CHEMNUM

v0.3e 2011/12/01
Clemens Niederberger
http://www.mychemistry.eu/ contact@mychemistry.eu

A comprehensive approach for the numbering of chemical compounds with $\mathrm{ET}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$.

Scheme 1: In a solution the α - and the β-anomer of D -glucose ($\mathbf{1} \boldsymbol{\alpha}$ and $\mathbf{1 \beta}$) are in equilibrium via the open-chain form (1c).

Contents

1 Licence, Requirements 3
2 Package Options 3
3 Motivation 3
4 Numbering compounds 5
4.1 Basic command 5
4.2 Sublabels 6
4.3 Lists 6
5 Initialize labels at once 7
5.1 Usage 7
5.1.1 Main labels 7
5.1.2 Sublabels 8
5.2 Error instead of warning 8
5.3 Why initiate labels? 9
6 Resetting the counter 9
7 Special usage 9
7.1 Moving arguments - section titles 9
7.1.1 Test section title with compound label (7a) 10
7.1.2 Test section title with compound label (7b) 10
7.2 Floating environments 10
7.3 Schemes created by external programs 11
8 Customization 14
8.1 The principle 14
8.2 Font style 15
8.3 Own labels 15
8.4 Own markers in images 15
8.5 Counter 16
8.6 Delimiters 16
8.7 Suffix and prefix 18
8.8 Separators 19
8.8.1 In case of labels 19
8.8.2 In case of lists - input 19
8.8.3 In case of lists - generally 20
8.8.4 In case of lists - last separator 20
8.9 Sublabel marker 21
8.10 Lists and ranges of sublabels 22
9 Language Support 24
9.1 Cooperation with babel 24
9.2 Harvard Comma 24
10 Overview 25
10.1 Keys 25
10.2 Commands 26
11 Credits 27

1 Licence, Requirements

chemnum vo.3e underlies the ATEX Project Public License Version 1.3 or later.
(http://www.latex-project.org/lppl.txt)
CHEMNUM internally loads the packages expl3 and xparse ${ }^{1}$. xparse is part of the I3packages ${ }^{2}$ bundle, expl3 is part of the I3kernel ${ }^{3}$ bundle. This means, CHEMnUM needs ETEX3 Support.

CHEMNUM also needs the packages etoolbox ${ }^{4}$, psfrag 5 and either textgreek ${ }^{6}$ or bm^{7}, see section 2 .

2 Package Options

CHEMNUM has one package option.
\square

```
\usepackage[textgreek = <value>]{chemnum}
```

With this you can both choose between the three different styles of the textgreek package dchemnumwithoutthetextgreekpackage.Availablevaluesareartemisia,cbgreek,eulerandfalse.Using\usepackage[textgreek]\{chemnum\}isthesameas\usepackage[textgreek=cbgreek]\{chemnum\}.IfyouuseCHEMNUMwithoutoptiontextgreekisnotused.Thiscorrespondsto\usepackage[textgreek=false]\{chemnum\},thedefaultsetting.undefined

This document was set with ackage[textgreek]\{chemnum\}.undefinedundefinedundefinedundefinedundefinedundefined

3 Motivation

As far as I know there are three packages that are meant to help with numbering chemical compounds. All of them have their weaknesses.

The first one - chemcono ${ }^{9}$ - redefined bibliography commands for that purpose. Compounds have to be declared in what is called \theffbibliography. Then one can reference them with $\backslash f$ cite. However, it produces a list of compounds in the text. So the package author suggests:

[^0]Obviously that's not a perfect solution.
The second one - chemcompounds ${ }^{10}$ - was written, because the author didn't want to work with the weaknesses of chemcono any more. When he wrote the package he basically used the same mechanism to create the labels as chemcono did.

> When taking a closer look at the chemcono package, I realised that the only thing one has to do is to get rid of everything which produces text. Thus, as a basis I used the mechanism of \bibitem and \cite in pretty much the same way as chemcono does by extracting the corresponding code from article.cls and latex.ltx but deleting any unnecessary commands producing output. I also introduced several lines of code to make the printing of the compound names more customisable.

Stephan Schenk
Some points still left me unsatisfied, though:

1. Compounds usually need to be declared with \declarecompound. They need to be declared in any case if you need a label like 1a. Then, one even needs to choose the label by hand, what somehow undermines the automatic numbering principle.
2. The layout can't be changed for a single label but only for all.
3. The numbers can't be reset. Although in most cases this is neither necessary nor can it be recommended, there can be individual cases where this would be useful.
4. A list of several compounds \compound $\{a, b, c\}$ can only be customized with more effort than what would be convenient.

Then there is bpchem ${ }^{11}$, which provides commands similar to \label \ref: \CNlabel\{\}, $\backslash C N l a b e l n o r e f\}$ and $\backslash \operatorname{CNref}\}$. It provides commands for sublabels, too: \CNlabelsub\{\}\{\} , \CNlabelsubnoref $\}\}$ and $\backslash C N r e f s u b\}\}$. This makes it more flexible than the others regarding sublabels. However, it barely provides possibilities to customize the labels, lists are not possible and the fact that there are different commands for labels and sublabels isn't the best solution, either.

CHEMNUM is intended to fill these gaps. For this all commands have been written from scratch. Some of the ideas of chemcompounds e.g. regarding delimiters and layout have been picked up, though.

If you notice any feature missing, please let me know by sending me an email.

[^1]
4 Numbering compounds

4.1 Basic command

The main command of this package is

\cmpd\{<label name>\}

When <label name> is used the first time, the label is created, saved (= declared) and printed. Each further use just prints the label.

```
Compounds \cmpd{a} and \cmpd{b} are declared and can be used any time: \
    cmpd{a}. No pre-declaring is necessary. Compounds like \cmpd{c} are
    numbered in the order they appear in the text.\par
Once again: \cmpd{b}, \cmpd{a}, \cmpd{c}.
```

Compounds $\mathbf{1}$ and $\mathbf{2}$ are declared and can be used any time: $\mathbf{1}$. No pre-declaring is necessary. Compounds like $\mathbf{3}$ are numbered in the order they appear in the text.
Once again: 2, 1, 3 .

If it is necessary to declare a compound without printing the label, this is possible with

```
\cmpd*{<label name>}
```

This declares the label but doesn't print anything. This command is not needed when \backslash cmpdinit $\}$ is used, see section 5 (pages 7ff).

```
The hidden version\cmpd*{d} declares the label but doesn't print anything.
    The next \cmpd{e} continues to count with the next number. With \cmpd{d}
    the label can be used, of course.
```

The hidden version declares the label but doesn't print anything. The next 5 continues to count with the next number. With $\mathbf{4}$ the label can be used, of course.

You can pretty much use what you like for a label name ${ }^{12}$. You shouldn't leave blanks in the name, though. This may not cause an error at all, but could declare different compounds with the same name.

```
\cmpd{aa }, \cmpd{a a }, \cmpd{a a}, \cmpd{ a a}, \cmpd{ aa} and \cmpd{
    aa } all have the same label. As well as \cmpd{aa }, \cmpd{a a}, \cmpd{
    aa} and \cmpd{aa}.
```

6, 6, 6, 6, 6 and $\mathbf{6}$ all have the same label. As well as 6, 6, 6 and 6 .

[^2]
4.2 Sublabels

If you want a label like 1a, you need to use the following syntax:

```
\cmpd{<label name>.<subname>}
```

<label name> is the main name which stays the same, <subname> varies. This syntax means that the point . cannot be a part of <label name> or <subname>.

```
\cmpd{f.one} and \cmpd{f.two} are related, as are \cmpd{g.one} and \cmpd{g.
    two}. Of course, these labels can be used again: \cmpd{g.two} and \cmpd{
    f.one}.
```

$\mathbf{7 a}$ and $\mathbf{7 b}$ are related, as are $\mathbf{8 a}$ and $\mathbf{8 b}$. Of course, these labels can be used again: $\mathbf{8 b}$ and $7 \mathbf{a}$.

This also works, if the main name has already been used.

```
1 \cmpd{a} and its variants \cmpd{a.one} and \cmpd{a.two}
```

$\mathbf{1}$ and its variants $\mathbf{1 a}$ and $\mathbf{1 b}$
The same way the main name of combined labels can be used solely.

```
\cmpd{f} and \cmpd{g}
```


7 and 8

How you can create a label like 7a,b is explained in section 8.10.

4.3 Lists

There is actually more to the \backslash cmpd command. It also prints lists of labels.
The right description would be something like:

```
\cmpd{<(possibly comma separated list of)label name(s)>}
```

This means that with default settings the comma can't be part of the label name unless hidden in braces. You can change that, see section 8.8.2 on page 19.

```
More than one label can be put inside \verb=\cmpd=, separated by commas.
    Then a list like \cmpd{a, b, c, e, g.two} is printed.
```

More than one label can be put inside $\backslash \mathrm{cmpd}$, separated by commas. Then a list like 1, 2, 3, 5, and $\mathbf{8 b}$ is printed.

The Harvard comma (see 9.2) in, and between $\mathbf{5}$ and $\mathbf{8 b}$ suggests that there are options to customize the list, see sections 8.8 and 9 .

5 Initialize labels at once

The commands described in this section are not essential for the usage of CHEMNUM, but provide additional functionality that some users might find useful.

5.1 Usage

5.1.1 Main labels

Perhaps you're missing chemcompounds' command \declarecompound already. For one thing one has a summary of all used label names. And one may be warned if one uses an uninitialized label name ${ }^{13}$. This behaviour can be realized with these commands:

```
\cmpdinit{<comma separated list of label names>}
\cmpdinit*{<comma separated list of label names>}
```

All compounds set inside \cmpdinit $\}$ are initialized and declared in the given order. If one uses a label name that's not in the list, CHEMNUM produces a warning message.

```
\cmpdinit{A, B, C} \cmpd{B} \cmpd{A.a} \cmpd{C} \cmpd{D}
21a 34
```

```
**************************************************
* chemnum warning: "cmpd-init"
*
* You used \cmpdinit but didn't initiate compound "D" on line 1.
```

Please note that for labels with sublabels only the main name can and should be initialized. This initializes all compounds with the same main name.
\cmpdinit*\{\} also produces a warning but doesn't declare the labels. They are declared when you first use them in the order of appearance in the text.

```
\cmpdinit*{X, Y, Z} \cmpd{Y} \cmpd{X.x} \cmpd{Z} \cmpd{W}
```

12 a 34

```
*************************************************
* chemnum warning: "cmpd-init"
*
* You used \cmpdinit but didn't initiate compound "W" on line 1.
```

[^3]If you need to use own labels (see page 15) but still want to initialize all labels at once, you should use \cmpdinit*\{\}, because then no labels are declared when they're initialized.

This command can be used several times, with or without *. A useful way would be a single usage, though, proposedly in the preamble of your document after the CHEMNUM setup (see section 8).

5.1.2 Sublabels

If you'd like a warning for label-sublabel combinations as well, or want to preset their order, you can use

```
\cmpdinit[sub-init = true]{<comma separated list of label names>}
```

This will give you a warning in these cases, too.

```
\cmpdinit[sub-init = true]{E.e} \cmpd{E.e, E.f}
```

1a and 1b

```
*************************************************
* chemnum warning: "cmpd-sub-init"
*
* You used \cmpdinit and "sub-init = true" but didn't initiate sub-compound
* "E.f" on line 1.
****************************************************
```


5.2 Error instead of warning

If you want CHEMNUM to produce an error instead of a warning when you use an unititialized label name, you can use \cmpdinit like this:

```
\cmpdinit[strict=true]{<comma separated list of label names>}
```

A usage of strict=false would be the usage without optional argument. Of course the *-version has the same option.

With strict=true the ETEX run will be aborted with a corresponding error message, if a label name is used that hasn't been initialized before.

Of course you can use \cmpdinit with both keys:

```
\cmpdinit[strict = true, sub-init = true]{<comma separated list of label
    names>}
```

If you have chosen a different sublabel marker (see page 21) you need to use it with \cmpdinit [sub-init = true] as well.

5.3 Why initiate labels?

As mentioned in the beginning of this section the initiation of labels is not required. There are two possible reasons, why one would like to use them, anyway.

1. The use of \backslash cmpdinit* is a way to keep track of which labels you have used and gives you a warning/error message if you use a new one or just have mispelled an existing one. Depending on the number of labels you (have to) use, this can be lots of additional work, though.
2. The use of \cmpdinit does the same thing as \cmpdinit* and declares all the labels in the given order. So if you use it, you won't have to use $\backslash \mathrm{cmpd} *$ (section 4.1) and $\backslash \mathrm{cmpd}+$ (section 7.1). This gives you direct control, which number is given to which compound.

6 Resetting the counter

With the command
\square
it is possible to reset the counter. Without argument it is reset to 1 . So \backslash cmpdreset and \backslash cmpdreset [1] are the same. Unlike most other снемnum commands its impact is not only inside the local $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group but resets the counter globally.

```
\cmpdreset The numbering starts with 1 again: \cmpd{h, i, j}
```

The numbering starts with 1 again: 1, 2, and 3

You should be careful with how you use this command! Usually it cannot be recommended to reset the counter. Different compounds can get the same label!

```
Same label: \cmpd{a}, \cmpd{h} Same label: 1,1
```


7 Special usage

7.1 Moving arguments - section titles

Using \cmpd inside a section title in the first instant doesn't seem to be a problem. This doesn't give any errors and the output looks like expected:

```
\section{Compound \cmpd[cmpd-delim]{b}}
\ldots
```

However, if you use \tableof contents - which is rather probable, I guess - something unwanted happens: because the table of contents is at the beginning of the document, the label is declared in the table of contents instead of at the first appearance in the text. There are two ways to circumvent this:

1. You declare your labels in the order you want with \backslash cmpdinit $\}$ (see page 7) in the preamble or the beginning of the document.
2. You use $\backslash \mathrm{cmpd}+$ to set the label. It will read the label from the file <jobname>. cmpd (supposing your main file is called <jobname>. tex). This means at least two, maybe more ETEX runs are necessary until all labels are set.

The same is true for any other list of moving arguments that is created before the actual appearance of the label in the text.

The command

```
\cmpd+{<label name>}
```

reads the label name that is to be printed from <jobname>.cmpd. In a way this is the opposite of $\backslash \mathrm{cmpd} *$ since it doesn't declare a label but only references and prints it. So in order to use $\backslash c m p d+\{<l a b e l>\},<l a b e l>$ must have been declared, either with $\backslash c m p d\{<l a b e l>\}$ or with \backslash $\mathrm{cmpd} *\{<l a b e l>\}$. It doesn't matter, if this declaration is done before or after the usage of $\backslash \mathrm{cmpd}+$. This command is useful, if the label is used inside a moving argument like in \section\{\}. It is not needed when $\backslash \mathrm{cmpdinit}\}$ is used, see section 5 (pages 7 ff).

```
\subsubsection{Test section title with compound label \cmpd+[cmpd-delim]{f.
    one}}
% with hyperref:
\subsubsection{Test section title with compound label \texorpdfstring{\cmpd
    +[cmpd-delim]{f.two}}{(7b)}}
```


7.1.1 Test section title with compound label (7a)

7.1.2 Test section title with compound label (7b)

7.2 Floating environments

The usage of $\backslash \mathrm{cmpd}$ inside a float shouldn't be a problem: labels are declared in the order the floating environment appears in the code. However, to be on the safe side you can of course use $\backslash \mathrm{cmpd}+$ here as well.

```
% preamble:
% \usepackage{chemscheme}
% document:
\cmpdreset\cmpd{float1, float 2}. Now inside of a scheme:
```

```
\begin{scheme}[h]
    \centering
    \caption{This label should be a 2: \cmpd{float2}}
    If 2 = \cmpd{float 2} is true, everything's fine.
\end{scheme}
```

1 and 2 . Now inside of a scheme:

$$
\text { If } 2=2 \text { is true, everything's fine. }
$$

Scheme 2: This label should be a 2: 2

This also works, of the floating environment is placed before the code, for instance by using the option [t].

7.3 Schemes created by external programs

If you create your schemes by external programs like for e.g. ChemDraw or MarvinSketch, and want to use CHEMNUM with them as well, you can use this command:
\cmpdref $[<$ keyval $>][<$ tag $>]\{<$ label name $>\}$

This command is inspired by the \backslash schemeref command from the package chemscheme ${ }^{14}$. It works in a very similar way. You create the scheme and save it with temporary labels as an eps file.

```
\begin{scheme}[ht]
    \centering
    \includegraphics{scheme-tmp}
    \caption{Scheme with temporary markers.}
\end{scheme}
\begin{scheme}[ht]
    \centering
    \cmpdref{Alc} % replaces TMP1
    \cmpdref{EtherBr} % replaces TMP2
    % \cmpdref{third} would replace TMP3
    \includegraphics{scheme-tmp}
    \caption{Scheme with automatted labels.}
\end{scheme}
```

So you nummerate the compounds with TMP1, TMP2 etc. These markers will then be replaced with the corresponding labels. Like chemscheme chemnum uses the \psfrag command to do that. This means you have to either compile via latex, DVIPs, Ps2PDF, or for instance use the package auto-pst-pdf ${ }^{15}$ to be able to use pdFlatex.

[^4]

Scheme 3: Scheme with temporary markers.

Scheme 4: Scheme with automatted labels.

In each case it is important that the marker is saved as text in the eps file. You can customize the labels with the keys presented in section 8.

```
\begin{scheme}[ht]
    \centering
    \cmpdref[cmpd-style=\bf\sf\textcolor{green}]{Alc} % replaces TMP1
    \cmpdref[cmpd-style=\bf\sf\textcolor{green}]{EtherBr} % replaces TMP2
    \includegraphics{scheme-tmp}
    \caption{Scheme with automatted labels.}
\end{scheme}
```


Scheme 5: Scheme with automatted labels.
You also can replace arbitrary text by using the second optional argument.

```
\begin{scheme}[ht]
    \centering
```

```
\includegraphics{scheme-bla}
\caption{Scheme with arbitrary markers.}
\end{scheme}
\begin{scheme}[ht]
\centering
\cmpdref [][blah]{Alc}
\cmpdref[][blub]{EtherBr}
% \cmpdref{third} would replace TMP1
\includegraphics{scheme-bla}
\caption{Scheme with explicitly placed labels.}
\end{scheme}
```


Scheme 6: Scheme with arbitrary markers.

Scheme 7: Scheme with explicitly placed labels.

Of course sublabels work in the known way:

```
\begin{scheme}[ht]
    \centering
    \cmpdref{cpd.red}
    \cmpdref{cpd.ox}
    \includegraphics{scheme-tmp}
    \caption{Scheme with automatted labels and sublabels.}
\end{scheme}
```


Scheme 8: Scheme with automatted labels and sublabels.

8 Customization

8.1 The principle

chemnum is customized with a key-value system. They can either be used for all following commands with

```
\cmpdsetup{key1 = value1, key2 = value2}
```

or only for a single command directly with

```
\cmpd[key1 = value1, key2 = value2]{<label name>}
```

There are different kinds of keys. Depending on it they can have different kinds of values.
macro This kind of keys expects one or more macros as value. The last of them may have a mandatory argument, e.g. \bfseries or \textbf. CHEMNUM has only one such key, see section 8.2.
literal These keys use the given value "as it is", i. e. literally. Most of chemnum's keys are literal keys.
choice For these keys there is a list of options from which one must be chosen as a value.
boolean These keys can either have the value true or false.
If you use keys without values like \cmpdsetup\{key1, key2\}, default values are used. These are not necessarily empty are not necessarily the default setting of chemnum. All of chemnum's keys have default values. They are listed in section 10.1 on page 25.

The keys are divided in to different classes, which indicate the scope they're used for. They all follow the form <class>-key $=$ <value>: cmpd These keys change the whole label or the main label.
sub These keys have an impact on sublabels.
list Keys which change the output of lists.
ref Keys which have an impact on \cmpdref.

8.2 Font style

With the keys

```
cmpd-style = <style> type: macro cmpd-weight = bold/normal type: choice
```

you can change the style with which the labels are printed.

```
% preamble:
% \usepackage[normalem]{ulem}
% document:
\cmpd{a, b, f.two, k}\\\ % default
\cmpd[cmpd-style = \uline]{a, b, f.two, k}\\ % underlined
\cmpd{a, b, f.two, k}\\\ % default again
\cmpdsetup{cmpd-style = \itshape\uline}
\cmpd{a, b, f.two, k}\\ % underlined and in italics
\cmpd[cmpd-weight=normal]{a, b, f.two, k}
\(1,2,7 b\), and 9
\(\underline{1}, \underline{2}, 7 \mathbf{b}\), and 9
\(1,2,7 b\), and 9
\(\underline{1}, \underline{2}, \underline{\boldsymbol{b}}\), and \(\underline{9}\)
\(\overline{1}, \underline{2}, \underline{7 b}\), and \(\underline{9}\)
```

The separate handling of the bold face is because of the greek labels (see section 8.5). Depending on the package option textgreek, the bold face must realized differently.

8.3 Own labels

With the key

```
cmpd-label = <label>
```

type: literal
one can choose the label associated with the label name.

```
Own label: \cmpd[cmpd-label = XYZ]{l}; in a list \emph{all new compounds}
    get this label! \cmpd[cmpd-label = XYZ]{l, a, m}
```

Own label: XYZ; in a list all new compounds get this label! XYZ, 1, and XYZ

8.4 Own markers in images

If you don't want to use TMP as temporary markers for \backslash cmpdref (see page 11), you can change this. For example into tmp:

```
1 \cmpdsetup{ref-marker = tmp}
```


8.5 Counter

You can change the format of the counters, too, if you like.

```
cmpd-counter = <counter>
type: choice
sub-counter = <counter>
type: choice
```

You can choose between arabic, alph, Alph, greek, Greek, roman, Roman and Symbol.
Please note: a change of format only affects labels which are not yet declared!

```
\cmpdsetup{cmpd-counter = Alph, sub-counter = arabic}
\cmpd{a, b, f.two, k}\\ % no affect with existing labels
\cmpd{n.one,n.two,o.one}\\
\cmpd{f.three,f.four}\\ % be careful: the main label already exists and isn
    't changed!
\cmpd[cmpd-counter,sub-counter = greek]{p.one,p.two}
1,2,7b, and 9
J1, J2, and K1
73 and 74
12\alpha and 12\beta
```


8.6 Delimiters

Both single labels and whole lists can get delimiters. This is done with the keys

```
cmpd-delim = <odelim><cdelim>
type: literal
list-delim = <odelim><cdelim>
type: literal
values need two tokens!
```

```
\cmpd{a, b, f.two, k}\\ % default
\cmpd[cmpd-delim = ()]{a, b, f.two, k}\\ % in braces
\cmpd{a, b, f.two, k}\\ % default again
\cmpdsetup{cmpd-delim = ()}
\cmpd{a, b, f.two, k} % in braces
```

$1,2,7 b$, and 9
(1), (2), (7b), and (9)
$\mathbf{1 , 2}, \mathbf{7 b}$, and 9
(1), (2), (7b), and (9)

Please be aware that the default values (see pages 14 and 25) of cmpd-delim and list-delim and the default setting of chemnum are not the same. By default chemnum doesn't use delimiters. Also please note that the list delimiters only are used if \cmpd contains at least two label names.

```
\cmpd{a, b, f.two, k}\\ % default
\cmpd[list-delim = {[}{]}]{a, b, f.two, k}\\ % in braces
\cmpd{a, b, f.two, k}\\ % default again
\cmpdsetup{list-delim = []}
\cmpd{a, b, f.two, k}\\ % in braces
\cmpd{a} % NOT a list!
1,2,7b, and 9
[1,2,7b, and 9]
1, 2,7b, and 9
[1,2,7b, and 9]
1
```

If you generally use labels in braces but want to use a single one without braces, you have several possibilities:

```
\cmpdsetup{cmpd-delim=()}
normally: \cmpd{b}, \cmpd{c}, \cmpd{d.one}, but sometimes so \cmpd[cmpd-
    delim = ]{e} or so \cmpd-{e}.
```

normally: (2), (3), (4a), but sometimes so 5 or so 5 .

With

```
    \cmpd-{<label name>}
\cmpdref-{<label name>}
```

the braces of single labels can easily be removed (but not the ones of a list).

```
\cmpd{a, b, f.two, k}\\ % default
\cmpdsetup{cmpd-delim = (), list-delim = []}
\cmpd{a, b, f.two, k}\\ % braced twice
\cmpd-{a, b, f.two, k} % braced once
1, 2, 7b, and 9
[(1), (2), (7b), and (9)]
[1, 2, 7b, and 9]
```

Using $\backslash c m p d s e t u p\{c m p d-d e l i m=\}$ and $\backslash c m p d s e t u p\{l i s t-d e l i m=\}$ will restore the default behaviour.

8.7 Suffix and prefix

If you want to, you can also add a prefix and/or a suffix to a compound and/or a list.

```
cmpd-prefix = <prefix>
cmpd-suffix = <prefix>
list-prefix = <prefix>
list-suffix = <prefix>
type: literal
type: literal
type: literal
type: literal
```

The same rule as for the delimiters applies: list attributes are only used with lists, i.e. at least with two items.
An example for the label attributes:

```
\cmpd{a, b, f.two, k}\\ % default
\cmpd[cmpd-prefix = Nr.]{a, b, f.two, k}\\
\mppdsetup{cmpd-prefix = \textnumero}
\cmpd{a, b, f.two, k}\\
\cmpd{a} % NOT a list!
```

$1,2,7 b$, and 9
Nr. 1, Nr. 2, Nr. 7b, and Nr. 9
■1, ■2, ■7b, and $■ 9$
$■ 1$

An example for the list attributes:

```
\cmpd{a, b, f.two, k}\\ % default
\cmpd[list-prefix = list:]{a, b, f.two, k}\\
\cmpdsetup{list-prefix = collection:}
\cmpd{a, b, f.two, k}\\
\cmpd{a} % NOT a list!
1,2,7b, and 9
list: 1, 2,7b, and 9
collection: 1, 2, 7b, and 9
1
```

Between prefix, label and suffix there is a space inserted as default behaviour:

```
\cmpd[cmpd-suffix=sx,cmpd-prefix=px]{k}
px 9 sx
```

It can be changed with

```
cmpd-space = <space>
```

$1 \backslash \operatorname{cmpd}[c m p d-s u f f i x=s x, c m p d-p r e f i x=p x, \operatorname{cmpd}-s p a c e=\{ \}]\{k\}$
px9sx

8.8 Separators

8.8.1 In case of labels

If you have labels with sublabels, you can use a separator symbol:

```
cmpd-sep = <separator>
```

type: literal

```
\cmpd{a, b, f.two, f.three, k}\\ % default
\cmpd[cmpd-sep = -]{a, b, f.two, f.three, k}\\
\cmpdsetup{cmpd-sep = $\cdot$}
\cmpd{a, b, f.two, f.three, k}\\
\cmpd[cmpd-sep = :]{a, b, f.two, f.three, k}
```

$1,2,7 b, 73$, and 9
$1,2,7-b, 7-3$, and 9
$1,2,7 \cdot b, 7 \cdot 3$, and 9
$1,2,7: b, 7: 3$, and 9

8.8.2 In case of lists - input

If you like you can change the list input seperator. Predefined is the comma.

```
list-input-sep = <separator>
```

```
\cmpd{a, b, f.two, k}\\ % default
\cmpd[list-input-sep = +]{a + b + f.two + k}\\
\cmpd{a, b, f.two, k}\\
\cmpdsetup{list-input-sep = ;}
\cmpd{a; b; f.two; k}
1, 2,7b, and 9
1,2,7b, and 9
1,2,7b, and 9
1,2,7b, and 9
```

With this you can for example use IUPAC names as label names ${ }^{16}$.

[^5]
8.8.3 In case of lists - generally

In case of lists you also can set a separator symbol, which determines how the labels are separated from each other. This is the comma as default.

```
list-output-sep = <separator>
type: literal
```

```
\cmpd{a, b, f.two, k}\\ % default
\cmpd[list-output-sep = ]{a, b, f.two, k}\\
\cmpd{a, b, f.two, k}\\
\cmpdsetup{list-output-sep = ;}
\cmpd{a, b, f.two, k}
1, 2,7b, and 9
127b and 9
1,2,7b, and 9
1; 2;7b; and 9
```


8.8.4 In case of lists - last separator

The last separator in a list is a special case. сhemnum provides two keys with which it can be customized.

```
list-last-sep = <separator>
type: literal
list-lang = <lang>
    type: choice
```

There is the choice key list-lang, which changes language dependent settings. You can choose between US (default), GB, DE, FR, ES and IT.

```
\cmpd[list-lang = US]{a, b, f.two, k} \cmpd[list-lang = US]{a, b}\\
\cmpd[list-lang = GB]{a, b, f.two, k} \cmpd[list-lang = GB]{a, b}\\
\cmpd[list-lang = DE]{a, b, f.two, k} \cmpd[list-lang = DE]{a, b}\\
\cmpd[list-lang = FR]{a, b, f.two, k} \cmpd[list-lang = FR]{a, b}\\
\cmpd[list-lang = ES]{a, b, f.two, k} \cmpd[list-lang = ES]{a, b}\\
\cmpd[list-lang = IT]{a, b, f.two, k} \cmpd[list-lang = IT]{a, b}
```

$1,2,7 b$, and 91 and 2
$1,2,7 b$ and 91 and 2
$1,2,7 b$ und 91 und 2
$1,2,7 b$ et 91 et $\mathbf{2}$
$1,2,7 b$ y 91 y 2
$1,2,7 b$ e 91 e 2

As you can see the language US uses the Harvard comma, all other languages don't. You'll find more on language support and the Harvard comma in section 9.

With the key list-last-sep you also can set the last separator individually.

```
\cmpdsetup{list-lang = GB}%
\cmpd[list-last-sep = {and also}]{a, b, f.two, k}\\
\cmpd[list-last-sep = ]{a, b, f.two, k}\\
\cmpd[list-last-sep = {as well as}]{a, b, f.two, k}\\
\cmpd[list-last-sep = empty]{a, b, f.two, k}
```

1, 2, 7b and also 9
1, 2, 7b 9
$1,2,7 b$ as well as 9
1, 2, 7b, 9
empty is a special value. If it is used, the separator set with list-output-sep is used for the whole list.

```
\cmpdsetup{list-last-sep = empty}%
\cmpd{a, b, f.two, k}\\
\cmpd[list-output-sep = ;]{a, b, f.two, k}\\
\cmpd[list-output-sep = {\ and}]{a, b, f.two, k}
```

1, 2, 7b, 9
1; 2; 7b; 9
1 and 2 and $7 b$ and 9

8.9 Sublabel marker

As a default setting Chemnum uses the point . as a token to divide main label names from sub label names. You can change that as you like. Tokens you can't use are , \% \# and you shouldn't use @.

```
sub-marker = <separator>
```

```
\cmpdsetup{sub-marker = !}%
\cmpd{f!one, g!two}\\
\cmpd[sub-marker= +]{f+one, g+two}\\\
\cmpd[sub-marker= ~]{f~one, g~two}\\
\cmpd[sub-marker= &]{f&one, g&two}\\
\cmpd[sub-marker=*]{f*one, g*two}\\
\cmpd[sub-marker=\marker]{f\marker one,g\marker two}
```

$7 \mathbf{a}$ and $\mathbf{8 b}$
$7 \mathbf{a}$ and $\mathbf{8 b}$
$7 \mathbf{a}$ and $8 \mathbf{b}$
$7 \mathbf{a}$ and $\mathbf{8 b}$
$7 \mathbf{a}$ and $8 \mathbf{b}$
$7 \mathbf{a}$ and $\mathbf{8 b}$

You should - not only for the sake of consistency - decide only once in the beginning of your document before the \tableof contents or in the preamble, which marker you use. Otherwise, the
\tableof contents won't know the marker anymore and your labels might be at least displayed wrong in the table of contents. Also you need to setup the marker before you use it with $\backslash \mathrm{cmpd}$ or \cmpdinit etc.

8.10 Lists and ranges of sublabels

Sometimes it can be useful to display a label with a list or a range of sublabels. Suppose you have compounds 13a, 13b, 13c, 13d, and $\mathbf{1 3 e}$ which for example differ in their substituents. It can be useful to refer to them all at once: 13a-e.
chemnum provides two keys to create such an output and two keys to customize the range.

```
cmpd-all = <bool>
sub-list = {<list of sublabel names>} type:other
sub-range-sep = <separator>
type: literal
sub-range-marker = <marker> type: literal
```

The type of the key sub-list differs from other keys. It is similar to literal. Best you look at the example below.

```
List of labels: \cmpd{q.one, q.two, q.three, q.four, q.five} \\
All at once: \cmpd[cmpd-all]{q}
```

List of labels: 13a, 13b, 13c, 13d, and 13e
All at once: 13a-e

If you don't want to address all sublabels but some of them, you can use the key sub-list. As input you write a comma separated list of sublabel names associated with the main label you use.

```
\cmpd[sub-list={one,three,four}]{q} 13a,c,d
```

You also can use this key to print a range of sublabels. As a marker between the names of the sublabels two points . . are used.

```
\cmpd[sub-list={two..four}]{q}\\
\cmpd[sub-list={one,three..five}]{q}\\
\cmpd[sub-list={one..three,five}]{q}
13b-d
13a,c-e
13a-c,e
```

With the keys sub-range-sep and sub-range-marker you can both change the symbol that's used to indicate the range and the marker you use to input a range.

```
\cmpdsetup{sub-range-sep = {--}, sub-range-marker = : }
\cmpd[sub-list={two:four}]{q}
13b-d
```

In order to get the right sublabels the command needs to know, which sublabels have been declared. This means that they're read from the <jobname>. cmpd file (supposing your source file is called <jobname>. tex). So you may need to compile twice (or more) until the labels are printed right.

If one uses label with sublabel ranges, one might want to use only the sublabels in a different place. This is possible with this key:

```
sub-only = <bool>
```

type: boolean

```
% use packages 'chemfig', 'mhchem' and 'booktabs'
\cmpd*{benzene.H,benzene.Me,benzene.OH, benzene.NH2}
\chemname{\chemfig{*6(=-=-(-R)=-)}}{\cmpd[cmpd-all]{benzene}}
\begin{tabular}{1ll}
    \cmpd[sub-only]{benzene.H} & \ce{{}-H} & Benzene \\
    \cmpd[sub-only]{benzene.Me} & \ce{{}-CH3} & Toluene \\
    \cmpd[sub-only]{benzene.OH} & \ce{{}-OH} & Phenol \\
    \cmpd[sub-only]{benzene.NH2} & \ce{{}-NH2} & Phenylamine (Aniline)
\end{tabular}
```


For the time being the sub-list key requires a little caution. Unfortunately automatic sorting isn't quite as trivial as one would wish. So you have to use the sublabel names in the right order if you want to avoid labels like these:

```
\cmpd[sub-list={five..three}]{q} or \cmpd[sub-list={three,one,four}]{q}.
```

$13 e-c$ or $13 c, a, d$.

9 Language Support

9.1 Cooperation with babel

CHEMNUM supports the language choice made with the babe ${ }^{17}$ package for a number of languages. This is done with the \backslash translate command of the translator package, if it is available. If translator cannot be loaded, language support must be done manually, see section 8.8.4. Manual language settings can of course still be done, if translator has been loaded.

```
\selectlanguage{ngerman}DE: \cmpd{r,s,t} \selectlanguage{german}\cmpd{r,s,t
    }\\
\selectlanguage{naustrian}AU: \cmpd{r,s,t} \selectlanguage{austrian}\cmpd{r
    ,s,t}\\
\selectlanguage{english}EN: \cmpd{r,s,t}\\
\selectlanguage{british}GB: \cmpd{r,s,t}\\
\selectlanguage{american}US: \cmpd{r,s,t}\\
\selectlanguage{canadian}CDN-EN: \cmpd{r,s,t}\\
\selectlanguage{canadien}CDN-FR: \cmpd{r,s,t}\\
\selectlanguage{french}FR: \cmpd{r,s,t}\\
\selectlanguage{spanish}ES: \cmpd{r,s,t}\\
\selectlanguage{italian}IT: \cmpd{r,s,t}
```

DE: 15, 16 und 17 15, 16 und 17
AU: 15, 16 und 17 15, 16 und 17
EN: 15, 16, and 17
GB: 15, 16 and 17
US: 15, 16, and 17
CDN-EN: 15, 16, and 17
CDN-FR: 15, 16 et 17
FR : 15, 16 et 17
ES: 15, 16 y 17
IT: 15, 16 e 17

If you find a language missing, please send me an email ${ }^{18}$ with the corresponding babel option and the right translation, and I will gladly add it.

9.2 Harvard Comma

In American English the so-called Harvard comma is quite commonly used. In British English and other European languages it is rather uncommon.

The serial comma (also known as the Oxford comma or Harvard comma, and sometimes referred to as the series comma) is the comma used immediately before a coordinating conjunction (usually and or or, and sometimes nor) preceding the final item in a list of three or more items. For example, a list of three countries can be punctuated as either "Portugal, Spain, and France" (with the serial comma) or as "Portugal, Spain and France" (without the serial comma).
Opinions vary among writers and editors on the usage or avoidance of the serial comma. In American English, the serial comma is standard usage in non-journalistic writing that follows

[^6]the Chicago Manual of Style. Journalists, however, usually follow the AP Stylebook, which advises against it. It is used less often in British English, where it is standard usage to leave it out, with some notable exceptions such as Fowler's Modern English Usage. In many languages (e.g., French, German, Italian, Polish, Spanish), the serial comma is not the norm and may even go against punctuation rules. It may be recommended in many cases, however, to avoid ambiguity or to aid prosody.

Wikipedia, 2011/11/07
chemnum uses the Harvard comma when American English is used and doesn't, when other languages are used. However, you have the possibility to disable or enable the Harvard comma as you wish:

```
list-serial-comma = <bool>
Typ: boolean
```

```
\selectlanguage{ngerman}DE: \cmpd[list-serial-comma]{r,s,t} vs. \cmpd{r,s,t
    }\\
\selectlanguage{american}US: \cmpd[list-serial-comma=false]{r,s,t} vs. \
    cmpd{r,s,t}
```

DE: 15, 16, und 17 vs. 15,16 und 17
US: $\mathbf{1 5}, 16$ and 17 vs. $\mathbf{1 5}, 16$, and 17

If you choose the language manually, please note that this resets the default behaviour for that language. This means you have to use list-serial-comma after list-lang.

```
wrong: \cmpdsetup{list-serial-comma=false, list-lang=US}\cmpd{r,s,t}\\
right: \cmpdsetup{list-lang=US, list-serial-comma=false}\cmpd{r,s,t}
```

wrong: 15, 16, and 17
right: 15, 16 and 17

10 Overview

10.1 Keys

In this section all keys are listed.

key	default	type
cmpd-style		macro
cmpd-weight	bold	choice
cmpd-label		literal
cmpd-delim	()	literal
cmpd-odelim		literal
cmpd-cdelim		literal

cmpd-prefix		literal
cmpd-suffix		literal
cmpd-space	\penalty \@m\	literal
cmpd-sep		literal
cmpd-counter	arabic	choice
cmpd-all	true	boolean
sub-marker		literal
sub-counter	alph	choice
sub-list		other ${ }^{\text {b }}$
sub-range-sep	-	literal
sub-range-marker	.	literal
sub-only		boolean
list-delim ${ }^{\text {a }}$	()	literal
list-odelim		literal
list-cdelim		literal
list-prefix		literal
list-suffix		literal
list-input-sep	,	literal
list-output-sep	,	literal
list-lang	US	choice
list-last-sep	and ${ }^{\text {c }}$	literal
list-serial-comma		boolean
ref-tag	TMP	literal

a value needs two tokens.
b input is a comma separated list, see p. 22.
c depends on the value of list-lang and the usage of babel.

10.2 Commands

In this section all commands provided by сhemnum as well as their variants are listed.

command	description
\cmpd []\{\}	basic command, declares and prints labels or lists of labels, see pages 5 ff .
$\backslash \mathrm{cmpd} *\}$	invisible, declares label, see page 5
\cmpd - [] \{\}	without delimiters, see page 17
\cmpd +-[]\{\}	label is read from auxiliary file, see page 10
\ompdinit \{\}	initialise and declare labels, see pages 7 f .
\cmpdinit *\{\}	initialise labels, see pages 7f.
\cmpdref [] [] \{\}	replace temporary markers in eps files by labels, see page 11
\cmpdref - [] [] \{\}	replace temporary markers in eps files by labels without delimiters, see page 17
\cmpdreset []	reset counter, siehe page 9
\cmpdsetup \{\}	setup CHEMNUM, siehe pages 14ff.

11 Credits

I would like to thank Joseph Wright and Russell Hewitt who provided me with valuable feedback and suggestions to improve CHEMNUM.

[^0]: ${ }^{1}$ http://www.ctan.org/pkg/xparse
 ${ }^{2}$ http://www.ctan.org/pkg/l3packages
 ${ }^{3}$ http://www.ctan.org/pkg/l3kernel
 ${ }^{4}$ http://www.ctan.org/pkg/etoolbox
 ${ }^{5}$ http://www.ctan.org/pkg/psfrag
 ${ }^{6}$ http://www.ctan.org/pkg/textgreek
 ${ }^{7}$ http://www.ctan.org/pkg/bm
 ${ }^{8}$ See the textgreek documentation for details.
 ${ }^{9}$ http://www.ctan.org/pkg/chemcono

[^1]: ${ }^{10}$ http://www.ctan.org/pkg/chemcompounds
 ${ }^{11}$ http://www.ctan.org/pkg/bpchem

[^2]: ${ }^{12}$ There are restrictions, see section 4.3 on page 6 , section 8.8 .2 on page 19 , section 4.2 on page 6 and section 8.9 on page 21.

[^3]: ${ }^{13}$ for instance due to a typing error

[^4]: ${ }^{14}$ http://www.ctan.org/pkg/chemscheme
 ${ }^{15}$ http://www.ctan.org/pkg/auto-pst-pdf

[^5]: ${ }^{16}$ Thanks to Christina Lüdingk who in a way suggested this feature.

[^6]: ${ }^{17}$ http://www.ctan.org/pkg/babel
 ${ }^{18}$ contatc@mychemistry.eu

