
The concepts package∗

Michiel Helvensteijn
mhelvens+latex@gmail.com

December 8, 2012

1 Introduction and Motivation

Documents with a lot of formal notation (such as papers about mathematics or
theoretical computer science) can introduce a number of concepts that need to be
managed. They’ll have names, descriptions and associated symbols that need to
be typeset, as well as relations between them.

I’m now writing my PhD thesis in the field of Theoretical Computer Science.
It will be especially heavy with definitions. I need to make sure that every symbol
is associated with no more than one concept and that all names and symbols are
consistently used. I’ll also need to generate a glossary with this information. But
I don’t want to manually keeping track of all that. It’s error-prone and it takes
time. I’d rather focus on the theory.

There are already techniques and packages that help lighten the load:

• Rather than use any names or symbols directly in the text, declare a macro
for each one. If you ever need to change one, you’ll only have to do it in one
place. You’ll also be far less likely to introduce any typos.

• There are packages out there to keep track of and output a glossary1.

But I’m not aware of any technique or package to ensure I’m not using a name or
symbol inconsistently, thereby potentially confusing the reader. And even if there
was, this is all still a lot of overhead.

I wrote the concepts package to automate all this stuff for me. Every time I
introduce a new concept in my thesis I ‘declare’ it once. The package then defines
all necessary macros for me and checks that I’m using them properly.

In concepts 0.0.4, most of the above already works but it cannot generate a
glossary yet. In future versions, it will interface with the glossaries package to
accomplish this.

I’m also planning to implement a rudimentary typesystem, to catch even more
kinds of mistakes in symbol usage. There will also be additional ways of typesetting
concept-related stuff, such as useful sentence fragments.

∗This document corresponds to concepts 0.0.4, dated 2012/12/08.Development of this package
is organized at http://latex-concepts.googlecode.com.I am happy to receive feedback there.

1It is sometimes called a nomenclature. The distinction is subtle.

1

2 Usage

In short: every concept first has to be declared using the \NewConcept macro.
Afterwards, its name and associated symbols can by typeset using other macros.

{〈concept key〉} [〈options〉]\NewConcept

Every concept needs a unique 〈concept key〉, by which it will be identified for the
rest of the document. This key can also be used to automatically derive the name
of the concept as well as the macro used to typeset the name.

Usually, you’ll also want to add 〈options〉. This optional argument takes a
comma-separated list of key=value pairs. The following is a list of available
options. Note that the option names are case-sensitive:

name the name of the concept
— default: 〈concept key〉

Name the capitalized name of the concept, for use in the beginning of a sentence
— default: 〈name〉 with the first letter capitalized

plural the plural form of the name
— default: 〈name〉s

Plural the capitalized, pluralized name of the concept
— default: 〈plural〉 with the first letter capitalized

namecmd the ‘short’ command that may be used to typeset the name of this
concept; this option *has* to be specified for any command to be defined,
but the =value part may be omitted to get the default
— default: \〈concept key〉

symbols a comma-separated list of symbols that may represent instances of this
concept, delimited by curly brackets
— default: {} (the empty list)

symbolcmd the ‘short’ command that may be used to typeset a specific symbol
of this concept, given a numeric index

Here are a few examples which will also be used to illustrate the other commands:

\NewConcept{swproduct}[
name = software product, % options ’plural’, ’Plural’
Name = Software Product, % are implicitly defined
namecmd = \product, % defines \product
symbols = {p, q, r}, % p, q, r represent products
symbolcmd = \p % defines \p

]

\let\delta\relax % I won’t be using the greek letter
\let\d\relax % or the ’dot under a letter’ macro

\NewConcept{delta}[
namecmd, % defines \delta
symbols = {x, y, z}, % x, y and z represent deltas
symbolcmd = \d % defines \d

]

2

There are certain restrictions on new concept declarations. You may not use
the same 〈concept key〉 more than once. You may not use the same symbol for
more than one concept (this is a feature; the package will report an error if you
do). Also, both 〈namecmd〉 and 〈symbolcmd〉 are subject to the rules governing
\newcommand. They may not be reused, or you will see a standard LATEX error.
Finally, any value you supply must behave properly in an expansion-only context,
e.g. be robust.

{〈concept key〉} {〈option key〉}\ConceptOption

This command can be used to get back any option value given a specific 〈concept
key〉 and 〈option key〉. For example:

\ConceptOption{delta}{Plural}

Deltas

\edef\prd{\ConceptOption{swproduct}{namecmd}}
{\ttfamily\expandafter\detokenize\expandafter{\prd}}%

expands to ‘‘\prd’’

\product expands to “software product”

\ConceptOption is ‘fully expandable’, meaning that it can expand at least down
to the value that was given to the option. This is not guaranteed for the
\ConceptName and \ConceptSymbol commands, for instance.

As you can observe from the \product example above, options that expect
a command sequence are stored with an accompanying \noexpand. That means
that in an \edef context, \ConceptOption expands down to the stored command
but no further. After that you can expand it further if you wish.

[^] [*] {〈concept key〉}\ConceptName

With this command you can typeset the name of the concept with 〈concept key〉
in any of four forms. The ^ modifier gives you the capitalized version. The *

modifier gives you the plural version. The combination gives you both. The order
between ^ and * doesn’t matter.

\ConceptNameˆ*{delta} can transform a \ConceptName{swproduct}.

Deltas can transform a software product.

〈namecmd〉 [^] [*]

This is the ‘short’ version of \ConceptName, specific for each concept that was
declared with the namecmd option. It also supports the same modifiers.

\deltaˆ* can easily transform a \product.

Deltas can easily transform a software product.

3

{〈concept key〉} [〈symbol index 〉]\ConceptSymbol

This command typesets a specific symbol associated with a a given concept. Spec-
ify the concept by providing the 〈concept key〉 and the symbol by giving the 〈symbol
index 〉.

The index is 1-based and points to a place in the symbol list provided with
the concept options. If a concept has only one allocated symbol the index may be
omitted. If there is more than one symbol, the index is mandatory.

$\ConceptSymbol{delta}[2] \cdot \ConceptSymbol{delta}[1] =
\ConceptSymbol{delta}[1] \cdot \ConceptSymbol{delta}[2]$

y · x = x · y

〈symbolcmd〉 [〈symbol index 〉]

This is the ‘short’ version of \ConceptSymbol, specific for each concept that was
declared with the symbolcmd option. The optional index is given directly following
the command itself (optionally with whitespace inbetween). To be clear: the index
doesn’t need any delimiters.

$(\d2 \cdot \d1)(\p1) = \d2(\d1(\p1)) = \d2(\p1’) = \p1’’$

(y · x)(p) = y(x(p)) = y(p′) = p′′

As you can see, this short construct requires a lot less space than the full
\ConceptSymbol command, so its use is recommended for readability.

3 Future Work

Everything up to this version of the package has been a bit of an experiment for
me. A way to get me started. I may still fix one or two issues for the 0.0.x series,
but I will soon start from scratch with all I’ve learned.

There will be two major changes starting from version 0.1.0. First of all, the
package will be built on top of the glossaries package, which already does much
of the work I’m now doing manually. This was always the plan, as we’ll want to
typeset a glossary with our concepts, and I don’t want to reinvent the wheel. The
glossaries package is actively developed and has a great amount of features we
can take advantage of. Secondly, I will program the 0.1.0 series using LATEX3.

Here is an incomplete list of the features I am planning to implement:

• full integration with the glossaries package

• commands to modify existing concepts

• typesetting a summary of the concepts introduced in each chapter / section

• typesetting sentence fragments such as x, y, z using only the code \d[1,2,3]

or deltas x, y, z using only \delta[1,2,3]

4

• management of tuples and sets of concept instances

• management of subconcepts plus a rudimentary typesystem that ensures con-
cept instances are not used where a different concept is expected

4 Implementation

We now show and explain the entire implementation in concepts.sty.

4.1 Package Info

1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesPackage{concepts}[2012/12/08 0.0.4

3 managing names and symbols of document specific formal concepts]

4.2 Packages

These are the packages we’ll need.

4 \RequirePackage{etextools}

5 \RequirePackage{nth}

6 \RequirePackage{xspace}

7 \RequirePackage{xparse} % 1

8 \RequirePackage{ltxkeys}[2012/11/17] % 2

9 \RequirePackage{xstring}

We need a very recent version of ltxkeys in order to properly handle list-values.
Note that xparse needs to be loaded before ltxkeys or things go wrong somehow.

4.3 Facilitating Easy Data Access

\cnc@d {〈identifier〉}

\cnc@g {〈identifier〉}

This package needs to store and retrieve a lot of data. To make the rest of the code
more readable, we define the following commands. They allow a more freeform
description of the data.

\cnc@d returns a control sequence name that resolves to a specific piece of data
in \csname context. We can get access to the data itself by using \cnc@g.

10 \newcommand*{\cnc@d}[1]{cnc@data@#1}

11 \newcommand*{\cnc@g}[1]{\csuse{\cnc@d{#1}}}

Both take an identifier of one the following shapes:

• concepts

• concept(〈name〉).option(〈name〉)

• concept(〈name〉).option(〈name〉).given

5

• concept(〈name〉).option(〈name〉).count

• concept(〈name〉).option(〈name〉).index(〈number〉)

• symbol(〈name〉).concept

4.4 Private General Purpose Macros and Toggles

\cnc@upper {〈string〉}

We’re going to need a command that capitalizes the first letter of a string which
fully expands its argument. So here it is.

12 \newcommand*{\cnc@upper}[1]{\ExpandAftercmds\MakeUppercase{#1}}

\cnc@grabnumber {〈token sequence containing #1 〉} [〈number〉]

This is a command we’re going to use for the automatically defined short symbol
macros later. It has one ’real’ mandatory argument and then it captures all numer-
als (0. . . 9) that follow it. These numerals are then substituted for all occurrences
of #1 in the mandatory argument which is then ‘returned’.

13 \newcommand{\cnc@grabnumber}[1]{%

14 \def\cnc@dowithnum##1{#1}%

15 \futuredef[0123456789]{\cnc@@n}{\cnc@dowithnum{\cnc@@n}}%

16 }

4.5 Private Specific-purpose Macros

\cnc@conceptname {〈plural〉} {〈capitalized〉} {〈plural〉} {〈concept key〉}

This typesets the name of a specific concept in one of four forms. It can be
capitalized or not; and it can be singular or plural. We define this private macro
because there will be two public macros with this functionality and we want to
define the behavior in only one place.

The first three arguments are xparse style booleans. The first and third are the
same because the public macros allow both orders between the * and ^ modifiers
and we want to have a simple one-to-one mapping between their arguments and
the arguments of this private macro.

17 \newcommand{\cnc@conceptname}[4]{%

We test if both the first and third arguments are true, meaning that the public
command has two * modifiers. If it does, we give a package error.

18 \ifboolexpr{ test{\IfBooleanTF{#1}} and test{\IfBooleanTF{#3}} }{%

19 \PackageError{concepts}%

20 {You used the * modifier twice; once is enough}%

21 {I will pretend you just used one *.}%

22 }{}%

6

And then we simply typeset the correct value from our datastore.

23 \ifboolexpr{ test{\IfBooleanTF{#1}} or test{\IfBooleanTF{#3}} }{%

24 \IfBooleanTF{#2}%

25 {\cnc@g{concept(#4).option(Plural)}}%

26 {\cnc@g{concept(#4).option(plural)}}%

27 }{%

28 \IfBooleanTF{#2}%

29 {\cnc@g{concept(#4).option(Name)}}%

30 {\cnc@g{concept(#4).option(name)}}%

31 }%

We end with an \xspace because the public command may need one.

32 \xspace%

33 }

\cnc@conceptsymbol {〈concept key〉} {〈index 〉}

This is the private macro which takes a concept key and an index and returns the
corresponding symbol from our data-store. We use it in the public macros that
offer this functionality.

34 \newcommand*{\cnc@conceptsymbol}[2]{%

We check if an actual numerical value was passed.

35 \IfInteger{#2}{%

If we got one, we check whether it is larger than the number of symbols allocated
to the concept.

36 \edef\cnc@symbolcount{\cnc@g{concept(#1).option(symbols).count}}%

37 \ifnumcomp{#2}{>}{\cnc@symbolcount}{%

If it is, we report an ‘index out of bounds’ error. We first prepare an appropriate
sentence fragment so the error message becomes more readable.

38 \edef\cnc@nth{#2\nthSuff0#2\delimiter}%

39 \ExpandNext\IfStrEq{\cnc@symbolcount}{0}{%

40 \edef\cnc@somany{no symbols}%

41 }{\ExpandNext\IfStrEq{\cnc@symbolcount}{1}{%

42 \edef\cnc@somany{only 1 symbol}%

43 }{%

44 \edef\cnc@somany{only \cnc@symbolcount\space symbols}%

45 }}%

46 \PackageError{concepts}%

47 {You asked for the \cnc@nth\space ’#1’ symbol,

48 but\MessageBreak the ’#1’ concept has

49 \cnc@somany\space allocated}%

50 {I will pretend you didn’t ask for a symbol here.}%

7

51 }%

But if the number is within bounds, great! We just return the stored symbol.

52 {%

53 \cnc@g{concept(#1).option(symbols).index(#2)}%

54 }%

55 }%

Now follows the ‘else’ branch: we didn’t get a numerical index.

56 {%

If there is only one symbol allocated to this concept, we don’t care and return
that symbol.

57 \edef\cnc@symbolcount{\cnc@g{concept(#1).option(symbols).count}}%

58 \ifnumcomp{\cnc@symbolcount}{=}{1}{%

59 \cnc@g{concept(#1).option(symbols).index(1)}%

60 }%

If there are multiple symbols, the lack of an index is ambiguous and we report a
package error.

61 {%

62 \PackageError{concepts}%

63 {You didn’t specify a number, but the ’#1’

64 \MessageBreak concept has more than one symbol

65 allocated; please\MessageBreak specify a number

66 to typeset a specific symbol}%

67 {I will pretend you didn’t ask for a symbol here.}%

68 }%

69 }%

70 }

4.6 Public Macros

We now implement the macros that will be used directly by package users.

\NewConcept {〈concept key〉} [〈options〉]

The \NewConcept macro is defined using xparse, since we want the optional
argument after the mandatory one (it’s just nicer).

71 \NewDocumentCommand{\NewConcept}{m O{}}{%

Is this concept key already defined? If so, we report a package error.

8

72 \xifinlist{#1}{\cnc@g{concepts}}{%

73 \PackageError{concepts}%

74 {The concept key ’#1’ is already taken}%

75 {I will pretend that this ’\protect\newconcept’%

76 didn’t happen.}%

77 }%

Otherwise, we start the actual processing of this new concept.

78 {%

We add the concept to the concepts list in our datastore.

79 \listcsxadd{\cnc@d{concepts}}{#1}%

We then check which options were explicitly specified by the user. This results in
a set of toggles in our datastore, which may be used by other code.

80 \DeclareRobustCommand*{\cnc@registertoggle}[1]{%

81 \newtoggle{\cnc@d{concept(#1).option(##1).given}}%

82 \togglefalse{\cnc@d{concept(#1).option(##1).given}}%

83 \ltxkeys@newordkey[cnc@toggle]{#1}{##1}[]%

84 {\toggletrue{\cnc@d{concept(#1).option(##1).given}}}%

85 }

86 \cnc@registertoggle{name}%

87 \cnc@registertoggle{Name}%

88 \cnc@registertoggle{plural}%

89 \cnc@registertoggle{Plural}%

90 \cnc@registertoggle{namecmd}%

91 \cnc@registertoggle{symbols}%

92 \cnc@registertoggle{symbolcmd}%

93 \ltxkeys@setkeys*[cnc@toggle]{#1}{#2}%

We now register the concept name options name, Name, plural and Plural. This
is also where we set their default values.

94 \ltxkeys@newordkey[cnc]{#1}{name}%

95 [#1]%

96 {\csdef{\cnc@d{concept(#1).option(name)}}{##1}}%

97 \ltxkeys@newordkey[cnc]{#1}{Name}%

98 [\cnc@upper{\cnc@g{concept(#1).option(name)}}]%

99 {\csdef{\cnc@d{concept(#1).option(Name)}}{##1}}%

100 \ltxkeys@newordkey[cnc]{#1}{plural}%

101 [\cnc@g{concept(#1).option(name)}s]%

102 {\csdef{\cnc@d{concept(#1).option(plural)}}{##1}}%

103 \ltxkeys@newordkey[cnc]{#1}{Plural}%

104 [\cnc@upper{\cnc@g{concept(#1).option(plural)}}]%

105 {\csdef{\cnc@d{concept(#1).option(Plural)}}{##1}}%

We next register the namecmd option. Its default value is the concept key with a
\ in front of it. Unlike most other options, though, we require the option name to
be explicitly given by the user to actually define the macro. The following code
also contains the test.

9

106 \expandaftercmds{\ltxkeys@newordkey[cnc]{#1}{namecmd}%

107 [}{\csname#1\endcsname}]{%

108 \iftoggle{\cnc@d{concept(#1).option(namecmd).given}}{%

We register the option value as given.

109 \csdef{\cnc@d{concept(#1).option(namecmd)}}{\noexpand##1}

〈namecmd〉 [*] [^] [*]

If the option is processed, we define the concept-specific name command with the
following code:

110 \NewDocumentCommand{##1}{t* t^ t*}{%

111 \cnc@conceptname{####1}{####2}{####3}{#1}%

112 }%

113 }{}%

114 }%

We now register the symbols option. This option expects a list. The callback of
the following code processes it one symbol at a time. And we first initialize the
symbol counter to 0 in case the list is empty

115 \csdef{\cnc@d{concept(#1).option(symbols).count}}{0}%

116 \ltxkeys@newlistkey[cnc]{#1}{symbols}[]{%

We check if this particular symbol is already defined. We don’t want a symbol
allocated to different concepts. Or allocated twice to the same concept, for that
matter. If all is fine, we update the symbol counter for this concept, we add the
symbol itself and we update the reverse map we use for checking duplicates.

117 \ifcsundef{\cnc@d{symbol(\detokenize{##1}).concept}}{%

118 \csedef{\cnc@d{concept(#1)%

119 .option(symbols)%

120 .count}}{\ltxkeys@listcount}%

121 \csdef{\cnc@d{concept(#1)%

122 .option(symbols)%

123 .index(\ltxkeys@listcount)}}{##1}%

124 \csedef{\cnc@d{symbol(\detokenize{##1}).concept}}{#1}%

125 }%

If the symbol is already in use we report a package error.

126 {%

127 \PackageError{concepts}%

128 {The symbol ’\detokenize{##1}’ is already allocated

129 to the ’\cnc@g{symbol(\detokenize{##1}).concept}’

130 concept}%

131 {I will pretend that you did not

132 try to add this symbol.}%

133 }%

10

134 }%

We register the symbolcmd option. It does not really have a default, but we give
an empty default so we can test for the empty string inside.

135 \ltxkeys@newordkey[cnc]{#1}{symbolcmd}[]{%

136 \ifblank{##1}{}{%

We register the option value as given.

137 \csdef{\cnc@d{concept(#1).option(symbolcmd)}}{\noexpand##1}

〈symbolcmd〉 [〈index 〉]

If the option is processed, we now define the concept-specific ‘short’ command used
to typeset one of the allocated symbols. It doesn’t have a conventional argument,
but it grabs all numerals following it and uses that as an index to the symbol.

138 \newrobustcmd*{##1}{%

139 \cnc@grabnumber{%

140 \cnc@conceptsymbol{#1}{########1}%

141 }%

142 }%

143 }%

144 }%

Finally, we issue the command to parse and process all options.

145 \ltxkeys@launchkeys[cnc]{#1}{#2}%

146 }%

147 }

\ConceptOption {〈concept key〉} {〈option key〉}

The point of this command is that it can retrieve any option value in an expandable
way. That means we can’t use xparse, but we don’t need it.

148 \newcommand*{\ConceptOption}[2]{%

149 \cnc@g{concept(#1).option(#2)}%

150 }

Unfortunately, as of writing this, not all options are stored in a fully expandable
way yet. But they will be in a later version.

\ConceptName [*] [^] [*] {〈concept key〉}

This implementation simply calls our private macro for retrieving the name in one
of four forms.

11

151 \NewDocumentCommand{\ConceptName}{t* t^ t* m}{%

152 \cnc@conceptname{#1}{#2}{#3}{#4}%

153 }

\ConceptSymbol {〈concept key〉} [〈index 〉]

This implementation simply calls our private macro for retrieving the symbol with
the given index. The index is optional (as it is in the ‘short’ version) and defaults
to 1.

154 \NewDocumentCommand{\ConceptSymbol}{m O{1}}{%

155 \cnc@conceptsymbol{#1}{#2}%

156 }

Change History

0.0.1

General: initial version 1

0.0.2

General: put the package into a .dtx
file . 1

0.0.3
General: separated the .dtx file

from the .sty file 1
0.0.4

General: finished the documenta-
tion and made a few fixes 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

C

\cnc@@n 15

\cnc@conceptname . .
. 17, 111, 152

\cnc@conceptsymbol .
. 34, 140, 155

\cnc@d . . . 10, 79, 81,
82, 84, 96, 99,
102, 105, 108,
109, 115, 117,
118, 121, 124, 137

\cnc@dowithnum . . 14, 15

\cnc@g . . . 10, 25, 26,
29, 30, 36, 53,
57, 59, 72, 98,
101, 104, 129, 149

\cnc@grabnumber 13, 139

\cnc@nth 38, 47

\cnc@registertoggle

. 80, 86–92

\cnc@somany 40, 42, 44, 49

\cnc@symbolcount . .
. 36, 37,
39, 41, 44, 57, 58

\cnc@upper . 12, 98, 104

\ConceptName 3, 151

\ConceptOption . . 3, 148

\ConceptSymbol . . 4, 154

\csdef 96, 99, 102, 105,
109, 115, 121, 137

\csedef 118, 124

\csname 107

\csuse 11

D

\DeclareRobustCommand

. 80

\def 14

\delimiter 38

\detokenize
. 117, 124, 128, 129

E

\edef 36, 38, 40, 42, 44, 57

\endcsname 107

\ExpandAftercmds . . 12

\expandaftercmds . . 106

\ExpandNext 39, 41

F

\futuredef 15

I

\ifblank 136

\IfBooleanTF
. . . . 18, 23, 24, 28

\ifboolexpr 18, 23

\ifcsundef 117

\IfInteger 35

12

\ifnumcomp 37, 58
\IfStrEq 39, 41
\iftoggle 108

L
\listcsxadd 79
\ltxkeys@launchkeys 145
\ltxkeys@listcount .

. 120, 123
\ltxkeys@newlistkey 116
\ltxkeys@newordkey .

. . . 83, 94, 97,
100, 103, 106, 135

\ltxkeys@setkeys . . 93

M
\MakeUppercase 12

\MessageBreak 48, 64, 65

N
\NeedsTeXFormat 1
\newcommand

. 10–13, 17, 34, 148
\NewConcept 2, 71
\newconcept 75
\NewDocumentCommand

. 71, 110, 151, 154
\newrobustcmd 138
\newtoggle 81
\noexpand 109, 137
\nthSuff 38

P
\PackageError

19, 46, 62, 73, 127
\protect 75
\ProvidesPackage . . . 2

R
\RequirePackage . . . 4–9

S
\space 44, 47, 49

T
\togglefalse 82
\toggletrue 84

X
\xifinlist 72
\xspace 32

13

