
User’s Guide for complexity: a LATEX package,

Version 0.76

Chris Bourke

March 22nd, 2005

Contents

1 Introduction 2

1.1 What is complexity? . 2

1.2 Why a complexity package? . 2

2 Installation 2

3 Package Options 3

3.1 Mode Options . 3

3.2 Font Options . 4

3.2.1 The small Option . 4

4 Using the Package 6

4.1 Overridden Commands . 6

4.2 Special Commands . 6

4.3 Function Commands . 6

4.4 Language Commands . 7

4.5 Complete List of Class Commands 8

5 Customization 15

5.1 Class Commands . 15

1

5.2 Language Commands . 16

5.3 Function Commands . 17

6 Extended Example 17

7 Feedback 18

7.1 Acknowledgements . 19

1 Introduction

1.1 What is complexity?

complexity is a LATEX package that typesets computational complexity classes
such as P (deterministic polynomial time) and NP (nondeterministic polynomial
time) as well as sets (languages) such as SAT (satisfiability). In all, over 350
commands are defined for helping you to typeset Computational Complexity con-
structs.

1.2 Why a complexity package?

A better question is why not? Complexity theory is a more recent, though mature
area of Theoretical Computer Science. Each researcher seems to have his or her
own preferences as to how to typeset Complexity Classes and has built up their
own personal LATEX commands file. This can be frustrating, to say the least,
when it comes to collaborations or when one has to go through an entire series
of files changing commands for compatibility or to get exactly the look they want
(or what may be required). I find it amazing that a package hasn’t been written
already ! (Maybe there has been, but I’ve not found it).

I thought the best solution would be to develop a single LATEX package to handle
all of this for us.

2 Installation

You should place the complexity directory and its files (complexity.sty and
mycomplexity.sty as well the documentation files if you like) in a place that
your TEX distribution will be able to find them.

If you use MiKTEX then you should place it in your localtexmf directory, making
sure to refresh your TEX tree (MiKTEX options wizard → General → File Names

2

Database, Refresh Now).

In a unix TEX distribution, you may find it useful to use a local LATEX path (i.e.
creating a directory /usr/local/username/mylatexfolder/ and tell your TEX
distribution where to find it. Depending on your distribution, you might declare
an environmental variable (say in your .cshrc file) like

setenv $TEXINPUTS = /usr/local/texdistro//:/usr/local/username/mylatexfolder//

(note that the double slash will recursively search all subdirectories).

3 Package Options

The complexity package provides two general options—a font option (of which
there are three classes) and a mode option. The font option specifies what font
the complexity classes (as well as functions and languages) are typeset in while
the mode option specifies how many complexity classes are defined.

One specifies these options in the usual manner. When you use the package, you
can pass it the options you wish; for example, calling the package with

\usepackage[bold,full]{complexity}

specifies that classes (and languages) should be typeset in bold and that the full list
of classes should be defined. Invalid options are ignored and only the last option
(of each type) is used if multiple, conflicting options are given. The complete
options are described in the next two subsections.

3.1 Mode Options

The mode options specify to what extent the package declares commands for com-
plexity classes. By default, every (supported) class command is defined. Alter-
natively, you can limit the number of commands the complexity package defines
(and perhaps limit conflicts with other packages or your own commands) by using
the basic option. This option defines only the most commonly used complexity
classes.1

full (Default) This option will load every complexity class that the package has
defined. See Section 4.5 for a complete list.

basic This option will only load the “standard” complexity classes so as to mini-
mize the number of commands the package defines (i.e. standard classes like
P and NP but not less well known classes like AWPP (Almost wide PP).

1Deciding which classes were most “common” was purely based on my judgement, for better
or worse. If I’ve not considered your favorite complexity class as “common,” I humbly apologize.

3

3.2 Font Options

Different researchers and different publications have their own preferences for how
to typeset complexity classes. The beauty of the complexity package is that it
not only defines a whole sleigh of complexity classes for you, but it also allows you
to change the font they are typeset in with a simple option call.

The complexity package defines three different font entities: a font for complexity
classes (classfont), a font for languages (langfont), and a font for functions
(funcfont). By default, all of these fonts are typeset using the mathsf font. You
can change the font for all of them together or specify a font for each individually.
To apply a single font to all three entities, simply pass the font (by itself) as an
option. The supported font options are as follows.

sanserif (Default) This typesets the classes in a \mathsf (sans serif) font.

roman This option typesets the classes in a \mathrm (roman) font.

bold This option typesets the classes in a \mathbf (roman, bold) font.

typewriter This option typesets the classes in a \mathtt (typewriter) font.

italic This option typesets the classes in a \mathit (math italic) font.

caps This option typesets the classes in a \textsc (small caps font) font.

slant This option typesets the classes in a \textsl (slanted font) font.

As an alternative, you can specify a different font for each of the three entities.
To do this, you simply qualify the font with a key-value pair: either classfont,
langfont, or funcfont. For example, if we want our complexity classes to be
typeset in bold, our languages to be typeset in roman and our functions to be
typeset in italic, we would call the package using:

\usepackage[classfont=bold,

langfont=roman,

funcfont=italic]{complexity}

Examples of how each of the fonts appears when typeset can be found in Table 1.

3.2.1 The small Option

A special option is the small option and pertains only to how complexity classes
(classfont) are typeset. Since classes are typeset in uppercase letters, they tend
to be more dominant. This is not so important for classes such as P and NP, but if
you are referencing classes such as PSPACE or DTIME it can interrupt the normal

4

Table 1: An Example of each font
Font classfont langfont funcfont

sanserif P ⊆ NP, CVP ≤m SAT, polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)

roman P ⊆ NP, CVP ≤m SAT, polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)

bold P ⊆ NP, CVP ≤m SAT, polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)

typewriter P ⊆ NP, CVP ≤m SAT, polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)

italic P ⊆ NP , CVP ≤m SAT , polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)

caps P ⊆ NP, CVP ≤m SAT, polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)
Better example: promiseRP ⊆ promiseBPP

slant P ⊆ NP, CVP ≤m SAT, polylog ∈ O(poly),
PSPACE ⊆ EXP SAT ≤T MaxSAT polylog ∈ Ω(log)

flow of text layouts. One solution to this is to typeset classes 1pt smaller than
the surrounding text. This is the approach taken in some texts (most notably,
Papadimitriou’s book Computational Complexity, 1994) and it works quite well.
To illustrate, consider the following:

There are deterministic classes such as PSPACEPSPACE, nondetermin-
istic classes such as NPNP, and functional classes such as GapPGapP.
But I like them all.

In the preceding pairs, the first was typeset in the document’s default font size
while the second was typeset 1pt smaller (internally, the \small command is used).
The difference is subtle but when used in a long text, flows more naturally.

To get the same effect using complexity, simply use the small option (i.e.
\usepackage[small]{complexity} with any combination of the other options
(it works for all fonts, but some do not look as good as others; typewriter for
example looks bad with this option). Remember, however that this option only
affects how classes are typeset, not languages.

5

It should be noted that this option only affects how classes are typeset in the
display and in-line mathmodes. It has no effect in, say, a footnote or some special
environment. Subscripts, superscripts (as well as subsubscripts and supersuper-
scripts) are not effected either—TEX is allowed to automatically change font sizes
for these cases.

4 Using the Package

Each of the commands is defined using \ensuremath so that you need not be in
LATEX’s mathmode to use them. A word of warning, however, if you use a command
outside of mathmode, TEX may not properly insert surrounding whitespace. Thus,
its best to always use complexity commands inside mathmode. A complete list
of commands for classes can be found in Section 4.5.

4.1 Overridden Commands

Three commands in the complexity package override built-in TEX commands.
Specifically, \L (which typesets the symbol L), \P (typesetting ¶), and \S (which
typesets the symbol §) are all redefined for use in the package. The complexity
package preserves these commands so that you may still use them. To use any of
these symbols, use the commands \defaultL, \defaultP, and \defaultS instead.

Additionally, it may be the case that other LATEX packages are loaded that already
define (or redefine) some of the commands in the complexity package. If this is
the case, please email me so that I can work something out for future updates.
The quick solution is to simply comment out the definition of the conflicting
command in complexity.sty and directly use \ComplexityFont{} to typeset
your complexity class (see also Section 5 - Customization).

4.2 Special Commands

In addition to complexity classes, the complexity package also conveniently de-
fines several commands for commonly used functions and languages. In particular,
\co (ex: co) and \parity (an alias for \oplus, typesetting ⊕) can be placed pre-
ceding a class to refer to the complement or counting versions respectively.

4.3 Function Commands

complexity defines several general classes of functions such as logarithms and
polynomials. Table 2 gives a complete list of these functions.

6

Table 2: func Commands
Command Result Comment

\llog log Denotes logarithmic functions. Note that the
command is invoked with two l’s so as to not
interfere with the LATEX \log command.

\poly poly Denotes polynomial functions
\polylog polylog Denotes polylogarithmic functions
\qpoly qpoly Denotes polynomial functions for quantum ad-

vice
\qlog qlog Denotes logarithmic functions for quantum

advice
\MOD MOD Used for Modular classes/functions
\Mod Mod Used for Modular classes/functions

4.4 Language Commands

complexity also defines commands to typeset languages (subsets of {0, 1}∗). A
complete list of predefined language commands can be found in Table 3 below. The
number of commands is sparse; this was intentional. How one refers to languages is
far less standard than how one refers to classes. Some people like to explicitly write
every word (WeightedHamiltonianCycle, or WEIGHTED HAMILTONIAN CYCLE),
while others have their own abbreviations. Keeping the number of languages
complexity defines to a minimum allows for the maximum flexibility.

Table 3: Special complexity Commands
Command Result Comment

\CVP CVP Used for the Circuit Value Problem (a P-
complete set)

\SAT SAT Used for Satisfiability (an NP-complete set)
\MaxSAT MaxSAT Used for the Lexicographically maximum sat-

isfiability optimization problem (complete for
OptP)

7

4.5 Complete List of Class Commands

A complete list (in alpha-numeric order according to the command name) of com-
plexity commands is given below. The first item in each row is the command itself.
The second is an example of how it is typeset using the default sanserif font.
Finally, the third item indicates which mode the command is defined in.

\AC AC basic
\A A full
\ACC ACC basic
\AH AH basic
\AL AL basic
\AlgP AlgP full
\AM AM basic
\AMEXP AM-EXP basic
\Amp Amp full
\AmpMP AmpMP full
\AmpPBQP AmpPBQP full
\AP AP basic
\APP APP full
\APX APX full
\AUCSPACE AUC-SPACE full
\AuxPDA AuxPDA full
\AVBPP AVBPP full
\AvE AvE full
\AvP AvP full
\AW AW full
\AWPP AWPP full
\betaP βP full
\BH BH basic
\BP BP full
\BPE BPE basic
\BPEE BPEE basic
\BPHSPACE BPHSPACE full
\BPL BPL full
\BPP BPP basic
\BPPOBDD BPP-OBDD full
\BPPpath BPPpath full
\BPQP BPQP full
\BPSPACE BPSPACE basic
\BPTIME BPTIME basic
\BQNC BQNC full
\BQNP BQNP full
\BQP BQP basic
\BQPOBDD BQP-OBDD full
\BQTIME BQTIME basic

8

\C C basic
\cc cc basic
\CeL C=L basic
\CeP C=P basic
\CFL CFL basic
\CH CH basic
\CkP CkP basic
\CLOG CLOG full
\CNP CNP full
\coAM coAM basic
\coBPP coBPP basic
\coCeP coC=P basic
\cofrIP cofrIP full
\Coh Coh full
\coMA coMA basic
\compIP compIP full
\compNP compNP full
\coNE coNE basic
\coNEXP coNEXP basic
\coNL coNL basic
\coNP coNP basic
\coNQP coNQP basic
\coRE coRE basic
\coRNC coRNC basic
\coRP coRP basic
\coSL coSL basic
\coUCC coUCC full
\coUP coUP basic
\CP CP full
\CSIZE CSIZE basic
\CSL CSL full
\CZK CZK full
\D D full
\DCFL DCFL full
\DET DET basic
\DiffAC DiffAC full
\DisNP DisNP full
\DistNP DistNP full
\DP DP full
\DQP DQP full
\DSPACE DSPACE basic
\DTIME DTIME basic
\DTISP DTISP basic
\Dyn Dyn full
\DynFO Dyn-FO full
\E E basic

9

\EE EE basic
\EEE EEE basic
\EESPACE EESPACE basic
\EEXP EEXP basic
\EH EH basic
\EL EL full
\ELEMENTARY ELEMENTARY full
\ELkP ELkP full
\EPTAS EPTAS basic
\EQBP EQBP full
\EQP EQP full
\EQTIME EQTIME full
\ESPACE ESPACE basic
\ExistsBPP ExistsBPP full
\ExistsNISZK ExistsNISZK full
\EXP EXP basic
\EXPSPACE EXPSPACE basic
\FBQP FBQP full
\Few Few full
\FewP FewP full
\FH FH full
\FNL FNL basic
\FNP FNP basic
\FO FO full
\FOLL FOLL full
\FP FP basic
\FPR FPR full
\FPRAS FPRAS basic
\FPT FPT full
\FPTAS FPTAS full
\FPTnu FPTnu full
\FPTsu FPTsu full
\FQMA FQMA basic
\frIP frIP full
\FTAPE F-TAPE full
\FTIME F-TIME full
\G G full
\GA GA basic
\GANSPACE GAN-SPACE full
\Gap Gap basic
\GapAC GapAC basic
\GapL GapL basic
\GapP GapP basic
\GC GC full
\GCSL GCSL full
\GI GI basic

10

\GPCD GPCD full
\Heur Heur basic
\HeurBPP HeurBPP basic
\HeurBPTIME HeurBPTIME basic
\HkP HkP full
\HSPACE HSPACE basic
\HVSZK HVSZK full
\IC IC full
\IP IP basic
\IPP IPP full
\K K basic
\kBQBP k-BQBP full
\kBWBP k-BWBP full
\kEQBP k-EQBP full
\kPBP k-PBP full
\KT KT basic
\L L basic
\LIN LIN basic
\LkP LkP full
\LOGCFL LOGCFL full
\LogFew LogFew basic
\LogFewNL LogFewNL basic
\LOGNP LOGNP full
\LOGSNP LOGSNP full
\LWPP LWPP full
\M M full
\MA MA basic
\MAC MAC basic
\MAE MA-E basic
\MAEXP MA-EXP basic
\mAL mAL basic
\MaxNP MaxNP basic
\MaxPB MaxPB basic
\MaxSNP MaxSNP basic
\mcoNL comNL basic
\MinPB MinPB basic
\MIP MIP basic
\MkP (Mk)P full
\mL mL basic
\mNC mNC basic
\mNL mNL basic
\mNP mNP basic
\ModkL ModkL basic
\ModkP ModkP basic
\ModP ModP basic
\ModZkL ModZkL full

11

\mP mP basic
\MP MP basic
\MPC MPC basic
\mTC mTC basic
\NAuxPDA NAuxPDA full
\NC NC basic
\NE NE basic
\NEE NEE basic
\NEEE NEEE basic
\NEEXP NEEXP basic
\NEXP NEXP basic
\NIPZK NIPZK full
\NIQPZK NIQPZK full
\NIQSZK NIQSZK full
\NISZK NISZK full
\NL NL basic
\NLIN NLIN basic
\NLOG NLOG full
\NP NP basic
\NPC NPC basic
\NPI NPI basic
\NPMV NPMV full
\NPMVsel NPMV-sel full
\NPO NPO full
\NPOPB NPOPB full
\NPSPACE NPSPACE basic
\NPSV NPSV full
\NPSVsel NPSV-sel full
\NQP NQP basic
\NSPACE NSPACE basic
\NT NT full
\NTIME NTIME basic
\OBDD OBDD full
\OCQ OCQ full
\Opt Opt basic
\OptP OptP basic
\p p basic
\P P basic
\PAC PAC basic
\PBP PBP full
\PCD PCD basic
\Pclose P-close full
\PCP PCP basic
\PermUP PermUP full
\PEXP PEXP basic
\PF PF full

12

\PFCHK PFCHK full
\PH PH basic
\PhP PhP full
\PINC PINC full
\PIO PIO full
\PKC PKC full
\PL PL basic
\PLF PL full
\PLL PLL full
\PLS PLS full
\POBDD P-OBDD full
\PODN PODN full
\polyL polyL full
\PostBQP PostBQP full
\PP PP basic
\PPA PPA full
\PPAD PPAD full
\PPADS PPADS full
\Ppoly P/poly basic
\PPP PPP full
\PPSPACE PPSPACE basic
\PQUERY PQUERY full
\PR PR full
\PrHSPACE PrHSPACE full
\Promise Promise basic
\PromiseBPP PromiseBPP basic
\PromiseBQP PromiseBQP basic
\PromiseP PromiseP basic
\PromiseRP PromiseRP basic
\PrSPACE PrSPACE basic
\PSel P-Sel full
\PSK PSK full
\PSPACE PSPACE basic
\PT PT basic
\PTAPE PTAPE full
\PTAS PTAS basic
\PTWK PT/WK basic
\PZK PZK full
\QAC QAC basic
\QACC QACC basic
\QAM QAM basic
\QCFL QCFL basic
\QCMA QCMA basic
\QH QH basic
\QIP QIP basic
\QMA QMA basic

13

\QMAM QMAM basic
\QMIP QMIP basic
\QMIPle QMIPle full
\QMIPne QMIPne full
\QNC QNC basic
\QP QP basic
\QPLIN QPLIN full
\Qpoly Qpoly full
\QPSPACE QPSPACE basic
\QSZK QSZK full
\R R basic
\RE RE basic
\REG REG basic
\RevSPACE RevSPACE full
\RHL RHL full
\RHSPACE RHSPACE full
\RL RL basic
\RNC RNC basic
\RNP RNP full
\RP RP basic
\RPP RPP full
\RSPACE RSPACE basic
\S S basic
\SAC SAC basic
\SAPTIME SAPTIME full
\SBP SBP full
\SC SC basic
\SE SE basic
\SEH SEH basic
\Sel Sel full
\SelfNP SelfNP full
\SF SF full
\SIZE SIZE basic
\SKC SKC basic
\SL SL basic
\SLICEWISEPSPACE SLICEWISEPSPACE full
\SNP SNP full
\SOE SO-E full
\SP SP full
\SPACE SPACE basic
\spanP span-P full
\SPARSE SPARSE basic
\SPL SPL basic
\SPP SPP basic
\SUBEXP SUBEXP basic
\symP symP full

14

\SZK SZK basic
\TALLY TALLY full
\TC TC basic
\TFNP TFNP full
\ThC ThC full
\TreeBQP TreeBQP full
\TREEREGULAR TREE-REGULAR full
\UAP UAP full
\UCC UCC full
\UE UE full
\UL UL full
\UP UP basic
\US US full
\VNC VNC full
\VNP VNP full
\VP VP full
\VQP VQP full
\W W basic
\WAPP WAPP full
\WPP WPP full
\XORMIP XOR-MIP∗[2, 1] full
\XP XP full
\XPuniform XPuniform full
\YACC YACC full
\ZPE ZPE basic
\ZPP ZPP basic
\ZPTIME ZPTIME basic

5 Customization

The complexity package provides some 350 commands to typeset complexity
classes. However, that should not mean that the commands here are the only
ones you’ll ever need. Expanding the list of commands to suit your needs is very
easy. Please note, however, it is preferred that you not alter the base style file
(complexity.sty). Instead, a file is provided for you to define your commands in
(mycomplexity.sty).

5.1 Class Commands

To define a new complexity class, simply use the LATEX command, \newcommand
as follows. Say that we want to define the new complexity class, “VCCC” (“very
complex complexity class”). We would use something like

15

\newcommand{\VCCC}{\ComplexityFont{VCCC}}

Then, anytime we wanted to typeset our new class, we simply use \VCCC. In-
ternally, complexity typesets everything using the command \ComplexityFont
which is setup at the invocation of the package.

You also may have different preferences for typesetting the classes that complexity
already defines. For instance, the class promiseBPP (typeset using the command
\promiseBPP) is typeset with “promise” explicitly written. Preferring brevity over
clarity, you wish to typeset the same class as pBPP. To do this, we use the LATEX
command, \renewcommand as follows.

\renewcommand{\promiseBPP}{\ComplexityFont{pBPP}}

However, this only changes what the command does, not how we invoke it—we
would still use \promiseBPP.

As another example, say we want to change how the class ModkL (typeset using
the command \ModkL) is typeset. By default, the subscript k is typeset in regular
mathmode. Say we want to change it so that it is typeset in the same font as the
rest of the classes. We may use something like the following.

\renewcommand{\ModkL}{ %

{

\ComplexityFont{Mod}_{\ComplexityFont{k}}\ComplexityFont{L}

}

}

Note the use of “extra” brackets. In your commands, more is always better (or
at least safer); since we are using subscripts and superscripts, we want to ensure
that if we use the \ModkL command itself in a subscript or superscript (say as an
oracle) are typeset correctly.

5.2 Language Commands

You can define languages (to be typeset in the langfont) in a similar man-
ner. Instead of using \ComplexityFont, however, you would use the command
\lang. You can use \lang as a stand alone command in your document (i.e.
$\lang{Matching} \in \P$) or you can define a command (using \lang) that
can be reused throughout your document. Again, we give an example. Say we
wanted to typeset the language “Graph Non-Isomorphism” using the abbreviation,
“GNI”. We could define something like the following.

\newcommand{\GNI}{\lang{GNI}}

In our document, we would would use something like $\GNI \in \AM$. We can
also redefine any predefined language commands using the \renewcommand com-
mand as before.

16

5.3 Function Commands

Again, the procedure for typesetting your own functions is the same as for classes.
Here, however, you use the \func command. You can use it as a stand alone
command ($\func{lin}(n) \in \Theta(n)$) or you can define a command that
can be reused. Say we wanted to typeset a class of subexponential functions, say
“subexp”. We could define something like the following.

\newcommand{\subexp}{\func{subexp}}

In our document, we could then use $\subexp(n) = 2^{o(n)}$.

6 Extended Example

Here, we present an extended example using the package. Consider the following
TEX code.

\documentclass{article}

\usepackage{complexity}

\begin{document}

It follows immediately from the definitions of \P and \NP that

$$\P \subseteq \NP$$

but the million dollar question is whether or not $\P

\stackrel{?}{=} \NP$. In an effort to resolve this question,

Stockmeyer (1976) defined a \emph{polynomial} hierarchy using

oracles.

\textbf{Definition}[Stockmeyer 1976] \\

Let $\Delta_0\P = \Sigma_0\P = \Pi_0\P = \P$. Then for $i > 0$, let

\begin{itemize}

\item $\Delta_i\P = \P$ with a $\Sigma_{i-1}\P$ oracle.

\item $\Sigma_i\P = \NP$ with $\Sigma_{i-1}\P$ oracle.

\item $\Pi_i\P = \coNP$ with $\Sigma_{i-1}\P$ oracle.

\end{itemize}

Then \PH is the union of these classes for all nonnegative

constant i.

It has been shown that $\PH \subseteq \PSPACE$. Moreover, Toda

(1989) showed the following

\textbf{Theorem}

$$\PH \subseteq \P^\PP$$

and since since $\P^\PP = \P^{\#\P}$ it follows that

$$\PH \subseteq \P^{\#\P}$$

\end{document}

Would produce something like the following:

17

It follows immediately from the definitions of P and NP that

P ⊆ NP

but the million dollar question is whether or not P
?= NP. In an effort to resolve

this question, Stockmeyer (1976) defined a polynomial hierarchy using oracles.

Definition[Stockmeyer 1976]
Let ∆0P = Σ0P = Π0P = P. Then for i > 0, let

• ∆iP = P with a Σi−1P oracle.

• ΣiP = NP with Σi−1P oracle.

• ΠiP = coNP with Σi−1P oracle.

Then PH is the union of these classes for all nonnegative constant i.

It has been shown that PH ⊆ PSPACE. Moreover, Toda (1989) showed the follow-
ing.

Theorem
PH ⊆ PPP

and since since PPP = P#P it follows that

PH ⊆ P#P

For an even more complicated example, check out the LATEXed (PDF) version of
the Complexity Zoo (http://www.ComplexityZoo.com) available on my webpage
(http://www.cse.unl.edu/~cbourke)

7 Feedback

I’d very much appreciate feedback that would improve this package. Specifically,
I’m looking for the following.

• Inconsistencies in (or suggestions for better) notation

• Errors, Typos, etc

• Incompatibilities with other packages

• Feature requests

You can email me at cbourke@cse.unl.edu

18

http://www.ComplexityZoo.com
http://www.cse.unl.edu/~cbourke
mailto:cbourke@cse.unl.edu

7.1 Acknowledgements

I’d like to thank Till Tantau for several useful suggestions and feature requests as
well as some clever code segments for the small option.

19

	Introduction
	What is complexity?
	Why a complexity package?

	Installation
	Package Options
	Mode Options
	Font Options
	The small Option

	Using the Package
	Overridden Commands
	Special Commands
	Function Commands
	Language Commands
	Complete List of Class Commands

	Customization
	Class Commands
	Language Commands
	Function Commands

	Extended Example
	Feedback
	Acknowledgements

