
The extension package curve2e∗

Claudio Beccari

August 28, 2005

Contents

1 Package pict2e and this ex-
tension curve2e 1

2 Source code 3
2.1 Some preliminary exten-

sions to the pict2e package 3
2.1.1 Improved line

and vector macros 4

2.1.2 Polygonal lines . . 7
2.1.3 The red service grid 8

2.2 The new division macro . 9
2.3 Trigonometric functions . 10
2.4 Arcs and curves prelimi-

nary information 13
2.5 Complex number macros . 14
2.6 Arcs and curved vectors . 17
2.7 General curves 22

¡*package¿
1 \NeedsTeXFormat{LaTeX2e}

2 〈/package〉
3 〈∗driver〉
4 \ProvidesFile{curve2e.dtx}%

5 〈/driver〉
6 〈+package〉\ProvidesPackage{curve2e}%
7 [2005/08/15 v.0.10 Extension package for pict2e]

8 〈∗package〉
¡/package¿

Abstract

This file documents the curve2e extension package to the recent imple-
mentation of the pict2e bundle that has been described by Lamport himself
in the second edition of his LATEX handbook.

This extension redefines a couple of commands and introduces some more
drawing facilities that allow to draw circular arcs and arbitrary curves with
the minimum of user intervention. This beta version is open to the con-
tribution of other users as well as it may be incorporated in other people’s
packages. Please cite the original author and the chain of contributors.

1 Package pict2e and this extension curve2e

Package pict2e was announced in inssue 15 of latexnews around December 2003;
it was declared that the new package would replace the dummy one that has been
accompanying every realease of LATEX2ε since its beginnings in 1994. The dummy

∗Version number v.0.10; last revised 2005/08/15.

1

package was just issuing an info message that simply announced the temporary
unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a LATEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifi-
cally:

1. the line and vector slopes were limited to the ratios of relatively prime one
digit integers of magnitude not exceeding 6 for lines and 4 for vectors;

2. filled and unfilled full circles were limited by the necessarily bounded number
of specific glyphs contained in the special LATEX picture fonts;

3. quarter circles were also limited in their radii for the same reason;

4. ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large, in
the sense that after a certain radius the rounded corners remained the same
and would not increase proportionally to the oval size.

5. vector arrows had only one possible shape besides matching the limited num-
ber of vector slopes;

6. for circles and inclined lines and vectors there were available just two possible
thicknesses.

The package pict2e removes most if not all the above limitations:

1. line and vector slopes are virtually unlimited; the only remainig limitation
is that the direction coefficients must be three-digit integer numbers; they
need not be relatively prime;

2. filled and unfilled circles can be of any size;

3. ovals can be designed with any specified corner curvature and there is vir-
tually no limitation to such curvatures; of course corner radii should not
exceed half the lower value between the base and the hight of the oval;

4. there are two shapes for the arrow tips; the triangular one traditional with
LATEX vectors, or the arrow tip with PostScript style.

5. the \linethicknes command changes the thicknes of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension adds the following features

1. commands for setting the line terminations are introduced; the user can
chose between square or rounded caps; the default is set to rounded caps;

2. the \line macro is redefined so as to allow integer and fractional direction
coefficients, but maintaining the same syntax as in the original picture
environment;

3. a new macro \Line is defined so as to avoid the need to specify the horizontal
projection of inclined lines;

2

4. a new macro \LINE joins two points specified with their coordinates; of course
there is no need to use the \put command with this line specification;

5. similar macros are redefined for vectors; \vector redefines the original macro
but with the vector slope limitation removed; \Vector gets specified with its
two horizontal and vertical components; \VECTOR joins two specified points
(without using the \put command) with the arrow pointing to the second
point;

6. a new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them;

7. a new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary angle amplitude; this amplitude is specified in sexagesimal
degrees, not in radians;

8. two new macros are defined in order to draw circular arcs with one arrow at
one or both ends;

9. a new macro \Curve is defined so as to draw arbitrary curved lines by means
of third order Bézier splines; the \Curve macro requires only the curve nodes
and the direction of the tangents at each node.

In order to make the necessary calculations many macros have been defined so
as to use complex number to manipulate point coordinates, directions, rotations
and the like. The trigonometric functions have also been defined in a way that the
author believes to be more efficient that that implied by the trig package; in any
case the macro names are sufficiently different to accomodate both definitions in
the same LATEX run.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and LATEX programmers, this
beta version could become the start for a real extension of the pict2e package or
even become a part of it.

For this reason I suppose that every enhanceent should be submitted to Gäßlein
and Niepraschk who are the prime maintainers of pict2e; they only can decide
wether or not to incorporate new macros in their package.

2 Source code

2.1 Some preliminary extensions to the pict2e package

The necessary preliminary code has already been introduced. Here we require
the color package and the pict2e one; for the latter one we make sure that a
sufficiently recent version is used.
9 \RequirePackage{color}

10 \RequirePackageWithOptions{pict2e}[2004/06/01]

Next we define the line terminators and joins; the following definitions work cor-
rectly if the dvips or the pdftex driver are specified; probably other modes should
be added so as to be consistent with pict2e.
11 \ifcase\pIIe@mode\relax

3

12 \or %Postscript

13 \def\roundcap{\special{ps:: 1 setlinecap}}%

14 \def\squarecap{\special{ps:: 0 setlinecap}}%

15 \def\roundjoin{\special{ps:: 1 setlinejoin}}%

16 \def\beveljoin{\special{ps:: 2 setlinejoin}}%

17 \or %pdf

18 \def\roundcap{\pdfliteral{1 J}}%

19 \def\squarecap{\pdfliteral{0 J}}%

20 \def\roundjoin{\pdfliteral{1 j}}%

21 \def\beveljoin{\pdfliteral{2 j}}%

22 \fi

The next macros are just for debugging. With the tracing package it would
probably be better to define other macros, but this is not for the users, but for
the devellopers.
23 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%

24 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%

Next we define some new dimension registers that will be used by the subse-
quent macros; should they be already defined, there will not be any redefinition;
nevertheless the macros should be sufficiently protected so as to avoid overwriting
register values loaded by other macro packages.
25 \ifx\undefined\@tdA \newdimen\@tdA \fi

26 \ifx\undefined\@tdB \newdimen\@tdB \fi

27 \ifx\undefined\@tdC \newdimen\@tdC \fi

28 \ifx\undefined\@tdD \newdimen\@tdD \fi

29 \ifx\undefined\@tdE \newdimen\@tdE \fi

30 \ifx\undefined\@tdF \newdimen\@tdF \fi

31 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi

It is better to define a macro for setting a different value for the line and
curve thicknesses; the ‘\defaultlinewidth should contain the equivalent of
\@wholewidth, that is the thickness of thick lines; thin lines are half as thick;
so when the default line thickness is specified to, say, 1pt, thick lines will be 1pt
thick and thin lines will be 0.5pt thick. The default whole width of thick lines is
0,8pt, but this is specified in the kernel of LATEX and/or in pict2e.
32 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax

33 \def\thicklines{\linethickness{\defaultlinewidth}}%

34 \def\thinlines{\linethickness{.5\defaultlinewidth}}%

35 \thinlines\ignorespaces}

The \ignorespaces at the end of this and the subsequent macros is for avoiding
spurious spaces to get into the picture that is being drawn, because these spaces
introduce picture deformities often difficult to spot and eliminate.

2.1.1 Improved line and vector macros

The new macro \Line allows to draw an arbitrary inclination line as if it was
a polygon with just two vertices. This line should be set by means of a \put
command so that its starting point is always at a relative 0,0 coordinate point.
The two arguments define the horizontal and the vertical component respectively.
36 \def\Line(#1,#2){\pIIe@moveto\z@\z@

37 \pIIe@lineto{#1\unitlength}{#2\unitlength}\pIIe@strokeGraph}%

4

A similar macro \LINE operates between two explicit points with absolute
coordinates, instead of relative to the position specified by a \put command; it
resorts to the \polyline macro that is to be defined in a while.
38 \def\LINE(#1)(#2){\polyline(#1)(#2)}%

The \line macro is redefined by making use of a new division routine that
receives in input two dimensions and yields on output their fractional ratio. The
beginning of the macro definition is the same as that of pict2e:
39 \def\line(#1)#2{\begingroup

40 \@linelen #2\unitlength

41 \ifdim\@linelen<\z@\@badlinearg\else

but as soon as it is verified that the line length is not zero, things change re-
markably; in facts the machinery for complex numbers is invoked: \DirOfVect
takes the only macro argument (that actually contains a comma separated pair
of fractional numbers) and copies it to \Dir@line (an arbitrarily named control
sequence) after renormalizing to unit magnitude; this is passed to GetCoord that
separates the two components into the control sequences \d@mX and\d@mY; these in
turn are the values that are actually operated upon by the subsequent commands.
42 \expandafter\DirOfVect#1to\Dir@line

43 \GetCoord(\Dir@line)\d@mX\d@mY

The normalized vector direction is actually formed with the directing cosines of
the line direction; since the line length is actually the horizontal component for
non vertical lines, it is necessary to compute the actual line length for non vertical
lines by dividing the given length by the magnitude of horizontal cosine \d@mX,
and the line legth is accordingly scaled:
44 \ifdim\d@mX\p@=\z@\else

45 \DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen

46 \@linelen=\sc@lelen\@linelen

47 \fi

Finally the moveto, lineto and stroke language keywords are invoked by means
of the internal pict2e commands in order to draw the line. Notice that even
vertical lines are drawn with the “PostScript” commands instead of resorting to the
dvi low level language that was used both in pict2e and in the original picture
commands; it had a meaning in the old times, but it certainly does not have any
when lines are drawn by the driver that drives the output to a visible document
form, not by TEX the program.
48 \pIIe@moveto\z@\z@

49 \pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%

50 \pIIe@strokeGraph

51 \fi

52 \endgroup\ignorespaces}%

The new macro \GetCoord splits a vector (or complex number) specification into
its components:
53 \def\GetCoord(#1)#2#3{%

54 \expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

But the macro that does the real work is \SplitNod@:
55 \def\SplitNod@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%

The redifinitions and the new definitions for vectors are a little more compli-
cated than with segments, because each vector is drawn as a filled contour; the

5

original pict2e macro checks if the slopes are corrsponding to the limitations spec-
ified by Lamport (integer three digit signed numbers) and sets up a transformation
in order to make it possible to draw each vector as an horizontal left-to-right ar-
row and then to rotate it by its angle about its tail point; actually there are two
macros for tracing the contours that are eventually filled by the principal macro;
each contour macro draws the vector with a LATEX or a PostScript arrow whose
parameters are specified by default or may be taken from the parameters taken
from the PSTricks package if this one is loaded before pict2e; in any case we
did not change the contour drawing macros because if they are modified the same
modification is passed on to the arrows drawn with the curve2e package redefini-
tions.

Because of these features the redefinitions and the new macros are different
from those used for straight lines.

We start with the redefinition of \vector and we use the machinery for vectors
(as complex numbers) we used for \line.
56 \def\vector(#1)#2{%

57 \begingroup

58 \GetCoord(#1)\d@mX\d@mY

59 \@linelen#2\unitlength

As in pict2e we avoid tracing vectors if the slope parameters are both zero.
60 \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi

But we check only for the positive nature of the lx component; if it is negative,
we simply change sign instead of blocking the typesetting process. This is useful
also for macros \Vector and \VECTOR to be defined in a while.
61 \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi

We now make a vector with the slope direction even if one or the other is zero and
we determine its direction; the real and imaginary parts of the direction vector
are also the values we need for the subsequent rotation.
62 \MakeVectorFrom\d@mX\d@mY to\@Vect

63 \DirOfVect\@Vect to\Dir@Vect

In order to be compatible with the original pict2e I need to transform the com-
ponents of the vector direction in lengths with the specific names \@xdim and
\@ydim

64 \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@

65 \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@

If the vector is really sloping we need to scale the lx component in order to get the
vector total length; we have to divide by the cosine of the vector inclination wich
is the real part of the vector direction. I use my division macro; since it yields a
“factor” I directly use it to scale the lenght of the vector. I finally memorize the
true vector lenth in the internal dimension @tdB

66 \ifdim\d@mX\p@=\z@

67 \else\ifdim\d@mY\p@=\z@

68 \else

69 \DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen

70 \@linelen=\sc@lelen\@linelen

71 \fi

72 \fi

73 \@tdB=\@linelen

6

The remaining code is defintely similar to that of pict2e; the real difference
consists in the fact that the arrow is designed by itself without the stem; but it is
placed at the vector end; therefore the first statement is just the transformation
matrix used by the output driver to rotate the arrow tip and to displace it the
right amount. But in order to draw only the arrow tip I have to set the \@linelen
length to zero.
74 \pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%

75 \@linelen\z@

76 \pIIe@vector

77 \pIIe@fillGraph

Now we can restore the stem lenght that must be shortened by the dimension of
the arrow; examinimng the documentation of pict2e we discover that we have to
shorten it by an approximate amount of AL (with the notations of pict2e, figs 10
and 11); the arrow tip parameters are stored in certain variables with which we
can determine the amount of the stem shortening; if the stem was too short and
the new length is negative, we refrain from designing such stem.
78 \@linelen=\@tdB

79 \@tdA=\pIIe@FAW\@wholewidth

80 \@tdA=\pIIe@FAL\@tdA

81 \advance\@linelen-\@tdA

82 \ifdim\@linelen>\z@

83 \pIIe@moveto\z@\z@

84 \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%

85 \pIIe@strokeGraph\fi

86 \endgroup}

Now we define the macro that does not require the specification of the length
or the lx lenght component; the way the new \vector macro works does not
actually require this specification, because TEX can compute the vector length,
provided the two direction components are exacly the horizontal and vertical vector
components.
87 \def\Vector(#1,#2){\vector(#1,#2){#1}}

On the opposite the next macro specifies a vector by means of the coordinates
of its end points; the first point is where the vector starts, and the second point
is the arrow side.
88 \def\VECTOR(#1)(#2){\begingroup

89 \SubVect#1 from #2 to \@tempa

90 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%

91 \endgroup\ignorespaces}

The pict2e documentation says that if the vector length is zero the macro
designs only the arrow tip; this may work with macro \vector, certainly not with
\Vector and \VECTOR. This might be useful for adding an arrow tip to a circular
arc

2.1.2 Polygonal lines

We now define the polygonal line macro; its syntax is very simple

\polygonal(P0)(P1)P2). . . (Pn)

7

In order to write a recursive macro we need aliases for the parentheses; actually
we need only the left parenthesis, but some editors complain about unmathched
delimiters, so we define an alias also for the right parenthesis.
92 \let\lp@r(\let\rp@r)

The first call to \polyline examines the first point coordinates and moves the
drawing position to this point; afterwards it looks for the second point coordinates;
they start with a left parenthesis; if this is found the coordinates should be there,
but if the left parenthesis is missing (possibly preceeded by spaces that are ignored
by the \@ifnextchar macro) then a warning message is output together with the
line number where the missing parenthesis causes the warning: beware, this line
number might point to several lines further on along the source file!
93 \def\polyline(#1){\beveljoin\GetCoord(#1)\d@mX\d@mY

94 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%

95 \@ifnextchar\lp@r{\p@lyline}{%

96 \PackageWarning{curve2e}%

97 {Polygonal lines require at least two vertices!\MessageBreak

98 Control your polygonal line specification\MessageBreak}%

99 \ignorespaces}}

But if there is a second or further point coordinate the recursive macro \p@lyline
is called; it works on the next point and checks for a further point; if such a point
exists it calls itself, otherwise it terminates the polygonal line by stroking it.

100 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY

101 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%

102 \@ifnextchar\lp@r{\p@lyline}{\pIIe@strokeGraph\ignorespaces}}

2.1.3 The red service grid

The next command is very useful for debugging while editing one’s drawings; it
draws a red grid with square meshes that are ten drawing units apart; there is
no graduation along the grid, since it is supposed to be a debugging aid and the
user should know what he/she is doing; nevertheless it is advisable to displace the
grid by means of a \put command so that its grid lines coincide with the graph
coordinates multiples of 10. Missing to do so the readings become cumbersome.
The \RoundUp macros provide to increase the grid dimensions to integer multiples
of ten.

103 \def\GraphGrid(#1,#2){\begingroup\textcolor{red}{\linethickness{.1\p@}%

104 \RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt

105 \@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne

106 \multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%

107 \@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne

108 \multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%

109 \endgroup\ignorespaces}

Rounding uo is useful because also the grid margins fall on coordinates multiples
of 10. It resosrts to the \Integer macro that will be described in a while.

110 \def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%

111 \count254\@tempcnta\divide\count254by#2\relax

112 \multiply\count254by#2\relax

113 \count252\@tempcnta\advance\count252-\count254

114 \ifnum\count252>0\advance\count252-#2\relax

115 \advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%

8

The \Integer macro takes a possibly fractional number whose decimal separator,
if present, must be the decimal point and uses the point as an argunent delimiter If
one has the doubt that the number being passed to \Integer might be an integer,
he/she should call the macro with a further point; if the argument is truly integer
this point works as the delimiter of the integer part; if the argument being passed
is fractional this extra point gets discarded as well as the fractional part of the
number.

116 \def\Integer#1.#2??{#1}%

2.2 The new division macro

Now comes one of the most important macros in the whole package: the division
macro; it takes two lengths as imput values ant computes their fractional ratio. It
must take care of the signs, so that it examines the operand signs and determines
the result sign separately conserving this computed sign in the macro \segno;
this done, we are sure that both operands are or are made positive; should the
numerator be zero it directly issues the zero quotient; should the denominator be
zero it ouputs a signed “infinity”, that is the maximun allowable length measured
in points that TEX can deal with. Since the result is assigned a value, the calling
statement must pass as the third argument eiter a control sequence or an active
character. Of course the first operand is the dividend, the second the divisor and
the third the quotient.

117 \ifx\DividE\undefined

118 \def\DividE#1by#2to#3{%

119 \begingroup

120 \dimendef\Numer=254\relax \dimendef\Denom=252\relax

121 \countdef\Num 254\relax

122 \countdef\Den 252\relax

123 \countdef\I=250\relax

124 \Numer #1\relax \Denom #2\relax

125 \ifdim\Denom<\z@ \Denom -\Denom \Numer -\Numer\fi

126 \def\segno{}\ifdim\Numer<\z@ \def\segno{-}\Numer -\Numer\fi

127 \ifdim\Denom=\z@

128 \ifdim\Numer>\z@\def\Q{16383.99999}\else\def\Q{-16383.99999}\fi

129 \else

130 \Num=\Numer \Den=\Denom \divide\Num\Den

131 \edef\Q{\number\Num.}%

132 \advance\Numer -\Q\Denom \I=6\relax

133 \@whilenum \I>\z@ \do{\DividEDec\advance\I\m@ne}%

134 \fi

135 \xdef#3{\segno\Q}\endgroup

136 }%

The \DividEDec macro takes the remainder of the previous division, multiplies
it by 10, computes a one digit quotient that postfixes to the previous overall
quotient, and computes the next remainder; all operations are done on integer
registers to whom the dimensional operands are assigned so that the mentioned
registers acquire the measures of the dimensions in scaled points; TEX is called
to perform integer arithmetics, but the long division takes care of the decimal
separator and of the suitable number of fractional digits.

137 \def\DividEDec{\Numer=10\Numer \Num=\Numer \divide\Num\Den

138 \edef\q{\number\Num}\edef\Q{\Q\q}\advance\Numer -\q\Denom}%

9

139 \fi

In the above code the \begingroup. . . \endgroup maintain all registers local so
that ony the result must be globally defined. The \ifx. . . \fi construct assures
the division machinery is not redefined; I use it in so many packages that its better
not to mix up things even with slightly different definitions.

The next two macros are one of the myriad variants of the dirty trick used by
Knuth for separating a measure from its units that must be points, “pt”; One has
to call \Numero with a control sequence and a dimension; the dimension value in
points is assinged to the control sequence.

140 \ifx\undefined\@Numero% s

141 {\let\cc\catcode \cc‘p=12\cc‘t=12\gdef\@Numero#1pt{#1}}%

142 \fi

143 \ifx\undefined\Numero

144 \def\Numero#1#2{\dimen254

145 #2\edef#1{\expandafter\@Numero\the\dimen254}\ignorespaces}%

146 \fi

For both macros the \ifx. . . \fi constructs avoids messing up the definitions I
have in several packages.

2.3 Trigonometric functions

We now start with trigonometric functions. We define the macros \SinOf, \CosOf
and \TanOf (we might define also \CotOf, but the cotangent does not appear so
essential) by means of the parametric formulas that require the knowledge of the
tangento of the half angle. We want to specify the angeles in sexagesimal degrees,
not in radians, so we can make accurate reductions to the main quadrants. we use
the fromulas

sin θ =
2

cot x + tanx

cos θ =
cot x − tanx

cot x + tanx

tan θ =
2

cot x − tanx
where

x = θ/114.591559

is the half angle in degrees converted to radians.
We use this slightly modified set of parametric formulas because the cotangent

of x is a by product of the computation of the tangent of x; in this way we avoid
computing the squares of numbers that might lead to overflows. For the same
reason we avoid computing the value of the trigonometric functions in proximity
of the value zero (and the other values that might involve high tangent or cotangent
values) and in that case we prefer to approximate the small angle function value
with its first or second order truncation of the McLaurin series; in facts for angles
whose magnitude is smaller than 1◦ the magnitude of the independent variable
y = 2x (the angle in degress converted to radians) is so small (less than 0.017)
that the sine and tangent can be freely approximated with y itself (the error being
smaller than approximately 10−6), while the cosine can be freely approximated
with the formula 1 − 0.5y2 (the error being smaller than about 4 · 10−9).

10

We keep using grouping so that internal variables are local to these groups and
do not mess up other things.

The first macro is the service routine that computes the tangent and the cotan-
gent of the half angle in radians; since we have to use always the reciprocal if this
value, we call it \X but ins spite of the similarity it is the reciprocal of x. Notice
that parameter #1 must be a length.

147 \def\g@tTanCotanFrom#1to#2and#3{%

148 \DividE 114.591559\p@ by#1to\X \@tdB=\X\p@

Computations are done with the help of counter \I, of the length \@tdB, and the
auxiliary control sequences \Tan and \Cot whose meaning is transparent. The
iterative process controlled by \@whilenum implements the (truncated) continued
fraction expansion of the tangent function

tanx =
1

1
x
− 1

3
x
− 1

5
x
− 1

7
x
− 1

9
x
− 1

11
x

− · · ·

149 \countdef\I=254\def\Tan{0}\I=11\relax

150 \@whilenum\I>\z@\do{%

151 \@tdC=\Tan\p@ \@tdD=\I\@tdB

152 \advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan

153 \advance\I-2\relax}%

154 \def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}%

155 \ignorespaces}%

Now that we have the macro for computing the tangent and cotangent of
the half angle, we can compute the real trigonometric functions we are interesed
in. The sine value is computed after reducing the sine argument to the interval
0◦ < θ < 180◦; actually special values such as 0◦,90◦, 180◦, et cetera, are taken
care separtely, so that CPU time is saved for these special cases. The sine sign is
taken care separately accordinng to the quadrant of the sine argument.

156 \def\SinOf#1to#2{\begingroup%

157 \@tdA=#1\p@%

158 \ifdim\@tdA>\z@%

159 \@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%

160 \else%

161 \@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%

162 \fi \ifdim\@tdA=\z@

163 \gdef#2{0}%

164 \else

165 \ifdim\@tdA>\z@

166 \def\Segno{+}%

167 \else

168 \def\Segno{-}%

169 \@tdA=-\@tdA

170 \fi

171 \ifdim\@tdA>90\p@

11

172 \@tdA=-\@tdA \advance\@tdA 180\p@

173 \fi

174 \ifdim\@tdA=90\p@

175 \xdef#2{\Segno1}%

176 \else

177 \ifdim\@tdA=180\p@

178 \gdef#2{0}%

179 \else

180 \ifdim\@tdA<\p@

181 \@tdA=\Segno0.0174533\@tdA

182 \DividE\@tdA by\p@ to#2%

183 \else

184 \g@tTanCotanFrom\@tdA to\T and\Tp

185 \@tdA=\T\p@ \advance\@tdA \Tp\p@

186 \DividE \Segno2\p@ by\@tdA to#2%

187 \fi

188 \fi

189 \fi

190 \fi

191 \endgroup\ignorespaces}%

For the computation of the cosine we behave in a similar way.
192 \def\CosOf#1to#2{\begingroup%

193 \@tdA=#1\p@%

194 \ifdim\@tdA>\z@%

195 \@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%

196 \else%

197 \@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%

198 \fi

199 %

200 \ifdim\@tdA>180\p@

201 \@tdA=-\@tdA \advance\@tdA 360\p@

202 \fi

203 %

204 \ifdim\@tdA<90\p@

205 \def\Segno{+}%

206 \else

207 \def\Segno{-}%

208 \@tdA=-\@tdA \advance\@tdA 180\p@

209 \fi

210 \ifdim\@tdA=\z@

211 \gdef#2{\Segno1}%

212 \else

213 \ifdim\@tdA<\p@

214 \@tdA=0.0174533\@tdA \Numero\@tempA\@tdA

215 \@tdA=\@tempA\@tdA \@tdA=-.5\@tdA

216 \advance\@tdA \p@

217 \DividE\@tdA by\p@ to#2%

218 \else

219 \ifdim\@tdA=90\p@

220 \gdef#2{0}%

221 \else

222 \g@tTanCotanFrom\@tdA to\T and\Tp

223 \@tdA=\Tp\p@ \advance\@tdA-\T\p@

224 \@tdB=\Tp\p@ \advance\@tdB\T\p@

12

225 \DividE\Segno\@tdA by\@tdB to#2%

226 \fi

227 \fi

228 \fi

229 \endgroup\ignorespaces}%

For the tangent computation we behave in a similar way, except that we con-
sider the fundamantal interval as 0◦ < θ < 90◦; for the odd multiples of 90◦ we
assign the result a TEX infinity value, that is the maximum number in points a
dimension can be.

230 \def\TanOf#1to#2{\begingroup%

231 \@tdA=#1\p@%

232 \ifdim\@tdA>90\p@%

233 \@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%

234 \else%

235 \@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%

236 \fi%

237 \ifdim\@tdA=\z@%

238 \gdef#2{0}%

239 \else

240 \ifdim\@tdA>\z@

241 \def\Segno{+}%

242 \else

243 \def\Segno{-}%

244 \@tdA=-\@tdA

245 \fi

246 \ifdim\@tdA=90\p@

247 \xdef#2{\Segno16383.99999}%

248 \else

249 \ifdim\@tdA<\p@

250 \@tdA=\Segno0.0174533\@tdA

251 \DividE\@tdA by\p@ to#2%

252 \else

253 \g@tTanCotanFrom\@tdA to\T and\Tp

254 \@tdA\Tp\p@ \advance\@tdA -\T\p@

255 \DividE\Segno2\p@ by\@tdA to#2%

256 \fi

257 \fi

258 \fi

259 \endgroup\ignorespaces}%

2.4 Arcs and curves preliminary information

We would like to define now a macro for drawing circular arcs of any radius and
any angular aperture; the macro should require the arc center, the arc starting
point and the angular aperture. The command should have the following syntax:

\Arc(〈center〉)(〈starting point〉)〈angle〉

If the 〈angle〉 is positive the arc runs counterclokwise from the starting point;
clockwise if it’s negative.

It’s necessary to detrmine the end point and the control points of the Bézier
spline(s) that make up the circular arc.

13

The end point is obtained from the rotation of the starting point around the
center; but the pict2e comand \pIIe@rotate is such that the pivoting point
appears to be non relocatable. It is therefore necessary to resort to low level
TEX commands and the defined trigonometric functions and a set of macros that
operate on complex numbers used as vector scale-rotate operators.

2.5 Complex number macros

We need therefore macros for summing, subtracting, multiplying, dividing com-
plex numbers, for determining they directions (unit vectors); a unit vector is the
complex number divided by its magnitude so that the result is the cartesian form
of the Euler’s equation

ejφ = cos φ + j sin φ

The magnitude of a vector id determined by taking a clever square root of a
function of the real and the imaginary parts; see further on.

It’s better to represent each complex number with one control sequence; this
implies frequent assembling and disassembling the pair of real numbers that make
up a complex number. These real components are assembled into the defining
control sequence as a couple of coordinates, i.e. two comma separated integer or
fractional signed decimal numbers.

For assembling two real numbers into a complex number we use the following
elementary macro:

260 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Another elementary macro copies a complex number into another one:
261 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%

The magnitude is determined with the macro \ModOfVect with delimited argu-
ments; as usual it is assumed that the results are retrieved by means of control
sequences, not used directly.

The magnitude M is determined by taking the moduli of the real and immag-
inary parts, changing their signs if necessary; the larger component is then taken
as the reference one so that, if a is larger than b, the square root of the sum of
their squares is computed as such:

M =
√

a2 + b2 = a
√

1 + (b/a)2

In this way the radicand never exceeds 2 and its is quite easy taking its square
root by means of the Newton iterative process; due to the quadratic convergence,
five iterations are more than sufficient. When one of the components is zero, the
Newton iterative process is skipped. The overall macro is the following:

262 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y

263 \@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi

264 \@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi

265 \ifdim\@tempdima>\@tempdimb

266 \DividE\@tempdimb by\@tempdima to\@T

267 \@tempdimc=\@tempdima

268 \else

269 \DividE\@tempdima by\@tempdimb to\@T

270 \@tempdimc=\@tempdimb

271 \fi

272 \ifdim\@T\p@>\z@

14

273 \@tempdima=\@T\p@ \@tempdima=\@T\@tempdima

274 \advance\@tempdima\p@ %

275 \@tempdimb=\p@%

276 \@tempcnta=5\relax

277 \@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T

278 \advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb

279 \advance\@tempcnta\m@ne}%\

280 \@tempdimc=\@T\@tempdimc

281 \fi

282 \Numero#2\@tempdimc

283 \ignorespaces}%

As a byproduct of the computation the control sequence \@tempdimc contains the
vector or complex number magnitude multiplied by the length of one point.

Since the macro for determining the magnitude of a vector is available, we can
now normalize the vector to its magnitude, therefore getting the cartesian form of
the direction vector. If by any chance the direction of the null vector is requested,
the output is again the null vector, without normalization.

284 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y

285 \ModOfVect#1to\@tempa

286 \ifdim\@tempdimc=\z@\else

287 \DividE\t@X\p@ by\@tempdimc to\t@X

288 \DividE\t@Y\p@ by\@tempdimc to\t@Y

289 \MakeVectorFrom\t@X\t@Y to#2\relax

290 \fi\ignorespaces}%

A cumulative macro uses the above ones for determining with one call both
the magnitude and the direction of a complex number. The first argument is
the input complex number, the second its magnitude, and the third is again a
complex number normalized to unit magnitude (unless the input was the null
complex number); remember always that output quantities must be specified with
control sequences to be used at a later time.

291 \def\ModAndDirOfVect#1to#2and#3{%

292 \GetCoord(#1)\t@X\t@Y

293 \ModOfVect#1to#2%

294 \DividE\t@X\p@ by\@tempdimc to\t@X \DividE\t@Y\p@ by\@tempdimc to\t@Y

295 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

The next macro computes the magnitude and the direction of the difference of
two complex numbers; the first input argument is the minuend, the second is the
subtraend; the output quantities are the third argument containing the magnitude
of the difference and the fourth is the direction of the difference. The service macro
\SubVect executes the difference of two complex numbers and is described further
on.

296 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%

297 \SubVect#2from#1to\@tempa \ModAndDirOfVect\@tempa to#3and#4\relax

298 \ignorespaces}%

We now have two macros intended to fetch just the real or, respectively, the
imaginary part of the input complex number.

299 \def\XpartOfVect#1to#2{%

300 \GetCoord(#1)#2\@tempa

301 \ignorespaces}%

302 %

15

303 \def\YpartOfVect#1to#2{%

304 \GetCoord(#1)\@tempa#2\relax

305 \ignorespaces}%

With the next macro we create a direction vector (second argument) from a given
angle (first argument).

306 \def\DirFromAngle#1to#2{\CosOf#1to\t@X%

307 \SinOf#1to\t@Y\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

Sometimes it is necessary to scale a vector by an arbatrary real factor; this
implies scaling both the real and imaginary part of the input given vector.

308 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y

309 \@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima

310 \@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima

311 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Again, sometimes it is necessary to reverse the direction of rotation; this implies
changing the sign of the imaginary part of a given complex number; this operation
produces the complex conjugate of the given number.

312 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y

313 \@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima

314 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

With all the low level elementary operations we can now proceed to the defi-
nitions of the binary operations on complex numbers. We start with the addition:

315 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y

316 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@

317 \advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima \@tempdima\tu@Y\p@

318 \advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima

319 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Then the subtraction:
320 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y

321 \GetCoord(#2)\td@X\td@Y \@tempdima\td@X\p@

322 \advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima \@tempdima\td@Y\p@

323 \advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima

324 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

For the multiplication we need to split the operation according to the fact
that we want to multiply by the second operand or by the complex comjugate of
the second operand; it would be nice if we could use the usual postfixed asterisk
notation for the complex conjugate, but I could not find a simple means for doing
so; therefore I use the prefixed notation, that is I put the asterisk before the
second operand. The first part of the multiplication macro just takes care of the
multiplicand and then checks for the asterisk; if there is no asterisk it calls a second
service macro that performs a regular complex multiplication, otherwise it calls a
third service macro that executes the conjugate multiplication.

325 \def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%

326 %

327 \def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y

328 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@

329 \@tempdimb\tu@Y\p@

330 \@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb

331 \Numero\t@X\@tempdimc

332 \@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb

16

333 \Numero\t@Y\@tempdimc

334 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

335 %

336 \def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y

337 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@

338 \@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb

339 \Numero\t@X\@tempdimc

340 \@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima

341 \Numero\t@Y\@tempdimc

342 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}

The division of two complex numbers implies scaling down the dividend by
the magnitude of the divisor and by rotating the dividend scaled vector by the
opposite direction of the divisor; therefore:

343 \def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir

344 \DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir

345 \ScaleVect#1by\@Mod to\@tempa

346 \MultVect\@tempa by\@Dir to#3\ignorespaces}%

2.6 Arcs and curved vectors

We are now in the position of really doing graphic work We start with tracing a
circular arc of arbitrary center, arbitrary starting point and arbitrary aperture;
The first macro checks the aperture; if this is not zero it actually proceeds with
the necessary computations, otherwise it does nothing.

347 \def\Arc(#1)(#2)#3{\begingroup

348 \@tdA=#3\p@ \ifdim\@tdA=\z@\else

349 \@Arc(#1)(#2)%

350 \fi

351 \endgroup\ignorespaces}%

The aperture is already memorized in \@tdA; the \@Arc macro receives the center
coordinates in the first argument and the coordinates of the starting point in the
second argument.

352 \def\@Arc(#1)(#2){%

353 \ifdim\@tdA>\z@

354 \let\Segno+%

355 \else

356 \@tdA=-\@tdA \let\Segno-%

357 \fi

The rotation angle sign is memorized in \Segno and \@tdA now contains the
absolute value of the arc aperture. If the rotation angle is larger than 360◦ a
message is issued that informs the user that the angle will be reduced modulo 360◦;
this operation is performed by succesive subtractions rather than with modular
arithmetics on the assumption that in general one subtraction suffices.

358 \Numero\@gradi\@tdA

359 \ifdim\@tdA>360\p@

360 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees

361 and gets reduced\MessageBreak%

362 to the range 0--360 taking the sign into consideration}%

363 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%

364 \fi

17

Now the radius is determined and the drawing point is moved to the stating point.
365 \SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun

366 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY

From now on it’s better to define a new macro that will be used also in the subse-
quent macros that trace arcs; here we already have the starting poin coordinates
and the angle to draw the arc, therefore we just call the new macro, stroke the
line and exit.

367 \@@Arc

368 \pIIe@strokeGraph\ignorespaces}%

And the new macro \@@Arc starts with moving the drawing point to the first
point and does everything needed for tracing the requested arc, except stroking it;
I leave the stroke command to the completion of the calling macro and nobody
forbids to use the \@@Arc macro for other purposes.

369 \def\@@Arc{%

370 \pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%

If the aperture is larger than 180◦ it traces a semicircle in thr right direction and
correspondingly reduces the overall aperture.

371 \ifdim\@tdA>180\p@

372 \advance\@tdA-180\p@

373 \Numero\@gradi\@tdA

374 \SubVect\@pPun from\@Cent to\@V

375 \AddVect\@V and\@Cent to\@sPun

376 \MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi

377 \AddVect\@pPun and\@V to\@pcPun

378 \AddVect\@sPun and\@V to\@scPun

379 \GetCoord(\@pcPun)\@pcPunX\@pcPunY

380 \GetCoord(\@scPun)\@scPunX\@scPunY

381 \GetCoord(\@sPun)\@sPunX\@sPunY

382 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%

383 {\@scPunX\unitlength}{\@scPunY\unitlength}%

384 {\@sPunX\unitlength}{\@sPunY\unitlength}%

385 \CopyVect\@sPun to\@pPun

386 \fi

If the remaining aperture is not zero it contiues tracing the rest of the arc. Here
we need the extrema of the arc and the coordinates of the control points of the
Bézier cubic spline that traces the arc. The control points lay on the perpendicular
to the vectors that join the arc center to the stating and end points respectively.
Their distance K from the adiacent nodes is determined with the formula

K =
4
3
(1 − cos θ)R

where θ is half the arc aperture and R is its radius.
387 \ifdim\@tdA>\z@

388 \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi

389 \SubVect\@Cent from\@pPun to\@V

390 \MultVect\@V by\@Dir to\@V

391 \AddVect\@Cent and\@V to\@sPun

392 \@tdA=.5\@tdA \Numero\@gradi\@tdA

393 \DirFromAngle\@gradi to\@Phimezzi

394 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi

18

395 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB

396 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC

397 \@tdB=\@tempa\@tdB

398 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ

399 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi

400 \ConjVect\@Phimezzi to\@mPhimezzi

401 \if\Segno-%

402 \let\@tempa\@Phimezzi

403 \let\@Phimezzi\@mPhimezzi

404 \let\@mPhimezzi\@tempa

405 \fi

406 \SubVect\@sPun from\@pPun to\@V

407 \DirOfVect\@V to\@V

408 \MultVect\@Phimezzi by\@V to\@Phimezzi

409 \AddVect\@sPun and\@Phimezzi to\@scPun

410 \ScaleVect\@V by-1to\@V

411 \MultVect\@mPhimezzi by\@V to\@mPhimezzi

412 \AddVect\@pPun and\@mPhimezzi to\@pcPun

413 \GetCoord(\@pcPun)\@pcPunX\@pcPunY

414 \GetCoord(\@scPun)\@scPunX\@scPunY

415 \GetCoord(\@sPun)\@sPunX\@sPunY

416 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%

417 {\@scPunX\unitlength}{\@scPunY\unitlength}%

418 {\@sPunX\unitlength}{\@sPunY\unitlength}%

419 \fi}

We exploit much of the above definitions for the \Arc macro for drawing circu-
lar arcs with an arrow at one or both ends; the first macro \VerctorArc draws an
arrow at the ending point of the arc; the second macro \VectorARC draws arrows
at both ends; the arrows have the same shape as those for vectors; actually they
are drawn by putting a vector of zero length at the proper arc end(s), thereore
they are styled as traditional or PostScript arrows according to the option of the
pict2e package.

But the specific drawing done here shortens the arc so as not to overlap on
the arrow(s); the only or both arrows are also lightly tilted in order to avoid the
impression of a corner where the arc enters the arrow tip.

All these operations require a lot of “playing” with vector directions, but even
if the operations are numerous, they do not do anything else but: (a) determining
the end point and its direction ; (b) determining the arrow length as an angular
quantity, i.e. the arc amplitude that must be subtracted from the total arc to be
drawn; (c) the direction of the arrow should be corresponding to the tangent to
the arc at the point where the arrow tip is attached;(d) tiltilng the arrow tip by
half its angular amplitude; (e) determining the resulting position and direction of
the arrow tip so as to draw a zero length vector; (f) possibly repeating the same
procedure for the other end of the arc; shortening the total arc angular amplitude
by the amount of the arrow tip(s) already set, and then drawing the final circular
arc that joins the starting point to the final arrow or one arrow to the other one.

The calling macros are very similar to the \Arc macro initial one:
420 \def\VectorArc(#1)(#2)#3{\begingroup

421 \@tdA=#3\p@ \ifdim\@tdA=\z@\else

422 \@VArc(#1)(#2)%

423 \fi

424 \endgroup\ignorespaces}%

19

425 %

426 \def\VectorARC(#1)(#2)#3{\begingroup

427 \@tdA=#3\p@

428 \ifdim\@tdA=\z@\else

429 \@VARC(#1)(#2)%

430 \fi

431 \endgroup\ignorespaces}%

The single arrowed arc is defined with the following long macro where all the de-
scribed operations are performed more or less in the described succession; probably
the macro requires a little cleaning, but since it work fine I did not try to optimize
it for time or number of tokens. The final part of the macro is almost identical
to that of the plain arc; the beginning also is quite similar; The central part is
dedicated to the positioning of the arrow tip and to the necessary calculations for
determining the tip tilt and the reduction of the total arc length. The already
defined \@@Arc macro actually draws the curved vector stem without stroking it.

432 \def\@VArc(#1)(#2){%

433 \ifdim\@tdA>\z@

434 \let\Segno+%

435 \else

436 \@tdA=-\@tdA \let\Segno-%

437 \fi \Numero\@gradi\@tdA

438 \ifdim\@tdA>360\p@

439 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees

440 and gets reduced\MessageBreak%

441 to the range 0--360 taking the sign into consideration}%

442 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%

443 \fi

444 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun

445 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE

446 \Numero\@Freccia\@tdE

447 \DividE\@Freccia\p@ by \@Raggio\p@ to\DeltaGradi

448 \@tdD=\DeltaGradi\p@

449 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD

450 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD

451 \DirFromAngle\@tempa to\@Dir

452 \MultVect\@V by\@Dir to\@sPun

453 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%

454 \MultVect\@sPun by 0,\@tempA to\@vPun

455 \DirOfVect\@vPun to\@Dir

456 \AddVect\@sPun and #1 to \@sPun

457 \GetCoord(\@sPun)\@tdX\@tdY

458 \@tdD\ifx\Segno--\fi\DeltaGradi\p@

459 \@tdD=.5\@tdD \Numero\DeltaGradi\@tdD

460 \DirFromAngle\DeltaGradi to\@Dird

461 \MultVect\@Dir by*\@Dird to\@Dir

462 \GetCoord(\@Dir)\@xnum\@ynum

463 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%

464 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@

465 \advance\@tdA -\@tdE \Numero\@gradi\@tdA

466 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY

467 \@@Arc

468 \pIIe@strokeGraph\ignorespaces}%

20

The macro for the arc terminated with arrow tips at both ends is again very
similar, except it is necessary to repeat the arrow tip positioning also at the starting
point. The \@@Arc macro draws the curved stem.

469 \def\@VARC(#1)(#2){%

470 \ifdim\@tdA>\z@

471 \let\Segno+%

472 \else

473 \@tdA=-\@tdA \let\Segno-%

474 \fi \Numero\@gradi\@tdA

475 \ifdim\@tdA>360\p@

476 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees

477 and gets reduced\MessageBreak%

478 to the range 0--360 taking the sign into consideration}%

479 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%

480 \fi

481 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun

482 \@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE

483 \Numero\@Freccia\@tdE

484 \DividE\@Freccia\p@ by \@Raggio\p@ to\DeltaGradi

485 \@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD

486 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD

487 \DirFromAngle\@tempa to\@Dir

488 \MultVect\@V by\@Dir to\@sPun

489 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%

490 \MultVect\@sPun by 0,\@tempA to\@vPun

491 \DirOfVect\@vPun to\@Dir

492 \AddVect\@sPun and #1 to \@sPun

493 \GetCoord(\@sPun)\@tdX\@tdY

494 \@tdD\ifx\Segno--\fi\DeltaGradi\p@

495 \@tdD=.5\@tdD \Numero\@tempB\@tdD

496 \DirFromAngle\@tempB to\@Dird

497 \MultVect\@Dir by*\@Dird to\@Dir

498 \GetCoord(\@Dir)\@xnum\@ynum

499 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%

500 \@tdE =\DeltaGradi\p@

501 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA

502 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY

503 \SubVect\@Cent from\@pPun to \@V

504 \edef\@tempa{\ifx\Segno-\else-\fi\@ne}%

505 \MultVect\@V by0,\@tempa to\@vPun

506 \@tdE\ifx\Segno--\fi\DeltaGradi\p@

507 \Numero\@tempB{0.5\@tdE}%

508 \DirFromAngle\@tempB to\@Dird

509 \MultVect\@vPun by\@Dird to\@vPun

510 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum

511 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}

512 \edef\@tempa{\ifx\Segno--\fi\DeltaGradi}%

513 \DirFromAngle\@tempa to \@Dir

514 \SubVect\@Cent from\@pPun to\@V

515 \MultVect\@V by\@Dir to\@V

516 \AddVect\@Cent and\@V to\@pPun

517 \GetCoord(\@pPun)\@pPunX\@pPunY

518 \@@Arc

519 \pIIe@strokeGraph\ignorespaces}%

21

It must be understood that the curved vectors, tha above circular arcs termi-
nated with an arrow tip at one or both ends, have a nice appearance only if the arc
radius is not too small, or, said in a different way, if the arrow tip angular width
does not exceed a maximum of a dozen degrees (and this is probably already too
much); the tip does not get curved as the arc is, therefore there is not a smooth
transition from the curved stem and the straight arrow tip if this one is large in
comparison to the arc radius.

2.7 General curves

Now we define a macro for tracing a general, not necessarily circular arc. This
macro resorts to a general triplet of macros with which it is possible to draw
almost anything. It traces a single Bézier spline from a first point where the
tangent direction is specified to a second point where again it is specified the
tangent direction. Actually this is a special (possibly useless) case where the
general \Curve macro could do the same or a better job. In any case. . .

520 \def\CurveBetween#1and#2WithDirs#3and#4{%

521 \StartCurveAt#1WithDir{#3}\relax

522 \CurveTo#2WithDir{#4}\CurveFinish}%

Actually the above macro is a special case of concatenation of the triplet formed
by macros \StartCurve, \CurveTo and\CurveFinish; the second of which can be
repeated an arbitrary number of times.

The first macro initializes the drawing and the third one strokes it; the real
work is done by the second macro. The first macro inizializes the drawing but
also memorizes the starting direction; the second macro traces the current Bézier
arc reaching the destination point with the sepcified direction, but memorizes this
direction as the one with which to start the next arc. The overall curve is then
always smooth because the various Bézier arcs join with continuous tangents. If
a cusp is desired it is necessary to change the memorized direction at the end of
the arc before the cusp and before the start of the next arc; this is better than
stroking the curve before the cusp and then starting another curve, because the
curve jointure at the cusp is not stroked with the same command, therefore we
get two superimposed curve terminations. We therefore need another small macro
\ChangeDir to perform this task.

It is necessary to recall that the directions point to the control points, but
they do not define the control points themselves; they are just directions, or, even
better, they are simply vectors with the desired direction; the macros themselves
provide to the normalization and memorization.

The next desirable poit would be to design a macro that accepts optional node
directions and computes the missing ones according to a suitable strategy. I can
think of many such strategies, but none seems to be generally applicable, in the
sense that one strategy might give good results, say, with sinusoids and another
one,say, with cardioids, but neither one is suitable for both cases.

For the moment we refrain from automatic direction computation, but we
design the general macro as if directions were iptional.

Here we begin with the first initializing macro that receives in the first argu-
ment the starting point and in the second argument the direction of the tangent
(not necessarily normalized to a unit vector)

523 \def\StartCurveAt#1WithDir#2{%

22

524 \begingroup

525 \GetCoord(#1)\@tempa\@tempb

526 \CopyVect\@tempa,\@tempb to\@Pzero

527 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%

528 \GetCoord(#2)\@tempa\@tempb

529 \CopyVect\@tempa,\@tempb to\@Dzero

530 \DirOfVect\@Dzero to\@Dzero}

And this reinitializes the direction after a cusp
531 \def\ChangeDir<#1>{%

532 \GetCoord(#1)\@tempa\@tempb

533 \CopyVect\@tempa,\@tempb to\@Dzero

534 \DirOfVect\@Dzero to\@Dzero

535 \ignorespaces}

The next macro is the finishing one; it strokes the whole curve and closes the
group that was opened with \StartCurve.

536 \def\CurveFinish{\pIIe@strokeGraph\endgroup\ignorespaces}%

The “real” curve macro comes next; it is supposed to determine the control
points for joining the previous point (initial node) with the specified direction to
the next point with another specified direction (final node). Since the control
points are along the sepcified directions, it is necessary to determine the distances
from the adiacent curve nodes. This must work correctly even if nodes and direc-
tions imply an inflection point somewhere along the arc.

The strategy I devised consists in determining each control point as if it were
the control point of a circular arc, precisely an arc of an osculating circle, a circle
tangent to the curve at that node. The ambiguity of the stated problem may be
solved by establishing that the chord of the osculating circle has the same direction
as the chord of the arc being drawn, and that the curve chord is divided into two
parts each of which should be interpreted as half the chord of the osculating circle;
this curve chord division is made proportionally to the projection of the tangent
directions on the chord itself. Excluding degenerate cases that may be dealt with
directly, immagine the triangle built with the chord and the two tangents; this
triangle is staightforward if there is no inflection point; otherwise it is necessary
to change one of the two directions by reflecting it about the chord. This is much
simpler to view if a general rotation of the whole contruction is made so as to bring
the curve chord on the x axis, because the reflection about the chord amounts to
taking the complex conjugate of one of the directions. In facts with a concave
curve the “left” direction vector arrow and the “right” direction vector tail lay in
the same half plane, while with an inflected curve, they lay in opposite half plains,
so that taking the complex conjugate of one of directions re-establishes the correct
situation for the triangle we are looking for.

This done the perpendicular from the triangle vertex to the cord divides the
chord in two parts (the foot of this perpendicular may lay outside the chord,
but this is no problem since we are looking for positive solutions, so that if we get
negative numbers we just negate tem); these two parts are taken as the half chords
of the osculating circles, therefore there is no problem determining the distances
Kleft and Krigth from the left and right nodes by using the same formula we used
with circular arcs. Well. . . the same formula means that we have to determine the
radius from the half chord and its inclination with the node tangent; all things
we can do with the complex number algebra and macros we already have at our
disposal. If we look carefully at this computation done for the circular arc we

23

discover that in practice we used the half chord length instead of the radius; so
the coding is actually the same, may be just with different variable names.

We therefore start with getting the points and directions and calculating the
chord and its direction

537 \def\CurveTo#1WithDir#2{%

538 \def\@Puno{#1}\def\@Duno{#2}\DirOfVect\@Duno to\@Duno

539 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

Then we rotate everything about the starting point so as to bring the chord on
the real axis

540 \MultVect\@Dzero by*\@DirChord to \@Dpzero

541 \MultVect\@Duno by*\@DirChord to \@Dpuno

542 \GetCoord(\@Dpzero)\@Xpzero\@Ypzero

543 \GetCoord(\@Dpuno)\@Xpuno\@Ypuno

The chord needs not be actually rotated because it suffices its length along the
real axis; the chord length is memorized in \@Chord.

We now examine the various degenerate cases, when either tangent is perpen-
dicular to che chord, or when it is parallel pointing invard or outward, with or
without inflection.

We start with the 90◦ case for the “left” direction separating the cases when
the other direction is or is not 90◦ . . .

544 \ifdim\@Xpzero\p@=\z@

545 \ifdim\@Xpuno\p@=\z@

546 \@tdA=0.666666\p@

547 \Numero\@Mcpzero{\@Chord\@tdA}%

548 \edef\@Mcpuno{\@Mcpzero}%

549 \else

550 \@tdA=0.666666\p@

551 \Numero\@Mcpzero{\@Chord\@tdA}%

552 \SetCPmodule\@Mcpuno from\@ne\@Chord\@Dpuno%

553 \fi

. . . from when the “left” direction is not perpendicular to the chord; it might be
parallel and we must distinguish the cases for the other direction . . .

554 \else

555 \ifdim\@Xpuno\p@=\z@

556 \@tdA=0.666666\p@

557 \Numero\@Mcpuno{\@Chord\@tdA}%

558 \SetCPmodule\@Mcpzero from\@ne\@Chord\@Dpzero%

559 \else

560 \ifdim\@Ypzero\p@=\z@

561 \@tdA=0.333333\p@

562 \Numero\@Mcpzero{\@Chord\@tdA}%

563 \ifdim\@Ypuno\p@=\z@

564 \edef\@Mcpuno{\@Mcpzero}%

565 \fi

. . . from when the left direction is oblique and the other direction is either parallel
to the chord . . .

566 \else

567 \ifdim\@Ypuno\p@=\z@

568 \@tdA=0.333333\p@

569 \Numero\@Mcpuno{\@Chord\@tdA}%

570 \SetCPmodule\@Mcpzero from\@ne\@Chord\@Dpzero

24

. . . and, finally, from when both directions are oblique with respect to the chord;
we must see if there is an inflection point; if both direction point to the same half
plane we have to take the complex conjugate of une direction so as to define the
triangle we were speaking about above.

571 \else

572 \@tdA=\@Ypzero\p@ \@tdA=\@Ypuno\@tdA

573 \ifdim\@tdA>\z@

574 \ConjVect\@Dpuno to\@Dwpuno

575 \else

576 \edef\@Dwpuno{\@Dpuno}%

577 \fi

The control sequence \@Dwpuno contains the right direction for forming the trian-
gle; we cam make the weighed subdivision of the chord according to the horizontal
components of the directions; we eventually turn negative values to positive ones
since we are intersted in the magnitudes of the control vectors.

578 \GetCoord(\@Dwpuno)\@Xwpuno\@Ywpuno

579 \@tdA=\@Xpzero\p@ \@tdA=\@Ywpuno\@tdA

580 \@tdB=\@Xwpuno\p@ \@tdB=\@Ypzero\@tdB

581 \DividE\@tdB by\@tdA to\@Fact

582 \@tdC=\p@ \advance\@tdC-\@Fact\p@

583 \ifdim\@tdC<\z@ \@tdC=-\@tdC\fi

584 \DividE\p@ by \@Fact\p@ to\@Fact

585 \@tdD=\p@ \advance\@tdD-\@Fact\p@

586 \ifdim\@tdD<\z@ \@tdD=-\@tdD\fi

before dividing by the denominator we have to check the directions, although
oblique to the chord are not parallel to one another; in this case there is no
question of a weighed subdivision of the chord

587 \ifdim\@tdD<0.0001\p@

588 \def\@factzero{1}%

589 \def\@factuno{1}%

590 \else

591 \DividE\p@ by\@tdC to\@factzero

592 \DividE\p@ by\@tdD to\@factuno

593 \fi

We now have the subdivision factors and we call another macro for determining
the required magnitudes

594 \SetCPmodule\@Mcpzero from\@factzero\@Chord\@Dpzero

595 \SetCPmodule\@Mcpuno from\@factuno\@Chord\@Dwpuno

596 \fi

597 \fi

598 \fi

599 \fi

Now we have all data we need and we determine the positions of the control points;
we do not work any more on the rotated diagram of the horizontal chord, but we
operate on the original points and directions; all we had to compute, after all,
were the distances of the control point along the specified directions; remember
that the “left” control point is along the positive “left” direction, while the “right”
conptrol point precedes the curve node along the “rigth” direction, so that a vector
subtraction must be done.

600 \ScaleVect\@Dzero by\@Mcpzero to\@CPzero

25

601 \AddVect\@Pzero and\@CPzero to\@CPzero

602 \ScaleVect\@Duno by\@Mcpuno to\@CPuno

603 \SubVect\@CPuno from\@Puno to\@CPuno

Now we have the four points and we can instruct the internal pict2e macros to
do the path tracing.

604 \GetCoord(\@Puno)\@XPuno\@YPuno

605 \GetCoord(\@CPzero)\@XCPzero\@YCPzero

606 \GetCoord(\@CPuno)\@XCPuno\@YCPuno

607 \pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%

608 {\@XCPuno\unitlength}{\@YCPuno\unitlength}%

609 {\@XPuno\unitlength}{\@YPuno\unitlength}%

It does not have to stroke the curve because other Bézier splines might still be
added to the path. On the opposite it memorizes the final point as the initial
point of the next spline

610 \CopyVect\@Puno to\@Pzero

611 \CopyVect\@Duno to\@Dzero

612 \ignorespaces}%

The next macro is used to determine the control vectors lengths when we have
the chord fraction, the chord length and the direction along which to compute the
vector; all the input data (arguments from #2 to #4) may be passed as control
sequences so the calling statement needs not use any curly braces.

613 \def\SetCPmodule#1from#2#3#4{%

614 \GetCoord(#4)\t@X\t@Y

615 \@tdA=#3\p@

616 \@tdA=#2\@tdA

617 \@tdA=1.333333\@tdA

618 \@tdB=\p@ \advance\@tdB +\t@X\p@

619 \DividE\@tdA by\@tdB to#1\relax

620 \ignorespaces}%

We finally define the overall \Curve macro that recursively examines an ar-
bitrary list of nodes and directions; node coordinates are grouped within regular
parentheses while direction components are grouped within angle brackets. The
first call of the macro initializes the drawing process and checks for the next node
and direction; if a second node is missing, it issues a warning message and does not
draw anything. The second macro defines the path to the next point and checks
for another node; if the next list item is a square bracket delimited argument,
it iterprets it as a change of direction, while if it is another parentesis delinite
argument it inpterprets it as a new node-direction specification; if the node and
direction list is terminated, it issues the stroking command and exits the recur-
sive process. The @ChangeDir macro is just an interface for executing the regular
\ChangeDir macro, but also for recursing again by recalling \@Curve.

621 \def\Curve(#1)<#2>{%

622 \StartCurveAt#1WithDir{#2}%

623 \@ifnextchar\lp@r\@Curve{%

624 \PackageWarning{curve2e}{%

625 Curve specifications must contain at least two nodes!\Messagebreak

626 Please, control your Curve specifications\MessageBreak}}}

627 \def\@Curve(#1)<#2>{%

628 \CurveTo#1WithDir{#2}%

629 \@ifnextchar\lp@r\@Curve{%

26

630 \@ifnextchar[\@ChangeDir\CurveFinish}}

631 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

As a concluding remark, please notice the the \Curve macro is certainly the
most confortable to use, but it is sort of frozen in its possibilities. The user may
certainly use the \StartCurve, \CurveTo, \ChangeDir, and \CurveFinish for a
more versatile set of drawing macros; evidently nobody forbids to exploit the full
power of the \cbezier original macro for cubic splines.

I believe that the set of new macros can really help the user to draw his/her
diagrams with more agility; it will be the accumulated experience to decide if this
is true.

References

[1] Gäßlein H. and Niepraschk R., The pict2e package, PDF document attached
to the “new” pict2e bundle; the bundle may be downloaded from any CTAN
archive or one of their mirrors.

27

