
The childdoc Package

Niklas Beisert

Institut für Theoretische Physik
Eidgenössische Technische Hochschule Zürich

Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland

nbeisert@itp.phys.ethz.ch

27 April 2017, v1.0

Abstract

childdoc is a LATEX 2ε package that enables the direct compilation of document sections
included by \include to individual files.

Contents

1 Introduction 1

2 Usage 2
2.1 Considerations . 2
2.2 Conditional Processing . 3
2.3 Flags and Redirection . 3
2.4 Manual Code . 5
2.5 Command Line Processing . 5

3 Information 5
3.1 Copyright . 5
3.2 Files and Installation . 6
3.3 Revision History . 6

A Sample 6

B Implementation 8

1 Introduction

LATEX provides a mechanism to structure a large document (such as a book) into a main
file and several child files (containing the chapters) using the \include command. This
mechanism is beneficial for documents which span hundreds of pages in order to make
the source file(s) more manageable. Moreover, compilation can be restricted to selected
child files by means of the \includeonly command. The latter feature can be used to
reduce the compilation time while editing (this was significantly more useful in the earlier
days of LATEX) or to generate a smaller document which is easier to navigate. Another
application of \includeonly is to generate documents consisting of selected parts of the
complete document.

However, there are a few drawbacks of the plain \include mechanism:

1

mailto:nbeisert@itp.phys.ethz.ch

• The child files cannot be compiled on their own, they can only be compiled via the
main file. A naive editing environment (such as a text editor with an option to have
the current file processed by LATEX) may require one to switch to the main file before
compiling; attempting to compile the child file produces errors.

• The main file must be modified (each time) to adjust the \includeonly command to
the present needs. This easily leaves the main file in a messy state.

• The generated document will always carry the filename of the main document. This
is inconvenient if several child files are to be compiled and to be kept for distribution.

The present package provides a simple interface to make child files individually compilable
by LATEX. Compiling a child file then has the same effect as compiling the main file with an
\includeonly command to select the appropriate child. Moreover the generated document
will carry the name of the child rather than the main file. This resolves all three above
issues.

This feature is meant to make the editing of books, thesis documents and lecture notes
somewhat more convenient. However, the package can also be used efficiently for composing
a series of documents (such as exercise sheets) which are typically distributed individually.
It then assists the author in generating the individual documents (potentially in different
versions) as well as a document containing the collected series.

2 Usage

The package childdoc is not a standard LATEX 2ε .sty style file! Therefore it needs to be
invoked in a non-standard way.

To use the package add the commands\childdoc

\input{childdoc.def}

\childdoc{main}

at the very top of your main LATEX file, in particular before the \documentclass statement!
Furthermore, you must add the command

\input{main}

at the top of every child file which is included by \include from within the main file (or at
least for those files which you would like to compile individually). In each case, the argument
main must be the filename of the main file. Note that the closed loop generated by this
combination of \input and \include commands is broken by \childdoc.

Please note the following restrictions:

• The argument main of \childdoc must match the filename of the file in which it is
specified. This is necessary because TEX does not store the name of files included via
\input.

• The filename main must be specified without the .tex extension.

• The filename main is case sensitive (even in case-insensitive file systems) due to internal
string comparison.

• The argument main should be fully expanded, it cannot be a macro.

• Subdirectories and special characters should be avoided in filenames.

• The command \childdoc must be followed by a whitespace. It should not be followed
immediately by another command or by a comment mark ‘%’. This is because the TEX
parser reads the token immediately following the argument of \childdoc and puts it
at the beginning of every child section; however, a whitespace is ignored.

2

2.1 Considerations

Let us mentions a couple of consideration in setting up the main and child documents:

Content of Main File. It is advisable to place all output in the child files included by
\include. Any output contained in the main file will appear in all child documents; it
cannot be suppressed by the \includeonly directive and thus should normally be avoided.
Below we shall describe a method to include some output in the main file by means of
conditional processing.

Page Numbering. When only a part of the document is compiled, the appropriate num-
bering of pages (as well as other status parameters) is determined from the .aux files. The
latter contain information from previous passes. However this information needs to prop-
agate through all intermediate child documents. Therefore the page numbering in child
documents may well be inconsistent until the complete document is compiled at least once.

A useful (if unconventional) way to always ensure a consistent page numbering is to
restart the numbering in each child document and denote the pages by ‘child.page’ where
child represents the chapter/section number of the child file. This can be achieved by
the command \numberwithin{page}{child} of the amsmath package where child can be
chapter or section depending on the chosen structuring. Alternatively, one can modify
the macro \thepage appropriately and reset the counter page at the start of each child file.

2.2 Conditional Processing

The package provides a mechanism to compile different versions of a document. To customise
the versions further some conditional processing can come in handy to distinguish which
version is being compiled. The package provides two macros to describe the compilation
context:

The conditional \ifchilddoc distinguishes between the compilation of child documents and\ifchilddoc

the main document:

\ifchilddoc child-code [\else main-code] \fi

The macro \childdocname contains the filename (without extension) of the main or child\childdocname

file being processed. Note that \jobname will always contain the name of the main file.

Title Page. For example, conditional processing can be used to include a title or banner
page in the main document when proper precautions are taken. Importantly, the code in
the main file should ensure that the page counter (as well as other status parameters which
are stored in the .aux files) takes the same value after the conditional processing. Otherwise
the page numbers may take divergent values depending on which part is compiled.

For example, a title page could be declared by:

\ifchilddoc\else

\addtocounter{page}{-1}

code for title page
\newpage

\fi

A banner page for the child documents can be generated by:

\ifchilddoc

\addtocounter{page}{-1}

code for banner page
\newpage

\fi

3

Here one could write a message such as:

This is the part \childdocname{} of \jobname.

2.3 Flags and Redirection

The package allows to easily generate different versions of the main or child documents and
to (permanently) store these in different files. To this end compilation flags can be defined
and assigned different default values.

Defining Flags. Suppose we want to define a flag \version which can be set to draft or
final. The document source will contain some conditional code depending on the value of
\version. Suppose further, the flag should default to final for the main file and to draft

for child files which is a natural assignment for editing the document. This is achieved by
placing the following code in the preamble of the main document (below the \childdoc

directive):

\ifchilddoc

\providecommand{\version}{draft}

\else

\providecommand{\version}{final}

\fi

By using \providecommand we make sure that previous definitions are not overwritten. We
can thus add further statements \providecommand{\version}{...} before the above code
to override it.

For the main file, one might add a line (between \childdoc and the above block)

%\ifchilddoc\else\providecommand{\version}{draft}\fi

which can be uncommented to produce a draft version. Likewise one can add a line to the
very top of a child file (above the \input{main} directive)

%\providecommand{\version}{final}

which can be uncommented to produce the final version of this child document.

Redirection. Once compilation flags are defined, we can permanently set up files to pro-
duce certain versions of the documents. To this end, the package defines a command to pass
on compilation to a different file:

The command \childdocredirect redirects processing to the another source file:\childdocredirect

\childdocredirect[prefix]{dest}

The argument dest is the destination file (without extension). It should be the main file
or one of the child files. When the optional argument prefix is given, the destination file
is determined by a pattern depending on the current file: To make this work, the current
file must be called ‘prefix suffix ’ and processing is passed on to the file ‘dest suffix ’. Surely,
the same effect is achieved by directly specifying the argument ‘dest suffix ’ without optional
argument. However, that requires to set up a different file for each child. With the alternative
form of the command all these files can have exactly the same content which simplifies setting
them up and maintaining them.

For example, the following file draft.tex compiles the main document as a draft:

\def\version{draft}

\input{childdoc.def}

\childdocredirect{main}

4

Likewise, the following files finalnn.tex compile the final version of the child document
childnn.tex:

\def\version{final}

\input{childdoc.def}

\childdocredirect{final}{child}

Note that when several versions of a main file and/or of each child file are to be generated,
it will be convenient to set up a Makefile or shell script to automatise the process.

2.4 Manual Code

In case one cannot be certain whether the definitions file childdoc.def is installed on the
target TEX distribution and one prefers not to ship it, it is conceivable to paste a few relevant
commands into the sources.

To that end, drop all statements \input{childdoc.def} and perform the replacements
as outlined below. Instead of \childdoc{main} add the following code to the top of the
main file:

\ifdefined\childdocname\endinput\fi\newif\ifchilddoc

\edef\childdocname{\scantokens\expandafter{\jobname\noexpand}}

\def\childdocmain{main}\ifx\childdocmain\childdocname\else
\childdoctrue\includeonly{\childdocname}\let\jobname\childdocmain\fi

A simple redirection \childdocredirect{dest} is achieved by:

\def\jobname{dest}\input{\jobname}

The redirection by pattern \childdocredirect[prefix]{dest} is accomplished by:

{\edef\jobname{\scantokens\expandafter{\jobname\noexpand}}

\def\redirectjob prefix#1~~~{\gdef\jobname{dest#1}}
\expandafter\redirectjob\jobname~~~}\input{\jobname}

2.5 Command Line Processing

The effect of redirection files can also be achieved by invoking the LATEX compiler with a
more elaborate command line. Most conveniently this should be done as part of a shell
script or a Makefile.

When using childdoc in the main file, the following command line effectively performs
a redirection (note that depending on the shell being used, backslashes may have to be
doubled: ‘\’ → ‘\\’)

... -jobname "target" "[flags]\def\jobname{dest}\input{main}"

Here target is the name of the output file, main is the name of the main file and dest is the
name of the main or child file to be processed (all filenames without extensions). Optionally,
compilation flags can be defined via \def commands.

This command line makes the TEX engine believe it is compiling the file target whose
content is specified as the latter parameter. The provided code in turn tweaks the definition
of \jobname to dest which is later passed on to \includeonly by \childdoc and then hands
over to the main file main.

In fact, a similar effect can be achieved without the childdoc mechanism by using the
command line:

... -jobname "target" "[flags]\includeonly{dest}\input{main}"

However, some of the functionality of childdoc is lost, e.g. child documents cannot be pro-
cessed individually and the conditional \ifchilddoc is not defined.

5

3 Information

3.1 Copyright

Copyright c© 2017 Niklas Beisert

This work may be distributed and/or modified under the conditions of the LATEX Project
Public License, either version 1.3 of this license or (at your option) any later version. The
latest version of this license is in http://www.latex-project.org/lppl.txt and version
1.3 or later is part of all distributions of LATEX version 2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained’.

The Current Maintainer of this work is Niklas Beisert.

This work consists of the files childdoc.dtx and childdoc.ins and the derived files
childdoc.def and cdocsamp.tex with cdocsch1.tex, cdocsch2.tex, cdocsdrf.tex,
cdocsfn1.tex, cdocsfn2.tex.

3.2 Files and Installation

The package consists of the files:

README readme file
childdoc.ins installation file
childdoc.dtx source file
childdoc.def definition file
cdocsamp.tex sample main file
cdocsch1.tex sample include file
cdocsch2.tex sample include file
cdocsdrf.tex sample redirection file
cdocsfn1.tex sample redirection file
cdocsfn2.tex sample redirection file
childdoc.pdf manual

The distribution consists of the files README, childdoc.ins and childdoc.dtx.

• Run (pdf)LATEX on childdoc.dtx to compile the manual childdoc.pdf (this file).

• Run LATEX on childdoc.ins to create the definitions file childdoc.def and the sam-
ple cdocsamp.tex with include files cdocsch1.tex, cdocsch2.tex, cdocsdrf.tex,
cdocsfn1.tex, cdocsfn2.tex. Copy the file childdoc.def to an appropriate direc-
tory of your LATEX distribution, e.g. texmf-root/tex/latex/childdoc.

3.3 Revision History

v1.0: 2017/04/27

• manual and install package

• first version published on CTAN

v0.6: 2017/04/26

• redirection mechanism added

v0.5: 2016/04/26

• functionality in definition file

6

http://www.latex-project.org/lppl.txt

A Sample

Here we present a sample document with two chapters, a title page, a compile flag as well
as three redirection files to set the flag. It consists of six .tex files:

cdocsamp.tex main file
cdocsch1.tex include file for chapter 1
cdocsch2.tex include file for chapter 2
cdocsdrf.tex redirection file for main file in draft mode
cdocsfi1.tex redirection file for final version of chapter 1
cdocsfi2.tex redirection file for final version of chapter 2

Each of the six files can be compiled directly by the LATEX compiler.

Main File. The main file is called cdocsamp.tex.

Load the childdoc definitions and declare the filename for the main document:

1 \input{childdoc.def}

2 \childdoc{cdocsamp}

Optional override for \version flag:

3 %%\ifchilddoc\else\providecommand{\version}{draft}\fi

Define the default values for the \version flag (final for the main file and draft for childs):

4 \ifchilddoc

5 \providecommand{\version}{draft}

6 \else

7 \providecommand{\version}{final}

8 \fi

Load the standard document class:

9 \documentclass[12pt]{article}

Start the document body:

10 \begin{document}

Declare a title page. Print title, part of document being processed and version flag:

11 \addtocounter{page}{-1}

12 \begin{center}

13 {\LARGE\bfseries{}childdoc example\par}

14 \vspace{1cm}

15 part:

16 \ifchilddoc

17 ‘\childdocname’ of ‘\jobname’\par

18 \else

19 main\par

20 \fi

21 version: \version\par

22 \end{center}

23 \newpage

Include the two chapters:

24 \include{cdocsch1}

25 \include{cdocsch2}

7

End of document body:

26 \end{document}

Chapter Include Files. The chapter include files are called cdocsch1.tex and cdocsch2.tex.

Optional override for \version flag:

27 %%\providecommand{\version}{final}

Include the main document:

28 \input{cdocsamp}

Some text for chapter 1:

29 \section{one}

30 some text in chapter one

Some text for chapter 2:

31 \section{two}

32 more text in chapter two

Redirection for a Complete Draft. The following redirection file cdocsdrf.tex com-
piles the main document in draft mode:

33 \def\version{draft}

34 \input{childdoc.def}

35 \childdocredirect{cdocsamp}

Redirection for Final Version of the Chapters. The following redirection files
cdocsfn1.tex and cdocsfn2.tex (with identical content) compile the final versions of the
child documents cdocsch1.tex and cdocsch2.tex, respectively:

36 \def\version{final}

37 \input{childdoc.def}

38 \childdocredirect[cdocsfn]{cdocsch}

B Implementation

In this section we describe the definitions file childdoc.def.

The definitions cannot be loaded using \usepackage or \RequirePackage which has a
mechanism to prevent loading a style file more than once. When loading the definitions by
means of \input we have to prevent multiple instances manually:

39 \ifdefined\childdoc\endinput\fi

\ifchilddoc The conditional \ifchilddoc tells whether a child (true) or main (false) document is being
compiled. The definition initialises to false:

40 \newif\ifchilddoc

\childdocname The macro \childdocname stores the name of the document to be compiled. In modern TEX
engines the content of \jobname appears to be protected to account for special characters or
subdirectories in filenames. This prevents a successful comparison to the name of the main
file. The following code stores an expanded version of \jobname in \childdocname:

41 \edef\childdocname{\scantokens\expandafter{\jobname\noexpand}}

8

\childdoc The macro \childdoc is to be called at the top of the main file with the main filename
(without extension) as argument. First, it overwrites its own definition to end processing
of the present file (\endinput) on subsequent calls. This prevents the main file from being
processed more than once. Then the current filename is compared to the main filename and
in case of mismatch \ifchilddoc is set to true. In that case \includeonly is applied to
the child file and \jobname is set to the main file (for proper handling of .aux files):

42 \newcommand{\childdoc}[1]

43 {

44 \def\childdoc##1{\endinput}

45 {

46 \def\childdoctmp{#1}

47 \ifx\childdocname\childdoctmp\else

48 \global\childdoctrue

49 \fi

50 }

51 \ifchilddoc

52 \includeonly{\childdocname}

53 \def\jobname{#1}

54 \fi

55 }

\childdocredirect The command \childdocredirect redirects compilation to the main or a child file #2. If
the optional argument #1 is given, the prefix #1 in the current filename is replaced by #2 (it is
assumed that the filename does not contain the substring ‘~~~’ which is used as a delimiter).
Finally, \jobname and \childdocname are set to the new filename and compilation is handed
over to the new file:

56 \newcommand{\childdocredirect}[2][]

57 {

58 {

59 \def\childdoctmp{#1}

60 \def\childdocempty{}

61 \ifx\childdoctmp\childdocempty

62 \gdef\jobname{#2}

63 \else

64 \def\childdocextract #1##1~~~{\gdef\jobname{#2##1}}

65 \expandafter\childdocextract\childdocname~~~

66 \fi

67 }

68 \let\childdocname\jobname

69 \input{\jobname}

70 \endinput

71 }

9

	Introduction
	Usage
	Considerations
	Conditional Processing
	Flags and Redirection
	Manual Code
	Command Line Processing

	Information
	Copyright
	Files and Installation
	Revision History

	Sample
	Implementation

