
The csvsimple-l3 package
Manual for version 2.0.0 (2021/06/29)

Thomas F. Sturm1

https://www.ctan.org/pkg/csvsimple

https://github.com/T-F-S/csvsimple

Abstract

csvsimple(-l3) provides a simple LATEX interface for the processing of files with
comma separated values (CSV). csvsimple-l3 relies heavily on the key value syntax
from l3keys which results in an easy way of usage. Filtering and table generation is
especially supported. Since the package is considered as a lightweight tool, there is
no support for data sorting or data base storage.

1Prof. Dr. Dr. Thomas F. Sturm, Institut für Mathematik und Informatik, Universität der Bundeswehr
München, D-85577 Neubiberg, Germany; email: thomas.sturm@unibw.de

1

https://www.ctan.org/pkg/csvsimple
https://github.com/T-F-S/csvsimple
mailto:thomas.sturm@unibw.de

Contents
1 Introduction 3

1.1 Loading the Package . 3
1.2 First Steps . 4

2 Macros for the Processing of CSV Files 9

3 Option Keys 16
3.1 Command Definition . 16
3.2 Header Processing and Column Name Assignment 18
3.3 Consistency Check . 19
3.4 Filtering . 20
3.5 Line Range . 24
3.6 Table Support . 26
3.7 Special Characters . 28
3.8 Separators . 29
3.9 Miscellaneous . 30
3.10 Sorting . 31

4 String and Number Tests 36

5 Examples 37
5.1 A Serial Letter . 37
5.2 A Graphical Presentation . 39
5.3 Macro code inside the data . 43
5.4 Tables with Number Formatting . 44
5.5 CSV data without header line . 48
5.6 Imported CSV data . 50
5.7 Encoding . 51

Index 53

2

1 Introduction
The csvsimple-l3 package is applied to the processing of CSV2 files. This processing is con-
trolled by key value assignments according to the syntax of l3keys. Sample applications of the
package are tabular lists, serial letters, and charts.

An alternative to csvsimple-l3 is the datatool package which provides considerably more
functions and allows sorting of data by LATEX. csvsimple-l3 has a different approach for the
user interface and is deliberately restricted to some basic functions with fast processing speed.

Mind the following restrictions:

• Sorting is not supported directly but can be done with external tools, see Section 3.10 on
page 31.

• Values are expected to be comma separated, but the package provides support for other
separators, see Section 3.8 on page 29.

• Values are expected to be either not quoted or quoted with curly braces {} of TEX groups.
Other quotes like doublequotes are not supported directly, but can be achieved with ex-
ternal tools, see Section 5.6 on page 50.

• Every data line is expected to contain the same amount of values. Unfeasible data lines
are silently ignored by default, but this can be configured, see Section 3.3 on page 19.

1.1 Loading the Package

csvsimple-l3 is loaded with one of the following alternatives inside the preamble:

\usepackage[l3]{csvsimple}
% or alternatively (not simultaneously!)

\usepackage{csvsimple-l3}

Not automatically loaded, but used for many examples are the packages longtable, booktabs,
ifthen, and booktabs.

2CSV file: file with comma separated values.

3

1.2 First Steps

Every line of a processable CSV file has to contain an identical amount of comma3 separated
values. The curly braces {} of TEX groups can be used to mask a block which may contain
commas not to be processed as separators.

The first line of such a CSV file is usually but not necessarily a header line which contains the
identifiers for each column.

CSV file «grade.csv»

name,givenname,matriculation,gender,grade
Maier,Hans,12345,m,1.0
Huber,Anna,23456,f,2.3
Weißbäck,Werner,34567,m,5.0
Bauer,Maria,19202,f,3.3

The most simple way to display a CSV file in tabular form is the processing with the
\csvautotabular→ P. 10 command.

\csvautotabular{grade.csv}

name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

Typically, one would use \csvreader→ P. 9 instead of \csvautotabular to gain full control over
the interpretation of the included data.

In the following example, the entries of the header line are automatically assigned to TEX macros
which may be used deliberately.

\begin{tabular}{|l|c|}\hline%
\bfseries Person & \bfseries Matr.~No.
\csvreader[

head to column names
]{grade.csv}{}{%

\\\givenname\ \name & \matriculation
}%

\\\hline
\end{tabular}

Person Matr. No.
Hans Maier 12345
Anna Huber 23456
Werner Weißbäck 34567
Maria Bauer 19202

3See /csvsim/separator→ P. 29 for other separators than comma.

4

\csvreader is controlled by a plenty of options. For example, for table applications line breaks
are easily inserted by /csvsim/late after line→ P. 16. This defines a macro execution just
before the following line. Additionally, the assignment of columns to TEX macros is shown in a
non automated way.

\begin{tabular}{|r|l|c|}\hline%
& Person & Matr.~No.\\\hline\hline
\csvreader[

late after line = \\\hline
]{grade.csv}%
{name=\name, givenname=\firstname, matriculation=\matnumber}{%

\thecsvrow & \firstname~\name & \matnumber
}%

\end{tabular}

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

An even more comfortable and preferrable way to create a table is setting appropriate option
keys. Note, that this gives you the possibility to create a meta key (called style here) which
contains the whole table creation using \csvstyle→ P. 12 or keys_define:nn from l3keys.

\csvreader[
tabular = |r|l|c|,
table head = \hline & Person & Matr.~No.\\\hline\hline,
late after line = \\\hline

]{grade.csv}
{name=\name, givenname=\firstname, matriculation=\matnumber}{%

\thecsvrow & \firstname~\name & \matnumber
}%

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

5

The next example shows such a style definition with the convenience macro \csvstyle→ P. 12.
Here, we see again the automated assignment of header entries to column names by
/csvsim/head to column names→ P. 18. For this, the header entries have to be without spaces
and special characters. But you can always assign entries to canonical macro names manually
like in the examples above. Here, we also add a /csvsim/head to column names prefix→ P. 18

to avoid macro name clashes.

\csvstyle{myTableStyle}{
tabular = |r|l|c|,
table head = \hline & Person & Matr.~No.\\\hline\hline,
late after line = \\\hline,
head to column names,
head to column names prefix = MY,

}

\csvreader[myTableStyle]
{grade.csv}{}{%

\thecsvrow & \MYgivenname~\MYname & \MYmatriculation
}

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

Another way to address columns is to use their roman numbers. The direct addressing is done
by \csvcoli, \csvcolii, \csvcoliii, . . . :

\csvreader[
tabular = |r|l|c|,
table head = \hline & Person & Matr.~No.\\\hline\hline,
late after line = \\\hline

]{grade.csv}{}{%
\thecsvrow & \csvcolii~\csvcoli & \csvcoliii

}

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

And yet another method to assign macros to columns is to use arabic numbers for the assignment:

\csvreader[
tabular = |r|l|c|,
table head = \hline & Person & Matr.~No.\\\hline\hline,
late after line = \\\hline]%

{grade.csv}
{1=\name, 2=\firstname, 3=\matnumber}{%

\thecsvrow & \firstname~\name & \matnumber
}

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

6

For recurring applications, the l3keys syntax allows to create own meta options (styles) for a
consistent and centralized design. The following example is easily modified to obtain more or
less option settings.

\csvstyle{myStudentList}{%
tabular = |r|l|c|,
table head = \hline & Person & #1\\\hline\hline,
late after line = \\\hline,
column names = {name=\name, givenname=\firstname}

}

\csvreader[myStudentList={Matr.~No.}]
{grade.csv}
{matriculation=\matnumber}{%

\thecsvrow & \firstname~\name & \matnumber
}%

\hfill%
\csvreader[myStudentList={Grade}]

{grade.csv}
{grade=\grade}{%

\thecsvrow & \firstname~\name & \grade
}

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

Person Grade
1 Hans Maier 1.0
2 Anna Huber 2.3
3 Werner Weißbäck 5.0
4 Maria Bauer 3.3

7

Alternatively, column names can be set by \csvnames→ P. 12 and style definitions by
\csvstyle→ P. 12. With this, the last example is rewritten as follows:

\csvnames{myNames}{1=\name,2=\firstname,3=\matnumber,5=\grade}
\csvstyle{myStudentList}{

tabular = |r|l|c|,
table head = \hline & Person & #1\\\hline\hline,
late after line = \\\hline,
myNames

}

\csvreader[myStudentList={Matr.~No.}]
{grade.csv}{}{%

\thecsvrow & \firstname~\name & \matnumber
}%

\hfill%
\csvreader[myStudentList={Grade}]

{grade.csv}{}{%
\thecsvrow & \firstname~\name & \grade

}

Person Matr. No.
1 Hans Maier 12345
2 Anna Huber 23456
3 Werner Weißbäck 34567
4 Maria Bauer 19202

Person Grade
1 Hans Maier 1.0
2 Anna Huber 2.3
3 Werner Weißbäck 5.0
4 Maria Bauer 3.3

The data lines of a CSV file can also be filtered. In the following example, a certificate is printed
only for students with grade unequal to 5.0.

\csvreader[
filter not strcmp={\grade}{5.0}

]{grade.csv}
{1=\name,2=\firstname,3=\matnumber,4=\gender,5=\grade}{%

\begin{center}\Large\bfseries Certificate in Mathematics\end{center}
\large\ifcsvstrcmp{\gender}{f}{Ms.}{Mr.}
\firstname~\name, matriculation number \matnumber, has passed the test
in mathematics with grade \grade.\par\ldots\par

}%

Certificate in Mathematics
Mr. Hans Maier, matriculation number 12345, has passed the test in mathematics
with grade 1.0.
. . .

Certificate in Mathematics
Ms. Anna Huber, matriculation number 23456, has passed the test in mathematics
with grade 2.3.
. . .

Certificate in Mathematics
Ms. Maria Bauer, matriculation number 19202, has passed the test in mathematics
with grade 3.3.
. . .

8

2 Macros for the Processing of CSV Files

\csvreader[⟨options⟩]{⟨file name⟩}{⟨assignments⟩}{⟨command list⟩}
\csvreader reads the file denoted by ⟨file name⟩ line by line. Every line of the file has to
contain an identical amount of comma separated values. The curly braces {} of TEX groups
can be used to mask a block which may contain commas not to be processed as separators.
The first line of such a CSV file is by default but not necessarily processed as a header
line which contains the identifiers for each column. The entries of this line can be used to
give ⟨assignments⟩ to TEX macros to address the columns. The number of entries of this
first line determines the accepted number of entries for all following lines. Every line which
contains a higher or lower number of entries is ignored during standard processing.
The ⟨assignments⟩ are given as comma separated list of key value pairs ⟨name⟩=⟨macro⟩.
Here, ⟨name⟩ is an entry from the header line or the arabic number of the addressed column.
⟨macro⟩ is some TEX macro which gets the content of the addressed column.
The ⟨command list⟩ is executed for every accepted data line. Inside the ⟨command list⟩ is
applicable:

• \thecsvrow or the counter csvrow which contains the number of the current data line
(starting with 1).

• \csvcoli, \csvcolii, \csvcoliii, . . . , which contain the contents of the column
entries of the current data line. Alternatively can be used:

• ⟨macro⟩ from the ⟨assignments⟩ to have a logical addressing of a column entry.
Note, that the ⟨command list⟩ is allowed to contain \par and that all macro definitions
are made global to be used for table applications.
The processing of the given CSV file can be controlled by various ⟨options⟩ given as key
value list. The feasible option keys are described in section 3 from page 16.

\csvreader[
tabular = |r|l|l|,
table head = \hline,
table foot = \hline

]{grade.csv}%
{name=\name, givenname=\firstname, grade=\grade}{%

\grade & \firstname~\name & \csvcoliii
}

1.0 Hans Maier 12345
2.3 Anna Huber 23456
5.0 Werner Weißbäck 34567
3.3 Maria Bauer 19202

Mainly, the \csvreader command consists of a \csvloop→ P. 10 macro with following pa-
rameters:
\csvloop{⟨options⟩, file=⟨file name⟩, column names=⟨assignments⟩,

command=⟨command list⟩}
Therefore, the application of the keys /csvsim/file→ P. 30 and /csvsim/command→ P. 16 is
useless for \csvreader.

9

\csvloop{⟨options⟩}
Usually, \csvreader→ P. 9 may be preferred instead of \csvloop. \csvreader→ P. 9 is based
on \csvloop which takes a mandatory list of ⟨options⟩ in key value syntax. This list of
⟨options⟩ controls the total processing. Especially, it has to contain the CSV file name.

\csvloop{
file = {grade.csv},
head to column names,
command = \name,
before reading = {List of students:\ },
late after line = {{,}\ },
late after last line = .

}

List of students: Maier, Huber, Weißbäck, Bauer.

The following \csvauto... commands are intended for quick data overview with limited for-
matting potential. See Subsection 3.6 on page 26 for the general table options in combination
with \csvreader→ P. 9 and \csvloop.
\csvautotabular[⟨options⟩]{⟨file name⟩}

N 2021-06-25 \csvautotabular*[⟨options⟩]{⟨file name⟩}
\csvautotabular or \csvautotabular* is an abbreviation for the application of the op-
tion key /csvsim/autotabular→ P. 27 or /csvsim/autotabular*→ P. 27 together with other
⟨options⟩ to \csvloop. This macro reads the whole CSV file denoted by ⟨file name⟩ with an
automated formatting. The star variant treats the first line as data line and not as header
line.

\csvautotabular*{grade.csv}

name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

\csvautotabular[filter equal={\csvcoliv}{f}]{grade.csv}

name givenname matriculation gender grade
Huber Anna 23456 f 2.3
Bauer Maria 19202 f 3.3

10

\csvautolongtable[⟨options⟩]{⟨file name⟩}
N 2021-06-25 \csvautolongtable*[⟨options⟩]{⟨file name⟩}

\csvautolongtable or \csvautolongtable* is an abbreviation for the application of the
option key /csvsim/autolongtable→ P. 27 or /csvsim/autolongtable*→ P. 27 together with
other ⟨options⟩ to \csvloop→ P. 10. This macro reads the whole CSV file denoted by ⟨file
name⟩ with an automated formatting. For application, the package longtable is required
which has to be loaded in the preamble. The star variant treats the first line as data line
and not as header line.

\csvautolongtable{grade.csv}

name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

\csvautobooktabular[⟨options⟩]{⟨file name⟩}
N 2021-06-25 \csvautobooktabular*[⟨options⟩]{⟨file name⟩}

\csvautobooktabular or \csvautobooktabular* is an abbreviation for the application of
the option key /csvsim/autobooktabular→ P. 27 or /csvsim/autobooktabular*→ P. 27 to-
gether with other ⟨options⟩ to \csvloop→ P. 10. This macro reads the whole CSV file denoted
by ⟨file name⟩ with an automated formatting. For application, the package booktabs is
required which has to be loaded in the preamble. The star variant treats the first line as
data line and not as header line.

\csvautobooktabular{grade.csv}

name givenname matriculation gender grade

Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

\csvautobooklongtable[⟨options⟩]{⟨file name⟩}
N 2021-06-25 \csvautobooklongtable*[⟨options⟩]{⟨file name⟩}

\csvautobooklongtable or \csvautobooklongtable* is an abbreviation for the applica-
tion of the option key /csvsim/autobooklongtable→ P. 27 or /csvsim/autobooklongtable*→ P. 27

together with other ⟨options⟩ to \csvloop→ P. 10. This macro reads the whole CSV file
denoted by ⟨file name⟩ with an automated formatting. For application, the packages
booktabs and longtable are required which have to be loaded in the preamble. The star
variant treats the first line as data line and not as header line.

\csvautobooklongtable{grade.csv}

name givenname matriculation gender grade

Maier Hans 12345 m 1.0
Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0
Bauer Maria 19202 f 3.3

11

U 2021-06-25 \csvset{⟨options⟩}
Sets ⟨options⟩ for every following \csvreader→ P. 9 and \csvloop→ P. 10. Note that most
options are set to default values at the begin of these commands and therefore cannot be
defined reasonable by \csvset. But it may be used for options like /csvsim/csvsorter
command→ P. 31 to give global settings. Also see /csvsim/every csv→ P. 30.

\csvstyle{⟨key⟩}{⟨options⟩}
Defines a new l3keys meta key to call other keys. It is used to make abbreviations for con-
venient key set applications. The new ⟨key⟩ can take one parameter. The name \csvstyle
originates from an old version of csvsimple which used pgfkeys instead of l3keys.

\csvstyle{grade list}{
column names = {name=\name, givenname=\firstname, grade=\grade}

}
\csvstyle{passed}{

filter not strcmp = {\grade}{5.0}
}

The following students passed the test in mathematics:\\
\csvreader[grade list,passed]{grade.csv}{}{

\firstname\ \name\ (\grade);
}

The following students passed the test in mathematics:
Hans Maier (1.0); Anna Huber (2.3); Maria Bauer (3.3);

\csvnames{⟨key⟩}{⟨assignments⟩}
Abbreviation for \csvstyle{⟨key⟩}{column names={⟨assignments⟩}} to define additional
⟨assignments⟩ of macros to columns.

\csvnames{grade list}{
name=\name, givenname=\firstname, grade=\grade

}
\csvstyle{passed}{

filter not strcmp = {\grade}{5.0}
}

The following students passed the test in mathematics:\\
\csvreader[grade list,passed]{grade.csv}{}{

\firstname\ \name\ (\grade);
}

The following students passed the test in mathematics:
Hans Maier (1.0); Anna Huber (2.3); Maria Bauer (3.3);

12

U 2021-06-28 \ifcsvoddrow{⟨then macros⟩}{⟨else macros⟩}
Inside the command list of \csvreader→ P. 9, the ⟨then macros⟩ are executed for odd-
numbered data lines, and the ⟨else macros⟩ are executed for even-numbered lines.
\ifcsvoddrow is expandable.

\csvreader[
head to column names,
tabular = |l|l|l|l|,
table head = \hline\bfseries \# & \bfseries Name & \bfseries Grade\\\hline,
table foot = \hline

]{grade.csv}{}{%
\ifcsvoddrow{\slshape\thecsvrow & \slshape\name, \givenname & \slshape\grade}%
{\bfseries\thecsvrow & \bfseries\name, \givenname & \bfseries\grade}

}

Name Grade
1 Maier, Hans 1.0
2 Huber, Anna 2.3
3 Weißbäck, Werner 5.0
4 Bauer, Maria 3.3

The \ifcsvoddrow macro may be used for striped tables:

% This example needs the xcolor package
\csvreader[

head to column names,
tabular = rlcc,
table head = \hline\rowcolor{red!50!black}\color{white}\# & \color{white}Person

& \color{white}Matr.~No. & \color{white}Grade,
late after head = \\\hline\rowcolor{yellow!50},
late after line = \ifcsvoddrow{\\\rowcolor{yellow!50}}{\\\rowcolor{red!25}}

]{grade.csv}{}{%
\thecsvrow & \givenname~\name & \matriculation & \grade

}

Person Matr. No. Grade
1 Hans Maier 12345 1.0
2 Anna Huber 23456 2.3
3 Werner Weißbäck 34567 5.0
4 Maria Bauer 19202 3.3

Alternatively, \rowcolors from the xcolor package can be used for this purpose:

% This example needs the xcolor package
\csvreader[

head to column names,
tabular = rlcc,
before table = \rowcolors{2}{red!25}{yellow!50},
table head = \hline\rowcolor{red!50!black}\color{white}\# & \color{white}Person

& \color{white}Matr.~No. & \color{white}Grade\\\hline
]{grade.csv}{}{%

\thecsvrow & \givenname~\name & \matriculation & \grade
}

Person Matr. No. Grade
1 Hans Maier 12345 1.0
2 Anna Huber 23456 2.3
3 Werner Weißbäck 34567 5.0
4 Maria Bauer 19202 3.3

The deprecated, but still available alias for this command is \csvifoddrow.

13

U 2021-06-28 \ifcsvfirstrow{⟨then macros⟩}{⟨else macros⟩}
Inside the command list of \csvreader→ P. 9, the ⟨then macros⟩ are executed for the first
data line, and the ⟨else macros⟩ are executed for all following lines. \ifcsvfirstrow is
expandable.

\csvreader[
tabbing,
head to column names,
table head = {\hspace*{3cm}\=\kill}

]{grade.csv}{}{%
\givenname~\name \> (\ifcsvfirstrow{first entry!!}{following entry})

}

Hans Maier (following entry)
Anna Huber (following entry)
Werner Weißbäck (following entry)
Maria Bauer (following entry)

The deprecated, but still available alias for this command is \csviffirstrow.

\csvfilteraccept
All following consistent data lines will be accepted and processed. This command overwrites
all previous filter settings and may be used inside /csvsim/full filter→ P. 23 to implement
an own filtering rule together with \csvfilterreject.

\csvreader[
autotabular,
full filter = \ifcsvstrcmp{\csvcoliv}{m}{\csvfilteraccept}{\csvfilterreject}

]{grade.csv}{}{%
\csvlinetotablerow

}

name givenname matriculation gender grade
Maier Hans 12345 m 1.0
Weißbäck Werner 34567 m 5.0

\csvfilterreject
All following data lines will be ignored. This command overwrites all previous filter settings.

\csvline
This macro contains the current and unprocessed data line.

\csvreader[
no head,
tabbing,
table head = {\textit{line XX:}\=\kill}

]{grade.csv}{}{%
\textit{line \thecsvrow:} \> \csvline

}

line 1: name,givenname,matriculation,gender,grade
line 2: Maier,Hans,12345,m,1.0
line 3: Huber,Anna,23456,f,2.3
line 4: Weißbäck,Werner,34567,m,5.0
line 5: Bauer,Maria,19202,f,3.3

U 2016-07-01 \csvlinetotablerow
Typesets the current processed data line with & between the entries.

14

U 2021-06-25 \thecsvrow
N 2021-06-25 \g_csvsim_row_int

Typesets the current data line number. This is the current number of accepted data lines
without the header line. Despite of the name, there is no associated LATEX counter csvrow,
but \thecsvrow is an accessor the LATEX3 integer \g_csvsim_row_int.

N 2021-06-25 \thecsvcolumncount
N 2021-06-25 \g_csvsim_columncount_int

Typesets the number of columns of the current CSV file. This number is either
computed from the first valid line (header or data) or given by /csvsim/column
count→ P. 19. Despite of the name, there is no associated LATEX counter csvcolumncount,
but \thecsvcolumncount is an accessor the LATEX3 integer \g_csvsim_columncount_int.

\csvreader{grade.csv}{}{}%
The last file consists of \thecsvcolumncount{} columns and
\thecsvrow{} accepted data lines. The total number of lines
ist \thecsvinputline{}.

The last file consists of 5 columns and 4 accepted data lines. The total number of lines ist 6.

U 2021-06-25 \thecsvinputline
N 2021-06-25 \g_csvsim_inputline_int

Typesets the current file line number. This is the current number of all data lines including
the header line and all lines filtered out. Despite of the name, there is no associated
LATEX counter csvinputline, but \thecsvinputline is an accessor the LATEX3 integer
\g_csvsim_inputline_int.

\csvreader[
no head,
filter test = \ifnumequal{\thecsvinputline}{3}

]{grade.csv}{}{%
The line with number \thecsvinputline\ contains: \csvline

}

The line with number 3 contains: Huber,Anna,23456,f,2.3

15

3 Option Keys
For the ⟨options⟩ in \csvreader→ P. 9 respectively \csvloop→ P. 10 the following l3keys keys can
be applied. The ⟨module⟩ name /csvsim/ is not to be used inside these macros.

3.1 Command Definition

/csvsim/before reading=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed before the CSV file is opened.

/csvsim/after head=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after the header line is read. \thecsvcolumncount→ P. 15 and
header entries are available.

/csvsim/before filter=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after reading and consistency checking of a data line. They
are executed before any filter condition is checked, see e.g. /csvsim/filter ifthen→ P. 23.
Also see /csvsim/full filter→ P. 23. All line entries are available.

/csvsim/late after head=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after reading and disassembling of the first accepted data
line. These operations are executed before further processing of this line. ⟨code⟩ should not
refer to any data content, but may be something like \\.

/csvsim/late after line=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after reading and disassembling of the next accepted data
line (after /csvsim/before filter). These operations are executed before further pro-
cessing of this line. ⟨code⟩ should not refer to any data content, but may be some-
thing like \\. /csvsim/late after line overwrites /csvsim/late after first line
and /csvsim/late after last line. Note that table options like /csvsim/tabular→ P. 26

set this key to \\ automatically.
/csvsim/late after first line=⟨code⟩ (no default, initially empty)

Sets the ⟨code⟩ to be executed after reading and disassembling of the second accepted data
line instead of /csvsim/late after line. ⟨code⟩ should not refer to any data content.
This key has to be set after /csvsim/late after line.

/csvsim/late after last line=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after processing of the last accepted data line instead of
/csvsim/late after line. ⟨code⟩ should not refer to any data content. This key has to
be set after /csvsim/late after line.

/csvsim/before line=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after /csvsim/late after line and before
/csvsim/command. All line entries are available. /csvsim/before line overwrites
/csvsim/before first line.

/csvsim/before first line=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed instead of /csvsim/before line for the first accepted data
line. All line entries are available. This key has to be set after /csvsim/before line.

/csvsim/command=⟨code⟩ (no default, initially \csvline)
Sets the ⟨code⟩ to be executed for every accepted data line. It is executed between
/csvsim/before line and /csvsim/after line→ P. 17. /csvsim/command describes the
main processing of the line entries. \csvreader→ P. 9 sets /csvsim/command as mandatory
parameter.

16

/csvsim/after line=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed for every accepted data line after /csvsim/command→ P. 16.
All line entries are still available. /csvsim/after line overwrites /csvsim/after first
line.

/csvsim/after first line=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed instead of /csvsim/after line for the first accepted data
line. All line entries are still available. This key has to be set after /csvsim/after line.

/csvsim/after reading=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after the CSV file is closed.

The following example illustrates the sequence of command execution. Note that
/csvsim/command→ P. 16 is set by the mandatory last parameter of \csvreader→ P. 9.

\csvreader[
before reading = \meta{before reading}\\,
after head = \meta{after head},
before filter = \\\meta{before filter},
late after head = \meta{late after head},
late after line = \meta{late after line},
late after first line = \meta{late after first line},
late after last line = \\\meta{late after last line},
before line = \meta{before line},
before first line = \meta{before first line},
after line = \meta{after line},
after first line = \meta{after first line},
after reading = \\\meta{after reading}

]{grade.csv}{name=\name}{\textbf{\name}}%

⟨before reading⟩
⟨after head⟩
⟨before filter⟩⟨late after head⟩⟨before first line⟩Maier⟨after first line⟩
⟨before filter⟩⟨late after line⟩⟨before line⟩Huber⟨after line⟩
⟨before filter⟩⟨late after line⟩⟨before line⟩Weißbäck⟨after line⟩
⟨before filter⟩⟨late after line⟩⟨before line⟩Bauer⟨after line⟩
⟨late after last line⟩
⟨after reading⟩

Additional command definition keys are provided for the supported tables, see Section 3.6 from
page 26.

17

3.2 Header Processing and Column Name Assignment

/csvsim/head=true|false (default true, initially true)
If this key is set, the first line of the CSV file is treated as a header line which can be used
for column name assignments.

/csvsim/no head (no value)
Abbreviation for head=false, i. e. the first line of the CSV file is treated as data line.
Note that this option cannot be used in combination with the \csvauto... commands like
\csvautotabular→ P. 10, etc. Instead, there are star variants like \csvautotabular*→ P. 10

to process files without header line. See Section 5.5 on page 48 for examples.
/csvsim/column names={⟨assignments⟩} (no default, initially empty)

Adds some new ⟨assignments⟩ of macros to columns in key value syntax. Existing assign-
ments are kept.
The ⟨assignments⟩ are given as comma separated list of key value pairs ⟨name⟩=⟨macro⟩.
Here, ⟨name⟩ is an entry from the header line or the arabic number of the addressed column.
⟨macro⟩ is some TEX macro which gets the content of the addressed column.

column names = {name=\surname, givenname=\firstname, grade=\grade}

/csvsim/column names reset (no value)
Clears all assignments of macros to columns.

/csvsim/head to column names=true|false (default true, initially false)
If this key is set, the entries of the header line are used automatically as macro names for
the columns. This option can be used only, if the header entries do not contain spaces and
special characters to be used as feasible LATEX macro names. Note that the macro definition
is global and may therefore override existing macros for the rest of the document. Adding
/csvsim/head to column names prefix may help to avoid unwanted overrides.

N 2019-07-16 /csvsim/head to column names prefix=⟨text⟩ (no default, initially empty)
The given ⟨text⟩ is prefixed to the name of all macros generated by /csvsim/head to
column names. For example, if you use the settings

head to column names,
head to column names prefix=MY,

a header entry section will generate the corresponding macro \MYsection instead of de-
stroying the standard LATEX \section macro.

18

3.3 Consistency Check

/csvsim/check column count=true|false (default true, initially true)
This key defines, wether the number of entries in a data line is checked against an expected
value or not.
If true, every non consistent line is ignored without announcement.
If false, every line is accepted and may produce an error during further processing.

/csvsim/no check column count (no value)
Abbreviation for check column count=false.

U 2021-06-24 /csvsim/column count=⟨number⟩ (no default, initially 0)
Sets the ⟨number⟩ of feasible entries per data line. If /csvsim/column count is set to 0,
the number of entries of the first non-empty line determines the column count (automatic
detection).
This setting is only useful in connection with /csvsim/no head→ P. 18, since ⟨number⟩ would
be replaced by the number of entries in the header line otherwise.

/csvsim/on column count error=⟨code⟩ (no default, initially empty)
⟨code⟩ to be executed for unfeasible data lines.

/csvsim/warn on column count error (style, no value)
Display of a warning for unfeasible data lines.

19

3.4 Filtering

Applying a filter means that data lines are only processed / displayed, if they fulfill a given
condition.

The following string compare filters /csvsim/filter strcmp and /csvsim/filter equal are
identical by logic, but differ in implementation.
/csvsim/filter strcmp={⟨stringA⟩}{⟨stringB⟩} (style, no default)

Only lines where ⟨stringA⟩ and ⟨stringB⟩ are equal after expansion are accepted. The
implementation is done with \ifcsvstrcmp→ P. 36.

% \usepackage{booktabs}
\csvreader[

head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
filter strcmp = {\gender}{f}, %>> list only female persons <<

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

1 Huber, Anna 23456 2.3
2 Bauer, Maria 19202 3.3

/csvsim/filter not strcmp={⟨stringA⟩}{⟨stringB⟩} (style, no default)
Only lines where ⟨stringA⟩ and ⟨stringB⟩ are not equal after expansion are accepted. The
implementation is done with \ifcsvnotstrcmp→ P. 36.

/csvsim/filter equal={⟨stringA⟩}{⟨stringB⟩} (style, no default)
Only lines where ⟨stringA⟩ and ⟨stringB⟩ are equal after expansion are accepted. The
implementation is done with the ifthen package (loading required!).

/csvsim/filter not equal={⟨stringA⟩}{⟨stringB⟩} (style, no default)
Only lines where ⟨stringA⟩ and ⟨stringB⟩ are not equal after expansion are accepted. The
implementation is done with the ifthen package (loading required!).

N 2021-06-25 /csvsim/filter fp=⟨floating point expression⟩ (no default)
Only data lines which fulfill a LATEX3 ⟨floating point expression⟩ (l3fp, xfp) are accepted.

% \usepackage{booktabs}
\csvreader[

head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,

%>> list only matriculation numbers greater than 20000
% and grade less than 4.0 <<

filter fp = { \matriculation > 20000 && \grade < 4.0 },
]{grade.csv}{}{%

\thecsvrow & \slshape\name, \givenname & \matriculation & \grade
}

Name Matr Grade

1 Huber, Anna 23456 2.3

20

N 2021-06-25 /csvsim/filter bool=⟨boolean expression⟩ (no default)
Only data lines which fulfill a LATEX3 ⟨boolean expression⟩ are accepted. Note that such
an ⟨boolean expression⟩ needs expl3 code. To preprocess the data line before testing the
⟨condition⟩, the option key /csvsim/before filter→ P. 16 can be used.

% For convenience, we save the filter
\ExplSyntaxOn
%>> list only matriculation numbers greater than 20000, list only men <<
\csvstyle{myfilter}

{
filter~bool =

{
\int_compare_p:n { \matriculation > 20000 } &&
\str_compare_p:eNe { \gender } = { m }

}
}

\ExplSyntaxOff

\csvreader[
head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
myfilter

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

1 Weißbäck, Werner 34567 5.0

N 2021-06-25 \csvfilterbool{⟨key⟩}{⟨boolean expression⟩}
Defines a new l3keys meta key which applies /csvsim/filter bool with the given ⟨boolean
expression⟩.

% For convenience, we save the filter
\ExplSyntaxOn
%>> list only matriculation numbers greater than 20000, list only men <<
\csvfilterbool{myfilter}

{
\int_compare_p:n { \matriculation > 20000 } &&
\str_compare_p:eNe { \gender } = { m }

}
\ExplSyntaxOff

\csvreader[
head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
myfilter

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

1 Weißbäck, Werner 34567 5.0

21

N 2016-07-01 /csvsim/filter test=⟨condition⟩ (no default)
Only data lines which fulfill a logical ⟨condition⟩ are accepted. For the ⟨condition⟩, every
single test normally employed like

\iftest{some testing}{true}{false}

can be used as

filter test=\iftest{some testing},

For \iftest, tests from the etoolbox package like \ifnumcomp, \ifdimgreater, etc. and
from Section 4 on page 36 can be used. Also, arbitrary own macros fulfilling this signature
can be applied.

% \usepackage{etoolbox,booktabs}
\csvreader[

head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
%>> list only matriculation numbers greater than 20000 <<
filter test = \ifnumgreater{\matriculation}{20000},

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

1 Huber, Anna 23456 2.3
2 Weißbäck, Werner 34567 5.0

N 2016-07-01 /csvsim/filter expr=⟨boolean expression⟩ (no default)
Only data lines which fulfill a ⟨boolean expression⟩ are accepted. Every ⟨boolean expression⟩
from the etoolbox package is feasible (package loading required!). To preprocess the data
line before testing the ⟨condition⟩, the option key /csvsim/before filter→ P. 16 can be
used.

% \usepackage{etoolbox,booktabs}
\csvreader[

head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
%>> list only matriculation numbers greater than 20000
% and grade less than 4.0 <<
filter expr = { test{\ifnumgreater{\matriculation}{20000}}

and test{\ifdimless{\grade pt}{4.0pt}} },
]{grade.csv}{}{%

\thecsvrow & \slshape\name, \givenname & \matriculation & \grade
}

Name Matr Grade

1 Huber, Anna 23456 2.3

22

N 2016-07-01 /csvsim/filter ifthen=⟨boolean expression⟩ (no default)
Only data lines which fulfill a ⟨boolean expression⟩ are accepted. For the ⟨boolean
expression⟩, every term from the ifthen package is feasible (package loading required!).
To preprocess the data line before testing the ⟨condition⟩, the option key /csvsim/before
filter→ P. 16 can be used.

% \usepackage{ifthen,booktabs}
\csvreader[

head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
%>> list only female persons <<
filter ifthen=\equal{\gender}{f},

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

1 Huber, Anna 23456 2.3
2 Bauer, Maria 19202 3.3

/csvsim/no filter (no value, initially set)
Clears a set filter.

/csvsim/filter accept all (no value, initially set)
Alias for no filter. All consistent data lines are accepted.

/csvsim/filter reject all (no value)
All data line are ignored.

N 2016-07-01 /csvsim/full filter=⟨code⟩ (no default)
Technically, this key is an alias for /csvsim/before filter→ P. 16. Philosophi-
cally, /csvsim/before filter→ P. 16 computes something before a filter condition
is set, but /csvsim/full filter should implement the full filtering. Especially,
\csvfilteraccept→ P. 14 or \csvfilterreject→ P. 14 should be set inside the ⟨code⟩.

% \usepackage{etoolbox,booktabs}
\csvreader[

head to column names,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,
%>> list only matriculation numbers greater than 20000
% and grade less than 4.0 <<
full filter = \ifnumgreater{\matriculation}{20000}

{\ifdimless{\grade pt}{4.0pt}{\csvfilteraccept}{\csvfilterreject}}
{\csvfilterreject},

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

1 Huber, Anna 23456 2.3

23

3.5 Line Range

Applying a line range means to select certain line numbers to be displayed. These line numbers
are not necessarily line numbers of the input file, see \thecsvinputline→ P. 15, but line numbers
of type \thecsvrow→ P. 15.

For example, if a filter was applied, see Section 3.4 on page 20, and 42 lines are accepted, a
range could select the first 20 of them or line 10 to 30 of the accepted lines.

N 2021-06-29 /csvsim/range={⟨range1 ⟩,⟨range2 ⟩,⟨range3 ⟩,... } (no default, initially empty)
Defines a comma separated list of line ranges. If a line number \thecsvrow→ P. 15 satisfies
one or more of the given ⟨range1 ⟩, ⟨range2 ⟩, . . . , the corresponding line is processed and
displayed. If /csvsim/range is set to empty, all lines are accepted.
Every ⟨range⟩ can corresponds to one of the following variants:
⟨a⟩-⟨b⟩ meaning line numbers ⟨a⟩ to ⟨b⟩.
⟨a⟩- meaning line numbers ⟨a⟩ to \c_max_int=2 147 483 647.
-⟨b⟩ meaning line numbers 1 to ⟨b⟩.
- meaning line numbers 1 to 2 147 483 647 (inefficient; don’t use).
⟨a⟩ meaning line numbers ⟨a⟩ to ⟨a⟩ (i.e. only ⟨a⟩).
⟨a⟩+⟨d⟩ meaning line numbers ⟨a⟩ to ⟨a⟩+⟨d⟩−1.
⟨a⟩+ meaning line numbers ⟨a⟩ to ⟨a⟩ (i.e. only ⟨a⟩).
+⟨d⟩ meaning line numbers 1 to ⟨d⟩.
+ meaning line numbers 1 to 1 (i.e. only 1; weird).

% \usepackage{booktabs}
\csvreader[

head to column names,
range = 2-3,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

2 Huber, Anna 23456 2.3
3 Weißbäck, Werner 34567 5.0

% \usepackage{booktabs}
\csvreader[

head to column names,
range = 3-,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

3 Weißbäck, Werner 34567 5.0
4 Bauer, Maria 19202 3.3

24

% \usepackage{booktabs}
\csvreader[

head to column names,
range = 2+2,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

2 Huber, Anna 23456 2.3
3 Weißbäck, Werner 34567 5.0

% \usepackage{booktabs}
\csvreader[

head to column names,
range = {2,4},
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

2 Huber, Anna 23456 2.3
4 Bauer, Maria 19202 3.3

To select the last n lines, you have to know or count the line numbers first. The following
example displays the last three line numbers:

% \usepackage{booktabs}
\csvreader{grade.csv}{}{}% count line numbers
\csvreader[

head to column names,
range = {\thecsvrow-2}-,
tabular = llll,
table head = \toprule & \bfseries Name & \bfseries Matr & \bfseries Grade\\\midrule,
table foot = \bottomrule,

]{grade.csv}{}{%
\thecsvrow & \slshape\name, \givenname & \matriculation & \grade

}

Name Matr Grade

2 Huber, Anna 23456 2.3
3 Weißbäck, Werner 34567 5.0
4 Bauer, Maria 19202 3.3

25

3.6 Table Support

/csvsim/tabular=⟨table format⟩ (style, no default)
Surrounds the CSV processing with \begin{tabular}{⟨table format⟩} at begin and
with \end{tabular} at end. Additionally, the commands defined by the key val-
ues of /csvsim/before table, /csvsim/table head, /csvsim/table foot, and
/csvsim/after table are executed at the appropriate places.

/csvsim/centered tabular=⟨table format⟩ (style, no default)
Like /csvsim/tabular but inside an additional center environment.

/csvsim/longtable=⟨table format⟩ (style, no default)
Like /csvsim/tabular but for the longtable environment. This requires the package
longtable (not loaded automatically).

/csvsim/tabbing (style, no value)
Like /csvsim/tabular but for the tabbing environment.

/csvsim/centered tabbing (style, no value)
Like /csvsim/tabbing but inside an additional center environment.

/csvsim/no table (style, no value)
Deactivates tabular, longtable, and tabbing.

/csvsim/before table=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed before \begin{tabular} or before \begin{longtable} or
before \begin{tabbing}, respectively.

/csvsim/table head=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after \begin{tabular} or after \begin{longtable} or after
\begin{tabbing}, respectively.

/csvsim/table foot=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed before \end{tabular} or before \end{longtable} or before
\end{tabbing}, respectively.

/csvsim/after table=⟨code⟩ (no default, initially empty)
Sets the ⟨code⟩ to be executed after \end{tabular} or after \end{longtable} or after
\end{tabbing}, respectively.

26

The following auto options are the counterparts for the respective quick overview commands like
\csvautotabular→ P. 10. They are listed for completeness, but are unlikely to be used directly.
/csvsim/autotabular=⟨file name⟩ (no default)
/csvsim/autotabular*=⟨file name⟩ (no default)

Reads the whole CSV file denoted ⟨file name⟩ with an automated formatting. The star
variant treats the first line as data line and not as header line.

/csvsim/autolongtable=⟨file name⟩ (no default)
/csvsim/autolongtable*=⟨file name⟩ (no default)

Reads the whole CSV file denoted ⟨file name⟩ with an automated formatting using the
required longtable package. The star variant treats the first line as data line and not as
header line.

/csvsim/autobooktabular=⟨file name⟩ (no default)
/csvsim/autobooktabular*=⟨file name⟩ (no default)

Reads the whole CSV file denoted ⟨file name⟩ with an automated formatting using the
required booktabs package. The star variant treats the first line as data line and not as
header line.

/csvsim/autobooklongtable=⟨file name⟩ (no default)
/csvsim/autobooklongtable*=⟨file name⟩ (no default)

Reads the whole CSV file denoted ⟨file name⟩ with an automated formatting using the
required booktabs and longtable packages. The star variant treats the first line as data
line and not as header line.

27

3.7 Special Characters

Be default, the CSV content is treated like normal LATEX text, see Subsection 5.3 on page 43.
But, TEX special characters of the CSV content may also be interpreted as normal characters
(\catcode 12, other), if one or more of the following options are used.

/csvsim/respect tab=true|false (default true, initially false)
If this key is set, every tabulator sign inside the CSV content is a normal character.

/csvsim/respect percent=true|false (default true, initially false)

If this key is set, every percent sign "%" inside the CSV content is a normal character.

/csvsim/respect sharp=true|false (default true, initially false)
If this key is set, every sharp sign "#" inside the CSV content is a normal character.

/csvsim/respect dollar=true|false (default true, initially false)

If this key is set, every dollar sign "$" inside the CSV content is a normal character.

/csvsim/respect and=true|false (default true, initially false)
If this key is set, every and sign "&" inside the CSV content is a normal character.

/csvsim/respect backslash=true|false (default true, initially false)

If this key is set, every backslash sign "\" inside the CSV content is a normal character.

/csvsim/respect underscore=true|false (default true, initially false)
If this key is set, every underscore sign "_" inside the CSV content is a normal character.

/csvsim/respect tilde=true|false (default true, initially false)
If this key is set, every tilde sign "~" inside the CSV content is a normal character.

/csvsim/respect circumflex=true|false (default true, initially false)
If this key is set, every circumflex sign "^" inside the CSV content is a normal character.

/csvsim/respect leftbrace=true|false (default true, initially false)

If this key is set, every left brace sign "{" inside the CSV content is a normal character.

/csvsim/respect rightbrace=true|false (default true, initially false)

If this key is set, every right brace sign "}" inside the CSV content is a normal character.

/csvsim/respect all (style, no value, initially unset)
Set all special characters from above to normal characters. This means a quite verbatim
interpretation of the CSV content.

/csvsim/respect none (style, no value, initially set)
Do not change any special character from above to normal character.

28

3.8 Separators

/csvsim/separator=⟨sign⟩ (no default, initially comma)
Sets the ⟨sign⟩ which is treates as separator between the data values of a data line. Feasible
values are:

• comma: This is the initial value with ’,’ as separator.

• semicolon: Sets the separator to ’;’.

% \usepackage{tcolorbox} for tcbverbatimwrite
\begin{tcbverbatimwrite}{testsemi.csv}

name;givenname;matriculation;gender;grade
Maier;Hans;12345;m;1.0
Huber;Anna;23456;f;2.3
Weißbäck;Werner;34567;m;5.0

\end{tcbverbatimwrite}

\csvautobooktabular[separator=semicolon]{testsemi.csv}

name givenname matriculation gender grade

Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0

• pipe: Sets the separator to ’|’.

% \usepackage{tcolorbox} for tcbverbatimwrite
\begin{tcbverbatimwrite}{pipe.csv}

name|givenname|matriculation|gender|grade
Maier|Hans|12345|m|1.0
Huber|Anna|23456|f|2.3
Weißbäck|Werner|34567|m|5.0

\end{tcbverbatimwrite}

\csvautobooktabular[separator=pipe]{pipe.csv}

name givenname matriculation gender grade

Huber Anna 23456 f 2.3
Weißbäck Werner 34567 m 5.0

• tab: Sets the separator to the tabulator sign. Automatically, /csvsim/respect
tab→ P. 28 is set also.

29

3.9 Miscellaneous

/csvsim/every csv (style, initially empty)
A meta key (style) definition which is used for every following CSV file. This definition can
be overwritten with user code.

% Sets a warning message for unfeasible data lines.
\csvstyle{every csv}{warn on column count error}

/csvsim/default (style)
A style definition which is used for every following CSV file which resets all settings to
default values4. This key should not be used or changed by the user if there is not a really
good reason (and you know what you do).

/csvsim/file=⟨file name⟩ (no default, initially unknown.csv)
Sets the ⟨file name⟩ of the CSV file to be processed. \csvreader→ P. 9 sets this option by a
mandatory parameter.

/csvsim/preprocessed file=⟨file name⟩ (no default, initially \jobname_sorted.csv)
Sets the ⟨file name⟩ of the CSV file which is the output of a preprocessor.

/csvsim/preprocessor=⟨macro⟩ (no default)
Defines a preprocessor for the given CSV file. The ⟨macro⟩ has to have two mandatory
arguments. The first argument is the original CSV file which is set by /csvsim/file. The
second argument is the preprocessed CSV file which is set by /csvsim/preprocessed file.
Typically, the ⟨macro⟩ may call an external program which preprocesses the original CSV
file (e. g. sorting the file) and creates the preprocessed CSV file. The later file is used by
\csvreader→ P. 9 or \csvloop→ P. 10.

\newcommand{\mySortTool}[2]{%
% call to an external program to sort file #1 with resulting file #2

}

\csvreader[%
preprocessed file = \jobname_sorted.csv,
preprocessor = \mySortTool,

]{some.csv}{}{%
% do something

}

See Subsection 3.10 on page 31 for a concrete sorting preprocessing implemented with an
external tool.

/csvsim/no preprocessing (style, no value, initially set)
Clears any preprocessing, i. e. preprocessing is switched of.

4default is used because of the global nature of most settings.

30

3.10 Sorting

TEX/LATEX was not born under a sorting planet. csvsimple-l3 provides no sorting of data lines
by LATEX-methods since sorting can be done much faster and much better by external tools.

First, one should consider the appropriate place for sorting:

• CSV files may be sorted by a tool before the LATEX document is processed at all. If the
CSV data is not likely to change, this is the most efficient method.

• CSV files may be sorted by a tool every time before the LATEX document is compiled. This
could be automated by a shell script or some processing tool like arara.

• CSV files may be sorted on-the-fly by a tool during compilation of a LATEX document.
This is the most elegant but not the most efficient way.

The first two methods are decoupled from anything concerning csvsimple-l3. For the third
method, the /csvsim/preprocessor→ P. 30 option is made for. This allows to access an external
tool for sorting. Which tool is your choice.

CSV-Sorter was written as a companion tool for csvsimple. It is an open source Java command-
line tool for sorting CSV files, available at
https://T-F-S.github.io/csvsorter/ or https://github.com/T-F-S/csvsorter

It can be used for all three sorting approaches described above. There is special support for
on-the-fly sorting with CSV-Sorter using the following options.

1. To use the sorting options, you have to install CSV-Sorter before!

2. You have to give permission to call external tools during compilation, i. e. the
command-line options for latex have to include -shell-escape.

/csvsim/csvsorter command=⟨system command⟩ (no default, initially csvsorter)
The ⟨system command⟩ specifies the system call for CSV-Sorter (without the options).
If CSV-Sorter was completely installed following its documentation, there is nothing to
change here. If the csvsorter.jar file is inside the same directory as the LATEX source file,
you may configure:

\csvset{csvsorter command=java -jar csvsorter.jar}

/csvsim/csvsorter configpath=⟨path⟩ (no default, initially .)
Sorting with CSV-Sorter is done using XML configuration files. If these files are not stored
inside the same directory as the LATEX source file, a ⟨path⟩ to access them can be configured:

\csvset{csvsorter configpath=xmlfiles}

Here, the configuration files would be stored in a subdirectory named xmlfiles.
/csvsim/csvsorter log=⟨file name⟩ (no default, initially csvsorter.log)

Sets the log file of CSV-Sorter to the given ⟨file name⟩.

\csvset{csvsorter log=outdir/csvsorter.log}

Here, the log file is written to a subdirectory named outdir.

31

https://T-F-S.github.io/csvsorter/
https://github.com/T-F-S/csvsorter

/csvsim/csvsorter token=⟨file name⟩ (no default, initially \jobname.csvtoken)
Sets ⟨file name⟩ as token file. This is an auxiliary file which communicates the success of
CSV-Sorter to csvsimple.

\csvset{csvsorter log=outdir/\jobname.csvtoken}

Here, the token file is written to a subdirectory named outdir.
/csvsim/sort by=⟨file name⟩ (style, initially unset)

The ⟨file name⟩ denotes an XML configuration file for CSV-Sorter. Setting this option
inside \csvreader→ P. 9 or \csvloop→ P. 10 will issue a system call to CSV-Sorter.

• CSV-Sorter uses the given CSV file as input file.
• CSV-Sorter uses ⟨file name⟩ as configuration file.
• The output CSV file is denoted by /csvsim/preprocessed file→ P. 30 which is by

default \jobname_sorted.csv. This output file is this actual file processed by
\csvreader→ P. 9 or \csvloop→ P. 10.

• CSV-Sorter also generates a log file denoted by /csvsim/csvsorter log→ P. 31 which
is by default csvsorter.log.

First example: To sort our example grade.csv file according to name and givenname, we
use the following XML configuration file. Since CSV-Sorter uses double quotes as default
brackets for column values, we remove bracket recognition to avoid a clash with the escaped
umlauts of the example CSV file.

Configuration file «namesort.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<bracket empty="true" />
<sortlines>

<column name="name" order="ascending" type="string"/>
<column name="givenname" order="ascending" type="string"/>

</sortlines>
</csv>

% \usepackage{booktabs}
\csvreader[

head to column names,
sort by = namesort.xml,
tabular = >{\color{red}}lllll,
table head = \toprule Name & Given Name & Matriculation & Gender & Grade\\\midrule,
table foot = \bottomrule

]{grade.csv}{}{%
\csvlinetotablerow

}

Name Given Name Matriculation Gender Grade

Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weißbäck Werner 34567 m 5.0

32

Second example: To sort our example grade.csv file according to grade, we use the
following XML configuration file. Further, persons with the same grade are sorted by name
and givenname. Since CSV-Sorter uses double quotes as default brackets for column values,
we remove bracket recognition to avoid a clash with the escaped umlauts of the example
CSV file.

Configuration file «gradesort.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<bracket empty="true" />
<sortlines>

<column name="grade" order="ascending" type="double"/>
<column name="name" order="ascending" type="string"/>
<column name="givenname" order="ascending" type="string"/>

</sortlines>
</csv>

% \usepackage{booktabs}
\csvreader[

head to column names,
sort by = gradesort.xml,
tabular = llll>{\color{red}}l,
table head = \toprule Name & Given Name & Matriculation & Gender & Grade\\\midrule,
table foot = \bottomrule

]{grade.csv}{}{%
\csvlinetotablerow

}

Name Given Name Matriculation Gender Grade

Huber Anna 23456 f 2.3
Bauer Maria 19202 f 3.3
Weißbäck Werner 34567 m 5.0

33

Third example: To generate a matriculation/grade list, we sort our example grade.csv
file using the following XML configuration file. Again, since CSV-Sorter uses double quotes
as default brackets for column values, we remove bracket recognition to avoid a clash with
the escaped umlauts of the example CSV file.

Configuration file «matriculationsort.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<bracket empty="true" />
<sortlines>

<column name="matriculation" order="ascending" type="integer"/>
</sortlines>

</csv>

% \usepackage{booktabs}
\csvreader[

head to column names,
sort by = matriculationsort.xml,
tabular = >{\color{red}}ll,
table head = \toprule Matriculation & Grade\\\midrule,
table foot = \bottomrule

]{grade.csv}{}{%
\matriculation & \grade

}

Matriculation Grade

19202 3.3
23456 2.3
34567 5.0

34

/csvsim/new sorting rule={⟨name⟩}{⟨file name⟩} (style, initially unset)
This is a convenience option to generate a new shortcut for often used /csvsim/sort
by→ P. 32 applications. It also adds a more semantic touch. The new shortcut option is

sort by ⟨name⟩ which expands to sort by={⟨file name⟩} .

Consider the following example:

\csvautotabular[sort by=namesort.xml]{grade.csv}

name givenname matriculation gender grade
Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weißbäck Werner 34567 m 5.0

A good place for setting up a new sorting rule would be inside the preamble:

\csvset{new sorting rule={name}{namesort.xml}}

Now, we can use the new rule:

\csvautotabular[sort by name]{grade.csv}

name givenname matriculation gender grade
Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weißbäck Werner 34567 m 5.0

N 2021-06-28 \csvsortingrule{⟨name⟩}{⟨file name⟩}
Identical in function to /csvsim/new sorting rule, see above. A good place for setting
up a new sorting rule would be inside the preamble:

\csvsortingrule{name}{namesort.xml}

Now, we can use the new rule:

\csvautotabular[sort by name]{grade.csv}

name givenname matriculation gender grade
Huber Anna 23456 f 2.3
Maier Hans 12345 m 1.0
Weißbäck Werner 34567 m 5.0

35

4 String and Number Tests
The following string tests are complementing the string tests from packages like etoolbox. They
all do the same, i.e., comparing expanded strings for equality. To some extent, they are provided
for backward compatibility.

• \ifcsvstrcmp may be the most efficient method, because it uses the native compiler string
comparison (if available).

• \ifcsvstrequal does not rely on a compiler. It also is the fallback implementation for
\ifcsvstrcmp, if there is no native comparison method.

• \ifcsvprostrequal is possibly more failsafe than the other two string tests. It may be
used, if strings contain dirty things like \textbf{A}.

N 2016-07-01
U 2021-06-28

\ifcsvstrcmp{⟨stringA⟩}{⟨stringB⟩}{⟨true⟩}{⟨false⟩}
Compares two strings and executes ⟨true⟩ if they are equal, and ⟨false⟩ otherwise. The
comparison is done using \str_compare:eNeTF. \ifcsvstrcmp is expandable.

N 2016-07-01
U 2021-06-28

\ifcsvnotstrcmp{⟨stringA⟩}{⟨stringB⟩}{⟨true⟩}{⟨false⟩}
Compares two strings and executes ⟨true⟩ if they are not equal, and ⟨false⟩ otherwise. The
implementation uses \ifcsvstrcmp. \ifcsvstrcmp is expandable.

N 2016-07-01
U 2021-06-28

\ifcsvstrequal{⟨stringA⟩}{⟨stringB⟩}{⟨true⟩}{⟨false⟩}
Compares two strings and executes ⟨true⟩ if they are equal, and ⟨false⟩ otherwise. The
strings are expanded and the comparison is done using \tl_if_eq:NNTF. \ifcsvstrequal
is not expandable.

N 2016-07-01
U 2021-06-28

\ifcsvprostrequal{⟨stringA⟩}{⟨stringB⟩}{⟨true⟩}{⟨false⟩}
Compares two strings and executes ⟨true⟩ if they are equal, and ⟨false⟩ otherwise.
The strings are expanded with \protected@edef in the test, i.e. parts of the strings
which are protected stay unexpanded. The comparison is done using \tl_if_eq:NNTF.
\ifcsvprostrequal is not expandable.

The following number tests are wrappers for corresponding LATEX3 conditionals.
N 2021-06-28 \ifcsvfpcmp{⟨floating point expression⟩}{⟨true⟩}{⟨false⟩}

Evaluates the given ⟨floating point expression⟩ and executes ⟨true⟩ or ⟨false⟩ appropriately.
The evaluation is done using \fp_compare:nTF. \ifcsvfpcmp is expandable.

N 2021-06-28 \ifcsvintcmp{⟨integer expression⟩}{⟨true⟩}{⟨false⟩}
Evaluates the given ⟨integer expression⟩ and executes ⟨true⟩ or ⟨false⟩ appropriately. The
evaluation is done using \int_compare:nTF. \ifcsvintcmp is expandable.

36

5 Examples

5.1 A Serial Letter

In this example, a serial letter is to be written to all persons with addresses from the following
CSV file. Deliberately, the file content is not given in very pretty format.

CSV file «address.csv»
name,givenname,gender,degree,street,zip,location,bonus
Maier,Hans,m,,Am Bachweg 17,10010,Hopfingen,20

% next line with a comma in curly braces
Huber,Erna,f,Dr.,{Moosstraße 32, Hinterschlag},10020,Örtingstetten,30
Weißbäck,Werner,m,Prof. Dr.,Brauallee 10,10030,Klingenbach,40

% this line is ignored %
Siebener , Franz,m, , Blaumeisenweg 12 , 10040 , Pardauz , 50

% preceding and trailing spaces in entries are removed %
Schmitt,Anton,m,,{\AE{}lfred-Esplanade, T\ae{}g 37}, 10050,\OE{}resung,60

Firstly, we survey the file content quickly using \csvautotabular. As can be seen, unfeasible
lines are ignored automatically.

\tiny\csvautotabular{address.csv}

name givenname gender degree street zip location bonus
Huber Erna f Dr. Moosstraße 32, Hinterschlag 10020 Örtingstetten 30
Weißbäck Werner m Prof. Dr. Brauallee 10 10030 Klingenbach 40
Siebener Franz m Blaumeisenweg 12 10040 Pardauz 50
Schmitt Anton m Ælfred-Esplanade, Tæg 37 10050 Œresung 60

Now, we create the serial letter where every feasible data line produces an own page. Here,
we simulate the page by a tcolorbox (from the package tcolorbox). For the gender specific
salutations, an auxiliary macro \ifmale is introduced.

37

% this example requires the tcolorbox package
\newcommand{\ifmale}[2]{\ifcsvstrcmp{\gender}{m}{#1}{#2}}

\csvreader[head to column names]{address.csv}{}{%
\begin{tcolorbox}[colframe=DarkGray,colback=White,arc=0mm,width=(\linewidth-2pt)/2,

equal height group=letter,before=,after=\hfill,fonttitle=\bfseries,
adjusted title={Letter to \name}]

\ifcsvstrcmp{\degree}{}{\ifmale{Mr.}{Ms.}}{\degree}~\givenname~\name\\
\street\\\zip~\location
\tcblower
{\itshape Dear \ifmale{Sir}{Madam},}\\
we are pleased to announce you a bonus value of \bonus\%{}
which will be delivered to \location\ soon.\\\ldots

\end{tcolorbox}}

Letter to Huber

Dr. Erna Huber
Moosstraße 32, Hinterschlag
10020 Örtingstetten

Dear Madam,
we are pleased to announce you a bonus value
of 30% which will be delivered to Örtingstet-
ten soon.
. . .

Letter to Weißbäck

Prof. Dr. Werner Weißbäck
Brauallee 10
10030 Klingenbach

Dear Sir,
we are pleased to announce you a bonus value
of 40% which will be delivered to Klingen-
bach soon.
. . .

Letter to Siebener

Mr. Franz Siebener
Blaumeisenweg 12
10040 Pardauz

Dear Sir,
we are pleased to announce you a bonus value
of 50% which will be delivered to Pardauz
soon.
. . .

Letter to Schmitt

Mr. Anton Schmitt
Ælfred-Esplanade, Tæg 37
10050 Œresung

Dear Sir,
we are pleased to announce you a bonus value
of 60% which will be delivered to Œresung
soon.
. . .

38

5.2 A Graphical Presentation

For this example, we use some artificial statistical data given by a CSV file.
CSV file «data.csv»
land,group,amount
Bayern,A,1700
Baden-Württemberg,A,2300
Sachsen,B,1520
Thüringen,A,1900
Hessen,B,2100

Firstly, we survey the file content using \csvautobooktabular.

% needs the booktabs package
\csvautobooktabular{data.csv}

land group amount

Baden-Württemberg A 2300
Sachsen B 1520
Thüringen A 1900
Hessen B 2100

The amount values are presented in the following diagram by bars where the group classification
is given using different colors.

% This example requires the package tikz
\begin{tikzpicture}[Group/A/.style={left color=red!10,right color=red!20},

Group/B/.style={left color=blue!10,right color=blue!20}]
\csvreader[head to column names]{data.csv}{}{%

\begin{scope}[yshift=-\thecsvrow cm]
\path [draw,Group/\group] (0,-0.45)

rectangle node[font=\bfseries] {\amount} (\amount/1000,0.45);
\node[left] at (0,0) {\land};
\end{scope} }

\end{tikzpicture}

2300Baden-Württemberg

1520Sachsen

1900Thüringen

2100Hessen

39

It would be nice to sort the bars by length, i. e. to sort the CSV file by the amount column. If
the CSV-Sorter program is properly installed, see Subsection 3.10 on page 31, this can be done
with the following configuration file for CSV-Sorter:

Configuration file «amountsort.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<bracket empty="true" />
<sortlines>

<column name="amount" order="descending" type="double"/>
<column name="land" order="ascending" type="string"/>

</sortlines>
</csv>

Now, we just have to add an option sort by=amountsort.xml:

% This example requires the package tikz
% Also, the CSV-Sorter tool has to be installed
\begin{tikzpicture}[Group/A/.style={left color=red!10,right color=red!20},

Group/B/.style={left color=blue!10,right color=blue!20}]
\csvreader[head to column names,sort by=amountsort.xml]{data.csv}{}{%

\begin{scope}[yshift=-\thecsvrow cm]
\path [draw,Group/\group] (0,-0.45)

rectangle node[font=\bfseries] {\amount} (\amount/1000,0.45);
\node[left] at (0,0) {\land};
\end{scope} }

\end{tikzpicture}

2100Hessen

1900Thüringen

1700Bayern

1520Sachsen

40

Next, we create a pie chart by calling \csvreader twice. In the first step, the total sum of
amounts is computed, and in the second step the slices are drawn.

% Modified example from www.texample.net for pie charts
% This example needs the packages tikz, xcolor, calc
\definecolorseries{myseries}{rgb}{step}[rgb]{.95,.85,.55}{.17,.47,.37}
\resetcolorseries{myseries}%

% a pie slice
\newcommand{\slice}[4]{

\pgfmathsetmacro{\midangle}{0.5*#1+0.5*#2}
\begin{scope}

\clip (0,0) -- (#1:1) arc (#1:#2:1) -- cycle;
\colorlet{SliceColor}{myseries!!+}%
\fill[inner color=SliceColor!30,outer color=SliceColor!60] (0,0) circle (1cm);

\end{scope}
\draw[thick] (0,0) -- (#1:1) arc (#1:#2:1) -- cycle;
\node[label=\midangle:#4] at (\midangle:1) {};
\pgfmathsetmacro{\temp}{min((#2-#1-10)/110*(-0.3),0)}
\pgfmathsetmacro{\innerpos}{max(\temp,-0.5) + 0.8}
\node at (\midangle:\innerpos) {#3};

}

% sum of amounts
\csvreader[before reading=\def\mysum{0}]{data.csv}{amount=\amount}{%

\pgfmathsetmacro{\mysum}{\mysum+\amount}%
}

% drawing of the pie chart
\begin{tikzpicture}[scale=3]%
\def\mya{0}\def\myb{0}
\csvreader[head to column names]{data.csv}{}{%

\let\mya\myb
\pgfmathsetmacro{\myb}{\myb+\amount}
\slice{\mya/\mysum*360}{\myb/\mysum*360}{\amount}{\land}

}
\end{tikzpicture}%

Baden-Württemberg

2300

Sachsen

1520

Thüringen

1900

Hessen

2100

41

Finally, the filter option is demonstrated by separating the groups A and B. Every item is piled
upon the appropriate stack.

\newcommand{\drawGroup}[2]{%
\def\mya{0}\def\myb{0}
\node[below=3mm] at (2.5,0) {\bfseries Group #1};
\csvreader[head to column names,filter equal={\group}{#1}]{data.csv}{}{%

\let\mya\myb
\pgfmathsetmacro{\myb}{\myb+\amount}
\path[draw,top color=#2!25,bottom color=#2!50]

(0,\mya/1000) rectangle node{\land\ (\amount)} (5,\myb/1000);
}}

\begin{tikzpicture}
\fill[gray!75] (-1,0) rectangle (13,-0.1);
\drawGroup{A}{red}
\begin{scope}[xshift=7cm]
\drawGroup{B}{blue}
\end{scope}

\end{tikzpicture}

Group A

Baden-Württemberg (2300)

Thüringen (1900)

Group B

Hessen (2100)

42

5.3 Macro code inside the data

If needed, the data file may contain macro code.
CSV file «macrodata.csv»
type,description,content
M,A nice \textbf{formula}, $\displaystyle \int\frac{1}{x} = \ln|x|+c$
G,A \textcolor{red}{colored} ball, {\tikz \shadedraw [shading=ball] (0,0) circle (.5cm);}
M,\textbf{Another} formula, $\displaystyle \lim\limits_{n\to\infty} \frac{1}{n}=0$

Firstly, we survey the file content using \csvautobooktabular.

\csvautobooktabular{macrodata.csv}

type description content

G A colored ball
M Another formula lim

n→∞

1
n

= 0

\csvstyle{my enumerate}{head to column names,
before reading=\begin{enumerate},after reading=\end{enumerate}}

\csvreader[my enumerate]{macrodata.csv}{}{%
\item \description:\par\content}

\bigskip
Now, formulas only:
\csvreader[my enumerate,filter strcmp={\type}{M}]{macrodata.csv}{}{%

\item \description:\qquad\content}

1. A colored ball:

2. Another formula:
lim

n→∞

1
n

= 0

Now, formulas only:

1. Another formula: lim
n→∞

1
n

= 0

43

5.4 Tables with Number Formatting

We consider a file with numerical data which should be pretty-printed.
CSV file «data_numbers.csv»

month, dogs, cats
January, 12.50,12.3e5
February, 3.32, 8.7e3
March, 43, 3.1e6
April, 0.33, 21.2e4
May, 5.12, 3.45e6
June, 6.44, 6.66e6
July, 123.2,7.3e7
August, 12.3, 5.3e4
September,2.3, 4.4e4
October, 6.5, 6.5e6
November, 0.55, 5.5e5
December, 2.2, 3.3e3

The siunitx package provides a huge amount of formatting options for numbers. A good and
robust way to apply formatting by siunitx inside tables generated by csvsimple-l3 is the
\tablenum macro from siunitx.

% \usepackage{siunitx,array,booktabs}
\csvreader[

head to column names,
before reading = \begin{center}\sisetup{table-number-alignment=center},
tabular = cc,
table head = \toprule \textbf{Cats} & \textbf{Dogs} \\\midrule,
table foot = \bottomrule,
after reading = \end{center}

]{data_numbers.csv}{}{%
\tablenum[table-format=2.2e1]{\cats} & \tablenum{\dogs}

}

Cats Dogs

8.7 × 103 3.32
3.1 × 106 43

21.2 × 104 0.33
3.45 × 106 5.12
6.66 × 106 6.44
7.3 × 107 123.2
5.3 × 104 12.3
4.4 × 104 2.3
6.5 × 106 6.5
5.5 × 105 0.55
3.3 × 103 2.2

44

It is also possible to create on-the-fly tables using calcations of the given data. The following
example shows cat values bisected and dog values doubled.

% \usepackage{siunitx,array,booktabs,xfp}
\csvreader[

head to column names,
before reading = \begin{center}\sisetup{table-number-alignment=center},
tabular = cccc,
table head = \toprule \textbf{Cats} & \textbf{Dogs}

& \textbf{Halfcats} & \textbf{Doubledogs} \\\midrule,
table foot = \bottomrule,
after reading = \end{center}

]{data_numbers.csv}{}{%
\tablenum[table-format=2.2e1]{\cats} & \tablenum{\dogs}

& \tablenum[exponent-mode=scientific, round-precision=3,
round-mode=places, table-format=1.3e1]{\fpeval{\cats/2}}

& \tablenum{\fpeval{\dogs*2}}
}

Cats Dogs Halfcats Doubledogs

8.7 × 103 3.32 4.350 × 103 6.64
3.1 × 106 43 1.550 × 106 86

21.2 × 104 0.33 1.060 × 105 0.66
3.45 × 106 5.12 1.725 × 106 10.24
6.66 × 106 6.44 3.330 × 106 12.88
7.3 × 107 123.2 3.650 × 107 246.4
5.3 × 104 12.3 2.650 × 104 24.6
4.4 × 104 2.3 2.200 × 104 4.6
6.5 × 106 6.5 3.250 × 106 13
5.5 × 105 0.55 2.750 × 105 1.1
3.3 × 103 2.2 1.650 × 103 4.4

45

The siunitx package also provides a new column type S which can align material using a
number of different strategies. Special care is needed, if the first or the last column is to be
formatted with the column type S. The number detection of siunitx is disturbed by the line
reading code of csvsimple-l3 which actually is present at the first and last column. To avoid
this problem, the utilization of \tablenum is appropriate, see above. Alternatively, a very nifty
workaround suggested by Enrico Gregorio is to add an invisible dummy column with c@{} as
first column and @{}c as last column:

% \usepackage{siunitx,array,booktabs}
\csvreader[

head to column names,
before reading = \begin{center}\sisetup{table-number-alignment=center},
tabular = {c@{}S[table-format=2.2e1]S@{}c},
table head = \toprule & \textbf{Cats} & \textbf{Dogs} & \\\midrule,
table foot = \bottomrule,
after reading = \end{center}

]{data_numbers.csv}{}{%
& \cats & \dogs &

}

Cats Dogs

8.7 × 103 3.32
3.1 × 106 43

21.2 × 104 0.33
3.45 × 106 5.12
6.66 × 106 6.44
7.3 × 107 123.2
5.3 × 104 12.3
4.4 × 104 2.3
6.5 × 106 6.5
5.5 × 105 0.55
3.3 × 103 2.2

46

Now, the preceding table shall be sorted by the cats values. If the CSV-Sorter program is prop-
erly installed, see Subsection 3.10 on page 31, this can be done with the following configuration
file for CSV-Sorter:

Configuration file «catsort.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<bracket empty="true" />
<sortlines>

<column name="cats" order="ascending" type="double"/>
</sortlines>

</csv>

Now, we just have to add an option sort by=catsort.xml:

% \usepackage{siunitx,array,booktabs}
% Also, the CSV-Sorter tool has to be installed
\csvreader[

head to column names,
sort by = catsort.xml,
before reading = \begin{center}\sisetup{table-number-alignment=center},
tabular = lcc,
table head = \toprule \textbf{Month} & \textbf{Dogs} & \textbf{Cats} \\\midrule,
table foot = \bottomrule,
after reading = \end{center}

]{data_numbers.csv}{}{%
\month & \tablenum{\dogs} & \tablenum[table-format=2.2e1]{\cats}

}

Month Dogs Cats

February 3.32 8.7 × 103

September 2.3 4.4 × 104

August 12.3 5.3 × 104

April 0.33 21.2 × 104

November 0.55 5.5 × 105

January 12.50 12.3 × 105

March 43 3.1 × 106

May 5.12 3.45 × 106

October 6.5 6.5 × 106

June 6.44 6.66 × 106

July 123.2 7.3 × 107

47

5.5 CSV data without header line

CSV files with a header line are more semantic than files without header, but it’s no problem
to work with headless files.

For this example, we use again some artificial statistical data given by a CSV file but this time
without header.

CSV file «data_headless.csv»

Bayern,A,1700
Baden-Württemberg,A,2300
Sachsen,B,1520
Thüringen,A,1900
Hessen,B,2100

Note that you cannot use the /csvsim/no head→ P. 18 option for the auto tabular commands. If
no options are given, the first line is interpreted as header line which gives an unpleasant result:

\csvautobooktabular{data_headless.csv}

Bayern A 1700

Sachsen B 1520
Thüringen A 1900
Hessen B 2100

To get the expected result, the star versions of the auto tabular commands can be used.

\csvautobooktabular*{data_headless.csv}

Baden-Württemberg A 2300
Sachsen B 1520
Thüringen A 1900
Hessen B 2100

This example can be extended to insert a table head for this headless data:

\csvautobooktabular*[
table head=\toprule\bfseries Land & \bfseries Group

& \bfseries Amount\\\midrule
]{data_headless.csv}

Land Group Amount

Baden-Württemberg A 2300
Sachsen B 1520
Thüringen A 1900
Hessen B 2100

48

For the normal \csvreader→ P. 9 command, the /csvsim/no head→ P. 18 option should be ap-
plied. Of course, we cannot use /csvsim/head to column names→ P. 18 because there is no
head, but the columns can be addressed by their numbers:

\csvreader[
no head,
tabular = lr,
table head = \toprule\bfseries Land & \bfseries Amount\\\midrule,
table foot = \bottomrule]

{data_headless.csv}
{ 1=\land, 3=\amount }
{\land & \amount}

Land Amount

Baden-Württemberg 2300
Sachsen 1520
Thüringen 1900
Hessen 2100

49

5.6 Imported CSV data

If data is imported from other applications, there is not always a choice to format in comma
separated values with curly brackets.

Consider the following example data file:
CSV file «imported.csv»

"name";"address";"email"
"Frank Smith";"Yellow Road 123, Brimblsby";"frank.smith@organization.org"
"Mary May";"Blue Alley 2a, London";"mmay@maybe.uk"
"Hans Meier";"Hauptstraße 32, Berlin";"hans.meier@corporation.de"

If the CSV-Sorter program is properly installed, see Subsection 3.10 on page 31, this can be
transformed on-the-fly with the following configuration file for CSV-Sorter:

Configuration file «transform.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<bracket leftsymbol="doublequote" rightsymbol="doublequote" />
<delimiter signsymbol="semicolon" />
<outBracket leftsymbol="braceleft" rightsymbol="braceright" />
<outDelimiter signsymbol="comma" />

</csv>

Now, we just have to add an option sort by=transform.xml to transform the input data. Here,
we actually do not sort.

% \usepackage{booktabs,array}
% Also, the CSV-Sorter tool has to be installed
\newcommand{\Header}[1]{\normalfont\bfseries #1}

\csvreader[
sort by = transform.xml,
tabular = >{\itshape}ll>{\ttfamily}l,
table head = \toprule\Header{Name} & \Header{Address} & \Header{email}\\\midrule,
table foot = \bottomrule

]
{imported.csv}{}
{\csvlinetotablerow}

Name Address email

Mary May Blue Alley 2a, London mmay@maybe.uk
Hans Meier Hauptstraße 32, Berlin hans.meier@corporation.de

The file which is generated on-the-fly and which is actually read by csvsimple-l3 is the follow-
ing:

{name},{address},{email}
{Frank Smith},{Yellow Road 123, Brimblsby},{frank.smith@organization.org}
{Mary May},{Blue Alley 2a, London},{mmay@maybe.uk}
{Hans Meier},{Hauptstraße 32, Berlin},{hans.meier@corporation.de}

50

5.7 Encoding

If the CSV file has a different encoding than the LATEX source file, then special care is needed.

• The most obvious treatment is to change the encoding of the CSV file or the LATEX source
file to match the other one (every good editor supports such a conversion). This is the
easiest choice, if there a no good reasons against such a step. E.g., unfortunately, several
tools under Windows need the CSV file to be cp1252 encoded while the LATEX source file
may need to be utf8 encoded.

• The inputenc package allows to switch the encoding inside the document, say from utf8
to cp1252. Just be aware that you should only use pure ASCII for additional texts inside
the switched region.

% !TeX encoding=UTF-8
%
\usepackage[utf8]{inputenc}
%
\begin{document}
%
\inputencoding{latin1}% only use ASCII from here, e.g. "Uberschrift
\csvreader[%...

]{data_cp1252.csv}{%...
}{%
}

\inputencoding{utf8}
%
\end{document}

• As a variant to the last method, the encoding switch can be done using options from
csvsimple-l3:

% !TeX encoding=UTF-8
%
\usepackage[utf8]{inputenc}
%
\begin{document}
%
% only use ASCII from here, e.g. "Uberschrift
\csvreader[%...

before reading=\inputencoding{latin1},
after reading=\inputencoding{utf8},
]{data_cp1252.csv}{%...
}{%
}

%
\end{document}

51

• If the CSV-Sorter program is properly installed, see Subsection 3.10 on page 31, the CSV
file can be re-encoded on-the-fly with the following configuration file for CSV-Sorter:

Configuration file «encoding.xml»

<?xml version="1.0" encoding="UTF-8"?>
<csv>

<noHeader/>
<bracket empty="true"/>
<charset in="windows-1252" out="UTF-8"/>

</csv>

% !TeX encoding=UTF-8
%
\usepackage[utf8]{inputenc}
%
\begin{document}
%
\csvreader[%...

sort by=encoding.xml,
]{data_cp1252.csv}{%...
}{%
}

%
\end{document}

52

Index
after first line key, 17
after head key, 16
after line key, 17
after reading key, 17
after table key, 26
autobooklongtable key, 27
autobooklongtable* key, 27
autobooktabular key, 27
autobooktabular* key, 27
autolongtable key, 27
autolongtable* key, 27
autotabular key, 27
autotabular* key, 27

before filter key, 16
before first line key, 16
before line key, 16
before reading key, 16
before table key, 26

centered tabbing key, 26
centered tabular key, 26
check column count key, 19
column count key, 19
column names key, 18
column names reset key, 18
comma value, 29
command key, 16
\csvautobooklongtable, 11
\csvautobooklongtable*, 11
\csvautobooktabular, 11
\csvautobooktabular*, 11
\csvautolongtable, 11
\csvautolongtable*, 11
\csvautotabular, 10
\csvautotabular*, 10
\csvcoli, 9
\csvcolii, 9
\csvcoliii, 9
\csvfilteraccept, 14
\csvfilterbool, 21
\csvfilterreject, 14
\csviffirstrow, 14
\csvifoddrow, 13
\csvline, 14
\csvlinetotablerow, 14
\csvloop, 10
\csvnames, 12
\csvreader, 9
\csvset, 12
csvsorter command key, 31
csvsorter configpath key, 31
csvsorter log key, 31
csvsorter token key, 32
\csvsortingrule, 35
\csvstyle, 12

default key, 30

every csv key, 30

file key, 30
filter accept all key, 23
filter bool key, 21
filter equal key, 20
filter expr key, 22
filter fp key, 20
filter ifthen key, 23
filter not equal key, 20
filter not strcmp key, 20
filter reject all key, 23
filter strcmp key, 20
filter test key, 22
full filter key, 23

\g_csvsim_columncount_int, 15
\g_csvsim_inputline_int, 15
\g_csvsim_row_int, 15

head key, 18
head to column names key, 18
head to column names prefix key, 18

\ifcsvfirstrow, 14
\ifcsvfpcmp, 36
\ifcsvintcmp, 36
\ifcsvnotstrcmp, 36
\ifcsvoddrow, 13
\ifcsvprostrequal, 36
\ifcsvstrcmp, 36
\ifcsvstrequal, 36

Keys
/csvsim/

after first line, 17
after head, 16
after line, 17
after reading, 17
after table, 26
autobooklongtable, 27
autobooklongtable*, 27
autobooktabular, 27
autobooktabular*, 27
autolongtable, 27
autolongtable*, 27
autotabular, 27
autotabular*, 27
before filter, 16
before first line, 16
before line, 16
before reading, 16
before table, 26
centered tabbing, 26
centered tabular, 26

53

check column count, 19
column count, 19
column names, 18
column names reset, 18
command, 16
csvsorter command, 31
csvsorter configpath, 31
csvsorter log, 31
csvsorter token, 32
default, 30
every csv, 30
file, 30
filter accept all, 23
filter bool, 21
filter equal, 20
filter expr, 22
filter fp, 20
filter ifthen, 23
filter not equal, 20
filter not strcmp, 20
filter reject all, 23
filter strcmp, 20
filter test, 22
full filter, 23
head, 18
head to column names, 18
head to column names prefix, 18
late after first line, 16
late after head, 16
late after last line, 16
late after line, 16
longtable, 26
new sorting rule, 35
no check column count, 19
no filter, 23
no head, 18
no preprocessing, 30
no table, 26
on column count error, 19
preprocessed file, 30
preprocessor, 30
range, 24
respect all, 28
respect and, 28
respect backslash, 28
respect circumflex, 28
respect dollar, 28
respect leftbrace, 28
respect none, 28
respect percent, 28
respect rightbrace, 28
respect sharp, 28
respect tab, 28
respect tilde, 28
respect underscore, 28
separator, 29
sort by, 32
tabbing, 26
table foot, 26

table head, 26
tabular, 26
warn on column count error, 19

late after first line key, 16
late after head key, 16
late after last line key, 16
late after line key, 16
longtable key, 26

new sorting rule key, 35
no check column count key, 19
no filter key, 23
no head key, 18
no preprocessing key, 30
no table key, 26

on column count error key, 19

pipe value, 29
preprocessed file key, 30
preprocessor key, 30

range key, 24
respect all key, 28
respect and key, 28
respect backslash key, 28
respect circumflex key, 28
respect dollar key, 28
respect leftbrace key, 28
respect none key, 28
respect percent key, 28
respect rightbrace key, 28
respect sharp key, 28
respect tab key, 28
respect tilde key, 28
respect underscore key, 28

semicolon value, 29
separator key, 29
sort by key, 32

tab value, 29
tabbing key, 26
table foot key, 26
table head key, 26
tabular key, 26
\thecsvcolumncount, 15
\thecsvinputline, 15
\thecsvrow, 9, 15

Values
comma, 29
pipe, 29
semicolon, 29
tab, 29

warn on column count error key, 19

54

	Introduction
	Loading the Package
	First Steps

	Macros for the Processing of CSV Files
	Option Keys
	Command Definition
	Header Processing and Column Name Assignment
	Consistency Check
	Filtering
	Line Range
	Table Support
	Special Characters
	Separators
	Miscellaneous
	Sorting

	String and Number Tests
	Examples
	A Serial Letter
	A Graphical Presentation
	Macro code inside the data
	Tables with Number Formatting
	CSV data without header line
	Imported CSV data
	Encoding

	Index

