \dynkin{E}{8}; \dynkinLabelRoot*{1}{\alpha_1} \dynkinLabelRoot*{2}{\alpha_2} \dynkinLabelRoot*{3}{\alpha_3} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Labelling several roots}} \begin{tikzpicture} \dynkin{A}{*.*x*.*} \dynkinBrace[p]{1}{2} \dynkinBrace[q]{4}{5} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Labelling several roots, and a starred form}} \begin{tikzpicture} \dynkin{A}{10} \dynkinBrace[\text{Roots 2 to 9}]{2}{9} \dynkinBrace*[\text{Roots 3 to 8}]{3}{8} \end{tikzpicture} \end{tcblisting} \section{Style} \begin{tcblisting}{title={Colours}} \dynkin[ edge/.style={blue!50,thick}, */.style=blue!50!red, arrowColor=red]{F}{4} \end{tcblisting} \begin{tcblisting}{title={Edge lengths}} \dynkin[edgeLength=1.2,parabolic=3]{A}{3} \end{tcblisting} \begin{tcblisting}{title={Root marks}} \dynkin{E}{8} \dynkin[mark=*]{E}{8} \dynkin[mark=o]{E}{8} \dynkin[mark=O]{E}{8} \dynkin[mark=t]{E}{8} \dynkin[mark=x]{E}{8} \dynkin[mark=X]{E}{8} \end{tcblisting} At the moment, you can only use: \par\noindent\begin{tabular}{>{\ttfamily}cl} * & solid dot \\ o & hollow circle \\ O & double hollow circle \\ t & tensor root \\ x & crossed root \\ X & thickly crossed root \end{tabular} \begin{tcblisting}{title={Mark styles}} \dynkin[parabolic=124,x/.style={brown,very thick}]{E}{8} \end{tcblisting} \begin{tcblisting}{title={Sizes of root marks}} \dynkin[radius=.08cm,parabolic=3]{A}{3} \end{tcblisting} \section{Suppress or reverse arrows} \begin{tcblisting}{title={Some diagrams have double or triple edges}} \dynkin{F}{4} \dynkin{G}{2} \end{tcblisting} \begin{tcblisting}{title={Suppress arrows}} \dynkin[arrows=false]{F}{4} \dynkin[arrows=false]{G}{2} \end{tcblisting} \begin{tcblisting}{title={Reverse arrows}} \dynkin[reverseArrows]{F}{4} \dynkin[reverseArrows]{G}{2} \end{tcblisting} \section{Drawing on top of a Dynkin diagram} \begin{tcblisting}{title={TikZ can access the roots themselves}} \begin{tikzpicture} \dynkin{A}{4}; \fill[white,draw=black] (root 2) circle (.15cm); \fill[white,draw=black] (root 2) circle (.1cm); \draw[black] (root 2) circle (.05cm); \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Draw curves between the roots}} \begin{tikzpicture} \dynkin[label]{E}{8} \draw[very thick, black!50,-latex] (root 3.south) to [out=-45, in=-135] (root 6.south); \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{title={Change marks}} \begin{tikzpicture} \dynkin[mark=o,label]{E}{8}; \dynkinRootMark{*}{5} \dynkinRootMark{*}{8} \end{tikzpicture} \end{tcblisting} \section{Mark lists} The package allows a list of root marks instead of a rank: \begin{tcblisting}{title={A mark list}} \dynkin{E}{oo**ttxx} \end{tcblisting} The mark list \verb!oo**ttxx! has one mark for each root: \verb!o!, \verb!o!, \dots, \verb!x!. Roots are listed in the current default ordering. (Careful: in an affine root system, a mark list will \emph{not} contain a mark for root zero.) If you need to repeat a mark, you can give a \emph{single digit} positive integer to indicate how many times to repeat it. \begin{tcblisting}{title={A mark list with repetitions}} \dynkin{A}{x4o3t4} \end{tcblisting} \NewDocumentCommand\ClassicalLieSuperalgebras{om}% {% \IfValueT{#1}{\tikzset{/Dynkin diagram,radius=#1}} \RenewDocumentCommand\wdtE{}{10cm} \begin{dynkinTable}{Classical Lie superalgebras \cite{Frappat/Sciarrino/Sorba:1989}. #2}{3.5cm}{6.5cm} \IfValueT{#1}{ & & \texttt{\textbackslash{}tikzset\{/Dynkin diagram,radius=#1\}} \\ } A_{mn} & \dynk{A}{ooo.oto.oo} B_{mn} & \dynk{B}{ooo.oto.oo} B_{0n} & \dynk{B}{ooo.ooo.o*} C_{n} & \dynk{C}{too.oto.oo} D_{mn} & \dynk{D}{ooo.oto.oooo} D_{21\alpha} & \dynk{A}{oto} F_4 & \dynk{F}{ooot} G_3 & \dynk[extended,affineMark=t, reverseArrows]{G}{2} \end{dynkinTable} \IfValueT{#1}{\tikzset{/Dynkin diagram,radius=.05cm}} }% \ClassicalLieSuperalgebras[.07cm]{We need a slightly larger radius parameter to distinguish the tensor product symbols from the solid dots.} \ClassicalLieSuperalgebras{Here we see the problem with using the default radius parameter, which is too small for tensor product symbols.} \section{Indefinite edges} An \emph{indefinite edge} is a dashed edge between two roots, \dynkin{A}{*.*} indicating that an indefinite number of roots have been omitted from the Dynkin diagram. In between any two entries in a mark list, place a period to indicate an indefinite edge: \begin{tcblisting}{title={Indefinite edges}} \dynkin{D}{o.o*.*.t.to.t} \end{tcblisting} In certain diagrams, roots may have an edge between them even though they are not subsequent in the ordering. For such rare situations, there is an option: \begin{tcblisting}{title={Indefinite edge option}} \dynkin[makeIndefiniteEdge={3-5},label]{D}{5} \end{tcblisting} \begin{tcblisting}{title={Give a list of edges to become indefinite}} \dynkin[makeIndefiniteEdge/.list={1-2,3-5},label]{D}{5} \end{tcblisting} \begin{tcblisting}{title={Indefinite edge style}} \dynkin[indefiniteEdge/.style={draw=black,fill=white,thin,densely dashed},% edgeLength=1cm,% makeIndefiniteEdge={3-5}] {D}{5} \end{tcblisting} \begin{tcblisting}{title={The ratio of the lengths of indefinite edges to those of other edges}} \dynkin[edgeLength = .5cm,% indefiniteEdgeRatio=3,% makeIndefiniteEdge={3-5}] {D}{5} \end{tcblisting} \begingroup \RenewDocumentCommand\wdtA{}{.35cm} \RenewDocumentCommand\wdtE{}{6.55cm} \begin{dynkinTable}{Springer's table of indices \cite{Springer:2009}, pp. 320-321, with one form of \(E_7\) corrected}{2.5cm}{3.7cm} % 1 A_n & \multicolumn{2}{E}{ \begin{tikzpicture}[baseline=0pt] \dynkin{A}{o.o*o.o*o.o} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{n-d} \end{tikzpicture} } \\ % 2 A_n & \multicolumn{2}{E}{ \begin{tikzpicture}[baseline=0pt] \dynkin{A}{o.o*o.o*o.o*o.o*o.o} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{rd} \dynkinLabelRoot{9}{n-rd} \dynkinLabelRoot{12}{n-d} \end{tikzpicture} } \\ % 3 B_n & \multicolumn{2}{E}{ \begin{tikzpicture}[baseline=0pt] \dynkin{B}{**.*.o.oo} \dynkinLabelRoot{3}{r} \end{tikzpicture} } \\ % 4 C_n & \multicolumn{2}{E}{ \begin{tikzpicture}[baseline=0pt] \dynkin{C}{o.o*o.o*o.oo} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{rd} \end{tikzpicture} } \\ % 5 D_n & \multicolumn{2}{E}{ \begin{tikzpicture}[baseline=0pt] \dynkin{D}{o.o*o.o*o.ooo} \dynkinLabelRoot{3}{d} \dynkinLabelRoot{6}{rd} \end{tikzpicture} } \\ % 6 E_6 & \dynk{E}{*oooo*} % 7 E_6 & \dynk{E}{o*o*oo} % 8 E_6 & \dynk{E}{o*oooo} % 9 E_6 & \dynk{E}{**ooo*} % 10 E_7 & \dynk{E}{*oooooo} % 11 E_7 & \dynk{E}{ooooo*o} % 12 E_7 & \dynk{E}{oooooo*} % 13 E_7 & \dynk{E}{*oooo*o} % 14 - corrected from Springer. E_7 & \dynk{E}{*oooo**} % 15 E_7 & \dynk{E}{*o**o*o} % 16 E_8 & \dynk{E}{*ooooooo} % 17 E_8 & \dynk{E}{ooooooo*} % 18 E_8 & \dynk{E}{*oooooo*} % 19 E_8 & \dynk{E}{oooooo**} % 20 E_8 & \dynk{E}{*oooo***} % 21 F_4 & \dynk{F}{ooo*} % 22 D_4 & \dynk{D}{o*oo} \end{longtable} \endgroup \section{Parabolic subgroups} Each set of roots is assigned a number, with each binary digit zero or one to say whether the corresponding root is crossed or not: \begin{tcblisting}{} The flag variety of pointed lines in projective 3-space is associated to the Dynkin diagram \dynkin[parabolic=3]{A}{3}. \end{tcblisting} \begin{filecontents*}{hermitian-symmetric-spaces.tex} \NewDocumentCommand\HSS{mommm} {#1&\IfNoValueTF{#2}{\dynkin{#3}{#4}}{\dynkin[parabolic=#2]{#3}{#4}}\\} \renewcommand*{\arraystretch}{1.5} \begin{longtable} {>{\columncolor[gray]{.9}}>$l<$>{\columncolor[gray]{.9}}>$l<$>{\columncolor[gray]{.9}}l} \caption{The Hermitian symmetric spaces}\endfirsthead \caption{\dots continued}\\ \endhead \caption{continued \dots}\\ \endfoot \endlastfoot \HSS{A_n}{A}{**.*x*.**}{Grassmannian of $k$-planes in $\C{n+1}$} \HSS{B_n}[1]{B}{}{$(2n-1)$-dimensional hyperquadric, i.e. the variety of null lines in $\C{2n+1}$} \HSS{C_n}[16]{C}{}{space of Lagrangian $n$-planes in $\C{2n}$} \HSS{D_n}[1]{D}{}{$(2n-2)$-dimensional hyperquadric, i.e. the variety of null lines in $\C{2n}$} \HSS{D_n}[32]{D}{}{one component of the variety of maximal dimension null subspaces of $\C{2n}$} \HSS{D_n}[16]{D}{}{the other component} \HSS{E_6}[1]{E}{6}{complexified octave projective plane} \HSS{E_6}[32]{E}{6}{its dual plane} \HSS{E_7}[64]{E}{7}{the space of null octave 3-planes in octave 6-space} \end{longtable} \end{filecontents*} \begingroup \input{hermitian-symmetric-spaces.tex} \endgroup \VerbatimInput{hermitian-symmetric-spaces.tex} \section{Extended Dynkin diagrams} \begin{tcblisting}{title={Extended Dynkin diagrams}} \dynkin[extended]{A}{7} \end{tcblisting} The extended Dynkin diagrams are also described in the notation of Kac \cite{Kac:1990} p. 55 as affine untwisted Dynkin diagrams: we extend \verb!\dynkin{A}{7}! to become \verb!\dynkin{A}[1]{7}!: \begin{tcblisting}{title={Extended Dynkin diagrams}} \dynkin{A}[1]{7} \end{tcblisting} \renewcommand*{\arraystretch}{1.5} \begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems}{3cm}{5cm} \dyn[extended]{A}{1} \dyn[extended]{A}{} \dyn[extended]{B}{} \dyn[extended]{C}{} \dyn[extended]{D}{} \dyn[extended]{E}{6} \dyn[extended]{E}{7} \dyn[extended]{E}{8} \dyn[extended]{F}{4} \dyn[extended]{G}{2} \end{dynkinTable} \section{Affine twisted and untwisted Dynkin diagrams} The affine Dynkin diagrams are described in the notation of Kac \cite{Kac:1990} p. 55: \begin{tcblisting}{title={Affine Dynkin diagrams}} \(A^{(1)}_7=\dynkin{A}[1]{7}, \ E^{(2)}_6=\dynkin{E}[2]{6}, \ D^{(3)}_4=\dynkin{D}[3]{4}\) \end{tcblisting} \begin{dynkinTable}{The affine Dynkin diagrams}{3cm}{3.75cm} \dyn{A}[1]{1} \dyn{A}[1]{} \dyn{B}[1]{} \dyn{C}[1]{} \dyn{D}[1]{} \dyn{E}[1]{6} \dyn{E}[1]{7} \dyn{E}[1]{8} \dyn{F}[1]{4} \dyn{G}[1]{2} \dyn{A}[2]{2} \dyn{A}[2]{even} \dyn{A}[2]{odd} \dyn{D}[2]{} \dyn{E}[2]{6} \dyn{D}[3]{4} \end{dynkinTable} \begin{dynkinTable}{Some more affine Dynkin diagrams}{3cm}{3.25cm} \dyn{A}[2]{4} \dyn{A}[2]{5} \dyn{A}[2]{6} \dyn{A}[2]{7} \dyn{A}[2]{8} \dyn{D}[2]{3} \dyn{D}[2]{4} \dyn{D}[2]{5} \dyn{D}[2]{6} \dyn{D}[2]{7} \dyn{D}[2]{8} \dyn{D}[3]{4} \dyn{E}[2]{6} \end{dynkinTable} \section{Extended Coxeter diagrams} \begin{tcblisting}{title={Extended and Coxeter options together}} \dynkin[extended,Coxeter]{F}{4} \end{tcblisting} \begin{dynkinTable}{The extended (affine) Coxeter diagrams}{3cm}{6cm} \dyn[extended,Coxeter]{A}{} \dyn[extended,Coxeter]{B}{} \dyn[extended,Coxeter]{C}{} \dyn[extended,Coxeter]{D}{} \dyn[extended,Coxeter]{E}{6} \dyn[extended,Coxeter]{E}{7} \dyn[extended,Coxeter]{E}{8} \dyn[extended,Coxeter]{F}{4} \dyn[extended,Coxeter]{G}{2} \dyn[extended,Coxeter]{H}{3} \dyn[extended,Coxeter]{H}{4} \dyn[extended,Coxeter]{I}{1} \end{dynkinTable} \section{Kac style} We include a style called \verb!Kac! which tries to imitate the style of \cite{Kac:1990}. \begin{tcblisting}{title={Kac style},colback=white} \dynkin[Kac]{F}{4} \end{tcblisting} \begingroup \pgfkeys{/Dynkin diagram,Kac} \newcolumntype{D}{>{\columncolor[gray]{1}}m{\wdtD}} \begin{dynkinTable}{The Dynkin diagrams of the extended simple root systems in Kac style. At the moment, it only works on a white background.}{5cm}{4.5cm} \dyn[extended]{A}{1} \dyn[extended]{A}{} \dyn[extended]{B}{} \dyn[extended]{C}{} \dyn[extended]{D}{} \dyn[extended]{E}{6} \dyn[extended]{E}{7} \dyn[extended]{E}{8} \dyn[extended]{F}{4} \dyn[extended]{G}{2} \end{dynkinTable} \endgroup \section{Folded Dynkin diagrams} The Dynkin diagrams package has limited support for folding Dynkin diagrams. \begin{tcblisting}{title={Folding}} \dynkin[fold]{A}{13} \end{tcblisting} \begin{tcblisting}{title={Big fold radius}} \dynkin[fold,foldradius=1cm]{A}{13} \end{tcblisting} \begin{tcblisting}{title={Small fold radius}} \dynkin[fold,foldradius=.2cm]{A}{13} \end{tcblisting} Some Dynkin diagrams have multiple foldings, which we attempt to distinguish (not entirely successfully) by their \emph{ply}: the maximum number of roots folded together. Most diagrams can only allow a 2-ply folding, so \verb!fold! is a synonym for \verb!ply=2!. \begin{tcblisting}{title={3-ply}} \dynkin[ply=3]{D}{4} \dynkin[ply=3,foldright]{D}{4} \dynkin[ply=3]{D}[1]{4} \end{tcblisting} \begin{tcblisting}{title={4-ply}} \dynkin[ply=4]{D}[1]{4} \end{tcblisting} The \(D^{(1)}_{\ell}\) diagrams can be folded on their left end and separately on their right end: \begin{tcblisting}{title={Left, right and both}} \dynkin{D}[1]{} \ \dynkin[foldleft]{D}[1]{} \ \dynkin[foldright]{D}[1]{} \ \dynkin[fold]{D}[1]{} \end{tcblisting} We have to be careful about the 4-ply foldings of \(D^{(1)}_{2\ell}\), for which we can have two different patterns, so by default, the package only draws as much as it can without distinguishing the two: \begin{tcblisting}{title={Default \(D^{(1)}_{2\ell}\) and the two ways to finish it}} \begin{tikzpicture} \dynkin[ply=4]{D}[1]{****.*****.*****}% \end{tikzpicture} \ \begin{tikzpicture} \dynkin[ply=4]{D}[1]{****.*****.*****}% \dynkinFold[bend right=65]{1}{13}% \dynkinFold[bend right=65]{0}{14}% \end{tikzpicture} \ \begin{tikzpicture} \dynkin[ply=4]{D}[1]{****.*****.*****}% \dynkinFold{0}{1}% \dynkinFold{1}{13}% \dynkinFold{13}{14}% \end{tikzpicture} \end{tcblisting} \begingroup \RenewDocumentCommand\wdtD{}{3.5cm} \RenewDocumentCommand\wdtL{}{7cm} \NewDocumentCommand\seriesName{mmm}% {% \IfStrEq{#2}{0}{#1_{#3}}{#1^{#2}_{#3}}% }% \NewDocumentCommand\foldingTable{smmmmmmmm}% {% \begin{tabular}{ADL}% \seriesName{#2}{#3}{#4} \seriesName{#6}{#7}{#8}&\IfBooleanTF{#1}{\reflectbox{#9}}{#9}% \end{tabular}% \\ \hline }% \NewDocumentCommand\fold{smmmmmm}% {% \IfBooleanTF{#1}% {% \foldingTable% {#2}{#3}{#4}{\dynk[fold]{#2}[#3]{#4}}% {#5}{#6}{#7}{\dynk[reverseArrows]{#5}[#6]{#7}}% }% {% \foldingTable% {#2}{#3}{#4}{\dynk[fold]{#2}[#3]{#4}}% {#5}{#6}{#7}{\dynk{#5}[#6]{#7}}% }% }% \begin{filecontents*}{DoneTwoElBendy.tex} \begin{tikzpicture}[baseline=0pt] \dynkin[ply=4]{D}[1]{****.*****.*****} \dynkinFold[bend right=65]{1}{13} \dynkinFold[bend right=65]{0}{14} \end{tikzpicture} \end{filecontents*} \begin{filecontents*}{DoneTwoElStraight.tex} \begin{tikzpicture}[baseline=0pt] \dynkin[ply=4]{D}[1]{****.*****.*****} \dynkinFold{0}{1} \dynkinFold{1}{13} \dynkinFold{13}{14} \end{tikzpicture} \end{filecontents*} \pgfkeys{/Dynkin diagram,foldradius=.35cm} \begin{longtable}{@{}p{15cm}@{}} \caption{Some foldings of Dynkin diagrams. For these diagrams, we want to compare a folding diagram with the diagram that results when we fold it, so it looks best to set \texttt{foldradius} and \texttt{edgeLength} to equal lengths.}\\ \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{1}{c}{continued \dots}\\ \endfoot \endlastfoot \fold{A}{0}{3}{C}{0}{2} \foldingTable{A}{0}{2\ell-1}{\dynk[fold]{A}{**.*****.**}}% {C}{0}{\ell}{\dynk{C}{}} \fold*{B}{0}{3}{G}{0}{2} \foldingTable{D}{0}{4}{\dynk[ply=3,foldright]{D}{4}}% {G}{0}{2}{\dynk{G}{2}} \foldingTable{D}{0}{\ell+1}{\dynk[fold]{D}{}}% {B}{0}{\ell}{\dynk{B}{}} \fold*{E}{0}{6}{F}{0}{4} \foldingTable{A}{1}{3}{\dynk[ply=4]{A}[1]{3}}% {A}{1}{1}{\dynk{A}[1]{1}} \foldingTable{A}{1}{2\ell-1}{\dynk[fold]{A}[1]{**.*****.**}}% {C}{1}{\ell}{\dynk{C}[1]{}} \foldingTable{B}{1}{3}{\dynk[ply=3]{B}[1]{3}}% {A}{2}{2}{\dynk{A}[2]{2}} \foldingTable{B}{1}{3}{\dynk[ply=2]{B}[1]{3}}% {G}{1}{2}{\dynk{G}[1]{2}} \foldingTable{B}{1}{\ell}{\dynk[fold]{B}[1]{}}{D}{2}{\ell}{\dynk{D}[2]{}} \foldingTable{D}{1}{4}{\dynk[ply=3]{D}[1]{4}}% {B}{1}{3}{\dynk{B}[1]{3}} \foldingTable{D}{1}{4}{\dynk[ply=3]{D}[1]{4}}% {G}{1}{2}{\dynk{G}[1]{2}} \foldingTable{D}{1}{\ell+1}{\dynk[fold]{D}[1]{}}% {D}{2}{\ell}{\dynk{D}[2]{}} \foldingTable{D}{1}{\ell+1}{% \dynk[foldright]{D}[1]{}}% {B}{1}{\ell}{\dynk{B}[1]{}} \foldingTable{D}{1}{2\ell}{% \input{DoneTwoElStraight.tex} & \VerbatimInput{DoneTwoElStraight.tex} \\ }% {A}{2}{\text{odd}}{\dynk{A}[2]{odd}} \foldingTable{D}{1}{2\ell}{% \input{DoneTwoElBendy.tex} & \VerbatimInput{DoneTwoElBendy.tex} \\ }% {A}{2}{\text{even}}{\dynk{A}[2]{even}} \fold*{E}{1}{6}{F}{1}{4} \foldingTable{E}{1}{6}{\dynk[ply=3]{E}[1]{6}}% {D}{3}{4}{\dynk{D}[3]{4}} \fold{E}{1}{7}{E}{2}{6} \fold{F}{1}{4}{G}{1}{2} \foldingTable{A}{2}{\text{odd}}{% \dynk[odd,fold]{A}[2]{****.***} }% {A}{2}{\text{even}}{\dynk{A}[2]{even}} \foldingTable{D}{2}{3}{\dynk[fold]{D}[2]{3}}% {A}{2}{2}{\dynk{A}[2]{2}} \end{longtable} \endgroup \begingroup \RenewDocumentCommand\wdtA{}{.8cm} \begin{dynkinTable}{Frobenius fixed point subgroups of finite simple groups of Lie type \cite{Carter:1995} p. 15}{3cm}{6cm} A_{\ell\ge 1} & \dynk{A}{} {}^2\!A_{\ell\ge 2} & \dynk[fold]{A}{} B_{\ell\ge 2} & \dynk{B}{} {}^2\!B_2 & \dynk[fold]{B}{2} C_{\ell\ge3} & \dynk{C}{} D_{\ell\ge4} & \dynk{D}{} {}^2\!D_{\ell\ge4} & \dynk[fold]{D}{} {}^3\!D_4 & \dynk[ply=3]{D}{4} E_6 & \dynk{E}{6} {}^2\!E_6 & \dynk[fold]{E}{6} E_7 & \dynk{E}{7} E_8 & \dynk{E}{8} F_4 & \dynk{F}{4} {}^2\!F_4 & \dynk[fold]{F}{4} G_2 & \dynk{G}{2} {}^2G_2 & \dynk[fold]{G}{2} \end{dynkinTable} \endgroup \section{Root ordering}\label{section:order} \begin{tcblisting}{title={Root ordering}} \dynkin[label,ordering=Adams]{E}{6} \dynkin[label,ordering=Bourbaki]{E}{6} \dynkin[label,ordering=Carter]{E}{6} \dynkin[label,ordering=Dynkin]{E}{6} \dynkin[label,ordering=Kac]{E}{6} \end{tcblisting} Default is Bourbaki. Sources are Adams \cite{Adams:1996} p. 56--57, Bourbaki \cite{Bourbaki:2002} p. pp. 265--290 plates I-IX, Carter \cite{Carter:2005} p. 540--609, Dynkin \cite{Dynkin:1952}, Kac \cite{Kac:1990} p. 43. \NewDocumentCommand\tablerow{mm}% {% #1_{#2}& \dynkin[label,ordering=Adams]{#1}{#2}& \dynkin[label]{#1}{#2}& \dynkin[label,ordering=Carter]{#1}{#2}& \dynkin[label,ordering=Dynkin]{#1}{#2}& \dynkin[label,ordering=Kac]{#1}{#2}\\ }% \begin{center} \RenewDocumentCommand\wdtA{}{.7cm} \RenewDocumentCommand\wdtL{}{2.2cm} \begin{longtable}{@{}ALLLLL@{}} \toprule & Adams & Bourbaki & Carter & Dynkin & Kac \\ \midrule \endfirsthead \toprule & Adams & Bourbaki & Carter & Dynkin & Kac \\ \midrule \endhead \bottomrule \endfoot \bottomrule \endlastfoot \tablerow{E}{6}\tablerow{E}{7}\tablerow{E}{8}\tablerow{F}{4}\tablerow{G}{2} \end{longtable} \end{center} The marks are set down in order according to the current root ordering: \begin{tcblisting}{} \begin{tikzpicture} \dynkin[label]{E}{*otxXOt*} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \begin{tikzpicture} \dynkin[label,ordering=Carter]{E}{*otxXOt*} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \begin{tikzpicture} \dynkin[label,ordering=Kac]{E}{*otxXOt*} \end{tikzpicture} \end{tcblisting} \section{Connecting Dynkin diagrams}\label{section:name} We can make some sophisticated folded diagrams by drawing multiple diagrams, each with a name: \begin{tcblisting}{title={Name a diagram}} \dynkin[name=Bob]{D}{6} \end{tcblisting} We can then connect the two with folding edges: \begin{tcblisting}{title={Connect diagrams}} \begin{tikzpicture} \dynkin[name=upper]{A}{3} \node (current) at ($(upper root 1)+(0,-.3cm)$) {}; \dynkin[at=(current),name=lower]{A}{3} \begin{scope}[on background layer] \foreach \i in {1,...,3}% {% \draw[/Dynkin diagram/foldStyle] ($(upper root \i)$) -- ($(lower root \i)$);% }% \end{scope} \end{tikzpicture} \end{tcblisting} The following diagrams arise in the Satake diagrams of the pseudo-Riemannian symmetric spaces \cite{Baba:2009}. \begin{tcblisting}{} \pgfkeys{/Dynkin diagram,edgeLength=.5cm,foldradius=.5cm} \begin{tikzpicture} \dynkin[name=1]{A}{IIIb} \node (a) at (.3,.4){}; \dynkin[name=2,at=(a)]{A}{IIIb} \begin{scope}[on background layer] \foreach \i in {1,...,7}% {% \draw[/Dynkin diagram/foldStyle] ($(1 root \i)$) -- ($(2 root \i)$);% }% \end{scope} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \pgfkeys{/Dynkin diagram/edgeLength=.75cm,/Dynkin diagram/edge/.style={draw=example-color,double=black,very thick}, } \begin{tikzpicture} \foreach \d in {1,...,4} { \node (current) at ($(\d*.05,\d*.3)$){}; \dynkin[name=\d,at=(current)]{D}{oo.oooo} } \begin{scope}[on background layer] \foreach \i in {1,...,6}% {% \draw[/Dynkin diagram/foldStyle] ($(1 root \i)$) -- ($(2 root \i)$);% \draw[/Dynkin diagram/foldStyle] ($(2 root \i)$) -- ($(3 root \i)$);% \draw[/Dynkin diagram/foldStyle] ($(3 root \i)$) -- ($(4 root \i)$);% }% \end{scope} \end{tikzpicture} \end{tcblisting} \section{Other examples} Below we draw the Vogan diagrams of some affine Lie superalgebras \cite{Ransingh:2013,Ransingh:unpub}. \begingroup \NewDocumentCommand\labls{m}% {% \ifcase#1% {1}\or% {1}\or% {2}\or% {2}\or% {2}\or% {2}\or% {2}\or% {1}\or% {1}\or% \else\typeout{What?}% \fi% }% \NewDocumentCommand\lablIt{m}% {% \ifnum#1=0\relax% 1% \else 2% \fi% }% \begingroup \tikzset{/Dynkin diagram,labelMacro/.code=\labls{#1},label,radius=.06cm} \tcbset{text width=10cm} \RenewDocumentCommand\wdtA{}{2cm} \NewDocumentEnvironment{Category}{m}% {% \begin{tcolorbox}[title={\(#1\)},breakable]{} }% {% \end{tcolorbox} }% \begin{Category}{\mathfrak{sl}\left(2m|2n\right)^{(2)}} \begin{tcblisting}{} \begin{tikzpicture} \dynkin[ply=2,label]{B}[1]{oo.oto.oo} \dynkinLabelRoot*{7}{1} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{B}[1]{oo.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{D}[1]{oo.oto.ooo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{D}[1]{oO.otO.ooo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,fold]{D}[1]{oo.oto.ooo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2m+1|2n\right)^2} \begin{tcblisting}{} \dynkin[label]{B}[1]{oo.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{B}[1]{oO.oto.oO} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,fold]{B}[1]{oo.oto.oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2m+1|2n+1\right)^2} \begin{tcblisting}{} \dynkin[label]{D}[2]{o.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label]{D}[2]{o.OtO.oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2|2n+1\right)^{(2)}} \begin{tcblisting}{} \dynkin[ply=2,label,doubleEdges]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,doubleFold]{B}[1]{oo.Oto.Oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,doubleEdges]{B}[1]{oo.OtO.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,doubleFold]{B}[1]{oo.OtO.oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(2|2n\right)^{(2)}} \begin{tcblisting}{} \dynkin[ply=2,label,doubleEdges]{D}[1]{oo.oto.ooo} \end{tcblisting} \begin{tcblisting}{} \dynkin[ply=2,label,doubleFoldLeft]{D}[1]{oo.oto.ooo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{osp}\left(2m|2n\right)^{(2)}} \begin{tcblisting}{} \dynkin[label,labelMacro/.code={1}]{D}[2]{o.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,labelMacro/.code={1}]{D}[2]{o.Oto.Oo} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{osp}\left(2|2n\right)^{(2)}} \begin{tcblisting}{} \dynkin[label,labelMacro/.code=\lablIt{#1}, affineMark=*] {D}[2]{o.o.o.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,labelMacro/.code=\lablIt{#1}, affineMark=*] {D}[2]{o.O.o.o*} \end{tcblisting} \end{Category} \begin{Category}{\mathfrak{sl}\left(1|2n+1\right)^{4}} \begin{tcblisting}{} \dynkin[label,labelMacro/.code={1}]{D}[2]{o.o.o.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[label,labelMacro/.code={1}]{D}[2]{o.o.O.o*} \end{tcblisting} \end{Category} \begin{Category}{A^1} \begin{tcblisting}{} \begin{tikzpicture} \dynkin[name=upper]{A}{oo.t.oo} \node (Dynkin current) at (upper root 1){}; \dynkinSouth \dynkin[at=(Dynkin current),name=lower]{A}{oo.t.oo} \begin{scope}[on background layer] \foreach \i in {1,...,5}{ \draw[/Dynkin diagram/foldStyle] ($(upper root \i)$) -- ($(lower root \i)$); } \end{scope} \end{tikzpicture} \end{tcblisting} \begin{tcblisting}{} \dynkin[fold]{A}[1]{oo.t.ooooo.t.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[fold,affineMark=t]{A}[1]{oo.o.ootoo.o.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[affineMark=t]{A}[1]{o*.t.*o} \end{tcblisting} \end{Category} \begin{Category}{B^1} \begin{tcblisting}{} \dynkin[affineMark=*]{A}[2]{o.oto.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[affineMark=*]{A}[2]{o.oto.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[affineMark=*]{A}[2]{o.ooo.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[odd]{A}[2]{oo.*to.*o} \end{tcblisting} \begin{tcblisting}{} \dynkin[odd,fold]{A}[2]{oo.oto.oo} \end{tcblisting} \begin{tcblisting}{} \dynkin[odd,fold]{A}[2]{o*.oto.o*} \end{tcblisting} \end{Category} \begin{Category}{D^1} \begin{tcblisting}{} \dynkin{D}{otoo} \end{tcblisting} \begin{tcblisting}{} \dynkin{D}{ot*o} \end{tcblisting} \begin{tcblisting}{} \dynkin[fold]{D}{otoo} \end{tcblisting} \end{Category} \begin{Category}{C^1} \begin{tcblisting}{} \dynkin[doubleEdges,fold,affineMark=t,odd]{A}[2]{to.o*} \end{tcblisting} \begin{tcblisting}{} \dynkin[doubleEdges,fold,affineMark=t,odd]{A}[2]{t*.oo} \end{tcblisting} \end{Category} \begin{Category}{F^1} \begin{tcblisting}{} \begin{tikzpicture}% \dynkin{A}{oto*}% \dynkinQuadrupleEdge{1}{2}% \dynkinTripleEdge{4}{3}% \end{tikzpicture}% \end{tcblisting} \begin{tcblisting}{} \begin{tikzpicture}% \dynkin{A}{*too}% \dynkinQuadrupleEdge{1}{2}% \dynkinTripleEdge{4}{3}% \end{tikzpicture}% \end{tcblisting} \end{Category} \begin{Category}{G^1} \begin{tcblisting}{} \begin{tikzpicture}% \dynkin{A}{ot*oo}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{tikzpicture}% \end{tcblisting} \begin{tcblisting}{} \begin{tikzpicture}% \dynkin{A}{oto*o}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{tikzpicture}% \end{tcblisting} \begin{tcblisting}{} \begin{tikzpicture}% \dynkin{A}{*too*}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{tikzpicture}% \end{tcblisting} \begin{tcblisting}{} \begin{tikzpicture}% \dynkin{A}{*tooo}% \dynkinQuadrupleEdge{1}{2}% \dynkinDefiniteDoubleEdge{4}{3}% \end{tikzpicture}% \end{tcblisting} \end{Category} \endgroup \begin{filecontents*}{simple-lie-algebras.tex} \NewDocumentEnvironment{bunch}{}% {\renewcommand*{\arraystretch}{1}\begin{array}{@{}ll@{}}\\ \midrule}{\\ \midrule\end{array}} \small \NewDocumentCommand\nct{mm}{\newcolumntype{#1}{>{\columncolor[gray]{.9}}>{$}m{#2cm}<{$}}} \nct{G}{.3}\nct{D}{2.1}\nct{W}{2.8}\nct{R}{3.7}\nct{S}{3} \NewDocumentCommand\LieG{}{\mathfrak{g}} \NewDocumentCommand\W{om}{\ensuremath{\mathbb{Z}^{#2}\IfValueT{#1}{/\left<#1\right>}}} \renewcommand*{\arraystretch}{1.5} \NewDocumentCommand\quo{}{\text{quotient of } E_8} \begin{longtable}{@{}GDWRS@{}} \LieG&\text{Diagram}&\text{Weights}&\text{Roots}&\text{Simple roots}\\ \midrule\endfirsthead \LieG&\text{Diagram}&\text{Weights}&\text{Roots}&\text{Simple roots}\\ \midrule\endhead A_n&\dynkin{A}{}&\W[\sum e_j]{n+1}&e_i-e_j&e_i-e_{i+1}\\ B_n&\dynkin{B}{}&\W{n}& \pm e_i, \pm e_i \pm e_j, i\ne j&e_i-e_{i+1}, e_n\\ C_n&\dynkin{C}{}&\W{n}& \pm 2 e_i, \pm e_i \pm e_j, i\ne j&e_i-e_{i+1}, 2e_n\\ D_n&\dynkin{D}{}&\W{n}& \pm e_i \pm e_j, i\ne j & \begin{bunch}e_i-e_{i+1},&i\le n-1\\e_{n-1}+e_n\end{bunch}\\ E_8&\dynkin{E}{8}&\W{8}& \begin{bunch}\pm2e_i\pm2e_j,&i\ne j,\\ \sum_i(-1)^{m_i}e_i,&\sum m_i \text{ even}\end{bunch}& \begin{bunch} 2e_1-2e_2,\\2e_2-2e_3,\\2e_3-2e_4,\\2e_4-2e_5,\\2e_5-2e_6,\\2e_6+2e_7,\\ -\sum e_j,\\2e_6-2e_7 \end{bunch}\\ E_7&\dynkin{E}{7}&\W[e_1-e_2]{8}&\quo&\quo\\ E_6&\dynkin{E}{6}&\W[e_1-e_2,e_2-e_3]{8}&\quo&\quo\\ F_4& \dynkin{F}{4}&\W{4}& \begin{bunch}\pm 2e_i,\\ \pm 2e_i \pm 2e_j, \quad i \ne j,\\ \pm e_1 \pm e_2 \pm e_3 \pm e_4 \end{bunch}& \begin{bunch}2e_2-2e_3,\\2e_3-2e_4,\\2e_4,\\e_1-e_2-e_3-e_4\end{bunch}\\ G_2&\dynkin{G}{2}&\W[\sum e_j]{3}& \begin{bunch} \pm(1,-1,0),\\ \pm(-1,0,1),\\ \pm(0,-1,1),\\ \pm(2,-1,-1),\\ \pm(1,-2,1),\\ \pm(-1,-1,2) \end{bunch}& \begin{bunch}(-1,0,1),\\(2,-1,-1)\end{bunch} \end{longtable} \end{filecontents*} \newpage \begingroup \input{simple-lie-algebras.tex} \endgroup \newpage \VerbatimInput{simple-lie-algebras.tex} \newpage \section{Syntax} The syntax is \verb!\dynkin[]{}[]{}! where \verb!! is \verb!A!, \verb!B!, \verb!C!, \verb!D!, \verb!E!, \verb!F! or \verb!G!, the family of root system for the Dynkin diagram, \verb!! is \verb!0!, \verb!1!, \verb!2!, \verb!3! (default is \verb!0!) representing: \[ \renewcommand*{\arraystretch}{1} \begin{array}{rp{8cm}} 0 & finite root system \\ \hline 1 & affine extended root system, i.e. of type \({}^{(1)}\) \\ 2 & affine twisted root system of type \({}^{(2)}\) \\ 3 & affine twisted root system of type \({}^{(3)}\) \\ \end{array} \] and \verb!! is \begin{enumerate} \item an integer representing the rank or \item blank to represent an indefinite rank or \item the name of a Satake diagram as in section~\ref{section:Satake}. \end{enumerate} \section{Options} \newcommand*{\typ}[1]{\(\left<\texttt{#1}\right>\)} \newcommand*{\optionLabel}[3]{%% \multicolumn{2}{l}{\(\texttt{#1}=\texttt{#2}\),} \\ \multicolumn{2}{l}{\(\textrm{default}: \texttt{#3}\)} \\ }%% \renewcommand*{\arraystretch}{1} \par\noindent% \begin{longtable}{p{1cm}p{10cm}} \endfirsthead \caption{\dots continued}\\ \endhead \multicolumn{2}{c}{continued \dots}\\ \endfoot \endlastfoot \optionLabel{text/.style}{\typ{TikZ style data}}{scale=.7} & Style for any labels on the roots. \\ \optionLabel{name}{\typ{string}}{anonymous} & A name for the Dynkin diagram, with \texttt{anonymous} treated as a blank; see section~\ref{section:name}. \\ \optionLabel{parabolic}{\typ{integer}}{0} & A parabolic subgroup with specified integer, where the integer is computed as \(n=\sum 2^{i-1} a_i\), \(a_i=0\) or \(1\), to say that root \(i\) is crossed, i.e. a noncompact root. \\ \optionLabel{radius}{\typ{number}cm}{.05cm} & size of the dots and of the crosses in the Dynkin diagram \\ \optionLabel{edgeLength}{\typ{number}cm}{.35cm} & distance between nodes in the Dynkin diagram \\ \optionLabel{edge/.style}{TikZ style data}{thin} & style of edges in the Dynkin diagram \\ \optionLabel{mark}{\typ{o,O,t,x,X,*}}{*} & default root mark \\ \optionLabel{affineMark}{o,O,t,x,X,*}{*} & default root mark for root zero in an affine Dynkin diagram \\ \optionLabel{label}{true or false}{false} & whether to label the roots according to the current labelling scheme. \\ \optionLabel{labelMacro}{\typ{1-parameter \TeX{} macro}}{\texttt{\#1}} & the current labelling scheme. \\ \optionLabel{makeIndefiniteEdge}{\typ{edge pair \(i\)-\(j\) or list of such}}{\{\}} & edge pair or list of edge pairs to treat as having indefinitely many roots on them. \\ \optionLabel{indefiniteEdgeRatio}{\typ{float}}{1.6} & ratio of indefinite edge lengths to other edge lengths. \\ \optionLabel{indefiniteEdge/.style}{\typ{TikZ style data}}{draw=black,fill=white,thin,densely dotted} & style of the dotted or dashed middle third of each indefinite edge. \\ \optionLabel{arrows}{\typ{true or false}}{true} & whether to draw the arrows that arise along the edges. \\ \optionLabel{reverseArrows}{\typ{true or false}}{true} & whether to reverse the direction of the arrows that arise along the edges. \\ \optionLabel{fold}{\typ{true or false}}{true} & whether, when drawing Dynkin diagrams, to draw them 2-ply. \\ \optionLabel{ply}{\typ{0,1,2,3,4}}{0} & how many roots get folded together, at most. \\ \optionLabel{foldleft}{\typ{true or false}}{true} & whether to fold the roots on the left side of a Dynkin diagram. \\ \optionLabel{foldright}{\typ{true or false}}{true} & whether to fold the roots on the right side of a Dynkin diagram. \\ \optionLabel{foldradius}{\typ{length}}{.3cm} & the radius of circular arcs used in curved edges of folded Dynkin diagrams. \\ \optionLabel{foldStyle}{\typ{TikZ style data}}{draw=black!40,fill=none,line width=radius} & when drawing folded diagrams, style for the fold indicators. \\ \optionLabel{*/.style}{\typ{TikZ style data}}{draw=black,fill=black} & style for roots like \dynkin{A}{*} \\ \optionLabel{o/.style}{\typ{TikZ style data}}{draw=black,fill=black} & style for roots like \dynkin{A}{o} \\ \optionLabel{O/.style}{\typ{TikZ style data}}{draw=black,fill=black} & style for roots like \dynkin{A}{O} \\ \optionLabel{t/.style}{\typ{TikZ style data}}{draw=black,fill=black} & style for roots like \dynkin{A}{t} \\ \optionLabel{x/.style}{\typ{TikZ style data}}{draw=black} & style for roots like \dynkin{A}{x} \\ \optionLabel{X/.style}{\typ{TikZ style data}}{draw=black,thick} & style for roots like \dynkin{A}{X} \\ \optionLabel{leftFold/.style}{\typ{TikZ style data}}{} & style to override the \texttt{fold} style when folding roots together on the left half of a Dynkin diagram \\ \optionLabel{rightFold/.style}{\typ{TikZ style data}}{} & style to override the \texttt{fold} style when folding roots together on the right half of a Dynkin diagram \\ \optionLabel{doubleEdges}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together in a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows). \\ \optionLabel{doubleFold}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together in a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ \optionLabel{doubleLeft}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the left side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows). \\ \optionLabel{doubleFoldLeft}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the left side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ \optionLabel{doubleRight}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows). \\ \optionLabel{doubleFoldRight}{\typ{}}{not set} & set to override the \texttt{fold} style when folding roots together at the right side of a Dynkin diagram, so that the foldings are indicated with double edges (like those of an \(F_4\) Dynkin diagram without arrows), but filled in solidly. \\ \optionLabel{arrowColor}{\typ{}}{black} & set to override the default color for the arrows in nonsimply laced Dynkin diagrams. \\ \optionLabel{Coxeter}{\typ{true or false}}{false} & whether to draw a Coxeter diagram, rather than a Dynkin diagram. \\ \optionLabel{ordering}{\typ{Adams, Bourbaki, Carter, Dynkin, Kac}}{Bourbaki} & which ordering of the roots to use in exceptional root systems as in section~\ref{section:order}. \\ \end{longtable} \par\noindent{}All other options are passed to TikZ. \nocite{*} \bibliographystyle{amsplain} \bibliography{dynkin-diagrams} \end{document}