
The childdoc Package

Niklas Beisert

Institut für Theoretische Physik
Eidgenössische Technische Hochschule Zürich

Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

nbeisert@itp.phys.ethz.ch

17 January 2018, v1.6

Abstract

childdoc is a LATEX 2ε package that enables the direct compilation of document sections
included by \include to individual files.

Contents

1 Introduction 1

2 Usage 2
2.1 Considerations . 3
2.2 Conditional Processing . 3
2.3 Flags and Forwarding . 4
2.4 Manual Code . 5
2.5 Command Line Processing . 6

3 Information 6
3.1 Copyright . 6
3.2 Files and Installation . 6
3.3 Related CTAN Packages . 7
3.4 Revision History . 7

A Sample 8

B Implementation 9

1 Introduction

LATEX provides a mechanism to structure a large document (such as a book) into a main
file and several child files (containing the chapters) using the \include command. This
mechanism is beneficial for documents which span hundreds of pages in order to make
the source file(s) more manageable. Moreover, compilation can be restricted to selected
child files by means of the \includeonly command. The latter feature can be used to
reduce the compilation time while editing (this was significantly more useful in the earlier
days of LATEX) or to generate a smaller document which is easier to navigate. Another
application of \includeonly is to generate documents consisting of selected parts of the
complete document.

However, there are a few drawbacks of the plain \include mechanism:

1

mailto:nbeisert@itp.phys.ethz.ch

• The child files cannot be compiled on their own, they can only be compiled via the
main file. A naive editing environment (such as a text editor with an option to have
the current file processed by LATEX) may require one to switch to the main file before
compiling; attempting to compile the child file produces errors.

• The main file must be modified (each time) to adjust the \includeonly command to
the present needs. This easily leaves the main file in a messy state.

• The generated document will always carry the filename of the main document. This
is inconvenient if several child files are to be compiled and to be kept for distribution.

The present package provides a simple interface to make child files individually compilable
by LATEX. Compiling a child file then has the same effect as compiling the main file with an
\includeonly command to select the appropriate child. Moreover the generated document
will carry the name of the child rather than the main file. This resolves all three above
issues.

This feature is meant to make the editing of books, thesis documents and lecture notes
somewhat more convenient. However, the package can also be used efficiently for composing
a series of documents (such as exercise sheets) which are typically distributed individually.
It then assists the author in generating the individual documents (potentially in different
versions) as well as a document containing the collected series. Another application is in
developing style files or other kinds of included material where compilation of the style file
could redirect to a sample or test file.

2 Usage

The package childdoc is not a standard LATEX 2ε .sty style file! Therefore it needs to be
invoked in a non-standard way.

To use the package add the commands\childdoc

\input{childdoc.def}

\childdocmain{main}

at the very top of your main LATEX file, in particular before the \documentclass statement!
Furthermore, you must add the command

\input{childdoc.def}

\childdocof{main}

at the top of every child file which is included by \include from within the main file (or
at least for those files which you would like to compile individually). In each case, the
argument main must be the filename of the main file. Alternatively, it suffices to start a
child file with just \input{main}; this has the same effect, but the nesting of included files
is slightly different. Note that the closed loop generated by this combination of \input and
\include commands is broken by \childdocmain.

Please note the following restrictions:

• The argument main of \childdocmain must match the filename of the file in which it
is specified. This is necessary because TEX does not store the name of files included
via \input.

• The filename main must be specified without the .tex extension.

• The filename main is case sensitive (even in case-insensitive file systems) due to internal
string comparison.

• The argument main should be fully expanded, it cannot be a macro.

2

• Subdirectories and special characters should be avoided in filenames.

• The command \childdocmain{main} must be followed by a whitespace. It should
not be followed immediately by another command or by a comment mark ‘%’. This
is because the TEX parser reads the token immediately following the argument of
\childdocmain and puts it at the beginning of every child section; however, a white-
space is ignored.

2.1 Considerations

Let us mentions a couple of consideration in setting up the main and child documents:

Content of Main File. It is advisable to place all output in the child files included by
\include. Any output contained in the main file will appear in all child documents; it
cannot be suppressed by the \includeonly directive and thus should normally be avoided.
Below we shall describe a method to include some output in the main file by means of
conditional processing.

Page Numbering. When only a part of the document is compiled, the appropriate num-
bering of pages (as well as other status parameters) is determined from the .aux files. The
latter contain information from previous passes. However this information needs to prop-
agate through all intermediate child documents. Therefore the page numbering in child
documents may well be inconsistent until the complete document is compiled at least once.

A useful (if unconventional) way to always ensure a consistent page numbering is to
restart the numbering in each child document and denote the pages by ‘child.page’ where
child represents the chapter/section number of the child file. This can be achieved by
the command \numberwithin{page}{child} of the amsmath package where child can be
chapter or section depending on the chosen structuring. Alternatively, one can modify
the macro \thepage appropriately and reset the counter page at the start of each child file.

Include Files. The childdoc mechanism can also be use for the development of include files
such as LATEX styles or classes, but also other material included by \input. This case differs
from the above setup with multiple parts included by \include in that no \includeonly

should be invoked. This can be achieved by starting the include file by:

\input{childdoc.def}

\childdocforward{main}

The main file is prepared as described above.

2.2 Conditional Processing

The package provides a mechanism to compile different versions of a document. To customise
the versions further some conditional processing can come in handy to distinguish which
version is being compiled. The package provides two macros to describe the compilation
context:

The conditional \ifchilddoc distinguishes between the compilation of child documents and\ifchilddoc

the main document:

\ifchilddoc child-code [\else main-code] \fi

The macro \childdocname contains the filename (without extension) of the main or child\childdocname

file being processed. Note that \jobname will always contain the name of the main file.

3

Title Page. For example, conditional processing can be used to include a title or banner
page in the main document when proper precautions are taken. Importantly, the code in
the main file should ensure that the page counter (as well as other status parameters which
are stored in the .aux files) takes the same value after the conditional processing. Otherwise
the page numbers may take divergent values depending on which part is compiled.

For example, a title page could be declared by:

\ifchilddoc\else

\addtocounter{page}{-1}

code for title page
\newpage

\fi

A banner page for the child documents can be generated by:

\ifchilddoc

\addtocounter{page}{-1}

code for banner page
\newpage

\fi

Here one could write a message such as:

This is the part \childdocname{} of \jobname.

2.3 Flags and Forwarding

The package allows to easily generate different versions of the main or child documents and
to (permanently) store these in different files. To this end compilation flags can be defined
and assigned different default values.

Defining Flags. Suppose we want to define a flag \version which can be set to draft or
final. The document source will contain some conditional code depending on the value of
\version. Suppose further, the flag should default to final for the main file and to draft

for child files which is a natural assignment for editing the document. This is achieved by
placing the following code in the preamble of the main document (below the \childdocmain
directive):

\ifchilddoc

\providecommand{\version}{draft}

\else

\providecommand{\version}{final}

\fi

By using \providecommand we make sure that previous definitions are not overwritten. We
can thus add further statements \providecommand{\version}{...} before the above code
to override it.

For the main file, one might add a line (between \childdocmain and the above block)

%\ifchilddoc\else\providecommand{\version}{draft}\fi

which can be uncommented to produce a draft version. Likewise one can add a line to the
very top of a child file (above the \childdocof{main} directive)

%\providecommand{\version}{final}

which can be uncommented to produce the final version of this child document.

4

Forwarding. Once compilation flags are defined, we can permanently set up files to pro-
duce certain versions of the documents. To this end, the package defines a command to pass
on compilation to a different file:

The commands \childdocforward[prefix] redirect processing to the another source file:\childdocforward

\childdocforwardprefix
\childdocforward[main]{dest}
\childdocforwardprefix[main]{prefix}{dest}

The argument dest is the destination file (without extension). It should be the main file or
one of the child files. In the second form, the destination file is determined by a pattern
depending on the current file: To make this work, the current file must be called ‘prefix
suffix ’ and processing is passed on to the file ‘dest suffix ’. Surely, the same effect is achieved
by directly specifying the argument ‘dest suffix ’ in the first form. However, that requires to
set up a different file for each child. With the alternative form of the command all these files
can have exactly the same content which simplifies setting them up and maintaining them.
Finally, the optional argument main allows to pass on directly to the main file main while
pretending to compile dest.

For example, the following file draft.tex compiles the main document as a draft:

\def\version{draft}

\input{childdoc.def}

\childdocforward{main}

Likewise, the following files finalnn.tex compile the final version of the child document
childnn.tex:

\def\version{final}

\input{childdoc.def}

\childdocforwardprefix{final}{child}

Note that when several versions of a main file and/or of each child file are to be generated,
it will be convenient to set up a Makefile or shell script to automatise the process.

2.4 Manual Code

In case one cannot be certain whether the definitions file childdoc.def is installed on the
target TEX distribution and one prefers not to ship it, it is conceivable to paste a few relevant
commands into the sources.

To that end, drop all statements \input{childdoc.def} and perform the replacements
as outlined below. Instead of \childdocmain{main} add the following code to the top of
the main file:

\ifdefined\childdocname\endinput\fi\newif\ifchilddoc

\edef\childdocname{\scantokens\expandafter{\jobname\noexpand}}

\def\childdocmain{main}\ifx\childdocmain\childdocname\else
\childdoctrue\includeonly{\childdocname}\let\jobname\childdocmain\fi

Instead of \childdocof{main} just include the main file at the top of each child file:

\input{main}

A simple redirection \childdocforward{dest} is achieved by:

\def\jobname{dest}\input{\jobname}

The redirection with prefix \childdocforwardprefix[prefix]{dest} is accomplished by:

{\edef\jobname{\scantokens\expandafter{\jobname\noexpand}}

\def\redirectjob prefix#1~~~{\gdef\jobname{dest#1}}
\expandafter\redirectjob\jobname~~~}\input{\jobname}

5

2.5 Command Line Processing

The effect of redirection files can also be achieved by invoking the LATEX compiler with a
more elaborate command line. Most conveniently this should be done as part of a shell
script or a Makefile.

When using childdoc in the main file, the following command line effectively performs
a redirection (note that depending on the shell being used, backslashes may have to be
doubled: ‘\’ → ‘\\’)

... -jobname "target" "[flags]\def\jobname{dest}\input{main}"

Here target is the name of the output file, main is the name of the main file and dest is the
name of the main or child file to be processed (all filenames without extensions). Optionally,
compilation flags can be defined via \def commands.

This command line makes the TEX engine believe it is compiling the file target whose
content is specified as the latter parameter. The provided code in turn tweaks the definition
of \jobname to dest which is later passed on to \includeonly by \childdocmain and then
hands over to the main file main.

In fact, a similar effect can be achieved without the childdoc mechanism by using the
command line:

... -jobname "target" "[flags]\includeonly{dest}\input{main}"

However, some of the functionality of childdoc is lost, e.g. child documents cannot be pro-
cessed individually and the conditional \ifchilddoc is not defined.

3 Information

3.1 Copyright

Copyright c© 2017–2018 Niklas Beisert

This work may be distributed and/or modified under the conditions of the LATEX Project
Public License, either version 1.3 of this license or (at your option) any later version. The
latest version of this license is in http://www.latex-project.org/lppl.txt and version
1.3 or later is part of all distributions of LATEX version 2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained’.

The Current Maintainer of this work is Niklas Beisert.

This work consists of the files README.txt, childdoc.ins and childdoc.dtx as well
as the derived files childdoc.def, cdocsamp.tex with cdocsch1.tex, cdocsch2.tex,
cdocsdrf.tex, cdocsfn1.tex, cdocsfn2.tex and childdoc.pdf.

3.2 Files and Installation

The package consists of the files:

README.txt readme file
childdoc.ins installation file
childdoc.dtx source file
childdoc.def definition file
cdocsamp.tex sample main file
cdocsch1.tex sample include file
cdocsch2.tex sample include file
cdocsdrf.tex sample redirection file
cdocsfn1.tex sample redirection file
cdocsfn2.tex sample redirection file
childdoc.pdf manual

6

http://www.latex-project.org/lppl.txt

The distribution consists of the files README.txt, childdoc.ins and childdoc.dtx.

• Run (pdf)LATEX on childdoc.dtx to compile the manual childdoc.pdf (this file).

• Run LATEX on childdoc.ins to create the definitions file childdoc.def and the sam-
ple cdocsamp.tex with include files cdocsch1.tex, cdocsch2.tex, cdocsdrf.tex,
cdocsfn1.tex, cdocsfn2.tex. Copy the file childdoc.def to an appropriate direc-
tory of your LATEX distribution, e.g. texmf-root/tex/latex/childdoc.

3.3 Related CTAN Packages

There are several other packages which offer a similar functionality:

• The packages docmute, includex and standalone provide commands to include only the
document body of a child file thus allowing both files to be compiled individually.

• The packages subdocs and subfiles provide structures in which the main and child
documents can be encapsulated and allowing them to be compiled individually. The
inclusion mechanism is different from the conventional \include.

• The package combine is an elaborate solution to combine several documents into one.

See also the CTAN topic subdocs for further related packages. The present package differs
from the above solutions in that a document structure constructed with the conventional
\include mechanism just needs two extra commands at the top of every file such that all
constituent files can be compiled individually.

3.4 Revision History

v1.6: 2018/01/17

• application for development of include files

• corrections to manual

v1.5: 2017/05/21

• more complete structuring introduced

• \childdocof introduced

• \childdoc renamed to \childdocmain

• \childredirect renamed to \childdocforward and \childdocforwardprefix and
functionality expanded

v1.0: 2017/04/27

• manual and install package

• first version published on CTAN

v0.6: 2017/04/26

• redirection mechanism added

v0.5: 2016/04/26

• functionality in definition file

7

http://ctan.org/pkg/docmute
http://ctan.org/pkg/includex
http://ctan.org/pkg/standalone
http://ctan.org/pkg/subdocs
http://ctan.org/pkg/subfiles
http://ctan.org/pkg/combine
http://ctan.org/topic/subdocs

A Sample

Here we present a sample document with two chapters, a title page, a compile flag as well
as three forwarding files to set the flag. It consists of six .tex files:

cdocsamp.tex main file
cdocsch1.tex include file for chapter 1
cdocsch2.tex include file for chapter 2
cdocsdrf.tex forwarding file for main file in draft mode
cdocsfi1.tex forwarding file for final version of chapter 1
cdocsfi2.tex forwarding file for final version of chapter 2

Each of the six files can be compiled directly by the LATEX compiler.

Main File. The main file is called cdocsamp.tex.

Load the childdoc definitions and declare the filename for the main document:

1 \input{childdoc.def}

2 \childdocmain{cdocsamp}

Optional override for \version flag:

3 %%\ifchilddoc\else\providecommand{\version}{draft}\fi

Define the default values for the \version flag (final for the main file and draft for childs):

4 \ifchilddoc

5 \providecommand{\version}{draft}

6 \else

7 \providecommand{\version}{final}

8 \fi

Load the standard document class:

9 \documentclass[12pt]{article}

Start the document body:

10 \begin{document}

Declare a title page. Print title, part of document being processed and version flag:

11 \addtocounter{page}{-1}

12 \begin{center}

13 {\LARGE\bfseries{}childdoc example\par}

14 \vspace{1cm}

15 part:

16 \ifchilddoc

17 ‘\childdocname’ of ‘\jobname’\par

18 \else

19 main\par

20 \fi

21 version: \version\par

22 \end{center}

23 \newpage

Include the two chapters:

24 \include{cdocsch1}

25 \include{cdocsch2}

8

End of document body:

26 \end{document}

Chapter Include Files. The include files are called cdocsch1.tex and cdocsch2.tex.

Optional override for \version flag:

27 %%\providecommand{\version}{final}

Include the main document:

28 \input{childdoc.def}

29 \childdocof{cdocsamp}

Some text for chapter 1:

30 \section{one}

31 some text in chapter one

Some text for chapter 2:

32 \section{two}

33 more text in chapter two

Forwarding for a Complete Draft. The following forwarding file cdocsdrf.tex com-
piles the main document in draft mode:

34 \def\version{draft}

35 \input{childdoc.def}

36 \childdocforward{cdocsamp}

Forwarding for Final Version of the Chapters. The following forwarding files
cdocsfn1.tex and cdocsfn2.tex (with identical content) compile the final versions of the
child documents cdocsch1.tex and cdocsch2.tex, respectively:

37 \def\version{final}

38 \input{childdoc.def}

39 \childdocforwardprefix[cdocsamp]{cdocsfn}{cdocsch}

B Implementation

In this section we describe the definitions file childdoc.def.

The definitions cannot be loaded using \usepackage or \RequirePackage which has a
mechanism to prevent loading a style file more than once. When loading the definitions by
means of \input we have to prevent multiple instances manually:

40 %\ifdefined\childdocmain\endinput\fi

\ifchilddoc The conditional \ifchilddoc tells whether a child (true) or main (false) document is being
compiled. The definition initialises to false:

41 \newif\ifchilddoc

\childdocname The macro \childdocname stores the name of the document to be compiled. The content of
\jobname cannot be compared to filenames specified in the source due to different catcodes.
The following code rescans \jobname and stores the result in in \childdocname:

42 \edef\childdocname{\scantokens\expandafter{\jobname\noexpand}}

9

\childdocmain The macro \childdocmain is to be called at the top of the main file with the main filename
(without extension) as argument. First, it overwrites its own definition to end processing
of the present file (\endinput) on subsequent calls. It also overwrites the definition of
\childdocof and \childdocforward to prevent further inclusions of the main document.
This prevents the main file from being processed more than once. Then the current filename
is compared to the main filename and in case of mismatch \ifchilddoc is set to true. In
that case \includeonly is applied to the child file and \jobname is set to the main file (for
proper handling of .aux files):

43 \newcommand{\childdocmain}[1]

44 {

45 \renewcommand{\childdocmain}[1]{\endinput}

46 \renewcommand{\childdocof}[1]{}

47 \renewcommand{\childdocforward}[2][]{}

48 \begingroup

49 \def\childdoctmp{#1}

50 \ifx\childdocname\childdoctmp

51 \def\childdoctmp{\childdocfalse}

52 \else

53 \def\childdoctmp{\childdoctrue}

54 \fi

55 \expandafter

56 \endgroup

57 \childdoctmp

58 \ifchilddoc

59 \includeonly{\childdocname}

60 \def\jobname{#1}

61 \fi

62 }

\childdoc The deprecated macro \childdoc is a legacy version of \childdocmain:

63 \newcommand{\childdoc}{\childdocmain}

\childdocof The command \childdocof redirects compilation to the main file #1.

64 \newcommand{\childdocof}[1]

65 {

66 \input{#1}

67 }

\childdocforward The command \childdocforward redirects compilation to the main or a child file. \jobname
and \childdocname are set to the new filename and compilation is handed over to the new
file:

68 \newcommand{\childdocforward}[2][]

69 {

70 \def\jobname{#2}

71 \def\childdocname{#2}

72 \begingroup

73 \def\childdoctmp{#1}

74 \def\childdocempty{}

75 \ifx\childdoctmp\childdocempty

76 \def\childdoctmp{\input{#2}}

77 \else

78 \def\childdoctmp{\input{#1}}

79 \fi

80 \expandafter

10

81 \endgroup

82 \childdoctmp

83 \endinput

84 }

\childdocforwardprefix The command \childdocforwardprefix redirects compilation to the main or a child file
by means of a pattern. The prefix #1 in the current filename is replaced by #2 and the
suffix of the current filename is kept (it is assumed that the filename does not contain the
substring ‘~~~’ which is used as a delimiter). Compilation is handed over to the new file by
\childdocforward:

85 \newcommand{\childdocforwardprefix}[3][]

86 {

87 \begingroup

88 \def\childdocextract #2##1~~~{\def\childdoctmp{\childdocforward[#1]{#3##1}}}

89 \expandafter\childdocextract\childdocname~~~

90 \expandafter

91 \endgroup

92 \childdoctmp

93 }

\childdocredirect The deprecated macro \childdocredirect is a legacy version of \childdocforward and
\childdocforwardprefix:

94 \newcommand{\childdocredirect}[2][]

95 {

96 \begingroup

97 \def\childdoctmp{#1}

98 \def\childdocempty{}

99 \ifx\childdoctmp\childdocempty

100 \def\childdoctmp{\childdocforward{#2}}

101 \else

102 \def\childdoctmp{\childdocforwardprefix{#1}{#2}}

103 \fi

104 \expandafter

105 \endgroup

106 \childdoctmp

107 }

11

	Introduction
	Usage
	Considerations
	Conditional Processing
	Flags and Forwarding
	Manual Code
	Command Line Processing

	Information
	Copyright
	Files and Installation
	Related CTAN Packages
	Revision History

	Sample
	Implementation

