
The coollist package∗

nsetzer

October 6, 2007

The coollist package is a “sub” package of the cool package that seemed appro-
priate to publish independently since it may occur that one wishes to include the
ability to manipulate lists without having to accept all the overhead of the cool
package itself.

1 Basics

Lists are defined as a sequence of tokens separated by a comma. The coollist
package allows the user to access certain elements of the list while neglecting
others—essentially turning lists into a sort of array.

List elements are accessed by specifying the position of the object within the
list (the index of the item) and all lists start indexing at 1.

2 Commands & Descriptions

\setlistStop{〈string〉} and \setlistEnd{〈string〉} allow the user to set the end\setlistStop

\setlistEnd of a list ‘character’ in the rare event that the default values actually appear in the
list. listStop is used to identify when the list actually terminates, while listEnd
forces the reading macro to take in the entire list (without both entities, errors
would occur if macros were included in the list).

The default values are
listStop @@
listEnd @@@

\listval{〈list〉}{〈index 〉} returns the 〈index 〉 item of the comma delimited\listval

list 〈list〉 or nothing if 〈index 〉 is outside the number of elements of the list. The
first element of the list has index 1.

\liststore{〈list〉}{〈macro base name〉} stores the elements of comma delim-\liststore

ited list 〈list〉 in a set of macros having the first part of 〈macro base name〉 and
ending with the roman numermal index of the list.

For example, \liststore{1,2,3}{list} would define \listi, \listii, and
\listiii each holding 1, 2, 3, respectively.

\listlen{〈list〉} returns the length of the comma delimited list 〈list〉, though\listlen

∗This document corresponds to coollist v1.1, dated 2007/10/06.

1

it is not useful for storing this length. If you need to record the list’s length for
later use, it is better to use the function \listlenstore.

\listlenstore{〈counter〉}{〈list〉} stores the length of the comma delimited\listlenstore

list 〈list〉 is the counter 〈counter〉.

3 Test Cases

3.1 \listval
\listval

\listval{1,2,3,4}{0} (the null string)
$\listval{\alpha,\beta,\gamma}{2}$ β
\listval{a,b,c}{4} (the null string)

3.2 \liststore
\liststore

\liststore{1,2,3,4}{temp}
\tempi;\tempii;\tempiii;\tempiv 1;2;3;4

\liststore{a_1,a_2,a_3,a_4}{temp}
$\tempi;\tempii;\tempiii;\tempiv$ a1; a2; a3; a4

\liststore{a,b}{temp}
\tempi;\tempii a;b

3.3 \listlen
\listlen

\listlen{1,2,3,4,5} 5
\listlen{} 0
\listlen{1,2} 2
\listlen{1} 1

3.4 \listlenstore
\newcounter{thelistlength}\listlen

2

\listlenstore{thelistlength}{1,2,3,4,5}
\arabic{thelistlength} 5

\listlenstore{thelistlength}{}
\arabic{thelistlength} 0

4 Implementation

This is just an internal counter for dealing with the lists, most often used for the
length of the list.

1 \newcounter{COOL@listlen}%

\setlistEnd

\setlistStop

\setlistStop{〈string〉} and \setlistEnd{〈string〉} allow the user to set the end
of a list ‘character’s in the rare event that the default values actually appear in
the list. Both of these entities are required to properly deliminate the list and
avoid errors when macros are included in the list. The default values are

2 \newcommand{\COOL@listEnd}{@@@}%

3 \newcommand{\COOL@listStop}{@@}%

and they may be changed by the following commands (which utilize the
\renewcommand):

4 \newcommand{\setlistStop}[1]{\renewcommand{\COOL@listStop}{#1}}%

5 \newcommand{\setlistEnd}[1]{\renewcommand{\COOL@listEnd}{#1}}%

This area defines the core technology behind the coollist package: the list “gob-
bler”. To properly eat a list a counter and a boolean need to be used. listpointer
acts just like the name implies, as the current “position” of the list. found indi-
cates that the position has been found

6 \newcounter{COOL@listpointer}%

7 \newboolean{COOL@found}%

Now we come to “the gobbler”—a recursive function that eats up a list and
gives back the appropriate item. This must be done in TEX primatives.

The idea behind this is that “the gobbler” eats up everything before the desired
item and everything after the desired item.

8 \def\COOL@listgobble[#1]#2,#3,\COOL@listEnd{%

9 \ifthenelse{\equal{#3}{\COOL@listStop}}%

10 {%

we have reached the end of the list, just need to check if we need to output
something

11 \ifthenelse{\value{COOL@listpointer}=#1}%

12 {%

3

13 \setboolean{COOL@found}{true}%

14 #2%

15 }%

16 % Else

17 {%

18 }%

19 }%

20 % Else

21 {%

22 \ifthenelse{\value{COOL@listpointer}=#1}%

23 {%

24 \setboolean{COOL@found}{true}%

25 #2%

26 }%

27 % Else

28 {%

29 }%

30 \stepcounter{COOL@listpointer}%

We must eat up the whole list no matter what or else the stuff beyond #1 will
be displayed. so we need to call “the gobbler” again.

31 \COOL@listgobble[#1]#3,\COOL@listEnd%

32 }%

33 }%

\listval \listval{〈comma deliminated list〉}{〈index 〉}
gives the 〈index 〉 value of 〈comma deliminated list〉—as in
\listval{1,2,3,4,5,6}{3} = 3
$\listval{\alpha,\beta,\gamma}{2}$ = β

34 \newcommand{\listval}[2]{%

check to see if the submitted list is empty. if it is, do nothing

35 \ifthenelse{\equal{#1}{}}%

36 {%

set the listpointer to zero because the list has no length
37 \setcounter{COOL@listpointer}{0}%

38 }%

Else

39 {%

start at the beginning of the list, so initialize listpointer

40 \setcounter{COOL@listpointer}{1}%

Assume that the target will not be found—it will be set to true by “the gobbler”
if it is

41 \setboolean{COOL@found}{false}%

4

Now call the gobbler—since the user shouldn’t be forced to submit the end
character (in fact he or she shouldn’t even need to worry that an end character
exists nor what it is), we add it on along with the ‘optional’ parameter that
tells us which element to retreive. To ensure that the entire list is read in by
\COOL@listgobbler we need the list stop ‘character’ too.

42 \COOL@listgobble[#2]#1,\COOL@listStop,\COOL@listEnd%

43 }%

44 }%

\liststore

\COOL@liststore@gobbler

The list may be stored in a macro of the user’s choosing with the function. The
syntax is

\liststore{〈csv list〉}{〈macro base name〉}
and the resulting list elements are stored in
〈macro base name〉〈list index roman〉
where 〈list index roman〉 is the list index in roman numerals.
Some examples will clarify:
\liststore{1,2,3,4}{temp}

\tempi;\tempii;\tempiii;\tempiv yields 1;2;3;4
\liststore{a_1,a_2,a_3,a_4}{temp}
\tempi;\tempii;\tempiii;\tempiv yields a1; a2; a3; a4

45 \def\COOL@liststore@gobbler[#1]#2,#3,\COOL@listEnd{%

46 \ifthenelse{\equal{#3}{\COOL@listStop}}%

47 {%

48 \expandafter\gdef\csname #1\roman{COOL@listpointer}\endcsname{#2}%

49 }%

50 % Else

51 {%

52 \expandafter\gdef\csname #1\roman{COOL@listpointer}\endcsname{#2}%

53 \stepcounter{COOL@listpointer}%

54 \COOL@liststore@gobbler[#1]#3,\COOL@listEnd%

55 }%

56 }

57 \newcommand{\liststore}[2]{%

58 \setcounter{COOL@listpointer}{1}%

59 \COOL@liststore@gobbler[#2]#1,\COOL@listStop,\COOL@listEnd%

60 }%

\listlen This returns the length of the list, though it is not useful for storing this length.
If you need to record the list’s length for later use, it is better to use the next
function \listlenstore.

The format is \listlen{〈comma deliminated list〉}. It works by recording
the value of listpointer after it has complete traversed the list. Since indexing
starts at 1, it uses the index 0 which will never ever be an index of the list, so
“the gobbler” will not return any value.

Example: \listlen{1,2,3,4,5} = 5

61 \newcommand{\listlen}[1]{%

62 \listval{#1}{0}%

5

63 \arabic{COOL@listpointer}

64 }%listlength

\listlenstore This store the length of the list. The format is \listlenstore{〈counter〉}{〈comma
deliminated list〉}.

65 \newcommand{\listlenstore}[2]{%

66 \listval{#2}{0}%

67 \setcounter{#1}{\value{COOL@listpointer}}

68 }%listlength

Change History

v1.0
General: Initial Release 1

v1.1
General: Added documentation for

commands in separate section. . 1
Added test cases/examples 1

\listval: alter behavior to do
nothing for empty lists 4

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

C
\COOL@listEnd 2, 5, 8, 31, 42, 45, 54, 59
\COOL@listgobble 8, 31, 42
\COOL@listStop 3, 4, 9, 42, 46, 59
\COOL@liststore@gobbler 45

L
\listlen 1, 2, 61

\listlenstore 2, 65

\liststore 1, 2, 45

\listval 1, 2, 34

S

\setlistEnd 1, 2

\setlistStop 1, 2

6

