
Some Macros to Draw Crosswords∗

B Hamilton Kelly†

October 6, 2008

Abstract

The crossword environment is intended to be used to typeset crossword
puzzles for use in newsletters, etc.

Contents

1 Introduction 1
1.1 How to Specify Clue

Numbers 2

2 Definition of the Macros 3
2.1 Counters and Lengths . . 3
2.2 Reading and Writing the

Clues 5
2.3 Tabulating the Clues . . . 6

3 Creating the Grid 7
3.1 Macros used when Popu-

lating the Grid 8
3.2 The \clue Command . . 11

3.2.1 Finding the clue
number to be set
in the light 12

3.3 Populating the Cross-
word Grid 13

3.4 Setting the Grid 15

List of Figures

1 A Sample Crossword . 4

1 Introduction

As a small diversion from the statis-
tics of computer availability, lists of new
software, and the like, Computer Centre
Newsletters often include a crossword
for the amusement of their readers.1

The macros presented in this docu-

ment provide a LATEX method of type-
setting these, and also assist the com-
poser to ensure that the “grid” all
goes together correctly. The grid gen-
erated is the more usual form, with
black squares separating the “lights”

∗This file is v2.8b, dated 1996/12/06
†Especial thanks to my colleague Niel Kempson for many helpful suggestions, and to Frank

Mittelbach of the Johannes Gutenberg University of Mainz, who saved me two pages of code!
1That at RMCS has a bottle of wine as a prize!

1

which receive the answers to the clues.
Work is in hand to be able to han-
dle the Mephisto/Azed type of grid, in
which only thicker grid lines separate
the lights.

A sample crossword appears as Fig-
ure 1; I’ve left the grid blank for those
who want some intellectual exercise:
those who don’t can cheat by reading
the source listing at the end of this ar-
ticle!

The whole crossword, including the
\clue commands (q.v.), is bracketed
within the crossword environment. This
requires that the user specifies two pa-
rameters:

〈gridsize〉 This is a number which
specifies the columns (and rows)
in the square grid.

〈visible〉 This controls whether the an-
swers are to be “filled in”; obvi-
ously of no use for publication,
but useful whilst composing the
crossword. If the parameter pro-
vided is the letter ‘Y’, then the an-
swers will be typeset; if ‘N’ then
the lights will be left blank. Any
other value2 provided for this pa-
rameter will cause LATEX to in-
put a yes/no answer by interaction
with the user.

An analogous environment is pro-
vided especially for typesetting a
smaller version of a grid showing, for ex-
ample, “Last Month’s Solution”. In this
of course, the answers always appear,
and the clues are not printed. Again it
takes two parameters:

〈gridsize〉 As before, this specifies the
number of squares in each axis.

〈header text〉 Some text which will be
set (in bold) above the completed
grid.

Here is an example of the crossword* en-
vironment:

Last month’s solution

MOORGNIDNATS
TULNDII
NORTOSIHTABBAS
ETBLARES
CISSAILMUTARRE
SOIAEAN
ECNUDDESIRPRUS
DECS
NOITELPMIEUSNE
AMGNRRL
CIAMARAOLOPEIT
NGERMTPS
INIMRETESSAPMI

RCLNEEL
ROTALUBMAREP

Within the body of these environ-
ments appear a succession of \clue
commands; each of these takes a total
of seven (!) parameters:

〈clue number〉 The number of the
light on the grid, for example
{17}. See 1.1 below for details of
how more complex specifications
may be given for multiple lights.

〈Across/Down〉 This parameter must
be either the letter ‘A’ or ‘D’, in
upper-case.

〈col number〉 The x-coordinate of the
first square of the light. The left-
most column of the grid is num-
bered 1.

〈row number〉 The y-coordinate of
the first square of the light. The
top-most row is numbered 1.

〈answer〉 The answer to the clue
(or that part of it which ap-
pears in the light numbered
〈clue number〉). This must be a
string of upper-case letters only ;
no spaces, punctuation, hyphens,
etc.

2The lower-case letters ‘y’ and ‘n’ are also recognized

2

〈text〉 The text of the clue itself. If
you want to use any LATEX macros
in this text, such as \dots, each
such macro must be preceded by
\noexpand. This includes such
macros as \&, to produce an ex-
plicit ampersand.

〈help〉 Anything to appear after the
text, in parentheses; this will most
usually be used for giving the
length of the answer, such as “7”
or “2,6,3-3”. Also used when the
text of the clue is associated with
another light when this parameter
may say something like “see 14d”.

1.1 How to Specify Clue
Numbers

Sometimes the solution to one clue is
split amongst a number of “lights”. To
cover this eventuality, provide a \clue
for each of the lights involved, with the

solution to that light alone given as
〈answer〉. All except the \clue corre-
sponding to the first light of the solution
should have a null 〈text〉, and the 〈help〉
parameter should be something like “see
7d”.

If this final parameter is totally
empty, no corresponding clue number
is printed: this facility would be used
when the current clue is the next con-
secutive light, when it is usual to omit
any further reference to the clue num-
ber.

The \clue for the first light of
the solution should provide the en-
tire clue as its 〈text〉, and the 〈help〉
should say something like “7,3-3”. The
〈clue number〉 field should consist of the
number of that light, followed immedi-
ately by the text required to describe
the other lights, separated from it by
some non-digit character, for example,
a space.

For example, suppose the clue “Bill’s desired outcome?”, has the solution ‘ACT
OF PARLIAMENT’ which is to go into lights 9d and 13a. Then3

\clue{13}{A}{5}{1}{PARLIAMENT}{}{see 9d}

\clue{9 {\noexpand\rm\&} 13a}{D}{1}{10}{ACTOF}%

{Bill’s desired outcome?}{3,2,10}

will produce

13 (see 9d)

amongst the ACROSS clues, and

9 & 13a Bill’s desired outcome? (3,2,10)

amongst the DOWN clues

2 Definition of the Macros

\ninept

\@listi

We define a new font size to ensure clues are set at 9pt, no matter what style
size option is in effect. This command also defines suitable parameters for list
environments set in this size of type.

1 〈∗package〉
2 \def\ninept{\@setsize\ninept{11pt}\ixpt\@ixpt

3 \abovedisplayskip 8.5pt plus 3pt minus 4pt

3note the \noexpand before the \rm for the \&

3

282726

252423

222120

19

18171615

1413

1211

1098

7654321

ACROSS
8 Points a thousand tested for witchcraft. (4)
9 Gourmet’s triumphant cry on finding

middle-cut Pacific salmon! (3)
10 One hundred stride backwards across a

Pole. (3-3)
11 Fifties’ jazz record about Eastern childs’

play. (2-4)
12 Timetable created by editor in synagogue

of Spain. (8)
13 The dialect a girl mixed up tangle around

symbolic diagram used by maritime stu-
dent! (15)

15 Wire fastening bent road narrowly. (7)
17 Hammerhead consumes German company

and casts a shade. (7)
20 Strange cel alien chops to make a figure with

odd sides. (7,8)
23 Sounds like a hoarse editor came to in total!

(8)
25 Assert without proof everyone, for example,

English. (6)
26 Flourished examination of flowers. (6)
27 Floor covering discards fuming sulphuric

acid and returns to nothing. (3)
28 “Latin for a candle” to be silent note about

aircraftman? (4)

DOWN
1 Water rush noise disturbs show so! (6)
2 Mischievous child with cloth measure hesi-

tates to assemble rotor. (8)
3 Mercifully inclined to pass round ten? Nay,

about short blower! (15)
4 Sort ion? An isotron gives it a new twist!

(7)
5 Wildly and boisterously rearrange Billy

May Third, roughly. (15)
6 Satirical book or film—give odds about re-

vision of “Dune”? (4-2)
7 & 24 Premier took in a Lord Lieutenant and

all played an old game in London street. (4-
4)

14 Work expended in power games? (3)
16 A church circle (or part of one). (3)
18 Encircle hindrances under hair in long curls.

(8)
19 Boss over otorhinolaryngology department

undergraduate. (7)
21 Old dovecote in Parisian museum. (6)
22 Like ornamental fabric, for example, that’s

in bequest. (6)
24 (See 7)

Figure 1: A Sample Crossword

4

4 \belowdisplayskip \abovedisplayskip

5 \abovedisplayshortskip \z@ plus2pt

6 \belowdisplayshortskip 4pt plus2pt minus 2pt

7 \def\@listi{\itemsep 0pt

8 \parsep \z@ plus 1pt

9 \topsep 4pt plus 2pt minus 2pt

10 }}

2.1 Counters and Lengths

\ifnumberit

\numberittrue

\numberitfalse

The crossword environment draws a grid (with black and white squares); each
“light” into which a clue’s answer is to be written has to be numbered, and this
number will be typeset (using \tiny) in the top-left corner of the first square of
the light.

This style option also provides the crossword* environment, which is intended
to be used to produce “last month’s solution” in a smaller grid. There is insufficient
room for clue numbers to appear on the grid in this mode, so \ifnumberit is used
to indicate whether the numbers should be set.

11 \newif\ifnumberit

\gr@dsize

\p@csize

The counter \gr@dsize is used to hold the width of the grid, as the number of
squares in each direction.

To prevent too much run-time arithmetic, the counter \p@csize is set to be
one count higher than \gr@dsize.
12 \newcount{\gr@dsize}

13 \newcount{\p@csize}

\Down

\Across

As we move around the grid, determining whether squares are black or white, we
utilize the counters \Across and \Down to keep track of our location.

14 \newcount{\Down}

15 \newcount{\Across}

2.2 Reading and Writing the Clues

\tf@acr

\tf@dwn

\OpenClueFiles

Whilst we are determining the appearance of the grid, we copy the text of each of
the clues to an auxiliary file, so that the latter may later be read back to generate
the clues themselves after the grid has been printed.

This macro opens a new file, with file extension .acr, and puts into it the
commands necessary to typeset the Across clues. It also opens a .dwn file, which
is similarly filled with the Down clues.

Next paragraph is no longer true. I changed the coding to allow more than 6
crosswords to be used in one document. Using the approach outlined below the
system would run out of write channels pretty soon. (FMi)

[These files are created in the same manner as table-of-contents (.toc) files,
etc; thus LATEX will create file “handles” with names \tf@acr and \tf@dwn. How-
ever, that would ordinarily attempt to read the given file first, and also might
defer the actual opening; therefore, we start a new group in which we redefine
LATEX’s @input command and TEX’s \openout primitive.]

16 \newwrite\tf@acr

17 \newwrite\tf@dwn

5

18 \def\OpenClueFiles{%

19 \immediate\openout \tf@acr \jobname.acr\relax

20 \immediate\openout \tf@dwn \jobname.dwn\relax

Here’s the preliminary material that gets inserted into the .acr file.
21 \@writefile{acr}{\begin{minipage}[t]{70mm}}%

22 \@writefile{acr}{ \centerline{\textbf{\ACROSStext}}}%

23 \@writefile{acr}{ \sloppy}%

24 \@writefile{acr}{ \ninept}%

25 \@writefile{acr}{ \begin{ClueList}}%

Whilst something similar goes into the .dwn file.
26 \@writefile{dwn}{\begin{minipage}[t]{70mm}}%

27 \@writefile{dwn}{ \centerline{\textbf{\DOWNtext}}}%

28 \@writefile{dwn}{ \sloppy}%

29 \@writefile{dwn}{ \ninept}%

30 \@writefile{dwn}{ \begin{ClueList}}}

\ACROSStext

\DOWNtext 31 \newcommand\ACROSStext{ACROSS}

32 \newcommand\DOWNtext{DOWN}

\CloseClueFiles After the grid has been printed, we can close the “clues” files; these will later be
read back in (by the \endcrossword command) to set the text of the clues below
the grid.

Before closing, we insert the material that completes the two ClueList environ-
ments; firstly across. . .
33 \def\CloseClueFiles{%

34 \@writefile{acr}{ \end{ClueList}}%

35 \@writefile{acr}{\end{minipage}}%

Then for the down clues.
36 \@writefile{dwn}{ \end{ClueList}}%

37 \@writefile{dwn}{\end{minipage}}%

Now we can close those files, and make them “invisible” if someone tries to write
to them.
38 \immediate\closeout\tf@acr \let\tf@acr\relax

39 \immediate\closeout\tf@dwn \let\tf@dwn\relax

40 \endgraf

41 }

2.3 Tabulating the Clues

The auxiliary files contain the texts of the clues, each given as an \item for the
ClueList environment. This is similar to a description list, except that overlong
labels run on into the text rather than sticking out to the left.

\ClueList

\ClueListLabel

This sets up the ClueList environment, and defines the appearance of the label.

42 \def\ClueListlabel#1{\hspace\labelsep {\bf #1}\hss}

43 \def\ClueList{\list{}{\labelwidth\leftmargin

44 \advance \labelwidth by -\labelsep

45 \let\makelabel\ClueListlabel}}

46 \let\endClueList\endlist

6

\PrintClues The following macro reads in the two files (of Across and Down clues), and sets
them alongside each other, separated by a vertical rule. Clues are set in the style
of the ClueList environment.

47 \def\PrintClues{%

48 \centerline{%

49 \begin{tabular}{ c | c }

50 \@input{\jobname.acr}

51 &

52 \@input{\jobname.dwn}

53 \end{tabular}

54 }\endgraf

55 }

3 Creating the Grid

The remaining commands are concerned with creating (and, optionally, populat-
ing) the crossword grid

\crossword The crossword environment takes two parameters: viz. the size of the matrix, and
the indication of whether the grid is to include the answers. (If the latter is
omitted, LATEX will request it interactively.)

56 \def\crossword#1#2{%

We start off with a \vtop box and a group to hold everything within the
environment, so as to ensure that user-entered text remains with the crossword.

57 \endgraf\leavevmode

58 \vtop\bgroup

The crossword environment uses the full-size grid, and has the lights numbered.
Furthermore it doesn’t have any heading to output (see the crossword* environ-
ment).

59 \unitlength 6mm\numberittrue

60 \def\Header{}%

We now open the auxiliary files into which the clues are written, and determine
(interactively if necessary) whether the answers are to be written into the grid.

61 \OpenClueFiles

62 \TestAnswers{#2}%

Finally, we generate the necessary macros to describe the grid as being entirely
filled with black squares; for each square, a macro whose name is of the form \RiCi,
\RxiiCviii, etc. is created. As the \clue commands are read in, these will be
redefined to produce the correct appearance when the macros are later expanded.

63 \SetUpGrid{#1}}

\endcrossword When all the clues have been processed, we can invoke \FinishGrid to draw the
grid. The \FinishGrid and \PrintClues commands draw the grid and tabulate
the clues, respectively. By enclosing them in a vertical mode list, we ensure that
they remain stuck together on one page!

7

The crossword environment defines \Header to be empty, but the user may
give it an explicit definition within the environment; if so, we’ll print it just above
the grid itself.

64 \def\endcrossword{\endgraf

65 \centerline{\Header}%

66 \hbox{\FinishGrid}%

We can now finish off the auxiliary files and then read them back in to set the
text of the clues below the grid.

Finally, we complete the group and the \vtop box.

67 \CloseClueFiles

68 \hbox{\PrintClues}%

69 \egroup

70 }

\crossword*

\endcrossword*

The crossword* environment doesn’t need a second parameter to control printing
of answers, because it always populates the grid with the answers. Instead, its
second parameter provides the text to appear above the printed grid. Its actions
are as for the crossword environment except that

• It prints the descriptive text above the grid.

• It always outputs the answers, without numbers.

• It draws them in a smaller box.

• It doesn’t output the clues (it doesn’t even open any auxiliary files!)

71 \expandafter\def\csname crossword*\endcsname#1#2{%

72 \unitlength 4mm\numberitfalse

73 \endgraf\leavevmode

74 \vtop\bgroup

75 \def\Header{{\bf\strut #2}}%

76 \def\answer{Y}%

77 \let\tf@dwn=\relax \let\tf@acr=\relax

78 \SetUpGrid{#1}}

79

80 \expandafter\def\csname endcrossword*\endcsname{\endgraf

81 \centerline{\Header}%

82 \hbox{\FinishGrid}%

83 \egroup

84 }

3.1 Macros used when Populating the Grid

\laterletter The following macro calls this to “place” the letters of a solution by defining a
macro unique to this square.

85 \def\laterletter#1{\setsquare{\lettersquare{#1}}}

\nextletter

\nextlet

To determine how much space is required for the light corresponding to an answer,
we need to cycle through each of the characters of the answer individually; this
macro is called with two parameters — the first indicates the current setting
direction (and thus accesses one of the counters \Across or \Down), whilst the

8

second consists of the characters forming the answer followed by the string \@nil.
When it is called, this “second” parameter is not enclosed in braces, so only
the first token in it is accessed. The macro calls itself recursively to process the
remaining characters until the \@nil has been met.

86 \def\nextletter#1#2{%

If the next token is \@nil, we’ve finished; the \let ensures that its param-
eter will be discarded (through the LATEX internal command \@gobble) and the
recursion will then unravel.

87 \ifx#2\@nil \let\nextlet=\@gobble

Otherwise, we have another letter of the 〈answer〉 in #2, so we call \letterput
to define the macro corresponding to this square, and count one more position
occupied in the current direction.

88 \else\letterput{#2}\advance#1 by \@ne

After we’ve processed this letter, we want to call this routine recursively to
process the remaining letters (if any). . .

89 \let\nextlet=\nextletter

These letters cannot possibly require a starting square number, so we use a
simpler macro for these later letters.

90 \let\letterput=\laterletter

91 \fi

This is where we either exit from the recursion (and \@gobble the #1 param-
eter) or call the macro recursively to process the next character; the direction has
to be passed on as the first parameter for \nextletter or \@gobble.

92 \nextlet{#1}}

\blacktest Later we shall want to check that the square into which we are “putting” a letter is
either black (and hence should be changed to contain the character) or has already
had the same letter put into it by an intersecting light.

We don’t want to expand each squares’ macros, so these tests have to use the
\ifx primitive; therefore, we need a macro which has the same substitution text
at the highest level.

93 \def\blacktest{\blacksquare}

\ifneed@d

\need@dtrue

\need@dfalse

As we create the macros corresponding to each occupied square, we have to decide
whether it is necessary to actually perform a (re)definition of the macro; the
following permits the code to determine whether such definition takes place (within
the \putsquare macro).

94 \newif\ifneed@d

\ifNoerr

\Noerrtrue

\Noerrfalse

If an error is detected during the placement of the occupied squares, there will
probably be other errors; to save pouring out yards of error messages, we arrange
to suppress all but the first such; the following \newif provides this facility.

And of course we start without any errors!

95 \newif\ifNoerr

96 \Noerrtrue

9

\Number

\Plain

To determine whether a square has already been occupied, and if so, by what, we
require a couple of new tokens which can be tested for as the result of a macro
expansion
97 \newtoks\Number \newtoks\Plain

\blank

\numbered

The next two definitions can be temporarily \let to be the replacements for
\lettersquare and \numbersquare respectively, for use in conjunction with the
aforementioned test.

98 \def\blank#1{\Plain}

99 \def\numbered#1#2{\Number}

\letterinsquare

\letterinnumbersquare

When we first read the clues, we create macros which are unique to each square;
later we shall redefine the macros to which the squares’ macros expand to actu-
ally perform the setting, but during the first phase we require expansions which
correspond to the parameters alone. The following definitions are therefore used
during the “filling” phase.

100 \def\letterinsquare#1{#1}

101

102 \def\letterinnumbersquare#1#2{#2}

\setsquare As we scan the answers for each clue, this macro is called with a parameter which
specifies a call of either the \lettersquare or \numbersquare macros (with ap-
propriate parameters).

It starts by assuming that no redefinition of the square’s macro will be required.

103 \def\setsquare#1{%

104 \need@dfalse

This macro is also called during the initialization of the grid, when we populate
it with black squares; therefore, we definitely want to perform a definition of the
square’s macro at this stage.

105 \ifx#1\blacksquare

106 \need@dtrue

Otherwise, let’s have a look and see what is already in the square’s macro. This
test will succeed only if the square contains its initial definition (as \blacksquare).

107 \else

108 \expandafter\ifx\csname\ther@w\thec@l\endcsname\blacktest

in which case we will want to redefine the macro for this square

109 \need@dtrue

If the square has already been redefined, it means we’ve already “put” a letter
(or number+letter) into its definition, so we will have to check that this definition
doesn’t conflict with the new one (which is in #1). We have to expand the macros
to perform this test, but don’t want that expansion to return anything except the
letter which is being (and has been) placed in the square, so we make a temporary
replacement for the two macros which might form our #1.

110 \else

111 \let\lettersquare=\letterinsquare

112 \let\numbersquare=\letterinnumbersquare

10

Now we expand the original definition and the new one; these should be the
same!

113 \expandafter\if\csname\ther@w\thec@l\endcsname#1

114 \else

If they aren’t, it means the compiler of the crossword has made a mistake
and has solutions which don’t correctly intersect: tell him so (well, the first time
anyway). We even provide the user with some help!

115 \ifNoerr

116 \errhelp{Two intersecting lights tried to

117 put different letters^^Jin the same square!

118 You’ve probably confused their coordinates.^^J

119 Carry on, and examine the printout.}

120 \errmessage{Illegal redefinition of square \ther@w\thec@l.

121 Was: \expandafter\meaning\csname\ther@w

122 \thec@l\endcsname.

123 Now: \noexpand #1}

124 \Noerrfalse

125 \fi

126 \fi

So far, we don’t seem to need to change anything, but if the new #1 which has
been passed to \putsquare specifies that it be numbered, we must subsume any
existing definition which doesn’t have a number.

Again, we make temporary reassignments for the two potential macros, which
is where we make use of the two new tokens that we invented.

127 \let\lettersquare=\blank

128 \let\numbersquare=\numbered

If the following test succeeds, we know that the new parameter specifies a
number as well as a letter. This code could be expanded to check whether the
original definition also specified a number, and if so ensure that they are the
same, but would anybody really be silly enough to give different numbers for clues
starting from the same square?!

129 \expandafter\ifx#1\Number

130 \need@dtrue

131 \fi

132 \fi

133 \fi

Now we know whether we must (re)define the macro which is unique to this
square. If we must, we expand our #1, so as to get the actual number and letter
passed in through that parameter, but keep the name of the placement macro
itself4 unexpanded.

134 \ifneed@d

135 \expandafter\edef\csname\ther@w\thec@l\endcsname{\noexpand #1}

136 \fi

137 }

4This will be the first token of the parameter itself.

11

3.2 The \clue Command

\clue Well, here it is at last. We start off by extracting the parts (if any) which form the
〈clue number〉 parameter. We will therefore have the purely numeric first portion
of the 〈clue number〉 in \cluenumber.

138 \def\clue#1#2#3#4#5#6#7{%

139 \findnumber{#1}

We now examine the second (〈Across/Down〉) parameter of the \clue com-
mand to determine whether this is an Across or Down clue. The clue’s 〈text〉
and 〈help〉 information is then written5 to the appropriate auxiliary file, and note
taken of the direction in which the 〈answer〉 should be set into the light of the
grid.

Firstly we deal with writes to the .acr file, if the 〈Across/Down〉 parameter
is the letter ‘A’. In this case, the counter to be incremented is \Across.

140 \ifx#2A

141 \if\@empty#7\relax\else

142 \ifx\tf@acr\relax\else

143 \@writefile{acr}{ \item[#1] #6 (#7)}%

144 \fi

145 \fi

146 \let\Direction=\Across

147 \else

If this parameter is the letter ‘D’, writes go to the .dwn file, and the \Down counter
is incremented.

148 \ifx#2D

149 \if\@empty#7\relax\else

150 \ifx\tf@dwn\relax\else

151 \@writefile{dwn}{ \item[#1] #6 (#7)}%

152 \fi

153 \fi

154 \let\Direction=\Down

155 \else

If this 〈Across/Down〉 parameter is not one of the two permitted characters,
an error message is issued.

156 \errhelp{The second parameter of the \string\clue\space

157 command must be ‘A’ or ‘D’}

158 \errmessage{Illegal direction (#1) specification

159 for \string\clue.}

160 \fi

161 \fi

The x and y coordinate counters are set from the 〈column〉 and 〈row〉 param-
eters.

162 \Across=#3 \Down=#4

\letterput The \letterput macro is defined anew at the start of each clue to create the cor-
rect definition for the first square of each light. The \setsquare macro redefines
this macro internally for the remaining squares.

163 \edef\letterput##1{\noexpand\setsquare

5The writes only take place if the output files exist, and the 〈help〉 parameter is non-empty.

12

164 {\noexpand\numbersquare

165 {\noexpand\cluenumber}{##1}}}%

Now we can call \nextletter which will cycle through all the letters of the
〈answer〉 until meeting the token \@nil. As each letter is processed, it creates
a definition for the current square, initially using the above definition, and then
\laterletter for subsequent letters of the 〈answer〉.

Finally, we ensure that the newlines after \clue commands don’t lead to un-
wanted spaces being typeset.

166 \nextletter{\Direction}#5\@nil

167 \ignorespaces

168 }

3.2.1 Finding the clue number to be set in the light

\findnumber We mentioned earlier that clues with solutions which occupy more than one light
require a special format for specifying their 〈clue number〉. If this form is required,
the number of the current light is given first, with the remaining text (as it is
required to be set) following, separated from the first number by some non-digit
character.

The macro \findnumber is called with the entire 〈clue number〉 parameter
passed to \clue and sets \cluenumber to expand to the first or only number
found in that parameter (which should then appear in the first square of the
light).

\clueNumber Of course, we require a counter in which to attempt to assemble that number:
169 \newcount\clueNumber

\special@gobble This macro is used by \findnumber to discard the unwanted portion (if any) of a
〈clue number〉, including the special termination token.

170 \def\special@gobble #1\@nil{}

The following mechanism to separate the first (or only) number from the re-
mainder was suggested by Frank Mittelbach of the University of Mainz, and re-
placed about two pages worth of code.

171 \def\findnumber#1{%

We attempt to assign the 〈clue number〉 parameter to the \clueNumber counter:
only that portion consisting purely of digits will actually be assigned. The remain-
der, if any, including the special terminator sequence \@nil is then discarded by
the \special@gobble command:

172 \afterassignment \special@gobble \clueNumber=0#1 \@nil

If the user did not provide a valid 〈clue number〉 (i.e. something starting with
a digit), then clueNumber will have zero assigned to it — seems the user ought to
be told about this!

This completes \findnumber.

173 \ifnum\clueNumber=0

174 \errhelp{The first parameter of the \string\clue\space command

175 must commence with a digit}

176 \errmessage{Illegal clue number (#1) specified

177 for \string\clue.}

13

178 \fi

179 }

\cluenumber This macro merely produces the number as saved in \clueNumber.
180 \def\cluenumber{\the\clueNumber}

3.3 Populating the Crossword Grid

\blackenrow For each column in a row we create a black square; effectively \setsquare will
execute the definition

181 % \def\csname\ther@w\thec@l\endcsname{\blacksquare}

so that for row 3 column 6 of a 15 × 15 grid, for example, we would end up by
defining \def\RiiiCvi{\blacksquare}.

Before starting the inner loop, we need to save the definition of \body which
was created for the outer loop. We cannot do this by creating a new block, since
that would require that each square be defined globally, which might give rise to
save stack overflow problems.

Actually with LATEX2ε we have to save \iterate as the internals of \loop
have been streamlined. With the old code only the first row was updated—this is
the rpcie for using an unpublished implementation feature.

182 \def\blackenrow{\let\savediterate\iterate

183 \loop\relax\ifnum\Across>\z@

184 \setsquare{\blacksquare}%

We then shift ourselves back to the next column to the left and iterate. If
we’ve reached the end of this inner loop, we re-establish the definition of \body.

Again with 2e this has to be \iterate.

185 \advance\Across by \m@ne

186 \repeat

187 \let\iterate\savediterate

188 }

\SetUpGrid This macro creates an empty grid of the appropriate size.

189 \def\SetUpGrid#1{%

We firstly make a note of the 〈gridsize〉 parameter in the \gr@dsize counter,
from which the width and height of the grid may be computed. We also set the
\p@csize counter to be one greater than \gr@dsize to save our recomputing this
quantity many times over.

190 \gr@dsize=#1

191 \p@csize=#1 \advance\p@csize by \@ne

Right, this is where we start to generate the grid itself. We start at the bottom
edge, because TEX loops are easiest if counting down to zero. Therefore, the \Down
counter is set equal to the highest row number attainable.

192 \Down=\gr@dsize

We now start a loop, so the following code will be repeated for each row of the
grid in turn. As with the rows, we process the columns from highest address to
lowest, so the \Across counter is also set to the highest column attainable.

193 \loop

194 \Across=\gr@dsize

14

Provided we haven’t decremented down to the 0th row, we start off the inner
loop to process each column: this is done by invoking a separate macro — the
alternative to which would be to enclose the inner loop in a group, which would
require the use of global definitions for each square.

195 \ifnum\Down>\z@

196 \blackenrow

Afterwards we move ourselves up one row, and iterate for the next row.

197 \advance\Down by \m@ne

198 \repeat

199 }

And that’s the end of \SetUpGrid!

\thec@l

\ther@w

\thec@l and \ther@w macros generate a string of letters, starting with ‘C’ (for
column) and ‘R’ (for row) respectively. The remainder of the string consists of
the lower-case Roman numeral equivalent to the current value of the appropriate
counter. Such all-letter strings are used to create the names for macros which can
be unique for each square of the grid.

200 \def\thec@l{C\romannumeral\Across}

201 \def\ther@w{R\romannumeral\Down}

\TestAnswers This macro interacts with the user, if necessary, to get a yes or no indication of
whether the answers shall be written into the grid. No check is made that the
user has entered a valid response, but the use of \answer is such that any answer
apart from a ‘y’ (in upper- or lower-case) is treated as if it were ‘n’.

\f@rst To determine what parameter has been provided, or the response elicited, we will
require a little macro to pass on the first token of a list terminated by a full stop.

202 \def\f@rst#1#2.{#1}

We commence by lower-casing the given parameter, setting the lower-cased
version into the macro \answer.

203 \def\TestAnswers#1{\edef\next{\def\noexpand\answer{#1}}%

204 \lowercase\expandafter{\next}%

We can then extract just the first character
205 \edef\answer{\expandafter \f@rst \answer .}%

The we determine whether it’s the letter ‘y’ or ‘n’. . .
206 \if\answer y \else \if\answer n \else

If the 〈visible〉 parameter isn’t either of these, we ask the user to give us an answer!
207 \typein[\answer]{Make answers visible? [Y/N]: }\fi

208 \fi

OK, \answer now contains some response; let’s upper-case it and extract just its
first character

209 \edef\next{\def\noexpand\answer{\answer}}%

210 \uppercase\expandafter{\next}%

211 \edef\answer{\expandafter \f@rst \answer .}%

212 }

15

3.4 Setting the Grid

\letter This is the expansion which is used (for \letterinsquare, and within the expan-
sion of \numberedsquare) when the grid is actually being typeset from the stored
squares’ macros.

213 \def\letter#1{{\put(\Across,-\Down){\makebox(1,1){\sffamily #1}}}}

\numberedsquare This macro is used (for \numbersquare) when the lights are being drawn with
light numbering enabled. It puts the number (and the letter of the answer too,
depending upon the definition of \letter which is current) at the current coordi-
nate position specified by (\Across,\Down).

214 \def\numberedsquare#1#2{%

215 \put(\Across,-\Down){%

To insert the clue number, we generate it within a sub-picture, of size equal to
one square.

216 \begin{picture}(1,1)(0,0)

We stick the number in the top-left corner of an (invisible) box which fills the
central 81% of the area.

217 \put(0.05,0.05){\makebox(0.9,0.9)[tl]{\tiny #1}}

218 \end{picture}%

219 }

We also set the letter in the square (depending upon the definition of \letter
which applies.

220 \letter{#2}}

\unnumberedsquare Despite its name, this macro is invoked (through \numbersquare) for those squares
which would ordinarily carry a light’s number, were it not for the fact that the
numbers have been suppressed by the crossword* environment.

It just discards the 〈clue number〉 given in the first parameter and sets the
current letter by invoking \letter, which uses the second parameter. . .

221 \def\unnumberedsquare#1{\letter}

\FinishGrid Now we can process all the stored macros which define the appearance of each
square in the grid, and thus generate the printed version thereof, using LATEX’s
picture environment.

This command makes appropriate redefinitions of some macros which produced
different effects during the filling of the grid.

222 \def\FinishGrid{%

If the customer doesn’t want the letters put into the grid, then we need only
throw away any parameter to letter.

223 \if\answer Y \else \let \letter=\@gobble \fi

As stated in the introduction, when typesetting the grid in a smaller ver-
sion, there is insufficient space to include the numbers for the lights; by testing
\ifnumberit we can determine whether a macro which expands to \numbersquare
shall result in a number being printed or not.

224 \ifnumberit

225 \let\numbersquare=\numberedsquare

16

226 \else

227 \let\numbersquare=\unnumberedsquare

228 \fi

Anything that’s been stored as a \lettersquare is “set” using the \letter
macro (which we might have just \let equal to \@gobble).

229 \let\lettersquare=\letter

\blacksquare Any black squares that are still left in the grid are set by means of this command:

230 \def\blacksquare{%

The black square itself is merely a rule of the appropriate dimensions.

231 \put(\Across,-\Down){\rule{\unitlength}{\unitlength}}}

Now we come to the actual body of \FinishGrid.
We start off at the bottom-most row of the grid. . .

232 \Down=\gr@dsize

The whole grid is created in a centered \hbox in a picture environment. By
offsetting the origin negatively, we can address each row by simply negating the y
coordinate; thus column x in the highest row is (x,−1).

233 \centerline{%

234 \begin{picture}(\p@csize,\p@csize)(1,-\p@csize)

We now cycle through each of the rows. The first thing we output is a horizontal
rule of the full width of the grid, one such rule being generated for each row of
the grid, providing the horizontal lines across vertical lights.

235 \loop\ifnum\Down>\z@

236 \put(1,-\Down){\line(1,0){\the\gr@dsize}}

Now we are about to cycle across all the columns of the current row; again,
it’s convenient for us to work backwards to the left. . .

237 \Across=\gr@dsize

To do this we need an inner loop; this has to be inside a group so as to isolate
the effects of its \repeat command.

238 {\loop \ifnum\Across>\z@

To set the appropriate object in this square, we merely invoke the macro which
has been associated with the square. Thus we’ll end up with a black square, or a
numbered or plain square, the latter two of which may also contain a letter.

239 \csname\ther@w\thec@l\endcsname

Now we advance to the next column and iterate. That’s the end of the inner
loop for each of the columns of the current row.

240 \advance\Across by \m@ne

241 \repeat

242 }%

Now we can decrement down to the next row and iterate through the rows.

243 \advance\Down by \m@ne

244 \repeat

17

We’ve so far drawn a horizontal line under each of the rows; the next \put
draws a final line above the top-most row.

245 \put(1,0){\line(1,0){\the\gr@dsize}}

Similarly, a short loop can draw vertical rules at the left-hand edge of each of
the columns, starting with a line on the left of an imaginary column to the right
of the whole grid, which will therefore form a line to the right of the final column.

246 \Across=\p@csize

247 \loop\ifnum\Across>\z@

248 \put(\Across,0){\line(0,-1){\the\gr@dsize}}

249 \advance\Across by \m@ne

250 \repeat

And that completes the picture.

251 \end{picture}%

252 }%

253 }

254 〈/package〉

Finally, here’s the input which produced the crossword in figure 1

\begin{crossword}{15}{N}

\input{grid-1}

\end{crossword}

255 〈∗grid0〉
256 \clue{1}{A}{3}{1}{PERAMBULATOR}{Stroller carrying the baby}{12}

257 \clue{8}{A}{1}{3}{IMPASSE}{Eastern note returned about predicament resulting

258 in deadlock}{7}

259 \clue{9}{A}{9}{3}{TERMINI}{Many ends brought back in one minute soak}{7}

260 \clue{11}{A}{1}{5}{TIEPOLO}{Venetian painter to draw Spanish gipsy dance?}{7}

261 \clue{12}{A}{9}{5}{ARAMAIC}{Semitic language of one in charge of following a

262 sheep}{7}

263 \clue{13}{A}{1}{7}{ENSUE}{Follow three directions and bend eastward}{5}

264 \clue{14}{A}{7}{7}{IMPLETION}{Filling feeble-minded person who lost his head

265 about one}{9}

266 \clue{16}{A}{1}{9}{SURPRISED}{Rip apart with duress taken unawares}{9}

267 \clue{19}{A}{11}{9}{DUNCE}{Stupid person from hill church}{5}

268 \clue{21}{A}{1}{11}{ERRATUM}{Published correction --- return walled-up

269 sailor}{7}

270 \clue{23}{A}{9}{11}{LIASSIC}{Lower Jurassic sea trip backwards [thus]}{7}

271 \clue{24}{A}{1}{13}{SABBATH}{Midnight meeting of witches at hospital on rest

272 day?}{7}

273 \clue{25}{A}{9}{13}{ISOTRON}{Sort ion with an accelerator?}{7}

274 \clue{26}{A}{2}{15}{STANDINGROOM}{Substitute husband relegated here at

275 crowded wedding}{8-4}

276 \clue{1}{D}{3}{1}{PEPPERS}{Showers band with lonely hearts?}{7}

277 \clue{2}{D}{5}{1}{RESTORE}{Concerning money saved --- reinstate to former

278 owner}{7}

279 \clue{3}{D}{7}{1}{MNEMONICS}{No-one in higher degree produces memory

280 joggers}{9}

281 \clue{4}{D}{9}{1}{ULTRA}{Enigmatic secret of WW\,I\kern-.1em I?}{5}

282 \clue{5}{D}{11}{1}{ACREAGE}{Current about time flows over measured area}{7}

18

283 \clue{6}{D}{13}{1}{ORIGAMI}{Maybe magic endlessly raised before one with

284 Japanese artistic skill}{7}

285 \clue{7}{D}{1}{2}{LISTLESSNESS}{Enroll fewer once before head suffering a

286 languid malaise}{12}

287 \clue{10}{D}{15}{3}{INCANDESCENT}{White-hot Peruvian reorganized objects

288 covering small coin}{12}

289 \clue{15}{D}{9}{7}{PEDALLING}{Penny led a rearranged fish engaging in cyclic

290 activity!}{9}

291 \clue{17}{D}{3}{9}{RAREBIT}{Welsh toast? An unusual drill!}{7}

292 \clue{18}{D}{5}{9}{RETRAIN}{Keep in mind, take in, and acquire new

293 skills}{7}

294 \clue{19}{D}{11}{9}{DIABOLO}{Twice a high ball thrown up round a two-headed

295 top}{7}

296 \clue{20}{D}{13}{9}{NOSTRUM}{No good man with spirit offers quack remedy}{7}

297 \clue{22}{D}{7}{11}{MAHDI}{I would shortly overact, sent up, and the

298 downfall of Gordon}{5}

299 〈/grid0〉

300 〈∗grid1〉
301 \clue{8}{A}{1}{2}{SWAM}{Points a thousand tested for witchcraft.}{4}

302 \clue{9}{A}{6}{2}{OHO}{Gourmet’s triumphant cry on finding middle-cut

303 Pacific salmon!}{3}

304 \clue{10}{A}{10}{2}{ICECAP}{One hundred stride backwards across a

305 Pole.}{3-3}

306 \clue{11}{A}{1}{4}{BOPEEP}{Fifties’ jazz record about Eastern childs’

307 play.}{2-4}

308 \clue{12}{A}{8}{4}{SCHEDULE}{Timetable created by editor in synagogue

309 of Spain.}{8}

310 \clue{13}{A}{1}{6}{THALASSOGRAPHER}{The dialect a girl mixed up tangle

311 around symbolic diagram used by

312 maritime student!}{15}

313 \clue{15}{A}{1}{8}{HAIRPIN}{Wire fastening bent road narrowly.}{7}

314 \clue{17}{A}{9}{8}{UMBRAGE}{Hammerhead consumes German company

315 and casts a shade.}{7}

316 \clue{20}{A}{1}{10}{SCALENETRIANGLE}{Strange cel alien chops to make a

317 figure with odd sides.}{7,8}

318 \clue{23}{A}{1}{12}{AMOUNTED}{Sounds like a hoarse editor came to in

319 total!}{8}

320 \clue{25}{A}{10}{12}{ALLEGE}{Assert without proof everyone, for

321 example, English.}{6}

322 \clue{26}{A}{1}{14}{FLORAL}{Flourished examination of flowers.}{6}

323 \clue{27}{A}{8}{14}{NIL}{Floor covering discards fuming sulphuric acid

324 and returns to nothing.}{3}

325 \clue{28}{A}{12}{14}{TACE}{‘‘Latin for a candle’’ to be silent note

326 about aircraftman?}{4}

327 \clue{1}{D}{2}{1}{SWOOSH}{Water rush noise disturbs show so!}{6}

328 \clue{2}{D}{4}{1}{IMPELLER}{Mischievous child with cloth measure

329 hesitates to assemble rotor.}{8}

330 \clue{3}{D}{6}{1}{COMPASSIONATELY}{Mercifully inclined to pass round

331 ten? Nay, about short blower!}{15}

332 \clue{4}{D}{8}{1}{TORSION}{Sort ion? An isotron gives it a new

333 twist!}{7}

334 \clue{5}{D}{10}{1}{DITHYRAMBICALLY}{Wildly and boisterously rearrange

335 Billy May Third, roughly.}{15}

336 \clue{6}{D}{12}{1}{SENDUP}{Satirical book or film---give odds about

19

337 revision of ‘‘Dune’’?}{4-2}

338 \clue{7 {\noexpand\rm\&} 24}{D}{14}{1}{PALL}{Premier took in a Lord

339 Lieutenant and all played an

340 old game in London street.}{4-4}

341 \clue{14}{D}{14}{6}{ERG}{Work expended in power games?}{3}

342 \clue{16}{D}{2}{8}{ARC}{A church circle (or part of one).}{3}

343 \clue{18}{D}{12}{8}{RINGLETS}{Encircle hindrances under hair in long

344 curls.}{8}

345 \clue{19}{D}{8}{9}{STUDENT}{Boss over oto\-rhino\-laryng\-o\-logy

346 department undergraduate.}{7}

347 \clue{21}{D}{4}{10}{LOUVRE}{Old dovecote in Parisian museum.}{6}

348 \clue{22}{D}{14}{10}{LEGACY}{Like ornamental fabric, for example,

349 that’s in bequest.}{6}

350 \clue{24}{D}{2}{12}{MALL}{}{See {\bf 7}}

351 〈/grid1〉

352 〈∗exa0〉
353 \documentclass{article}

354 \usepackage{crosswrd}

355 \pagestyle{empty}

356 \setlength\topmargin{-1in}

357 \setlength\textheight{10.7in}

358

359 \begin{document}

360 \begin{crossword}{15}{?}

361 \input{grid0}

362 \end{crossword}

363 \end{document}

364 〈/exa0〉

365 〈∗exa1〉
366 \documentclass{article}

367 \usepackage{crosswrd}

368 \pagestyle{empty}

369 \setlength\topmargin{-1in}

370 \setlength\textheight{10.7in}

371 \begin{document}

372 \section*{A Sample Crossword}

373 \textit{(Chamber’s Twentieth Century dictionary)}

374 \begin{crossword}{15}{?}

375 \input{grid1}

376 \end{crossword}

377 \begin{crossword*}{15}{Solution to grid 0}

378 \input{grid0}

379 \end{crossword*}

380 \end{document}

381 〈/exa1〉

20

