{cprotect.sty}
\verbatim in \macro arguments”

Bruno Le Flochf

Released 2010/12/30

Contents

(1 Include \verb anywhere! | 1

2 List of user commands| 2

13 Known bugs/limitations| 4

4_The codel 5
M.1 Settingup|)
4.2 \ReadVerbatimUntil | 6
4.3 For macros: \cprotect and friends|. 8
4.4 For Environments: \cprotEnv\begin and \CPTbegin|. . . . 10

1 Include \verb anywhere!

The cprotect package will allow you to put verbatim in footnotesﬂ in a

straightforward way. The section above was typeset using
\cprotect\section{Include\verb-\verb- anywhere!}

and the footnote was

...tes\cprotect\footnote{Like this: \verb-!@#$% ~&*()_+-.}

*This file describes version v1.0, last revised 2010/12/30.
"E-mail: bruno@le-floch.fr
'Like this: '0#$%&* () _+.

\cprotect

\cMakeRobust

More generally, let us assume that you want to use verbatim text in
the argument of some macro \cs {(arg?)}, and that this macro is normally
allergic to verbatim. It probably has a good reason to be allergic, but using
an auxiliary file, we can solve the problem entirely: if you want {(arg1)} to
contain verbatim, just write \cprotect\cs or \cprotect{\cs} instead of
\cs P All the examples I give use very standard macros, but it should work
with any macro.ﬁ

Braces are useful if a macro has several arguments, and you want to put
verbatim in the second one: then type \cprotect{\cs{(arg?)}}{(arg2)}. If
you want to put verbatim in both arguments, well ... it is not implemented
yet, but if you send me an email saying why you need it, I will look into it
(suggestions are, as always, welcome).

2 List of user commands

Possibly the single most useful command is \cprotect, used as \cprotect
\foo {(arg1)} or \cprotect {(cslist)} {{arg1)}. As described in the pre-
vious section, the first form behaves as \foo {(arg?)}, and the second as
(cslisty {{argl)}. The difference is that the argument {(arg?)} can now
contain \catcode changes (e.g., induced by the \verb command and the
verbatim environment). In fact, {{(argl)} is written to a file, and then read
again as the argument of \foo. So using \cprotect, one could in principle
build weird macros that read their arguments several times, with different
\catcodes in effect each time. The macro \ReadVerbatimUntil below gives
a better way of doing that.

If you find yourself using a \cprotect\foo combination frequently, you
can simply define \bar to mean \cprotect\foo. It should work at least
most of the time. You can also use the typical

\let\oldfoo\foo
\def\foo{\cprotect\oldfoo}

to redefine \foo itself instead of a new command \bar. The package pro-
vides a wrapper for this construction: \cMakeRobust\foo replaces \foo by
a version which accepts verbatim. As a stupid example,

2This solves most problems, for instance, verbatim text in section titles written as
\cprotect\section{(title)} appears correctly in the table of contents. However, there
are still bugs in capitalized headers.

3If you have a macro that works when it is not preceeded by \cprotect, but breaks
down if you put \cprotect in front of it, I will be interested to know why.

\cprotEnv

\ReadVerbatimUntil

\newcommand{\expon} [1]{\mathrm{#1}~{#1}}
\cMakeRobust{\expon}
\ (\expon{Hel\verb+|+o}\)

produces Hel| o | °, and the verbatim is treated correctly.

Something similar to \cprotect exists for environments: \cprotEnv.
Simply put \cprotEnv \body {(name)} instead of \body {(name)}. For
example,

\cprotEnv\begin{align}
x&=\begin{cases}
1 &\text{if F\verb"e#)~&*"\\
2 &\text{otherwise}
\end{cases}
\end{align}

gives

= (1)

1 if o#),~&*

2 otherwise
Note that unfortunately we need to put the \verb outside \text. This is
because currently, nesting of \cprotect and friends is not supported.

You can use \CPTbegin as a short-hand for \cprotEnv\begin, but this
will fail when nesting the same environment twice: the inner nesting is
distinguished by precisely the characters\ b e g i n { name }

Finally, the most powerful and the root of all these macros, from which
the package currently derives its name, is \ReadVerbatimUntil. The aim
of this command is to read a piece of text verbatim, until it reaches an end-
marker. It then writes all that it has read to an auxiliary file for future use.
The most naive approach has a major flaw when nesting is involved: when
parsing {}} for instance, with an end-marker of }, we often wish to stop at
the second closing bracket, not the first one. Thus, \ReadVerbatimUntil
needs to be aware of a begin-marker. Also, for some applications we need
to write things before and after the content read by \ReadVerbatimUntil.
Finally, we want to do something once the file has been written, and possibly
something before.

The syntax is thus \ReadVerbatimUntil [(argl)] {(arg2)} ~begin-
text~endtext begintag~endtag”, followed by the text in which we look for
endtag. The caret (~) can be any character. It delimits the four verbatim-
like arguments of \ReadVerbatimUntil. The strings of letters begintext

3

and endtext are pre- and ap-pended to the file. As mentionned before,
begintag and endtag are used when reading the content, to determine how
far \ReadVerbatimUntil should go. The mandatory argument {(arg2)} is
executed once the whole text has been stored to a file. Typically, {(arg2)}
involves reading the file one or more times, and acting on it in any way
we like. The optional argument is used for hacks such as changing where
cprotect writes his files.

3 Known bugs/limitations

Incompatibility with \pagestyle{headings}: when a chapter title is put
as a header, it gets upper-cased. If you did \cprotect\chapter{...} as
usual, the title has been stored to a file, but now, the name of the file is
capitalized, and TEX cannot find it.

Issues with nesting of \cprotect in align environments: the issue seems
to arise because the align environment wants to fully expand it argument
once before typesetting it.

For commands with two or more arguments, it is only possible to put
verbatim in one of the arguments (and the syntax is not great).

The argument of any command that is prefixed with \cprotect has to
have balanced braces, even when hidden inside verbatim environments, or
even comments. For instance,

\cprotect\footnote{On the \verb:{: character}

would fail: \cprotect would see the brace in \verb:{:, and count it as
an opening tag, which then has to be closed. This is most likely to lead
\cprotect to gobble the whole file before complaining. Similarly,

\cprotect\footnote{On the \verb:!: %should it be }?
character}

would only gobble until the closing brace in %should it be }?7, and I am
not sure what error would be produced.

But we can use one ailment to cure the other! A correct way to typeset
the first example is

\cprotect\footnote{On the \verb:{: character’}
}

if % is a comment character at the time it is read. A safer solution would be
to use \iffalse}\fi instead of %}. It still requires to be sure that \ is an
escape character when this piece of code is read, and can lead to problems
if the previous token is \let for instance.

4 The code
1 (*package)
4.1 Setting up

We first load a few packages

2 \RequirePackage{ifthen}
3 \RequirePackage{suffix}

Then we introduce the commands pertaining to writing files [
We write files \jobname-1.cpt, \jobname-2.cpt, etc. in order.

4 \newwrite\CPT@WriteOut

5 \newcounter{CPT@WriteCount}

6 \newcommand{\CPT@Write} [1]{%

7 \stepcounter{CPT@WriteCountl}%

8 \immediate\openout\CPT@WriteOut=\jobname-%

9 \arabic{CPT@WriteCount}.cpt¥%

10 \newlinechar‘\~"M},

11 \immediate\write\CPT@WriteOut{#1}%

12 \immediate\closeout\CPT@WriteOut’

13 \aftergroup\CPT@setLastFileName}

14}

15 \newcommand{\CPT@setLastFileName}{},

16 \def\CPT@lastFileName{\jobname-\arabic{CPT@WriteCount}.cpt}}
17 \newcommand{\CPT@input@last}{%

18 \expandafter\protect\expandafter\input

19 \expandafter{\CPT@lastFileNamel}}

The next command changes all catcodes to letters. It was adapted from
filecontents.sty.
20 \newcommand{\makeallletters}{/

21 \count0=0\relax %
22 \loop %

4To be rewritten. For the moment, we use a new file each time cprotect is used. Thus,
many files. But this is needed if people want to nest cprotect’s.

23 \catcode\countO=11\relax %
24 \advance\countO by 1\relax %
25 \ifnum\count0<256 %

26 \repeat %

27 }

4.2 \ReadVerbatimUntil

Both \ReadVerbatimUntil and its starred version (which we define using the
suffix.sty package) take one optional argument [(first-cs)] and a manda-
tory argument {(final-cs)}. The (final-cs) is saved as \CPT@commandatend
to be executed when we close the file (and the group) [

28 \newcommand\ReadVerbatimUntil [2] []{%

29 \def\CPT@commandatend{#2}%

30 \begingroup #1%

31 \makeallletters¥%

32 \CPT@setup}

33 \WithSuffix\newcommand\ReadVerbatimUntil=[2] []1{%
34 \def\CPT@commandatend{#2}/

35 \begingroup #1%

36 \makeallletters,

37 \CPT@starsetup}

\CPT@setup reads the four “verbatim” arguments following {{final-cs)},
and stores them in this order as macros \CPT@preText, \CPT@postText,
\CPT@begin, and \CPT@end. The macros which read each of these arguments
need to be defined inside \CPT@setup, because I don’t want any constraint
on the delimiter. I could write a single macro that gobbles all four arguments
at once, but this would require a crazy number of \expandafters, so instead
I do it one by one.

If the delimiter was given, say ~, then we would define \CPT@readBegin
as \def \CPT@readBegin#1~{\def \CPT@begin{#1}\CPT@readEnd}. But
since ~ is not given explicitly, we need \expandafters to expand it before
the definition takes place. To avoid code repetition, I did it once and for all
in the auxiliary macro \CPT@def. Note that a parameter of ##1 is somehow
hidden inside \CPT@def, and that the ##1 inside the replacement text refer
to the arguments of the \CPT@read. .. macros.

38 \newcommand{\CPT@def} [2] {\expandafter\def\expandafter#1/,

5Tt is not a straightforward \aftergroup, because I want this to be executed after
another \aftergroup that comes later.

39 \expandafter##\expandafter1#2}

40 \newcommand{\CPT@setup} [1]{%

41 \def\CPT@delimiter{#1}

42 \CPT@def\CPT@readPreText\CPT@delimiter{’

43 \def\CPT@preText{##1}\CPTOreadPostText}%
44 \CPT@def\CPT@readPostText\CPT@delimiter{},

45 \def\CPT@postText{##1}\CPT@readBeginl/
46 \CPT@def\CPT@readBegin\CPT@delimiter{’

47 \def\CPT@begin{##1}\CPT@readEnd}/

48 \CPT@def\CPT@readEnd\CPT@delimiter{’,

49 \def\CPT@end{##1}\CPT@readContent}’

50 \CPT@readPreText%

51 }

52 \newcommand{\CPT@starsetup} [1] {\CPT@setup#1#1#1}

We also give the variant \CPT@starsetup, which has empty \CPT@preText
and \CPT@postText.

When \CPT@setup is expanded, it will call \CPT@readPreText, \CPTG-
readPostText, \CPT@readBegin, and \CPT@readEnd, and finish with \CPT®@-
readContent, which we describe now.

We borrow the idea of quark from expl3: \CPTQgend expands to itself,
useful for \ifx comparisons. The counter CPT@numB will count the sur-
plus of begin-tags compared to end-tags when we parse the text following
\CPT@readContent. And \CPT@store is a macro that adds its argument to
an other macro (I was too lazy to learn about token lists). The storage itself
will be initialized later.

53 \def\CPT@qend{\CPT@gend}
54 \newcounter{CPT@numB}
55 \newcommand{\CPT@store} [1]{\edef\CPTO@storage{\CPT@storage#1}}

The macro \CPT@readContent is quite tricky: if the begin-tag and
end-tag were one character, things would be easy: I would read one charac-
ter at a time, and compare it to both begin-tag and end-tag, then either
store it, and possibly increase or decrease CPT@numB, or decide that I am
done if CPT@numB becomes negative.

Unfortunately, I want to use \ReadVerbatimUntil for environments,
in which case the begin-tag is \begin{myenv} and the end-tag is
\end{myenv}. So two options:

e code a standard string searching algorithm... I did not feel like it, but
it might lead to a regexp package later on;

e use TEX’s delimited parameters.

7

I did the latter, using \CPT@def again (we want to expand the string which
delimits the parameter before doing the definition).
The details are ugly:

e gobble until the first end-taglf| and insert a fake begin-tag, as well
as the quark guard \CPT@qgend,

e inside what we gobbled, gobble begin-tags until reaching the fake one
(marked by the quark guard).

e continue until we have one more end-tag than begin-tag.

56 \newcommand{\CPT@readContent}{¥%

57 \CPT@def\CPT@gobbleOneB\CPT@begin##2{%

58 \1fx\CPTQqend##2\CPTO@store{##1}\addtocounter {CPTOnumB}{-1}%
59 \else\CPT@store{##1\CPT@begin}\stepcounter{CPT@numB}Y

60 \expandafter\CPT@gobbleOneB\expandafter##2\fil}y,

61 %

62 \CPT@def\CPTOgobbleUntilE\CPTQend{’

63 \edef\CPT@tempi{##1\CPT@begin}’

64 \expandafter\CPT@gobbleOneB\CPTOtempi\CPT@qend/

65 \ifthenelse{\value{CPTOnumB}<0}{%

66 \CPT@store{\CPT@postText1}’

67 \CPT@Write{\CPT@storage}\endgroup/

68 \CPT@commandatendy,

69 Ho

70 \CPT@store{\CPT@end}\CPT@gobbleUntilE},
71 jyA

72 }h

73 \setcounter{CPT@numB}{0}/

74 \def\CPT@storage{\CPTOpreText}’
75 \CPT@gobbleUntilE},

76 }

4.3 For macros: \cprotect and friends

Equipped with \ReadVerbatimUntil, we are ready for the more practical
macros. \cprotect cheats: it uses { and } as a begin-tag and end-tag.

6This will fail for devious cases: if begin-tag is abc and end-tag is bcd, and
\CPT@readContent is followed by abcd. . .: we will wrongly see bcd as an end-tag.

This works most of the time, but fails in cases such as those presented in
Section 3| (in usual cases there are Workaroundﬂ).

The first argument of \cprotect is the control sequence \cs that we are
patching.
77 \newcommand{\cprotect} [1]{\def\CPT@cs{#1}/,
78 \afterassignment\CPT@A\let\CPT@next}

Then, we check whether the next token is a brace or not:

e Ifit is, we discard the {, and the argument of \cs stops at the matching
explicit closing brace }. (See \CPT@n{ below... yes, the name of the
control sequence does contain the brace, which is simply a letter, after

all.)

e If it is not, the argument of \cs is this token only: we insert a brace
after the token, and launch \ReadVerbatimUntil. Think of this as
inserting braces around the argument, and doing what we did in the
former case: discarding the opening brace. (See \CPT@N below.)

Since \ReadVerbatimUntil makes everything into letters, we need braces
to be letters when we define most macros in this Section. We thus need a
few \catcode changes. Think of { - (and } —).
79 \begingroup
80 \catcode‘\{=11 \catcode‘\}=11 \catcode‘\+=11
81 \catcode‘\(=1 \catcode‘\)=2
82 \gdef\CPTQA (%
83 \1fx\CPT@next\bgroup%
84 \expandafter\CPTOn{’

85 \else’

86 \expandafter\CPTONY

87 \fi)

88 \gdef\CPT@n{(\ReadVerbatimUntilx* (%

89 \CPT@cs (\CPT@input@last))+{+}+)%

90 \gdef\CPT@ON (\expandafter\CPTCn{\CPT@next })%

91 \endgroup

Note the use of \bgroup in \CPT@A: if the argument of \cs starts with an
opening brace, it has been read early, and its \catcode will still be 1ﬂ

"But I could definitely not have the contents of this .dtx file as a (huge) footnote in
some document: since { and } change \catcodes, it is unlikely that the numbers balance
correctly.

8] am not sure whether catcodes really matter in such an \ifx.

\CPTbegin

We use + as a delimiter for \ReadVerbatimUntil. No begin-text nor
end-text. begin-tag and end-tag are { and } as mentionned before.
Once the matching } is found, we apply \CPT@cs (\cs stored) to
\CPT@input@last, aka the file where we saved the argument (we add some
protection so that things work well in \section and similar situations).
Finally, the \cMakeRobust command is a mess, and could probably be
improved, although... it works :).
92 \newcommand{\cMakeRobust} [1]{%
93 \def\CPT@csOname{\expandafter\Qgobble\string#11}J,
94 \expandafter\let\csname CPTQold@\CPT@cs@name\endcsname #1%
95 \expandafter\def\csname\CPT@cs@name\endcsname{’
96 \expandafter\cprotect\csname CPT@0old0\CPT@cs@name\endcsnamel}’
97 }

4.4 For Environments: \cprotEnv\begin and \CPTbegin

We introduce the command \CPTbegin, which has a behaviour close to the
behaviour of \begin. Namely, \CPTbegin{env} gobbles its argument until
it sees the matching \end, and it writes what it gobbled to a file. It then
inputs the file between \begin{. ..} and \end{. ..}, as we can see from the
definition of \CPT@commandatend.

As for the case of \cprotect, we need to setup the values of the four
arguments of \ReadVerbatimUntil before reading the content. Since the
begin-tag and end-tag depend on a parameter, it would be incredibly
messy to try to expandafter the right things, so we define \CPT@env@setup
to, well, setup the values of the four arguments of \ReadVerbatimUntil,
and then skip directly to \CPT@readContent.

98 \newcommand{\CPTbegin}[1]1{%

99 \def\CPT@commandatend{\begin{#1}\CPT@input@last\end{#1}}}
100 \begingroup%

101 \CPT@env@setup{#11}J,

102 \makeallletters’,

103 \CPT@readContent%

104 }

As announced, \CPT@env@setup, defined with lots of catcode changes.
Since the catcode of \ changes, I need an extra escape character, which I
take to be /. I use two groups so each group is opened and closed using the
same escape character (this is technically irrelevant, but seems less messy).

105 \begingroup\catcode ‘\/=0

10

106 /begingroup/catcode‘/\=11
107 /catcode‘/{=11 /catcode‘/}=11 /catcode‘/-=11
108 /catcode‘/(=1 /catcode‘/)=2
109 /gdef/CPT@env@setup#1 (}
110 /def/CPT@preText (\relax)%
111 /def/CPT@postText (\relax)%
112 /def /CPT@begin (\begin{#1})%
113 /def/CPT@end (\end{#1})%
114)
115 /endgroup
116 \endgroup

A final piece of code is needed so that \CPT-environments can be nested:
in order to be able to nest, we need \ReadVerbatimUntil to be aware that
our environment has been opened when \CPTbegin{foo} or \begin{foo}
appear in the text. Given the rules for delimited parameters in TeX, this
is quite difficult. A workaround is to replace \CPTbegin by something that
ends in \begin shuch as \cprotEnv\begin as defined below. Thus, for
nesting to work, you need to prepend every one of your env environments
with \cprotEnv.

117 \def\cprotEnv\begin{\CPTbegin}

118 (/package)

11

Change History

v1.0

mentation

General: First version with docu-

Index

Numbers written in italic refer to the page where the corresponding entry
is described; numbers underlined refer to the code line of the definition;
numbers in roman refer to the code lines where the entry is used.

99, 112, 117
83

\begin ...
\bgroup

\catcode 23, 80, 81, 105
\cMakeRobust 92
\cprotect 77,96
\cprotEnv
\CPT@A
\CPT@begin

47, 57, 59, 63
\CPT@commandatend

29, 34, 68, 99
\CPT@cs 77, 89
\CPT@cs@name .. 93-96
\CPT@def ... 38, 42,

44, 46, 48, 57, 62
\CPT@delimiter ...

. 41, 42, 44, 46, 48
\CPT@end ... 49, 62, 70
\CPT@env@setup .. 101
\CPT@gobblelneB
57, 60, 64

\CPT@gobbleUntilE

62, 70, 75
\CPT@input@last

17, 89, 99
\CPT@lastFileName

16, 19
86, 90

\CPT@N
\CPT@n 84, 88, 90
\CPT@next .. 78, 83, 90
\CPT@postText . 45, 66
\CPT@preText .. 43,74
\CPT@gend .. 53, 58, 64
\CPT@readBegin 45, 46
\CPT@readContent

49, 56, 103
\CPT@readEnd .. 47, 48
\CPT@readPostText

43, 44

\CPT@readPreText
......... 42, 50
\CPT@setLastFileName
......... 13, 15
\CPT@setup . 32, 40, 52
\CPT@starsetup 37, 52
\CPT@storage 55, 67, 74
\CPT@store
. 55, 58, 59, 66, 70
\CPT@tempi 63, 64
\CPT@Write 6, 67

12

\CPT@WriteOut
..... 4,8, 11, 12
\CPTbegin 98, 117
E
\end 99, 113
I
\input 18
J
\jobname 8, 16
L
\loop 22
M
\makeallletters
... 20, 31, 36, 102
N
\newlinechar 10
P
\protect 18
R
\ReadVerbatimUntil
...... 28, 33, 88
%%
\write 11

	cprotect-2.cpt
	List of user commands
	Known bugs/limitations
	The code
	Setting up
	cprotect-8.cpt
	cprotect-11.cpt
	cprotect-14.cpt

