
The coollist package∗

nsetzer

August 14, 2006

The coollist package is a “sub” package of the cool package that seemed appro-
priate to publish independently since it may occur that one wishes to include the
ability to manipulate lists without having to accept all the overhead of the cool
package itself.

1 Basics

Lists are defined as a sequence of tokens separated by a comma. The coollist
package allows the user to access certain elements of the list while neglecting
others—essentially turning lists into a sort of array.

Lists elements are accessed by specifying the position of the object within the
list (the index of the item) Lists start indexing at 1.

2 Implementation

This is just an internal counter for dealing with the lists, most often used for the
length of the list.

1 \newcounter{COOL@listlen}%

\setlistEnd

\setlistStop

\setlistStop{〈string〉} and \setlistEnd{〈string〉} allow the user to set the end
of a list ‘character’s in the rare event that the default values actually appear in
the list. Both of these entities are required to properly deliminate the list and
avoid errors when macros are included in the list. The default values are

2 \newcommand{\COOL@listEnd}{@@@}%

3 \newcommand{\COOL@listStop}{@@}%

and they may be changed by the following commands (which utilize the
\renewcommand):

4 \newcommand{\setlistStop}[1]{\renewcommand{\COOL@listStop}{#1}}%

5 \newcommand{\setlistEnd}[1]{\renewcommand{\COOL@listEnd}{#1}}%

∗This document corresponds to coollist v1, dated 2006/08/14.

1

This area defines the core technology behind the coollist package: the list “gob-
bler”. To properly eat a list a counter and a boolean need to be used. listpointer
acts just like the name implies, as the current “position” of the list. found indi-
cates that the position has been found
6 \newcounter{COOL@listpointer}%

7 \newboolean{COOL@found}%

Now we come to “the gobbler”—a recursive function that eats up a list and
gives back the appropriate item. This must be done in TEX primatives.

The idea behind this is that “the gobbler” eats up everything before the desired
item and everything after the desired item.
8 \def\COOL@listgobble[#1]#2,#3,\COOL@listEnd{%

9 \ifthenelse{\equal{#3}{\COOL@listStop}}%

10 {%

we have reached the end of the list, just need to check if we need to output
something
11 \ifthenelse{\value{COOL@listpointer}=#1}%

12 {%

13 \setboolean{COOL@found}{true}%

14 #2%

15 }%

16 % Else

17 {%

18 }%

19 }%

20 % Else

21 {%

22 \ifthenelse{\value{COOL@listpointer}=#1}%

23 {%

24 \setboolean{COOL@found}{true}%

25 #2%

26 }%

27 % Else

28 {%

29 }%

30 \stepcounter{COOL@listpointer}%

We must eat up the whole list no matter what or else the stuff beyond #1 will
be displayed. so we need to call “the gobbler” again.
31 \COOL@listgobble[#1]#3,\COOL@listEnd%

32 }%

33 }%

\listval \listval{〈comma deliminated list〉}{〈index 〉}
gives the 〈index 〉 value of 〈comma deliminated list〉—as in
\listval{1,2,3,4,5,6}{3} = 3
$\listval{\alpha,\beta,\gamma}{2}$ = β

34 \newcommand{\listval}[2]{%

2

start at the beginning of the list, so initialize listpointer

35 \setcounter{COOL@listpointer}{1}%

Assume that the target will not be found—it will be set to true by “the gobbler”
if it is

36 \setboolean{COOL@found}{false}%

Now call the gobbler—since the user shouldn’t be forced to submit the end
character (in fact he or she shouldn’t even need to worry that an end character
exists nor what it is), we add it on along with the ‘optional’ parameter that
tells us which element to retreive. To ensure that the entire list is read in by
\COOL@listgobbler we need the list stop ‘character’ too.

37 \COOL@listgobble[#2]#1,\COOL@listStop,\COOL@listEnd%

38 }%

\liststore

\COOL@liststore@gobbler

The list may be stored in a macro of the user’s choosing with the function. The
syntax is

\liststore{〈csv list〉}{〈macro base name〉}
and the resulting list elements are stored in
〈macro base name〉〈list index roman〉
where 〈list index roman〉 is the list index in roman numerals.
Some examples will clarify:
\liststore{1,2,3,4}{temp}

\tempi;\tempii;\tempiii;\tempiv yields 1;2;3;4
\liststore{a_1,a_2,a_3,a_4}{temp}
\tempi;\tempii;\tempiii;\tempiv yields a1; a2; a3; a4

39 \def\COOL@liststore@gobbler[#1]#2,#3,\COOL@listEnd{%

40 \ifthenelse{\equal{#3}{\COOL@listStop}}%

41 {%

42 \expandafter\gdef\csname #1\roman{COOL@listpointer}\endcsname{#2}%

43 }%

44 % Else

45 {%

46 \expandafter\gdef\csname #1\roman{COOL@listpointer}\endcsname{#2}%

47 \stepcounter{COOL@listpointer}%

48 \COOL@liststore@gobbler[#1]#3,\COOL@listEnd%

49 }%

50 }

51 \newcommand{\liststore}[2]{%

52 \setcounter{COOL@listpointer}{1}%

53 \COOL@liststore@gobbler[#2]#1,\COOL@listStop,\COOL@listEnd%

54 }%

\listlen This returns the length of the list, though it is not useful for storing this length.
If you need to record the list’s length for later use, it is better to use the next
function \listlenstore.

The format is \listlen{〈comma deliminated list〉}. It works by recording
the value of listpointer after it has complete traversed the list. Since indexing

3

starts at 1, it uses the index 0 which will never ever be an index of the list, so
“the gobbler” will not return any value.

Example: \listlen{1,2,3,4,5} = 5

55 \newcommand{\listlen}[1]{%

56 \listval{#1}{0}%

57 \arabic{COOL@listpointer}

58 }%listlength

\listlenstore This store the length of the list. The format is \listlenstore{〈counter〉}{〈comma
deliminated list〉}.
59 \newcommand{\listlenstore}[2]{%

60 \listval{#2}{0}%

61 \setcounter{#1}{\value{COOL@listpointer}}

62 }%listlength

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

C
\COOL@listEnd 2, 5, 8, 31, 37, 39, 48, 53
\COOL@listgobble 8, 31, 37
\COOL@listStop 3, 4, 9, 37, 40, 53
\COOL@liststore@gobbler 39

L
\listlen . 55

\listlenstore 59

\liststore 39

\listval . 34

S

\setlistEnd 2

\setlistStop 2

4

