The csvsimple package
Version 1.06 (2012/11/08)

Thomas F. Sturm’

Abstract

csvsimple provides a simple ITEX interface for the processing of files with comma
separated values (CSV). csvsimple relies heavily on the key value syntax from
pgfkeys which results (hopefully) in an easy way of usage. Filtering and table gen-
eration is especially supported. Since the package is considered as a lightweight tool,
there is no support for data sorting or data base storage.

Contents
1 Introduction 1
1.1 Loading the Package 2
1.2 First Steps o o 2
2 Macros for the Processing of CSV Files 6
3 Option Keys 11
3.1 Command Definition 11
3.2 Header Processing and Column Name Assignment 12
3.3 Consistency Check and Filtering 13
3.4 Table Support e e 14
3.5 Miscellaneous e e e e e e 15
4 Examples 16
4.1 A Serial Letter 16
4.2 A Graphical Presentation o o oo 18
4.3 Macro code inside thedata oL 21
References 22
Index 23

1 Introduction

The csvsimple package is applied to the processing of CSV? files. This processing is controlled
by key value assignments according to the syntax of pgfkeys [3]. Sample applications of the
package are tabular lists, serial letters, and charts.

An alternative to csvsimple is the datatool package [2] which provides considerably more
functions like exchange of separator and delimiter symbols or sorting of data. csvsimple has
a different approach for the user interface and is deliberately restricted to some basic functions
with fast processing speed.

'Prof. Dr. Dr. Thomas F. Sturm, Institut fiir Mathematik und Informatik, Universitit der Bundeswehr
Miinchen, D-85577 Neubiberg, Germany; email: thomas.sturm@unibw.de
208V file: file with comma separated values.

mailto:thomas.sturm@unibw.de

1.1 Loading the Package

The package csvsimple loads the packages pgfkeys [3] and ifthen [1]. csvsimple itself is
loaded in the usual manner in the preamble:

\usepackage{csvsimple}

1.2 First Steps

Every line of a processable CSV file has to contain an identical amount of comma separated
values. The curly braces {} of TEX groups can be used to mask a block which may contain
commas not to be processed as separators.

The first line of such a CSV file is usually but not necessarily a header line which contains the
identifiers for each column.

name,givenname,matriculation,gender,grade
Maier,Hans,12345,m,1.0
Huber,Anna,23456,f,2.3
Weilss{}b\"{a}ck,Werner,b34567,m,5.0

The most simple way to display a CSV file in tabular form is the processing with the

\csvautotabular "7 command.

\csvautotabular{grade.csv}

name givenname | matriculation | gender | grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilback | Werner 34567 m 5.0

>P.6

Typically, one would use \csvreader instead of \csvautotabular to gain full control over

the interpretation of the included data.

In the following example, the entries of the header line are automatically assigned to TEX macros
which may be used deliberately.

\begin{tabular}{|1l|c|}\hline/

\bfseries Person & \bfseries Matr.~No.
\csvreader [head to column names]{grade.csv}{}/
{\\\givenname\ \name & \matriculation}/

\\\hline

\end{tabular}
Person Matr. No.
Hans Maier 12345
Anna Huber 23456
Werner Wei3back 34567

\csvreader is controlled by a plenty of options. For example, for table applications line breaks
are easily inserted by /csv/late after line '"!!. This defines a macro execution just before
the following line. Additionally, the assignment of columns to TEX macros is shown in a non
automated way.

\begin{tabular}{|r|1llc|}\hline/

& Person & Matr.~No.\\\hline\hline

\csvreader[late after line=\\\hlinel
{grade.csv}{name=\name,givenname=\firstname,matriculation=\matnumber}/
{\thecsvrow & \firstname~\name & \matnumber}/

\end{tabular}
l ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
Anna Huber 23456

3 | Werner Weiflback 34567

An even more comfortable way to create a table is setting appropriate option keys. Note, that
this gives you the possibility to create a pgfkeys style which contains the whole table creation.

\csvreader [tabular=|r|1llc],
table head=\hline & Person & Matr.~No.\\\hline\hline,
late after line=\\\hline]/
{grade.csv}{name=\name,givenname=\firstname,matriculation=\matnumber}/
{\thecsvrow & \firstname~\name & \matnumber}/

l ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456

3 | Werner Weiflback 34567

The next example shows such a style definition with the convenience macro \csvstyle 5.

Here, we see again the automated assignment of header entries to column names by /csv/head
to column names ' '?. For this, the header entries have to be without spaces and special
characters. But you can always assign entries to canonical macro names by hand like in the
examples above.

\csvstyle{myTableStyle}{tabular=|r|l|c|,
table head=\hline & Person & Matr.~No.\\\hline\hline,
late after line=\\\hline,
head to column names}

\csvreader [myTableStylel{grade.csv}{}/
{\thecsvrow & \givenname~\name & \matriculation}/

l ‘ Person ‘ Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456

3 | Werner Weiflback 34567

Another way to address columns is to use their roman numbers. The direct addressing is done
by \csvcoli, \csvcolii, \csvcoliii, ...:

\csvreader [tabular=|r|1l]lc]l,
table head=\hline & Person & Matr.~No.\\\hline\hline,
late after line=\\\hline]/
{grade.csv}{}/%
{\thecsvrow & \csvcolii~\csvcoli & \csvcoliiil}/

l [Person [Matr. No. ‘
1 | Hans Maier 12345
Anna Huber 23456

3 | Werner Weiflback 34567

And yet another method to assign macros to columns is to use arabic numbers for the assignment:

\csvreader [tabular=|r|1llc],
table head=\hline & Person & Matr.~No.\\\hline\hline,
late after line=\\\hline]/
{grade.csv}{1=\name, 2=\firstname, 3=\matnumber}/
{\thecsvrow & \firstname~\name & \matnumber}/

l [Person [Matr. No. ‘
1 | Hans Maier 12345
2 | Anna Huber 23456

3 | Werner Weiflback 34567

For recurring applications, the pgfkeys syntax allows to create own styles for a consistent
and centralized design. The following example is easily modified to obtain more or less option
settings.

\csvset{myStudentList/.style={/
tabular=|rlllcl,
table head=\hline & Person & #1\\\hline\hline,
late after line=\\\hline,
column names={name=\name,givenname=\firstname}

1

\csvreader [myStudentList={Matr.~No.}]{grade.csv}{matriculation=\matnumber}
{\thecsvrow & \firstname~\name & \matnumber}/

\hfill}

\csvreader [myStudentList={Grade}]{grade.csv}{grade=\grade}/

{\thecsvrow & \firstname~\name & \gradel}/

| [Person [Matr. No. ‘ | [Person [Grade ‘
1 | Hans Maier 12345 1 | Hans Maier 1.0
Anna Huber 23456 2 | Anna Huber 2.3
3 | Werner Weiflback 34567 3 | Werner Weiflback 5.0

»P.8

Alternatively, column names can be set by \csvnames and style definitions by

\csvstyle & With this, the last example is rewritten as follows:

\csvnames{myNames}{1=\name,2=\firstname, 3=\matnumber,5=\grade}
\csvstyle{myStudentList}{tabular=Ir|llcl,

table head=\hline & Person & #1\\\hline\hline,

late after line=\\\hline, myNames}

\csvreader [myStudentList={Matr.~No.}]{grade.csv}{}/
{\thecsvrow & \firstname~\name & \matnumberl}/
\hfill/

\csvreader [myStudentList={Grade}]{grade.csv}{}/
{\thecsvrow & \firstname~\name & \gradel}/

l ‘ Person ‘ Matr. No. ‘ l ‘ Person ‘ Grade ‘
1 | Hans Maier 12345 1 | Hans Maier 1.0
2 | Anna Huber 23456 2 | Anna Huber 2.3
3 | Werner Weiflback 34567 3 | Werner Weiflback 5.0

The data lines of a CSV file can also be filtered. In the following example, a certificate is printed
only for students with grade unequal to 5.0.

\csvreader[filter not equal={\grade}{5.0}]/
{grade.csv}{1=\name,2=\firstname,3=\matnumber,4=\gender,5=\grade}/
{\begin{center}\Large\bfseries Certificate in Mathematics\end{center}
\large\ifthenelse{\equal{\gender}{f}}{Ms.}{Mr.}

\firstname~\name, matriculation number \matnumber, has passed the test
in mathematics with grade \grade.\par\ldots\par
Y

Certificate in Mathematics
Mr. Hans Maier, matriculation number 12345, has passed the test in mathematics
with grade 1.0.

Certificate in Mathematics
Ms. Anna Huber, matriculation number 23456, has passed the test in mathematics
with grade 2.3.

2 Macros for the Processing of CSV Files

\csvreader [(options)]{(file name)}{(assignments)}{ {command list)}
\csvreader reads the file denoted by (file name) line by line. Every line of the file has to
contain an identical amount of comma separated values. The curly braces {} of TEX groups
can be used to mask a block which may contain commas not to be processed as separators.

The first line of such a CSV file is by default but not necessarily processed as a header
line which contains the identifiers for each column. The entries of this line can be used to
give (assignments) to TEX macros to address the columns. The number of entries of this
first line determines the accepted number of entries for all following lines. Every line which
contains a higher or lower number of entries is ignored during standard processing.

The (assignments) are given by key value pairs (name)=(macro). Here, (name) is an entry
from the header line or the arabic number of the addressed column. (macro) is some TEX
macro which gets the content of the addressed column.

The (command list) is executed for every accepted data line. Inside the (command list) is
applicable:
e \thecsvrow or the counter csvrow which contains the number of the current data line
(starting with 1).
e \csvcoli, \csvcolii, \csvcoliii, ..., which contain the contents of the column
entries of the current data line. Alternatively can be used:
e (macro) from the (assignments) to have a logical addressing of a column entry.
Note, that the (command list) is allowed to contain \par and that all macro definitions are
made global to be used for table applications.

The processing of the given CSV file can be controlled by various (options) given as key
value list. The feasible option keys are described in section 3 from page 11.

\csvreader[tabular=|r|1|1|, table head=\hline, late after line=\\,
late after last line=\\\hline]{grade.csv}/
{name=\name, givenname=\firstname,grade=\grade}/
{\grade & \firstname~\name & \csvcoliii}

1.0 | Hans Maier 12345
2.3 | Anna Huber 23456
5.0 | Werner Weilbiack | 34567

P-6 macro with following param-

Mainly, the \csvreader command consists of a \csvloop’

eters:

\csvloop{(options), file=(file name), column names=(assignments),
command=(command list)}

Therefore, the application of the keys /csv/file

for \csvreader.

—-P.15 qa” P.11

and /csv/comman is useless

\csvloop{(options)}
Usually, \csvreader may be preferred instead of \csvloop. \csvreader is based
on \csvloop which takes a mandatory list of (options) in key value syntax. This list of
(options) controls the total processing. Especially, it has to contain the CSV file name.

—P.6 -P.6

\csvloop{file={grade.csv}, column names={name=\name}, command=\name,
before reading={List of students:\ },
late after line={{,}\ }, late after last line=.}

List of students: Maier, Huber, Weifback.

\csvautotabular [(options)]{{file name)}
\csvautotabular is an abbreviation for the application of the option key
/csv/autotabular *71* together with other (options) to \csvloop "¢, This macro
reads the whole CSV file denoted by (file name) with an automated formatting.

\csvautotabular{grade.csv}

name givenname | matriculation | gender | grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weiflbdack | Werner 34567 m 5.0

\csvautotabular[filter equal={\csvcoliv}{f}]{grade.csv}

name givenname | matriculation | gender | grade
Huber | Anna 23456 f 2.3

\csvautolongtable [(options)]{{file name)}
csvautolongtable is an abbreviation for the application of the option key
/csv/autolongtable "7 14 together with other (options) to \csvloop '©¢. This macro
reads the whole CSV file denoted by (file name) with an automated formatting. For
application, the package longtable is required which has to be loaded in the preamble.

\csvautolongtable{grade.csv}

name givenname | matriculation | gender | grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weilback | Werner 34567 m 5.0

\csvset{(options)}
Sets (options) for every following \csvreader
command may be used for style definitions.

> P. P.6

6 and \csvloop”’ For example, this

\csvset{grade list/.style=
{column names={name=\name,givenname=\firstname,grade=\grade}},
passed/.style={filter not equal={\grade}{5.0}} }

The following students passed the test in mathematics:
\csvreader[grade list,passed]{grade.csv}{}{\firstname\ \name\ (\grade); 1}/

The following students passed the test in mathematics: Hans Maier (1.0); Anna Huber (2.3);

\csvstyle{(Stilname)}{{options)}
Abbreviation for \csvset{(style name)/.style={(options)}} to define a new style.

\csvnames{(Stilname) }{ (Zuweisungsliste)}
Abbreviation for \csvset{(style name)/.style={column names={(assignments)}}} to de-
fine additional (assignments) of macros to columns.

\csvnames{grade list}{name=\name,givenname=\firstname,grade=\grade}
\csvstyle{passed}{filter not equal={\grade}{5.0}}

The following students passed the test in mathematics:
\csvreader[grade list,passed]{grade.csv}{}{\firstname\ \name\ (\grade); 1}/

The following students passed the test in mathematics: Hans Maier (1.0); Anna Huber (2.3);

\csvheadset{({assignments)}
For some special cases, this command can be used to change the (assignments) of macros
to columns during execution of \csvreader "% and \csvloop "6,

\csvreader{grade.csv}{}/
{ \csvheadset{name=\n} \fbox{\n}
\csvheadset{givenname=\n} \ldots\ \fbox{\n} 1}/

’Maier‘ ’Hans‘ ‘Huber‘ ‘Anna‘ ‘Weiﬁbéick‘ ‘Werner‘

\csviffirstrow{(then macros)}{(else macros)}
Inside the command list of \csvreader "%, the (then macros) are executed for the first
data line, and the (else macros) are executed for all following lines.

\csvreader [tabbing, head to column names, table head=\hspace*{3cm}\=\kill]}
{grade.csv}{}/
{\givenname~\name \> (\csviffirstrow{first entry!!}{following entry})}

Hans Maier (first entry!!)
Anna Huber (following entry)
Werner Weiflback (following entry)

\csvifoddrow{(then macros)}{(else macros)}
Inside the command list of \csvreader "6, the (then macros) are executed for odd-
numbered data lines, and the (else macros) are executed for even-numbered lines.

\csvreader[head to column names,tabular=|1|1|1]|1],
table head=\hline\bfseries \# & \bfseries Name & \bfseries Grade\\\hline,
late after line=\\, late after last line=\\\hline]{grade.csv}{}{/
\csvifoddrow{\slshape\thecsvrow & \slshape\name, \givenname & \slshape\grade}/
{\bfseries\thecsvrow & \bfseries\name, \givenname & \bfseries\gradel}}

| Name Grade
1 Maier, Hans 1.0
2 Huber, Anna 2.3
3 WeiBBback, Werner | 5.0

The \csvifoddrow macro may be used for striped tables:

/% This ezample needs the zcolor package
\csvreader[head to column names,tabular=rlcc,
table head=\hline\rowcolor{red!50!black}\color{white}\# & \color{white}Person
& \color{white}Matr.~No. & \color{white}Grade,
late after head=\\\hline\rowcolor{yellow!50},
late after line=\csvifoddrow{\\\rowcolor{yellow!50}}{\\\rowcolor{red!25}}17
{grade.csv}{}/
{\thecsvrow & \givenname~\name & \matriculation & \gradel}/

Person Matr. No. Grade
1 Hans Maier 12345 1.0
2 Anna Huber 23456 2.3
3 Werner Wei3back 34567 5.0

Alternatively, \rowcolors from the xcolor package can be used for this purpose:

% This ezample needs the zcolor package
\csvreader [tabular=rlcc, before table=\rowcolors{2}{red!25}{yellow!50},
table head=\hline\rowcolor{red!50!black}\color{white}\# & \color{white}Person
& \color{white}Matr.~No. & \color{white}Grade\\\hline,
late after line=\\,head to column names]{grade.csv}{}/
{\thecsvrow & \givenname~\name & \matriculation & \gradel}/

Person Matr. No. Grade
1 Hans Maier 12345 1.0
2 Anna Huber 23456 2.3
3 Werner Wei3back 34567 5.0

\csvfilteraccept

All following consistent data lines will be accepted and processed. This command overwrites
all previous filter settings and may be used inside /csv/before filter "' !! to implement
an own filtering rule together with \csvfilterreject.

\csvreader [autotabular,

before filter=\ifthenelse{\equal{\csvcoliv}{m}}{\csvfilteraccept}{\csvfilterreject}
J{grade.csv}{}{\csvlinetotablerow}/

name givenname | matriculation | gender | grade

Maier Hans 12345 m 1.0

Weilback | Werner 34567 m 5.0
\csvfilterreject

All following data lines will be ignored. This command overwrites all previous filter settings.

\csvline
This macro contains the current and unprocessed data line.

\csvreader[no head, tabbing, table head=\textit{line XX:}\=\killl}
{grade.csv}{}{\textit{line \thecsvrow:} \> \csvline}/

line 1: name,givenname,matriculation,gender,grade
line 2: Maier,Hans,12345,m,1.0

line 3: Huber,Anna,23456,f,2.3

line 4: Weillback, Werner,34567,m,5.0

\thecsvrow

Typesets the current data line number. This is the current number of accepted data lines
without the header line. The IXTEX counter csvrow can be addressed directly in the usual
way, €. g. by \roman{csvrow}.

\thecsvinputline

Typesets the current file line number. This is the current number of all data lines including

the header line. The KTEX counter csvinputline can be addressed directly in the usual
way, e.g. by \roman{csvinputline}.

\csvreader[no head, filter equal={\thecsvinputline}{3}]/
{grade.csv}{}/

{The line with number \thecsvinputline\ contains: \csvlinel}/

The line with number 3 contains: Huber,Anna,23456,f,2.3

\csvlinetotablerow

Typesets the current processed data line with & between the entries. Most users will never
apply this command.

10

3 Option Keys
—-P.6

For the (options) in \csvreader respectively \csvloop "9 the following pgf keys can be
applied. The key tree path /csv/ is not to be used inside these macros.

3.1 Command Definition

/csv/before reading=(macros) (no default, initially empty)
Sets the (macros) to be executed before the CSV file is processed.

/csv/after head=(macros) (no default, initially empty)
Sets the (macros) to be executed after the header line is read.

/csv/before filter=(macros) (no default, initially empty)
Sets the (macros) to be executed after reading and consistency checking of a data line.
They are executed before any filter condition is checked, see /csv/filter "I 13,

/csv/late after head=(macros) (no default, initially empty)
Sets the (macros) to be executed after reading and disassembling of the first accepted data
line. They are executed before further processing of this line.

/csv/late after line=(macros) (no default, initially empty)
Sets the (macros) to be executed after reading and disassembling of the next accepted
data line (after /csv/before filter "©'!). They are executed before further pro-
cessing of this next line. late after line overwrites late after first line and
late after last line.

/csv/late after first line=(macros) (no default, initially empty)
Sets the (macros) to be executed after reading and disassembling of the second accepted data
line instead of /csv/late after line "', This key has to be set after late after line.

/csv/late after last line=(macros) (no default, initially empty)
Sets the (macros) to be executed after processing of the last accepted data line instead of
/csv/late after line "!!. This key has to be set after late after line.

/csv/before line=(macros) (no default, initially empty)
Sets the (macros) to be executed after /csv/late after line '™!'!' and before
/csv/command “F !l before line overwrites before first line.

/csv/before first line=(macros) (no default, initially empty)
Sets the (macros) to be executed instead of /csv/before line "™ !! for the first accepted
data line. This key has to be set after before line.

/csv/command=(macros) (no default, initially \csvline)
Sets the (macros) to be executed for every accepted data line. They are executed between
/csv/before line 'T'!'! and /csv/after 1line P11,

/csv/after line=(macros) (no default, initially empty)
Sets the (macros) to be executed for every accepted data line after /csv/command "' !!.
after line overwrites after first line.

/csv/after first line=(macros) (no default, initially empty)

Sets the (macros) to be executed instead of /csv/after line ™!l for the first accepted
data line. This key has to be set after after line.

/csv/after reading=(macros) (no default, initially empty)
Sets the (macros) to be executed after the CSV file is processed.

11

\csvreader [

before reading = \meta{before reading}\\,
after head = \meta{after head},

before filter = \\\meta{before filter},
late after head = \meta{late after head},
late after line = \meta{late after linel},

late after first line = \meta{late after first line},
late after last line = \\\meta{late after last linel},

before line = \meta{before line},
before first line = \meta{before first line},
after line = \meta{after line},

after first line = \meta{after first line},
after reading = \\\meta{after reading}

I{grade.csv}{name=\name}{\textbf{\name}}/

(before reading)

(after head)

(before filter)(late after head){before first line)Maier (after first line)
(before filter)(late after first line)(before line)Huber (after line)
(
(
(

e~

before filter)(late after line)(before line) Weilback (after line)
late after last line)
after reading)

Additional command definition keys are provided for the supported tables, see section 3.4 from
page 14.

3.2 Header Processing and Column Name Assignment

/csv/head={boolean value) (default true, initially true)
If this key is set, the first line of the CSV file is treated as a header line which can be used
for column name assignments.

/csv/no head (no value)
Abbreviation for head=false, i.e. the first line of the CSV file is treated as data line.

/csv/column names=/(assignments) (no default, initially empty)
Adds some new (assignments) of macros to columns in key value syntax. Existing assign-
ments are kept.

/csv/column names reset (no value)
Clears all assignments of macros to columns.

/csv/head to column names=(boolean value) (default true, initially false)
If this key is set, the entries of the header line are used automatically as macro names for
the columns. This option can be used only, if the header entries do not contain spaces and
special characters to be used as feasible INTEX macro names.

12

3.3 Consistency Check and Filtering

/csv/check column count=/(boolean value) (default true, initially true)
This key defines, if the number of entries in a data line is checked against an expected value.
If true, every non consistent line is ignored without announcement.
If false, every line is accepted and may produce an error during further processing.

/csv/no check column count (no value)
Abbreviation for check column count=false.

/csv/column count=(number) (no default)
Sets the (number) of feasible entries per data line. This setting is only useful in connection
with /csv/no head "!!'2) since (number) would be replaced by the number of entries in
the header line otherwise.

/csv/on column count error=(macros) (no default, initially empty)
(macros) to be executed for unfeasible data lines.

/csv/warn on column count error (style, no value)
Display of a warning for unfeasible data lines.

/csv/filter=(condition) (no default)
Only data lines which fulfill a logical (condition) are accepted. For the (condition), every
term from the ifthen package [1] is feasible. To preprocess the data line before testing the
(condition), the option key /csv/before filter "I"!! can be used.

/csv/no filter (no value, initially set)
Clears a set filter.

/csv/filter accept all (no value, initially set)
Alias for no filter. All consistent data lines are accepted.

/csv/filter reject all (no value)
All data line are ignored.

/csv/filter equal={(string A)}{(string B)} (style, no default)
Only lines where (string A) and (string B) are equal after expansion are accepted.

/csv/filter not equal={(string A)}{(string B)} (style, no default)
Only lines where (string A) and (string B) are not equal after expansion are accepted.

13

3.4 Table Support

/csv/tabular=(table format) (style, no default)
Surrounds the CSV processing with \begin{tabular}{(table format)} at begin and
with \end{tabular} at end. Additionally, the commands defined by the key val-
ues of /csv/before table !4 /csv/table head "4 /csv/table foot 14 and
/csv/after table ™' are executed at the appropriate places.

/csv/centered tabular=(table format) (style, no default)
Like /csv/tabular "' !4 but inside an additional center environment.

/csv/longtable=(table format) (style, no default)
Like /csv/tabular " '* but for the longtable environment. This requires the package
longtable (not loaded automatically).

/csv/tabbing (style, no value)
Like /csv/tabular ' ¥ but for the tabbing environment.

/csv/centered tabbing (style, no value)
Like /csv/tabbing "7 * but inside an additional center environment.

/csv/no table (style, no value)
Deactivates tabular, longtable, and tabbing.

/csv/before table=(macros) (no default, initially empty)
Sets the (macros) to be executed before \begin{tabular} or before \begin{longtable}
or before \begin{tabbing}, respectively.

/csv/table head=(macros) (no default, initially empty)
Sets the (macros) to be executed after \begin{tabular} or after \begin{longtable} or
after \begin{tabbing}, respectively.

/csv/table foot=(macros) (no default, initially empty)
Sets the (macros) to be executed before \end{tabular} or before \end{longtable} or
before \end{tabbing}, respectively.

/csv/after table=(macros) (no default, initially empty)
Sets the (macros) to be executed after \end{tabular} or after \end{longtable} or after
\end{tabbing}, respectively.

/csv/autotabular=(file name) (no default)
Reads the whole CSV file denoted (file name) with an automated formatting.

/csv/autolongtable=(file name) (no default)
Reads the whole CSV file denoted (file name) with an automated formatting using the
required longtable package.

14

3.5 Miscellaneous

/csv/every csv (style, initially empty)
A style definition which is used for every following CSV file. This definition can be over-
written with user code.

% Sets a warning message for unfeasible data lines.
\csvset{every csv/.style={warn on column count error}}
7% Alternatively:

\csvstyle{every csv}{warn on column count error}

/csv/default (style)
A style definition which is used for every following CSV file which resets all settings to
default values®. This key should not be used or changed by the user if there is not a really
good reason (and you know what you do).

/csv/file=(file name) (no default, initially unknown.csv)
Sets the (file name) of the CSV file to be processed.

/csv/preprocessed file=(file name) (no default, initially unused)
Sets the (file name) of the CSV file which is the output of a preprocessor.

/csv/preprocessor=(macro) (no default)
Defines a preprocessor for the given CSV file. The (macro) has to have two mandatory
arguments. The first argument is the original CSV file which is set by /csv/file 19,
The second argument is the preprocessed CSV file which is set by /csv/preprocessed
file P15,

Typically, the (macro) may call an external program which preprocesses the original CSV
file (e.g. sorting the file) and creates the preprocessed CSV file. The later file is used by
\csvreader "% or \csvloop "6,

\newcommand{\mySortTool} [2]{/
/% call to an external program to sort file #1 with resulting file #2

}

\csvreader[/
preprocessed file=\jobname_sorted.csv,
preprocessor=\mySortTool,

1{some.csv}{}{%
% do something

/csv/no preprocessing (style, no value, initially set)
Clears any preprocessing, i.e. preprocessing is switched of.

3default is used because of the global nature of most settings.

15

4 Examples

4.1 A Serial Letter

In this example, a serial letter is to be written to all persons with addresses from the following
CSV file. Deliberately, the file content is not given in very pretty format.

name,givenname,gender,degree,street,zip,location,bonus
Maier,Hans,m, ,Am Bachweg 17,10010,Hopfingen,20
/% next line with a comma in curly braces
Huber ,Erna,f,Dr.,{Moosstra\ss{}e 32, Hinterschlag},10020,\"{0}rtingstetten,30
Weilss{}b\"{a}ck,Werner,m,Prof. Dr.,Brauallee 10,10030,Klingenbach,40
% this line is ignored J
Siebener , Franz,m, , Blaumeisenweg 12 , 10040 , Pardauz , 50
% preceding and trailing spaces in entries are removed J;
Schmitt,Anton,m, ,{\AE{}1fred-Esplanade, T\ae{}g 37}, 10050,\0E{}resung,60

Firstly, we survey the file content quickly using \csvautotabular. As can be seen, unfeasible
lines are ignored automatically.

\tiny\csvautotabular{address.csv}

name givenname gender degree street zip location bonus
Maier Hans m Am Bachweg 17 10010 Hopfingen 20
Huber Erna f Dr. Moosstrafle 32, Hinterschlag 10020 Ortingstetten 30
Wei3back Werner m Prof. Dr. Brauallee 10 10030 Klingenbach 40
Siebener Franz m Blaumeisenweg 12 10040 Pardauz 50
Schmitt Anton m Alfred-Esplanade, Teeg 37 10050 (Eresung 60

Now, we create the serial letter where every feasible data line produces an own page. Here,
we simulate the page by a tcolorbox (from the package tcolorbox). For the gender specific
salutations, an auxiliary macro \ifmale is introduced.

16

/% this ezample requires the tcolorboz package
\newcommand{\ifmale} [2] {\ifthenelse{\equal{\g

\csvreader [head to column names]{address.csv}

ender H{m}{#1}{#2}}

{7

\begin{tcolorbox} [colframe=DarkGray, colback=White,arc=0mm,width=(\linewidth-2pt)/2,

equal height group=letter,before=,after
adjusted title={Letter to \namel}]
\ifthenelse{\equal{\degree}{}}{\ifmale{Mr.}
\street\\\zip~\location
\tcblower
{\itshape Dear \ifmale{Sir}{Madam},}\\

=\hfill,fonttitle=\bfseries,

{Ms.}}{\degree}~\givenname~\name\\

we are pleased to announce you a bonus value of \bonus\/{}

which will be delivered to \location\ soon.
\end{tcolorbox}}

Letter to Maier

Mr. Hans Maier

Am Bachweg 17

10010 Hopfingen

Dear Sir,

we are pleased to announce you a bonus value
of 20% which will be delivered to Hopfingen

soon.

Letter to Weif3back

Prof. Dr. Werner Weif3back
Brauallee 10
10030 Klingenbach

Dear Sir,

we are pleased to announce you a bonus value
of 40% which will be delivered to Klingen-
bach soon.

Letter to Schmitt

Mr. Anton Schmitt
Zlfred-Esplanade, Teeg 37
10050 (Eresung

Dear Sir,

we are pleased to announce you a bonus value
of 60% which will be delivered to (Eresung
soon.

\\\ldots

Letter to Huber

Dr. Erna Huber

Moosstrafle 32, Hinterschlag

10020 Ortingstetten

Dear Madam,

we are pleased to announce you a bonus value
of 30% which will be delivered to Ortingstet-
ten soon.

Letter to Siebener

Mr. Franz Siebener

Blaumeisenweg 12

10040 Pardauz

Dear Sir,

we are pleased to announce you a bonus value
of 50% which will be delivered to Pardauz

soon.

4.2 A Graphical Presentation

For this example, we use some artificial statistical data given by a CSV file.

land, group,amount
Bayern,A,1700
Baden-W\"{u}rttemberg,A,2300
Sachsen,B, 1520
Th\"{u}ringen, A, 1900
Hessen,B,2100

Firstly, we survey the file content using \csvautotabular.

\csvautotabular{data.csv}

land group | amount
Bayern A 1700
Baden-Wiirttemberg | A 2300
Sachsen B 1520
Thiiringen A 1900
Hessen B 2100

The amount values are presented in the following diagram by bars where the group classification
is given using different colors.

/% This ezample requires the package tikz
\begin{tikzpicture} [Group/A/.style={left color=red!10,right color=red!20},
Group/B/.style={left color=blue!10,right color=blue!20}]
\csvreader [head to column names]{data.csv}{}{/
\begin{scope} [yshift=-\thecsvrow cm]
\path [draw,Group/\group] (0,-0.45)
rectangle node[font=\bfseries] {\amount} (\amount/1000,0.45);
\node[left] at (0,0) {\land};
\end{scope} }
\end{tikzpicture}

Bayern 1700

Baden-Wiirttemberg 2300

Sachsen| 1520

Thiiringen 1900

Hessen 2100

18

Next, we create a pie chart by calling \csvreader twice. In the first step, the total sum of
amounts is computed, and in the second step the slices are drawn.

% Modified example from www.texzample.net for pie charts

/% This exzample needs the packages tikz, zcolor, calc
\definecolorseries{myseries}{rgb}{step}[rgbl{.95,.85,.55}{.17,.47,.37}
\resetcolorseries{myseries}/

/% a pie slice
\newcommand{\slice}[4]{
\pgfmathsetmacro{\midangle}{0.5*#1+0.5*#2}
\begin{scope}
\clip (0,0) —-- (#1:1) arc (#1:#2:1) -- cycle;
\colorlet{SliceColor}{myseries!!+}/
\fill[inner color=SliceColor!30,outer color=SliceColor!60] (0,0) circle (icm);
\end{scope}
\draw[thick] (0,0) -- (#1:1) arc (#1:#2:1) -- cycle;
\node [label=\midangle:#4] at (\midangle:1) {};
\pgfmathsetmacro{\temp}{min((#2-#1-10)/110%(-0.3),0)}
\pgfmathsetmacro{\innerpos}{max(\temp,-0.5) + 0.8}
\node at (\midangle:\innerpos) {#3};
}

7% sum of amounts

\csvreader [before reading=\def\mysum{0}]{data.csv}{amount=\amount}{’
\pgfmathsetmacro{\mysum}{\mysum+\amount}/

}

/% drawing of the pie chart

\begin{tikzpicture}[scale=3]%

\def\mya{0}\def\myb{0}

\csvreader [head to column names]{data.csv}{}{/
\let\mya\myb
\pgfmathsetmacro{\myb}{\myb+\amount}
\slice{\mya/\mysum*360}{\myb/\mysum*360}{\amount}{\land}

}

\end{tikzpicturel}/

Baden-Wiirttemberg

Bayern

Sachsen

Hessen

Thiiringen

19

Finally, the filter option is demonstrated by separating the groups A and B. Every item is piled
upon the appropriate stack.

7

\newcommand{\drawGroup} [2]{/
\def\mya{0}\def\myb{0}
\node [below=3mm] at (2.5,0) {\bfseries Group #1};
\csvreader [head to column names,filter equal={\group}{#1i}]{data.csvI{}I{/
\let\mya\myb
\pgfmathsetmacro{\myb}{\myb+\amount}
\path[draw,top color=#2!25,bottom color=#2!50]
(0,\mya/1000) rectangle node{\land\ (\amount)} (5,\myb/1000);
}

\begin{tikzpicture}
\fill[gray!75] (-1,0) rectangle (13,-0.1);
\drawGroup{A}{red}
\begin{scopel} [xshift=7cm]
\drawGroup{B}{blue}
\end{scope}

\end{tikzpicture}

Group A Group B

20

4.3 Macro code inside the data

If needed, the data file may contain macro code. Note that the first character of a data line is
not allowed to be the backslash ’\’.

type,description,content

M,A nice \textbf{formula}, $\displaystyle \int\frac{1}{x} = \lnlx|+c$
G,A \textcolor{red}{colored} ball, {\tikz \shadedraw [shading=ball]l (0,0) circle (.5cm);}
M,\textbf{Another} formula, $\displaystyle \lim\limits_{n\to\infty} \frac{1}{n}=0$

Firstly, we survey the file content using \csvautotabular.

\csvautotabular{macrodata.csv}

type | description content

M A nice formula / l =Inx+c¢
T

G A colored ball
M Another formula lim — =0

\csvstyle{my enumerate}{head to column names,
before reading=\begin{enumerate},after reading=\end{enumeratel}}

\csvreader [my enumerate]{macrodata.csv}{}{/
\item \description:\par\content}

\bigskip

Now, formulas only:

\csvreader [my enumerate,filter equal={\type}{M}]{macrodata.csv}{}{/
\item \description:\gquad\content}

1. A nice formula:

/1
—=Inx+c¢
43

2. A colored ball:

3. Another formula:
1

lim — =0
n—oo M

Now, formulas only:

1. A nice formula: / l =Inx+c¢
T

2. Another formula: lim 1 =0
n—oco N

21

References

[1] David Carlisle. The ifthen package. May 26, 2001.
http://mirror.ctan.org/macros/latex/base/.

[2] Nicola L. C. Talbot. datatool v 2.11: Databases and data manipulation. Sept. 25, 2012.
http://mirror.ctan.org/macros/latex/contrib/datatool /datatool.pdf.

[3] Till Tantau. The TikZ and PGF Packages. Manual for version 2.10. Oct. 25, 2010.
http://mirror.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf.

22

http://mirror.ctan.org/macros/latex/base/
http://mirror.ctan.org/macros/latex/contrib/datatool/datatool.pdf
http://mirror.ctan.org/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf

Index

after first line key, 11 no filter, 13

after head key, 11 no head, 12

after line key, 11 no preprocessing, 15

after reading key, 11 no table, 14

after table key, 14 on column count error, 13

autolongtable key, 14 preprocessed file, 15

autotabular key, 14 preprocessor, 15
tabbing, 14

before filter key, 11 table foot, 14

before first line key, 11 table head, 14

before line key, 11 tabular, 14

before reading key, 11 warn on column count error, 13

before table key, 14 \csvautolongtable, 7

\csvautotabular, 7
\csvcoli, 6
\csvcolii, 6
\csvcoliii, 6
\csvfilteraccept, 10
\csvfilterreject, 10
\csvheadset, 8
\csviffirstrow, 9
\csvifoddrow, 9
\csvline, 10
\csvlinetotablerow, 10
\csvloop, 6
\csvnames, 8
\csvreader, 6
\csvset, 8
\csvstyle, 8

centered tabbing key, 14
centered tabular key, 14
check column count key, 13
column count key, 13
column names key, 12
column names reset key, 12
command key, 11
/csv/
after first line, 11
after head, 11
after line, 11
after reading, 11
after table, 14
autolongtable, 14
autotabular, 14
before filter, 11

before first line, 11 default key, 15

before line, 11

before reading, 11 every csv key, 15

before table, 14

centered tabbing, 14 file key, 15

centered tabular, 14 filter key, 13

check column count, 13 filter accept all key, 13
column count, 13 filter equal key, 13
column names, 12 filter not equal key, 13
column names reset, 12 filter reject all key, 13

command, 11
default, 15

every csv, 15

file, 15

filter, 13

filter accept all, 13
filter equal, 13
filter not equal, 13
filter reject all, 13

head key, 12
head to column names key, 12

late after first line key, 11
late after head key, 11

late after last line key, 11
late after line key, 11
longtable key, 14

head, 12 no check column count key, 13
head to column names, 12 no filter key, 13
late after first line, 11 no head key, 12

late after head, 11
late after last line, 11
late after line, 11

longtable, 14 on column count error key, 13
no check column count, 13

no preprocessing key, 15
no table key, 14

23

preprocessed file key, 15
preprocessor key, 15

tabbing key, 14
table foot key, 14
table head key, 14
tabular key, 14
\thecsvinputline, 10
\thecsvrow, 6, 10

warn on column count error key, 13

24

	Introduction
	Loading the Package
	First Steps

	Macros for the Processing of CSV Files
	Option Keys
	Command Definition
	Header Processing and Column Name Assignment
	Consistency Check and Filtering
	Table Support
	Miscellaneous

	Examples
	A Serial Letter
	A Graphical Presentation
	Macro code inside the data

	References
	Index

