The coolthms Package

Jonathan Zachhuber ${ }^{*} \quad$ Michael Fütterer ${ }^{\dagger}$

Version v1.1, 2012/04/01

Abstract

This package makes it possible to directly reference - s in theorem-like environments using the ntheorem and cleveref packages.

Contents

1 Overview 1
2 Usage 2
3 Formatting Details 3
4 Examples 4
5 Interaction with other packages 5
6 Implementation 6

1 Overview

Especially when typesetting lecture notes, one encounters situations such as
\begin\{theorem\}\label\{thm1\} }
\begin\{enumerate\} }
- \label\{1.1\} First point.
- \label\{1.2\} Second point.
\end\{enumerate\} }
\end\{theorem\} }
and would subsequently like to write something like \ref\{1.1\} to get something of the form 'Theorem 1 (a)'.

This, however, is not possible. Of course, one could retreat to writing something like $\backslash \mathrm{ref}\{\mathrm{thm} 1\} \sim \backslash \mathrm{ref}\{1.1\}$, but this is no satisfactory solution.

The coolthms package therefore provides the \Label command to create a special kind of label that internally saves the name and number of a possible theorem-like environment enclosing it.

[^0]In our above example，one could now write
\begin\｛theorem\}\label\{thm1\}
\begin\｛enumerate\}
- \Label\｛1．1\} First point.
- \Label\｛1．2\} Second point.
\end\｛enumerate\}
\end\｛theorem\}
and then \(\backslash c r e f\{1.1\}\) provides the desired result．See section 4 for some concrete ex－ amples．

For this to work，one needs to define the theorem－like environments with the new \definetheorem command．This is simply an extension of ntheorem＇s \newtheorem command．

2 Usage

The coolthms package only defines three useful commands and uses one from the cleveref package．

The \definetheorem command expands ntheorem＇s \newtheorem by saving in－ formation later to be used in generating the labels．The syntax is as follows：

```
\definetheorem[\langlecounter1\rangle]{\langleenv name\rangle}[\langlethm plural name\rangle]
    {\langlethm name\rangle}[\langlecounter }2\rangle
```

This command defines two environments，〈env name〉 and $\mathrm{n}\langle$ env name \rangle ．The first one is for numbered theorems，the second one is an unnumbered version．The displayed name of the theorem is \langle thm name \rangle ．You can optionally give the plural form \langle thm plural name \rangle ， which will be used if several theorems of this type are referenced at any one time．

The counter arguments are similar to those of \newtheorem．The \langle counter \rangle is the counter that is used for this type of theorem．The package creates a dummy counter， named thment，and this is the default value of 〈counter 1\rangle ．Hence，the default setting is for all different types of theorems to be numbered consecutively．If you want to number some type of theorem seperately，you should specify a new counter name via the optional argument 〈counterı〉；if the counter does not exist，it will be created．You can also provide the counter of another theorem environment，to group several types of theorem together．

The \langle counter 2\rangle is a counter that resets \langle counter 1\rangle every time it is incremented．It has the default value section so the theorems are numbered within a section and \langle counter 1\rangle is reset to 0 whenever a new section starts．If you want a theorem type to be numbered document－wide without the counter being reset at any time，you should give an empty （i．e．no）\langle counter \rangle argument．

The default numbering of the theorem environment is \langle counter 2$\rangle .\langle$ counter 1\rangle ．See section 4 for concrete examples．
\theoremmarkup is a command for formating theorems．Similar to the cor－ responding commands from ntheorem，it is called before defining theorems with \definetheorem，affecting the appereance of all theorems defined afterwards until it is called again．Details can be found in section 3.
\Label
The \Label command replaces（or re－implements）the＇conventional＇\label com－ mand and is to be used only inside theorem－like environments（which were previously defined with \definetheorem！）．The \label command can（and should）of course still
be used, if no special behaviour is desired ${ }^{1}$. The syntax is exactly the same as for \backslash label:

$$
\backslash \text { Label }\{\langle\text { label name }\rangle\}
$$

\cref
The labels thus defined should then be referenced with:

$$
\backslash \operatorname{cref}\{\langle\text { label name }\rangle\}
$$

This is the cleveref 'version' of \ref and is being used here without being altered in any way.

The package can be called with several options, which are described in the table below.

Option	Default value	Description
indent	Oem	The space every theorem's content will be indented.
separator	:	The punctuation sign that will be printed after the caption.
proofname	\backslash proofname	The caption for proofs.
proofsymbol	\$\Box\$	The symbol that will be printed at the end of proofs.
proofcaptionstyle	\it	The font shape in which the caption for proofs (as given in proofname) is printed.
proofindent	indent	The space proofs will be indented.
minskip	Opt	The minimal theorem pre- and post skip amount.
maxskip	6 pt	The maximal theorem pre- and post skip amount.

Note that the \proofname macro is defined by babel or polyglossia and is a language-specific string containing the proof name. If none of these package is loaded, we define \proofname just as "Proof" and use that as a default value. If no value is supplied for proofindent, proofs are indented the same amount as all other theorems (i.e. the default value is taken from indent).

3 Formatting Details

The \theoremmarkup command is used to describe how your theorems will be formatted. It should be called prior to any \definetheorem command. All theorems you define afterwards with \definetheorem will be formatted in the way you have set with \theoremmarkup, until you invoke \theoremmarkup again to change these values. The syntax is:

> \theoremmarkup $[\langle$ header font $\rangle][\langle$ body font $\rangle][\langle$ symbol $\rangle]$
> $[\langle$ indentation $\rangle][\langle$ separator $\rangle][\langle$ numbering $\rangle]$

All these parameters are optional and have the following default values:

[^1]| Option | Default value |
| :--- | :--- |
| header font | \bf |
| body font | \normalfont |
| symbol | \relax |
| intendation | the value of the package option indent |
| separator | $:$ |
| numbering | arabic |

For more detailed information about these parameters, see the documentation of the ntheorem package.
proof The package also defines a theorem environment intended for proofs, which is called
\theoremstyle\{mitnummern\} \theoremstyle\{keinenummern\} \theoremstyle\{unserbeweis\}

\sectionname

The package also provides (and uses with \definetheorem) three new theorem styles. They provide a numbered and an unnumbered theorem style, as well as one intended for proofs. They respect ntheorem's \theoremheaderfont but put the optional title addon in parentheses and \normalfont. See section 6 for details. proof.

While the babel and polyglossia packages define language specific commands for the word "chapter" (\chaptername), they include no \sectionname. The package therefore defines \sectionname, however at the moment it is left blank in all languages but German ("Abschnitt") and English ("section"), see section 6.

4 Examples

We define a theorem enviroment thm with caption "Theorem":

```
\definetheorem{thm}{Theorem}
```

Now we use this environment to typeset a theorem:

```
\begin{thm}\label{testthm}
    This is a theorem.
\end{thm}
```

Theorem 4.1: This is a theorem.
Notice that here we use the conventional \label command, as we are not in a nested situation.

Now we'll define - and then use - a more fancy theorem environment, fancythm. Before doing that, we invoke \theoremmarkup:

```
\theoremmarkup[\sc][\it][\textleaf][3em][.][Roman]
\definetheorem{fncythm}{Fancy Theorem}
\begin{fncythm}[Title]
    The \ctp{} package is a very useful package for typesetting theorems.
    This theorem is a long one, and we can see that its content is indented.
    We furthermore have an enumerated list of claims.
    \begin{enumerate}
    \item\Label{claim1} Claim 1
    \item\Label{claim2} Claim 2
    \end{enumerate}
\end{fncythm}
```

Thus the header font will be small caps, the body font will be italic, each fancy theorem will be ended by a leaf symbol, its content will be indented 3em, the punctuation sign after its caption will be a period, and the numbering will be Roman. Note that - by default - we use the same numbering as Theorem 4.1^{2}. And indeed:
Fancy Theorem 4.2 (Title). The cool thms package is a very useful package for typesetting theorems. This theorem is a long one, and we can see that its content is indented. We furthermore have an enumerated list of claims.
(a) Claim 1
(b) Claim 2

Finally, by writing \cref\{claim1\}, we get what we wanted: Fancy Theorem 4.2 (a). This even works for nested enumerates. However, we recommend using the enumitem package to improve the appeareance of the reference. For example, when we define

```
\usepackage{enumitem}
\setenumerate[1]{leftmargin=*,labelindent=\parindent,label=(\alph*)}
\setenumerate[2]{leftmargin=*,labelindent=\parindent,label=(\roman*),%
    ref=\theenumi~(\roman*)}
```

and we have a theorem

```
\begin{thm}
    Test theorem.
    \begin{enumerate}
    \item First point.
        \begin{enumerate}
        \item First sub-point.
        \item\Label{testlabel} Second sub-point.
        \end{enumerate}
    \item Second point.
    \end{enumerate}
\end{thm}
```

Theorem 4.3: Test theorem.
(a) First point.
(i) First sub-point.
(ii) Second sub-point.
(b) Second point.
then writing \cref\{testlabel\} correctly yields Theorem 4.3 (a) (ii).

5 Interaction with other packages

To achieve its goals, coolthms relies on several other packages, some of which are quite picky. Most notably, we use the cleveref package, which likes to be loaded at quite a late point in the document head (please refer to cleveref's package documentation for a detailed account of its interaction with other packages).

[^2]In general, you will be on the safe side if coolthms is the last package you load. If you want to use the language-specific \sectionname commands, you should definitely load it after babel or polyglossia, otherwise they will have no effect.

Since we use the ntheorem package, coolthms must be loaded after amsmath, if this is used. The package works with and without amsmath, though.

6 Implementation

First we load the packages we'll be needing.
Before loading the amssymb package, we need to undefine some commands to avoid errors.
1 \let \backslash Finv\@undefined
$2 \backslash$ let \backslash Game\@undefined
$3 \backslash$ let \backslash beth \backslash @undefined
4 \let\gimel\@undefined
${ }_{5}$ \let \backslash daleth \backslash @undefined
${ }_{6}$ \RequirePackage\{amssymb\}
hyperref support is always good when linking stuff, we need lots of little etoolbox macros and xargs as well as kvoptions for our argument and option processing.
7 \RequirePackage\{hyperref \}
$8 \backslash$ RequirePackage\{etoolbox\}
9 \RequirePackage\{ifthen\}
${ }_{10} \backslash$ RequirePackage\{xargs\}
${ }_{11}$ \RequirePackage\{kvoptions\}
We then check if amsmath has been loaded, so we know if to invoke the amsmath option in ntheorem.

```
12\@ifpackageloaded{amsmath}
13 {\RequirePackage[thmmarks,amsmath,hyperref]{ntheorem}}
14 {\RequirePackage[thmmarks,hyperref]{ntheorem}}
```

Note that the cleveref package must be loaded after the ntheorem package.

```
15\RequirePackage{cleveref}
```

\ctp@hashchar In order to write a verbatim 'hash' sign into our files later, it's practical to write the \catcode change into a small macro:

```
16 \begingroup
17\catcode`\#=12
18\gdef\ctp@hashchar{#}%
19 \endgroup
```

\proofname We provide options for the proofname, the theorem separator, the proof end symbol and the amount to indent theorem content. The default value of proofname should be \backslash proofname, which is set by babel or polyglossia. If the command is not defined, we simply define it as "Proof". The value of proofindent is set to that of indent if none is specified.
${ }_{20}$ \@ifundefined\{proofname\}\{\newcommand\{\proofname\}\{Proof\}\}\{\}
21 \DeclareStringOption[\proofname] \{proofname\}
$22 \backslash$ DeclareStringOption[\$\Box\$] \{proofsymbol\}
23 \DeclareStringOption[\it] \{proofcaptionstyle\}
24 \DeclareStringOption[\coolthms@indent] \{proofindent\}
${ }_{25}$ \DeclareStringOption[:]\{separator\}

```
26\DeclareStringOption[0em] {indent}
27 \DeclareStringOption[Opt] {minskip}
28 \DeclareStringOption[6pt] {maxskip}
29\DeclareLocalOptions{separator,indent,minskip,maxskip%
    proofname,proofsymbol,proofcaptionstyle,proofindent}
31 \ProcessKeyvalOptions*
```

Now we need to define various (an unnumbered, a numbered and a third one for proofs) theoremstyles ${ }^{3}$ we will be using:

```
\newtheoremstyle{keinenummern}%
    {\item[\hskip\labelsep\theorem@headerfont ##1\theorem@separator]}%
    {\item[\hskip\labelsep\theorem@headerfont ##1\ %
        {\normalfont(##3)}\theorem@separator]}
\newtheoremstyle{mitnummern}%
    {\item[\hskip\labelsep\theorem@headerfont ##1\ ##2\theorem@separator]}%
    {\item[\hskip\labelsep\theorem@headerfont ##1\ ##2\ %
            {\normalfont(##3)}\theorem@separator]}
\newtheoremstyle{unserbeweis}%
    {\item[{\hskip\labelsep\theorem@headerfont ##1\theorem@separator}]}%
    {\item[\hskip\labelsep{\theorem@headerfont ##3\theorem@separator}]}
```

If there are no chapters (e.g. article class), we should manually create that counter and set it to 1 , as we need that in the name of our label:

```
43\@ifundefined{c@chapter}{%
    \newcounter{chapter}%
    \setcounter{chapter}{1}%
}{}%
```

\definetheorem Now comes the real work: the \definetheorem command. \definetheorem takes five arguments and passes them to ntheorem's \newtheorem in a slightly altered order. We then create a numbered theorem style by name of \#2 and an unnumbered style by name of $\mathrm{n} \# 2$. This is necessary as the starred versions have a different meaning in the ntheorem package.

The optional arguments are first checked (i.e. nothing happens if they are not set) and then passed to \newtheorem to create the dummy counters that will later be used for numbering the environments.

```
\newcommandx*{\definetheorem} [5] [1=thmcnt, 3=,5=section]{
    \@ifundefined{c@#1}{
        \@ifundefined{c@#5}{
            \newtheorem{#1}{#1}
        }{
            \newtheorem{#1}{#1}[#5]
        }
    }{}
    \theoremstyle{mitnummern}
    \newtheorem{#2}[#1]{#4}
    \theoremstyle{keinenummern}
    \newtheorem{n#2}[#1] {#4}
```

When simply referring to the environment (i.e. something from a \label, not \Label command!), we want the reference to consist of ' \langle theorem name \rangle 〈theorem number〉' and all of it should be a hyperlink. \crefname takes three arguments: The name of

[^3]the theorem environment, the singular and plural form of the theorem name. These are stored in \#2, \#4 and \#3, respectively. If no plural form is given, i.e. \#3 is undefined, we simply replace it with its singular form (\#4):

```
\ifblank{#3}{
    \crefname{#2}{#4}{#4}
}{
    \crefname{#2}{#4}{#3}
}
\crefformat{#2}{##2#4~##1##3}
```

In the unnumbered version we need to subtract 1 from the counter, as it is nonetheless incremented.

```
\BeforeBeginEnvironment{n#2}{\addtocounter{#1}{-1}}
```

\ctp@labelcode Now, every time we call our new theorem environment, we want to create a new unique label (\ctp@labelcode), which we can then use as the label of the nested enumerate environments. However, at this point the counter \#1 has not been incremented yet, so we need to do (and later undo) this.

```
\BeforeBeginEnvironment{#2}{%
    \addtocounter{#1}{1}%
    \edef\ctp@labelcode%
            {ctp@#2@\roman{chapter}@\roman{section}@\arabic{#1}}\relax%
```

We then write all this information (including the format of the label) to the aux file so that it is available at the next run of $\mathrm{ETEX}_{\mathrm{E}}$.

```
\immediate\write\@auxout{\string\crefname{\ctp@labelcode}%
    {#4\noexpand~\csname the#1\endcsname}%
    {#4 plural\noexpand~\csname the#1\endcsname}}\relax%
\immediate\write\@auxout{\string\crefformat{\ctp@labelcode}%
    {\string##2#4\noexpand~\csname the#1\endcsname\noexpand~%
                            \ctp@hashchar1\ctp@hashchar3}}\relax%
```

\backslash Label We finally (re)define the \Label command. All it does is call the classic \label command (from cleveref) with our unique label name as identifier:

76
\edef \Label\#\#1\{\noexpand\label[\ctp@labelcode]\{\#\#1\}\}\%
Now we're done, all we need to do is correct \#1.

```
\addtocounter{#1}{-1} %
```

3\%
79 \}\%
\theoremmarkup Now we define the \theoremmarkup command, which is described above.

```
8o \newcommandx*{\theoremmarkup} [6] [1=\bf,2=\normalfont,3=\relax,%
81 4=\coolthms@indent,5=\coolthms@separator,6=arabic]{
```

For some reason, \backslash hspace $*\{-\# 4\}$ lets the theorem start just slightly into the margin (i.e. somewhere in the conversion process about one character space gets lost). Using \theorem@indent solves the problem, although it remains unclear exactly why.

```
\theoremheaderfont{\hspace*{-\theorem@indent}#1}
\theorembodyfont{#2}
\theoremsymbol{#3}
\theoremindent#4\relax
\theoremseparator{#5}
```

87 \theoremnumbering\{\#6\}
$88\}$
And then we want to adjust the format for the other types of references:

```
89\crefformat{equation}{#2(#1)#3}
go \crefformat{chapter}{#2\chaptername~#1#3}
```

\sectionname Interestingly enough, \sectionname is provided neither by polyglossia nor babel, so we add it in the appropriate languages.

```
91\@ifundefined{sectionname}{\newcommand{\sectionname}{}}{}
92 \gappto\captionsgerman{\renewcommand{\sectionname}{Abschnitt}}%
93 \gappto\captionsenglish{\renewcommand{\sectionname}{section}}
94\crefformat{section}{#2\sectionname~#1#3}
```

\theorempreskipamount
\theorempostskipamount
We set theorem pre- and post skip amounts.

```
95\theorempreskipamount\coolthms@minskip plus \coolthms@maxskip\relax
96\theorempostskipamount\coolthms@minskip plus \coolthms@maxskip\relax
```

This is for proofs:

```
97 \theoremstyle{unserbeweis}
98\theoremmarkup[\coolthms@proofcaptionstyle][\normalfont]%
    [\coolthms@proofsymbol] [\coolthms@proofindent]
100 \newtheorem{proof}{\coolthms@proofname}
```

At the end we invoke \theoremmarkup to set everything back to the default values.
101 \theoremmarkup

Change History

```
vo.1 of proofindent in option descrip-
    General: Started project . . . . . . . . . }
v1.0
    General: First public version . . . . . . }
V1.1
    General: Included new default value
        tion list. . . . . . . . . . . . . . . . . 3
        \proofname: Default value for
    proofindent is indent. . . . . . . }
\theoremmarkup: Fixed indentation
    bug.

\section*{Index}
Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.
\begin{tabular}{|c|c|c|}
\hline Symbols & & B \\
\hline \\# . . . . . . . . . . . . 17 & \ப . . . . . . . . 34, 37, 38 & \BeforeBeginEnvironment \\
\hline \@auxout ........ 70, 73 & & 65, 66 \\
\hline \@ifpackageloaded . . 12 & & \begingroup ...... 16 \\
\hline \@ifundefined & A & \beth ............. 3 \\
\hline . . 20, 43, 48, 49, 91 & \addtocounter . . 65, 67, 77 & \bf ............ 80 \\
\hline \@undefined .. 1, 2, 3, 4, 5 & \arabic . . . . . . . . 69 & \Box . . . . . . . . . . 22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C & G & R \\
\hline \multicolumn{3}{|l|}{\captionsenglish ... 93 \Game .............. 2 \relax} \\
\hline \captionsgerman . . . 92 & \gappto . . . . . . . 92, 93 & \(72,75,80,85,95,96\) \\
\hline \catcode . . . . . . . 17 & \gdef ............. 18 & \renewcommand . . . 92,93 \\
\hline \chaptername . . . . . . 90 & \gimel & \(\backslash\) RequirePackage 6, 7, \\
\hline \coolthms@indent . 24,81 & & 8, 9, 10, 11, 13, 14, 15 \\
\hline \coolthms@maxskip 95,96 & H & \roman . . . . . . . . . 69 \\
\hline \coolthms@minskip 95,96 & & \\
\hline \multicolumn{3}{|l|}{\coolthms@proofcaptionstyle \(\backslash\) hskip . 33, 34, 37, 38, 41, 42
............ 98
hspace ........... 82 \sectionnam} \\
\hline \coolthms@proofindent & I & \setcounter ...... 45 \\
\hline & & \string . . . . . 70, 73, 74 \\
\hline \coolthms@proofname 100 & \ifblank .......... 59 & \\
\hline \multicolumn{3}{|l|}{\coolthms@proofsymbol} \\
\hline 99 & \it ............ 23 & \theorem@headerfont \\
\hline \coolthms@separator 81 & \item . . 33, 34, 37, 38, 41, 42 & 33, 34, 37, 38, 41, 42 \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multirow[t]{2}{*}{\crefformat} & L & \theorem@separator \\
\hline & \Label . . . . . . . 1, 2, 76 & 33, 35, 37, 39, 41, 42 \\
\hline \crefname ..... 60, 62, 70 & \label . . . . . . . . . 76 & \theorembodyfont . . 83 \\
\hline \csname . . . . . 71, 72, 74 & \(\backslash\) labelsep & \theoremheaderfont . 82 \\
\hline \ctp@hashchar . . . 16, 75 & 33, 34, 37, 38, 41, 42 & \theoremindent . . . 85 \\
\hline \multirow[t]{2}{*}{\ctp@labelcode ....
\[
\text { . . . . . . 66, 70, 73, } 76
\]} & \let . . . . . . . 1, 2, 3, 4, 5 & \theoremmarkup ....
\[
\ldots \quad 2,3, \underline{80}, 98,101
\] \\
\hline & N & \theoremnumbering .. 87 \\
\hline \daleth . . . . . . . . . 5 & \newcommand ..... 20, 91 & \theorempostskipamount \\
\hline \DeclareLocalOptions 29 & \newcommandx . . . . 47, 80 & \theorempreskipamount \\
\hline \DeclareStringOption & \newcounter ...... 44 & \\
\hline \[
21,22
\] & \newtheorem & \theoremseparator .. 86 \\
\hline \begin{tabular}{l}
\[
23,24,25,26,27,28
\] \\
\definetheorem .. 2, 2, 47
\end{tabular} & \newtheoremstyle . . & \begin{tabular}{l}
\theoremstyle .. 55, 57, 97 \\
\theoremstyle\\{keinenummern \\}
\end{tabular} \\
\hline E & \begin{tabular}{l}
\[
\text { . . . . . . . 32, 36, } 40
\] \\
\noexpand
\end{tabular} & \theoremstyle\\{keinenumern\\} \\
\hline \edef . . . . . . . . 68, 76 & \multirow[t]{2}{*}{\normalfont . 35, 39, 80, 98} & \theoremstyle\\{mitnummern } \backslash \} \\
\hline \endcsname .... 71, 72, 74 & & .......... 4 \\
\hline \endgroup . . . . . . . 19 & \[
\mathbf{P}
\] & \theoremstyle\\{unserbeweis\\} \\
\hline environments: & \(\backslash\) ProcessKeyvalOptions & \(\begin{aligned} & \text {. . . . . . . . . . } 4 \\ & \\ & \text { \theoremsymbol . . . } 84\end{aligned}\) \\
\hline F & proof (environment) . . . 4 & W \\
\hline \Finv . . . . . . . . . . . 1 & \proofname ....... \(\underline{\text { 20 }}\) & \write ......... 70, 73 \\
\hline
\end{tabular}```


[^0]:    *jonathan.zachhuber@gmail.com
    $\dagger_{\text {michaelfuetterer@gmail.com }}$

[^1]:    ${ }^{1}$ Actually, if you use the Label command inside an unnested theorem environment, or for the theorem itself, it will simply display the theorem number twice as the counter is used both in the reference name and, of course, the reference counter. See section 6 .

[^2]:    ${ }^{2}$ This is just \cref\{testthm\}.

[^3]:    ${ }^{3}$ Here we use the ntheorem package.

