2.1

engine

The download package*!

Simon Sigurdhsson [sigurdhsson@gmail.com |

Version 1.0

Abstract The download package allows BIEX to download files using
cURL or wget.

Introduction

This package, inspired by a question on TgX.SE', allows KIEX to download
files using cURL or wget. Since it needs to run external commands, it
requires unrestricted \write18 access (INote: do not indiscriminately run
pdfBIEX with the --shell-escape flag; using this package it would be
possible to download malicious . tex that may abuse the \write18 access
to harm your system).

Usage

The package is very simple to use, but requires a *nix platform with
either cURL or wget installed and present in the PATH.

Options

auto,curl,wget (auto)
The package only has one option, which controls what underlying soft-
ware is used to download the file. As of version v1.0, the two engines
available are cURL and wget. The default, which is used when no option

*Available on http://www.ctan.org/pkg/skbundle.
"Development version available on https://github.com/urdh/download
'Klinger 2012.

The download package, v1.0 1

mailto:sigurdhsson@gmail.com
http://www.ctan.org/pkg/skbundle
https://github.com/urdh/download

2.2

\download

(package)

(package)

3.1

is supplied, is auto. In this mode, download will look for wget and cURL,
in that order, and use the first one available.

Macros

[(filename)]{{url)}

The only macro provided by download is \download. With it, you can
download any file from any (url) supported by the underlying engine
(wget supports http(s) and ftp, cURL supports a few more; for most
cases wget should be enough). The optional argument (filename) makes
the underlying engine save the file with the specified filename (Note:
this also enables file existence checking; without it, wget and cURL will
attempt to download the file even if it exists — wget see the existing file and
do nothing, but cURL will download a new copy with a numeral suffix).

Implementation

Let’s have a look at the simple implementation. The package is based
on KIEX3, and should comply with the standards described i the expl3
manual. In any case, we begin by loading a few packages (expl3 for the
ITEX3 core, I13keys2e for applying I3keys functionality to KTX 2. package
option parsing, pdftexcmds for the \pdf@shellescape macro and xparse
for the public API definitions).
\RequirePackage{expl3,13keys2e,pdftexcmds,xparse}

Then, we declare ourselves to provide the download KIX3 package.

\ProvidesExplPackage{download}
{2012/12/31}{1.0}{download files with LaTeX}
Messages

We define a couple of messages using I3keys functionality.
The two first messages will be used as fatal errors, when we notice that
functionality we absolutely require (e.g. either unrestricted \write18 or

The download package, v1.0 2

(package)

(package)

(package)

3.2

oad_if_shellescape:F

(package)

(package)

the specified engine) is missing.

\msg_new:nnnn{download}{no-write18}{Could “not use~\string\writel8!'}
{Please”run” ‘latex‘ with“the~ ‘--shell-escape‘~flag.}
\msg_new:nnnn{download}{no-engine}{Could not“find~cURL"~or~wget!}
{Please make~sure~either”cURL"or wget~is~installed~and”in"your PATH.}
We also have a message being displayed when \download is being
used without its optional argument. This is a warning, since it may imply

that cURL is creating a lot of unwanted files.

\msg_new:nnnn{download}{no-name}{Using~\string\download\space with"no~filename!}
{This"“means~I"will~download~the~file~even~if “it~already exists.}
The last two messages are diagnostics written to the log when engine
is set to auto.

\msg_new:nnn{download}{use-curl}{Using~cURL.}
\msg_new:nnn{download}{use-wget}{Using~wget.}

The \writel8 test

We require unrestricted \write18 and as such we must test for it. Using
the \pdf@shellescape macro from pdftexcmds, we can define a new
conditional that decides if we have unrestricted \write18.

(no arguments)

\prg_new_conditional:Nnn__download_if_shellescape:{F}{
\if_cs_exist:N\pdf@shellescape
If the command sequence exists (it really should), we test to see if it is
equal to one. The \pdf@shellescape macro will be zero if no \write18
access is available, two if we have restricted access and one if access is
unrestricted.

\if_int_compare:w\pdf@shellescape=\c_one
\prg_return_true:
\else:
\prg_return_false:
\fi:
If the command sequence doesn’t exist, we assume that we have un-
restricted \write18 access (we probably don’t), and let KIgX complain

about it later.

The download package, v1.0 3

(package)

3.3

__download_rm:n

(package)

3.4

load_if_curl_test:TF

nload_if_curl_test:T

nload_if_curl_test:F

load_if_curl_test_p:

(package)

(package)

\else:
\prg_return_true:
\fi:

Utility functions

The existence tests for cURL and wget, explained later, create a temporary
file. We might as well clean that up at once, since the user probably won’t
do that after each run of KIgX, and an old file may break the check.

#1: The file to be removed

\cs_new:Npn__download_rm:n#1{
\immediate\writel18{rm~#1}

}

Testing for cURL and wget

Testing for the existence of wget and cURL is done by calling the stand-
ard *nix which command. We define one conditional for every engine
(starting with cURL):

(no arguments)
(no arguments)
(no arguments)

(no arguments)

\prg_new_conditional:Nnn__download_if_curl_test:{TF,T,F,p}{
First, run which to create the temporary file.
\immediate\write18{which~curl~&& touch™\jobname.aex}

A temporary boolean is defined to hold the result of the test (this is
a bit of carco cult programming, any clues as to why placing the result

The download package, v1.0 4

inside \file_if_exists:nTF doesn’t work are welcome), and if the test
is successful we remove the temporary file.

(package) \bool_set:Nn\1l_tmpa_bool{\c_false_bool}
\file_if_exist:nTF{\jobname.aex}{
__download_rm:n{\jobname.aex}
\bool_set:Nn\1l_tmpa_bool{\c_true_bool}
H}

Finally, the temporary boolean is used to return a result.

(package) \if_bool:N\1_tmpa_bool
\prg_return_true:
\else:
\prg_return_false:
\fi:

The conditional for wget is defined analogously to that of cURL (again,
a bit of cargo cult programming; ideally we’d be DRY and have one does-
this-executable-exist-conditional, but for some reason that wouldn’t
work out for me — hints appreciated).

load_if_wget_test:TF (no arguments)

nload_if_wget_test:T (no arguments)

nload_if_wget_test:F (no arguments)

load_if_wget_test_p: (no arguments)

(package) \prg_new_conditional:Nnn__download_if_wget_test:{TF,T,F,p}{
\immediate\writel8{which“wget~&& touch™\jobname.aex}
\bool_set:Nn\1_tmpa_bool{\c_false_bool}
\file_if_exist:nTF{\jobname.aex}{

__download_rm:n{\jobname.aex}
\bool_set:Nn\1l_tmpa_bool{\c_true_bool}
H}
\if_bool:N\1_tmpa_bool
\prg_return_true:
\else:
\prg_return_false:
\fi:

The download package, v1.0 5

3.5 Using cURL and wget

_download_curl_do:nn

(package)

(package)

(package)

_download_wget_do:nn

(package)

(package)

(package)

Actually using cURL and wget for downloading is simple, issuing two dif-
ferent commands depending on wether we have the optional argument
or not (i.e. it is \NoValue).

#1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

\cs_new:Npn__download_curl_do:nn#1#2{
\IfNoValueTF{#1}{

When no optional argument is given, we just invoke cURL with the -s
(silent) flag.

\immediate\writel18{curl~-s~#2}
H

When we do have an optional argument, we add the -o flag to specify
the output file.

\immediate\writel18{curl™-s™-o~#1 #2}
}
}

#1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

\cs_new:Npn__download_wget_do:nn#1#2{
\IfNoValueTF{#1}{

With wget, we pass the -q (quiet) flag as well as the -nc (no clobber)
file, to avoid downloading files that already exist.

\immediate\writel18{wget~-q~-nc " #2}
H

Again, when we have an optional argument we add the -0 flag to
specify the output file.

\immediate\writel8{wget ™ -q " -nc~-0"#1"#23}
}

The download package, v1.0 6

3.6 The auto engine

nload_if_auto_test:F

(package)

(package)

(package)

_download_auto_do:nn

(package)

The automatic engine uses the tests and macros of the other engines
to provide functionality without selecting an engine. We first define a
conditional that, in essence, steps through the available engines testing
for their existence. If any of them exist, we’re in business.

(no arguments)

\prg_new_conditional:Nnn__download_if_auto_test:{F}{

To avoid excessive nesting of conditional statements, we define a
boolean (initialized to \c_false_bool) whichwe then setto \c_true_bool
every time we find an engine that exists.

\bool_set:Nn\1_tmpb_bool{\c_false_bool}
__download_if_curl_test:T{\bool_set:Nn\1_tmpb_bool{\c_true_booll}}
__download_if_wget_test:T{\bool_set:Nn\1l_tmpb_bool{\c_true_bool}}

We use that boolean to return a result from the conditional.

\if _bool:N\1_tmpb_bool
\prg_return_true:
\else:
\prg_return_false:
\fi:

We also define an automatic equivalent of the engine _do macros,
which selects wget if possible and cURL as a second choice.

#1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

\cs_new:Npn__download_auto_do:nn#1#2{
__download_if_wget_test:TF{
\msg_info:nn{download}{use-wget}
__download_wget_do:nn{#1}{#2}
H
\msg_info:nn{download}{use-curl}
__download_curl_do:nn{#1}{#2}

The download package, v1.0 7

3.7 Package options

As detailed earlier in the documentation, the only option of the package
is engine. Here, we use the I3keys functionality to define a key-value
system which we later use to read the package options.

(package) \keys_define:nn{download}{
engine .choice:,

__download_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

nload_if_auto_test:F (no arguments)

First, the auto value. We globally define two macros as aliases to the
underlying _do and _if_test macros.

(package) engine / auto .code:n =
{\cs_gset_eq:NN__download_do:nn__download_auto_do:nn
\prg_new_eq_conditional:NNn__download_if_test:__download_if_auto_test:{F}},

We do the same for the cURL and wget options.

(package) engine / curl .code:n =
{\cs_gset_eq:NN__download_do:nn__download_curl_do:nn
\prg_new_eq_conditional:NNn__download_if_test:__download_if_curl_test:{F}},
engine / wget .code:n =
{\cs_gset_eq:NN__download_do:nn__download_wget_do:nn
\prg_new_eq_conditional:NNn__download_if_test:__download_if_wget_test:{F}},

Lastly, we initialize the option with the auto value.

(package) engine .initial:n = auto,
engine .default:n = auto,

Now, given the key-value system, we parse the options.

(package) \ProcessKeysPackageOptions{download}

3.8 Performing the tests

Now that we know what engine we will be using, we can check for
\write18 support and engine existence.

(package) __download_if_shellescape:F{\msg_fatal:nn{download}{no-write18}}
__download_if_test:F{\msg_fatal:nn{download}{no-engine}}

The download package, v1.0 8

3.9 Public API

The public API consists of only one macro, \download. It simply calls
the backend macro, unless the optional argument is given and the file
exists. If the file doesn’t exist, it also emits a friendly warning.

\download#1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

(package) \DeclareDocumentCommand\download{om}{
\IfNoValueTF{#1}{
\msg_warning:nn{download}{no-name}
__download_do:nn{#1}{#2}
H

}

\file_if_exist:nTF{#1}{}{__download_do:nn{#1}{#2}}

And we’re done.

(package) \endinput

4 Changes

V1.0

General: Initial version.

5 Index

Numbers written in boldface refer to the page where the correspond-
ing entry is described; numbers underlined refer to the page were the
implementation of the corresponding entry is discussed. Numbers in
roman refer to other mentions of the entry.

Symbols 8
__download_auto_do:nn _download_if_curl_test:F .
_download_if_curl_test:T .
_download_if_curl_test:TF

_download_if_curl_test_p:

__download_curl_do:nn

[eMIeNEN]

__download_do:nn

_
_
_
__download_if_auto_test:F 7, _

I

The download package, v1.0 9

__download_if_shellescape:F F
3 \file_if_exists:nTF 5

__downiéad_if_wget_test:F .5
__download_if_wget_test:T .5 |
__download_if_wget_test:TF 5 I3keys2e (package))
__download_if_wget_test_p: 5
__download_rm:n 4 N
\--download_wget_do:nn % \Novalue 6-9
C
\c_false_bool 7 P
\c_true boolot 7 \pdf@shellescape 2,3

S pdftexcmds (package) 2,3
D
\download 2,3,9 W

\writel8 1-3,8

E
engine (Option) 1,38 X
expl3 (package) 2 xparse (package) 2

6 Bibliography

Klinger, Max (2012). Creating a URL downloading command to be used
withe.g. \ includegraphics.Url: http://tex.stackexchange.com/
questions/88430/creating-a-url-downloading-command-to-
be-used-with-e-g-includegraphics.

The download package, v1.0 10

http://tex.stackexchange.com/questions/88430/creating-a-url-downloading-command-to-be-used-with-e-g-includegraphics
http://tex.stackexchange.com/questions/88430/creating-a-url-downloading-command-to-be-used-with-e-g-includegraphics
http://tex.stackexchange.com/questions/88430/creating-a-url-downloading-command-to-be-used-with-e-g-includegraphics

	Introduction
	Usage
	Options
	Macros

	Implementation
	Messages
	The write18 test
	Utility functions
	Testing for cURL and wget
	Using cURL and wget
	The auto engine
	Package options
	Performing the tests
	Public API

	Changes
	Index
	Bibliography

