
The extension package curve2e
Claudio Beccari

Version number v.1.61; last revised 2019/02/07.

Contents
1 Package pict2e and this ex-

tension curve2e 2

2 Summary of modifications
and new commands 5

3 Remark 10

4 Acknowledgements 11

5 Source code 12
5.1 Some preliminary exten-

sions to the pict2e package 12
5.2 Line thickness macros . . 12
5.3 Improved line and vector

macros . . . . . . . . . . . 13
5.4 Dashed and dotted lines . 14
5.5 Coordinate handling . . . 17

5.6 Vectors . . . . . . . . . . 18
5.7 Polylines . . . . . . . . . . 21
5.8 The red service grid . . . 22

6 Math operations on fixed
radix operands 23
6.1 The new division macro . 24
6.2 Trigonometric functions . 26
6.3 Arcs and curves prelimi-

nary information . . . . . 33
6.4 Complex number macros . 34
6.5 Arcs and curved vectors . 39

6.5.1 Arcs . . . . . . . . 39
6.5.2 Arc vectors . . . . 42

6.6 General curves . . . . . . 46
6.7 Cubic splines . . . . . . . 47
6.8 Quadratic splines . . . . . 54

7 Conclusion 60

Abstract

This file documents the curve2e extension package to the recent imple-
mentation of the pict2e bundle that has been described by Lamport himself
in the second edition of his LATEX handbook.

Please take notice that in April 2011 a new updated version of the pack-
age pict2e has been released that incorporates some of the commands de-
fined in this package; apparently there are no conflicts, but only the advanced
features of curve2e remain available for extending the above package.

This extension redefines a couple of commands and introduces some more
drawing facilities that allow to draw circular arcs and arbitrary curves with
the minimum of user intervention. This beta version is open to the con-
tribution of other users as well as it may be incorporated in other people’s
packages. Please cite the original author and the chain of contributors.

1



1 Package pict2e and this extension curve2e
Package pict2e was announced in issue 15 of latexnews around December 2003;
it was declared that the new package would replace the dummy one that has been
accompanying every release of LATEX 2ε since its beginnings in 1994. The dummy
package was just issuing an info message that simply announced the temporary
unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a LATEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifically
what follows.

1. The line and vector slopes were limited to the ratios of relative prime one-
digit integers of magnitude not exceeding 6 for lines and 4 for vectors.

2. Filled and unfilled full circles were limited by the necessarily limited number
of specific glyphs contained in the special LATEX picture fonts.

3. Quarter circles were also limited in their radii for the same reason.

4. Ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large, in
the sense that after a certain radius the rounded corners remained the same
and would not increase proportionally to the oval size.

5. Vector arrows had only one possible shape and matched the limited number
of vector slopes.

6. For circles and inclined lines and vectors just two possible thicknesses were
available.

The package pict2e removes most if not all the above limitations.

1. Line and vector slopes are virtually unlimited; the only remaining limitation
is that the direction coefficients must be three-digit integer numbers; they
need not be relatively prime; with the 2009 upgrade even this limitation
was removed and now slope coefficients can be any fractional number whose
magnitude does not exceed 16 384, the maximum dimension in points that
TEX can handle.

2. Filled and unfilled circles can be of any size.

3. Ovals can be designed with any specified corner curvature and there is vir-
tually no limitation to such curvatures; of course corner radii should not
exceed half the lower value between the base and the height of the oval.

4. There are two shapes for the arrow tips; the triangular one traditional with
LATEX vectors, or the arrow tip with PostScript style.

2



5. The \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension adds the following features.
1. Most if not all coordinate pairs and slope pairs are treated as ordered pairs,

that is complex numbers; in practice the user does not notice any difference
from what he/she was used to, but all the mathematical treatment to be
applied to these entities is coded as complex number operations, since com-
plex numbers may be viewed non only as ordered pairs, but also as vectors
or roto-amplification operators.

2. Commands for setting the line terminations are introduced; the user can
chose between square or rounded caps; the default is set to rounded caps
(now available also with pict2e).

3. Commands for specifying the way two lines or curves join to one another.

4. The \line macro is redefined so as to allow integer and fractional direction
coefficients, but maintaining the same syntax as in the original picture
environment (now available also with pict2e).

5. A new macro \Line was defined so as to avoid the need to specify the
horizontal projection of inclined lines (now available also with pict2e); this
macro name now conflicts with pict2e 2009 version; therefore its name is
changed to \LIne and supposedly it will not be used very often, if ever, by
the end user (but it is used within this package macros).

6. A new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behavior of the \Line macro of
pict2e so that \LINE is now renamed \segment; there is no need to use the
\put command with this line specification.

7. A new macro \DLine is defined in order to draw dashed lines joining any two
given points; the dash length and gap (equal to one another) get specified
through one of the macro arguments.

8. A new macro \Dotline is defined in order to draw dotted straight lines as a
sequence of equally spaced dots, where the gap can be specified by the user;
such straight line may have any inclination, as well as the above dashed lines.

9. Similar macros are redefined for vectors; \vector redefines the original
macro but with the vector slope limitations removed; \Vector gets spec-
ified with its two horizontal and vertical components in analogy with \LIne;
\VECTOR joins two specified points (without using the \put command) with
the arrow pointing to the second point.

10. A new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here it is redefined so as to allow an optional
specification of the way segments for the polyline are joined to one another.

3



11. A new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary aperture (angle amplitude); this amplitude is specified in sexa-
gesimal degrees, not in radians; a similar functionality is now achieved with
the \arc macro of pict2e, which provides also the starred version \arc*
that fills up the interior of the generated circular arc. It must be noticed
that the syntax is slightly different, so that it’s reasonable that these com-
mands, in spite of producing identical arcs, might be more comfortable with
this or that syntax.

12. Two new macros \VectorArc and \VectorARC are defined in order to draw
circular arcs with an arrow at one or both ends.

13. A new macro \Curve is defined so as to draw arbitrary curved lines by means
of cubic Bézier splines; the \Curve macro requires only the curve nodes and
the directions of the tangents at each node.The starred version fills up the
interior of the curve with the currently specified color.

14. \Curve is a recursive macro that can draw an unlimited (reasonably low)
number of connected Bézier spline arcs with continuos tangents except for
cusps; these arcs require only the specification of te tangent direction at the
interpolation nodes. It is possible to use a lower level macro \CbezierTo
that does the same but lets the user specify the control points of each arc;
it is more difficult to use but it is more performant.

15. Last but not least, all these commands accept polar coordinates or cartesian
ones at the choice of the user who may use for each object the formalism
he/she prefers. Also the put and \multiput commands have been redefined
so as to accept the cartesian or the polar coordinates.

16. The basic macros used within the cumulative \Curve macro can be used
individually in order to draw any curve, one cubic arc at the time; but they
are intended for internal use, even if it is not prohibited to use them; by
themselves such arcs are not different form those used by Curve, but the
final command, \FillCurve, should be used in place of \CurveFinish, so
as to fill up the closed path with the locally specified color; see figure 5. It
is much more convenient to use the starred version of \Curve macro.

The pict2e package already defines macros such as \moveto, \lineto,
\curveto, \closepath, \fillpath, and \strokepath; of course these macros
can be used by the end user, and sometimes they perform better than the macros
defined in this package, because the user has a better control on the position of
the Bézier control points, while here the control points are sort of rigid. It would
be very useful to resort to the hobby package, but its macros are conforming with
those of the tikz and pgf packages, not with curve2e; an interface should be
created in order to deal with the hobby package, but this has not yet been done.

In order to make the necessary calculations many macros have been defined so
as to use complex number arithmetics to manipulate point coordinates, directions
(unit vectors, also known as ‘versors’), rotations and the like. The trigonometric

4



functions have also been defined in a way that the author believes to be more
efficient than those defined by the trig package; in any case the macro names are
sufficiently different to accommodate both definition sets in the same LATEX run.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and LATEX programmers,
this version could become the start for a real extension of the pict2e package or
even become a part of it. Actually some macros have already been included in the
pict2e package. The \Curve algorithm, as I said before, might be redefined so as
to use the macros introduced in the hobby package, that implements for the tikz
and pgf packages the same functionalities that John Hobby implemented for the
METAFONT and METAPOST programs.

For these reasons I suppose that every enhancement should be submitted to
Gäßlein, Niepraschk, and Tkadlec who are the prime maintainers of pict2e; they
are the only ones who can decide whether or not to incorporate new macros in
their package.

2 Summary of modifications and new commands
This package curve2e extends the power of pict2e with the following modifica-
tions and the following new commands.

1. This package curve2e calls directly the LATEX packages color and pict2e
to which it passes any possible option that the latter can receive; actually
the only options that make sense are those concerning the arrow tips, either
LATEX or PostScript styled, because it is assumed that if you use this package
you are not interested in using the original LATEX commands. See the pict2e
documentation in order to use the correct options pict2e can receive.

2. The user is offered new commands in order to control the line terminators
and the line joins; specifically:

• \roundcap: the line is terminated with a semicircle;
• \squarecap: the line is terminated with a half square;
• \roundjoin: two lines are joined with a rounded join;
• \beveljoin: two lines are joined with a bevel join;
• \miterjoin: two lines are joined with a miter join.

All the above commands should respect the intended range; but since they
act at the PostScript or PDF level, not at TEX level, it might be necessary
to issue the necessary command in order to restore the previous terminator
or join.

3. The commands \linethickness, \thicklines, \thinlines together with
\defaultlinethickness always redefine the internal \@wholewidth and
\@halfwidth so that the latter always refer to a full width and to a half

5



of it in this way: if you issue the command \defaultlinewidth{2pt} all
thin lines will be drawn with a thickness of 1 pt while if a drawing command
directly refers to the internal value \@wholewidth, its line will be drawn with
a thickness of 2 pt. If one issues the declaration \thinlines all lines will
be drawn with a 1 pt width, but if a command refers to the internal value
\@halfwidth the line will be drawn with a thickness of 0.5 pt. The command
\linethickness redefines the above internals but does not change the de-
fault width value; all these width specifications apply to all lines, straight
ones, curved ones, circles, ovals, vectors, dashed, et cetera. It’s better to
recall that \thinlines and \thicklines are declarations that do not take
arguments; on the opposite the other two commands follow the standard
syntax:

\linethickness{〈dimensioned value〉}
\defaultlinewidth{〈dimensioned value〉}

where 〈dimensioned value〉 means a length specification complete of its units
or a dimensional expression.

4. Straight lines and vectors are redefined in such a way that fractional slope
coefficients may be specified; the zero length line does not produce errors
and is ignored; the zero length vectors draw only the arrow tips.

5. New line and vector macros are defined that avoid the necessity of specifying
the horizontal component; \put(3,4){\LIne(25,15)} specifies a segment
that starts at point (3, 4) and goes to point (3 + 25, 4 + 15); the command
\segment(3,4)(28,19) achieves the same result without the need of using
command \put. The same applies to the vector commands \Vector and
\VECTOR. Experience has shown that the commands intended to join two
specified coordinates are particularly useful.

6. The \polyline command has been introduced: it accepts an unlimited list
of point coordinates enclosed within round parentheses; the command draws
a sequence of connected segments that joins in order the specified points; the
syntax is:

\polyline[〈optional join style〉](〈P1〉)(〈P2〉)...(〈Pn〉)

See figure 1 where a regular pentagon is drawn; usage of polar coordinates
is also shown.
Although you can draw polygons with \polyline, as it was done in figure 1,
do not confuse this command with the command \polygon defined in pict2e
2009; the latter automatically joins the last specified coordinate to the first
one with a straight line, therefore closing the path. pict2e defines also the
starred command that fills up the inside of the generated polygon.

7. The new command \Dashline (alias: \Dline for backwards compatibility)

6



\unitlength=.5mm
\begin{picture}(40,32)(-20,-20)
\polyline(90:20)(162:20)(234:20)(306:20)(378:20)(90:20)
\end{picture}

Figure 1: Polygonal line obtained by means of the \polyline command; coordi-
nates are in polar form.

\Dashline(〈first point〉)(〈second point〉){〈dash length〉}

draws a dashed line containing as many dashes as possible, long as specified,
and separated by a gap exactly the same size; actually, in order to make an
even gap-dash sequence, the desired dash length is used to do some com-
putations in order to find a suitable length, close to the one specified, such
that the distance of the end points is evenly divided in equally sized dashes
and gaps. The end points may be anywhere in the drawing area, without
any constraint on the slope of the joining segment. The desired dash length
is specified as a fractional multiple of \unitlength; see figure 2.

\unitlength=1mm
\begin{picture}(40,40)
\put(0,0){\GraphGrid(40,40)}
\Dashline(0,0)(40,10){4}
\put(0,0){\circle*{2}}
\Dashline(40,10)(0,25){4}
\put(40,10){\circle*{2}}
\Dashline(0,25)(20,40){4}
\put(0,25){\circle*{2}}
\put(20,40){\circle*{2}}
\Dotline(0,0)(40,40){2}
\end{picture}

Figure 2: Dashed lines and graph grid

8. Analogous to \Dashline, a new command \Dotline draws a dotted line
with the syntax:

\Dotline(〈first point〉)(〈end point〉){〈dot gap〉}

See figures 2 and 7 for examples.

9. \GraphGrid is a command that draws a red grid under the drawing with
lines separated 10\unitlengths apart; it is described only with a comma
separated couple of numbers, representing the base and the height of the
grid, see figure 2; it’s better to specify multiples of ten and the grid can be
placed anywhere in the drawing canvas by means of \put, whose cartesian
coordinates are multiples of 10; nevertheless the grid line distance is rounded

7



to the nearest multiple of 10, while the point coordinates specified to \put
are not rounded at all; therefore some care should be used to place the
working grid in the drawing canvas. This grid is intended as an aid while
drawing; even if you sketch your drawing on millimetre paper, the drawing
grid turns out to be very useful; one must only delete or comment out the
command when the drawing is finished.

10. New trigonometric function macros have been implemented; possibly they
are not better than the corresponding macros of the trig package, but they
are supposed to be more accurate at least they were intended to be so. The
other difference is that angles are specified in sexagesimal degrees (360° to
one revolution), so that reduction to the fundamental quadrant is supposed
to be more accurate; the tangent of odd multiples of 90° are approximated
with a “TEX infinity”, that is the signed value 16383.99999. This will possibly
produce computational errors in the subsequent calculations, but at least
it does not stop the tangent computation. In order to avoid overflows or
underflows in the computation of small angles (reduced to the first quadrant),
the sine and the tangent of angles smaller than 1° are approximated by the
first term of the McLaurin series, while for the cosine the approximation is
given by the first two terms of the McLaurin series. In both cases theoretical
errors are smaller than what TEX arithmetics can handle.
These trigonometric functions are used within the complex number macros;
but if the user wants to use them the syntax is the following:

\SinOf〈angle〉to〈control sequence〉
\CosOf〈angle〉to〈control sequence〉
\TanOf〈angle〉to〈control sequence〉

The 〈control sequence〉 may then be used as a multiplying factor of a length.

11. Arcs can be drawn as simple circular arcs, or with one or two arrows at their
ends (curved vectors); the syntax is:

\Arc(〈center〉)(〈starting point〉){〈angle〉}
\VectorArc(〈center〉)(〈starting point〉){〈angle〉}
\VectorARC(〈center〉)(〈starting point〉){〈angle〉}

If the angle is specified numerically it must be enclosed in braces, while
if it is specified with a control sequence the braces (curly brackets) are not
necessary. The above macro \Arc draws a simple circular arc without arrows;
\VectorArc draws an arc with an arrow tip at the ending point; \VectorARC
draws an arc with arrow tips at both ends; see figure 3.

12. A multitude of commands have been defined in order to manage complex
numbers; actually complex numbers are represented as a comma separated
pair of fractional numbers. They are used to address to specific points in

8



\unitlength=0.5mm
\begin{picture}(60,40)
\put(0,0){\GraphGrid(60,40)}
\Arc(0,20)(30,0){60}
\VECTOR(0,20)(30,0)\VECTOR(0,20)(32.5,36)
\VectorArc(0,20)(15,10){60}
\put(20,20){\makebox(0,0)[l]{$60ˆ\circ$}}
\VectorARC(60,20)(60,0){-180}
\end{picture}

60◦

Figure 3: Arcs and curved vectors

the drawing plane, but also as operators so as to scale and rotate other ob-
jects. In the following 〈vector〉 means a comma separated pair of fractional
numbers, 〈vector macro〉 means a macro the contains a comma separated
pair of fractional numbers; 〈angle macro〉 means a macro that contains the
angle of a vector in sexagesimal degrees; 〈argument〉 means a brace delimited
numeric value, even a macro; macro is a valid macro name, that is a back-
slash followed by letters, or anything else that can receive a definition. A
‘direction’ of a vector is its versor; the angle of a vector is the angle between
the vector and the positive x axis in counterclockwise direction, generally
directly used in the Euler formula ~v = Mejϕ.

• \MakeVectorFrom〈two arguments〉to〈vector macro〉
• \CopyVect〈first vector〉to〈second vector macro〉
• \ModOfVect〈vector〉to〈macro〉
• \DirOfvect〈vector〉to〈versor macro〉
• \ModAndDirOfVect〈vector〉to〈1st macro〉and〈2nd macro〉
• \DistanceAndDirOfVect〈1st vector〉minus〈2nd vector〉to〈1st macro〉and〈2nd macro〉
• \XpartOfVect〈vector〉to〈macro〉
• \YpartOfVect〈vector〉to〈macro〉
• \DirFromAngle〈angle〉to〈versor macro〉
• \ArgOfVect〈vector〉to〈angle macro〉
• \ScaleVect〈vector〉by〈scaling factor〉to〈vector macro〉
• \ConjVect〈vector〉to〈conjugate vector macro〉
• \SubVect〈first vector〉from〈second vector〉to〈vector macro〉
• \AddVect〈first vector〉and〈second vector〉to〈vector macro〉
• \MultVect〈first vector〉by〈second vector〉to〈vector macro〉
• \MultVect〈first vector〉by*〈second vector〉to〈vector macro〉
• \DivVect〈first vector〉by〈second vector〉to〈vector macro〉

13. General curves can be drawn with the pict2e macro \curve but it requires
the specification of the third-order Bézier-spline control points; sometimes
it’s better to be very specific with the control points and there is no other
means to do a decent graph; sometimes the curves to be drawn are not

9



so tricky and a general set of macros can be defined so as to compute the
control points, while letting the user specify only the nodes through which
the curve must pass, and the tangent direction of the curve in such nodes.
This macro is \Curve and must be followed by an “unlimited” sequence of
node-direction coordinates as a quadruple defined as

(〈node coordinates〉)<〈direction vector〉>

Possibly if a sudden change of direction has to be performed (cusp) another
item can be inserted after one of those quadruples in the form

. . . (〈...〉)<〈...〉>[〈new direction vector〉](〈...〉)<〈...〉>. . .

The \Curve macro does not (still) have facilities for cycling the path, that
is to close the path from the last specified node-direction to the first speci-
fied node-direction. The tangent direction need not be specified with a unit
vector, although only its direction is relevant; the scaling of the specified
direction vector to a unit vector is performed by the macro itself. There-
fore one cannot specify the fine tuning of the curve convexity as it can be
done with other programs, as for example with METAFONT or the pgf/tikz
package and environment. See figure 4 for an example.

With the starred version of \Curve, instead of stroking the contour, the macro
fills up the contour with the selected current color, figure 5.

In spite of the relative simplicity of the macros contained in this package, the
described macros, as well as the original ones included in the pict2e package, allow
to produce fine drawings that were unconceivable with the original LATEX picture
environment. Leslie Lamport himself announced an extension to his environment
when LATEX 2ε was first issued in 1994; in the latexnews news letter of December
2003; the first implementation announced; the first version of this package was
issued in 2006. It was time to have a better drawing environment; this package is
a simple attempt to follow the initial path while extending the drawing facilities;
but Till Tantau’s pgf package has gone much farther.

3 Remark
There are other packages in the ctan archives that deal with tracing curves of
various kinds. PSTricks and tikz/pgf are the most powerful ones. But there
is also the package curves that is intended to draw almost anything by using
little dots or other symbols partially superimposed to one another. It uses only
quadratic Bézier curves and the curve tracing is eased by specifying only the curve
nodes, without specifying the control nodes; with a suitable option to the package
call it is possible to reduce the memory usage by using short straight segments
drawn with the PostScript facilities offered by the dvips driver.

Another package ebezier performs about the same as curve2e but draws its
Bézier curves by using little dots partially superimposed to one another. The
documentation is quite interesting but since it explains very clearly what exactly

10



\unitlength=8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap
\Curve(2.5,0)<1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>

\end{picture}

Figure 4: A heart shaped curve with cusps drawn with \Curve

\unitlength=8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap

\color{green}\relax
\Curve*(2.5,0)<1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>

\end{picture}

Figure 5: Coloring the inside of a closed path drawn with \Curve*

are the Bézier splines, it appears that ebezier should be used only for dvi output
without recourse to PostScript machinery.

The picture package extends the performance of the picture environment
(extended with pict2e) by accepting coordinates and lengths in real absolute
dimensions, not only as multiples of \unitlength; it provides commands to extend
that functionality to other packages. In certain circumstances it is very useful.

Package xpicture builds over the picture LATEX environment so as to allow
to draw the usual curves that are part of an introductory analytic geometry course;
lines, circles, parabolas, ellipses, hyperbolas, and polynomials; the syntax is very
comfortable; for all these curves it uses the quadratic Bézier splines.

Package hobby extends the cubic Bézier spline handling with the algorithms
John Hobby created for METAFONT and METAPOST. But by now this package
interfaces very well with tikz; it has not (yet) been adapted to the common
picture environment, even extended with pict2e, and, why not, with curve2e.

4 Acknowledgements
I wish to express my deepest thanks to Michel Goosens who spotted some errors
and very kindly submitted them to me so that I was able to correct them.

11



Josef Tkadlec and the author collaborated extensively in order to make a better
real long division so as to get the fractional part and to avoid as much as possible
any numeric overflow; many Josef’s ideas are incorporated in the macro that is
implemented in this package, although the macro used by Josef is slightly different
from this one. Both versions aim at a better accuracy and at widening the operand
ranges.

Daniele Degiorgi spotted a fault in the kernel definition of \linethickness
that heavily influenced also curve2e; see below.

Thanks also to Jin-Hwan Cho and Juho Lee who suggested a small but crucial
modification in order to have curve2e work smoothly also with XeTeX (XeLaTeX).
Actually if version 0.2x or later, dated 2009/08/05 or later, of pict2e is being used,
such modification is not necessary, but it’s true that it becomes imperative if older
versions are used.

5 Source code
5.1 Some preliminary extensions to the pict2e package
The necessary preliminary code has already been introduced. Here we require
the color package and the pict2e one; for the latter one we make sure that a
sufficiently recent version is used.

1 \RequirePackage{color}
2 \RequirePackageWithOptions{pict2e}[2014/01/01]
3 \RequirePackage{xparse}

The next macros are just for debugging. With the trace package it would
probably be better to define other macros, but this is not for the users, but for
the developers.

4 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
5 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%

Next we define some new dimension registers that will be used by the subse-
quent macros; should they be already defined, there will not be any redefinition;
nevertheless the macros should be sufficiently protected so as to avoid overwriting
register values loaded by other macro packages.

6 \ifx\undefined\@tdA \newdimen\@tdA \fi
7 \ifx\undefined\@tdB \newdimen\@tdB \fi
8 \ifx\undefined\@tdC \newdimen\@tdC \fi
9 \ifx\undefined\@tdD \newdimen\@tdD \fi

10 \ifx\undefined\@tdE \newdimen\@tdE \fi
11 \ifx\undefined\@tdF \newdimen\@tdF \fi
12 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi

5.2 Line thickness macros
It is better to define a macro for setting a different value for the line and
curve thicknesses; the ‘\defaultlinewidth should contain the equivalent of

12



\@wholewidth, that is the thickness of thick lines; thin lines are half as thick;
so when the default line thickness is specified to, say, 1pt, thick lines will be 1pt
thick and thin lines will be 0.5pt thick. The default whole width of thick lines is
0,8pt, but this is specified in the kernel of LATEX and/or in pict2e. On the op-
posite it is necessary to redefine \linethickness because the LATEX kernel global
definition does not hide the space after the closed brace when you enter something
such as \linethickness{1mm} followed by a space or a new line. 1

13 \gdef\linethickness#1{\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
14 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
15 \def\thicklines{\linethickness{\defaultlinewidth}}%
16 \def\thinlines{\linethickness{.5\defaultlinewidth}}%
17 \thinlines\ignorespaces}

The \ignorespaces at the end of this and the subsequent macros is for avoiding
spurious spaces to get into the picture that is being drawn, because these spaces
introduce picture deformities often difficult to spot and eliminate.

5.3 Improved line and vector macros
The new macro \LIne allows to draw an arbitrary inclination line as if it was
a polygonal with just two vertices. This line should be set by means of a \put
command so that its starting point is always at a relative 0,0 coordinate point
inside the box created with \put. The two arguments define the horizontal and
the vertical component respectively.
18 \def\LIne(#1){{\GetCoord(#1)\@tX\@tY
19 \moveto(0,0)
20 \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces}%

A similar macro \segment operates between two explicit points with absolute
coordinates, instead of relative to the position specified by a \put command; it
resorts to the \polyline macro that shall be defined in a while. The \@killglue
command might be unnecessary, but it does not harm; it eliminates any explicit
or implicit spacing that might precede this command.
21 \def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%

By passing its ending points coordinates to the \polyline macro, both macro
arguments are a pair of coordinates, not their components; in other words, if
P1 = (x1, y2) and P2 = (x2, y2), then the first argument is the couple x1, y1
and likewise the second argument is x2, y2. Please remember that the decimal
separator is the decimal point, while the comma acts as coordinate separator.
This recommendation is particularly important for non-English speaking users,
since in all other languages the comma must be used as the decimal separator.

The \line macro is redefined by making use of a new division routine that
receives in input two dimensions and yields on output their fractional ratio. The
beginning of the macro definition is the same as that of pict2e:
22 \def\line(#1)#2{\begingroup

1Thanks to Daniele Degiorgi (degiorgi@inf.ethz.ch).

13



23 \@linelen #2\unitlength
24 \ifdim\@linelen<\z@\@badlinearg\else

but as soon as it is verified that the line length is not negative, things change
remarkably; in facts the machinery for complex numbers is invoked. This makes
the code much simpler, not necessarily more efficient; nevertheless \DirOfVect
takes the only macro argument (that actually contains a comma separated pair
of fractional numbers) and copies it to \Dir@line (an arbitrarily named control
sequence) after re-normalizing to unit magnitude; this is passed to GetCoord that
separates the two components into the control sequences \d@mX and\d@mY; these in
turn are the values that are actually operated upon by the subsequent commands.
25 \expandafter\DirOfVect#1to\Dir@line
26 \GetCoord(\Dir@line)\d@mX\d@mY

The normalized vector direction is actually formed with the directing cosines of
the line direction; since the line length is actually the horizontal component for
non vertical lines, it is necessary to compute the actual line length for non vertical
lines by dividing the given length by the magnitude of horizontal cosine \d@mX,
and the line length is accordingly scaled:
27 \ifdim\d@mX\p@=\z@\else
28 \DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen
29 \@linelen=\sc@lelen\@linelen
30 \fi

Of course, if the line is vertical this division must not take place. Finally the
moveto, lineto and stroke language keywords are invoked by means of the in-
ternal pict2e commands in order to draw the line. Notice that even vertical lines
are drawn with the “PostScript” commands instead of resorting to the dvi low level
language that was used both in pict2e and in the original picture commands;
it had a meaning in the old times, but it certainly does not have any when lines
are drawn by the driver that drives the output to a visible document form, not by
TEX the program.
31 \moveto(0,0)
32 \pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
33 \strokepath
34 \fi
35 \endgroup\ignorespaces}%

The new definition of the command \line, besides the ease with which is read-
able, does not do different things from the definition of pict2e 2009, but it did
preform in a better way with the 2004 version that was limited to integer direction
coefficients up to 999 in magnitude.

5.4 Dashed and dotted lines
Dashed and dotted lines are very useful in technical drawings; here we introduce
four macros that help drawing them in the proper way; besides the obvious differ-
ence between the use of dashes or dots, they may refer in a different way to the
end points that must be specified to the various macros.

14



The coordinates of the first point P1, where le line starts, are always referred
to the origin of the coordinate axes; the end point P2 coordinates with the first
macro type are referred to the origin of the axes, while with the second macro
type they are referred to P1; both macro types have their usefulness and figures 6
and 7 show how to use these macro types.

We distinguish these macro types with an asterisk; the unstarred version is the
first macro type, while the starred one refers to the second macro type.

The above mentioned macros create dashed lines between two given points,
with a dash length that must be specified, or dotted lines, with a dot gap that
can be specified; actually the specified dash length or dot gap is a desired one; the
actual length or gap is computed by integer division between the distance of the
given points and the desired dash length or dot gap; when dashes are involved,this
integer is tested in order to see if it is an odd number; if it’s not, it is increased
by one. Then the actual dash length or dot gap is obtained by dividing the above
distance by this number.

Another vector P2 − P1 is created by dividing it by this number; then, when
dashes are involved, it is multiplied by two in order to have the increment from
one dash to the next; finally the number of patterns is obtained by integer division
of this number by 2 and increasing it by 1. A simple \multiput completes the
job, but in order to use the various vectors and numbers within a group and to
throw the result outside the group while restoring all the intermediate counters
and registers, a service macro is created with an expanded definition and then
this service macro is executed. Figure 6 shows the effect of the slight changing of
the dash length in order to maintain approximately the same dash-space pattern
along the line, irrespective o the line length.
36 \ifx\Dashline\undefined
37 \def\Dashline{\@ifstar{\Dashline@@}{\Dashline@}}
38 \def\Dashline@(#1)(#2)#3{%
39 \bgroup
40 \countdef\NumA3254\countdef\NumB3252\relax
41 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
42 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
43 \SubVect\V@ttA from\V@ttB to\V@ttC
44 \ModOfVect\V@ttC to\DlineMod
45 \DivideFN\DlineMod by#3 to\NumD
46 \NumA\expandafter\Integer\NumD.??
47 \ifodd\NumA\else\advance\NumA\@ne\fi
48 \NumB=\NumA \divide\NumB\tw@
49 \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
50 \DividE\p@ by\NumA\p@ to \@tempa
51 \MultVect\V@ttC by\@tempa,0 to\V@ttB
52 \MultVect\V@ttB by 2,0 to\V@ttC
53 \advance\NumB\@ne
54 \edef\@mpt{\noexpand\egroup
55 \noexpand\multiput(\V@ttA)(\V@ttC){\number\NumB}%
56 {\noexpand\LIne(\V@ttB)}}%
57 \@mpt\ignorespaces}%

15



\begin{picture}(40,30)
\put(0,0){\GraphGrid(40,30)}
\Dashline(0,0)(40,10){2}\Dashline(0,0)(40,20){2}
\Dashline(0,0)(40,30){2}\Dashline(0,0)(30,30){2}
\Dashline(0,0)(20,30){2}\Dashline(0,0)(10,30){2}
{\color{red}\Dashline*(40,0)(108:30){2}
\Dashline*(40,0)(126:30){2}
\Dashline*(40,0)(144:30){2}
\Dashline*(40,0)(162:30){2}}
\end{picture}

Figure 6: Different length dashed lines with the same nominal dash length

58 \let\Dline\Dashline
59
60 \def\Dashline@@(#1)(#2)#3{\put(#1){\Dashline@(0,0)(#2){#3}}}
61 \fi

A simpler \Dotline macro can draw a dotted line between two given points;
the dots are rather small, therefore the inter dot distance is computed in such
a way as to have the first and the last dot at the exact position of the dotted-
line end-points; again the specified dot distance is nominal in the sense that it is
recalculated in such a way that the first and last dots coincide with the line end
points. The syntax is as follows:

\Dotline(〈start point〉)(〈end point〉){〈dot distance〉}

62 \ifx\Dotline\undefined
63 \def\Dotline{\@ifstar{\Dotline@@}{\Dotline@}}
64 \def\Dotline@(#1)(#2)#3{%
65 \bgroup
66 \countdef\NumA 3254\relax \countdef\NumB 3255\relax
67 \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
68 \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
69 \SubVect\V@ttA from\V@ttB to\V@ttC
70 \ModOfVect\V@ttC to\DotlineMod
71 \DivideFN\DotlineMod by#3 to\NumD
72 \NumA=\expandafter\Integer\NumD.??
73 \DivVect\V@ttC by\NumA,0 to\V@ttB
74 \advance\NumA\@ne
75 \edef\@mpt{\noexpand\egroup
76 \noexpand\multiput(\V@ttA)(\V@ttB){\number\NumA}%
77 {\noexpand\makebox(0,0){\noexpand\circle*{0.5}}}}%
78 \@mpt\ignorespaces}%
79
80 \def\Dotline@@(#1)(#2)#3{\put(#1){\Dotline@(0,0)(#2){#3}}}
81 \fi

Notice that vectors as complex numbers in their cartesian and polar forms
always represent a point position referred to the origin of the axes; this is why in
figures 6 and 7 the dashed and dotted line that depart from the lower right corner

16



\begin{picture}(40,30)
\put(0,0){\GraphGrid(40,30)}
\Dotline(0,0)(40,10){1.5}\Dotline(0,0)(40,20){1.5}
\Dotline(0,0)(40,30){1.5}\Dotline(0,0)(30,30){1.5}
\Dotline(0,0)(20,30){1.5}\Dotline(0,0)(10,30){1.5}
{\color{red}\Dotline*(40,0)(108:30){1.5}
\Dotline*(40,0)(126:30){1.5}
\Dotline*(40,0)(144:30){1.5}
\Dotline*(40,0)(162:30){1.5}}%
\end{picture}

Figure 7: Different length dotted lines with the same nominal dot gap

of the graph grid, and that use polar coordinates, have to be put at the proper
position with the starred version of the commands that take care of the relative
specification made with the polar coordinates.

5.5 Coordinate handling
The new macro \GetCoord splits a vector (or complex number) specification into
its components; in particular it distinguishes the polar from the cartesian form of
the coordinates. The latter have the usual syntax 〈x,y〉, while the former have
the syntax 〈angle:radius〉. The \put command is redefined to accept the same
syntax; the whole work is done by \SplitNod@ and its subsidiaries. Notice that
package eso-pic uses macros in its definitions but its original macro \LenToUnit
is incompatible with this \GetCoord macro; its function is to translate real lengths
into coefficients to be used as multipliers of the current \unitlength; in case that
the eso-pic had been loaded at the \begin{document} execution, the eso-pic
macro is redefined using the e-TEX commands so as to make it compatible with
these local macros. Thanks to Franz-Joseph Berthold who was so kind to spot the
bug.
82 \AtBeginDocument{\@ifpackageloaded{eso-pic}{%
83 \renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}
84
85 \def\GetCoord(#1)#2#3{%
86 \expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

But the macro that detects the form of the coordinates is \isnot@polar, that
examines the parameter syntax in order to see if it contains a colon; if it does the
coordinates are in polar form, otherwise they are in cartesian form:
87 \def\isnot@polar#1:#2!!{\def\@tempOne{#2}\ifx\@tempOne\empty
88 \expandafter\@firstoftwo\else
89 \expandafter\@secondoftwo\fi
90 {\SplitNod@@}{\SplitPolar@@}}
91
92 \def\SplitNod@(#1)#2#3{\isnot@polar#1:!!(#1)#2#3}%
93 \def\SplitNod@@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%
94 \def\SplitPolar@@(#1:#2)#3#4{\DirFromAngle#1to\@DirA

17



95 \ScaleVect\@DirA by#2to\@DirA
96 \expandafter\SplitNod@@\expandafter(\@DirA)#3#4}
97
98 \let\originalput\put
99 \def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY

100 \edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}
101
102 \let\originalmultiput\multiput
103 \let\original@multiput\@multiput
104
105 \long\def\@multiput(#1)#2#3{\bgroup\GetCoord(#1)\@mptX\@mptY
106 \edef\x{\noexpand\egroup\noexpand\original@multiput(\@mptX,\@mptY)}%
107 \x{#2}{#3}\ignorespaces}
108
109 \gdef\multiput(#1)#2{\bgroup\GetCoord(#1)\@mptX\@mptY
110 \edef\x{\noexpand\egroup\noexpand\originalmultiput(\@mptX,\@mptY)}\x(}%)

Examples of using polar and cartesian coordinates are shown in figure 8.

\begin{picture}(40,30)
\put(0,0){\GraphGrid(40,30)}
\put(40,0){\circle*{1.5}}

\put(41,0){\makebox(0,0)[bl]{40,0}}
\put(90:30){\circle*{1.5}}

\put(90:31){\makebox(0,0)[bl]{90:30}}
\put(60:30){\circle*{1.5}}

\put(60:31){\makebox(0,0)[bl]{60:30}}
\put(30,30){\circle*{1.5}}

\put(30.7,30.7){\makebox(0,0)[bl]{30,30}}
\multiput(0,0)(30:10){5}%

{\makebox(0,0){\rule{1.5mm}{1.5mm}}}
\end{picture}

40,0

90:30
60:30

30,30

Figure 8: Use of cartesian and polar coordinates

5.6 Vectors
The redefinitions and the new definitions for vectors are a little more complicated
than with segments, because each vector is drawn as a filled contour; the original
pict2e 2004 macro checks if the slopes are corresponding to the limitations speci-
fied by Lamport (integer three digit signed numbers) and sets up a transformation
in order to make it possible to draw each vector as an horizontal left-to-right arrow
and then to rotate it by its angle about its tail point; with pict2e 2009, possibly
this redefinition of \vector is not necessary, but we do it as well and for the same
reasons we had for redefining \line; actually there are two macros for tracing
the contours that are eventually filled by the principal macro; each contour macro
draws the vector with a LATEX or a PostScript arrow whose parameters are spec-
ified by default or may be taken from the parameters taken from the PSTricks

18



package if this one is loaded before pict2e; in any case we did not change the con-
tour drawing macros because if they are modified the same modification is passed
on to the arrows drawn with the curve2e package redefinitions.

Because of these features the redefinitions and the new macros are different
from those used for straight lines.

We start with the redefinition of \vector and we use the machinery for vectors
(as complex numbers) we used for \line.

111 \def\vector(#1)#2{%
112 \begingroup
113 \GetCoord(#1)\d@mX\d@mY
114 \@linelen#2\unitlength

As in pict2e we avoid tracing vectors if the slope parameters are both zero.
115 \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi

But we check only for the positive nature of the lx component; if it is negative,
we simply change sign instead of blocking the typesetting process. This is useful
also for macros \Vector and \VECTOR to be defined in a while.

116 \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi

We now make a vector with the slope coefficients even if one or the other is zero
and we determine its direction; the real and imaginary parts of the direction vector
are also the values we need for the subsequent rotation.

117 \MakeVectorFrom\d@mX\d@mY to\@Vect
118 \DirOfVect\@Vect to\Dir@Vect

In order to be compatible with the original pict2e we need to transform the
components of the vector direction in lengths with the specific names \@xdim and
\@ydim

119 \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
120 \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@

If the vector is really sloping we need to scale the lx component in order to get the
vector total length; we have to divide by the cosine of the vector inclination which
is the real part of the vector direction. I use my division macro; since it yields a
“factor” I directly use it to scale the length of the vector. I finally memorize the
true vector length in the internal dimension @tdB

121 \ifdim\d@mX\p@=\z@
122 \else\ifdim\d@mY\p@=\z@
123 \else
124 \DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen
125 \@linelen=\sc@lelen\@linelen
126 \fi
127 \fi
128 \@tdB=\@linelen

The remaining code is definitely similar to that of pict2e; the real difference
consists in the fact that the arrow is designed by itself without the stem; but it is
placed at the vector end; therefore the first statement is just the transformation
matrix used by the output driver to rotate the arrow tip and to displace it the

19



right amount. But in order to draw only the arrow tip I have to set the \@linelen
length to zero.

129 \pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%
130 \@linelen\z@
131 \pIIe@vector
132 \fillpath

Now we can restore the stem length that must be shortened by the dimension of
the arrow; examining the documentation of pict2e we discover that we have to
shorten it by an approximate amount of AL (with the notations of pict2e, figs 10
and 11); the arrow tip parameters are stored in certain variables with which we
can determine the amount of the stem shortening; if the stem was too short and
the new length is negative, we refrain from designing such stem.

133 \@linelen=\@tdB
134 \@tdA=\pIIe@FAW\@wholewidth
135 \@tdA=\pIIe@FAL\@tdA
136 \advance\@linelen-\@tdA
137 \ifdim\@linelen>\z@
138 \moveto(0,0)
139 \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
140 \strokepath\fi
141 \endgroup}

Now we define the macro that does not require the specification of the length
or the lx length component; the way the new \vector macro works does not
actually require this specification, because TEX can compute the vector length,
provided the two direction components are exactly the horizontal and vertical
vector components. If the horizontal component is zero, the actual length must
be specified as the vertical component.

142 \def\Vector(#1){{%
143 \GetCoord(#1)\@tX\@tY
144 \ifdim\@tX\p@=\z@\vector(\@tX,\@tY){\@tY}
145 \else
146 \vector(\@tX,\@tY){\@tX}\fi}}

On the opposite the next macro specifies a vector by means of the coordinates
of its end points; the first point is where the vector starts, and the second point
is the arrow tip side. We need the difference of these two coordinates, because it
represents the actual vector.

147 \def\VECTOR(#1)(#2){\begingroup
148 \SubVect#1from#2to\@tempa
149 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
150 \endgroup\ignorespaces}

The pict2e documentation says that if the vector length is zero the macro
designs only the arrow tip; this may work with macro \vector, certainly not with
\Vector and \VECTOR. This might be useful for adding an arrow tip to a circular
arc. See examples in figure 9.

20



\unitlength=.5mm
\begin{picture}(60,20)
\put(0,0){\GraphGrid(60,20)}
\put(0,0){\vector(1.5,2.3){10}}
\put(20,0){\Vector(10,15.33333)}
\VECTOR(40,0)(50,15.33333)
\end{picture}

Figure 9: Three (displaced) identical vectors obtained with the three vector
macros.

5.7 Polylines
We now define the polygonal line macro; its syntax is very simple

\polygonal[〈join〉](P0)(P1)(P2) ...(Pn)

Remember: \polyline has been incorporated into pict2e 2009, but we redefine
it so as to allow an optional argument to specify the line join type.

In order to write a recursive macro we need aliases for the parentheses; actually
we need only the left parenthesis, but some editors complain about unmatched
delimiters, so we define an alias also for the right parenthesis.

151 \let\lp@r( \let\rp@r)

The first call to \polyline, besides setting the line joints, examines the first point
coordinates and moves the drawing position to this point; afterwards it looks for
the second point coordinates; they start with a left parenthesis; if this is found
the coordinates should be there, but if the left parenthesis is missing (possibly
preceded by spaces that are ignored by the \@ifnextchar macro) then a warning
message is output together with the line number where the missing parenthesis
causes the warning: beware, this line number might point to several lines further on
along the source file! In any case it’s necessary to insert a \@killglue command,
because \polyline refers to absolute coordinates not necessarily is put in position
through a \put command that provides to eliminate any spurious spaces preceding
this command.

In order to allow a specification for the joints of the various segments of a
polygonal line it is necessary to allow for an optional parameter; the default join
is the bevel join.

152 \renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}
153
154 \def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
155 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
156 \@ifnextchar\lp@r{\p@lyline}{%
157 \PackageWarning{curve2e}%
158 {Polylines require at least two vertices!\MessageBreak
159 Control your polyline specification\MessageBreak}%
160 \ignorespaces}}
161

21



\unitlength=0.07\hsize
\begin{picture}(8,8)(-4,-4)\color{red}
\polygon*(45:4)(135:4)(-135:4)(-45:4)
\end{picture}

Figure 10: The code and the result of defining a polygon with its vertex polar
coordinates

But if there is a second or further point coordinate, the recursive macro \p@lyline
is called; it works on the next point and checks for a further point; if such a point
exists it calls itself, otherwise it terminates the polygonal line by stroking it.

162 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
163 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
164 \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}

The same treatment must be done for the \polygon macros
165 \providecommand\polygon{}
166 \RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
167 \IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
168 \@polygon[#2]}
169
170 \def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
171 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
172 \@ifnextchar\lp@r{\@@polygon}{%
173 \PackageWarning{curve2e}%
174 {Polygons require at least two vertices!\MessageBreak
175 Control your polygon specification\MessageBreak}%
176 \ignorespaces}}
177
178 \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
179 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
180 \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
181 \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
182 \endgroup
183 \ignorespaces}}

Now, for example, a filled polygon can be drawn using polar coordinates for its
vertices; see figure 10

5.8 The red service grid
The next command is very useful for debugging while editing one’s drawings; it
draws a red grid with square meshes that are ten drawing units apart; there is
no graduation along the grid, since it is supposed to be a debugging aid and the
user should know what he/she is doing; nevertheless it is advisable to displace the
grid by means of a \put command so that its grid lines coincide with the graph

22



coordinates multiples of 10. Missing to do so the readings become cumbersome.
The \RoundUp macro provides to increase the grid dimensions to integer multiples
of ten.

184 \def\GraphGrid(#1,#2){\bgroup\textcolor{red}{\linethickness{.1\p@}%
185 \RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
186 \@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
187 \multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
188 \@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
189 \multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
190 \egroup\ignorespaces}

Rounding up is useful because also the grid margins fall on coordinates multiples
of 10. It resorts to the \Integer macro that will be described in a while.

191 \def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
192 \count254\@tempcnta\divide\count254by#2\relax
193 \multiply\count254by#2\relax
194 \count252\@tempcnta\advance\count252-\count254
195 \ifnum\count252>0\advance\count252-#2\relax
196 \advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%

The \Integer macro takes a possibly fractional number whose decimal separator,
if present, must be the decimal point and uses the point as an argument delimiter.
If one has the doubt that the number being passed to \Integer might be an
integer, he/she should call the macro with a further point; if the argument is truly
integer this point works as the delimiter of the integer part; if the argument being
passed is fractional this extra point gets discarded as well as the fractional part of
the number.

197 \def\Integer#1.#2??{#1}%

6 Math operations on fixed radix operands
This is not the place to complain about the fact that all programs of the TEX
system use only integer arithmetics; LuaTeX can do floating point arithmetics
through the Lua language that it partially incorporates. But this curve2e package
is supposed to work also with pdfTeX and XeTeX. Therefore the Lua language
should not be used.

The only possibility to fake fractional arithmetics is to use fractional numbers
as multipliers of the unit length \p@ that is 1 pt long; calculations are performed
on lengths, and eventually their value, extracted from the length registers with the
\the command is stripped off the “pt” component. The LATEX kernel macro does
this in one step. At the same time the dimensional expressions made available by
the e-TeX extension to all the TEX system engines, allows to perform all operations
directly on suitable length registers.

The drawback of working with TEX arithmetics for dimensions is that they are
saved in binary form in computer words of 32 bits; the sixteen less significant bits
are reserved for the fractional part; the two more significant bits are reserved for
the sign and the type of dimension. There remain in total 30 bits available for the

23



entire number; just to simplify this representation the TEXbook explains that the
computer 32-bit word contains the dimension in scaled points, where 1 pt equals
216 sp.

Since the number of bits of the fractional part is constant (16) it is said that the
number representation is in fixed radix. This is much different form the scientific
approach to fractional numbers where a 32-bit word reserves 24 bits to the signif-
icant digits, one bit for the sign, and a signed exponent of 2 that has 7 significant
bits and represents the number of binary digits that is necessary to move the binary
fractional sign to the right or to the left in order to remain with a number greater
or equal to 1, but lower than 2; this way of coding numbers is called floating point
representation (of course special numbers, such as zero, require special codes);
TEX fixed radix representation may code numbers with absolute value not exceed-
ing (230 − 1) sp =1073741823 sp =16383.99998 pt; a floating point 32-bit number
cannot exceed in magnitude the value of approximately 1.8446744 × 1019; with
fixed radix numbers it is possible to evaluate the absolute value of the imprecision
of the results by summing the absolute imprecision of the terms of summation
and subtraction; with floating point numbers it is possible to estimate the relative
imprecision by summing the relative imprecisions of the terms of multiplication
and division.

Working with fixed radix numbers one must keep in mind that 16 fractional
binary digits are more or less equivalent to 5 decimal fractional digits; and that
16383,99998 pt are a little less than six meters (5,75832 m). These limits appear
completely sufficient to do most computations necessary for typography, but when
we pretend to make computations of mathematical functions with such a poor
“calculator”, we must expect poorly approximated results. Nevertheless using the
proper iterative algorithms the results are not too bad, but certainly it is necessary
to accept the situation.

Then why not using the fp package that allows to do computations in TEX with
the floating point representation of numbers? Simply because the results would
require a lot of time for their execution; this is a serious problem with package
pgfplots with which it is possible to draw beautiful 2D and 3D color diagrams,
but at the expense of even dozens of seconds of computation time instead of
milliseconds.

6.1 The new division macro
The most important macro in the whole package is the division macro; it takes two
lengths as input values and computes their fractional ratio into a control sequence.

It must take care of the signs, so that it examines the operand signs and
determines the result sign separately conserving this computed sign in the macro
\segno; this done, we are sure that both operands are or are made positive; should
the numerator be zero it directly issues the zero quotient; should the denominator
be zero it outputs “infinity” (\maxdimen in points), that is the maximum allowable
length measured in points that TEX can deal with.

Since the result is assigned a value, the calling statement must pass as the
third argument either a control sequence or an active character. Of course the

24



first operand is the dividend, the second the divisor and the third the quotient.
Since curve2e is supposed to be an extension of pict2e and this macro package

already contains a division macro, we might not define any other division macro;
nevertheless, since the macro in pict2e may not be so efficient as it might be
if the e-tex extensions of the interpreter program were available, here we check
and eventually provide a more efficient macro. The latter exploits the scaling
mechanism embedded in pdftex since 2007, when the extended mode is enabled;
it is used to scale a dimension by a fraction: L × N/D, where L is a dimension,
and N and D are the numerator an denominator of the scaling factor; these might
be integers, but it’s better they are both represented by dimension registers, that
contain two lengths expressed in the same units, possibly the fractional scaling
factor numerator and denominator that ‘scale” the unit length \p@.

Therefore first we test if the extended mode exists and/or is enabled:
198 \ifdefined\dimexpr

then we test if the macro is already defined:
199 \unless\ifdefined\DividE

Notice that \dimexpr is the specific extended mode control sequence we are going
to use in order to perform our task; if the interpreter program is too old and/or
it is a recent version, but it was compiled without activating the extended mode,
the macro \dimexpr is undefined.

The macro \DividE, creates a group where the names of two counters and
a dimensional register are defined; the numbers of these integer and dimension
registers are expressly above the value 255, because one of the extensions is the
possibility of using a virtually unlimited number of registers; moreover even if
these registers were used within other macros, their use within a group does not
damage the other macros; we just have to use a Knuthian dirty trick to throw the
result beyond the end-group command.

The efficiency of this macro is contained in the extended command \dimexpr;
both the \@DimA and \Num registers are program words of 32 bits; the result is
stored into an internal register of 64 bits; the final division by a factor stored into
a register of 32 bits, so that in terms of scaled points a division by 1 pt = 1× 216,
scales down the result by 16 bits, and if the total length of the result is smaller
than 230, the result can be correctly assigned to a dimension register. In any other
case the extended features imply suitable error messages but not the termination
of the program. During the division and a scaling down by 16 bits, the result is
not simply truncated, but it is rounded to the nearest integer (in scaled points).
The first two operands are lengths and the third is a macro.

200 \def\DividE#1by#2to#3{\bgroup
201 \dimendef\Num2254\relax \dimendef\Den2252\relax
202 \dimendef\@DimA 2250
203 \Num=\p@ \Den=#2\relax
204 \ifdim\Den=\z@
205 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\strip@pt\maxdimen}}%
206 \else
207 \@DimA=#1\relax

25



208 \edef\x{%
209 \noexpand\egroup\noexpand\def\noexpand#3{%
210 \strip@pt\dimexpr\@DimA*\Num/\Den\relax}}%
211 \fi
212 \x\ignorespaces}%
213 \fi

We need a similar macro to divide two fractional or integer numbers, not
dimensions, and produce a macro that contains the fractional result.

214 \unless\ifdefined\DivideFN
215 \def\DivideFN#1by#2to#3{\DividE#1\p@ by#2\p@ to{#3}}%
216 \fi

We do the same in order to multiply two integer o fractional numbers held in
the first two arguments and the third argument is a definable token that will hold
the result of multiplication in the form of a fractional number, possibly with a non
null fractional part; a null fractional part is eliminated by \strip@pt.

217 \unless\ifdefined\MultiplY
218 \def\MultiplY#1by#2to#3{\bgroup
219 \dimendef\@DimA 2254 \dimendef\@DimB2255
220 \@DimA=#1\p@\relax \@DimB=#2\p@\relax
221 \edef\x{%
222 \noexpand\egroup\noexpand\def\noexpand#3{%
223 \strip@pt\dimexpr\@DimA*\@DimB/\p@\relax}}%
224 \x\ignorespaces}%
225 \let\MultiplyFN\MultiplY
226 \fi
227 \fi

The next macro uses the \strip@pt LATEX kernel macro to get the numerical
value of a measure in points. One has to call \Numero with a control sequence and
a dimension; the dimension value in points is assigned to the control sequence.

228 \unless\ifdefined\Numero
229 \def\Numero#1#2{\bgroup\dimen3254=#2\relax
230 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#1{%
231 \strip@pt\dimen3254}}\x\ignorespaces}%
232 \fi

The \ifdefined primitive command is provided by the e-TEX extension of the
typesetting engine; the test does not create any hash table entry; it is a different
way than the \ifx\csname ....\endcsname test, because the latter first possibly
creates a macro meaning \relax then executes the test; therefore an undefined
macro name is always defined to mean \relax.

6.2 Trigonometric functions
We now start with trigonometric functions. We define the macros \SinOf, \CosOf
and \TanOf (we might define also \CotOf, but the cotangent does not appear so
essential) by means of the parametric formulas that require the knowledge of the
tangent of the half angle. We want to specify the angles in sexagesimal degrees,

26



not in radians, so we can make accurate reductions to the main quadrants. We
use the formulas

sin θ = 2
cotx+ tan x

cos θ = cotx− tan x
cotx+ tan x

tan θ = 2
cotx− tan x

where
x = θ/114.591559

is the half angle in degrees converted to radians.
We use this slightly modified set of parametric formulas because the cotangent

of x is a by product of the computation of the tangent of x; in this way we avoid
computing the squares of numbers that might lead to overflows. For the same
reason we avoid computing the value of the trigonometric functions in proximity
of the value zero (and the other values that might involve high tangent or cotangent
values) and in that case we prefer to approximate the small angle function value
with its first or second order truncation of the McLaurin series; in facts for angles
whose magnitude is smaller than 1° the magnitude of the independent variable
y = 2x (the angle in degrees converted to radians) is so small (about 0.017) that
the sine and tangent can be freely approximated with y itself (the error being
smaller than approximately 10−6), while the cosine can be freely approximated
with the formula 1− 0.5y2 (the error being smaller than about 10−6).

We keep using grouping so that internal variables are local to these groups and
do not mess up other things.

The first macro is the service routine that computes the tangent and the cotan-
gent of the half angle in radians; since we have to use always the reciprocal of this
value, we call it \X@ but in spite of the similarity it is the reciprocal of x. Notice
that parameter #1 must be a length.

233 \def\g@tTanCotanFrom#1to#2and#3{%
234 \DividE 114.591559\p@ by#1to\X@ \@tdB=\X@\p@

Computations are done with the help of counter \I, of the length \@tdB, and
the auxiliary control sequences \Tan and \Cot whose meaning is transparent. The
iterative process controlled by \@whilenum implements the (truncated) continued
fraction expansion of the tangent function:

tan x = 1
1
x
− 1

3
x
− 1

5
x
− 1

7
x
− 1

9
x
− 1

11
x
− · · ·

27



235 \countdef\I=2546\def\Tan{0}\I=11\relax
236 \@whilenum\I>\z@\do{%
237 \@tdC=\Tan\p@ \@tdD=\I\@tdB
238 \advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan
239 \advance\I-2\relax}%
240 \def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}\ignorespaces}%

Now that we have the macro for computing the tangent and cotangent of the
half angle, we can compute the real trigonometric functions we are interested
in. The sine value is computed after reducing the sine argument to the interval
0◦ < θ < 180◦; actually special values such as 0°, 90°, 180°, et cetera, are taken
care separately, so that CPU time is saved for these special cases. The sine sign
is taken care separately according to the quadrant of the sine argument.

Since all computations are done within a group, a trick is necessary in order
to extract the sine value from the group; this is done by defining within the group
a macro (in this case \endSinOf) with the expanded definition of the result, but
in charge of of closing the group, so that when the group is closed the auxiliary
function is not defined any more, although its expansion keeps getting executed
so that the expanded result is thrown beyond the group end.

241 \def\SinOf#1to#2{\bgroup%
242 \@tdA=#1\p@%
243 \ifdim\@tdA>\z@%
244 \@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%
245 \else%
246 \@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%
247 \fi \ifdim\@tdA=\z@
248 \def\@tempA{0}%
249 \else
250 \ifdim\@tdA>\z@
251 \def\Segno{+}%
252 \else
253 \def\Segno{-}%
254 \@tdA=-\@tdA
255 \fi
256 \ifdim\@tdA>90\p@
257 \@tdA=-\@tdA \advance\@tdA 180\p@
258 \fi
259 \ifdim\@tdA=90\p@
260 \def\@tempA{\Segno1}%
261 \else
262 \ifdim\@tdA=180\p@
263 \def\@tempA{0}%
264 \else
265 \ifdim\@tdA<\p@
266 \@tdA=\Segno0.0174533\@tdA
267 \DividE\@tdA by\p@ to \@tempA%
268 \else
269 \g@tTanCotanFrom\@tdA to\T and\Tp
270 \@tdA=\T\p@ \advance\@tdA \Tp\p@

28



271 \DividE \Segno2\p@ by\@tdA to \@tempA%
272 \fi
273 \fi
274 \fi
275 \fi
276 \edef\endSinOf{\noexpand\egroup
277 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
278 \endSinOf}%

For the computation of the cosine we behave in a similar way using also the
identical trick for throwing the result beyond the group end.

279 \def\CosOf#1to#2{\bgroup%
280 \@tdA=#1\p@%
281 \ifdim\@tdA>\z@%
282 \@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%
283 \else%
284 \@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%
285 \fi
286 %
287 \ifdim\@tdA>180\p@
288 \@tdA=-\@tdA \advance\@tdA 360\p@
289 \fi
290 %
291 \ifdim\@tdA<90\p@
292 \def\Segno{+}%
293 \else
294 \def\Segno{-}%
295 \@tdA=-\@tdA \advance\@tdA 180\p@
296 \fi
297 \ifdim\@tdA=\z@
298 \def\@tempA{\Segno1}%
299 \else
300 \ifdim\@tdA<\p@
301 \@tdA=0.0174533\@tdA \Numero\@tempA\@tdA
302 \@tdA=\@tempA\@tdA \@tdA=-.5\@tdA
303 \advance\@tdA \p@
304 \DividE\@tdA by\p@ to\@tempA%
305 \else
306 \ifdim\@tdA=90\p@
307 \def\@tempA{0}%
308 \else
309 \g@tTanCotanFrom\@tdA to\T and\Tp
310 \@tdA=\Tp\p@ \advance\@tdA-\T\p@
311 \@tdB=\Tp\p@ \advance\@tdB\T\p@
312 \DividE\Segno\@tdA by\@tdB to\@tempA%
313 \fi
314 \fi
315 \fi
316 \edef\endCosOf{\noexpand\egroup
317 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%

29



318 \endCosOf}%

For the tangent computation we behave in a similar way, except that we con-
sider the fundamental interval as 0◦ < θ < 90◦; for the odd multiples of 90° we
assign the result a TEX infinity value, i.e. \maxdimen, the maximum dimension
TEX can handle.

319 \def\TanOf#1to#2{\bgroup%
320 \@tdA=#1\p@%
321 \ifdim\@tdA>90\p@%
322 \@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%
323 \else%
324 \@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%
325 \fi%
326 \ifdim\@tdA=\z@%
327 \def\@tempA{0}%
328 \else
329 \ifdim\@tdA>\z@
330 \def\Segno{+}%
331 \else
332 \def\Segno{-}%
333 \@tdA=-\@tdA
334 \fi
335 \ifdim\@tdA=90\p@
336 \def\@tempA{\Segno16383.99999}%
337 \else
338 \ifdim\@tdA<\p@
339 \@tdA=\Segno0.0174533\@tdA
340 \DividE\@tdA by\p@ to\@tempA%
341 \else
342 \g@tTanCotanFrom\@tdA to\T and\Tp
343 \@tdA\Tp\p@ \advance\@tdA -\T\p@
344 \DividE\Segno2\p@ by\@tdA to\@tempA%
345 \fi
346 \fi
347 \fi
348 \edef\endTanOf{\noexpand\egroup
349 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
350 \endTanOf}%

As of today the anomaly (angle) of a complex number may not be necessary,
but it might become useful in the future; therefore with macro \ArgOfVect we
calculate the four quadrant arctangent (in degrees) of the given vector taking
into account the sings of the vector components. For the principal value of the

30



arctangent we would like to use the continued fraction:

arctan x =
x

1 +
x2

3− x2 +
(3x)2

5− 3x2 +
(5x)2

7− 5x2 +
(7x)2

9− 7x2 + .. .

(1)

but after some testing we had to give up due to the slow convergence of continued
fraction (1), strictly connected with the slow convergence of the McLaurin series
from which it is derived.

Waiting for a faster convergence continued fraction, we examined the paramet-
ric formula and its inverse:

tan θ = 2 tan(θ/2))
1− tan2(θ/2)

(2a)

tan(θ/2) =
√

tan2 θ + 1− 1
tan θ (2b)

If we count the times we use the above formula we can arrive at a point where we
have to compute the arctangent of a very small value, where the arctangent and its
argument are approximately equal, so that the angle value in radians is equal to
its tangent; at that point we multiply by 2n, where n is the number of bisections,
and transform the radians in degrees. The procedure is pretty good, even if is is
very rudimental and based on an approximation; the fixed radix computation of
the typesetting engine does not help, but we get pretty decent results, although
we loose some accuracy that hopefully would not harm further computations.

The results obtainable with equation (2b) are possibly acceptable, but the
square that must be computed in it tends to go in underflow if too many iterations
are performed and the algorithm crashes; therefore it’s virtually impossibile to get
an absolute error lower than 0.0005.

It is probably better to refer to the Newton iterations for solving the equation:

tan θ − tan θ∞ = 0 (3)

in the unknown θ given the value t = tan θ∞; see figure 11
The iterative algorithm with Newton method implies the recurrence

y′i−1 = d tan(θi−1)
dθ = 1

cos2 θi−1
(4a)

θi = θi−1 −
tan θi−1 − t

y′i−1
= θi−1 − cos2 θi−1(tan θi−1 − t) (4b)

The algorithm starts with an initial value θ0; at each iteration for i = 1, 2, 3, . . .
a new value of θi is computed from the data of the previous iteration i− 1. When

31



y = tan θ t = tan θ∞

θ

y

π/2

t

θ∞ θi+1

yi

θi

yi−1

θi−1

yi−2

θi−2

Figure 11: Newton’s method of tangents

for a certain i, tan θi is sufficiently close to t, the iterations may be stopped; since
we already have the algorithms for computing both the tangent and the cosine;
such Newton iterative method does not set forth any problem, especially if we
use the properties of the trigonometric functions and we confine the computations
to the first quadrant; possibly we limit the computations to the first octant and
we resort to the cotangent when the tangent exceeds one; in this case we use
the same algorithm, but we have to get the complementary angle; in order to
make computations with positive numbers, we save the initial tangent sign and
we restore it to the result.

351 \def\ArcTanOf#1to#2{\bgroup
352 \countdef\Inverti 4444\Inverti=0
353 \def\Segno{}
354 \edef\@tF{#1}\@tdF=\@tF\p@ \@tdE=57.295778\p@
355 \@tdD=\ifdim\@tdF<\z@ -\@tdF\def\Segno{-}\else\@tdF\fi
356 \ifdim\@tdD>\p@
357 \Inverti=\@ne
358 \@tdD=\dimexpr\p@*\p@/\@tdD\relax
359 \fi
360 \unless\ifdim\@tdD>0.02\p@

32



361 \def\@tX{\strip@pt\dimexpr57.295778\@tdD\relax}%
362 \else
363 \edef\@tX{45}\relax
364 \countdef\I 2523 \I=9\relax
365 \@whilenum\I>0\do{\TanOf\@tX to\@tG
366 \edef\@tG{\strip@pt\dimexpr\@tG\p@-\@tdD\relax}\relax
367 \MultiplY\@tG by57.295778to\@tG
368 \CosOf\@tX to\@tH
369 \MultiplY\@tH by\@tH to\@tH
370 \MultiplY\@tH by\@tG to \@tH
371 \edef\@tX{\strip@pt\dimexpr\@tX\p@ - \@tH\p@\relax}\relax
372 \advance\I\m@ne}%
373 \fi
374 \ifnum\Inverti=\@ne
375 \edef\@tX{\strip@pt\dimexpr90\p@-\@tX\p@\relax}
376 \fi
377 \edef\x{\egroup\noexpand\edef\noexpand#2{\Segno\@tX}}\x\ignorespaces}%

6.3 Arcs and curves preliminary information
We would like to define now a macro for drawing circular arcs of any radius and
any angular aperture; the macro should require the arc center, the arc starting
point and the angular aperture. The arc has its reference point in its center,
therefore it does not need to be put in place by the command \put; nevertheless if
\put is used, it may displace the arc into another position. The command should
have the following syntax:

\Arc(〈center〉)(〈starting point〉){〈angle〉}

which is totally equivalent to:

\put(〈center〉){〈\Arc(0,0)(〈starting point〉){〈angle〉}〉}

If the 〈angle〉, i.e. the arc angular aperture, is positive the arc runs counter-
clockwise from the starting point; clockwise if it’s negative. Notice that since the
〈starting point〉 is relative to the 〈center〉 point, its polar coordinates are very
convenient, since they become (〈〈start angle〉:〈radius〉〉), where the 〈start angle〉
is relative to the arc center. Therefore you can think about a syntax such as this
one:

\Arc(〈〈center〉〉)(〈〈start angle〉:〈radius〉〉){〈angle〉}

The difference between the pict2e \arc definition consists in a very different
syntax:

\arc[〈start angle〉,〈end angle〉]{〈radius〉}

and the center is assumed to be at the coordinate established with a required \put
command; moreover the difference in specifying angles is that 〈end angle〉 equals
the sum of 〈start angle〉 and 〈angle〉. With the definition of this curve2e package

33



use of a \put command is not prohibited, but it may be used for fine tuning the
arc position by means of a simple displacement; moreover the 〈starting point〉 may
be specified with polar coordinates (that are relative to the arc center).

It’s necessary to determine the end point and the control points of the Bézier
spline(s) that make up the circular arc.

The end point is obtained from the rotation of the starting point around the
center; but the pict2e command \pIIe@rotate is such that the pivoting point
appears to be non relocatable. It is therefore necessary to resort to low level
TEX commands and the defined trigonometric functions and a set of macros that
operate on complex numbers used as vector roto-amplification operators.

6.4 Complex number macros
In this package complex number is a vague phrase; it may be used in the math-
ematical sense of an ordered pair of real numbers; it can be viewed as a vector
joining the origin of the coordinate axes to the coordinates indicated by the or-
dered pair; it can be interpreted as a roto-amplification operator that scales its
operand and rotates it about a pivot point; besides the usual conventional repre-
sentation used by the mathematicians where the ordered pair is enclosed in round
parentheses (which is in perfect agreement with the standard code used by the
picture environment) there is the other conventional representation used by the
engineers that stress the roto-amplification nature of a complex number:

(x, y) = x+ jy = Mejθ

Even the imaginary unit is indicated with i by the mathematicians and with j by
the engineers. In spite of these differences, these objects, the complex numbers,
are used without any problem by both mathematicians and engineers.

The important point is that these objects can be summed, subtracted, multi-
plied, divided, raised to any power (integer, fractional, positive or negative), be
the argument of transcendental functions according to rules that are agreed upon
by everybody. We do not need all these properties, but we need some and we must
create the suitable macros for doing some of these operations.

In facts wee need macros for summing, subtracting, multiplying, dividing com-
plex numbers, for determining their directions (unit vectors); a unit vector is the
complex number divided by its magnitude so that the result is the cartesian or
polar form of the Euler’s formula

ejφ = cosφ+ j sinφ

The magnitude of a vector is determined by taking a clever square root of a
function of the real and the imaginary parts; see further on.

It’s better to represent each complex number with one control sequence; this
implies frequent assembling and disassembling the pair of real numbers that make
up a complex number. These real components are assembled into the defining
control sequence as a couple of coordinates, i.e. two comma separated integer or
fractional signed decimal numbers.

34



For assembling two real numbers into a complex number we use the following
elementary macro:

378 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Another elementary macro copies a complex number into another one:
379 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%

The magnitude is determined with the macro \ModOfVect with delimited argu-
ments; as usual it is assumed that the results are retrieved by means of control
sequences, not used directly.

The magnitudeM is determined by taking the moduli of the real and imaginary
parts, changing their signs if necessary; the larger component is then taken as the
reference one so that, if a is larger than b, the square root of the sum of their
squares is computed as such:

M =
√
a2 + b2 = |a|

√
1 + (b/a)2

In this way the radicand never exceeds 2 and it is quite easy to get its square
root by means of the Newton iterative process; due to the quadratic convergence,
five iterations are more than sufficient. When one of the components is zero, the
Newton iterative process is skipped. The overall macro is the following:

380 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
381 \@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
382 \@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
383 \ifdim\@tempdima=\z@
384 \ifdim\@tempdimb=\z@
385 \def\@T{0}\@tempdimc=\z@
386 \else
387 \def\@T{0}\@tempdimc=\@tempdimb
388 \fi
389 \else
390 \ifdim\@tempdima>\@tempdimb
391 \DividE\@tempdimb by\@tempdima to\@T
392 \@tempdimc=\@tempdima
393 \else
394 \DividE\@tempdima by\@tempdimb to\@T
395 \@tempdimc=\@tempdimb
396 \fi
397 \fi
398 \unless\ifdim\@tempdimc=\z@
399 \unless\ifdim\@T\p@=\z@
400 \@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
401 \advance\@tempdima\p@%
402 \@tempdimb=\p@%
403 \@tempcnta=5\relax
404 \@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
405 \advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
406 \advance\@tempcnta\m@ne}%
407 \@tempdimc=\@T\@tempdimc

35



408 \fi
409 \fi
410 \Numero#2\@tempdimc
411 \ignorespaces}%

As a byproduct of the computation the control sequence \@tempdimc contains a
length the value in points of which is the computed root.

Since the macro for determining the magnitude of a vector is available, we can
now normalize the vector to its magnitude, therefore getting the Cartesian form of
the direction vector. If by any chance the direction of the null vector is requested,
the output is again the null vector, without normalization.

412 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
413 \ModOfVect#1to\@tempa
414 \unless\ifdim\@tempdimc=\z@
415 \DividE\t@X\p@ by\@tempdimc to\t@X
416 \DividE\t@Y\p@ by\@tempdimc to\t@Y
417 \fi
418 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

A cumulative macro uses the above ones to determine with one call both the
magnitude and the direction of a complex number. The first argument is the input
complex number, the second its magnitude, and the third is again a complex
number normalized to unit magnitude (unless the input was the null complex
number); remember always that output quantities must be specified with control
sequences to be used at a later time.

419 \def\ModAndDirOfVect#1to#2and#3{%
420 \GetCoord(#1)\t@X\t@Y
421 \ModOfVect#1to#2%
422 \ifdim\@tempdimc=\z@\else
423 \DividE\t@X\p@ by\@tempdimc to\t@X
424 \DividE\t@Y\p@ by\@tempdimc to\t@Y
425 \fi
426 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

The next macro computes the magnitude and the direction of the difference of
two complex numbers; the first input argument is the minuend, the second is the
subtrahend; the output quantities are the third argument containing the magni-
tude of the difference and the fourth is the direction of the difference. The service
macro \SubVect executes the difference of two complex numbers and is described
further on.

427 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%
428 \SubVect#2from#1to\@tempa
429 \ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%

We now have two macros intended to fetch just the real or, respectively, the
imaginary part of the input complex number.

430 \def\XpartOfVect#1to#2{%
431 \GetCoord(#1)#2\@tempa\ignorespaces}%
432 %
433 \def\YpartOfVect#1to#2{%

36



434 \GetCoord(#1)\@tempa#2\ignorespaces}%

With the next macro we create a direction vector (second argument) from a given
angle (first argument).

435 \def\DirFromAngle#1to#2{%
436 \CosOf#1to\t@X
437 \SinOf#1to\t@Y
438 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

Since we have the algorithm to compute the arctangent of a number, it should
be relatively easy to compute the angle of a complex number. We just have to pay
attention that the algorithm to compute the arctangent does not care about the
quadrant where the complex number lays in, and it yields the principal value of
the arctan in the domain −π/2 < θ ≤ π/2. With complex numbers we have just
a sign change in their angle when they lay in the first or the fourth quadrants;
while for the third and second quadrants we have to reflect the complex number
to its opposite and in the result we have to add a “flat angle”, that is 180° since
we are working in degrees. Even if mathematically it is undefined we decided to
assign a null angle to a null complex number; possibly a warning message would
be helpful, but for drawing purposes we think that the problem is irrelevant.

439 \def\ArgOfVect#1to#2{\bgroup\GetCoord(#1){\t@X}{\t@Y}%
440 \def\s@gno{}\def\addflatt@ngle{0}
441 \ifdim\t@X\p@=\z@
442 \ifdim\t@Y\p@=\z@
443 \def\ArcTan{0}%
444 \else
445 \def\ArcTan{90}%
446 \ifdim\t@Y\p@<\z@\def\s@gno{-}\fi
447 \fi
448 \else
449 \ifdim\t@Y\p@=\z@
450 \ifdim\t@X\p@<\z@
451 \def\ArcTan{180}%
452 \else
453 \def\ArcTan{0}%
454 \fi
455 \else
456 \ifdim\t@X\p@<\z@%
457 \def\addflatt@ngle{180}%
458 \edef\t@X{\strip@pt\dimexpr-\t@X\p@}%
459 \edef\t@Y{\strip@pt\dimexpr-\t@Y\p@}%
460 \ifdim\t@Y\p@<\z@
461 \def\s@gno{-}%
462 \edef\t@Y{-\t@Y}%
463 \fi
464 \fi
465 \DivideFN\t@Y by\t@X to \t@A
466 \ArcTanOf\t@A to\ArcTan
467 \fi

37



468 \fi
469 \edef\ArcTan{\unless\ifx\s@gno\empty\s@gno\fi\ArcTan}%
470 \unless\ifnum\addflatt@ngle=0\relax
471 \edef\ArcTan{%
472 \strip@pt\dimexpr\ArcTan\p@\ifx\s@gno\empty-\else+\fi
473 \addflatt@ngle\p@\relax}%
474 \fi
475 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#2{\ArcTan}}%
476 \x\ignorespaces}

It is worth noting that the absolute average error in these computations is
much lower than 0.0001°; pretty satisfactory since the typesetting engines work in
fixed radix notation with 16 fractional binary digits, and an error on the fourth or
fifth fractional decimal digit is almost the best it can be expected from this kind
of arithmetics.

Sometimes it is necessary to scale a vector by an arbitrary real factor; this
implies scaling both the real and imaginary part of the input given vector.

477 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
478 \@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima
479 \@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima
480 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Again, sometimes it is necessary to reverse the direction of rotation; this implies
changing the sign of the imaginary part of a given complex number; this operation
produces the complex conjugate of the given number.

481 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
482 \@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima
483 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

With all the low level elementary operations we can now proceed to the defi-
nitions of the binary operations on complex numbers. We start with the addition:

484 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
485 \GetCoord(#2)\td@X\td@Y
486 \@tempdima\tu@X\p@\advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima
487 \@tempdima\tu@Y\p@\advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima
488 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Then the subtraction:
489 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
490 \GetCoord(#2)\td@X\td@Y
491 \@tempdima\td@X\p@\advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima
492 \@tempdima\td@Y\p@\advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima
493 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

For the multiplication we need to split the operation according to the fact
that we want to multiply by the second operand or by the complex conjugate of
the second operand; it would be nice if we could use the usual postfixed asterisk
notation for the complex conjugate, but I could not find a simple means for doing
so; therefore I use the prefixed notation, that is I put the asterisk before the
second operand. The first part of the multiplication macro just takes care of the

38



multiplicand and then checks for the asterisk; if there is no asterisk it calls a second
service macro that performs a regular complex multiplication, otherwise it calls a
third service macro that executes the conjugate multiplication.

494 \def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%
495 %
496 \def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
497 \GetCoord(#2)\td@X\td@Y
498 \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
499 \@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb
500 \Numero\t@X\@tempdimc
501 \@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb
502 \Numero\t@Y\@tempdimc
503 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
504 %
505 \def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
506 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
507 \@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb
508 \Numero\t@X\@tempdimc
509 \@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima
510 \Numero\t@Y\@tempdimc
511 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}

The division of two complex numbers implies scaling down the dividend by
the magnitude of the divisor and by rotating the dividend scaled vector by the
opposite direction of the divisor; therefore:

512 \def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir
513 \DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir
514 \ScaleVect#1by\@Mod to\@tempa
515 \MultVect\@tempa by\@Dir to#3\ignorespaces}%

6.5 Arcs and curved vectors
We are now in the position of really doing graphic work.

6.5.1 Arcs

We start with tracing a circular arc of arbitrary center, arbitrary starting point
and arbitrary aperture; the first macro checks the aperture; if this is not zero it
actually proceeds with the necessary computations, otherwise it does nothing.

516 \def\Arc(#1)(#2)#3{\begingroup
517 \@tdA=#3\p@
518 \unless\ifdim\@tdA=\z@
519 \@Arc(#1)(#2)%
520 \fi
521 \endgroup\ignorespaces}%

The aperture is already memorized in \@tdA; the \@Arc macro receives the center
coordinates in the first argument and the coordinates of the starting point in the
second argument.

39



522 \def\@Arc(#1)(#2){%
523 \ifdim\@tdA>\z@
524 \let\Segno+%
525 \else
526 \@tdA=-\@tdA \let\Segno-%
527 \fi

The rotation angle sign is memorized in \Segno and \@tdA now contains the
absolute value of the arc aperture. If the rotation angle is larger than 360◦ a
message is issued that informs the user that the angle will be reduced modulo
360◦; this operation is performed by successive subtractions rather than with
modular arithmetics on the assumption that in general one subtraction suffices.

528 \Numero\@gradi\@tdA
529 \ifdim\@tdA>360\p@
530 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
531 and gets reduced\MessageBreak%
532 to the range 0--360 taking the sign into consideration}%
533 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
534 \fi

Now the radius is determined and the drawing point is moved to the stating point.
535 \SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
536 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY

From now on it’s better to define a new macro that will be used also in the subse-
quent macros that draw arcs; here we already have the starting point coordinates
and the angle to draw the arc, therefore we just call the new macro, stroke the
line and exit.

537 \@@Arc
538 \strokepath\ignorespaces}%

And the new macro \@@Arc starts with moving the drawing point to the first point
and does everything needed for drawing the requested arc, except stroking it; I
leave the stroke command to the completion of the calling macro and nobody
forbids to use the \@@Arc macro for other purposes.

539 \def\@@Arc{%
540 \pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%

If the aperture is larger than 180◦ it traces a semicircle in the right direction and
correspondingly reduces the overall aperture.

541 \ifdim\@tdA>180\p@
542 \advance\@tdA-180\p@
543 \Numero\@gradi\@tdA
544 \SubVect\@pPun from\@Cent to\@V
545 \AddVect\@V and\@Cent to\@sPun
546 \MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi
547 \AddVect\@pPun and\@V to\@pcPun
548 \AddVect\@sPun and\@V to\@scPun
549 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
550 \GetCoord(\@scPun)\@scPunX\@scPunY
551 \GetCoord(\@sPun)\@sPunX\@sPunY

40



x
sM

s = MP2 = R sin θ

y

C

P1 P2

C1 C2
P

θ

θθ

R

K K

Figure 12: Nodes and control points for an arc to be approximated with a cubic
Bézier spline

552 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
553 {\@scPunX\unitlength}{\@scPunY\unitlength}%
554 {\@sPunX\unitlength}{\@sPunY\unitlength}%
555 \CopyVect\@sPun to\@pPun
556 \fi

If the remaining aperture is not zero it continues tracing the rest of the arc. Here
we need the extrema of the arc and the coordinates of the control points of the
Bézier cubic spline that traces the arc. The control points lay on the perpendicular
to the vectors that join the arc center to the starting and end points respectively.

With reference to figure 12, the points P1 and P2 are the arc end-points; C1
and C2 are the Bézier-spline control-points; P is the arc mid-point, that should be
distant from the center of the arc the same as P1 and P2. Choosing a convenient
orientation of the arc relative to the coordinate axes, the coordinates of these five
points are:

P1 = (−R sin θ, 0)
P2 = (R sin θ, 0)
C1 = (−R sin θ +K cos θ,K sin θ)
C2 = (R sin θ −K cos θ,K sin θ)
P = (0, R(1− cos θ))

The Bézier cubic spline interpolating the end and mid points is given by the

41



parametric equation:

P = P1(1− t)3 + C13(1− t)2t+ C23(1− t)t2 + P2t
3

where the mid point is obtained for t = 0.5; the four coefficients then become
1/8, 3/8, 3/8, 1/8 and the only unknown remains K. Solving for K we obtain the
formula

K = 4
3

1− cos θ
sin θ R = 4

3
1− cos θ

sin2 θ
s (5)

where θ is half the arc aperture, R is its radius, and s is half the arc chord.
557 \ifdim\@tdA>\z@
558 \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
559 \SubVect\@Cent from\@pPun to\@V
560 \MultVect\@V by\@Dir to\@V
561 \AddVect\@Cent and\@V to\@sPun
562 \@tdA=.5\@tdA \Numero\@gradi\@tdA
563 \DirFromAngle\@gradi to\@Phimezzi
564 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
565 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
566 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
567 \@tdB=\@tempa\@tdB
568 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
569 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
570 \ConjVect\@Phimezzi to\@mPhimezzi
571 \if\Segno-%
572 \let\@tempa\@Phimezzi
573 \let\@Phimezzi\@mPhimezzi
574 \let\@mPhimezzi\@tempa
575 \fi
576 \SubVect\@sPun from\@pPun to\@V
577 \DirOfVect\@V to\@V
578 \MultVect\@Phimezzi by\@V to\@Phimezzi
579 \AddVect\@sPun and\@Phimezzi to\@scPun
580 \ScaleVect\@V by-1to\@V
581 \MultVect\@mPhimezzi by\@V to\@mPhimezzi
582 \AddVect\@pPun and\@mPhimezzi to\@pcPun
583 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
584 \GetCoord(\@scPun)\@scPunX\@scPunY
585 \GetCoord(\@sPun)\@sPunX\@sPunY
586 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
587 {\@scPunX\unitlength}{\@scPunY\unitlength}%
588 {\@sPunX\unitlength}{\@sPunY\unitlength}%
589 \fi}

6.5.2 Arc vectors

We exploit much of the above definitions for the \Arc macro for drawing circular
arcs with an arrow at one or both ends; the first macro \VerctorArc draws an
arrow at the ending point of the arc; the second macro \VectorARC draws arrows

42



at both ends; the arrows have the same shape as those for vectors; actually they
are drawn by putting a vector of zero length at the proper arc end(s), therefore
they are styled as traditional LATEX or PostScript arrows according to the specific
option to the pict2e package.

But the arc drawing done here shortens it so as not to overlap on the arrow(s);
the only arrow (or both ones) are also lightly tilted in order to avoid the impression
of a corner where the arc enters the arrow tip.

All these operations require a lot of “playing” with vector directions, but even
if the operations are numerous, they do not do anything else but: (a) determining
the end point and its direction; (b) determining the arrow length as an angular
quantity, i.e. the arc amplitude that must be subtracted from the total arc to be
drawn; (c) the direction of the arrow should be corresponding to the tangent to
the arc at the point where the arrow tip is attached; (d) tilting the arrow tip by
half its angular amplitude; (e) determining the resulting position and direction
of the arrow tip so as to draw a zero length vector; (f) possibly repeating the
same procedure for the other end of the arc; (g) shortening the total arc angular
amplitude by the amount of the arrow tip(s) already set, and finally (h) drawing
the circular arc that joins the starting point to the final arrow or one arrow to the
other one.

The calling macros are very similar to the \Arc macro initial one:
590 \def\VectorArc(#1)(#2)#3{\begingroup
591 \@tdA=#3\p@ \ifdim\@tdA=\z@\else
592 \@VArc(#1)(#2)%
593 \fi
594 \endgroup\ignorespaces}%
595 %
596 \def\VectorARC(#1)(#2)#3{\begingroup
597 \@tdA=#3\p@
598 \ifdim\@tdA=\z@\else
599 \@VARC(#1)(#2)%
600 \fi
601 \endgroup\ignorespaces}%

The single arrowed arc is defined with the following long macro where all
the described operations are performed more or less in the described succession;
probably the macro requires a little cleaning, but since it works fine I did not
try to optimize it for time or number of tokens. The final part of the macro is
almost identical to that of the plain arc; the beginning also is quite similar. The
central part is dedicated to the positioning of the arrow tip and to the necessary
calculations for determining the tip tilt and the reduction of the total arc length;
pay attention that the arrow length, stored in \@tdE is a real length, while the
radius stored in \@Raggio is just a multiple of the \unitlength, so that the
division (that yields a good angular approximation to the arrow length as seen
from the center of the arc) must be done with real lengths. The already defined
\@@Arc macro actually draws the curved vector stem without stroking it.

602 \def\@VArc(#1)(#2){%
603 \ifdim\@tdA>\z@

43



604 \let\Segno+%
605 \else
606 \@tdA=-\@tdA \let\Segno-%
607 \fi \Numero\@gradi\@tdA
608 \ifdim\@tdA>360\p@
609 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
610 and gets reduced\MessageBreak%
611 to the range 0--360 taking the sign into consideration}%
612 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
613 \fi
614 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
615 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
616 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
617 \@tdD=\DeltaGradi\p@
618 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
619 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
620 \DirFromAngle\@tempa to\@Dir
621 \MultVect\@V by\@Dir to\@sPun
622 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
623 \MultVect\@sPun by 0,\@tempA to\@vPun
624 \DirOfVect\@vPun to\@Dir
625 \AddVect\@sPun and #1 to \@sPun
626 \GetCoord(\@sPun)\@tdX\@tdY
627 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
628 \@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
629 \DirFromAngle\DeltaGradi to\@Dird
630 \MultVect\@Dir by*\@Dird to\@Dir
631 \GetCoord(\@Dir)\@xnum\@ynum
632 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
633 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@
634 \advance\@tdA -\@tdE \Numero\@gradi\@tdA
635 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
636 \@@Arc
637 \strokepath\ignorespaces}%

The macro for the arc terminated with arrow tips at both ends is again very
similar, except it is necessary to repeat the arrow tip positioning also at the starting
point. The \@@Arc macro draws the curved stem.

638 \def\@VARC(#1)(#2){%
639 \ifdim\@tdA>\z@
640 \let\Segno+%
641 \else
642 \@tdA=-\@tdA \let\Segno-%
643 \fi \Numero\@gradi\@tdA
644 \ifdim\@tdA>360\p@
645 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
646 and gets reduced\MessageBreak%
647 to the range 0--360 taking the sign into consideration}%
648 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
649 \fi

44



650 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
651 \@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
652 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
653 \@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
654 \@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
655 \DirFromAngle\@tempa to\@Dir
656 \MultVect\@V by\@Dir to\@sPun% corrects the end point
657 \edef\@tempA{\if\Segno--\fi1}%
658 \MultVect\@sPun by 0,\@tempA to\@vPun
659 \DirOfVect\@vPun to\@Dir
660 \AddVect\@sPun and #1 to \@sPun
661 \GetCoord(\@sPun)\@tdX\@tdY
662 \@tdD\if\Segno--\fi\DeltaGradi\p@
663 \@tdD=.5\@tdD \Numero\@tempB\@tdD
664 \DirFromAngle\@tempB to\@Dird
665 \MultVect\@Dir by*\@Dird to\@Dir
666 \GetCoord(\@Dir)\@xnum\@ynum
667 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrowt ip
668 \@tdE =\DeltaGradi\p@
669 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA
670 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
671 \SubVect\@Cent from\@pPun to \@V
672 \edef\@tempa{\if\Segno-\else-\fi\@ne}%
673 \MultVect\@V by0,\@tempa to\@vPun
674 \@tdE\if\Segno--\fi\DeltaGradi\p@
675 \Numero\@tempB{0.5\@tdE}%
676 \DirFromAngle\@tempB to\@Dird
677 \MultVect\@vPun by\@Dird to\@vPun% corrects the starting point
678 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
679 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
680 \edef\@tempa{\if\Segno--\fi\DeltaGradi}%
681 \DirFromAngle\@tempa to \@Dir
682 \SubVect\@Cent from\@pPun to\@V
683 \MultVect\@V by\@Dir to\@V
684 \AddVect\@Cent and\@V to\@pPun
685 \GetCoord(\@pPun)\@pPunX\@pPunY
686 \@@Arc
687 \strokepath\ignorespaces}%

It must be understood that the curved vectors, the above circular arcs termi-
nated with an arrow tip at one or both ends, have a nice appearance only if the arc
radius is not too small, or, said in a different way, if the arrow tip angular width
does not exceed a maximum of a dozen degrees (and this is probably already too
much); the tip does not get curved as the arc is, therefore there is not a smooth
transition from the curved stem and the straight arrow tip if this one is large in
comparison to the arc radius.

45



6.6 General curves
The most used method to draw curved lines with computer programs is to connect
several simple curved lines, general “arcs”, one to another generally maintaining
the same tangent at the junction. I the direction changes we are dealing with a
cusp.

The simple general arcs that are directly implemented in every program that
display typeset documents, are those drawn with the parametri curves called
Béźier splines; given a sequence of points in the x, y plane, say P0, P1, P2, p3, . . .
(represented as coordinate pairs, i.e. by complex numbers), the most common
Bézier splines are the following ones:

B1 = P0(1− t) + P1t (6)
B2 = P0(1− t)2 + P12(1− t)t+ P2t

2 (7)
B3 = P0(1− t)3 + P13(1− t)2t+ P23(1− t)t2 + P3t

3 (8)

All these splines depend on parameter t; they have the property that for t = 0
each line starts at the first point, while for t = 1 they reach the last point; in
each case the generic point P on each curve takes off with a direction that points
to the next point, while it reaches the destination point with a direction coming
from the penultimate point; moreover, when t varies from 0 to 1, the curve arc
is completely contained within the convex hull formed by the polygon that has
the spline points as vertices. Last but not least first order splines implement just
straight lines and they are out of question for what concerns maxima, minima,
inflection points and the like. Quadratic splines draw just parabolas, therefore
they draw arcs that have the concavity just on one side of the path; therefore
no inflection points. Cubic splines are extremely versatile and can draw lines
with maxima, minima and inflection points. Virtually a multi-arc curve may be
drawn by a set of cubic splines as well as a set of quadratic splines (fonts are a
good example: Adobe Type 1 fonts have their contours described by cubic splines,
while TrueType fonts have their contours described with quadratic splines; with
a naked eye it is impossible to notice the difference).

Each program that processes the file to be displayed is capable of drawing first
order Bézier splines (segments) and third order Bézier splines, for no other reason,
at least, because they have to draw vector fonts whose contours are described by
Bézier splines; sometimes they have also the program commands to draw second
order Bézier splines, but not always these machine code routines are available
to the user for general use. For what concerns pdftex, xetex and luatex, they
have the user commands for straight lines and cubic arcs. At least with pdftex,
quadratic arcs must be simulated with a clever use of third order Bézier splines.

Notice that LATEX 2ε environment picture by itself is capable of drawing both
cubic and quadratic Bézier splines as single arcs; but it resorts to “poor man” so-
lutions. The pict2e package removes all the old limitations and implements the
interface macros for sending the driver the necessary drawing information, includ-
ing the transformation from typographical points (72.27 pt/inch) to PostScript big
points (72 bp/inch). But for what concerns the quadratic spline it resorts to the

46



Figure 13: Curves between two points

clever use of a cubic spline.
Therefore here we treat first the drawings that can be made with cubic splines;

then we describe the approach to quadratic splines.

6.7 Cubic splines
Now we define a macro for tracing a general, not necessarily circular, arc. This
macro resorts to a general triplet of macros with which it is possible to draw
almost anything. It traces a single Bézier spline from a first point where the
tangent direction is specified to a second point where again it is specified the
tangent direction. Actually this is a special (possibly useless) case where the
general \curve macro of pict2e could do the same or a better job. In any case. . .

688 \def\CurveBetween#1and#2WithDirs#3and#4{%
689 \StartCurveAt#1WithDir{#3}\relax
690 \CurveTo#2WithDir{#4}\CurveFinish\ignorespaces}%

Actually the above macro is a special case of concatenation of the triplet formed
by macros \StartCurve, \CurveTo and\CurveFinish; the second of which can be
repeated an arbitrary number of times. In any case the directions specified with
the direction arguments, both here and with the more general macro\Curve, the
angle between the indicated tangent and the arc chord may give raise to some
little problems when they are very close to 90° in absolute value. Some control
is exercised on these values, but some tests might fail if the angle derives from
computations; this is a good place to use polar forms for the direction vectors.

The first macro initializes the drawing and the third one strokes it; the real
work is done by the second macro. The first macro initializes the drawing but
also memorizes the starting direction; the second macro traces the current Bézier
arc reaching the destination point with the specified direction, but memorizes this
direction as the one with which to start the next arc. The overall curve is then

47



always smooth because the various Bézier arcs join with continuous tangents. If
a cusp is desired it is necessary to change the memorized direction at the end of
the arc before the cusp and before the start of the next arc; this is better than
stroking the curve before the cusp and then starting another curve, because the
curve joining point at the cusp is not stroked with the same command, therefore
we get two superimposed curve terminations. We therefore need another small
macro \ChangeDir to perform this task.

It is necessary to recall that the directions point to the control points, but
they do not define the control points themselves; they are just directions, or, even
better, they are simply vectors with the desired direction; the macros themselves
provide to the normalization and memorization.

The next desirable point would be to design a macro that accepts optional
node directions and computes the missing ones according to a suitable strategy.
I can think of many such strategies, but none seems to be generally applicable,
in the sense that one strategy might give good results, say, with sinusoids and
another one, say, with cardioids, but neither one is suitable for both cases.

For the moment we refrain from automatic direction computation, but we
design the general macro as if directions were optional.

Here we begin with the first initializing macro that receives in the first argu-
ment the starting point and in the second argument the direction of the tangent
(not necessarily normalized to a unit vector)

691 \def\StartCurveAt#1WithDir#2{%
692 \begingroup
693 \GetCoord(#1)\@tempa\@tempb
694 \CopyVect\@tempa,\@tempb to\@Pzero
695 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
696 \GetCoord(#2)\@tempa\@tempb
697 \CopyVect\@tempa,\@tempb to\@Dzero
698 \DirOfVect\@Dzero to\@Dzero
699 \ignorespaces}

And this re-initializes the direction to create a cusp:
700 \def\ChangeDir<#1>{%
701 \GetCoord(#1)\@tempa\@tempb
702 \CopyVect\@tempa,\@tempb to\@Dzero
703 \DirOfVect\@Dzero to\@Dzero
704 \ignorespaces}

The next macros are the finishing ones; the first strokes the whole curve, while
the second fills the (closed) curve with the default color; both close the group
that was opened with \StartCurve. The third macro is explained in a while; we
anticipate it is functional to chose between the first two macros when a star is
possibly used to switch between stroking and filling.

705 \def\CurveFinish{\strokepath\endgroup\ignorespaces}%
706 \def\FillCurve{\fillpath\endgroup\ignorespaces}
707 \def\CurveEnd{\fillstroke\endgroup\ignorespaces}

In order to draw the internal arcs it would be desirable to have a single macro
that, given the destination point, computes the control points that produce a cubic

48



Bézier spline that joins the starting point with the destination point in the best
possible way. The problem is strongly ill defined and has an infinity of solutions;
here we give two solutions: (a) a supposedly smart one that resorts to osculating
circles and requires only the direction at the destination point; and (b) a less smart
solution that requires the control points to be specified in a certain format.

We start with solution (b), \CbezierTo, the code of which is simpler than that
of solution (a); then we will produce the solution (a), \CurveTo, that will become
the main building block for a general path construction macro, \Curve.

The “näıve” macro \CBezierTo simply uses the previous point direction saved
in \@Dzero as a unit vector by the starting macro; specifies a destination point,
the distance of the first control point from the starting point, the destination
point direction that will save also for the next arc drawing macro as a unit vector,
and the distance of the second control point from the destination point along this
last direction. Both distances must be positive possibly fractional numbers. The
syntax will be therefore:

\CbezierTo〈end point〉WithDir〈direction〉AndDists〈K0〉And〈K1〉

where 〈end point〉 is a vector macro or a comma separated pair of values; again
〈direction〉 is another vector macro or a comma separated pair of values, that
not necessarily indicate a unit vector, since the macro provides to normalise it to
unity; 〈K0〉 and〈K1〉 are the distances of the control point from their respective
node points; they must be positive integers or fractional numbers. If 〈K1〉 is a
number must be enclosed in curly braces, while if it is a macro name (containing
the desired fractional or integer value) there is no need for braces.

This macro uses the input information to use the internal pict2e macro
\pIIe@curveto with the proper arguments, and to save the final direction into
the same \@Dzero macro for successive use of other macros.

708 \def\CbezierTo#1WithDir#2AndDists#3And#4{%
709 \GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
710 \GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
711 \DirOfVect\@Duno to\@Duno
712 \ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
713 \ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno
714 \GetCoord(\@Czero)\@XCzero\@YCzero
715 \GetCoord(\@Cuno)\@XCuno\@YCuno
716 \GetCoord(\@Puno)\@XPuno\@YPuno
717 \pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
718 {\@XCuno\unitlength}{\@YCuno\unitlength}%
719 {\@XPuno\unitlength}{\@YPuno\unitlength}%
720 \CopyVect\@Puno to\@Pzero
721 \CopyVect\@Duno to\@Dzero
722 \ignorespaces}%

With this building block it is not difficult to set up a macro that draws a
Bézier arc between two given points, similarly as the other macro \CurveBetween
described previously.

723 \def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{%

49



\unitlength=0.1\textwidth
\begin{picture}(10,3)
\CurveBetween0,0and10,0WithDirs1,1and{1,-1}
\color{red}%
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists4And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists6And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists8And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists10And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists12And{1}
\end{picture}

Figure 14: Comparison between similar arcs drawn with \CurveBetween (black)
and \CbezierTo (red)

724 \StartCurveAt#1WithDir{#3}\relax
725 \CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}

An example of use is shown in figure 14; notice that the tangents at the end
points are the same for the black curve drawn with \CurveBetween and the five
red curves drawn with \CbezierBetween; the five red curves differ only for the
distance of their control point C0 from the starting point; the differences are
remarkable and the topmost curve even presents a slight inflection close to the end
point. These effects cannot be obtained with the “smarter” macro \CurveBetween.
But certainly this simpler macro is more difficult to use because the distances of
the control point are difficult to estimate and require a number of cut-and-try
experiments.

The “smarter” curve macro comes next; it is supposed to determine the con-
trol points for joining the previous point (initial node) with the specified direction
to the next point with another specified direction (final node). Since the control
points are along the specified directions, it is necessary to determine the distances
from the adjacent curve nodes. This must work correctly even if nodes and direc-
tions imply an inflection point somewhere along the arc.

The strategy I devised consists in determining each control point as if it were
the control point of a circular arc, precisely an arc of an osculating circle, i.e. a
circle tangent to the curve at that node. The ambiguity of the stated problem
may be solved by establishing that the chord of the osculating circle has the same
direction as the chord of the arc being drawn, and that the curve chord is divided
into two equal parts each of which should be interpreted as half the chord of the
osculating circle. This makes the algorithm a little rigid; sometimes the path
drawn is very pleasant, while in other circumstances the determined curvatures
are too large or too small. We therefore add some optional information that lets us
have some control over the curvatures; the idea is based on the concept of tension,
similar but not identical to the one used in the drawing programs METAFONT

and METAPOST. We add to the direction information, with which the control
nodes of the osculating circle arcs are determined, a scaling factor that should be

50



intuitively related to the tension of the arc: the smaller this number, the closer
the arc resembles a straight line as a rope subjected to a high tension; value zero is
allowed, while a value of 4 is close to “infinity” and turns a quarter circle into a line
with an unusual loop; a value of 2 turns a quarter circle almost into a polygonal
line with rounded corner. Therefore these tension factors should be used only for
fine tuning the arcs, not as the first time a path is drawn.

We devised a syntax for specifying direction and tensions:

〈direction;tension factors〉

where direction contains a pair of fractional number that not necessarily refer to
the components of a unit vector direction, but simply to a vector with the desired
orientation; the information contained from the semicolon (included) to the rest
of the specification is optional; if it is present, the tension factors is simply a
comma separated pair of fractional or integer numbers that represent respectively
the tension at the starting or the ending node of a path arc.

We therefor need a macro to extract the mandatory and optional parts:
726 \def\@isTension#1;#2!!{\def\@tempA{#1}%
727 \def\@tempB{#2}\unless\ifx\@tempB\empty\strip@semicolon#2\fi}
728 \def\strip@semicolon#1;{\def\@tempB{#1}}

By changing the tension values we can achieve different results: see figure 15.

\raggedleft\unitlength=0.01\textwidth
\begin{picture}(70,70)
\put(0,0){\color{blue}\frame(70,70){}}
\put(0,0){\color{red}\Curve(0,0)<1,1>(70,0)<1,-1>}
\Curve(0,0)<1,1>(70,0)<1,-1;0,0>
\Curve(0,0)<1,1>(70,0)<1,-1;0.2,0.2>
\Curve(0,0)<1,1>(70,0)<1,-1;2,2>
\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>
\Curve(0,0)<1,1>(70,0)<1,-1;0,3>
\Curve(0,0)<1,1>(70,0)<1,-1;3,0>
\end{picture}

Figure 15: The effects of tension factors

We use the formula we got for arcs (5), where the half chord is indicated with
s, and we derive the necessary distances:

K0 = 4
3s

1− cos θ0

sin2 θ0
(9a)

K1 = 4
3s

1− cos θ1

sin2 θ1
(9b)

We therefore start with getting the points and directions and calculating the
chord and its direction:

729 \def\CurveTo#1WithDir#2{%
730 \def\@Tuno{1}\def\@Tzero{1}\relax

51



731 \edef\@Puno{#1}\@isTension#2;!!%
732 \expandafter\DirOfVect\@tempA to\@Duno
733 \bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
734 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

Then we rotate everything about the starting point so as to bring the chord on
the real axis

735 \MultVect\@Dzero by*\@DirChord to \@Dpzero
736 \MultVect\@Duno by*\@DirChord to \@Dpuno
737 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
738 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno
739 \DivideFN\@Chord by2 to\@semichord

The chord needs not be actually rotated because it suffices its length along the
real axis; the chord length is memorised in \@Chord and its half is saved in
\@semichord.

We now examine the various degenerate cases, when either tangent is perpen-
dicular or parallel to the chord. Notice that we are calculating the distances of the
control points from the adjacent nodes using the half chord length, not the full
length. We also distinguish between the computations relative to the arc starting
point and those relative to the end point.

740 \ifdim\@DXpzero\p@=\z@
741 \@tdA=1.333333\p@
742 \Numero\@KCzero{\@semichord\@tdA}%
743 \fi
744 \ifdim\@DYpzero\p@=\z@
745 \@tdA=1.333333\p@
746 \Numero\@Kpzero{\@semichord\@tdA}%
747 \fi

The distances we are looking for are positive generally fractional numbers; so if the
components are negative, we take the absolute values. Eventually we determine
the absolute control point coordinates.

748 \unless\ifdim\@DXpzero\p@=\z@
749 \unless\ifdim\@DYpzero\p@=\z@
750 \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
751 \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
752 \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
753 \DividE\@tdA by\@SinDzero\p@ to \@KCzero
754 \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
755 \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
756 \fi
757 \fi
758 \MultiplyFN\@KCzero by \@Tzero to \@KCzero
759 \ScaleVect\@Dzero by\@KCzero to\@CPzero
760 \AddVect\@Pzero and\@CPzero to\@CPzero

We now repeat the calculations for the arc end point, taking into consideration
that the end point direction points outwards, so that in computing the end point
control point we have to take this fact into consideration by using a negative sign

52



for the distance; in this way the displacement of the control point from the end
point takes place in a backwards direction.

761 \ifdim\@DXpuno\p@=\z@
762 \@tdA=-1.333333\p@
763 \Numero\@KCuno{\@semichord\@tdA}%
764 \fi
765 \ifdim\@DYpuno\p@=\z@
766 \@tdA=-1.333333\p@
767 \Numero\@KCuno{\@semichord\@tdA}%
768 \fi
769 \unless\ifdim\@DXpuno\p@=\z@
770 \unless\ifdim\@DYpuno\p@=\z@
771 \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
772 \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
773 \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
774 \DividE\@tdA by \@SinDuno\p@ to \@KCuno
775 \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
776 \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
777 \fi
778 \fi
779 \MultiplyFN\@KCuno by \@Tuno to \@KCuno
780 \ScaleVect\@Duno by\@KCuno to\@CPuno
781 \AddVect\@Puno and\@CPuno to\@CPuno

Now we have the four points and we can instruct the internal pict2e macros to
do the path drawing.

782 \GetCoord(\@Puno)\@XPuno\@YPuno
783 \GetCoord(\@CPzero)\@XCPzero\@YCPzero
784 \GetCoord(\@CPuno)\@XCPuno\@YCPuno
785 \pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
786 {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
787 {\@XPuno\unitlength}{\@YPuno\unitlength}\egroup

It does not have to stroke the curve because other Bézier splines might still be
added to the path. On the opposite it memorises the final point as the initial
point of the next spline

788 \CopyVect\@Puno to\@Pzero
789 \CopyVect\@Duno to\@Dzero
790 \ignorespaces}%

We finally define the overall \Curve macro that has two flavors: starred and
unstarred; the former fills the curve path with the locally selected color, while the
latter just strokes the path. Both recursively examine an arbitrary list of nodes
and directions; node coordinates are grouped within regular parentheses while di-
rection components are grouped within angle brackets. The first call of the macro
initialises the drawing process and checks for the next node and direction; if a
second node is missing, it issues a warning message and does not draw anything.
It does not check for a change in direction, because it would be meaningless at
the beginning of a curve. The second macro defines the path to the next point
and checks for another node; if the next list item is a square bracket delimited

53



argument, it interprets it as a change of direction, while if it is another paren-
thesis delimited argument it interprets it as a new node-direction specification; if
the node and direction list is terminated, it issues the stroking or filling command
through \CurveEnd, and exits the recursive process. The \CurveEnd control se-
quence has a different meaning depending on the fact that the main macro was
starred or unstarred. The @ChangeDir macro is just an interface to execute the
regular \ChangeDir macro, but also for recursing again by recalling \@Curve.

791 \def\Curve{\@ifstar{\let\fillstroke\fillpath\Curve@}%
792 {\let\fillstroke\strokepath\Curve@}}
793 \def\Curve@(#1)<#2>{%
794 \StartCurveAt#1WithDir{#2}%
795 \@ifnextchar\lp@r\@Curve{%
796 \PackageWarning{curve2e}{%
797 Curve specifications must contain at least two nodes!\Messagebreak
798 Please, control your Curve specifications\MessageBreak}}}
799 \def\@Curve(#1)<#2>{%
800 \CurveTo#1WithDir{#2}%
801 \@ifnextchar\lp@r\@Curve{%
802 \@ifnextchar[\@ChangeDir\CurveEnd}}
803 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

As a concluding remark, please notice that the \Curve macro is certainly the
most comfortable to use, but it is sort of frozen in its possibilities. The user may
certainly use the \StartCurve, \CurveTo, \ChangeDir, and \CurveFinish or
\FillCurve for a more versatile set of drawing macros; evidently nobody forbids
to exploit the full power of the \cbezier original macro for cubic splines; we
made available macros \CbezierTo and the isolated arc macro \CbezierBetween
in order to use the general internal cubic Bézier splines in a more comfortable way.

As it can be seen in figure 16 the two diagrams should approximately represent
a sine wave. With Bézier curves, that resort on polynomials, it is impossible to
represent a transcendental function, but it is only possible to approximate it. It
is evident that the approximation obtained with full control on the control points
requires less arcs and it is more accurate than the approximation obtained with
the recursive \Curve macro; this macro requires almost two times as many pieces
of information in order to minimise the effects of the lack of control on the control
points, and even with this added information the macro approaches the sine wave
with less accuracy. At the same time for many applications the \Curve recursive
macro proves to be much easier to use than with single arcs drawn with the
\CbezierBetween macro.

6.8 Quadratic splines
We want to create a recursive macro with the same properties as the above de-
scribed \Curve macro, but that uses quadratic splines; we call it \Qurve so that
the initial macro name letter reminds us of the nature of the splines being used.
For the rest they have an almost identical syntax; with quadratic spline it is
not possible to specify the distance of the control points from the extrema, since

54



x

y

x

y

Figure 16: A sequence of arcs; the left figure has been drawn with the \Curve
command with a sequence of four couples of point-direction arguments; the right
figure has been drawn with two commands \CbezierBetween that include also
the specification of the control points

quadratic spline have just one control point that must lay at the intersection of
the two tangent directions therefore with quadratic splines the tangents at each
point cannot have the optional part that starts with a semicolon. The syntax,
therefore, is just:

\Qurve(〈first point〉)<〈direction〉>...(〈any point〉)<〈direction〉>...(〈last
point〉)<〈direction〉>

As with \Curve, also with \Qurve there is no limitation on the number of points,
except for the computer memory size; it is advisable not to use many arcs otherwise
it might become very difficult to find errors.

The first macros that set up the recursion are very similar to those we wrote
for \Curve:

804 \def\Qurve{\@ifstar{\let\fillstroke\fillpath\Qurve@}%
805 {\let\fillstroke\strokepath\Qurve@}}
806
807 \def\Qurve@(#1)<#2>{%
808 \StartCurveAt#1WithDir{#2}%
809 \@ifnextchar\lp@r\@Qurve{%
810 \PackageWarning{curve2e}{%
811 Quadratic curve specifications must contain at least
812 two nodes!\Messagebreak
813 Please, control your Qurve specifications\MessageBreak}}}%
814 \def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
815 \@ifnextchar\lp@r\@Qurve{%
816 \@ifnextchar[\@ChangeQDir\CurveEnd}}%

55



817 \def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%

Notice that in case of long paths it might be better to use the single macros
\StartCurveAt, \QurveTo, \ChangeDir and \CurveFinish (or \FillCurve),
with their respective syntax, in such a way that a long list of node-direction
specifications passed to \Qurve may be split into shorter input lines in order to
edit the input data in a more comfortable way.

The macro that does everything is \QurveTo. it start with reading its argu-
ments received through the calling macro \@Qurve

818 \def\QurveTo#1WithDir#2{%
819 \edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup
820 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

It verifies if \@Dpzero and \@Dpuno, the directions at the two extrema of the
arc, are parallel or anti-parallel by taking their “scalar” product (\@Dpzero times
\@Dpuno*); if the imaginary component of the scalar product vanishes the two
directions are parallel; in this case we produce an error message, but we continue
skipping this arc destination point; evidently the drawing will not be the desired
one, but the job should not abort.

821 \MultVect\@Dzero by*\@Duno to \@Scalar
822 \YpartOfVect\@Scalar to \@YScalar
823 \ifdim\@YScalar\p@=\z@
824 \PackageWarning{curve2e}%
825 {Quadratic Bezier arcs cannot have their starting\MessageBreak
826 and ending directions parallel or antiparallel with\MessageBreak
827 each other. This arc is skipped and replaced with
828 a dotted line.\MessageBreak}%
829 \Dotline(\@Pzero)(\@Puno){2}\relax
830 \else

Otherwise we rotate everything about the starting point so as to bring the chord
on the real axis; we get also the components of the two directions that, we should
remember, are unit vectors, not generic vectors, although the user can use the
vector specifications that are more understandable to him/her:

831 \MultVect\@Dzero by*\@DirChord to \@Dpzero
832 \MultVect\@Duno by*\@DirChord to \@Dpuno
833 \GetCoord(\@Dpzero)\@DXpzero\@DYpzero
834 \GetCoord(\@Dpuno)\@DXpuno\@DYpuno

We check if the two directions point to the same half plane; this implies that
these rotated directions point to different sides of the chord vector; all this is
equivalent that the two direction Y components have opposite signs, and therefore
their product is strictly negative, and that the two X components product is not
negative.

835 \MultiplyFN\@DXpzero by\@DXpuno to\@XXD
836 \MultiplyFN\@DYpzero by\@DYpuno to\@YYD
837 \unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
838 \PackageWarning{curve2e}%
839 {Quadratic Bezier arcs cannot have inflection points\MessageBreak
840 Therefore the tangents to the starting and ending arc\MessageBreak

56



841 points cannot be directed to the same half plane.\MessageBreak
842 This arc is skipped and replaced by a dotted line\MessageBreak}%
843 \Dotline(\@Pzero)(\@Puno){2}\fi
844 \else

After these tests we should be in a “normal” situation.We first copy the ex-
panded input information into new macros that have more explicit names: macros
stating wit ‘S’ denote the sine of the direction angle, while those starting with
‘C’ denote the cosine of that angle. We will use these expanded definitions as we
know we are working with the actual values. These directions are those relative
to the arc chord.

845 \edef\@CDzero{\@DXpzero}\relax
846 \edef\@SDzero{\@DYpzero}\relax
847 \edef\@CDuno{\@DXpuno}\relax
848 \edef\@SDuno{\@DYpuno}\relax

Suppose we write the parametric equations of a straight line that departs from the
beginning of the chord with direction angle φ0 and the corresponding equation of
the straight line departing from the end of the chord (of length c) with direction
angle φ1. We have to find the coordinates of the intersection point of these two
straight lines.

t cosφ0 − s cosφ1 = c (10a)
t sinφ0 − s sinφ1 = 0 (10b)

The parameters t and s are just the running parameters; we have to solve those
simultaneous equations in the unknown variables t and s; these values let us
comupte the coordinates of the intersection point:

XC = c cosφ0 sinφ1

sinφ0 cosφ1 − cosφ0 sinφ1
(11a)

YC = c sinφ0 sinφ1

sinφ0 cosφ1 − cosφ0 sinφ1
(11b)

Having performed the previous tests we are sure that the denominator is not
vanishing (direction are not parallel or anti-parallel) and that it lays at the same
side as the direction with angle φ0 with respect to the chord. The coding then
goes on like this:

849 \MultiplyFN\@SDzero by\@CDuno to\@tempA
850 \MultiplyFN\@SDuno by\@CDzero to\@tempB
851 \edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
852 \@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
853 \edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
854 \MultiplyFN\@tempC by\@CDzero to \@XC
855 \MultiplyFN\@tempC by\@SDzero to \@YC
856 \ModOfVect\@XC,\@YC to\@KC

We eventually computed the coordinates and the module of the intersection point
vector taking into account the rotation of the real axis; getting back to the original
coordinates before rotation we get:

57



857 \ScaleVect\@Dzero by\@KC to\@CP
858 \AddVect\@Pzero and\@CP to\@CP
859 \GetCoord(\@Pzero)\@XPzero\@YPzero
860 \GetCoord(\@Puno)\@XPuno\@YPuno
861 \GetCoord(\@CP)\@XCP\@YCP

We have now the coordinates of the two extrema point of the quadratic arc and
of the control point. Keeping in mind that the symbols P0, P1 and C denote
geometrical points but also their coordinates as ordered pairs of real numbers (i.e.
they are complex numbers) we have to determine the smart cubic arc nodes and
control points; we should determine the values of Pa and Pb such that

P0(1− t)3 + 3Pa(1− t)2t+ 3Pb(1− t)t2 + P1t
3

is equivalent to
P0(1− t)2 + 2C(1− t)t+ P1t

2

It turns out that the solution is given by

Pa = C + (P0 − C)/3 and Pb = C + (P1 − C)/3 (12)

The transformations implied by equations (12) are performed by the following
macros already available from the pict2e package; we use them here with the
actual arguments used for this task:

862 \@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
863 \@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
864 \@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
865 \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
866 \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
867 \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
868 \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht
869 \pIIe@moveto\@ovxx\@ovyy

We call the basic pict2e macro to draw a cubic spline and we finish the con-
ditional statements with which we started these calculations; eventually we close
the group we opened at the beginning and we copy the terminal node information
(position and direction) into the 0-labelled macros that indicate the starting point
of the next arc.

870 \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
871 \fi\fi\egroup
872 \CopyVect\@Puno to\@Pzero
873 \CopyVect\@Duno to\@Dzero
874 \ignorespaces}

An example of usage is shown at the left in figure 172. created with the
following code:

2The commands \legenda, \Pall and \Zbox are specifically defined in the preamble of this
document; they must be used within a picture environment. \legenda draws a framed legend
made up of a single (short) math formula; \Pall is just a shorthand to put a filled small circle at
a specified position’ \Zbox puts a symbol in math mode a little displaced in the proper direction
relative to a specified position. They are just handy to label certain objects in a picture diagram,
but they are not part of the curve2e package.

58



0, 0 100, 0

100, 1000, 100

O

R

Figure 17: Several graphs drawn with quadratic Bézier splines

\begin{figure}[!htp]
\unitlength=0.0045\textwidth
\begin{picture}(100,100)
\put(0,0){\framebox(100,100){}}
\put(50,50){\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>%
(-50,0)<0,-1>(0,-50)<1,0>\color{green}%
\Qurve*(0,-50)<0,1>(50,0)<1,0>[-1,0](0,50)<0,1>[0,-1]
(-50,0)<-1,0>[1,0](0,-50)<0,-1>}
\Qurve(0,0)<1,4>(50,50)<1,0>(100,100)<1,4>
\put(5,50){\Qurve(0,0)<1,1.5>(22.5,20)<1,0>(45,0)<1,-1.5>%
(67.5,-20)<1,0>(90,0)<1,1.5>}
\Zbox(0,0)[tl]{0,0}\Zbox(100,0)[tr]{100,0}
\Zbox(100,100)[br]{100,100}\Zbox(0,100)[bl]{0,100}
\end{picture}
\end{figure}

Notice the green filled path: that result is not expected, but the filling opera-
tion is controlled by the inner workings of the typesetting program, where it fills
what it considers the interior of a path, not what we think it is the interior of a
path.Knowing this feature it is not difficult to fill the external lozenge with green,
and then fill the internal path with white; the result would be to cover with white
the external part of the interior path. Sort of odd way of getting the result, but
this is not due to the quadratic splines but to the internal workings of pdftex and
its companion typesetting engines, that consider “interior” the concave side of the
closed path, not the convex one.

Notice also that the inflexed line is made with two arcs that meet at the
inflection point; the same is true for the line that resembles a sine wave. The
cusps of the inner border of the green area are obtained with the usual optional
argument already used also with the \Curve recursive macro.

The “circle” inside the square frame is visibly different from a real circle, in

59



spite of the fact that the maximum deviation from the true circle is just about 6%
relative to the radius; a quarter circle obtained with a single parabola is definitely
a poor approximation of a real quarter circle; possibly by splitting each quarter
circle in three or four partial arcs the approximation of a real quarter circle would
be much better. On the right of figure 17 it is possible to compare a “circle”
obtained with quadratic arcs with the the internal circle obtained with cubic arcs;
the difference is easily seen even with a naked eye.

With quadratic arcs we decided to avoid defining specific macros similar to
\CurveBetween and \CbezierBetween; the first macro would not save any typing
to the operator; furthermore it may be questionable if it was really useful even
with cubic splines; the second macro with quadratic arcs is meaningless, since with
quadratic arcs there is just one control point and there is no choice on its position.

7 Conclusion
I believe that the set of new macros provided by this package can really help
the user to draw his/her diagrams with more agility; it will be the accumulated
experience to decide if this is true.

875 The package bundle curve2e is composed of the following files
876
877 curve2e.dtx
878 curve2e.pdf
879 mainfest.txt
880 README.txt
881
882 Manifest.txt is this file.
883
884 curve2e.dtx is the documented TeX source file of file curve2e.sty; you get
885 both curve2e.sty and curve2e.pdf by running pdflatex on curve2e.dtx.
886
887 README.txt contains general information.
888
889 The package has the LPPL status of author maintained.
890
891 According to the LPPL licence, you are entitled to modify this package,
892 as long as you fulfil the few conditions set forth by the Licence.
893
894 Nevertheless this package is an extension to the standard LaTeX package pict2e
895 (2014). Therefore any change must be controlled against the parent package
896 pict2e so as to avoid redefining what has already been incorporated in the
897 official package.
898
899 If you prefer sending me your modifications, as long as I will maintain this
900 package, I will possibly include every (documented) suggestion or modification
901 into this package.
902
903 Claudio Beccari

60



904
905 claudio.beccari@gmail.com

906 This file is an extension of the package pict2e.sty which extends the standard
907 picture LaTeX environment according to what Leslie Lamport specified in the
908 second edition of his LaTeX manual.
909
910 This further extension allows to draw lines and vectors with any non integer
911 slope parameters, to draw dashed lined of any slope, to draw arcs and curved
912 vectors, to draw curves where just the interpolating nodes are specified
913 together with the slopes at the nodes; closed paths of any shape can be filled
914 with color; all coordinates are treated as ordered pairs, i.e. ’complex numbers’.
915 Some of these features have been incorporated in the 2011 version of pict2e;
916 therefore this package avoids any modification to the original pict2e commands.
917
918
919 Curve2e now accepts polar coordinates in addition to the usual cartesian ones;
920 several macros have been upgraded and a new macro for tracing cubic Bezier
921 splines with their control nodes specified in polar form is available.
922
923 This version solves a conflict with package eso-pic.
924
925 This version of curve2e is fully compatible with pict2e dated 2014/01/12
926 version 0.2z.
927
928 If you specify
929
930 \usepackage[<pict2e options>]{curve2e}
931
932 the package pict2e is automatically invoked with the specified options.

References
[1] Gäßlein H., Niepraschk R., and Tkadlec J. The pict2e package, 2014, PDF

documentation of pict2e is part of any modern complete distribution of the
TEX system. In case of a basic or partial system installation, the package may
be installed by means of the specific facilities of the distribution. It may be
read by means of the line command texdoc pict2e.

61


