
The CodeDoc class

v.0.2

2009/06/27

Paul Isambert

zappathustra@free.fr

C o d e

&

Doc

•
••.... ???

CodeDoc is a class designed to produce LATEX �les such as packages and classes along with their documen-
tations. It does not depart from LATEX's ordinary syntax, unlike e.g. DocStrip, allows any existing class
to be loaded with its options and o�ers various fully customizable verbatim environments that allows
authors to typeset the code and documentation of their �les as they want. To create the documentation,
we compile the document as usual; to create the external �le(s), we simply put produce in the class
options and compile as before.

Despite my earliest expectations, CodeDoc is not better than DocStrip. It is simply di�erent. If you
want a well-delimited approach to literate programming, use DocStrip. On the other hand, CodeDoc

is more natural, in the sense that it is ordinary LATEX all the way down. Note that you can `mimick'
DocStrip, either by putting any character at the beginning of each line of your code and setting the
\Gobble parameter to 1 (this would be `inverted DocStrip'), or by setting the comment character to be
of category 9 (`ignored') and beginning each line of the documentation with this character. In this latter
case, only commands that are considered by CodeDoc when producing a �le should not be commented
out... but I'm going too fast here, and you should learn the basics �rst...

CodeDoc is still in its infancy, as indicated by its version number. Although it has passed the test of
producing this documentation, countless bugs will probably be reported, and meaningful suggestions will
be made. Be patient, and send them to me. Any reported bug and meaningful suggestion will be rewarded
by a musical note, played by a virtual instrument, and sent in the mp3 format. Isn't it amazing? I
know it is. I will have to hire musically educated secretaries to face the consequences of such a reckless
proposition. But it is worth it. Once a stable version is reached, I might even write a symphony.1

Some of the ideas of this class are not mine; some were inspired by others; some are mine but were
independantly implemented in other places; may all these people be thanked, as well as all the verbatim
wizards around the world. And, oh, yeah, some ideas are mine, too.

1`Meaningful suggestion' and `stable version' are fuzzy terms, you complain. Of course they are. Give me a chance!

Changes in version 0.2

⇒ Bug �x to make \ref work properly in the unmodi�ed code environment.
⇒ Files \input and read in produce mode won't produce error messages anymore...
at least with ε-TEX.

Contents

I User's manual 4

1 Code & Documentation 4

1.1 Writing code . 4
1.2 Macros to describe macros . 7
1.3 Choosing the class . 9
1.4 Dangerous strings . 9

2 Verbatim Madness 11

2.1 Example environments . 11
2.2 \ShortVerb and friends . 14
2.3 Using fancyvrb . 16

3 Summary of commands 17

3.1 Class options . 17
3.2 Environments . 17
3.3 Commands . 17

II Implementation 21

4 Options and basic de�nitions 21

5 Normal mode 22

5.1 Describing macros . 22
5.2 \ShortVerb and associates . 25
5.3 Verbatim de�nitions . 30
5.4 The default code environment . 32
5.5 Example environments . 34

5.5.1 Examples without ε-TEX . 39
5.5.2 Examples with ε-TEX . 40

5.6 File management . 43

6 Produce mode 45

6.1 Messages . 45
6.2 Testing strings . 45
6.3 Macros executed in produce mode . 48
6.4 Writing environments . 54
6.5 File management . 56

Index 60

Part I

User's manual

1 Code & Documentation

The source of this documentation looks roughly like this:

\documentclass[article(a4paper),

%produce,

]{codedoc}

Preamble of the document

\begin{document}

\section{Code \& Documentation}

The source of this document...

\ProduceFile{codedoc.cls}[codedoc][v.0.1][2009/03/13]

\begin{code}

Material here will be written to codedoc.cls

and typeset verbatim in the documentation.

\end{code}

\ShortCode/

/

This too...

/

\begin{invisible}

This material will be written to codedoc.cls

but not typeset in the documentation.

\end{invisible}

\end{document}

Everything between \begin{code} and \end{code} is written verbatim to the dvi �le. It is also the
case for everything between two \ShortCode symbol, in this example `/'. Finally, if the comment sign at
the beginning of the second line were removed, thus enabling the produce option, then this code would be
written to codedoc.cls and no documentation would be produced. This is CodeDoc's basic mechanism.
Let's review it more precisely. In what follows, I will say `normal mode' if the produce option is not
turned on, that is when we're typesetting the documentation, and `produce mode' otherwise, that is when
produce is present among the class options and CodeDoc is used to create an external �le.

The �rst two sections of this manual explain how CodeDoc works and provide many examples. The
third section lists all commands in alphabetical order, and explains what they do in each mode in a more
systematic fashion.

1.1 Writing code

• \ProduceFile{〈File 〉}[〈File name 〉][〈File version 〉][〈File date 〉]
In normal mode, this macro provides four commands: \FileSource stores 〈File〉, and the next three
arguments are stored in \FileName, \FileVersion and \FileDate respectively. Those are optional, as
indicated by their syntax.

4

In produce mode, CodeDoc opens 〈File〉 and writes to it everything in a code environment. \FileName,
\FileVersion and \FileDate are also provided and may be used in \Header (see below) or in the �le
itself with \CodeEscape (see page 16). Thus, you can avoid mismatches between your documentation
and the \ProvidesPackage declaration, for instance.

• \CloseFile{〈File 〉}
In produce mode, when the autoclose option is on, \ProduceFile closes the �le that was currently
under production, if any. But you might want to keep a �le open, in case you're writing to several �les
at the same time. That's why CodeDoc's basic behavior is to keep all �les open. Thus

\ProduceFile{myfile}

\begin{code}

\def\foo{%

\end{code}

\ProduceFile{myotherfile}

\begin{code}

\relax

\end{code}

\ProduceFile{myfile}

\begin{code}

FOO}

\end{code}

will write
\def\foo{%

FOO}
to myfile and \relax to myotherfile. This might not be very good practice,

but who knows? that might be useful when building a complicated package.
But TEX cannot keep open as many �les as one wants. Actually, CodeDoc will start complaining when

more than 16 �les are simultaneously in production. \CloseFile is used to close those whose production
is over and allocate their streams to new �les. •

••.... Do �les �ow?

• code
This is the basic environment that writes its content to an external �le in produce mode or displays it
verbatim in the documentation in normal mode. There is nothing much to say. Each line is numbered,
as one generally wants the implementation of a code to be. One important thing is that everything on
the line after \begin{code} will be gobbled. \end{code} can appear wherever you want.

• \CodeFont{〈Font specifications 〉}
The font of the code environment may be changed with \CodeFont (by default, it's \ttfamily). Since
everything is in a group, you can use `spreading commands'.

• \LineNumber{code}{〈Font specifications 〉}{〈Width 〉}[〈Number 〉]
This sets the style of the line number, the width of the box it is put in (by default, it's 0pt, so numbers
are in the left margin), and the starting value. The �rst argument is code and not 〈code〉, because
\LineNumber is a macro that applies to all example environments (see the next section), and its �rst
argument is the name of the environment to modify. By default, code is not an example environment
(although it might be rede�ned as such) but this command is nonetheless available.

5

\CodeFont{\color{red}\itshape}

\LineNumber{code}{\ttfamily\footnotesize

\color{green}}{2cm}[25]

\begin{code} This will be gobbled

\def\foo{%

FOO}

\end{code}
25 \def\foo{%
26 FOO}

Note that \LineNumber inherits the speci�cation of \CodeFont that it doesn't override, in this example
the italic shape. The \color command does not belong to CodeDoc, but to the xcolor package. If you
want to do really interesting things with code, it is better to rede�ne it as an example (see next section).

As usual with verbatim environments, there exists a starred version of code that shows spaces.

• invisible
In normal mode, everything in a invisible environment is skipped. In produce mode, however, the
material is written to the �le in production. This is useful to write code you don't want to comment in
the documentation, like speci�cations at the beginning of the �le or repetitive macro de�nitions. As you
might imagine, there is no starred variant.

• \Header{〈Text 〉}
In produce mode, unless the noheader option is on, CodeDoc writes the following at the beginning of
every �le:
% This is 〈\FileName 〉, produced by the CodeDoc class

% with the `produce' option on.

%

% To create the documentation, compile 〈jobname.tex 〉
% without the `produce' option.

%

% SOURCE: 〈File (\input in File...) 〉
% DATE: 〈\FileDate 〉
% VERSION: 〈\FileVersion 〉
where \FileName, \FileDate and \FileVersion are set by \ProduceFile. The `\input in file' part
is optional and recursive, depending on �les \input in your document. With \Header, you can change
this and print 〈Text〉 instead. In 〈Text〉, ends of line are obeyed, and a comment sign followed by a space
will start every line. Comment signs are normal sign. \Header should appear before \ProduceFile.

• \AddBlankLine
In produce mode, CodeDoc writes a blank line to the �le under production. Useful to delimit macros.

• \TabSize{〈Number 〉}
This is the number of spaces by which a tabulation will be represented in verbatim context. Default is 2.
In produce mode, however, tabs are written as tabs, so this parameter has no e�ect.

• \Gobble{〈Number 〉}
The number of characters that will be gobbled at the beginning of each line. This works both in normal
mode and in produce mode. This might be useful to indent code lines to make them more visible. When
gobbling, a tab is considered as a single character and not as n characters, n being the value of \TabSize.

A totally blank line is written as a totally blank line in both modes, i.e. CodeDoc does not �ll its
need for gobbled characters on the next line. The \end{code} line doesn't need to be indented, although
it can be. If there are more characters than the value of \Gobble before \end{code}, then a new line is
created.

6

\TabSize{3}

\Gobble{2}

My own value for \TabSize is 2,

hence the 2-space tab here,

but in the right panel it's 3

\begin{code*}

12\foo \foo

12\foo \foo

\end{code*}

1 \foo \foo

2

3 \foo \foo

• \BoxTolerance{〈Dimension 〉}
Verbatim lines often go into the right margin. This is the threshold above which TEX reports an overfull
box. Default is 0pt.

1.2 Macros to describe macros

Most of the commands in this section are similar to those in DocStrip. CodeDoc has an indexing mecha-
nism that simply usesMakeIndex; if the index option is on, the makeidx package is loaded and \makeindex
is executed. This also means that \printindex is available. CodeDoc does not require a special style �le
for MakeIndex. Thus, users can compile a documentation made with CodeDoc with MakeIndex's default
speci�cations.

• \DescribeMacro{〈Macro 〉}
• \DefineMacro{〈Macro 〉}
These commands print their argument according to \PrintMacro (see below). The �rst token is \stri-
ng'ed,2 so it can be a control sequence. They also create an index entry with the �rst token, and here lies
their di�erence: they print the page number di�erently to distinguish whether a macro is described or
de�ned (in the implementation). By default described macros have normal page numbers while defined
macros have theirs in italics. This is not conventional, I agree, but it can be changed.3

• \DescribeEnvironment{〈Environment 〉}
• \DefineEnvironment{〈Environment 〉}
This is similar to the macro version above, except that the entry is followed by `(environment)' in the
index.

• \DescribeIndexFont{〈Font specifications 〉}
• \DefineIndexFont{〈Font specifications 〉}
This sets how the page numbers are printed for described and defined macros (and environments)
respectively.

• ••.... Don't you �nd these
names confusing?

{〈Font speci�cations〉} should be commands like \ttfamily and not argument-taking com-
mands like \texttt. You know that if you use MakeIndex.

• \PrintMacro{〈Macro or environment 〉}
This is the command that typeset the (\string'ed) macro. It takes one argument. It is shown here not
to use it as is but to rede�ne it. Its default de�nition is:

\def\PrintMacro#1{%

\noindent%

\marginpar{\raggedleft\strut\ttfamily#1}%

\ignorespaces}

That is, it puts the macro in the margin. (Obviously, it was rede�ned in this documentation.) To achieve
the same e�ect as with DocStrip, the following command is needed.

2Verbatim text does not break by itself. I've used \VerbCommand here (see below) to include a discretionary.
3Since CodeDoc doesn't index macros when used in the code, I've found this choice more readable.

7

• \DocStripMarginpar
This reverses marginpar and sets the right value for \marginparpush and \marginparwidth. They
weren't included by default because you have the right to do what you want with your margins.

• \IgnorePrefix{〈Macro prefix 〉}
Many package and class authors pre�x their internal commands with a string of letters to avoid clashes
with other packages. For instance, if one writes a package mypack, one may name all internal commands
\mp@foo, \mp@boo, \mp@moo, etc. Unfortunately, when indexed, they will all end up in the `M' letter,
whereas one might want to have them sorted without the pre�x, with \mp@foo indexed as if it was
\foo, etc. This is what \IgnorePrefix does; when sorting entries produced by \DescribeMacro and
\DefineMacro, 〈Macro pre�x 〉 is ignored, although it is printed of course as part of the name. In
our example, one would say \IgnorePrefix{mp@}. This command has two restrictions: �rst, 〈Macro
pre�x 〉 should be no more than 8 characters long; second, any macro described with \DescribeMacro or
\DefineMacro should have as many characters as \IgnorePrefix, 3 in our example. A simple way to
circumvent the latter shortcoming is to temporarily de�ne 〈Macro pre�x 〉 as an empty string:

\IgnorePrefix{mp@}

\DefineMacro\mp@foo Will be indexed as \foo

\DefineMacro\fo This will cause an error message

\IgnorePrefix{}

\DefineMacro\fo This is perfectly ok

\IgnorePrefix{mp@}

You can have several \IgnorePrefix speci�cations, they are e�ective for the macros that follow them. For
instance, some macros in CodeDoc are pre�xed with cd@@, and when I de�ne them in this documentation
I specify \IgnorePrefix{cd@@} and then immediately \IgnorePrefix{cd@}, which is the normal pre�x.

• \PrintPrefix{〈Macro prefix 〉}
Like \PrintMacro, this command is not shown here to be used but to be rede�ned. It is put just be-
fore 〈Macro pre�x 〉 when printing the index, so that you can typeset it di�erently. For instance, most
CodeDoc's internal macros are pre�xed with cd@. I have speci�ed \IgnorePrefix{cd@} for this doc-
umentation and de�ned \PrintPrefix as \def\PrintPrefix{\textcolor{gray}} so that all pre�xes
are printed in gray (thanks to the xcolor package). For instance, \cd@BadChar is printed \cd@BadChar

in the index (which you can verify if the obeystop option is commented out, thus including the im-
plementation in the documentation). Obviously, \def\PrintPrefix#1{\textcolor{gray}{#1}} would
have been equally e�cient. Just note that since \PrintPrefix is \let to \relax by default, you have to
use \newcommand and not \renewcommand when de�ning it for the �rst time, in case you prefer LATEX's
command de�nitions.

• \meta{〈Argument 〉}
• \marg{〈Argument 〉}
• \oarg{〈Argument 〉}
• \parg{〈Argument 〉}
These are well-known. In case you've forgotten:
\meta{Argument} ⇒ 〈Argument〉
\marg{Mandatory argument} ⇒ {〈Mandatory argument〉}
\oarg{Optional argument} ⇒ [〈Optional argument〉]
\parg{Picture argument} ⇒ (〈Picture argument〉)

• \bslash
Everybody needs a backslash. This one is meant to print equally well in usual contexts and in PDF
bookmarks created by hyperref, if any. So it can be used in titles without restriction.

8

• \StopHere{〈Code 〉}
If the obeystop command is on, CodeDoc will execute 〈Code〉 and then \end{document}, otherwise
nothing happens. If the index option is also on, \printindex will be automatically executed after
〈Code〉. This is useful to let the user print a version of the documentation with some part(s) left out,
typically the implementation.

1.3 Choosing the class

CodeDoc by itself de�nes nothing that one wants a class to de�ne. It lets the user call the desired class.
To do so, just add the name of the class in the options of the \documentclass declaration. If you
want the class to load options itself, put them after the name of the class, between parenthesis, and
separated by semi-colons. Thus, \documentclass[memoir]{codedoc} loads the memoir class without
options while \documentclass[memoir(a4paper;oneside)]{codedoc} loads it with the a4paper and
oneside options.4

By default, CodeDoc loads the article class without options.

1.4 Dangerous strings

In produce mode, CodeDoc becomes a string tester and nothing else.

•••....

Daaaaaaangerouuuuuus...

Hence, there are strings you don't
want it to see because you don't want it to execute them. For instance, you don't want \end{document}
to be executed unless at the end of the document. So when you say \verb+\end{document}+, you want
CodeDoc to identify that \end{document} is not for real. Fortunately, CodeDoc does so. To some extent.

More precisely, CodeDoc identi�es its own verbatim commands (described in the next section), LATEX's
\verb and verbatim environment, as well as verbatim environments created with the fancyvrb package
and the `short verb' characters de�ned with \DefineShortVerb from the same package. Thus, you can
safely use fancyvrb and its companion fvrb-ex.

However, \begin's and \end's are not the only strings that must be used carefully. The most important
things you want CodeDoc to ignore in case they shouldn't be executed are its own macros. For instance,
you don't want \ProduceFile to be executed when there's no reason to do so. But, unless you're
documenting CodeDoc itself, what might be the situation where \ProduceFile is executed wrongly?
Simply if you use it in a statement with \let, \def, \newcommand, etc. In produce mode, CodeDoc does
not recognizes these commands and for instance in \let\ProduceFile\mycommand, \let will be skipped
and \ProduceFile executed. Hence the following.

• \DangerousEnvironment{〈List of environments 〉}
Whenever you want CodeDoc to skip an environment in produce mode, for instance because it's a verbatim
environment designed by yourself, you can add its name to \DangerousEnvironment. If you add more
than one name, use commas as separators.

• \StartIgnore
• \StopIgnore
In produce mode, when CodeDoc encouters \StartIgnore, everything is skipped until \StopIgnore is
found. This is useful to hide parts of your document that are irrelevant to the �le you're building in
produce mode (which is probably contained in the `implementation' section). You should be careful to
de�ne your example environments and other verbatim devices outside the skipped material, if you want
CodeDoc to identify them properly when it stops ignoring things.

4This means that if you specify an unknown option for CodeDoc, it will try to load an (probably) unknown class, and
you will get the corresponding error message.

9

\DangerousEnvironment{myenv,myotherenv}

\begin{myenv}

\end{document} This will be skipped by CodeDoc

\end{myenv}

\StartIgnore

\let\ProduceFile\myproduce This too, but that will be taken into

account in normal mode

\StopIgnore

However, you should be aware of the following points:
• Any command that has some e�ect in produce mode should appear verbatim in your document.
Conversely,
• Commands that have some e�ect in produce mode cannot be rede�ned for that mode.
And when I say `cannot', I mean `you can try, it won't work'. This leads to the �nal principle:
• You can rede�ne a command to have the desired e�ect in normal mode as long as you respect its arguments,
so that it can work properly in produce mode. And this should be done between \StartIgnore and
\StopIgnore, of course.

For instance, you can say:

\StartIgnore

\renewcommand\CloseFile[1]{End of #1\clearpage}

\StopIgnore

and when you say \CloseFile{myfile}, `End of myfile' will be printed to the documentation, and a
new page will be created, while in produce mode CodeDoc will do its usual job. On the other hand,
although \let\cf\CloseFile is meaningful in normal mode, in produce mode it won't take e�ect,
i.e. CodeDoc won't close anything. Finally, the previous example would have been catastrophic with-
out \StartIgnore and \StopIgnore, because in produce mode, CodeDoc would have tried to execute
\CloseFile.

\StartIgnore and \StopIgnore are also useful to make CodeDoc go faster and avoid errors, if you
use it with \input. For instance, the following �le would be perfect, provided everything that should be
written to an external �le is contained in implementation.tex

\documentclass{codedoc}

Write your verbatim definitions here, so that CodeDoc can see them

\begin{document}

\StartIgnore

\input{documentation}

\StopIgnore

\input{implementation}

\end{document}

This example leads us to the �nal restriction:
• You should use \input in the LATEX's way, i.e. \input{myfile}, and not in TEX's original way,
i.e. \input myfile, if the �le in question is to be read in produce mode. In the example above,
documentation can be \input as you want, but implementation should be \input as shown.

To know what commands have some e�ect in produce mode, see the summary of commands.

10

2 Verbatim Madness

2.1 Example environments

• example
• \CodeInput
• \CodeOutput
At �rst sight, the example environment is totally useless. Indeed, the following code does nothing:

\begin{example}

\TeX

\end{example}

However, it provides two commands \CodeInput and \CodeOuput. The former prints the code verbatim
(and in typewriter font), and the latter executes it. So in the end it's very useful to document your
package or class, because it avoids typing the code twice (and therefore errors are avoided).

\begin{example}

\TeX

\end{example}

\CodeInput\noindent yields \CodeOutput.
\TeX

yields TEX.

The example environment is just one instance of a family of environments that you can create by
yourself with the following commands.

• \NewExample[〈Options 〉]{〈Name 〉}{〈Code input 〉}{〈Code output 〉}{〈Immediate execution 〉}
• \RenewExample[〈Options 〉]{〈Name 〉}{〈Code input 〉}{〈Code output 〉}{〈Immediate execution 〉}
These two macros (whose di�erence is similar to the one between \newcommand and \renewcommand) cre-
ate an environment 〈Name〉 that will provide two commands, \CodeInput and \CodeOutput, whose e�ect
is de�ned by 〈Code input〉 and 〈Code output〉. Moreover, 〈Name〉 will execute 〈Immediate execution〉.
〈Code input〉 and 〈Code output〉 have a peculiar syntax. The code to be processed is represented by #.

For instance, the example environment is de�ned as:

\NewExample{example} This is 〈Name〉
{\ttfamily#} \CodeInput yields but the code in typewriter font

{#} \CodeOutput simply executes the code

{} Nothing is done when example is called

You can do whatever you want. The code, represented by #, may be the argument of a macro. For
instance:

•
••.... `Hello, world', what a cliché!

\NewExample{myex}

{\ttfamily\underline{#}}

{}

{\CodeInput}

\begin{myex}

Hello, world!

\end{myex}

Hello, world!

11

What does myex do? It sets the verbatim code in typewriter font and underlines it (which is admittedly
not the most interesting thing you can do). 〈Code output〉 is empty, so \CodeOutput will yields nothing.
Finally, 〈Immediate execution〉 calls \CodeInput, so there's no need to call it after the environment.

The following points apply:
• All environments thus de�ned have a starred variant that shows spaces as characters.
• \CodeInput, \CodeOuput and 〈Immediate execution〉 are groups, so you can put any command in them,
they won't spread. For instance, in myex above, there's no need to add a group to restrict the application
of \ttfamily.
• \CodeOuput really executes your code. Any error will appear as such.
• Since \CodeOuput is a group, the de�nition you make won't work for the rest of your document, unless
you make them global. For instance:

\NewExample{myex}{}{#}{}

\begin{myex}

\def\foo{FOO!}

\end{myex}

\CodeOutput

\foo

will yield an error message, because \foo was only locally de�ned in \CodeOuput.
• Everything on the same line after the \begin statement of an environment will be gobbled.
• By default, CodeDoc does not add any space or \par before \CodeInput, \CodeOuput and 〈Immediate
execution〉. A \par is added after \CodeInput if and only if the \end statement appears on its own line.
Here's an illustration:

\NewExample{myex}{\ttfamily#}{#}{}

\parindent0pt

\begin{myex}

\TeX

\end{myex}

+\CodeInput+ yields +\CodeOutput+

\vskip1em

\begin{myex}

\TeX\end{myex}

+\CodeInput+ yields +\CodeOutput+

+\TeX
+ yields +TEX+

+\TeX+ yields +TEX+

• The code environment can be freely rede�ned as an example environment.
• All example environments obey \TabSize and \Gobble as de�ned in the previous section, as well as
\LineNumber if they are numbered (see below). See the description of \eTeXOff and \eTeXOn below for
a comment on \Gobble.
〈Options〉 may be one or several of the following (separated by commas):

numbered

Each line of \CodeInput is numbered. The count starts back to 1 at each occurrence of the environment.
continuous

Each line of \CodeInput is numbered. The count starts where the last occurrence of the same environment
left. As an (utterly boring) example:

12

\NewExample[numbered]{myex1}{\ttfamily#}

{}{\CodeInput}

\LineNumber{myex1}{\itshape}{1em}

\NewExample[continuous]{myex2}{\ttfamily

\color{red}#}{}{\CodeInput}

\LineNumber{myex2}{\itshape}{2em}

\begin{myex2}

First line

Second line

\end{myex2}

\begin{myex1}

First line

Second line

\end{myex1}

\begin{myex2}

Third line

Fourth line

\end{myex2}

1 First line

2 Second line

1 First line

2 Second line

3 Third line

4 Fourth line

visibleEOL

This is more complicated and requires some knowledge of how CodeDoc builds examples.
Although you might not know it, your TEX distribution is very probably running on ε-TEX. That's

the reason why CodeDoc can process some code verbatim and executes it at the same time, as in the
example environments, without the need for an external �le. This is completely impossible with the
original implementation of TEX. If, for some reason, you don't have ε-TEX, or you're not running on it,
then CodeDoc will use an external �le.

However, ε-TEX's `virtual external �le' mechanism is not perfect, and CodeDoc has to cope with it.
What happens is that when you use \CodeOutput, CodeDoc hacks your code a little in order to simulate
a real TEX code; namely, before anything is processed, CodeDoc removes ends of lines and commented
parts of lines. For instance, if you say:

\def\foo{%

FOO!}

\foo

what CodeDoc really processes with \CodeInput is \def\foo{FOO!} \foo. Most of the time, that's
exactly what you want. But it might happen that you're toying around with ends of lines or comment
characters, and in that case everything will go wrong, as in:

\catcode`\%=12

I'm writing a % sign.

This•••. .. .*SIGH* will not produce `I'm writing a % sign', because CodeDoc will remove everything from the comment
sign to the end of the line, so that what \CodeOuput will try to execute is:

13

\catcode`\

I'm writing a

and of course the aborted \catcode declaration will yield an error message. To avoid this problem, the
visibleEOL option makes CodeDoc keeps everything. But now there's another issue: comments and end
of line characters are processed at the same time as other macros and aren't interpreted independantly
as in normal TEX. For instance, the following code, if the visibleEOL option is on for the environment
in question, will apply \emph to the end of line character and not to A.

\emph

A

So you should be sure that comments and line ends occur where they won't hinder anything. If you �nd
this utterly complicated, then you can use an external �le whenever you're hacking ends of line, thanks
to the following two macros.

• \eTeXOff
• \eTeXOn
The former makes CodeDoc process all examples environments with an external �le (whose extension
is .exp). The latter makes everything back to normal. If \eTeXOff applies, the visibleEOL option is of
course irrelevant. Note that these two macros apply to examples that follow them and not to example
de�nitions. For instance, \eTeXOff and then \NewExample{myex}{#}{}{} will not lead CodeDoc to use
an external �le whenever myex is called, but simply as long as no \eTeXOn appears. To put simply, these
two macros have no e�ect on \NewExample.

If \Gobble is positive, examples with ε-TEX and examples without behave di�erently. The latter
gobble characters before writing to the external �le. Thus, \CodeOutput will execute line with the �rst
characters gobbled. With ε-TEX, however, nothing is gobbled in \CodeOutput. This means that �rst
characters, if meant to be gobbled, will be executed. Most of the time, such characters are spaces, and
the di�erence won't be noticed. If, for some reason, you use other characters instead, and if you want to
call \CodeOutput nonetheless, then a switch to an external �le may be a good idea.

2.2 \ShortVerb and friends

CodeDoc provides a number of facilities to act on verbatim contexts. They declare one or more character(s)
to have a special e�ect under certain circumstances.

• \ShortVerb{〈Character 〉}
• \UndoShortVerb
This is well-known. 〈Character〉 is turned into a shorthand for \verb. You can de�ne only one such
character, and that's why \UndoShortVerb doesn't take an argument (like all \Undo... below). In
CodeDoc verbatim contexts, this character returns to its normal value.

\ShortVerb{*}

The command *\TeX* gives \TeX.

\begin{example}

And the star appeared:*

\end{example}\CodeInput

The command \TeX gives TEX.
And the star appeared:*

• \ShortCode[〈Example name 〉]{〈Character 〉}

14

• \UndoShortCode
This turns 〈Character〉 into an equivalent of \begin{code} and \end{code}. In normal mode, the
verbatim material will be printed according to 〈Example name〉's speci�cations. If this optional argument
is not present, then \ShortCode will follow code's style. Most importantly, in produce mode everything
between two 〈Characters〉 will be written to the �le under production.

\RenewExample[continuous]{code}

{\itshape\ttfamily#}{}{\CodeInput}

\LineNumber{code}{\small\rmfamily}{1em}

\ShortCode+ Oh yeah, braces are never

needed...

\begin{code}

Here it's +normal+

\end{code}

+

Here it writes code...

+

4 Here it's +normal+

5 Here it writes code...

\ShortVerb and \ShortCode have one caveat. If you \Undo... them and the next character (disre-
garding spaces, comments and ends of lines) is a short verb or a short code respectively, in produce mode
it will �re as if it was still active. A pair of braces after the \Undo... statement prevents this.

• \VerbBreak{〈Character 〉}
• \UndoVerbBreak
Every once in a while, breaking a verbatim line may be useful. In verbatim contexts, 〈Character〉 breaks
the line, creates an unnumbered new one and indents it to the indentation of the original line. When
\CodeOutput is processed, the \VerbBreak character is ignored. However, you should not break in the
middle of a control sequence (admittingly a strange idea), or it won't form. It is also ignored, of course,
when writing to a �le in produce mode.

\VerbBreak{\=} An escape character is ok

\begin{example*}

\TeX

\emph=\TeX

\end{example*}\CodeInput

And the result is: \CodeOutput

\TeX

 \emph

\TeX

And the result is: TEXTEX

• \VerbCommand{〈Escape 〉}{〈Left brace 〉}{〈Right brace 〉}
• \UndoVerbCommand
In verbatim contexts, those three characters will serve to form control sequences. In \CodeOuput and
produce mode, they are ignored. More speci�cally, 〈Escape〉 gobbles all letters following it (forming a
putative command name) while everything vanishes that appears between 〈Left brace〉 and 〈Right brace〉.
This is not a very sound device, and above all you should add a 〈Left brace〉-〈Right brace〉 pair after
a command called with 〈Escape〉, if it precedes a command to be executed in \CodeOutput. That is,
suppose \VerbCommand{!}{(}{)}, then !foo\foo is a very bad idea in your code, • ••.. .. Mind my word,

don't use it

while !foo()\foo is
ok. All the comments in the examples here are done with \VerbCommand.

Since numbered examples environment de�ne the current label to be the number of the current line,
an interesting application is to use \label to refer to it.

15

\VerbCommand!()

(Everything is normal here!)

\RenewExample[numbered]{example}

{\ttfamily#}{#}{}

\LineNumber{example}{}{1cm}

\begin{example}

\TeX !underline(\Tex!TeX)

%Second line !label(myline)

\end{example}

\CodeInput

gives \CodeOutput and the label is

on line \ref{myline}.

(Everything is normal here!)
1 \TeX \TexTEX

2 %Second line

gives TEX and the label is on
line 2.

• \CodeEscape{〈Character 〉}
• \UndoCodeEscape

In normal mode, this command does absolutely nothing. However, in produce mode, 〈Character〉
becomes an escape character to form control sequences that will be expanded when writing to the �le
under production. It's useful mainly to put the values de�ned by \ProduceFile somewhere in your �le.
For instance, the following code

\CodeEscape!

\ProduceFile{mypack.sty}[mypack][v.2.1][2009/02/24]

\begin{code}

\ProvidesPackage{!FileName}[!FileDate!space !FileVersion!space My super package.]

\end{code}

•
••.... invisible...

will write \ProvidesPackage{mypack}[2009/02/24 v.2.1 My super package.] to mypack.sty.

2.3 Using fancyvrb

CodeDoc is minimally compatible with fancyvrb, in the sense that verbatim characters de�ned and un-
de�ned with \DefineShortVerb and \UndefineShortVerb are recognized in produce mode (hopefully).
Besides, verbatim environments de�ned with \DefineVerbatimEnvironment are automatically added to
the list of dangerous environments. The environments o�ered by fancyvrb and the fvrb-ex companion
package already belong to that list.

You can even rede�ne the code environment with fancyvrb facilities.5 However:
• \ShortCode will stick to the last style de�ned for code (if it is set to follow this environment).
• Since everything is gobbled after \begin{code} in produce mode, you can freely put your keyval pairs
here, as usual with fancyvrb. However, you should not input these pairs on the following line(s), although
it's ok with fancyvrb. The following code will lead xleftmargin=1cm] to be written on the �le under
production.

5It will indeed add code to the list of dangerous environment, which is already the case when code is rede�ned with
\RenewExample. But CodeDoc evaluates whether an environment is code before checking the list of dangerous environments.

16

\begin{code}[frame=single,

xleftmargin=1cm]

\def\foo{FOO}

\end{code}

• The gobble and commandchars parameters will be obeyed in normal mode (since fancyvrb is in charge),
but not in produce mode, unless you also specify the \Gobble and \VerbCommand parameters (see above)
accordingly.

3 Summary of commands

In this section I explain the behavior of all CodeDoc constructions in normal and produce mode re-
spectively. Commands which have some e�ect in produce mode are subject to the restrictions given in
section 1.4.

3.1 Class options

• autoclose
Normal Mode: Does nothing.
Produce Mode: The current �le is closed when a new one is opened with \ProduceFile.
• index
Normal Mode: Loads makeidx and calls \makeindex. \StopHere automatically launches \printindex.
Produce Mode: Does nothing.
• noheader
Normal Mode: Does nothing.
Produce Mode: No header is written to the �le when it is opened.
• obeystop
Normal Mode: The document stops at \StopHere{〈Code〉} and executes 〈Code〉. If the index option is on,
\printindex is executed after 〈Code〉.
Produce Mode: Does nothing.
• tracing0, tracing1, tracing2

Normal Mode: Does nothing.
Produce Mode: CodeDoc normally writes a report to the log �le. If tracing0 is on, there's no report; if
tracing1 is on (which is default), CodeDoc reports only about opening �les and writing code. With tracing2, it
also reports about characters de�ned as \ShortVerb or \CodeEscape, environments added to the list of dangerous
environments, etc.

3.2 Environments

• code
Normal Mode: The content is displayed verbatim according to the style de�ned for code.
Produce Mode: The content is written to the �le in production.
• example
Normal Mode: A minimal example environment that provides \CodeInput (in typewriter font) and \CodeInput.
Produce Mode: The content is skipped.
• invisible
Normal Mode: The content is skipped.
Produce Mode: The content is written to the �le in production.

3.3 Commands

• \AddBlankLine
Normal Mode: Does nothing.
Produce Mode: Adds a blank line to the �le in production.
• \bslash
Normal Mode: Prints \. Designed to adapt to hyperref's bookmarks.
Produce Mode: Does nothing.

17

• \BoxTolerance{〈Dimension 〉}
Normal Mode: Excess size tolerated before a verbatim line is reported as an overfull box.
Produce Mode: Does nothing.
• \CloseFile{〈File 〉}
Normal Mode: \FileName and others are not available anymore.
Produce Mode: Closes 〈File〉. No �le is considered in production until the next \ProduceFile, even if there are
open �les. Useless in autoclose mode.
• \CodeEscape{〈Character 〉}
Normal Mode: Does nothing.
Produce Mode: 〈Character〉 turns into an escape character in code contexts.
• \CodeFont{〈Font specifications 〉}
Normal Mode: The style of the code environment if it has not been rede�ned with \RenewExample. Default is
\ttfamily.
Produce Mode: Does nothing.
• \CodeInput
Normal Mode: Displays the code of the last example environment verbatim, according to the style de�ned for
that environment.
Produce Mode: Does nothing.
• \CodeOutput
Normal Mode: Executes the code of the last example environment, according to the style de�ned for that
environment.
Produce Mode: Does nothing.
• \DangerousEnvironment{〈List of environments 〉}
Normal Mode: Does nothing.
Produce Mode: The environments in the list are skipped during processing.
• \DefineEnvironment{〈Environment 〉}
Normal Mode: Prints 〈Environment〉 according to \PrintMacro and adds it to the index with `(environment)'
and a line number typeset according to \DefineIndexFont.
Produce Mode: Gobbles the �rst characters of 〈Environment〉, just in case.
• \DefineIndexFont{〈Font specifications 〉}
Normal Mode: Style of the page number in the index for \DefineMacro and \DefineEnvironment entries.
Produce Mode: Does nothing.
• \DefineMacro{〈Macro 〉}
Normal Mode: Prints 〈Macro〉 according to \PrintMacro and adds it to the index with a line number typeset
according to \DefineIndexFont.
Produce Mode: Gobbles the �rst characters of 〈Macro〉, just in case.
• \DescribeEnvironment{〈Environment 〉}
Normal Mode: Prints 〈Environment〉 according to \PrintMacro and adds it to the index with `(environment)'
and a line number typeset according to \DescribeIndexFont.
Produce Mode: Gobbles the �rst characters of 〈Environment〉, just in case.
• \DescribeIndexFont{〈Font specifications 〉}
Normal Mode: Style of the page number in the index for \DescribeMacro and \DescribeEnvironment entries.
Produce Mode: Does nothing.
• \DescribeMacro{〈Macro 〉}
Normal Mode: Prints 〈Macro〉 according to \PrintMacro and adds it to the index with a line number typeset
according to \DescribeIndexFont.
Produce Mode: Gobbles the �rst characters of 〈Macro〉, just in case.
• \DocStripMarginpar
Normal Mode: Sets the adequate values for the proper printing of macros with \DescribeMacro and \DefineMacro

(and variants for environments), so that they appear \marginpar'ed as with DocStrip. More precisely, it executes
\reversmarginpar, and sets \marginparpush to 0pt and \marginparwidth to 8pc.
Produce Mode: Does nothing.
• \eTeXOff
Normal Mode: All subsequent example environments are processed with an external �le, whose extension
is .exp.
Produce Mode: Does nothing.
• \eTeXOn
Normal Mode: All subsequent example environments are processed without an external �le. This is default.
(Requires ε-TEX, of course.)
Produce Mode: Does nothing.

18

• \Gobble{〈Number 〉}
Normal Mode: The number of characters that will be gobbled at the beginning of each example and code
environments. In case of a blank line, nothing is gobbled, but a blank line is added. Tab characters count as one
character.
Produce Mode: Same as in normal mode, but when writing to the �le in production.
• \Header{〈Text 〉}
Normal Mode: Does nothing.
Produce Mode: Text to be written at the beginning of a �le when it is opened with \ProduceFile. Comment
characters will be automatically added at the beginning of each line. Ends of lines are obeyed. If the noheader

option is on, nothing is written.
• \IgnorePrefix{〈Macro prefix 〉}
Normal Mode: Ignores 〈Macro pre�x 〉 when sorting index entries generated by \DescribeMacro and \DefineMacro.
〈Macro pre�x 〉 will be typeset according to \PrintPrefix in the index.
Produce Mode: Does nothing.
• \LineNumber{〈Name 〉}{〈Font specifications 〉}{〈Width 〉}[〈Number 〉]
Normal Mode: The line number of 〈Name〉 will be typeset according to 〈Font speci�cations〉 in a box that will
spread from the left••• What??? margin into the main text width by a length of 〈Width〉 (0pt by default). The next 〈Name〉
will start at 〈Number〉 if speci�ed.
Produce Mode: Does nothing.
• \marg{〈Argument 〉}
Normal Mode: \marg{Argument} prints {〈Argument〉} (mandatory argument).
Produce Mode: Does nothing.
• \meta{〈Argument 〉}
Normal Mode: \meta{Argument} prints 〈Argument〉.
Produce Mode: Does nothing.
• \NewExample[〈Options 〉]{〈Name 〉}{〈Code input 〉}{〈Code output 〉}{〈Immediate execution 〉}
Normal Mode: Creates 〈Name〉 as an example environment to provide \CodeInput as 〈Code input〉 (where the
code to be typeset is represented by #) and \CodeOutput as 〈Code output〉 (where the code to be executed is
represented by #). When encountered, 〈Name〉 executes 〈Immediate execution〉. 〈Code input〉, 〈Code output〉 and
〈Immediate execution〉 can be empty.
Options are:
numbered: Each line of 〈Name〉 is numbered.
continuous: Each line of 〈Name〉 is numbered and numbering continues from one 〈Name〉 to the other.
visibleEOL: If 〈Name〉 is processed with ε-TEX, This prevents ends of lines and commented parts of lines from
being removed before anything is executed in \CodeInput. See page 13 for a discussion.
Produce Mode: Adds 〈Name〉 to the list of dangerous environments and gobbles the remaining arguments.
• \oarg{〈Argument 〉}
Normal Mode: \oarg{Argument} prints [〈Argument〉] (optional argument).
Produce Mode: Does nothing.
• \parg{〈Argument 〉}
Normal Mode: \parg{Argument} prints (〈Argument〉) (picture argument).
Produce Mode: Does nothing.
• \PrintMacro{〈Macro or environment 〉}
Normal Mode: Typesets the argument to \DescribeMacro, \DefineMacro, \DescribeEnvironment and \Defi-

neEnvironment. Should be freely rede�ned by users. By default, it prints its argument as with DocStrip, provided
\DocStripMarginpar has been executed beforehand.
Produce Mode: Does nothing.
• \PrintPrefix{〈Macro prefix 〉}
Normal Mode: Typesets 〈Macro pre�x 〉, as de�ned by \IgnorePrefix, in the index. Should be rede�ned by
the user. By default, it does nothing.
Produce Mode: Does nothing.
• \ProduceFile{〈File 〉}[〈File name 〉][〈File version 〉][〈File date 〉]
Normal Mode: Provides 〈File〉 as \FileSource, 〈File name〉 as \FileName, 〈File version〉 as \FileVersion and
〈File date〉 as \FileDate.
Produce Mode: Opens 〈File〉 and writes the header (unless noheader is on), unless 〈File〉 is already open and
autoclose is not speci�ed, in which case CodeDoc will simply puts 〈File〉 back in production. Subsequent code
will be written to this �le. Closes the current �le if autoclose is on. Provides 〈File name〉 as \FileName, 〈File
version〉 as \FileVersion and 〈File date〉 as \FileDate, to be used with \CodeEscape.
• \RenewExample[〈Options 〉]{〈Name 〉}{〈Code input 〉}{〈Code output 〉}{〈Immediate execution 〉}
Normal Mode: Same as \NewExample to rede�ne 〈Name〉.
Produce Mode: Adds 〈Name〉 to the list of dangerous environments and gobbles the remaining arguments.

19

• \ShortCode{〈Character 〉}
Normal Mode: Turns 〈Character〉 into a shorthand for \begin{document} and \end{document}.
Produce Mode: Like in normal mode: everything between two 〈Characters〉 will be written to the �le in produc-
tion.
• \ShortVerb{〈Character 〉}
Normal Mode: Turns 〈Character〉 into a shorthand for \verb.
Produce Mode: Subsequently gobbles everything between two 〈Characters〉.
• \StartIgnore
Normal Mode: Does nothing.
Produce Mode: Stops executing anything until \StopIgnore.
• \StopHere{〈Code 〉}
Normal Mode: If the obeystop option is on, executes 〈Code〉 followed by \printindex if index is on, and ends
the document.
Produce Mode: Does nothing.
• \StopIgnore
Normal Mode: Does nothing.
Produce Mode: Marks the end of \StartIgnore.
• \TabSize{〈Number 〉}
Normal Mode: Sets the number of spaces to represent a tab character in verbatim contexts.
Produce Mode: Does nothing.
• \UndoCodeEscape
Normal Mode: Does nothing.
Produce Mode: Sets the \CodeEscape character to a normal character.
• \UndoShortCode
Normal Mode: Sets the \ShortCode character to a normal character.
Produce Mode: Sets the \ShortCode character to a normal character.
• \UndoShortVerb
Normal Mode: Sets the \ShortVerb character to a normal character.
Produce Mode: Sets the \ShortVerb character to a normal character.
• \UndoVerbBreak
Normal Mode: Sets the \VerbBreak character to a normal character.
Produce Mode: Sets the \VerbBreak character to a normal character.
• \UndoVerbCommand
Normal Mode: Sets the \VerbCommand characters to normal characters.
Produce Mode: Sets the \VerbCommand character to normal characters.
• \VerbBreak{〈Character 〉}
Normal Mode: Turns 〈Character〉 into a line breaker in verbatim contexts; more precisely, the line will break
where 〈Character〉 appears and will be indented with the same amount of space as the original one. 〈Character〉
is ignored in \CodeOutput.
Produce Mode: Ignores 〈Character〉 when writing to the �le in production.
• \VerbCommand{〈Escape 〉}{〈Left brace 〉}{〈Right brace 〉}
Normal Mode: Turns 〈Escape〉 into an escape character in verbatim contexts, and 〈Left brace〉 and 〈Right
brace〉 into characters of category 1 and 2 respectively. In \CodeOutput, 〈Escape〉 gobbles all subsequent letters
and everything between 〈Left brace〉 and 〈Right brace〉 is gobbled too.
Produce Mode: Does the same as normal mode for \CodeOutput. Letters following 〈Escape〉 are gobbled, as is
everything between 〈Left brace〉 and 〈Right brace〉.

20

Part II

Implementation

The usual things (; is my \CodeEscape character). Turning ^^? into an active character is
less usual but useful to delimit ends of code material.

1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesClass{;FileName}[;FileDate ;FileVersion Code and documentation in one file.]

3 \makeatletter

4 \catcode`\^^?=13

4 Options and basic de�nitions

Options are mostly conditional switching. \cd@tracingmode will be used in an \ifcase\cd@GetClass

statement. \cd@GetClass will be analyzed to retrieve the class and its options.

5 \newif\ifcd@produce

6 \newif\ifcd@autoclose

7 \newif\ifcd@obeystop

8 \newif\ifcd@makeindex

9 \newif\ifcd@noheader

10 \newcount\cd@tracingmode

11 \cd@tracingmode1

12 \def\cd@GetClass{article()}

13

14 \DeclareOption{autoclose}{\cd@autoclosetrue}

15 \DeclareOption{produce}{\cd@producetrue}

16 \DeclareOption{index}{\cd@makeindextrue}

17 \DeclareOption{obeystop}{\cd@obeystoptrue}

18 \DeclareOption{noheader}{\cd@noheadertrue}

19 \DeclareOption{tracing0}{\cd@tracingmode0}

20 \DeclareOption{tracing1}{\cd@tracingmode1}

21 \DeclareOption{tracing2}{\cd@tracingmode2}

22 \DeclareOption*{\edef\cd@GetClass{\CurrentOption()}}

23 \ProcessOptions\relax

We de�ne \cd@LoadClass as a recursive retrieval of options, then passed to the class with\cd@end

\cd@LoadClass

\cd@GetOptions

\PassOptionsToClass, which we load. This is done only if we're not in produce mode, in
which case no class is loaded.

24 \def\cd@end{cd@end}

25 \ifcd@produce

26 \else

27 \def\cd@LoadClass#1(#2){%

28 \def\cd@Class{#1}

29 \expandafter\cd@GetOptions#2;cd@end;%

30 \LoadClass{#1}%

31 \@ifnextchar({\expandafter\@gobble\@gobble}{}}

32 \def\cd@GetOptions#1;{%

33 \def\cd@TempArg{#1}

34 \ifx\cd@TempArg\cd@end%

35 \let\cd@next\relax

36 \else%

37 \PassOptionsToClass{#1}{\cd@Class}%

38 \let\cd@next\cd@GetOptions%

39 \fi\cd@next}

40 \expandafter\cd@LoadClass\cd@GetClass

21

Still in normal mode, we load makeidx if required and de�ne \StopHere accordingly.\StopHere

41 \ifcd@makeindex

42 \RequirePackage{makeidx}

43 \makeindex

44 \else

45 \let\printindex\relax

46 \fi

47 \ifcd@obeystop

48 \ifcd@makeindex

49 \long\def\StopHere#1{#1\relax\par\printindex\end{document}}

50 \else

51 \long\def\StopHere#1{#1\relax\par\end{document}}

52 \fi

53 \else

54 \long\def\StopHere#1{}

55 \fi

56 \fi

5 Normal mode

Although the following code is used in normal mode only, I did not feel like embedding
hundreds of lines under a \ifcd@produce conditional. Pure superstition, perhaps.

Here's the switch for ε-TEX and some shorthands.

57 \newif\ifcd@eTeX

58 \@ifundefined{eTeXversion}{\cd@eTeXfalse}{\cd@eTeXtrue}

59

60 \def\cd@Warning{\ClassWarningNoLine{codedoc}}

61 \def\cd@Error#1{\ClassError{codedoc}{#1}{}}

5.1 Describing macros

Most of the following macros are imitated from DocStrip, in a simpler but less careful manner.\DocStripMarginpar

\PrintMacro The �rst two are straightforward.

62 \def\DocStripMarginpar{\reversemarginpar\marginparpush0pt\relax\marginparwidth8pc\relax}

63 \def\PrintMacro#1{\noindent\marginpar{\raggedleft\strut\ttfamily#1}\ignorespaces}

\DescribeIndexFont

\DescribeMacro

\cd@DescribeMacro

\DescribeEnvironment

\cd@DescribeEnvironment

\DefineIndexFont

\DefineMacro

\cd@DefineMacro

\DefineEnvironment

\cd@DefineEnvironment

\DescribeMacro and its companions �rst turn @ into a letter, so that a control sequence
containing it is recognized as such, sets \cd@Index, used in the \ifcase statement below
(a simple conditional could do the job, since there are only two values, but there might
be more someday if one wants to distinguish other index entries, like `used' macros), and
pass their arguments to \PrintMacro with the �rst token \string'ed (even in the case of
an environment, because someone might describe its environment with a \begin{myenv}

command). In case of a macro, the argument is also passed to \cd@MakeEntry to index it.
The hyperref package does not work properly with indexes if a style is speci�ed with |

in the entry. Since we use such styles, and since we want to use hyperref, we circumvent the
problem with \hyperpage added to the style. By default, it does nothing, but if the user
loads hyperref, it will have the adequate meaning.

64 \newcount\cd@Index

65 \def\hyperpage#1{#1}

66

67 \def\DescribeIndexFont#1{\gdef\cdatDescribeFont##1{{#1\hyperpage{##1}}}}

68 \DescribeIndexFont{}

69 \def\DescribeMacro{\makeatletter\cd@DescribeMacro}

70 \def\cd@DescribeMacro#1{%

71 \makeatother%

72 \cd@Index=0 %

73 \cd@MakeEntry#1\cd@EndOfEntry%

74 \PrintMacro{\string#1}}

75 \def\DescribeEnvironment{\makeatletter\cd@DescribeEnvironment}

76 \def\cd@DescribeEnvironment#1{%

22

77 \makeatother%

78 \index{#1@\texttt{#1} (environment)|cdatDescribeFont}%

79 \PrintMacro{\string#1}}

80

81 \def\DefineIndexFont#1{\gdef\cdatDefineFont##1{{#1\hyperpage{##1}}}}

82 \DefineIndexFont{\itshape}

83 \def\DefineMacro{\makeatletter\cd@DefineMacro}

84 \def\cd@DefineMacro#1{%

85 \makeatother%

86 \cd@Index1 %

87 \cd@MakeEntry#1\cd@EndOfEntry%

88 \PrintMacro{\string#1}}

89 \def\DefineEnvironment{\makeatletter\cd@DefineEnvironment}

90 \def\DefineEnvironment#1{%

91 \makeatother%

92 \index{#1@\texttt{#1} (environment)|cdatDefineFont}%

93 \PrintMacro{\string#1}}

This takes two arguments but considers only the �rst one, so that \DescribeMacro{\foo\marg{Argument}}\cd@MakeEntry

will ignore \marg{Argument}. We pass that argument to \cd@AnalyzeEntry with the es-
cape character removed (for a proper indexing), call \cd@AnalyzePrefix on the result and
�nally \cd@@MakeEntry

94 \def\cd@MakeEntry#1#2\cd@EndOfEntry{%

95 \def\cd@TempEntry{}%

96 \begingroup\escapechar\m@ne\expandafter\cd@AnalyzeEntry\string#1\cd@end\endgroup%

97 \expandafter\cd@AnalyzePrefix\cd@TempEntry\cd@end%

98 \expandafter\cd@@MakeEntry\cd@TempEntry\cd@EndOfEntry}

The aim of this macro is to process @. Indeed, @ is MakeIndex's operator to signal that an\cd@AnalyzeEntry

\AtChar entry should be indexed under another name (as done here). But @ is also a very popular
letter in TEX's world when it comes to macros. DocStrip's solution is to create a special style
�le for MakeIndex, so that the function of @ is taken over by another character. But then,
when a user compiles a DocStrip document, this style �le must be indicated to MakeIndex,
which many people might not do. So I prefer to leave MakeIndex alone and process the entry
beforehand, replacing @ by a character denotation. That's the job of \cd@AnalyzeEntry,
which scans the macro name token by token and replace @ by \AtChar.

99 \chardef\AtChar=`\@

100 \def\cd@AnalyzeEntry#1{%

101 \let\cd@next\cd@AnalyzeEntry%

102 \ifx#1\cd@end%

103 \let\cd@next\relax%

104 \else\if#1@%

105 \expandafter\gdef\expandafter\cd@TempEntry\expandafter{\cd@TempEntry\AtChar}%

106 \else%

107 \expandafter\gdef\expandafter\cd@TempEntry\expandafter{\cd@TempEntry#1}%

108 \fi\fi\cd@next}

Here comes the mechanism to remove pre�xes when sorting entries. \IgnorePrefix simply\IgnorePrefix

resets•••....\ I am a macro some values and call \cd@IgnorePrefix on its argument along with a terminator.

109 \newcount\cd@PrefixCount

110 \def\IgnorePrefix#1{\cd@PrefixCount\z@\def\Prefix{}\cd@IgnorePrefix#1\cd@end}

This analyzes the pre�x just like \cd@AnalyzeEntry above and replaces all occurrences of @\cd@IgnorePrefix

\cd@MakePrefix by \AtChar. Since the name of the macro is \string'ed when subjected to \DefineMacro

and others, we also \string all letters of the pre�x, which have then category code 12.

111 \def\cd@IgnorePrefix#1{%

112 \let\cd@next\cd@IgnorePrefix%

113 \ifx#1\cd@end%

114 \def\cd@next{\expandafter\cd@ScanPrefix\Prefix\cd@end}%

115 \else\if#1@%

23

116 \expandafter\def\expandafter\Prefix\expandafter{\Prefix\AtChar}%

117 \else%

118 \edef\cd@PrefixLetter{\string#1}%

119 \expandafter\cd@MakePrefix\cd@PrefixLetter%

120 \fi\fi\cd@next}

121 \def\cd@MakePrefix#1{%

122 \expandafter\def\expandafter\Prefix\expandafter{\Prefix#1}}%

Then we just scan the pre�x to compute the number of characters it is made of. \cd@Analy-\cd@ScanPrefix

\cd@DefPrefix

\cd@AnalyzePrefix

zePrefix is de�ned accordingly to take the right number of characters out of a macro name
(fed in \cd@MakeEntry above) and lump them into \cd@TempPrefix, and de�ne the rest of
the entry as the remaining characters up to the terminator.

123 \def\cd@ScanPrefix#1{%

124 \ifx#1\cd@end%

125 \let\cd@next\cd@DefPrefix%

126 \else%

127 \advance\cd@PrefixCount\@ne%

128 \let\cd@next\cd@ScanPrefix%

129 \fi\cd@next}

130 \def\cd@DefPrefix{%

131 \ifcase\cd@PrefixCount%

132 \def\cd@AnalyzePrefix##1\cd@end{}%

133 \or\def\cd@AnalyzePrefix##1##2\cd@end{%

134 \def\cd@TempPrefix{##1}\def\cd@RestOfEntry{##2}\cd@ComparePrefix}%

135 \or\def\cd@AnalyzePrefix##1##2##3\cd@end{%

136 \def\cd@TempPrefix{##1##2}\def\cd@RestOfEntry{##3}\cd@ComparePrefix}%

137 \or\def\cd@AnalyzePrefix##1##2##3##4\cd@end{%

138 \def\cd@TempPrefix{##1##2##3}\def\cd@RestOfEntry{##4}\cd@ComparePrefix}%

139 \or\def\cd@AnalyzePrefix##1##2##3##4##5\cd@end{%

140 \def\cd@TempPrefix{##1##2##3##4}\def\cd@RestOfEntry{##5}\cd@ComparePrefix}%

141 \or\def\cd@AnalyzePrefix##1##2##3##4##5##6\cd@end{%

142 \def\cd@TempPrefix{##1##2##3##4##5}\def\cd@RestOfEntry{##6}\cd@ComparePrefix}%

143 \or\def\cd@AnalyzePrefix##1##2##3##4##5##6##7\cd@end{%

144 \def\cd@TempPrefix{##1##2##3##4##5##6}\def\cd@RestOfEntry{##7}\cd@ComparePrefix}%

145 \or\def\cd@AnalyzePrefix##1##2##3##4##5##6##7##8\cd@end{%

146 \def\cd@TempPrefix{##1##2##3##4##5##6##7}\def\cd@RestOfEntry{##8}\cd@ComparePrefix}%

147 \or\def\cd@AnalyzePrefix##1##2##3##4##5##6##7##8##9\cd@end{%

148 \def\cd@TempPrefix{##1##2##3##4##5##6##7##8}\def\cd@RestOfEntry{##9}\cd@ComparePrefix}%

149 \fi\ignorespaces}

Comparing pre�xes is simply a matter of string testing. In case they match, the entry is\cd@ComparePrefix

rede�ned as the \cd@RestOfEntry, so that macros will be indexed with the pre�x removed.

150 \newif\ifcd@Prefix

151 \def\cd@ComparePrefix{%

152 \ifx\cd@TempPrefix\Prefix%

153 \expandafter\def\expandafter\cd@TempEntry\expandafter{\cd@RestOfEntry}%

154 \cd@Prefixtrue%

155 \else%

156 \cd@Prefixfalse%

157 \fi}

Finally, \cd@@MakeEntry indexes the macro under its name with a pre�xed escapechar (since\cd@@MakeEntry

\PrintPrefix it was removed above) and \Prefix in case it was found to match. We also set some default
values.

158 \def\cd@@MakeEntry#1\cd@EndOfEntry{%

159 \ifcd@Prefix%

160 \ifcase\cd@Index%

161 \index{#1@\texttt{\char\escapechar\PrintPrefix\Prefix#1}|cdatDescribeFont}%

162 \or%

163 \index{#1@\texttt{\char\escapechar\PrintPrefix\Prefix#1}|cdatDefineFont}%

164 \fi%

24

165 \else%

166 \ifcase\cd@Index%

167 \index{#1@\texttt{\char\escapechar#1}|cdatDescribeFont}%

168 \or%

169 \index{#1@\texttt{\char\escapechar#1}|cdatDefineFont}%

170 \fi%

171 \fi}

172

173 \IgnorePrefix{}%

174 \let\PrintPrefix\relax

These again are imitated from the DocStrip bundle, with less care.\meta

\marg

\oarg

\parg

175 \def\meta#1{{\ensuremath\langle\emph{#1}\ensuremath\rangle}}

176 \def\marg#1{\texttt{\{}\meta{#1}\texttt{\}}}

177 \def\oarg#1{\texttt{[}\meta{#1}\texttt{]}}

178 \def\parg#1{\texttt{(}\meta{#1}\texttt{)}}

We de�ne our backslash to adapt to hyperref. To this end, we use \texorpdfstring, an\cd@bslash

\bslash hyperref command that expands to its �rst argument in normal contexts and to its second
one in bookmarks.

The only problem is that hyperref de�nes \textorpdfstring with \newcommand instead
of \def. So we obviously can't de�ne it here, and we wait for the beginning of the document.

179 \def\cd@bslash{\char`\\}

180 \def\bslash{\texorpdfstring{\cd@bslash}{\string\\}}

181 \AtBeginDocument{\@ifundefined{texorpdfstring}{\def\texorpdfstring#1#2{#1}}{}}

5.2 \ShortVerb and associates

Before entering the intricate realm of verbatim text, here are some simpler de�nitions.\cd@CharErr

\cd@BadChar First, we delimit what characters we consider to be acceptable in \ShortVerb and other.
The choice might seem rather conservative, but things are less dangerous this way.

182 \def\cd@CharErr#1#2{%

183 \bgroup

184 \escapechar\m@ne

185 \cd@Error{You can't use \string#1 for \string\\#2}

186 \egroup}

187

188 \newif\ifcd@BadChar

189

190 \def\cd@BadChar#1#2{%

191 \cd@BadChartrue

192 \ifcase\catcode`#1 % \

193 \cd@CharErr{\\}{#2}%

194 \or% {

195 \cd@CharErr{\{}{#2}%

196 \or% }

197 \cd@CharErr{\}}{#2}%

198 \or% $

199 \cd@BadCharfalse%

200 \or% &

201 \cd@BadCharfalse%

202 \or% ^^M

203 \or% #

204 \cd@BadCharfalse%

205 \or% ^

206 \cd@BadCharfalse%

207 \or% _

208 \cd@BadCharfalse%

209 \or% Ignored

210 \or% Spaces

211 \cd@CharErr{spaces}{#2}%

25

212 \or% Letters

213 \cd@CharErr{letters}{#2. \MessageBreak That's really bad}%

214 \or% Other

215 \cd@BadCharfalse%

216 \or% Active

217 \cd@CharErr{#1}{#2 - it's already active}%

218 \or% %

219 \cd@CharErr{#1}{#2}%

220 \fi}

We also de�ne two templates for error messages in case the user wants to \Undo... something\cd@UndoErr

\cd@DefErr that was never done or de�ne a new character while one is already in use.

221 \def\cd@UndoErr#1{%

222 \bgroup%

223 \escapechar\m@ne%

224 \cd@Error{%

225 There is no \string\\\string#1\space defined.\MessageBreak%

226 \string\\Undo\string#1\space on line \the\inputlineno\space is useless}%

227 \egroup}

228 \def\cd@DefErr#1#2{%

229 \bgroup%

230 \escapechar\m@ne%

231 \expandafter\xdef\csname cd@#2Error\endcsname{%

232 \noexpand\cd@Error{%

233 You've already defined \string#1 as a \string\\#2\noexpand\MessageBreak%

234 on l. \the\inputlineno. You can't have two.\noexpand\MessageBreak%

235 Say \string\\Undo#2\space and then \string\\#2\space to change}}%

236 \egroup}

Before de�ning any character, we run some tests: is it a bad character, and is there another\ShortVerb

character already in use? In the latter case, \ifcd@ShortVerb should be switched to true.

237 \newif\ifcd@ShortVerb

238

239 \def\ShortVerb#1{%

240 \cd@BadChar{#1}{ShortVerb}%

241 \ifcd@BadChar%

242 \else\ifcd@ShortVerb

243 \cd@ShortVerbError

If none of the above applies, we switch the conditional to true de�ne \cd@ShortVerbError
with \cd@DefErr. We also store the character's original catcode to restore if undone.

244 \else

245 \cd@ShortVerbtrue

246 \cd@DefErr{#1}{ShortVerb}

247 \chardef\cd@ShortVerbCat\catcode`#1%

Then we use the ~ with lowercase trick to de�ne the character.

248 \bgroup%

249 \lccode`\~=`#1%

250 \lowercase{%

A \ShortVerb character makes the adequate modi�cations to display text verbatim. \cd@Verbatim
is CodeDoc's container of all such modi�cations (mostly catcode changing). \catcode`#1=13
is necessary because the character might be one of the specials whose catcode is changed in
\cd@Verbatim, e.g. &. We also launch \cd@ShortVerb which works like \verb.

\leavevmode is needed in case the \ShortVerb character starts a paragraph, as in the
one you're reading.

251 \gdef~{\leavevmode\bgroup\ttfamily\cd@Verbatim\catcode`#1\active\cd@ShortVerb}%

252 \gdef\cd@ShortVerb##1~{##1\egroup}%

26

Finally we (re)de�ne \UndoShortVerb to restore the original catcode and switch the appro-
priate conditional. Last but not least, we make the character active.

253 \gdef\UndoShortVerb{%

254 \ifcd@ShortVerb%

255 \cd@ShortVerbfalse%

256 \catcode`~\cd@ShortVerbCat%

257 \else%

258 \cd@UndoErr{\ShortVerb}%

259 \fi}}%

260 \egroup%

261 \catcode`#1=13

262 \fi\fi}%

This is the default de�nition for this command, when no \ShortVerb has been de�ned.\UndoShortVerb

263 \def\UndoShortVerb{\cd@UndoErr{\ShortVerb}}

\ShortCode works with the same pattern as \ShortVerb with important variations. First,\ShortCode

we check whether there's an optional argument.

264 \newif\ifcd@ShortCode

265 \newif\ifcd@ShortCodeChar

266

267 \def\ShortCode{%

268 \@ifnextchar[

269 {\cd@MakeShortCode}

270 {\cd@MakeShortCode[code]}}

Then we de�ne the real macro. We store the name of the environment and run the same\cd@MakeShortCode

tests as above.

271 \bgroup

272 \catcode`\^^M13%

273 \gdef\cd@MakeShortCode[#1]#2{%

274 \def\cd@TempEnv{#1}%

275 \cd@BadChar{#2}{ShortCode}%

276 \ifcd@BadChar%

277 \else\ifcd@ShortCodeChar%

278 \cd@ShortCodeError%

Then we check whether the environment exists, thanks to \〈Environment〉@cd@EOL which is
de�ned for 〈Environment〉 when created with \NewExample.

279 \else%

280 \expandafter\ifx\csname #1@cd@EOL\endcsname\relax%

281 \cd@Error{%

282 `#1' is not an example environment.\MessageBreak%

283 `code' is selected instead}%

284 \def\cd@TempEnv{code}%

285 \fi%

This is the same as above: we state that a character has been de�ned as a \ShortCode.

286 \cd@ShortCodeChartrue%

287 \cd@DefErr{#2}{ShortCode}%

288 \chardef\cd@ShortCodeCat=\catcode`#2%

Then we de�ne the character to launch the appropriate environment, but with \ifcd@Short-\cd@ShortCode

\cd@ShortEnd

\cd@ActivateShortCode

Code turned to true. What will happen depends on the status of the environment. If it is the
default code environement, it will call \cd@ShortCode as de�ned here, which is equivalent to
\code itself (see below). On the other hand, if the environment is an example environement,
the special example macro will be called and delimit its argument with \cd@ShortEnd, which
is the \ShortCode character itself. \cd@ActivateShortCode is needed to reactivate the
character in case it was one of the specials, as we did for \ShortVerb.

289 \bgroup%

27

290 \lccode`\~=`#2%

291 \lowercase{%

292 \gdef~{\cd@ShortCodetrue\csname\cd@TempEnv\endcsname}%

293 \gdef\cd@ShortEnd{~}%

294 \gdef\cd@ShortCode##1^^M##2~{\cd@StartGobble##2^^?\egroup}%

295 \gdef\cd@ActivateShortCode{\catcode`#2=13\relax}%

The rest is equivalent to \ShortVerb above.\UndoShortCode

296 \gdef\UndoShortCode{%

297 \ifcd@ShortCodeChar%

298 \catcode`~=\cd@ShortCodeCat\relax%

299 \let\cd@ActivateShortCode\relax%

300 \cd@ShortCodeCharfalse%

301 \else%

302 \cd@UndoErr{\ShortCode}%

303 \fi}}%

304 \egroup%

305 \catcode`#2=13 %

306 \fi\fi}%

307 \egroup

308 \def\UndoShortCode{\cd@UndoErr{\ShortCode}}

\VerbBreak starts as above.\VerbBreak

309 \newif\ifcd@VerbBreak

310 \newtoks\cd@@Everypar

311

312 \def\VerbBreak#1{%

313 \cd@BadChar{#1}{VerbBreak}%

314 \ifcd@BadChar%

315 \else\ifcd@VerbBreak%

316 \cd@VerbBreakError%

317 \else\cd@VerbBreaktrue

318 \cd@DefErr{#1}{VerbBreak}%

319 \bgroup%

320 \lccode`\~`#1 %

321 \lowercase{%

However, \VerbBreak characters become active only in verbatim contexts. We create\cd@ActivateVerbBreak

\cd@ActivateVerbBreak to that end. When active the character stores the current value
of \everypar and then empties it (because the broken line should start with nothing).

322 \gdef\cd@ActivateVerbBreak{%

323 \catcode`#1\active%

324 \gdef~{%

325 \cd@@Everypar\everypar%

326 \everypar{}%

Then we set a scratch dimension to \cd@FirstSpaces times the width of a space in the
current font. \cd@FirstSpaces is incremented by spaces and tabs at the beginning of each
lines. In case the current environment is numbered, we increase our scratch dimension by
the width of the box containing the number, stored in \〈Environment〉@cd@boxwidth.

327 \dimen0=\cd@FirstSpaces\fontdimen2\font\relax%

328 \expandafter\ifx\csname\cd@ExampleName @cd@boxwidth\endcsname\relax%

329 \else%

330 \advance\dimen0 \csname\cd@ExampleName @cd@boxwidth\endcsname\relax%

331 \fi%

28

Finally, we create a paragraph, turn to horizontal mode, restore \everypar in its initial value
and create a space of the desired width, namely the same as the space at the beginning of
the original broken line.

332 \endgraf\leavevmode\everypar\cd@@Everypar\hbox to\dimen0{\hss}}}}%

333 \egroup%

The character should be ignored in \CodeOutput, and this is what we do here. The \Undo...\cd@IgnoreVerbBreak

variant simply sets these commands to \relax.

334 \def\cd@IgnoreVerbBreak{\catcode`#1=9\relax}%

335 \fi\fi}

336 \def\UndoVerbBreak{%

337 \ifcd@VerbBreak%

338 \let\cd@ActivateVerbBreak\relax

339 \let\cd@IgnoreVerbBreak\relax

340 \cd@VerbBreakfalse

341 \else

342 \cd@UndoErr{\VerbBreak}

343 \fi}

344 \let\cd@ActivateVerbBreak\relax

\VerbCommand is similar once again. We de�ne \cd@ActivateVerbCommand to change the\VerbCommand

\cd@ActivateVerbCommand

\cd@IgnoreVerbCommand

\UndoVerbCommand

catcodes of the characters to 0, 1 and 2 in verbatim contexts and \cd@IgnoreVerbCommand

to turn the second character into a command that gobbles its argument, delimited by the
third character. This is straightforward, but the �rst character is more complicated: it has
to gobble letters and only letters.

345 \newif\ifcd@VerbCommand

346

347 \def\VerbCommand#1#2#3{%

348 \cd@BadChar{#1}{VerbCommand}%

349 \cd@BadChar{#2}{VerbCommand}%

350 \cd@BadChar{#3}{VerbCommand}%

351 \ifcd@BadChar%

352 \else\ifcd@VerbCommand%

353 \cd@VerbCommandError

354 \else%

355 \cd@DefErr{#1, \string#2 and \string#3}{VerbCommand}

356 \cd@VerbCommandtrue%

357 \def\cd@ActivateVerbCommand{\catcode`#1=0 \catcode`#2=1 \catcode`#3=2\relax}%

358 \def\cd@IgnoreVerbCommand{%

359 \catcode`#1=13 %

360 \lccode`\~=`#1 %

361 \lowercase{\def~{\cd@GobbleLetters}}%

362 \catcode`#2=13 %

363 \lccode`\~=`#2 %

364 \lowercase{\def~####1#3{}}}%

365 \fi\fi}

366 \def\UndoVerbCommand{%

367 \ifcd@VerbCommand%

368 \let\cd@ActivateVerbCommand\relax%

369 \let\cd@IgnoreVerbCommand\relax%

370 \cd@VerbCommandfalse%

371 \else%

372 \cd@UndoErr{\VerbCommand}%

373 \fi}%

374 \let\cd@IgnoreVerbCommand\relax

375 \let\cd@ActivateVerbCommand\relax

29

Gobbling letters is not a very delicate process. We take the next token, check whether it\cd@GobbleLetters

is of category 11, and eat it away if it is the case. That's the reason why \VerbCommand

is not very sound. If the next token happens to be a macro (as might be the case since in
\CodeOutput, since the escape character is turned back to 0), trying to evaluate its catcode
is not a good idea.

376 \def\cd@GobbleLetters#1{\ifnum\catcode`#1=11 \expandafter\cd@GobbleLetters\else\expandafter#1\fi}

Finally, \CodeEscape doesn't do much in normal mode. We simply check characters.\CodeEscape

\UndoCodeEscape 377 \newif\ifcd@CodeEscape%

378

379 \def\CodeEscape#1{%

380 \cd@BadChar{#1}{CodeEscape}%

381 \ifcd@BadChar%

382 \else\ifcd@CodeEscape%

383 \cd@CodeEscapeError%

384 \else%

385 \cd@CodeEscapetrue%

386 \cd@DefErr{#1}{CodeEscape}%

387 \fi\fi}

388 \def\UndoCodeEscape{%

389 \ifcd@CodeEscape%

390 \cd@CodeEscapefalse%

391 \else%

392 \cd@UndoErr{\CodeEscape}%

393 \fi}%

5.3 Verbatim de�nitions

Here comes the time to do some verbatim. We start with space. \ifcd@Star is the con-\cd@SpaceChar

ditional switched to true if we're in a starred verbatim environment. We de�ne the visible
space character to be space of category 12 in typewriter font, as usual. • ••.... Forget me not

394 \newif\ifcd@Star

395 \newif\ifcd@NewLine

396 \newcount\cd@FirstSpaces

397

398 \bgroup

399 \catcode`\ 12%

400 \gdef\cd@SpaceChar{\texttt{ }}%

Since we want spaces at the beginning of a line to count how many they are, so that\cd@MakeSpace

\cd@ObeySpaces \VerbBreak can properly break the line, we don't equate the space character with \@xobeysp
(LATEX's verbatim space) or \cd@SpaceChar directly; instead, \cd@ObeySpaces will print the
space, being called by real spaces in \cd@VerbTab and \cd@VerbSpace. (^^I denotes a tab
character).

401 \catcode`\^^I=13\relax%

402 \catcode`\ =13\relax%

403 \gdef\cd@MakeSpace{%

404 \ifcd@Star%

405 \let\cd@ObeySpaces\cd@SpaceChar%

406 \else%

407 \let\cd@ObeySpaces\@xobeysp%

408 \fi%

409 \catcode`\ =13\relax%

410 \catcode`\^^I=13\relax%

411 \let =\cd@VerbSpace%

412 \let^^I=\cd@VerbTab}%

30

In verbatim contexts, a space takes the next character as an argument; in case \ifcd@NewLine\cd@VerbSpace

\cd@VerbTab is true, which it is at the beginning of every line (thanks to an \everypar), it increments
\cd@FirstSpaces, which is used by \VerbBreak. A tab character does the same except
that the \cd@FirstSpaces is increased by the value of \TabSize (stored in \cd@TabSize).
In case the next character is not a space or a tab, \ifcd@NewLine is set to false.

Spaces leaves a \cd@ObeySpaces while tabs create an empty box of width \TabSize

times the width of a space in the current font.

413 \gdef\cd@VerbSpace#1{%

414 \cd@ObeySpaces%

415 \ifcd@NewLine\advance\cd@FirstSpaces1\relax\fi%

416 \ifx#1^^I\else\ifx#1 \else\cd@NewLinefalse\fi\fi#1}%

417 \gdef\cd@VerbTab#1{%

418 \leavevmode\hbox%

419 to\cd@TabSize\fontdimen2\font{\hss}%

420 \ifcd@NewLine\advance\cd@FirstSpaces\cd@TabSize\fi%

421 \ifx#1^^I\else\ifx#1 \else\cd@NewLinefalse\fi\fi#1}

422 \egroup

Here comes the verbatimizer. First, we cancel the parindent and sets \hfuzz to \cd@Box-\cd@Verbatim

Tolerance, which stores the argument of \BoxTolerance.

423 \def\cd@Verbatim{%

424 \parindent\z@%

425 \hfuzz=\cd@BoxTolerance%

Then, if a \ShortVerb was de�ned, we undo it, so that it appears as any other character in
this context. If this verbatim was called by the \ShortVerb character itself, remember that
it restores itself to 13.

426 \ifcd@ShortVerb%

427 \UndoShortVerb%

428 \fi%

If we're not in a verbatim context called by \ShortCode, we undo it, for the same reason.

429 \ifcd@ShortCode%

430 \else%

431 \ifcd@ShortCodeChar%

432 \UndoShortCode%

433 \fi%

434 \fi%

We change the usual catcodes and reactivate the \ShortCode character, just in case it was
changed by \dospecials or \@noligs. We activate the verb break and the verb command,
and the rest is straightforward.

435 \let\do\@makeother\dospecials\@noligs%

436 \ifcd@ShortCode%

437 \cd@ActivateShortCode%

438 \fi%

439 \cd@ActivateVerbBreak%

440 \cd@ActivateVerbCommand%

441 \frenchspacing%

442 \catcode`\^^M=13\relax%

443 \cd@MakeSpace}%

These are pretty straigthforward too. I de�ned a macro instead of a simple dimension or\BoxTolerance

\TabSize

\Gobble

number, because it seems to me that something like \TabSize{25} is much more common in
the LATEX world than \TabSize25. Besides, a \relax is automatically added, which avoids
errors.

444 \newdimen\cd@BoxTolerance

445 \def\BoxTolerance#1{\cd@BoxTolerance=#1\relax}

446 \def\TabSize#1{\chardef\cd@TabSize=#1\relax}

447 \TabSize2

31

448 \def\Gobble#1{\chardef\cd@GobbleNum=#1\relax}

449 \Gobble0

5.4 The default code environment

The basic code environment is quite simple. First, we de�ne \CodeFont, which simply stores\CodeFont

its argument in \cd@CodeFont, to be released later. The following macros are explained more
properly in the de�nition of \NewExample below.

450 \def\CodeFont#1{\def\cd@CodeFont{#1}}

451 \CodeFont{\ttfamily}

452 \newcount\code@cd@LineNumber

453 \def\code@cd@boxwidth{0pt}

454 \def\code@cd@BoxStyle{\rmfamily\footnotesize}

455 \gdef\code@cd@LineNumberBox{%

456 \global\advance\code@cd@LineNumber1\relax%

457 \def\@currentlabel{\the\code@cd@LineNumber}%

458 \hbox to\code@cd@boxwidth{%

459 \hss%

460 \code@cd@BoxStyle\relax%

461 \the\code@cd@LineNumber\enspace}}%

462 \let\code@cd@EOL\iffalse%

We create a paragraph and stores the name of the environment (used in \VerbBreak to\code

check the width of the line number box).

463 \def\code{%

464 \endgraf%

465 \bgroup%

466 \def\cd@ExampleName{code}%

We launch the verbatim de�nitions and the complicated \cd@ObeyLines (see below) that
makes ends of lines work properly (gobbling characters if needed).

467 \cd@Verbatim%

468 \cd@ObeyLines%

Every new paragraph, i.e. every line in that context, typeset the line number and switches
some values exlplained above. We also set the font.

469 \everypar{%

470 \code@cd@LineNumberBox

471 \cd@NewLinetrue%

472 \cd@FirstSpaces0\relax}%

473 \cd@CodeFont%

Finally, we call the proper macro, depending on whether \code was called by \begin{code},
\begin{code*} or the \ShortCode character.

474 \ifcd@ShortCode%

475 \global\cd@ShortCodefalse%

476 \let\cd@next\cd@ShortCode%

477 \else\ifcd@Star%

478 \global\cd@Starfalse%

479 \let\cd@next\cd@StarCode%

480 \else%

481 \let\cd@next\cd@Code%

482 \fi\fi\cd@next}

The starred variant of \code switches to true the conditional used just above. Let's also\invisible

de�ne the invisible environment, which takes an argument delimited by \end{invisible}
and thus needs to turn some catcodes.

483 \expandafter\def\csname code*\endcsname{\cd@Startrue\code}

484 \def\invisible{%

485 \bgroup%

486 \catcode`\\=12 \catcode`\{=12 \catcode`\}=12 \catcode`\^^M=13 %

32

487 \cd@Invisible}

The ^^? character is used to delimit the end of the verbatim material (this is important
because all ends of line scan ahead, see below). Since it is compared in an \ifx conditional,
I de�ne it to do nothing but with a distinct de�nition.

488 \gdef^^?{\cd@UnlikelyCommand}

489 \gdef\cd@UnlikelyCommand{}

\begin{code} expects \end{code} while \begin{code*} expects \end{code*}. That's the\cd@Code

\cd@StarCode

\cd@Invisible

reason why we distinguish \cd@Code and \cd@StarCode. Apart from that, they do the same:
they typeset their argument (the �rst one is the end of the line) and close the environment.
\cd@StartGobble is, obviously, the character gobbler for the �rst line. \cd@Invisible also
matches its end but prints nothing.

490 \begingroup

491 \catcode`|=0

492 \catcode`<=1

493 \catcode`>=2

494 \catcode`{=12

495 \catcode`}=12

496 \catcode`\^^M=13 %

497 \catcode`\\=12 %

498 |gdef|cd@Code#1^^M#2\end{code}<|cd@StartGobble#2^^?|egroup|end<code>>%

499 |gdef|cd@StarCode#1^^M#2\end{code*}<|cd@StartGobble#2^^?|egroup|end<code*>>%

500 |gdef|cd@Invisible#1^^M#2\end{invisible}<|egroup|end<invisible>|ignorespaces>%

501 |endgroup

Here comes a fastidious part. Because we want to gobble characters at the beginning of
each line (according to \Gobble), ends of lines do not simply create a new paragraph, they
also give a look at the next line and gobble the adequate number of characters. Unfortu-
nately, their de�nition changes slightly according to the context (default code and examples
with or without ε-TEX). Let's set the stage.

502 \newcount\cd@GobbleCount%

503 \begingroup

504 \catcode`\^^M13\relax%

This is the gobbler called at the beginning of the material enclosed in a default code envi-\cd@StartGobble

ronment. If we meet ^^?, i.e. if the environment is empty, we do nothing.

505 \gdef\cd@StartGobble#1{%

506 \ifx#1^^?%

507 \cd@GobbleCount=0 %

508 \let\cd@next\relax%

Else, if we have reached the value set by \Gobble (stored in \cd@GobbleNum), we replace
the token we were considering in the stream.

509 \else\ifnum\cd@GobbleCount=\cd@GobbleNum%

510 \cd@GobbleCount=0 %

511 \def\cd@next{#1}%

If we meet an end of line character, that is, if the environment begins with a blank line, we
put it back too (it will create a paragraph, among other things).

512 \else\ifx#1^^M%

513 \cd@GobbleCount=0 %

514 \def\cd@next{^^M}%

Finally, if none of the above apply, we keep gobbling.

515 \else%

516 \advance\cd@GobbleCount1 %

517 \let\cd@next\cd@StartGobble%

518 \fi\fi\fi\cd@next}%

33

In the code environment, ends of lines act exactly like \cd@StartGobble except that they\cd@ObeyLines

create a paragraph in the �rst three cases.

519 \gdef\cd@ObeyLines{%

520 \def^^M##1{%

521 \ifx##1^^?%

522 \cd@GobbleCount=0 %

523 \def\cd@next{\leavevmode\endgraf}%

524 \else\ifnum\cd@GobbleCount=\cd@GobbleNum%

525 \cd@GobbleCount=0 %

526 \def\cd@next{\leavevmode\endgraf##1}%

527 \else\ifx##1^^M%

528 \cd@GobbleCount=0 %

529 \def\cd@next{\leavevmode\endgraf^^M}%

530 \else%

531 \advance\cd@GobbleCount1 %

532 \let\cd@next^^M%

533 \fi\fi\fi\cd@next}}%

534 \endgroup

5.5 Example environments

Examples are quite di�erent from the default code environment, since they provide both
the input and the output of a code. Besides, if available, they make use of ε-TEX.
Here's the command to switch from ε-TEX to external �le.\eTeXOn

\eTeXOff 535 \def\eTeXOn{%

536 \@ifundefined{eTeXversion}%

537 {\cd@Error{%

538 You're not running on eTeX.\MessageBreak%

539 Command \string\eTeXOn\space ignored}}%

540 {\cd@eTeXtrue}}

541 \def\eTeXOff{\cd@eTeXfalse}

\NewExample and \RenewExample work similarly but in an inverted way. Both test for\NewExample

\cd@NewExample

\RenewExample

\cd@RenewExample

\cd@GobbleThree

options and launch \cd@@NewExample on the options and example name if nothing is wrong.
Beforehand, they turn # into an active character, which will be \let later to the code
material with additional macros.

542 \def\NewExample{%

543 \@ifnextchar[%

544 {\cd@NewExample}%

545 {\cd@NewExample[]}}

546 \def\cd@NewExample[#1]#2{%

547 \expandafter\ifx\csname #2\endcsname\relax

548 \def\cd@next{\catcode`\#=13 \cd@@NewExample{#1}{#2}}%

549 \else%

550 \let\cd@next\relax%

551 \cd@Error{%

552 Style `#2' already defined or the name\MessageBreak%

553 is already in use.\MessageBreak%

554 Use \protect\RenewExample\space if you want to redefine it}%

555 \let\cd@next\cd@GobbleThree%

556 \fi\cd@next}

557

558 \def\RenewExample{%

559 \@ifnextchar[%

560 {\cd@RenewExample}%

561 {\cd@RenewExample[]}}

562 \def\cd@RenewExample[#1]#2{%

563 \expandafter\ifx\csname #2\endcsname\relax

564 \let\cd@next\relax%

565 \cd@Error{%

566 Style `#2' is undefined.\MessageBreak%

34

567 Use \protect\NewExample\space to redefine it}%

568 \let\cd@next\cd@GobbleThree%

569 \else\expandafter\ifx\csname #2\endcsname\code%

570 \def\CodeFont{%

571 \cd@Error{%

572 You have redefined the `code' environment.\MessageBreak%

573 \string\CodeFont\space is no longer operative}}

574 \fi%

575 \def\cd@next{\catcode`\#=13 \cd@@NewExample{#1}{#2}}%

576 \fi\cd@next}

577

578 \def\cd@GobbleThree#1#2#3{}

Here is the working mechanism behind both \NewExample and \RenewExample. Since # will\cd@@NewExample

have a special function, we do some catcode changing. The de�nition is \long, of course.

579 \begingroup

580 \catcode`\"=6 %

581 \catcode`\#=13 %

582 \long\gdef\cd@@NewExample"1"2"3"4"5{%

We de�ne some default values: \〈Example〉@cd@EOL is a switch used when the example is
processed with ε-TEX, indicating whether ends of lines are visible or not. By default, they
aren't, but options may change it. \〈Example〉@cd@LineNumberBox is the command used in
examples to typeset the line number. By default, it is set to \relax because examples have
no line number.
We store the name of the example to be retrieved when the environment is processed, but\cd@ExampleName

actually it is stored here for the options. Finally, we analyze options with a terminator.

583 \expandafter\gdef\csname"2@cd@EOL\endcsname{\iffalse}%

584 \expandafter\let\csname"2@cd@LineNumberBox\endcsname\relax%

585 \def\cd@ExampleName{"2}%

586 \cd@ExampleOptions"1,cd@end,%

Now we de�ne \〈Example〉, which will be called by \begin{〈Example〉}, as usual in LATEX.\CodeInput

\CodeOutput

\cd@MakeExample

Each time, it rede�nes \CodeInput and \CodeOutput. Both store the name of the example,
\let # to \cd@Input and \cd@Output respectively, whose de�nitions depends on the way
the example is processed (ε-TEX or not), and �nally execute the de�nition given by the
user. \cd@MakeExample simply executes the last argument; it will be called at the end of
the environment. Note the extra pairs of braces in all cases.

587 \expandafter\def\csname"2\endcsname{%

588 \gdef\CodeInput{{%

589 \def\cd@ExampleName{"2}%

590 \let#\cd@Input%

591 "3}}%

592 \gdef\CodeOutput{%

593 \def\cd@ExampleName{"2}%

594 \let#\cd@Output{"4}}%

595 \gdef\cd@MakeExample{{"5}}%

Finally, we launch the example maker with the name of the environment (to match its proper
end).

596 \cd@Example{"2}}%

We also de�ne the starred version of \〈Example〉, whose only di�erence is to switch the star
conditional. Finally, we restore the category code of # and close.

597 \expandafter\def\csname"2*\endcsname{%

598 \global\cd@Startrue%

599 \gdef\CodeInput{{%

600 \def\cd@ExampleName{"2}%

601 \cd@Startrue%

602 \let#\cd@Input%

35

603 "3}}%

604 \gdef\CodeOutput{%

605 \def\cd@ExampleName{"2}%

606 \let#\cd@Output{"4}}%

607 \gdef\cd@MakeExample{{"5}}%

608 \cd@Example{"2*}}%

609 \catcode`\#=6\relax}%

610 \endgroup

Now we process options. First we de�ne some keywords.\cd@numbered

\cd@continuous

\cd@visibleEOL

\cd@empty

611 \def\cd@numbered{numbered}

612 \def\cd@continuous{continuous}

613 \def\cd@visibleEOL{visibleEOL}

614 \def\cd@empty{}

This is the option processor. It is recursive and stops when it meets the terminator. It\cd@ExampleOptions

simply stores the name of the option and acts accordingly.

615 \def\cd@ExampleOptions#1,{%

616 \def\cd@TempOption{#1}%

617 \let\cd@next\cd@ExampleOptions%

618 \ifx\cd@TempOption\cd@end%

619 \let\cd@next\relax%

If the option is numbered, we create a new count register, set the width of the box containing
the number to 0pt by default, and de�ne the style of this number to be \relax by default
too. They will be modi�ed by \LineNumber.

620 \else\ifx\cd@TempOption\cd@numbered%

621 \global\expandafter\newcount\csname\cd@ExampleName @cd@LineNumber\endcsname%

622 \expandafter\gdef\csname\cd@ExampleName @cd@boxwidth\endcsname{0pt}%

623 \expandafter\let\csname\cd@ExampleName @cd@BoxStyle\endcsname\relax%

We then de�ne the macro executed by the environment for the line number; it increments
the count, stores its value as the current label for \label and \ref, create a box of the
desired width, �ushes everything to the right, executes the style and typeset the value of
the counter.

624 \expandafter\gdef\csname\cd@ExampleName @cd@LineNumberBox\endcsname{%

625 \expandafter\advance\csname\cd@ExampleName @cd@LineNumber\endcsname1\relax%

626 \def\@currentlabel{\expandafter\the\csname\cd@ExampleName @cd@LineNumber\endcsname}%

627 \hbox to\csname\cd@ExampleName @cd@boxwidth\endcsname{%

628 \hss%

629 \csname\cd@ExampleName @cd@BoxStyle\endcsname\relax%

630 \expandafter\the\csname\cd@ExampleName @cd@LineNumber\endcsname\enspace}}%

If the option is continuous, we do the same thing, except that the count register is created
if and only if it does not already exists (so that a modi�ed continuous example environment
will continue where it stopped; the user may use \LineNumber to start back from 0), and
the \advance of the count is \global, so that the last value is always retained from one
environment to the other.

631 \else\ifx\cd@TempOption\cd@continuous%

632 \expandafter\ifx\csname\cd@ExampleName @cd@LineNumber\endcsname\relax%

633 \global\expandafter\newcount\csname\cd@ExampleName @cd@LineNumber\endcsname%

634 \fi%

635 \expandafter\gdef\csname\cd@ExampleName @cd@boxwidth\endcsname{0pt}%

636 \expandafter\let\csname\cd@ExampleName @cd@BoxStyle\endcsname\relax%

637 \expandafter\gdef\csname\cd@ExampleName @cd@LineNumberBox\endcsname{%

638 \global\expandafter\advance\csname\cd@ExampleName @cd@LineNumber\endcsname1\relax%

639 \def\@currentlabel{\expandafter\the\csname\cd@ExampleName @cd@LineNumber\endcsname}%

640 \hbox to\csname\cd@ExampleName @cd@boxwidth\endcsname{%

641 \hss%

642 \csname\cd@ExampleName @cd@BoxStyle\endcsname\relax%

643 \expandafter\the\csname\cd@ExampleName @cd@LineNumber\endcsname\enspace}}%

36

The visibleEOL option simply sets the relevant conditional to true.

644 \else\ifx\cd@TempOption\cd@visibleEOL%

645 \expandafter\gdef\csname\cd@ExampleName @cd@EOL\endcsname{\csname iftrue\endcsname}%

646 \else\ifx\cd@TempOption\cd@empty%

647 \else%

648 \cd@Error{`#1' is not a valid option}%

649 \fi\fi\fi\fi\fi\cd@next}%

\LineNumber is straightforward. After some testing, it sets the macro created above to the\LineNumber

\cd@SetLineNumber values speci�ed. If a a square bracket follows, it executes \cd@SetLineNumber.

650 \def\LineNumber#1#2#3{%

651 \expandafter\ifx\csname#1@cd@EOL\endcsname\relax%

652 \cd@Error{`#1' is not an example environment'}%

653 \else\expandafter\ifx\csname #1@cd@LineNumber\endcsname\relax%

654 \cd@Warning{%

655 `#1' is not `numbered' nor `continuous'.\MessageBreak%

656 \string\LineNumber\space on line \the\inputlineno\space is useless}{}%

657 \else%

658 \expandafter\gdef\csname #1@cd@BoxStyle\endcsname{#2}%

659 \expandafter\gdef\csname #1@cd@boxwidth\endcsname{#3}%

660 \fi\fi%

661 \@ifnextchar[{\cd@SetLineNumber#1}\relax}

662 \def\cd@SetLineNumber#1[#2]{%

663 \expandafter\ifx\csname#1@cd@LineNumber\endcsname\relax%

664 \else%

665 \csname#1@cd@LineNumber\endcsname=#2\relax%

666 \expandafter\advance\csname#1@cd@LineNumber\endcsname\m@ne%

667 \fi}

The default example environment is thus easily created.example

668 \NewExample{example}{\ttfamily#}{#}{}

If no example has been created, these two macros yields error messages.\CodeInput

\CodeOutput 669 \def\CodeInput{%

670 \cd@Error{%

671 No example environment has been created.\MessageBreak%

672 \string\CodeInput\space is void}}

673 \def\CodeOutput{%

674 \cd@Error{%

675 No example environment has been created.\MessageBreak%

676 \string\CodeOutput\space is void}}

And here comes the core example environment. First, some catcode changing.

677 \begingroup

678 \catcode`|=0 %

679 \catcode`<=1 %

680 \catcode`>=2 %

681 \catcode`{=12 %

682 \catcode`}=12 %

683 \catcode`\\=12 %

This prepares the conditions for the processing of the material. Let's start with the usual\cd@Example

stu�:

684 |gdef|cd@Example#1<%

685 |bgroup%

686 |let|do|@makeother%

687 |dospecials%

37

Now, if the environment was called by a \ShortCode character, there is no environment to
close (\cd@EndEnv executes \end{〈Environment〉}). We call \cd@MakeExampleEnd, de�ned
below, on the character, and we reactivate this character just in case it was one of the special.

688 |ifcd@ShortCode%

689 |global|let|cd@EndEnv|relax

690 |expandafter|cd@MakeExampleEnd|expandafter<|cd@ShortEnd>%

691 |global|cd@ShortCodefalse%

692 |cd@ActivateShortCode%

If the environment was called by a regular \begin〈Environment〉 statement, we de�ne the
proper end (the argument comes from \〈Example〉, see the de�nition in \cd@@NewExample

above). If there exists a \ShortCode character, we unde�ne it.

693 |else%

694 |gdef|cd@EndEnv<|end<#1>>%

695 |cd@MakeExampleEnd<\end{#1}>%

696 |ifcd@ShortCodeChar%

697 |UndoShortCode%

698 |fi%

699 |fi%

If there's a short verb, we turn it o�, we set tabs to 12 so they are written to the �le as any
other character, we activate ends of lines and in case ε-TEX is to process the example, we
also activate comment characters (ε-TEX's scanning mechanism is peculiar and commented
parts of the code wouldn't be taken into account otherwise).

700 |ifcd@ShortVerb%

701 |UndoShortVerb%

702 |fi%

703 |catcode`|^^I=12 %

704 |catcode`|^^M=13 %

705 |ifcd@eTeX%

706 |catcode`|%=13 %

707 |fi%

708 |cd@ExampleEnd>%

709 |endgroup

\cd@MakeExampleEnd de�nes \cd@ExampleEnd so that the environment meets its proper\cd@MakeExampleEnd

\cd@ExampleEnd end. It also launches the real processing, depending on the use of ε-TEX or not.
The argument has been passed in \cd@Example above, and is either \end{〈Environment〉}

(with the proper catcodes) or the \ShortCode character.
In case we're using ε-TEX, we close some groups and environments, empty \everypar

and assign the input. We switch the star conditional after that, because it is needed when
the input is assigned and \cd@Verbatim is called.

710 \begingroup

711 \catcode`\^^M=13 %

712 %

713 \gdef\cd@MakeExampleEnd#1{%

714 \ifcd@eTeX%

715 \gdef\cd@ExampleEnd##1^^M##2#1{%

716 \egroup%

717 \cd@EndEnv%

718 \bgroup%

719 \everypar{}%

720 \cd@AssigneTeXInput{##2}%

721 \global\cd@Starfalse}%

38

If we're not using ε-TEX, we do some testing beforehand. We just want to inform the user
that we're opening an external �le. If it already exists, we keep silent.

722 \else%

723 \def\cd@ExampleEnd##1^^M##2#1{%

724 \expandafter\ifx\csname cd@TestRead\endcsname\relax%

725 \newread\cd@TestRead%

726 \fi%

727 \openin\cd@TestRead=\jobname.exp %

728 \ifeof\cd@TestRead\relax%

729 \cd@Warning{%

730 You're not running on eTeX or you've said \string\eTeXOff.\MessageBreak%

731 I create the file \jobname.exp to produce\MessageBreak%

732 the example environment on line \the\inputlineno.\MessageBreak%

733 You can delete it whenever you want, but\MessageBreak%

734 keeping it prevents this message from reappearing.}%

735 \fi%

736 \closein\cd@TestRead %

If it does not already exists, we create the output stream \cd@expFile, which opens an\cd@expFile

external scratch �le for example processing.

737 \expandafter\ifx\csname cd@expFile\endcsname\relax%

738 \newwrite\cd@expFile%

739 \fi%

740 \immediate\openout\cd@expFile=\jobname.exp %

We \let ends of lines to a macro equivalent to the one described above for the default
code environment, except that each line is written to the external �le. We launch it on the
material su�xed with a complicated tail to match all cases.

741 \let^^M\cd@noeTeXEOL%

742 ^^M##2^^?^^M^^?%

Finally, we close everything and assign input once again.

743 \egroup%

744 \cd@EndEnv%

745 \immediate\closeout\cd@expFile%

746 \bgroup%

747 \everypar{}%

748 \cd@AssignInput%

749 \egroup\global\cd@Starfalse}%

750 \fi}%

751 \endgroup

5.5.1 Examples without ε-TEX

Here's how ends of lines are processed when writing the code material to an external �le. If\cd@noeTeXEOL

we �nd ^^?, which marks the end of the material, we stop.

752 \begingroup

753 \catcode`\^^M\active%

754 \gdef\cd@noeTeXEOL#1{%

755 \ifx#1^^?%

756 \cd@GobbleCount=0 %

757 \let^^M\relax%

758 \let\cd@next\relax%

If we �nd an end of line, that means there's a blank line, and we write it to the jobname.exp.

759 \else\ifx#1^^M%

760 \cd@GobbleCount=0 %

761 \def\cd@next{\immediate\write\cd@expFile{}\cd@noeTeXEOL}%

39

If we have gobbled enough characters, we write the line to the external �le. Otherwise, we
repeat.

762 \else\ifnum\cd@GobbleCount=\cd@GobbleNum%

763 \cd@GobbleCount=0 %

764 \def\cd@next{\cd@LineWrite#1}%

765 \else%

766 \advance\cd@GobbleCount1 %

767 \let\cd@next\cd@noeTeXEOL%

768 \fi\fi\fi\cd@next}%

The line written is delimited by its end. This explains the ^^?^^M^^? su�x at the end of the\cd@LineWrite

material on line 742. In case \end{〈Example〉} occurs on its own line, we need a terminator,
hence the �rst ^^?. If it occurs at the end of the last line, as in ... end of code\end{code},
we need ^^M so that the argument of \cd@LineWrite is properly delimited. The �rst
^^? is then written to the �le, but it expands to nothing. Since \cd@LineWrite calls
\cd@noeTeXEOL, we need another delimitator, hence the second ^^?.

769 \gdef\cd@LineWrite#1^^M{\immediate\write\cd@expFile{#1}\cd@noeTeXEOL}%

Now we de�ne the macro that will be used in \CodeInput (where # is \let to \cd@Input)\cd@AssignInput

and \CodeOutput (where it is \let to \cd@Output).
The input is quite similar to the default code environment. We de�ne ends of lines as usual\cd@Input

in verbatim contexts and we read from the scratch �le.

770 \newtoks\cd@Everypar

771 %

772 \gdef\cd@AssignInput{%

773 \gdef\cd@Input{%

774 \bgroup%

775 \cd@Everypar\everypar%

776 \everypar{%

777 \leavevmode\csname\cd@ExampleName @cd@LineNumberBox\endcsname\relax%

778 \cd@NewLinetrue\cd@FirstSpaces0\relax\the\cd@Everypar\relax}%

779 \cd@Verbatim%

780 \def^^M{\leavevmode\endgraf}%

781 \input{\jobname.exp}%

782 \egroup}%

The output also reads from the �le and simply ignores verb breaks and commands.\cd@Output

783 \gdef\cd@Output{%

784 \bgroup%

785 \cd@IgnoreVerbBreak%

786 \cd@IgnoreVerbCommand%

787 \input{\jobname.exp}%

788 \egroup}%

Finally, we execute the last argument to \NewExample, i.e. what was dubbed here 〈Immediate
execution〉.

789 \cd@MakeExample}%

5.5.2 Examples with ε-TEX

Examples with ε-TEX are much more complicated. We use the \scantokens command,\cd@AssigneTeXInput

whose function is to read its argument as if catcodes were not �xed. For instance,
\def\scan#1{{\catcode`\\=12\scantokens{#1}}}

\scan\foo

yields \foo, although the backslash was an escape character when read. The problem is
that \scantokens interprets ends of lines and comments characters with their current val-
ues. Ends of lines yields a \par token as usual; the problem is that this token is scanned
anew, and if you have turned the backslash to a category 12 character, it will appear as
such. Moreover, commented parts of a line are ignored. For instance,
\scan{

40

a% mycomment

b}

yields a\par b. So \scantokens as it stands is not appropriate for verbatim material.

•
••.... Progress...

The solution is to turned ends of lines and comments to other catcodes beforehand. Thus
the previous example yields a% mycomment^^M^^Mb^^M. (The �nal end of line is added by
\scantokens.) Now we need some hacking to produce the desired result.
The input begins with the usual verbatim preparation.\cd@Input

790 \long\gdef\cd@AssigneTeXInput#1{%

791 \gdef\cd@Input{%

792 \bgroup%

793 \cd@Everypar\everypar%

794 \everypar{%

795 \leavevmode\csname\cd@ExampleName @cd@LineNumberBox\endcsname\relax%

796 \cd@NewLinetrue\cd@FirstSpaces0\relax\the\cd@Everypar\relax}%

797 \cd@Verbatim%

We de�ne ends of lines as yet another gobbling mechanism. We use ^^? once again to delimit
material, and de�ne it to make ends of lines ignored in case it is read, so that the additional
^^M at the end of \scantokens will be ine�ective.

798 \catcode`\^^M=13 %

799 \let^^M\cd@eTeXStartGobble%

800 \catcode`\^^?13 %

801 \def^^?{\catcode`\^^M=9\relax}%

802 \scantokens{^^M#1^^?}%

803 \egroup}%

Output is still worse. Even comments are active.\cd@Output

804 \gdef\cd@Output{%

805 \bgroup%

806 \cd@IgnoreVerbBreak%

807 \catcode`\^^?13 %

808 \catcode`\%=13 %

809 \catcode`\^^M=13 %

The next step depends on the user's choice about ends of lines. If they are visible, we process
the material as is, with special de�nitions of % and ^^M to mimick TEX's normal behavior.

810 \csname\cd@ExampleName @cd@EOL\endcsname%

811 \cd@VisibleComment%

812 \let^^M\cd@eTeXOutVisibleEOL%

813 \def^^?{\let^^M\relax}%

814 \cd@IgnoreVerbCommand%

815 \scantokens{#1^^?}%

If ends of lines are not visible, we execute the material beforehand with only %, ^^M and ^^?

e�ective, to remove unwanted code. Macros are not executed because the backslash is still
of category 12. Once ends of lines are thus processed, we scan everything anew, ignoring
the last ^^M and ^^@, which has a special function (see below).

816 \else%

817 \cd@ActiveComment%

818 \let^^M\cd@eTeXOutEOL%

819 \def^^?{\catcode`\^^M9\relax}%

820 \xdef\cd@exinput{#1^^?}%

821 \cd@IgnoreVerbCommand%

822 \catcode`\^^M=9 %

823 \catcode`\^^@=9 %

824 \expandafter\scantokens\expandafter{\cd@exinput}%

825 \fi%

826 \egroup}%

827 \cd@MakeExample\egroup}%

41

Once again, macros to gobble the right number of characters at the beginning of each line.\cd@eTeXStartGobble

\cd@eTeXEOL These are for the input. It is not possible to put \cd@eTeXStartGobble directly at the
beginning of \scantokens, because the backslash would not be understood as an escape
character. Thus we have to \let ^^M to it, and once it has done its job, make it change the
meaning of ^^M to \cd@eTeXEOL. (That's also the reason why we couldn't reuse the gobble
macro of the default code environment, although they are quite similar.)

828 \gdef\cd@eTeXStartGobble#1{%

829 \ifx#1^^?%

830 \cd@GobbleCount=0 %

831 \let\cd@next\relax%

832 \else\ifnum\cd@GobbleCount=\cd@GobbleNum%

833 \cd@GobbleCount=0 %

834 \let^^M\cd@eTeXEOL%

835 \def\cd@next{#1}%

836 \else\ifx#1^^M%

837 \cd@GobbleCount=0 %

838 \let^^M\cd@eTeXEOL%

839 \let\cd@next^^M%

840 \else%

841 \advance\cd@GobbleCount1 %

842 \let\cd@next\cd@eTeXStartGobble%

843 \fi\fi\fi\cd@next}%

844 %

845 \gdef\cd@eTeXEOL#1{%

846 \ifx#1^^?%

847 \cd@GobbleCount=0 %

848 \def\cd@next{\let^^M\relax\leavevmode\endgraf}%

849 \else\ifx#1^^M%

850 \cd@GobbleCount=0 %

851 \def\cd@next{\leavevmode\endgraf^^M}%

852 \else\ifnum\cd@GobbleCount=\cd@GobbleNum%

853 \cd@GobbleCount=0 %

854 \def\cd@next{\leavevmode\endgraf#1}%

855 \else%

856 \advance\cd@GobbleCount1 %

857 \let\cd@next^^M%

858 \fi\fi\fi\cd@next}%

And now, the output. If ends of lines are visible, we set them to create a \par if the next\cd@eTeXOutVisibleEOL

character is another end of line (i.e. if we �nd a blank line) or to put it back into the stream
otherwise, with a space before.

859 \gdef\cd@eTeXOutVisibleEOL#1{%

860 \ifx#1^^?%

861 \let^^M\relax%

862 \let\cd@next\relax%

863 \else\ifx#1^^M%

864 \par%

865 \let\cd@next^^M%

866 \else%

867 \def\cd@next{ #1}%

868 \fi\fi\cd@next}%

If ends of lines are not visible, i.e. if they are processed before anything else, we do something\cd@eTeXOutEOL

similar, except that we add a dummy character, which will be ignored when the material
is scanned, but will nonetheless prevent the formation of macro names across lines. Tail
recursion is forbidden, since this will be used in a \edef, so we \expandafter instead.

869 \catcode`\^^@=12\relax%

870 \gdef\cd@eTeXOutEOL#1{%

871 \ifx#1^^?%

872 \else\ifx#1^^M%

42

873 \par%

874 \expandafter^^M%

875 \else%

876 ^^@ \expandafter\expandafter\expandafter#1%

877 \fi\fi}%

Now we deal with comments. First we do some catcode changing. (We need a comment
character since we're currently in a group where ends of lines are active).

878 \catcode`\/=14\relax%

879 \catcode`\%=13\relax/

880 \catcode`\ =12\relax/

881 \catcode`\^^I=12\relax/

If ends of lines are visible we de�ne comments to eat everything until the end of the line and\cd@VisibleComment

\cd@EatBOL then launch a macro whose sole purpose is to remove spaces at the beginning of the next
line.

882 \gdef\cd@VisibleComment{/

883 \def%##1^^M{\cd@EatBOL}/

884 \def\cd@EatBOL##1{/

885 \let\cd@next\cd@EatBOL/

886 \ifx##1 /

887 \else\ifx##1^^I/

888 \else\ifx##1^^M/

889 \let\cd@next\par/

890 \else/

891 \def\cd@next{##1}/

892 \fi\fi\fi\cd@next}}/

If ends of line are not visible, we do the same in the \expandafter way.\cd@ActiveComment

\cd@EatBOL 893 \gdef\cd@ActiveComment{/

894 \def%##1^^M{\cd@EatBOL}/

895 \def\cd@EatBOL##1{/

896 \ifx##1 /

897 \expandafter\cd@EatBOL/

898 \else\ifx##1^^I/

899 \expandafter\expandafter\expandafter\cd@EatBOL/

900 \else\ifx##1^^M/

901 \par/

902 \else/

903 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter##1/

904 \fi\fi\fi}}/

905 \endgroup

5.6 File management

Here are some simple macro for the reader's relief.
Closing a �le in normal mode simply makes all �le identi�cation macros unavailable.\CloseFile

906 \def\CloseFile#1{%

907 \def\FileSource{%

908 \cd@Error{%

909 No file in production. \string\FileSource\space is empty}}%

910 \def\FileName{%

911 \cd@Error{%

912 No file in production. \string\FileName\space is empty}}%

913 \def\FileVersion{%

914 \cd@Error{%

915 No file in production. \string\FileVersion\space is empty}}%

916 \def\FileDate{%

917 \cd@Error{%

918 No file in production. \string\FileDate\space is empty}}}

43

That's why, in normal mode, we close a �le right now. We nonetheless create a dummy �le\@cd@LineCount

name for the sake of \ProduceFile below.

919 \ifcd@produce%

920 \def\FileName{}

921 \def\FileVersion{}

922 \def\FileDate{}

923 \else

924 \CloseFile{}

925 \def\FileSource{}

926 \newcount\@cd@LineCount%

927 \fi

In normal mode, the main job of \ProduceFile is to reset some line number counts. In\ProduceFile

autoclose mode, there's only one counter, since �les are closed when a new one is opened.

928 \def\ProduceFile#1{%

929 \ifcd@autoclose%

930 \code@cd@LineNumber0\relax%

If autoclose is o�, we allocate a count for each �le, so lines are numbered according to
the �le they belong to. We store the last value for the �le we're going to close (stored in
\FileSource), and set the line number of the code to the number for the �le we're going
to (re)open. That's why we needed a dummy \FileSource above, when \ProduceFile is
executed for the �rst time.

931 \else%

932 \expandafter\csname\FileSource @cd@LineCount\endcsname=\code@cd@LineNumber%

933 \expandafter\ifx\csname #1@cd@LineCount\endcsname\relax%

934 \expandafter\newcount\csname #1@cd@LineCount\endcsname%

935 \code@cd@LineNumber0\relax%

936 \else%

937 \expandafter\code@cd@LineNumber\csname #1@cd@LineCount\endcsname%

938 \fi%

939 \fi%

We reset \FileName and others, because their de�nition is optional. \FileSource is manda-\FileSource

tory and is the actual argument of \ProduceFile. We launch the appropriate macro if a
left bracket follows.

940 \def\FileName{%

941 \cd@Error{%

942 No \string\FileName\space has been given to \FileSource}}%

943 \def\FileVersion{%

944 \cd@Error{%

945 No \string\FileVersion\space has been given to \FileSource}}%

946 \def\FileDate{%

947 \cd@Error{%

948 No \string\FileDate\space has been given to \FileSource}}%

949 \edef\FileSource{#1}%

950 \@ifnextchar[%

951 {\cd@GetFileName}%

952 \relax}

These are straightforward and don't need any comment. •••....What if I want
comment?

\cd@GetFileName

\FileName

\cd@GetFileVersion

\FileVersion

\cd@GetFileDate

\FileDate

953 \def\cd@GetFileName[#1]{%

954 \edef\FileName{#1}%

955 \@ifnextchar[\cd@GetFileVersion\relax}

956 \def\cd@GetFileVersion[#1]{%

957 \edef\FileVersion{#1}%

958 \@ifnextchar[\cd@GetFileDate\relax}

959 \def\cd@GetFileDate[#1]{%

960 \edef\FileDate{#1}}

44

Finally, we de�ne those macros that have no e�ect in normal mode to have, well, no e�ect.\Header

\cd@HeaderGobble

\AddBlankLine

\StartIgnore

\StopIgnore

\DangerousEnvironment

Since comment signs are `other' characters in produce mode, we change their catcode here
too, so that the user may close the argument to \Header after a comment sign.

961 \def\Header{\bgroup\catcode`\%=12 \cd@HeaderGobble}

962 \long\def\cd@HeaderGobble#1{\egroup}

963 \let\AddBlankLine\relax

964 \let\StartIgnore\relax

965 \let\StopIgnore\relax

966 \def\DangerousEnvironment#1{}

6 Produce mode

We now turn to produce mode, where codedoc becomes CodeDoc and strange things happen.

• ••.... Woooo, scary...

6.1 Messages

CodeDoc may be quite talkative. According to the tracing option, we de�ne some messages.\cd@Tracing

\cd@TChar

\cd@TUChar

\cd@TCode

967 \ifcase\cd@tracingmode

968 \def\cd@Tracing#1{}

969 \def\cd@TChar#1#2{}

970 \def\cd@TUChar#1{}

971 \let\cd@TCode\relax

972 \or

973 \def\cd@Tracing#1{}

974 \def\cd@TChar#1#2{}

975 \def\cd@TUChar#1{}

976 \def\cd@TCode{\immediate\write17{%

977 *** Code written from line \the\cd@ProduceLine\space to

\the\inputlineno\space to \cd@CurrentFile. ***}}

978 \or

979 \def\cd@Tracing#1{\immediate\write17{On line \the\cd@ProduceLine: #1.}}

980 \def\cd@TChar#1#2{

981 \bgroup

982 \escapechar\m@ne\cd@Tracing{`\string#1' defined as \string\\#2}

983 \egroup}

984 \def\cd@TUChar#1{

985 \bgroup

986 \escapechar\m@ne\cd@Tracing{\string\\#1 undone}

987 \egroup}

988 \def\cd@TCode{\immediate\write17{%

989 *** Code written from line \the\cd@ProduceLine\space to

\the\inputlineno\space to \cd@CurrentFile. ***}}

990 \fi

We also de�ne errors and warnings; there's no need to follow LATEX's ordinary syntax here.\cd@Error

\cd@CDWarning

\cd@NoFileWarning
991 \def\cd@CDError#1{%

992 \immediate\write17{%

993 ^^J! CodeDoc Error:^^J#1^^Jl.\the\cd@ProduceLine^^J }}

994 \def\cd@CDWarning#1{%

995 \immediate\write17{%

996 ^^J? CodeDoc Warning: ^^J#1^^Jl.\the\cd@ProduceLine^^J }}

997 \def\cd@NoFileWarning{\cd@CDWarning{No file in production. This code will be lost.}}

6.2 Testing strings

In produce mode, CodeDoc is a string tester; more precisely it imitates TEX's normal mech-
anism: the escape character is turned into an active character that gathers letters following
it and executes the name they form (in a modi�ed fashion, however, to execute only relevant
macros).
First, we rede�ne what happens at the end of the class to alter the behavior of special\@documentclasshook

characters. However, we maintain comments and turn \ into an active character.

45

998 \ifcd@produce

999 \def\@documentclasshook{

1000 \let\do\@makeother

1001 \dospecials

1002 \catcode`\^^I=12\relax

1003 \catcode`\%=14\relax

1004 \catcode`\\\active

By default, \normalsize is an error message, so we rede�ne it. We start the report.

1005 \let\normalsize\relax

1006 \ifnum\cd@tracingmode>0

1007 \immediate\write17{^^J*** CODEDOC REPORT ***^^J}

1008 \fi

We don't load any font, so there's no need to bother with overfull boxes nor outputs.
However, by pure superstition, I prefer some care.

• ••.... Does he know
what he's doing?

1009 \hfuzz=100cm%

1010 \output={\deadcycles0\setbox0\box255}

1011 \everypar{}

Most of the following are already 0. However, \tracingcommands2 would explode the log
�le, so we take some care once again.

1012 \tracingcommands\z@\tracingmacros\z@\tracingoutput\z@\tracingparagraphs\z@

1013 \tracingpages\z@\tracinglostchars\z@\tracingrestores\z@\tracingstats\z@}

1014 \fi

Some characters are special, to say the least. We need to be able to recognize them.\cd@LeftBrace

\cd@RightBrace

\cd@LeftBracket

\cd@Space

\cd@Tab

\cd@EndOfLine

\cd@Comment

1015 \begingroup

1016 \catcode`\{=12 %

1017 \catcode`\}=12 %

1018 \catcode`\<=1 %

1019 \catcode`\>=2 %

1020 \gdef\cd@LeftBrace<{>

1021 \gdef\cd@RightBrace<}>

1022 \gdef\cd@LeftBracket<[>

1023 \catcode`\ =12\relax

1024 \catcode`\^^I=12\relax

1025 \gdef\cd@Space< >

1026 \gdef\cd@Tab<^^I>

1027 \catcode`\^^M=12\relax%

1028 \gdef\cd@EndOfLine<^^M>%

1029 \catcode`\/=14\relax/

1030 \catcode`\%=12\relax/

1031 \gdef\cd@Comment<%>/

1032 \endgroup

Here comes the de�nition of the escape character as itself... The backslash can't be allowed\cd@Escape

to have catcode 0, otherwise control sequences would form and �re. We don't want that,
obviously. On the other hand, some control sequences should be executed, so they must be
form beforehand. Here's how \ works. First, it stores the current line number for messages.

1033 \newcount\cd@ProduceLine

1034

1035 \begingroup

1036 \catcode`|=0 %

1037 \catcode`\\=13 %

1038 |gdef|cd@Escape{\}%

1039 |gdef\#1{%

1040 |cd@ProduceLine|inputlineno%

46

Then it turns ends of lines and comments to other characters, because we don't want to
pass them unnoticed. If the next character is of category code 11, we start forming a control
sequence. Otherwise, we gobble it and stop.

1041 |bgroup

1042 |catcode`|^^M=12 %

1043 |catcode`|%=12 %

1044 |gdef|cd@MacroName{}%

1045 |ifnum|catcode`#1=11 %

1046 |def|cd@next{|cd@Gather#1}%

1047 |else

1048 |def|cd@next{|egroup|relax}

1049 |fi

1050 |cd@next}

Forming macro names is quite simple: if the next character is a letter, we add it to the\cd@Gather

\cd@MacroName

\cd@NextChar

temporary name. Otherwise, we store it in \cd@NextChar and start doing what TEX does
when it has formed a control sequence.

1051 |long|gdef|cd@Gather#1{%

1052 |ifnum|catcode`#1=11 %

1053 |xdef|cd@MacroName{|cd@MacroName#1}%

1054 |let|cd@next|cd@Gather%

1055 |else%

1056 |gdef|cd@NextChar{#1}%

1057 |let|cd@next|cd@GobbleSpace%

1058 |fi|cd@next}

1059 |endgroup

That is, we skip spaces and ends of lines, so that the real next character will be put next to\cd@GobbleSpace

the formed control sequence, in case it is an argument.
In case the next argument is none of the above, we call \cd@Evaluate, which will expand

the macro, on the next character.

1060 \long\def\cd@GobbleSpace{%

1061 \let\cd@next\cd@TakeNextChar

1062 \ifx\cd@NextChar\cd@Space

1063 \else\ifx\cd@NextChar\cd@Tab

1064 \else\ifx\cd@NextChar\cd@EndOfLine

1065 \else\ifx\cd@NextChar\cd@Comment

1066 \let\cd@next\cd@GobbleEndOfLine

1067 \else

1068 \egroup

1069 \def\cd@next{\expandafter\cd@Evaluate\cd@NextChar}

1070 \fi\fi\fi\fi\cd@next}

These do what they say.\cd@TakeNextChar

\cd@GobbleEndOfLine1071 \long\def\cd@TakeNextChar#1{\gdef\cd@NextChar{#1}\cd@GobbleSpace}

1072 \begingroup

1073 \catcode`\^^M=12%

1074 \gdef\cd@GobbleEndOfLine#1^^M#2{%

1075 \gdef\cd@NextChar{#2}%

1076 \cd@GobbleSpace}%

1077 \endgroup

Finally, we take the name thus formed, and execute \〈Name〉@Produce. As you might\cd@Evaluate

imagine, the only macros containing the @Produce su�x are de�ned by CodeDoc. So, most
of the time, this execution will be no more than a \relax. Which is exactly what we want.

1078 \def\cd@Evaluate{\csname\cd@MacroName @Produce\endcsname}

47

6.3 Macros executed in produce mode

To understand what follows, simply remember that \〈Macro〉@Produce is executed
when CodeDoc encounters \〈Macro〉. So, for instance, \ShortVerb@Produce is \ShortVerb
in produce mode.

Macro names will become quite long, so we add some left margin. • ••.. .. You could have done
that before...First, some gobbler.\cd@Gobble

1079 \def\cd@Gobble#1{}

Macros like \ShortVerb can take four kinds of argument. If you want + to be a\cd@PrepareChar

\ShortVerb, you can say \ShortVerb+, \ShortVerb\+, \ShortVerb{+} and \Short-

Verb{\+}. Since CodeDoc has already considered the next character when executing
\ShortVerb@Produce, its catcode can't be changed, and a left brace is of category 12
and a backslash of category 13. So we have to gobble the next character if it is one
of them.

\cd@PrepareChar takes a macro as an argument and replaces it in the stream with
the next character gobbled or not. The backslash is turned into an escape character
to handle the \ShortVerb{\+} case, where the left brace is gobbled; the backslash
hasn't been read yet, so we can use it.

1080 \def\cd@PrepareChar#1{%

1081 \catcode`\\=0 %

1082 \def\cd@next{\expandafter#1\cd@Gobble}

1083 \ifx\cd@NextChar\cd@LeftBrace%

1084 \else\ifx\cd@NextChar\cd@Escape%

1085 \else%

1086 \def\cd@next{#1}

1087 \fi\fi}%

Thus, \ShortVerb@Produce calls \cd@PrepareChar with \cd@MakeShortVerb@Produce,\ShortVerb@Produce

\DefineShortVerb@Produce

\cd@VerbList

which will do the real job to the character. We de�ne fancyvrb's \DefineShortVerb to
do the same thing. \cd@VerbList contains all such characters, since \DefineShortVerb
can de�ne several of them. It will be used in writing environments to neutralize them.

1088 \def\ShortVerb@Produce{\cd@PrepareChar\cd@MakeShortVerb@Produce\cd@next}

1089 \let\DefineShortVerb@Produce\ShortVerb@Produce

1090 \def\cd@VerbList{}

Now we inform the user that the character was \ShortVerb'ed.\cd@MakeShortVerb@Produce

1091 \def\cd@MakeShortVerb@Produce#1{%

1092 \cd@TChar{#1}{ShortVerb}

We add it to \cd@VerbList.

1093 \expandafter\def\expandafter\cd@VerbList\expandafter{\cd@VerbList#1,}

And we simply de�ne the character to gobble everything until its next occurrence.\cd@ShortVerb@Produce

\UndoShortVerb@Produce We also de�ne the \Undo... variant.

1094 \lccode`\~=`#1 %

1095 \lowercase{%

1096 \def~{\bgroup\let\do\@makeother\dospecials\catcode`#1\active\cd@ShortVerb@Produce}%

1097 \def\cd@ShortVerb@Produce##1~{\egroup}}%

1098 \def\UndoShortVerb@Produce{\cd@TUChar{ShortVerb}\catcode`#1=12\relax}%

1099 \catcode`#1=13 %

1100 \catcode`\\=13\relax}

1101 \let\UndoShortVerb@Produce\relax

We de�ne a variant for fancyvrb, because it takes an argument.\UndefineShortVerb@Produce

\cd@UndefineShortVerb@Produce
1102 \def\UndefineShortVerb@Produce{\cd@PrepareChar\cd@UndefineShortVerb@Produce\cd@next}%

1103 \def\cd@UndefineShortVerb@Produce#1{

1104 \cd@TUChar{ShortVerb (from fancyvrb)}

1105 \catcode`#1=12 \catcode`\\=13\relax}

48

In produce mode, the \VerbBreak character is simply ignored.\VerbBreak@Produce

\cd@MakeVerbBreak@Produce

\cd@IgnoreVerbBreak

\UndoVerbBreak@Produce

1106 \def\VerbBreak@Produce{\cd@PrepareChar\cd@MakeVerbBreak@Produce\cd@next}

1107 \def\cd@MakeVerbBreak@Produce#1{

1108 \cd@TChar{#1}{VerbBreak}

1109 \def\cd@IgnoreVerbBreak{\catcode`#1=9\relax}

1110 \def\UndoVerbBreak@Produce{\cd@TUChar{VerbBreak}\let\cd@IgnoreVerbBreak\relax}

1111 \catcode`\\=13\relax}

1112 \let\cd@IgnoreVerbBreak\relax

1113 \let\UndoVerbBreak@Produce\relax

This is useful for \ShortCode and also \NewExample\cd@GobbleOptions

1114 \def\cd@GobbleOptions#1[#2]#3{\def\cd@NextChar{#3}\expandafter#1\cd@NextChar}

We check for options.\ShortCode@Produce

1115 \def\ShortCode@Produce{%

1116 \ifx\cd@NextChar\cd@LeftBracket%

1117 \def\cd@next{\cd@GobbleOptions\ShortCode@Produce}%

1118 \else%

1119 \cd@PrepareChar\cd@MakeShortCode@Produce

1120 \fi\cd@next}

The \ShortCode character in produce mode is similar to its counterpart in normal\cd@MakeShortcode@Produce

\cd@ShortWriteFile

\ActivateShortCode@Produce

\cd@UndoShortCode@Produce

mode, except that it follows what code does in this mode. So give a look at the
de�nition of the code environment to understand what is going on here.

1121 \begingroup

1122 \catcode`\^^M13%

1123 \gdef\cd@MakeShortCode@Produce#1{%

1124 \cd@TChar{#1}{ShortCode}

1125 \lccode`\~=`#1%

1126 \lowercase{%

1127 \def~{\cd@ProduceLine\inputlineno\cd@ShortCodetrue\cd@CodeWrite}%

1128 \def\ActivateShortCode@Produce{\catcode`#1\active}%

1129 \def\cd@ShortWriteFile##1^^M##2~{%

1130 ^^M##2^^?^^M^^?%

1131 \ifx\cd@NoFileWarning\relax%

1132 \cd@TCode%

1133 \else%

1134 \cd@NoFileWarning%

1135 \fi\egroup}}%

1136 \def\UndoShortCode@Produce{\cd@TUChar{ShortCode}\catcode`#1=12\relax}%

1137 \catcode`\\=13 %

1138 \catcode`#1=13\relax}%

1139 \endgroup

1140 \let\ActivateShortCode@Produce\relax

1141 \let\UndoShortCode@Produce\relax

\VerbCommand characters do what they do in \CodeOutput in normal mode. The\VerbCommand@Produce

\cd@VerbEscape@Produce

\cd@TempEsc

escape gobble letters and the braces gobble what they contain.
First, we store the escape character for the message.

1142 \def\VerbCommand@Produce{\cd@PrepareChar\cd@VerbEscape@Produce\cd@next}

1143 \def\cd@VerbEscape@Produce#1{

1144 \bgroup\escapechar\m@ne\xdef\cd@TempEsc{\string#1}\egroup

Then we turn it into a letter gobbler.\cd@IgnoreEscape@Produce

1145 \def\cd@IgnoreEscape@Produce{

1146 \catcode`#1=13

1147 \lccode`\~=`#1

1148 \lowercase{\def~{\cd@GobbleLetters}}}

49

This is not what you think it is. We're not considering whether the character to come
is a left brace, but whether \cd@NextChar, i.e. the character following \VerbCommand,
was a left brace; this means that a right brace is to come, and we want to gobble it
before processing what follows.

1149 \ifx\cd@NextChar\cd@LeftBrace

1150 \def\cd@next{\expandafter\cd@VerbBraces@Produce\cd@Gobble}

1151 \else

1152 \let\cd@next\cd@VerbBraces@Produce

1153 \fi\cd@next}

The rest is pretty straightforward and similar to what we did in normal mode.\cd@VerbBraces@Produce

\cd@@VerbBraces@Produce

\cd@IgnoreBraces@Produce

\UndoVerbCommand@Produce

1154 \def\cd@VerbBraces@Produce{\catcode`\{=1 \catcode`\}=2 \cd@@VerbBraces@Produce}

1155 \def\cd@@VerbBraces@Produce#1#2{%

1156 \expandafter\cd@TChar\expandafter{\cd@TempEsc', `\string#1' and `\string#2'}{VerbCommand}

1157 \def\cd@IgnoreBraces@Produce{%

1158 \catcode`#1=13

1159 \lccode`\~=`#1

1160 \lowercase{\def~####1#2{}}}

1161 \catcode`\\=13 \catcode`\{=12 \catcode`\}=12\relax}

1162 \def\UndoVerbCommand@Produce{

1163 \cd@TUChar{VerbCommand}

1164 \let\cd@IgnoreEscape@Produce\relax

1165 \let\cd@IgnoreBraces@Produce\relax}

1166 \let\cd@IgnoreEscape@Produce\relax

1167 \let\cd@IgnoreBraces@Produce\relax

\CodeEscape is easy: we simply de�ne a macro to turn the character into an escape\CodeEscape@Produce

\cd@CodeEscape@Produce

\cd@ActivateCodeEscape

\UndoCodeEscape@Produce

in code contexts.

1168 \def\CodeEscape@Produce{\cd@PrepareChar\cd@CodeEscape@Produce\cd@next}

1169 \def\cd@CodeEscape@Produce#1{%

1170 \cd@TChar{#1}{CodeEscape}

1171 \def\cd@ActivateCodeEscape{\catcode`#1=0\relax}\catcode`\\=13\relax}

1172 \let\cd@ActivateCodeEscape\relax

1173 \def\UndoCodeEscape@Produce{\cd@TUChar{CodeEscape}\let\cd@ActivateCodeEscape\relax}

These two macros launch the option gobbler if there are any. \cd@DangerousExample@Produce\NewExample@Produce

\RenewExample@Produce is de�ned later because it takes its argument between braces of category 12, like other
macros.

1174 \def\NewExample@Produce{%

1175 \ifx\cd@NextChar\cd@LeftBracket%

1176 \def\cd@next{\cd@GobbleOptions\NewExample@Produce}%

1177 \else%

1178 \let\cd@next\cd@DangerousExample@Produce%

1179 \fi\cd@next}

1180 \let\RenewExample@Produce\NewExample@Produce

Ignoring the input boils down to modifying the de�nition of \cd@Evaluate until it\cd@@Evaluate

\StartIgnore@Produce

\cd@FindIgnore

\cd@StopIgnore

founds \StopIgnore. Meanwhile, it does nothing.

1181 \let\cd@@Evaluate\cd@Evaluate

1182 \def\StartIgnore@Produce{

1183 \cd@Tracing{\string\StartIgnore\space found. I will ignore everything from now on}

1184 \let\cd@Evaluate\cd@FindIgnore}

1185 \def\cd@FindIgnore{

1186 \expandafter\ifx\csname cd@\cd@MacroName\endcsname\cd@StopIgnore

1187 \cd@Tracing{\string\StopIgnore\space found. I resume my normal behavior}

1188 \let\cd@Evaluate\cd@@Evaluate

1189 \fi}

1190 \def\cd@StopIgnore{\cd@StopIgnore}

50

The produce version of LATEX's \verb gobbles its argument after it has checked for a\verb@Produce

\cd@VerbEater

\cd@@VerbEater

star.

1191 \def\verb@Produce{\count@=0 \cd@VerbEater}

1192 \def\cd@VerbEater#1{%

1193 \ifcase\count@ %

1194 \ifx#1*

1195 \count@=1 %

1196 \let\cd@@VerbEater\cd@VerbEater

1197 \else

1198 \def\cd@@VerbEater##1#1{}

1199 \fi

1200 \else

1201 \def\cd@@VerbEater##1#1{}

1202 \fi\cd@@VerbEater}

The normal counterparts of these might take dangerous arguments, so we need to\DescribeMacro@Produce

\DefineMacro@Produce

\DescribeEnvironment@Produce

\DefineEnvironment@Produce

\noexpand@Produce

\string@Produce

\protect@Produce

neutralize them. The �rst four gobble two tokens, i.e. a left brace and/or an escape
character, so the following macro won't form. The last three just gobble the escape
character.

1203 \def\DescribeMacro@Produce#1#2{}

1204 \def\DefineMacro@Produce#1#2{}

1205 \def\DescribeEnvironment@Produce#1#2{}

1206 \def\DefineEnvironment@Produce#1#2{}

1207 \def\noexpand@Produce#1{}

1208 \def\string@Produce#1{}

1209 \def\protect@Produce#1{}

\begin and \end statements are executed

• ••.... Stop executing things!
They're innocent!

if and only if there follows a left brace. This\begin@Produce

\end@Produce decreases the number of possible errors. The double-@ versions take their arguments
in `other' braces, so they are de�ned later.

1210 \def\begin@Produce{

1211 \ifx\cd@NextChar\cd@LeftBrace

1212 \expandafter\begin@@Produce

1213 \fi}

1214 \def\end@Produce{

1215 \ifx\cd@NextChar\cd@LeftBrace

1216 \expandafter\end@@Produce

1217 \fi}

The produce version of \Gobble is similar to the normal version, except that it take\Gobble@Produce

cares of braces. \Gobble@@Produce is de�ned below.

1218 \def\Gobble@Produce#1{%

1219 \ifx\cd@NextChar\cd@LeftBrace%

1220 \def\cd@next{\expandafter\Gobble@@Produce\cd@NextChar}

1221 \else

1222 \def\cd@next{\chardef\cd@GobbleNum=#1\relax}%

1223 \fi\cd@next}

The header is an easy matter. The only thing not to forget is to change the catcode\Header@Produce

\cd@HeaderEOL of \back to 0.

1224 \newif\ifcd@HeaderFirstLine

1225 \begingroup

1226 \catcode`\^^M=13 %

1227 \catcode`\/=14 %

1228 \catcode`\%=12 /

1229 \gdef\Header@Produce{/

1230 \bgroup/

1231 \catcode`\^^M=13 /

1232 \catcode`\%=12 /

1233 \catcode`\\=0 /

51

1234 \Header@@Produce}/

1235 \gdef\cd@HeaderEOL{\def^^M{^^J% }}

1236 \endgroup

We'll need these presently.\cd@DocumentString

\cd@CodeString

\cd@StarCodeString

\cd@InvisibleString

\cd@StoredEnvironments

1237 \def\cd@DocumentString{document}

1238 \def\cd@CodeString{code}

1239 \def\cd@StarCodeString{code*}

1240 \def\cd@InvisibleString{invisible}

1241 \def\cd@StoredEnvironments{example,verbatim,Verbatim,BVerbatim,

LVerbatim,SaveVerbatim,VerbatimOut,Example,CenterExample,

SideBySideExample,PCenterExample,PSideBySideExample,}

Here comes the macros that take their arguments bewteen braces of category 12.
The \if... will be needed in \input@Produce.

1242 \newif\ifcd@everyeof

1243 \cd@everyeoftrue

1244

1245 \begingroup

1246 \catcode`\{=12 %

1247 \catcode`\}=12 %

1248 \catcode`\<=1 %

1249 \catcode`\>=2 %

This de�nes \cd@Header, which is executed in \ProduceFile, to write the text\Header@@Produce

input by the user to the newly opened �le. The group we close was opened in
\Header@Produce.

1250 \long\gdef\Header@@Produce{#1}<

1251 \gdef\cd@Header<\bgroup\cd@HeaderEOL\cd@ProduceFile<\cd@Comment\space#1>\egroup>

1252 \egroup>

This is launched by \Gobble@Produce\Gobble@@Produce

1253 \gdef\Gobble@@Produce{#1}<\chardef\cd@GobbleNum=#1\relax>

Here we add dangerous environments to the list above, to be checked below.\DangerousEnvironment@Produce

\cd@DangerousExample@Produce

\DefineVerbatimEnvironment

\cd@DangerousExample@Produce has such a cumbersome de�nition because it is
meant to gobble the remaining three arguments of \NewExample and \RenewExample.
They might be separated by spaces, and since spaces have category 12 in produce
mode, they won't be skipped and \cd@DangerousExample@Produce wouldn't match
its de�nition, as TEX likes to say.

1254 \gdef\DangerousEnvironment@Produce{#1}<

1255 \cd@Tracing<#1 added to dangerous environments>

1256 \xdef\cd@StoredEnvironments<\cd@StoredEnvironments#1,>>

1257 \gdef\cd@DangerousExample@Produce{#1}#2{#3}#4{#5}#6{#7}<

1258 \cd@Tracing<#1 added to dangerous environments (CodeDoc examples)>

1259 \xdef\cd@StoredEnvironments<\cd@StoredEnvironments#1,>>

1260 \let\DefineVerbatimEnvironment@Produce\DangerousEnvironment@Produce

\begin statements simply check their argument: if it is code, code* or invisible, it\begin@@Produce

turns to writing mode. Otherwise, the name of the argument is checked against the
list of dangerous environments. See below where normal braces are restored.

1261 \gdef\begin@@Produce{#1}<

1262 \def\cd@TempArg<#1>

1263 \ifx\cd@TempArg\cd@CodeString

1264 \let\cd@next\cd@CodeWrite

1265 \else\ifx\cd@TempArg\cd@StarCodeString

1266 \cd@Startrue

1267 \let\cd@next\cd@CodeWrite

1268 \else\ifx\cd@TempArg\cd@InvisibleString

1269 \cd@Invisibletrue

1270 \let\cd@next\cd@CodeWrite

52

1271 \else

1272 \def\cd@next<\cd@CheckEnvironment<#1>>

1273 \fi\fi\fi\cd@next>

There's only one thing that can wake an \end statement: document. If it �nds\end@Produce

\end{document}, CodeDoc stops. Otherwise, \end statements are ignored.

1274 \gdef\end@@Produce{#1}<

1275 \def\cd@TempArg<#1>

1276 \ifx\cd@TempArg\cd@DocumentString

1277 \def\cd@next<\cd@Tracing<\string\end{document}>

1278 \ifnum\cd@tracingmode=0 %

1279 \else

1280 \immediate\write17<^^J*** END OF CODEDOC REPORT ***^^J>

1281 \fi\@@end>

1282 \else

1283 \let\cd@next\relax

1284 \fi\cd@next>

We de�ne these right now, to be used later.\ProduceFile@Produce

\CloseFile@Produce1285 \gdef\ProduceFile@Produce{#1}<\ProduceFile@@Produce<#1>>

1286 \gdef\CloseFile@Produce{#1}<\CloseFile@@Produce<#1>>

We need a terribly boring de�nition of \input for the default header, so that �les\input@Produce

\cd@CurrentSource are properly tracked back to their source. Besides, \input in TEX's way, i.e. without
braces, is not allowed anymore, if it is to be read by CodeDoc in produce mode. I feel
like removing the whole thing altogether.

Lines 1289 to 1298 were added in version 0.2. I had overlooked the fact that if an
\input �le ended with a control sequence, then the rather complicated mechanism of
\cd@Gather and its friends would run into the end of the �le and produce an error
message. With good ol' TEX, I don't know how to overcome this; hence the warning.
With ε-TEX, however, I use \everyeof to add a pair of braces just for the sake of
some harmless tokens. Anyway, who's using TEX anymore?

1287 \newcount\cd@InputDepth

1288 \gdef\input@Produce{#1}<

1289 \ifcd@everyeof

1290 \cd@everyeoffalse

1291 \ifx\everyeof\@undefined

1292 \cd@CDWarning<%

1293 You're not running on e-TeX; the \string\input\space of files might be problematic.%

1294 ^^JAdd `{}' at the end of \string\input\space files if you ever get a `File ended...'

message>

1295 \else

1296 \everyeof<{}>

1297 \fi

1298 \fi

1299 \cd@Tracing<\string\input\space file #1>

1300 \expandafter\let\csname cd@MasterSource\the\cd@InputDepth\endcsname\cd@CurrentSource

1301 \edef\cd@CurrentSource<#1 (\string\input\space in \cd@CurrentSource)>

1302 \advance\cd@InputDepth1\relax

1303 \@@input #1\relax

1304 \advance\cd@InputDepth-1\relax

1305 \expandafter\let\expandafter\cd@CurrentSource\csname cd@MasterSource

\the\cd@InputDepth\endcsname>

If we �nd a dangerous environment, we launch this on its name, which eats everything\cd@MakeSpecialEater

\cd@SpecialEater until \end{〈Name〉}.
1306 \catcode`\|=0 %

1307 \catcode`\\=13 %

1308 |gdef|cd@MakeSpecialEater#1<

1309 |long|def|cd@SpecialEater##1\end{#1}<>

1310 |cd@SpecialEater>

53

1311 |endgroup

Back to normal braces. This is a default value needed in \input@Produce. The\cd@CurrentSource

extension is just a guess, of course.

1312 \edef\cd@CurrentSource{\jobname.tex}

This is the checking mechanism used in \begin statement to detect dangerous envi-\cd@CheckEnvironment

\cd@@CheckEnvironment ronments. Note that we check all environments in their starred version too.

1313 \def\cd@CheckEnvironment#1{

1314 \def\cd@TempEnv{#1}

1315 \expandafter\cd@@CheckEnvironment\cd@StoredEnvironments cd@end,}

1316 \def\cd@@CheckEnvironment#1,{

1317 \def\cd@@TempEnv{#1}

1318 \def\cd@@StarTempEnv{#1*}

1319 \ifx\cd@@TempEnv\cd@end

1320 \let\cd@next\relax

1321 \else\ifx\cd@@TempEnv\cd@TempEnv

1322 \def\cd@next{\cd@MakeSpecialEater{#1}}

1323 \else\ifx\cd@@StarTempEnv\cd@TempEnv

1324 \def\cd@next{\cd@MakeSpecialEater{#1*}}

1325 \else

1326 \let\cd@next\cd@@CheckEnvironment

1327 \fi\fi\fi

1328 \cd@next}

6.4 Writing environments

CodeDoc looks for code, code* and invisible environments and process them line
by line.
First, we need a recursive catcode changer.\cd@MakeOther

1329 \def\cd@MakeOther#1,{%

1330 \def\cd@TempArg{#1}%

1331 \ifx\cd@TempArg\cd@end%

1332 \else%

1333 \catcode`#1=12 %

1334 \expandafter\cd@MakeOther%

1335 \fi}

This is the writing macro, called by \begin when the appropriate argument is found,\cd@CodeWrite

or by the \ShortCode character. \dospecials is probably useless since all specials
are already done, but at least it changes the category of the escape and the comment.

1336 \newif\ifcd@Invisible

1337 \begingroup

1338 \catcode`\^^M=13\relax%

1339 \gdef\cd@CodeWrite{%

1340 \bgroup%

1341 \let\do\@makeother%

1342 \dospecials%

1343 \catcode`\^^I=12 %

We turn all verb characters (de�ned by fancyvrb's \DefineShortVerb) into other
characters, ignore the verb break, neutralize the short code if we're not in a short
code environment (the rede�nition of \cd@TUChar just prevents an unwanted message
sent to the user if tracing is 2) an reactivate it otherwise, ignore \VerbCommand and
activate \CodeEscape. We turn ends of lines into proper gobbler once again.

1344 \expandafter\cd@MakeOther\cd@VerbList cd@end,%

1345 \cd@IgnoreVerbBreak%

1346 \ifcd@ShortCode%

1347 \ActivateShortCode@Produce%

1348 \else%

1349 \let\cd@TempTUChar\cd@TUChar

54

1350 \def\cd@TUChar##1{}

1351 \UndoShortCode@Produce%

1352 \let\cd@TUChar\cd@TempTUChar

1353 \fi%

1354 \cd@IgnoreEscape@Produce%

1355 \cd@IgnoreBraces@Produce%

1356 \cd@ActivateCodeEscape%

1357 \catcode`\^^M=13\relax%

1358 \let^^M\cd@produceEOL%

Finally we launch the adequate macro. They all do the same thing, but they look for
di�erent \end statements.

1359 \ifcd@ShortCode%

1360 \global\cd@ShortCodefalse\let\cd@next\cd@ShortWriteFile%

1361 \else\ifcd@Star%

1362 \global\cd@Starfalse\let\cd@next\cd@StarWriteFile%

1363 \else\ifcd@Invisible%

1364 \global\cd@Invisiblefalse\let\cd@next\cd@InvisibleWriteFile%

1365 \else%

1366 \let\cd@next\cd@WriteFile%

1367 \fi\fi\fi\cd@next}%

This is similar to the version for examples without ε-TEX in normal mode, i.e. it\cd@ProduceEOL

\cd@LineWrite@Produce writes to an external �le, speci�ed in \cd@ProduceFile.

1368 \gdef\cd@produceEOL#1{%

1369 \ifx#1^^?%

1370 \cd@GobbleCount=0 %

1371 \let^^M\relax%

1372 \let\cd@next\relax%

1373 \else\ifx#1^^M%

1374 \cd@GobbleCount=0 %

1375 \def\cd@next{\cd@ProduceFile{}\cd@produceEOL}%

1376 \else\ifnum\cd@GobbleCount=\cd@GobbleNum%

1377 \cd@GobbleCount=0 %

1378 \def\cd@next{\cd@LineWrite@Produce#1}%

1379 \else%

1380 \advance\cd@GobbleCount1 %

1381 \let\cd@next\cd@produceEOL%

1382 \fi\fi\fi\cd@next}%

1383 \gdef\cd@LineWrite@Produce#1^^M{\cd@ProduceFile{#1}\cd@produceEOL}%

And here is the end. It is the �rst ^^M, \let to \cd@ProduceEOL, which launches\cd@WriteFile

\cd@StarWriteFile

\cd@InvisibleWriteFile

everything. The conditional switches between an error message (no �le in production)
and a report (code written).

1384 \catcode`|=0 %

1385 \catcode`<=1 %

1386 \catcode`>=2 %

1387 \catcode`{=12 %

1388 \catcode`}=12 %

1389 \catcode`\\=12 %

1390 |long|gdef|cd@WriteFile#1^^M#2\end{code}<%

1391 ^^M#2^^?^^M^^?%

1392 |ifx|cd@NoFileWarning|relax%

1393 |cd@TCode%

1394 |else%

1395 |cd@NoFileWarning%

1396 |fi|egroup>%

1397 |long|gdef|cd@StarWriteFile#1^^M#2\end{code*}<%

1398 ^^M#2^^?^^M^^?%

1399 |ifx|cd@NoFileWarning|relax%

1400 |cd@TCode%

55

1401 |else%

1402 |cd@NoFileWarning%

1403 |fi|egroup>%

1404 |long|gdef|cd@InvisibleWriteFile#1^^M#2\end{invisible}<%

1405 ^^M#2^^?^^M^^?%

1406 |ifx|cd@NoFileWarning|relax%

1407 |cd@TCode%

1408 |else%

1409 |cd@NoFileWarning%

1410 |fi|egroup>%

1411 |endgroup

6.5 File management

This the �nal step: handling �les in produce mode.
• ••.... This sounds strange

First, some keywords.\cd@Closed

\cd@Open

\cd@Wait
1412 \def\cd@Closed{closed}

1413 \def\cd@Open{open}

1414 \def\cd@Wait{wait}

Some basic de�nitions. \@unused is LATEX's unattributed stream for messages. We\cd@CurrentFile

\cd@ProduceFile

\AddBlankLine@Produce

let it write to he log �le. \cd@ProduceFile is the writing macro (used in writing
environments above); as long as no �le is open, it does nothing.

1415 \newcount\cd@ProduceCount

1416

1417 \def\cd@CurrentFile{}

1418 \chardef\@unused=17

1419

1420 \def\cd@ProduceFile#1{}

1421 \def\AddBlankLine@Produce{\cd@ProduceFile{}}

This is called by \ProduceFile, via \ProduceFile@Produce above. If the �le is\ProduceFile@@Produce

closed ore already in production, we signal it to the user:

1422 \def\ProduceFile@@Produce#1{%

1423 \let\cd@next\relax

1424 \expandafter\ifx\csname #1@Status\endcsname\cd@Closed

1425 \cd@CDError{%

1426 File `#1' has already been closed.^^J%

1427 If I open it again, it will be erased.^^J%

1428 I can't do that. I quit. Sorry.}

1429 \let\cd@next\@@end

1430 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Open

1431 \cd@CDWarning{%

1432 File `#1' is currently in production.^^J%

1433 Why do you try to open it again?}

The �le is waiting if it has been opened previously and another one has been opened
too afterward, provided autoclose is o�. In which case, we set it to open:

1434 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Wait

1435 \expandafter\let\csname #1@Status\endcsname\cd@Open

We disable the warning about the absence of a �le in production and de�ne \cd@ProduceFile
to write to this �le.

1436 \let\cd@NoFileWarning\relax

1437 \def\cd@ProduceFile{\immediate\write\csname #1@Stream\endcsname}

We set the current �le to wait and de�ne the one we're dealing with to be the current
�le.

1438 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Wait

1439 \def\cd@CurrentFile{#1}

56

Now, if the �le has never been opened, we need an output stream. If they were all
allocated, we look whether some were made available thanks to a \CloseFile.

1440 \else\ifnum\cd@ProduceCount>15

1441 \chardef\cd@ProduceStream=16

1442 \expandafter\cd@FindStream\cd@StreamList cd@end,

If no stream is found, CodeDoc feels so bad that it quits.

1443 \ifnum\cd@ProduceStream=16 %

1444 \cd@CDError{%

1445 No more stream for a new file. Close one with \string\CloseFile\space^^J%

1446 (or use the `autoclose' option).^^J%

1447 This situation makes me feel bad. I quit.}

1448 \let\cd@next\@@end

Else, we're very happy, and if there is already a �le in production, we close it or let
it wait.

1449 \else

1450 \cd@Tracing{I will now produce file #1}

1451 \ifx\cd@CurrentFile\cd@empty

1452 \else

1453 \ifcd@autoclose

1454 \cd@Tracing{I close file \cd@CurrentFile\space (autoclose mode)}

1455 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Closed

1456 \else

1457 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Wait

1458 \fi

1459 \fi

Then we de�ne our �le as the current one, let the world know that it is open, allocate
the stream to its name, open it, etc., and launch a macro to retrieve some information
if any.

1460 \def\cd@CurrentFile{#1}

1461 \expandafter\let\csname #1@Status\endcsname\cd@Open

1462 \expandafter\chardef\csname #1@Stream\endcsname\cd@ProduceStream

1463 \immediate\openout\cd@ProduceStream=#1 %

1464 \let\cd@NoFileWarning\relax

1465 \def\cd@ProduceFile{\immediate\write\cd@ProduceStream}

1466 \let\cd@next\cd@GetFile@Produce

1467 \fi

If there was an available stream in the �rst place, we do exactly the same.

1468 \else\chardef\cd@ProduceStream\cd@ProduceCount

1469 \cd@Tracing{I will now produce file #1}

1470 \ifx\cd@CurrentFile\cd@empty

1471 \else

1472 \ifcd@autoclose

1473 \cd@Tracing{I close file \cd@CurrentFile\space (autoclose mode)}

1474 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Closed

1475 \else

1476 \expandafter\let\csname \cd@CurrentFile @Status\endcsname\cd@Wait

1477 \fi

1478 \fi

1479 \def\cd@CurrentFile{#1}

1480 \expandafter\let\csname #1@Status\endcsname\cd@Open

1481 \expandafter\chardef\csname #1@Stream\endcsname\cd@ProduceStream

1482 \immediate\openout\cd@ProduceStream=#1 %

1483 \let\cd@NoFileWarning\relax

1484 \def\cd@ProduceFile{\immediate\write\cd@ProduceStream}

1485 \ifcd@autoclose

1486 \else

1487 \advance\cd@ProduceCount\@ne

57

1488 \fi

1489 \let\cd@next\cd@GetFile@Produce

1490 \fi\fi\fi\fi\cd@next}

This is designed to retrieve optional information following \ProduceFile. We undo\cd@GetFile@Produce

\cd@GetFileName@Produce

\cd@GetFileVersion@Produce

\cd@GetFileDate@Produce

the \ShortVerb and \ShortCode because they might appear there. (My \ShortCode

is a slash, which is used in date too.) We also set the backslash as an escape character,
because control sequences might appear here.

In all cases, if nothing follows, and if the noheader option is o�, we write the
header to the �le.

1491 \def\cd@GetFile@Produce{

1492 \bgroup

1493 \UndoShortCode@Produce

1494 \UndoShortVerb@Produce

1495 \catcode`\\\z@

1496 \gdef\FileName{}

1497 \gdef\FileVersion{}

1498 \gdef\FileDate{}

1499 \@ifnextchar[

1500 \cd@GetFileName@Produce

1501 {\ifcd@noheader\else\cd@Header\fi}}

1502 \def\cd@GetFileName@Produce[#1]{

1503 \xdef\FileName{#1}

1504 \@ifnextchar[

1505 \cd@GetFileVersion@Produce

1506 {\ifcd@noheader\else\cd@Header\fi\egroup}}

1507 \def\cd@GetFileVersion@Produce[#1]{%

1508 \xdef\FileVersion{#1}

1509 \@ifnextchar[

1510 \cd@GetFileDate@Produce

1511 {\ifcd@noheader\else\cd@Header\fi\egroup}}

1512 \def\cd@GetFileDate@Produce[#1]{%

1513 \xdef\FileDate{#1}

1514 \ifcd@noheader\else\cd@Header\fi\egroup}

Closing a �le is a lot of uninteresting testing...\CloseFile@@Produce

1515 \def\CloseFile@@Produce#1{

1516 \ifcd@autoclose

1517 \expandafter\ifx\csname #1@Status\endcsname\relax

1518 \cd@CDWarning{%

1519 You haven't opened `#1'. Closing it does nothing.^^J%

1520 Besides, you're in autoclose mode. \string\CloseFile\space is redundant.}

1521 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Closed

1522 \cd@CDWarning{%

1523 `#1' was already closed. Closing it again does nothing.^^J%

1524 Besides, you're in autoclose mode. \string\CloseFile\space is redundant.}

1525 \else

1526 \cd@CDWarning{%

1527 You're in autoclose mode. \string\CloseFile\space is redundant.}

1528 \fi\fi%

1529 \else

1530 \expandafter\ifx\csname #1@Status\endcsname\relax

1531 \cd@CDWarning{%

1532 You haven't opened `#1'. Closing it does nothing.}

1533 \else\expandafter\ifx\csname #1@Status\endcsname\cd@Closed

1534 \cd@CDWarning{%

1535 `#1' was already closed. Closing it again does nothing.}

58

If everything is okay, beside closing the �le, we also de�ne the no-�le warning and
neutralize the writing macro. We also add the stream allocated to that �le to
\cd@StreamList, so that it may be retrieved if all other streams are unavailable.

1536 \else

1537 \cd@Tracing{I close file #1}

1538 \expandafter\let\csname #1@Status\endcsname\cd@Closed

1539 \def\cd@TempFile{#1}

1540 \ifx\cd@TempFile\cd@CurrentFile

1541 \def\cd@NoFileWarning{\cd@CDWarning{No file in production.

This code will be lost.}}

1542 \def\cd@ProduceFile##1{}%

1543 \fi

1544 \edef\cd@StreamList{%

1545 \cd@StreamList\expandafter\the\csname #1@Stream\endcsname,}

1546 \fi\fi\fi}

The last thing to do is to build that list of streams made available by the closing of\cd@StreamList

\cd@BuildList a �le.

1547 \def\cd@StreamList{}

1548 \def\cd@BuildList#1cd@end,{\def\cd@StreamList{#1}}

When we look for a stream, we simply check the content of \cd@BuildList, and if we\cd@FindStream

�nd the terminator, this means that no stream has been made available. Otherwise,
we de�ne \cd@ProduceStream, which will be allocated to the �le we're trying to open,
as the �rst stream we �nd in the list, and we rebuild the latter with the remaining
numbers.

1549 \newif\ifcd@stream

1550 \def\cd@FindStream#1,{%

1551 \def\cd@TempArg{#1}

1552 \ifx\cd@TempArg\cd@end

1553 \cd@streamfalse

1554 \let\cd@@next\relax

1555 \else

1556 \cd@streamtrue

1557 \chardef\cd@ProduceStream=#1 %

1558 \let\cd@@next\cd@BuildList

1559 \fi\cd@@next}

Finally, here's the default header.\cd@Header

1560 \catcode`\%=12\relax

1561 \edef\cd@Header{

1562 \noexpand\cd@ProduceFile{% This is \noexpand\FileName, produced by the CodeDoc class

1563 ^^J% with the `produce' option on.

1564 ^^J%

1565 ^^J% To create the documentation, compile \cd@CurrentSource

1566 ^^J% without the `produce' option.

1567 ^^J%

1568 ^^J% SOURCE: \noexpand\cd@CurrentSource

1569 ^^J% DATE: \noexpand\FileDate

1570 ^^J% VERSION: \noexpand\FileVersion

1571 }}

1572 \catcode`\%=14\relax

... and we say goodbye. The end.
•••....See you!

1573 \makeatother

59

Index

This index was generated by the \DescribeMacro-like commands. It only reports where macros are
described (page numbers in normal font) and de�ned (page numbers in italics). In the current version,
CodeDoc does not index macros when used in the code.
Entries are sorted ignoring the cd@ and cd@@ pre�xes.

\@cd@LineCount, 44
\@documentclasshook, 45

\cd@ActivateCodeEscape, 50
\cd@ActivateShortCode, 27
\ActivateShortCode@Produce, 49
\cd@ActivateVerbBreak, 28
\cd@ActivateVerbCommand, 29
\cd@ActiveComment, 43
\AddBlankLine, 6, 17, 45
\AddBlankLine@Produce, 56
\cd@AnalyzeEntry, 23
\cd@AnalyzePrefix, 24
\cd@AssigneTeXInput, 40
\cd@AssignInput, 40
\AtChar, 23

\cd@BadChar, 25
\begin@@Produce, 52
\begin@Produce, 51
\BoxTolerance, 7, 17, 31
\cd@bslash, 25
\bslash, 8, 17, 25
\cd@BuildList, 59

\cd@CDWarning, 45
\cd@CharErr, 25
\cd@@CheckEnvironment, 54
\cd@CheckEnvironment, 54
\cd@Closed, 56
\CloseFile, 5, 18, 43
\CloseFile@@Produce, 58
\CloseFile@Produce, 53
\cd@Code, 33
\code, 32
code (environment), 5, 17
\CodeEscape, 16, 18, 30
\CodeEscape@Produce, 50
\cd@CodeEscape@Produce, 50
\CodeFont, 5, 18, 32
\CodeInput, 11, 18, 35, 37
\CodeOutput, 11, 18, 35, 37
\cd@CodeString, 52
\cd@CodeWrite, 54
\cd@Comment, 46
\cd@ComparePrefix, 24

\cd@continuous, 36
\cd@CurrentFile, 56
\cd@CurrentSource, 53, 54

\DangerousEnvironment, 9, 18, 45
\DangerousEnvironment@Produce, 52
\cd@DangerousExample@Produce, 52
\cd@DefErr, 26
\DefineEnvironment, 7, 18, 22
\cd@DefineEnvironment, 22
\DefineEnvironment@Produce, 51
\DefineIndexFont, 7, 18, 22
\DefineMacro, 7, 18, 22
\cd@DefineMacro, 22
\DefineMacro@Produce, 51
\DefineShortVerb@Produce, 48
\DefineVerbatimEnvironment, 52
\cd@DefPrefix, 24
\DescribeEnvironment, 7, 18, 22
\cd@DescribeEnvironment, 22
\DescribeEnvironment@Produce, 51
\DescribeIndexFont, 7, 18, 22
\DescribeMacro, 7, 18, 22
\cd@DescribeMacro, 22
\DescribeMacro@Produce, 51
\DocStripMarginpar, 7, 18, 22
\cd@DocumentString, 52

\cd@EatBOL, 43
\cd@empty, 36
\cd@end, 21
\end@Produce, 51, 53
\cd@EndOfLine, 46
\cd@Error, 45
\cd@Escape, 46
\cd@eTeXEOL, 42
\eTeXOff, 14, 18, 34
\eTeXOn, 14, 18, 34
\cd@eTeXOutEOL, 42
\cd@eTeXOutVisibleEOL, 42
\cd@eTeXStartGobble, 42
\cd@@Evaluate, 50
\cd@Evaluate, 47
\cd@Example, 37
example (environment), 11, 17, 37
\cd@ExampleEnd, 38

60

\cd@ExampleName, 35
\cd@ExampleOptions, 36
\cd@expFile, 39

\FileDate, 44
\FileName, 44
\FileSource, 44
\FileVersion, 44
\cd@FindIgnore, 50
\cd@FindStream, 59

\cd@Gather, 47
\cd@GetClass, 21
\cd@GetFile@Produce, 58
\cd@GetFileDate, 44
\cd@GetFileDate@Produce, 58
\cd@GetFileName, 44
\cd@GetFileName@Produce, 58
\cd@GetFileVersion, 44
\cd@GetFileVersion@Produce, 58
\cd@GetOptions, 21
\Gobble, 6, 18, 31
\cd@Gobble, 48
\Gobble@@Produce, 52
\Gobble@Produce, 51
\cd@GobbleEndOfLine, 47
\cd@GobbleLetters, 30
\cd@GobbleOptions, 49
\cd@GobbleSpace, 47
\cd@GobbleThree, 34

\Header, 6, 19, 45
\cd@Header, 59
\Header@@Produce, 52
\Header@Produce, 51
\cd@HeaderEOL, 51
\cd@HeaderGobble, 45

\cd@IgnoreBraces@Produce, 50
\cd@IgnoreEscape@Produce, 49
\IgnorePrefix, 8, 19, 23
\cd@IgnorePrefix, 23
\cd@IgnoreVerbBreak, 29, 49
\cd@IgnoreVerbCommand, 29
\cd@Input, 40, 41
\input@Produce, 53
\cd@Invisible, 33
\invisible, 32
invisible (environment), 6, 17
\cd@InvisibleString, 52
\cd@InvisibleWriteFile, 55

\cd@LeftBrace, 46
\cd@LeftBracket, 46
\LineNumber, 5, 19, 37
\cd@LineWrite, 40
\cd@LineWrite@Produce, 55
\cd@LoadClass, 21

\cd@MacroName, 47
\cd@@MakeEntry, 24
\cd@MakeEntry, 23
\cd@MakeExample, 35
\cd@MakeExampleEnd, 38
\cd@MakeOther, 54
\cd@MakePrefix, 23
\cd@MakeShortCode, 27
\cd@MakeShortcode@Produce, 49
\cd@MakeShortVerb@Produce, 48
\cd@MakeSpace, 30
\cd@MakeSpecialEater, 53
\cd@MakeVerbBreak@Produce, 49
\marg, 8, 19, 25
\meta, 8, 19, 25

\NewExample, 11, 19, 34
\cd@@NewExample, 35
\cd@NewExample, 34
\NewExample@Produce, 50
\cd@NextChar, 47
\cd@noeTeXEOL, 39
\noexpand@Produce, 51
\cd@NoFileWarning, 45
\cd@numbered, 36

\oarg, 8, 19, 25
\cd@ObeyLines, 34
\cd@ObeySpaces, 30
\cd@Open, 56
\cd@Output, 40, 41

\parg, 8, 19, 25
\cd@PrepareChar, 48
\PrintMacro, 7, 19, 22
\PrintPrefix, 8, 19, 24
\cd@ProduceEOL, 55
\ProduceFile, 4, 19, 44
\cd@ProduceFile, 56
\ProduceFile@@Produce, 56
\ProduceFile@Produce, 53
\protect@Produce, 51

\RenewExample, 11, 19, 34
\cd@RenewExample, 34
\RenewExample@Produce, 50
\cd@RightBrace, 46

\cd@ScanPrefix, 24
\cd@SetLineNumber, 37
\ShortCode, 14, 19, 27
\cd@ShortCode, 27
\ShortCode@Produce, 49
\cd@ShortEnd, 27
\ShortVerb, 14, 20, 26
\ShortVerb@Produce, 48
\cd@ShortVerb@Produce, 48
\cd@ShortWriteFile, 49

61

\cd@Space, 46
\cd@SpaceChar, 30
\cd@SpecialEater, 53
\cd@StarCode, 33
\cd@StarCodeString, 52
\cd@StartGobble, 33
\StartIgnore, 9, 20, 45
\StartIgnore@Produce, 50
\cd@StarWriteFile, 55
\StopHere, 8, 20, 22
\StopIgnore, 9, 20, 45
\cd@StopIgnore, 50
\cd@StoredEnvironments, 52
\cd@StreamList, 59
\string@Produce, 51

\cd@Tab, 46
\TabSize, 6, 20, 31
\cd@TakeNextChar, 47
\cd@TChar, 45
\cd@TCode, 45
\cd@TempEsc, 49
\cd@Tracing, 45
\cd@TUChar, 45

\UndefineShortVerb@Produce, 48
\cd@UndefineShortVerb@Produce, 48
\UndoCodeEscape, 16, 20, 30
\UndoCodeEscape@Produce, 50
\cd@UndoErr, 26
\UndoShortCode, 14, 20, 28
\cd@UndoShortCode@Produce, 49
\UndoShortVerb, 14, 20, 27
\UndoShortVerb@Produce, 48
\UndoVerbBreak, 15, 20
\UndoVerbBreak@Produce, 49
\UndoVerbCommand, 15, 20, 29
\UndoVerbCommand@Produce, 50

\verb@Produce, 51
\cd@Verbatim, 31
\cd@@VerbBraces@Produce, 50
\cd@VerbBraces@Produce, 50
\VerbBreak, 15, 20, 28
\VerbBreak@Produce, 49
\VerbCommand, 15, 20, 29
\VerbCommand@Produce, 49
\cd@@VerbEater, 51
\cd@VerbEater, 51
\cd@VerbEscape@Produce, 49
\cd@VerbList, 48
\cd@VerbSpace, 31
\cd@VerbTab, 31
\cd@VisibleComment, 43
\cd@visibleEOL, 36

\cd@Wait, 56

\cd@WriteFile, 55

•
••.... What am I

doing here? , 1, 5, 7, 9, 11, 13, 15, 16, 19, 23, 30, 41,
44�46, 48, 51, 56, 59

62

	I User's manual
	Code & Documentation
	Writing code
	Macros to describe macros
	Choosing the class
	Dangerous strings

	Verbatim Madness
	Example environments
	\ShortVerb and friends
	Using fancyvrb

	Summary of commands
	Class options
	Environments
	Commands

	II Implementation
	Options and basic definitions
	Normal mode
	Describing macros
	\ShortVerb and associates
	Verbatim definitions
	The default code environment
	Example environments
	Examples without e-TeX
	Examples with e-TeX

	File management

	Produce mode
	Messages
	Testing strings
	Macros executed in produce mode
	Writing environments
	File management

	 Index

