
The extension package curve2e
Claudio Beccari∗

Version v.2.0.1 – Last revised 2019-03-29.

Contents
1 The configuration file 1

2 Package pict2e and this ex-
tension curve2e 2

3 Summary and examples of
new commands 5

4 Remark 17

5 Acknowledgements 19

Abstract
This file documents the curve2e extension package to the pict2e bundle

implementation that has been described by Lamport himself in the 1994
second edition of his LATEX handbook.

Please take notice that in April 2011 a new updated version of the pack-
age pict2e has been released that incorporates some of the commands de-
fined in early versions of this package; apparently there are no conflicts, but
only the advanced features of curve2e remain available for extending the
above package.

This extension redefines a couple of commands and introduces some more
drawing facilities that allow to draw circular arcs and arbitrary curves with
the minimum of user intervention. This version is open to the contribution
of other users as well as it may be incorporated in other people’s packages.
Please cite the original author and the chain of contributors.

1 The configuration file
This package curve2e is distributed with a ltxdoc.cfg configuration file that
contains, besides the preamble and the postamble comment lines, the following
code line:
\AtBeginDocument{\OnlyDescription}

If you want to type the whole documentation, comment out that code line in
the ltxdoc.cfg file. This is the only modification allowed by the LPPL licence
that does not require to change the file name.

For your information the initial part is about 20 pages long; the whole docu-
mentation is about 80 pages long.

∗E-mail: claudio dot beccari at gmai dot com

1

2 Package pict2e and this extension curve2e
Package pict2e was announced in issue 15 of latexnews around December 2003;
it was declared that the new package would replace the dummy one that has been
accompanying every release of LATEX 2ε since its beginnings in 1994. The dummy
package was just issuing an info message that simply announced the temporary
unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a LATEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifically
what follows.

1. The line and vector slopes were limited to the ratios of relative prime one-
digit integers of magnitude not exceeding 6 for lines and 4 for vectors.

2. Filled and unfilled full circles were limited by the necessarily limited number
of specific glyphs contained in the special LATEX picture fonts.

3. Quarter circles were also limited in their radii for the same reason.

4. Ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large, in
the sense that after a certain radius the rounded corners remained the same
and would not increase proportionally to the oval size.

5. Vector arrows had only one possible shape and matched the limited number
of vector slopes.

6. For circles and inclined lines and vectors just two possible thicknesses were
available.

The package pict2e removes most if not all the above limitations.

1. Line and vector slopes are virtually unlimited; the only remaining limitation
is that the direction coefficients must be three-digit integer numbers; they
need not be relatively prime; with the 2009 upgrade even this limitation
was removed and now slope coefficients can be any fractional number whose
magnitude does not exceed 16 384, the maximum dimension in points that
TEX can handle.

2. Filled and unfilled circles can be of any size.

3. Ovals can be designed with any specified corner curvature and there is vir-
tually no limitation to such curvatures; of course corner radii should not
exceed half the lower value between the base and the height of the oval.

4. There are two shapes for the arrow tips; the triangular one traditional with
LATEX vectors, or the arrow tip with PostScript style.

2

5. The \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension package curve2e adds the following features.

1. Point coordinates my be specified in both cartesian and polar form: inter-
nally they are handeld as cartesian coordinates, but the user can specify
his/her points also in polar form. In order to avoid confusion with other
grapgic packages, curve2e uses the usual comma separated couple of in-
teger or fractional numebrs for cartesian coordinates, and the couple 〈an-
gle〉:〈radius〉 for polar coordinates. All graphic object commands accept
polar or cartesian coordinates at the choice of the user who may use for each
object the formalism he/she prefers. Also the put and \multiput commands
have been redefined so as to accept cartesian or polar coordinates.

2. Most if not all cartesian coordinate pairs and slope pairs are treated as or-
dered pairs, that is complex numbers; in practice the user does not notice
any difference from what he/she was used to, but all the mathematical treat-
ment to be applied to these entities is coded as complex number operations,
since complex numbers may be viewed non only as ordered pairs, but also
as vectors or as roto-amplification operators.

3. Commands for setting the line terminations are introduced; the user can
chose between square or rounded caps; the default is set to rounded caps
(now this original feature is directly available also with pict2e).

4. Commands for specifying the way two lines or curves join to one another.

5. originally the \line macro is redefined so as to allow integer and fractional
direction coefficients, but maintaining the same syntax as in the original
picture environment; now this functionality available directly with pict2e.

6. A new macro \Line was originally defined so as to avoid the need to specify
the horizontal projection of inclined lines; now this functionality id available
directly with pict2e; but this macro name now conflicts with pict2e 2009
version; therefore its name is changed to \LIne and supposedly it will not be
used very often, if ever, by the end user (but it is used within this package
macros).

7. A new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behavior of the \Line macro of
pict2e so that in this package \LINE is now renamed \segment; there is no
need to use the \put command with this line specification.

8. A new macro \DLine is defined in order to draw dashed lines joining any two
given points; the dash length and gap (equal to one another) get specified
through one of the macro arguments.

3

9. A new macro \Dotline is defined in order to draw dotted straight lines as a
sequence of equally spaced dots, where the gap can be specified by the user;
such straight line may have any inclination, as well as the above dashed lines.

10. Similar macros are redefined for vectors; \vector redefines the original
macro but with the vector slope limitations removed; \Vector gets spec-
ified with its two horizontal and vertical components in analogy with \LIne;
\VECTOR joins two specified points (without using the \put command) with
the arrow pointing to the second point.

11. A new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here it is redefined so as to allow an optional
specification of the way segments for the polyline are joined to one another.
Vertices may be specified with polar coordinates

12. The pict2e polygon macro to draw closed polylines, in practice general
polygons, has been redefined in such a way that it can accept the various
vertices specified with polar coordinates. The polygon* macro produces
a color filled polygon; the default color is black, but a different color may
be specified with the usual \color command given within the same group
where \polygon* is enclosed.

13. A new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary aperture (angle amplitude); this amplitude is specified in sexa-
gesimal degrees, not in radians; a similar functionality is now achieved with
the \arc macro of pict2e, which provides also the starred version \arc*
that fills up the interior of the generated circular arc with the current color.
It must be noticed that the syntax is slightly different, so that it’s reasonable
that these commands, in spite of producing identical arcs, might be more
comfortable with this or that syntax.

14. Two new macros \VectorArc and \VectorARC are defined in order to draw
circular arcs with an arrow at one or both ends.

15. A new macro \Curve is defined so as to draw arbitrary curved lines by means
of cubic Bézier splines; the \Curve macro requires only the curve nodes and
the directions of the tangents at each node.The starred version fills up the
interior of the curve with the current color.

16. \Curve is a recursive macro that can draw an unlimited (reasonably limited)
number of connected Bézier spline arcs with continuous tangents except for
cusps; these arcs require only the specification of the tangent direction at
the interpolation nodes. It is possible to use a lower level macro \CbezierTo
that does the same but lets the user specify the control points of each arc;
it is more difficult to use but it is more performant.

17. The basic macros used within the cumulative \Curve macro can be used
individually in order to draw any curve, one cubic arc at the time; but they

4

are intended for internal use, even if it is not prohibited to use them; by
themselves such arcs are not different form those used by Curve, but the
final command, \FillCurve, should be used in place of \CurveFinish, so
as to fill up the closed path with the locally specified color; see figure 10. It
is much more convenient to use the starred version of the \Curve macro.

The pict2e package already defines macros such as \moveto, \lineto,
\curveto, \closepath, \fillpath, and \strokepath; of course these macros
can be used by the end user, and sometimes they perform better than the macros
defined in this package, because the user has a better control on the position of
the Bézier control points, while here the control points are sort of rigid. It would
be very useful to resort to the hobby package, but its macros are conforming with
those of the tikz and pgf packages, not with curve2e; an interface should be
created in order to deal with the hobby package, but this has not been done yet.

In order to make the necessary calculations many macros have been defined so
as to use complex number arithmetics to manipulate point coordinates, directions
(unit vectors, also known as ‘versors’), rotations and the like. In the first versions
of this package the trigonometric functions were also been defined in a way that
the author believed to be more efficient than those defined by the trig package;
in any case the macro names were sufficiently different to accommodate both
definition sets in the same LATEX run. With the progress of the LATEX 3 language,
the xfp has recently become available, by which any sort of calculations can be
done with floating point numbers; therefore the most common algebraic, irrational
and transcendental functions can be computed in the background with the stable
internal floating point facilities. We maintain some computation with complex
number algebra, but use the xfp functionalities for other computations.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and LATEX programmers,
this version could become the start for a real extension of the pict2e package or
even become a part of it. Actually some macros have already been included in the
pict2e package. The \Curve algorithm, as I said before, might be redefined so as
to use the macros introduced in the hobby package, that implements for the tikz
and pgf packages the same functionalities that John Hobby implemented for the
METAFONT and METAPOST programs.

For these reasons I suppose that every enhancement should be submitted to
Gäßlein, Niepraschk, and Tkadlec who are the prime maintainers of pict2e; they
are the only ones who can decide whether or not to incorporate new macros in
their package.

3 Summary and examples of new commands
This package curve2e extends the power of pict2e with the following modifica-
tions and the following new commands.

1. This package curve2e calls directly the LATEX packages color and pict2e

5

to which it passes any possible option that the latter can receive; actually
the only options that make sense are those concerning the arrow tips, either
LATEX or PostScript styled, because it is assumed that if you use this package
you are not interested in using the original LATEX commands. See the pict2e
documentation in order to see the correct options pict2e can receive.

2. The user is offered new commands in order to control the line terminators
and the line joins; specifically:

• \roundcap: the line is terminated with a semicircle;
• \squarecap: the line is terminated with a half square;
• \roundjoin: two lines are joined with a rounded join;
• \beveljoin: two lines are joined with a bevel join;
• \miterjoin: two lines are joined with a miter join.

All the above commands should respect the intended range; but since they
act at the PostScript or PDF level, not at TEX level, it might be necessary
to issue the necessary command in order to restore the previous terminator
or join.

3. The commands \linethickness, \thicklines, \thinlines together with
\defaultlinethickness always redefine the internal \@wholewidth and
\@halfwidth so that the latter always refer to a full width and to a half
of it in this way: if you issue the command \defaultlinewidth{2pt} all
thin lines will be drawn with a thickness of 1 pt while, if a drawing com-
mand directly refers to the internal value \@wholewidth, its line will be
drawn with a thickness of 2 pt. If one issues the declaration \thinlines
all lines will be drawn with a 1 pt width, but if a command refers to the
internal value \@halfwidth the line will be drawn with a thickness of 0.5 pt.
The command \linethickness redefines the above internals but does not
change the default width value; all these width specifications apply to all
lines, straight ones, curved ones, circles, ovals, vectors, dashed, et cetera.
It’s better to recall that \thinlines and \thicklines are declarations that
do not take arguments; on the opposite the other two commands follow the
standard syntax:

\linethickness{〈dimensioned value〉}
\defaultlinewidth{〈dimensioned value〉}

where 〈dimensioned value〉 means a length specification complete of its units
or a dimensional expression.

4. Straight lines and vectors are redefined in such a way that fractional slope
coefficients may be specified; the zero length line does not produce errors
and is ignored; the zero length vectors draw only the arrow tips.

6

\unitlength=.5mm
\begin{picture}(60,20)
\put(0,0){\GraphGrid(80,20)}
\put(0,0){\vector(1.5,2.3){10}}
\put(20,0){\Vector(10,15.33333)}
\VECTOR(40,0)(50,15.33333)
\ifdefined\VVECTOR \VVECTOR(60,0)(80,10)\fi
\end{picture}

Figure 1: Three (displaced) identical vectors obtained with the three vector
macros; a double tipped vector is also shown.

5. New line and vector macros are defined that avoid the necessity of specifying
the horizontal component; \put(3,4){\LIne(25,15)} specifies a segment
that starts at point (3, 4) and goes to point (3 + 25, 4 + 15); the command
\segment(3,4)(28,19) achieves the same result without the need of using
command \put. The same applies to the vector commands \Vector and
\VECTOR and \VVECTOR; the latter command behaves as \VECTOR but draws
a vector with arrow tips at both ends; furthermore this command is available
only with this new release of the curve2e package. Experience has shown
that the commands intended to join two specified points are particularly
useful.

6. The \polyline command has been introduced: it accepts an unlimited list
of point coordinates enclosed within round parentheses; the command draws
a sequence of connected segments that join in order the specified points; the
syntax is:

\polyline[〈optional join style〉](〈P1〉)(〈P2〉)...(〈Pn〉)

See figure 2 where a regular pentagon is drawn; usage of polar coordinates
is also shown.

\unitlength=.5mm
\begin{picture}(40,32)(-20,-20)
\polyline(90:20)(162:20)(234:20)(306:20)(378:20)(90:20)
\end{picture}

Figure 2: Polygonal line obtained by means of the \polyline command; vertex
coordinates are in polar form.

Examples of using polar and cartesian coordinates are shown in figure 3.
A similar example may be obtained with the \polygon macro that does not
require to terminate the polyline at the starting point. Figure 4 shows how
to get a coloured filled pentagon.

7. The new command \Dashline (alias: \Dline for backwards compatibility)

7

\begin{picture}(40,30)
\put(0,0){\GraphGrid(40,30)}
\put(40,0){\circle*{1.5}}

\put(41,0){\makebox(0,0)[bl]{40,0}}
\put(90:30){\circle*{1.5}}

\put(90:31){\makebox(0,0)[bl]{90:30}}
\put(60:30){\circle*{1.5}}

\put(60:31){\makebox(0,0)[bl]{60:30}}
\put(30,30){\circle*{1.5}}

\put(30.7,30.7){\makebox(0,0)[bl]{30,30}}
\multiput(0,0)(30:10){5}%

{\makebox(0,0){\rule{1.5mm}{1.5mm}}}
\end{picture}

40,0

90:30
60:30

30,30

Figure 3: Use of cartesian and polar coordinates

\unitlength=.5mm
\begin{picture}(40,32)(-20,-20)
\color{magenta}
\polygon*(90:20)(162:20)(234:20)(306:20)(378:20)
\end{picture}

Figure 4: A pentagon obtained by means of the \polygon* command; vertex
coordinates are in polar form.

\Dashline(〈first point〉)(〈second point〉){〈dash length〉}

draws a dashed line containing as many dashes as possible, just as long as
specified, and separated by a gap exactly the same size; actually, in order to
make an even gap-dash sequence, the desired dash length is used to do some
computations in order to find a suitable length, close to the one specified,
such that the distance of the end points is evenly divided in equally sized
dashes and gaps. The end points may be anywhere in the drawing area,
without any constraint on the slope of the joining segment. The desired
dash length is specified as a fractional multiple of \unitlength; see figure 5.
Another example of usage of cartesian and polar coordinates usage is shown
in figure 3 together with its code.

8. Analogous to \Dashline, a new command \Dotline draws a dotted line
with the syntax:

\Dotline(〈first point〉)(〈end point〉){〈dot gap〉}

See figures 5 and 7 for examples.

9. \GraphGrid is a command that draws a red grid under the drawing with
lines separated 10\unitlengths apart; it is described only with a comma
separated couple of numbers, representing the base and the height of the
grid, see figure 5; it’s better to specify multiples of ten and the grid can be

8

\unitlength=1mm
\begin{picture}(40,40)
\put(0,0){\GraphGrid(40,40)}
\Dashline(0,0)(40,10){4}
\put(0,0){\circle*{2}}
\Dashline(40,10)(0,25){4}
\put(40,10){\circle*{2}}
\Dashline(0,25)(20,40){4}
\put(0,25){\circle*{2}}
\put(20,40){\circle*{2}}
\Dotline(0,0)(40,40){2}
\put(40,40){\circle*{2}}

\end{picture}

Figure 5: Dashed lines and graph grid

\begin{picture}(40,30)
\put(0,0){\GraphGrid(40,30)}
\Dashline(0,0)(40,10){2}\Dashline(0,0)(40,20){2}
\Dashline(0,0)(40,30){2}\Dashline(0,0)(30,30){2}
\Dashline(0,0)(20,30){2}\Dashline(0,0)(10,30){2}
{\color{blue}%
\Dashline*(40,0)(108:30){2}
\Dashline*(40,0)(126:30){2}
\Dashline*(40,0)(144:30){2}
\Dashline*(40,0)(162:30){2}}
\end{picture}

Figure 6: Different length dashed lines with the same nominal dash length

placed anywhere in the drawing canvas by means of \put, whose cartesian
coordinates are multiples of 10; nevertheless the grid line distance is rounded
to the nearest multiple of 10, while the point coordinates specified to \put
are not rounded at all; therefore some care should be used to place the
working grid on the drawing canvas. This grid is intended as an aid while
drawing; even if you sketch your drawing on millimetre paper, the drawing
grid turns out to be very useful; one must only delete or comment out the
command when the drawing is finished. Several examples of usage of such
grid are shown in several figures.

10. New trigonometric function macros have been computed by means of the
functionalities of the xfp package. The compared to the other existing
macros is that angles are specified in sexagesimal degrees, so that the user
needs not transform to radians. The computations are done taking into ac-
count that abnormal values can occasionally be avoided, for example tan 90◦

must be avoided and replaced with a suitably large number, because the
TeX system does not handle “infinity”.
These trigonometric functions are used within the complex number macros;

9

\begin{picture}(40,30)
\put(0,0){\GraphGrid(40,30)}
\Dotline(0,0)(40,10){1.5}\Dotline(0,0)(40,20){1.5}
\Dotline(0,0)(40,30){1.5}\Dotline(0,0)(30,30){1.5}
\Dotline(0,0)(20,30){1.5}\Dotline(0,0)(10,30){1.5}
{\color{red}\Dotline*(40,0)(108:30){1.5}
\Dotline*(40,0)(126:30){1.5}
\Dotline*(40,0)(144:30){1.5}
\Dotline*(40,0)(162:30){1.5}}%
\end{picture}

Figure 7: Different length dotted lines with the same nominal dot gap

\unitlength=0.5mm
\begin{picture}(60,40)
\put(0,0){\GraphGrid(60,40)}
\Arc(0,20)(30,0){60}
\VECTOR(0,20)(30,0)\VECTOR(0,20)(32.5,36)
\VectorArc(0,20)(15,10){60}
\put(20,20){\makebox(0,0)[l]{$60ˆ\circ$}}
\VectorARC(60,20)(60,0){-180}
\end{picture}

60◦

Figure 8: Arcs and curved vectors

but if the user wants to use them the syntax is the following:

\SinOf〈angle〉to〈control sequence〉
\CosOf〈angle〉to〈control sequence〉
\TanOf〈angle〉to〈control sequence〉

The 〈control sequence〉 may then be used as a multiplying factor of a length.

11. Arcs can be drawn as simple circular arcs, or with one or two arrows at their
ends (curved vectors); the syntax is:

\Arc(〈center〉)(〈starting point〉){〈angle〉}
\VectorArc(〈center〉)(〈starting point〉){〈angle〉}
\VectorARC(〈center〉)(〈starting point〉){〈angle〉}

If the angle is specified numerically it must be enclosed in braces, while
if it is specified with a control sequence the braces (curly brackets) are not
necessary. The above macro \Arc draws a simple circular arc without arrows;
\VectorArc draws an arc with an arrow tip at the ending point; \VectorARC
draws an arc with arrow tips at both ends; see figure 8.

12. A multitude of commands have been defined in order to manage complex
numbers; actually complex numbers are represented as a comma separated
pair of fractional numbers (here we use only cartesian coordinates). They

10

are used to address specific points in the drawing plane, but also as operators
so as to scale and rotate other objects. In the following 〈vector〉 means a
comma separated pair of fractional numbers, 〈vector macro〉 means a macro
that contains a comma separated pair of fractional numbers; 〈angle macro〉
means a macro that contains the angle of a vector in sexagesimal degrees;
〈argument〉 means a brace delimited numeric value, even a macro; macro
is a valid macro name, i.e. a backslash followed by letters, or anything else
that can receive a definition. A direction of a vector is its versor; the an-
gle of a vector is the angle between the vector and the positive x axis in
counterclockwise direction, as generally directly used in the Euler formula
~v = Mejϕ.

• \MakeVectorFrom〈two arguments〉to〈vector macro〉
• \CopyVect〈first vector〉to〈second vector macro〉
• \ModOfVect〈vector〉to〈macro〉
• \DirOfvect〈vector〉to〈versor macro〉
• \ModAndDirOfVect〈vector〉to〈1st macro〉and〈2nd macro〉
• \DistanceAndDirOfVect〈1st vector〉minus〈2nd vector〉to〈1st macro〉and〈2nd macro〉
• \XpartOfVect〈vector〉to〈macro〉
• \YpartOfVect〈vector〉to〈macro〉
• \DirFromAngle〈angle〉to〈versor macro〉
• \ArgOfVect〈vector〉to〈angle macro〉
• \ScaleVect〈vector〉by〈scaling factor〉to〈vector macro〉
• \ConjVect〈vector〉to〈conjugate vector macro〉
• \SubVect〈first vector〉from〈second vector〉to〈vector macro〉
• \AddVect〈first vector〉and〈second vector〉to〈vector macro〉
• \MultVect〈first vector〉by〈second vector〉to〈vector macro〉
• \MultVect〈first vector〉by*〈second vector〉to〈vector macro〉
• \DivVect〈first vector〉by〈second vector〉to〈vector macro〉

13. General curves can be drawn with the pict2e macro \curve but it requires
the specification of the third-order Bézier-spline control points; sometimes
it’s better to be very specific with the control points and there is no other
means to do a decent graph; sometimes the curves to be drawn are not
so tricky and a general set of macros can be defined so as to compute the
control points, while letting the user specify only the nodes through which
the curve must pass, and the tangent direction of the curve in such nodes.
Such commands are the following:

• \Curve to draw a sequence of arcs as explained above, using third order
(cubic) Bézier splines. The starred version of this command fills the
internal part of the curve with the current color; if the last arc finishes
where the fist arc starts, it is clear what is the interior; if it does not, the
driver (not the code of this package, but the driver between this code
and the physical representation on paper or screen) assumes a straight
line closure of the whole path.

11

• \Qurve similar to \Curve, but with second order (quadratic) Bézier
splines. The starred version fills the interior with the current color

• \CurveBetween draws a single cubic Bézier spline between two given
nodes and with two given directions vectors.

• \CBezierBetween draws a single cubic Bézier spline between two given
nodes, with two given directions versors along which the control node
distances are specified. This is the most general macro (rather difficult
to use) with which not only the arc end points are specified but also
the control nodes coordinates are given.

The main macro is \Curve and must be followed by an “unlimited” sequence
of node-direction coordinates as a quadruple defined as

(〈node coordinates〉)<〈direction vector〉>

Possibly if a sudden change of direction has to be performed (cusp) another
item can be inserted after one of those quadruples in the form

. . . (〈...〉)<〈...〉>[〈new direction vector〉](〈...〉)<〈...〉>. . .

Possibly it is necessary to specifiy the “tension” or the “looseness” of a
specific Bézier arc; such tension parameters range from 0 (zero) to 4; the
zero value implies a very stiff arc, as if it was a string subject to a high
tension (i.e. with zero looseness); a value of 4 implies a very low tension
(very high looseness), almost as if the string was not subject to any tension.
In METAFONT or METAPOST language such a concept is used very often;
in this package, where the Hobby algorithms are not used, the parameter
value appears to mean the opposite of tension. A couple of comma separated
tension values may be optionally used, they are separated with a semicolon
form the direction vector, and they apply to the arc terminating with the
last node; their specification must precede any possible change of tangent
according to this syntax1:

. . . (〈...〉)<〈direction vector;start tension,end tension〉>(〈...〉)<〈...〉>. . .

The \Curve macro does not (still) have facilities for cycling the path, that is
to close the path from the last specified node-direction to the first specified
node-direction; but, as already mentioned, if the ending node of the last arc
does not coincide with the stating node of the first arc, a straight line is
assumed to join such nodes; this line does not get drawn, but with starred
commands no lines are drawn because only the interior is coloured. The
tangent direction need not be specified with a unit vector, although only its
direction is relevant; the scaling of the specified direction vector to a unit

1The tension may be specified only for cubic splines, because the quadratic ones do not use
enough parameters to control the tension; not all commands for drawing cubic splines accept
this optional tension specification.

12

vector is performed by the macro itself. Therefore one cannot specify the
fine tuning of the curve convexity as it can be done with other programs or
commands, as for example with METAFONT or the pgf/tikz package and
environment. See figure 9 for an example.

\unitlength=8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap
\Curve(2.5,0)<1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>

\end{picture}

Figure 9: A heart shaped curve with cusps drawn with \Curve

\unitlength=8mm\relax
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap

\color{green}\relax
\Curve*(2.5,0)<1,1>(5,3.5)<0,1>%

(4,5)<-1,0>(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>

\end{picture}

Figure 10: Coloring the inside of a closed path drawn with \Curve*

With the starred version of \Curve, instead of stroking the contour, the
macro fills up the contour with the selected current color, figure 10.
Figure 11 shows a geometric construction that contains the geometric el-
ements and symbols used to determine the parameters of a cubic spline
required to draw a quarter circle. This construction containa many of the
commands described so far.
To show what you can do with \CurveBetween see the code and result shown
in figure 12. Notice the effect of changing the directions at both or a the
end nodes os a single cubic spline. The directions are conveniently expressed
with unit vectors described by polar coordinates.
A little more complicated is the use of the \CBezierBetween macro, fig-
ure 13. The directions are specified with unit vectors in polar form; the
control points are specified by adding their distances from their neighbour-
ing nodes; actually the right distance is maintained to the value 1, while the

13

\unitlength=0.007\textwidth
\begin{picture}(100,90)(-50,-50)
\put(-50,0){\vector(1,0){100}}\put(50,1){\makebox(0,0)[br]{x}}%
\put(20,-1){\makebox(0,0)[t]{s}}%
\put(0,0){\circle*{2}}\put(-1,-1){\makebox(0,0)[tr]{M}}%
\legenda(12,-45){s=\overline{MP_2}=R\sin\theta}%
\put(0,-50){\vector(0,1){90}}%
\put(1,40){\makebox(0,0)[tl]{y}}%
\put(0,-40){\circle*{2}}\put(1,-41){\makebox(0,0)[lt]{C}}%
\segment(0,-40)(-40,0)\segment(0,-40)(40,0)%
\put(-41,1){\makebox(0,0)[br]{P_1}}\put(-40,0){\circle*{2}}%
\put(41,1){\makebox(0,0)[bl]{P_2}}\put(40,0){\circle*{2}}%
\put(0,0){\linethickness{1pt}\Arc(0,-40)(40,0){90}}%
\segment(-40,0)(-20,20)\put(-20,20){\circle*{2}}%
\put(-20,21.5){\makebox(0,0)[b]{C_1}}%
\segment(40,0)(20,20)\put(20,20){\circle*{2}}%
\put(20,21.5){\makebox(0,0)[b]{C_2}}%
\put(0,-40){\put(0,56.5685){\circle*{2}}%
\put(1,58){\makebox(0,0)[bl]{P}}}%
\VectorARC(0,-40)(15,-25){45}\put(10,-18){\makebox(0,0)[c]{θ}}%
\VectorARC(40,0)(20,0){-45}\put(19,5){\makebox(0,0)[r]{θ}}%
\VectorARC(-40,0)(-20,0){45}\put(-19,5){\makebox(0,0)[l]{θ}}%
\put(-20,-18){\makebox(0,0)[bl]{R}}%
\put(-32,13){\makebox(0,0)[bl]{K}}%
\put(32,13){\makebox(0,0)[br]{K}}%
\end{picture}

x
sM

s = MP2 = R sin θ

y

C

P1 P2

C1 C2
P

θ

θθ

R

K K

Figure 11: The code to display the Nodes and control points for an arc to be
approximated with a cubic Bézier spline

14

Figure 12: Curves between two points with different start and end slopes

\unitlength=0.1\textwidth
\begin{picture}(10,3)
\CurveBetween0,0and10,0WithDirs1,1and{1,-1}
\color{red}%
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists4And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists6And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists8And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists10And{1}
\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists12And{1}
\end{picture}

Figure 13: Comparison between similar arcs drawn with \CurveBetween (black)
and \CbezierTo (red)

left one increases from 4 to 10. The black line corresponds to the standard
\CurveBetween where the default distance is computed by default to trace
an arc of a circle and is approximately 3.5.
In figure 14 the effect of tension specification is shown. The red line corre-
sponds to the default tension, since the tension values are not specified. The
black lines correspond to the various values used in the various commands
to the \Curve macro. With a tension of zero, the spline is almost coincident
wit the horizontal base line of the frame. Increasing the tension value to 4.5,
the curved becomes taller and taller, until it wraps itself displaying an evi-
dent loop. We would say that the value of 2 is a reasonable maximum and
increasing that tension value is just to obtain special effects.
Figure 15 displays two approximations of a sine wave; Bézier splines can ap-

15

\raggedleft\unitlength=0.01\textwidth
\begin{picture}(70,70)
\put(0,0){\color{blue}\frame(70,70){}}
\put(0,0){\color{red}\Curve(0,0)<1,1>(70,0)<1,-1>}
\Curve(0,0)<1,1>(70,0)<1,-1;0,0>
\Curve(0,0)<1,1>(70,0)<1,-1;0.2,0.2>
\Curve(0,0)<1,1>(70,0)<1,-1;2,2>
\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>
\Curve(0,0)<1,1>(70,0)<1,-1;0,3>
\Curve(0,0)<1,1>(70,0)<1,-1;3,0>
\end{picture}

Figure 14: The effects of tension factors

proximate transcendental curves, but the approximation may be a poor one,
depending on the approximated curve, if few arcs are used to draw it. With
arcs specified with more complicated macros the approximation is better
even with a lower number of arcs. With many arcs it is possible to approxi-
mate almost anything. On the left side a modest approximation is obtained
with just three standard arcs obtained with \Curve and four node specifi-
cations; on the right we have just two arcs created with CBezierBetween
with tension specification and control point distances; this drawing is almost
undistinguishable from a real sinusoid.
In figure 16 some lines drawn with quadratic splines by means of the \Qurve
macro are shown. In the left there are some open and closed curves inscribed
within a square. On the right a “real” circle is compared to a quadratic spline
circle; the word “real” is emphasised because it actually is an approximation
with four quarter-circle cubic splines that, in spite of being drawn with third
degree parametric polynomials, approximate very well a real circle; on the
opposite the quadratic spline circle is clearly a poor approximation even if
the maximum radial error amounts just to about 6% of the radius.
Notice that the previous version of curve2e contained an error and would
color the outside of the green four-pointed star. The curve2e-v161, attached
to this bundle, has been corrected; therefore it is not actually identical to the
previous version, although the latter one performed correctly for everything
else except for color-filled quadratic paths.

In spite of the relative simplicity of the macros contained in this package, the
described macros, as well as the original ones included in the pict2e package, allow
to produce fine drawings that were unconceivable with the original LATEX picture
environment. Leslie Lamport himself announced an extension to his environment
when LATEX 2ε was first released in 1994; in the latexnews news-letter of December
2003; the first implementation was announced; the first version of this package was
issued in 2006. It was time to have a better drawing environment; this package is
a simple attempt to follow the initial path while extending the drawing facilities;
but Till Tantau’s pgf package has gone much farther.

16

\unitlength=0.01\textwidth
\begin{picture}(100,50)(0,-25)
\put(0,0){\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
\Zbox(45,0)[br]{x}\Zbox(0,26)[tl]{y}
\Curve(0,0)<77:1>(10,20)<1,0;2,0.4>(30,-20)<1,0;0.4,0.4>(40,0)<77:1;0.4,2>
}
\put(55,0){\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
\Zbox(45,0)[br]{x}\Zbox(0,26)[tl]{y}
\CbezierBetween0,0And20,0WithDirs77:1And-77:1UsingDists28And{28}
\CbezierBetween20,0And40,0WithDirs-77:1And77:1UsingDists28And{28}}
\end{picture}

x

y

x

y

Figure 15: A sequence of arcs; the left figure has been drawn with the \Curve
command with a sequence of four couples of point-direction arguments; the right
figure has been drawn with two commands \CbezierBetween that include also
the specification of the control points

4 Remark
There are other packages in the ctan archives that deal with tracing curves of
various kinds. PSTricks and tikz/pgf are the most powerful ones. But there
is also the package curves that is intended to draw almost anything by using
little dots or other symbols partially superimposed to one another. It uses only
quadratic Bézier curves and the curve tracing is eased by specifying only the curve
nodes, without specifying the control nodes; with a suitable option to the package
call it is possible to reduce the memory usage by using short straight segments
drawn with the PostScript facilities offered by the dvips driver.

Another package ebezier performs about the same as curve2e but draws its
Bézier curves by using little dots partially superimposed to one another. The
documentation is quite interesting but since it explains very clearly what exactly
are the Bézier splines. Apparently ebezier should be used only for dvi output

17

%\unitlength=0.0045\textwidth
%\begin{picture}(100,100)
%\put(0,0){\framebox(100,100){}}
%\put(50,50){%
% \Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
%\color{green}
% \Qurve*(0,-50)<0,1>(50,0)<1,0>[-1,0](0,50)<0,1>[0,-1](-50,0)<-1,0>[1,0](0,-50)<0,-1>
%}
%\Qurve(0,0)<1,4>(50,50)<1,0>(100,100)<1,4>
%\put(5,50){\Qurve(0,0)<1,1.5>(22.5,20)<1,0>(45,0)<1,-1.5>%
%(67.5,-20)<1,0>(90,0)<1,1.5>}
%\Zbox(0,0)[tc]{0,0}\Zbox(100,0)[tc]{100,0}
%\Zbox(100,100)[bc]{100,100}\Zbox(0,100)[bc]{0,100}
%\Pall[2](0,0)\Pall[2](100,0)\Pall[2](100,100)\Pall[2](0,100)
%\end{picture}
%\hfill
%\begin{picture}(100,100)
%\put(0,0){\framebox(100,100){}}
%\put(50,50){%
%\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
%\Curve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>}
%\Zbox(50,50)[t]{O}\Pall[2](50,50)\put(50,50){\Vector(45:50)}\Zbox(67,70)[tl]{R}
%\end{picture}

0, 0 100, 0

100, 1000, 100

O

R

Figure 16: Several graphs drawn with quadratic Bézier splines. On the right a
quadratic spline circle is compared with a cubic line circle.

18

without recourse to PostScript machinery.
The picture package extends the performance of the picture environment

(extended with pict2e) by accepting coordinates and lengths in real absolute
dimensions, not only as multiples of \unitlength; it provides commands to extend
that functionality to other packages. In certain circumstances it is very useful.

Package xpicture builds over the picture LATEX environment so as to allow
to draw the usual curves that are part of an introductory analytic geometry course;
lines, circles, parabolas, ellipses, hyperbolas, and polynomials; the syntax is very
comfortable; for all these curves it uses the quadratic Bézier splines.

Package hobby extends the cubic Bézier spline handling with the algorithms
John Hobby created for METAFONT and METAPOST. But by now this package
interfaces very well with tikz; it has not (yet) been adapted to the common
picture environment, even extended with pict2e, and, why not, with curve2e.

5 Acknowledgements
I wish to express my deepest thanks to Michel Goosens who spotted some errors
and very kindly submitted them to me so that I was able to correct them.

Josef Tkadlec and the author collaborated extensively in order to make a better
real long division so as to get correctly the quotient fractional part and to avoid as
much as possible any numeric overflow; many Josef’s ideas are incorporated in the
macro that was implemented in the previous version of this package, although the
macro used by Josef was slightly different. Both versions aim/aimed at a better
accuracy and at widening the operand ranges. In this version we abandoned the
long division macro, and substituted it with the floating point division provided
by the xfp package.

Daniele Degiorgi spotted a fault in the kernel definition of \linethickness
that heavily influenced also curve2e; see below in the code documentation part.

Thanks also to Jin-Hwan Cho and Juho Lee who suggested a small but crucial
modification in order to have curve2e work smoothly also with XeTeX (XeLaTeX).
Actually if version 0.2x or later, dated 2009/08/05 or later, of pict2e is being used,
such modification is not necessary, but it’s true that it becomes imperative if older
versions are used.

References
[1] Gäßlein H., Niepraschk R., and Tkadlec J. The pict2e package, 2014, PDF

documentation of pict2e; this package is part of any modern complete distri-
bution of the TEX system. In case of a basic or partial system installation, the
package may be installed by means of the specific facilities of the distribution.
It may be read by means of the line command texdoc pict2e.

19

