% arara: xelatex % !arara: biber % !arara: xelatex % !arara: xelatex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ----------------------------------------------------------------------------- % - the CHEMMACROS bundle % - chemmacros_en.tex % - macros and commands for chemists % ----------------------------------------------------------------------------- % - Clemens Niederberger % - % ----------------------------------------------------------------------------- % - https://bitbucket.org/cgnieder/chemmacros/ % - contact@mychemistry.eu % ----------------------------------------------------------------------------- % - If you have any ideas, questions, suggestions or bugs to report, please % - feel free to contact me. % ----------------------------------------------------------------------------- % - Copyright 2011-2013 Clemens Niederberger % - % - This work may be distributed and/or modified under the % - conditions of the LaTeX Project Public License, either version 1.3 % - of this license or (at your option) any later version. % - The latest version of this license is in % - http://www.latex-project.org/lppl.txt % - and version 1.3 or later is part of all distributions of LaTeX % - version 2005/12/01 or later. % - % - This work has the LPPL maintenance status `maintained'. % - % - The Current Maintainer of this work is Clemens Niederberger. % ----------------------------------------------------------------------------- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % if you want to compile this documentation % a) you'll need the document class `cnpkgdoc' which you can get here: % https://bitbucket.org/cgnieder/cnpkgdoc/ % the class is licensed LPPL 1.3 or later % b) you need the following compilation order: % > xelatex chemmacros_en (2 or probably 3 times) % > biber chemmacros_en % > xelatex chemmacros_en (2 times) % \documentclass[DIV11,toc=index,toc=bib]{cnpkgdoc} \docsetup{ pkg = {[greek=newtx]chemmacros}, language = en, title = the \Chemmacros\ bundle, subtitle = { packages \Chemmacros\ (v\csname chemmacros@version\endcsname), \Chemformula\ (v\csname chemformula@version\endcsname), \Ghsystem\ (v\csname ghsystem@version\endcsname) and \Chemgreek\ (v\csname chemgreek@version\endcsname)\\[2ex] {\Large documentation for the \Chemmacros\ package}}, modules = true, code-box = {skipabove=1ex,skipbelow=1ex}, label = {}, } \usepackage{chemfig,booktabs,cancel} \usepackage[version=3]{mhchem} \usepackage{fontspec} \usepackage[oldstyle,proportional]{libertine} \usepackage[libertine]{newtxmath} \usepackage{libertinehologopatch} \setmonofont[Scale=MatchLowercase]{Bitstream Vera Sans Mono} \cnpkgusecolorscheme{friendly} \renewcommand*\othersectionlevelsformat[3]{% \textcolor{main}{#3\autodot}\enskip} \renewcommand*\partformat{% \textcolor{main}{\partname~\thepart\autodot}} \usepackage{fnpct} \usepackage[biblatex]{embrac} \ChangeEmph{[}[,.02em]{]}[.055em,-.08em] \ChangeEmph{(}[-.01em,.04em]{)}[.04em,-.05em] \pagestyle{headings} \usepackage[accsupp]{acro} \acsetup{ long-format=\scshape, short-format=\scshape } \DeclareAcronym{ghs}{ short = ghs , long = Globally Harmonized System of Classification and Labelling of Chemicals , pdfstring = GHS , accsupp = GHS } \DeclareAcronym{eu}{ short = EU , long = European Union , pdfstring = EU , accsupp = EU } \DeclareAcronym{iupac}{ short = iupac , long = International Union of Pure and Applied Chemistry , pdfstring = IUPAC , accsupp = IUPAC } \DeclareAcronym{UN}{ short = un , long = United Nations , pdfstring = UN , accsupp = UN } \DeclareAcronym{dvi}{ short = dvi , long = device independent file format , pdfstring = DVI , accsupp = DVO } \DeclareAcronym{pdf}{ short = pdf , long = portable document file , pdfstring = PDF , accsupp = PDF } \chemsetup{ option/synchronize , chemformula/font-spec={[Numbers=Lining]Linux Libertine O} } \colorlet{chemformula}{darkgray} \sisetup{ detect-mode=false, mode=text, text-rm=\addfontfeatures{Numbers={Proportional,Lining}} } \usepackage{filecontents} \begin{filecontents*}{\jobname.ist} preamble "\\begin{theindex}\n Section titles are indicated \\textbf{bold}, packages \\textsf{sans serif}, commands \\code{\\textbackslash\\textcolor{code}{brown}}, options \\textcolor{key}{\\code{yellow}} and modules (only \\chemmacros) \\textcolor{module}{\\code{blue}}.\\newline\n\n" heading_prefix "{\\bfseries " heading_suffix "\\hfil}\\nopagebreak\n" headings_flag 1 delim_0 "\\dotfill\\hyperpage{" delim_1 "\\dotfill\\hyperpage{" delim_2 "\\dotfill\\hyperpage{" delim_r "}\\textendash\\hyperpage{" delim_t "}" suffix_2p "\\nohyperpage{\\,f.}" suffix_3p "\\nohyperpage{\\,ff.}" \end{filecontents*} \usepackage[backend=biber,style=alphabetic,maxbibnames=20]{biblatex} \addbibresource{\jobname.bib} \begin{filecontents*}{\jobname.bib} @book{iupac:greenbook, author = {E. Richard Cohan and Tomislav Cvita\v{s} and Jeremy G. Frey and Bertil Holmström and Kozo Kuchitsu and Roberto Marquardt and Ian Mills and Franco Pavese and Martin Quack and Jürgen Stohner and Herbert L. Strauss and Michio Takami and Anders J Thor}, title = {“Quantities, Symbols and Units in Physical Chemistry”, \acs{iupac} Green Book}, edition = {3rd Edition. 2nd Printing}, year = {2008}, publisher = {\acs{iupac} \&\ RSC Publishing, Cambridge} } @book{iupac:redbook, author = {Neil G. Connelly and Ture Damhus and Richard M. Hartshorn and Alan T. Hutton}, title = {“Nomenclature of Inorganic Chemistry”, \acs{iupac} Red Book}, year = {2005}, publisher = { \acs{iupac} \&\ RSC Publishing, Cambridge}, isbn = {0-85404-438-8} } @misc{eu:ghsystem_regulation, author = {{The European Parliament and The Council of the European Union}}, title = {Regulation (EC) No 1272/2008 of the European Parliament and of the Council}, subtitle = {on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006}, journal = {Official Journal of the European Union}, date = {2008-12-16} } @online{unece:ghsystem_implementation, author = {United Nations Economic Commission for Europe}, title = {GHS Implementation}, url = {http://www.unece.org/trans/danger/publi/ghs/implementation_e.html}, urldate = {2012-03-20}, date = {2012-03-20} } \end{filecontents*} \DeclareInstance{xfrac}{chemformula-text-frac}{text} { scale-factor = 1 , denominator-bot-sep = -.2ex , denominator-format = \scriptsize #1 , numerator-top-sep = -.2ex , numerator-format = \scriptsize #1 , slash-right-kern = .05em , slash-left-kern = .05em } \usetikzlibrary{calc,positioning,decorations.pathmorphing,patterns} \pgfdeclaredecoration{penciline}{initial}{ \state{initial}[ width=+\pgfdecoratedinputsegmentremainingdistance, auto corner on length=1mm ]{ \pgfpathcurveto% {% From \pgfqpoint {\pgfdecoratedinputsegmentremainingdistance} {\pgfdecorationsegmentamplitude} } {% Control 1 \pgfmathrand \pgfpointadd {\pgfqpoint{\pgfdecoratedinputsegmentremainingdistance}{0pt}} {% \pgfqpoint {-\pgfdecorationsegmentaspect\pgfdecoratedinputsegmentremainingdistance}% {\pgfmathresult\pgfdecorationsegmentamplitude} } } {%TO \pgfpointadd {\pgfpointdecoratedinputsegmentlast} {\pgfpoint{1pt}{1pt}} } } \state{final}{} } \tikzset{pencil/.style={decorate,decoration=penciline}} \TitlePicture{% \ch[font-spec={Augie}]{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" {}+ + 2 "\OX{r2,\ox{-1,Cl}}" {}- } \redox(o1,o2)[red,pencil,-cf]{\small\ch[font-spec={[Color=red]Augie},math-space=.3em]{$-$ 2 e-}} \redox(r1,r2)[blue,pencil,-cf][-1]{\small\ch[font-spec={[Color=blue]Augie},math-space=.3em]{$+$ 2 e-}}} \addcmds{ a, abinitio, AddRxnDesc, anti, aq, aqi, b, ba, bond, bottomrule, bridge, cancel, cd, cdot, ce, cee, celsius, centering, chemabove, Chemalpha, Chembeta, Chemgamma, Chemdelta, ChemDelta, chemfig, chemname, Chemomega, chemsetup, cip, cis, ch, clap, cnsetup, CNMR, color, cstack, cstsetup, d, D, data, DeclareChemArrow, DeclareChemBond, DeclareChemBondAlias, DeclareChemIUPAC, DeclareChemLatin, DeclareChemNMR, DeclareChemParticle, DeclareChemPhase, DeclareChemReaction, DeclareChemState, DeclareInstance, DeclareSIUnit, DeclareTranslation, definecolor, delm, delp, Delta, Dfi, draw, E, el, electronvolt, ElPot, endo, Enthalpy, enthalpy, Entropy, footnotesize, fmch, fpch, fscrm, fscrp, g, gas, ghs, ghslistall, ghspic, Gibbs, glqq, gram, grqq, H, hapto, HNMR, Helmholtz, hertz, hspace, includegraphics, insitu, intertext, invacuo, iupac, IUPAC, J, joule, Ka, Kb, kilo, Kw, L, latin, lewis, Lewis, Lfi, listofreactions, lqd, ltn, mch, mega, meta, metre, mhName, midrule, milli, mmHg, mole, N, nano, nicefrac, newman, NMR, Nu, Nuc, num, numrange, O, ominus, orbital, ortho, oplus, ox, OX, p, P, para, pch, per, percent, pgfarrowsdeclarealias, pgfarrowsrenewalias, pH, phase, photon, pKa, pKb, pOH, pos, positron, Pot, prt, R, Rad, redox, RenewChemArrow, RenewChemBond, RenewChemIUPAC, RenewChemLatin, RenewChemNMR, RenewChemParticle, RenewChemPhase, RenewChemState, renewtagform, rightarrow, S, Sf, sample, scriptscriptstyle, scrm, scrp, second, setatomsep, setbondoffset, setchemformula, sfrac, shorthandoff, ShowChemArrow, ShowChemBond, si, SI, sisetup, sld, Sod, square, State, subsection, textcolor, textendash, textsuperscript, tiny, toprule, trans, upbeta, upeta, upgamma, val, volt, vphantom, vspave, w, xspace, Z } \usepackage{imakeidx} \indexsetup{othercode=\footnotesize} \makeindex[columns=3,intoc,options={-sl \jobname.ist}] \newcommand*\Chemmacros{% {% \fontspec[Color=main,Scale=1.2] {Linux Biolinum Shadow O}% chemmacros% }% } \providecommand*\chemmacros{{\scshape\textcolor{main}{chemmacros}}\xspace} \newcommand*\Chemformula{% {% \fontspec[Color=main,Scale=1.2] {Linux Biolinum Shadow O}% chemformula% }% } \providecommand*\chemformula{{\scshape\textcolor{main}{chemformula}}\xspace} \newcommand*\Ghsystem{% {% \fontspec[Color=main,Scale=1.2] {Linux Biolinum Shadow O}% ghsystem% }% } \providecommand*\ghsystem{{\scshape\textcolor{main}{ghsystem}}\xspace} \newcommand*\Chemgreek{% {% \fontspec[Color=main,Scale=1.2] {Linux Biolinum Shadow O}% chemgreek% }% } \providecommand*\chemgreek{{\scshape\textcolor{main}{chemgreek}}\xspace} \newcommand*\Default[1]{% \hfill\llap{% \ifblank{#1} {(initially~empty)} {Default:~\code{#1}}% }\newline } \usepackage{marginnote,ragged2e} \makeatletter \providecommand*\sinceversion[1]{% \@bsphack \marginnote{% \footnotesize\sffamily\RaggedRight \textcolor{black!75}{Introduced in version~#1}}% \@esphack} \providecommand*\changedversion[1]{% \@bsphack \marginnote{% \footnotesize\sffamily\RaggedRight \textcolor{black!75}{Changed in version~#1}}% \@esphack} \RenewDocumentCommand\CTANurl{O{macros/latex/contrib}m} {% on CTAN: % \hyper@linkurl{#2}{http://mirrors.ctan.org/#1/#2/}% } \ExplSyntaxOn \RenewDocumentCommand \paket { sO{macros/latex/contrib}m } { \paketfont { #3 } \index { #3 @ \paketfont { #3 } } \prop_if_in:NnF \g_cnpkgdoc_pakete_prop { #3 } { \prop_gput:Nnn \g_cnpkgdoc_pakete_prop { #3 } {} \IfBooleanF { #1 } { \footnote { \CTANurl[]{#3} } } } } \ExplSyntaxOff \makeatother \DeclareChemPhase{\aqi}{aq,$\infty$}% aqueous solution at infinite dilution \DeclareChemPhase{\cd}{cd}% condensed phase \RenewChemPhase{\lqd}{lc}% liquid crystal \begin{document} \part{Preliminaries}\secidx{PRELIMINARIES} \section{Licence, Requirements and \textsc{README}} Permission is granted to copy, distribute and/or modify this software under the terms of the \LaTeX\ project public license (lppl) version 1.3 or later (\url{http://www.latex-project.org/lppl.txt}). The package has the status ``maintained.'' The \chemmacros\ bundle needs the bundles \paket{l3kernel} and \paket{l3packages}. It also needs the packages \paket{siunitx}, \paket{mathtools}, \paket{bm}, \paket{nicefrac} and \paket{environ} as well as \paket*{tikz}\footnote{\CTANurl[graphics]{pgf}} and the \TikZ libraries \code{calc} and \code{arrows}. Language support is done with the help of the \paket*{translations} package from the \paket{exsheets} bundle. The \chemmacros\ package also loads the other packages of this bundle. The package option \key{xspace} also loads the package \paket{xspace}. The \chemmacros\ bundle bundles four packages: \chemmacros, \chemformula, \ghsystem\ and \chemgreek. The package dependencies of the other packages are described in the respective manuals. \section{Motivation and Background} \chemmacros\ started some years ago as a growing list of custom macros that I frequently used. I cannot completely recall when and why I decided to release them as a package. Well \textendash\ here we go and you might find it useful, too, I hope. Both the macros and their functionality have changed over time and quite a lot have been added. Many things have been unified and what's probably most important: many possibilities to customize have been added, too. Probably every chemist using \LaTeXe\ is aware of the great \paket{mhchem} package by Martin Hensel. There have always been some difficulties intertwining it with \chemmacros, though. Also, some other minor points in \paket{mhchem} always bothered me, but they hardly seemed enough for a new package. They weren't even enough for a feature request to the \paket{mhchem} author. The challenge and the fun of creating a new package and the wish for a highly customizable alternative led to \chemformula\ after all. \chemformula\ works very similar to \paket{mhchem} but is more strict as to how compounds, stoichiometric factors and arrows are input. In the same time \chemformula\ offers possibilities to customize the output that \paket{mhchem} does not. Although \chemformula\ is meant as an \emph{alternative} to \paket{mhchem} \chemmacros\ only loads \chemformula\ and uses it at various places internally, too. As a chemist you are probably aware of the fact that the \acl{UN} have developed the \ac{ghs} as a global replacement for the various different systems in different countries. While it has not been implemented by all countries yet~\cite{unece:ghsystem_implementation}, it is only a matter of time. The package \ghsystem\ enables you to typeset all the hazard and precautionary statements and pictograms in a very easy way. The statements are taken from \acs{eu} regulation 1272/2008~\cite{eu:ghsystem_regulation}. There are four points I hope I have achieved with this bundle: \begin{itemize} \item intuitive usage as far as the syntax of the commands is concerned \item the commands shall not only make typesetting easier and faster but also the document source more readable with respect to semantics (\code{\cmd{ortho}-dichlorobenzene} is easier to read and understand than \code{\cmd*{textsl}{o}-dichlorobenzene}) \item as much customizability as I could think of so every user can adapt the commands to his or her own wishes \item default settings compliant with the recommendations of the \acf{iupac}. \end{itemize} Especially the last point needed some pushing from users to get things right in many places. If you find anything not compliant with \ac{iupac} recommendations\footnote{This does not concern the \cmd{ox} command. The \ac{iupac} version is \cmd{ox}*.} I would welcome an email very much! \section{News}\secidx{News} With version~4.0 some changes have been made: \begin{itemize} \item first of all the packages \chemformula\ and \ghsystem\ do not load \chemmacros\ any more which means they can be used independently. \item the option \key{bpchem} has been dropped. \item the commands \cmd{mch} and \cmd{pch} now match \chemformula's charges. \item the option \key{method} has been dropped. \item the option \key[charges]{append} has deprecated. \item the option \key{greek} has been extended to support other uppercase greek letters, for example those provided by \paket{kpfonts}. This is handled internally by the new package in the family: \chemgreek. This package is not really a package for usage at a user-level but could in principle be used to extend the \key{greek} option. \item language support is now done with the help of the \paket*{translations} package from the \paket{exsheets} bundle. This means that with version~4.0 the document language is recognized automatically. \item the status of the commands \cmd{Lfi} and \cmd{Dfi} has been changed from \emph{deprecated} to \emph{dropped}. \item various other changes like bug fixes and improvements on the typographical appearance of \chemformula's inline formulae with \cmd{ch}. \end{itemize} \secidx*{News} \section{Package Options}\label{sec:optionen}\secidx{Package Options} \chemmacros has several package options. They all are used as key/value pairs like \begin{beispiel}[code only] \usepackage[option1 = , option2 = ]{chemmacros} \end{beispiel} Some also can be used without value (\lstinline+\usepackage[option1]{chemmacros}+), which means that the \default{underlined} value is used. Both \chemformula and \ghsystem don't have package options of their own. If you load them explicitly any given option will silently fail. Options can then only be set using the setup command. \begin{beschreibung} % circled \Option[option]{circled}{\default{formal}|all|none}\Default{formal} \chemmacros\ uses two different kinds of charges which indicate the usage of real ($+/-$) and formal (\fplus/\fminus) charges. The option \code{formal} distinguishes between them, option \code{none} displays them all without circle, option \code{all} circles all. % circletype \Option[option]{circletype}{\default{chem}|math}\default{chem} This option switches between two kinds of circled charge symbols: \cmd{fplus} \fplus\ and \lstinline+$\oplus$+ $\oplus$. % cmversion \Option[option]{cmversion}{1|2|3|4|newest}\Default{newest} This option restores the old definitions of some commands and tries to ensure backwards compatibility as much as possible (default = \code{4}). Actually \code{2} and \code{3} are aliases, as are -- for now -- \code{4} and \code{newest}. \emph{This option can only be chosen in the preamble}. % ghsystem \Option[option]{ghsystem}{\default{true}|false}\Default{true} Disable the automatic loading of the \ghsystem\ package. % greek \Option[option]{greek}{\default{auto}|kpfonts|math|newtx|textgreek|upgreek}\Default{auto} This option determines how the letters \cmd{Chemalpha} and friends are typeset. See page~\pageref{desc:upgreek} for more information. Please note that this option \emph{does not load either \paket{upgreek}, \paket{kpfonts}, \paket{newtxmath} nor \paket{textgreek}!} It only determines which one to choose if available. The option \code{auto} will detect if either (in order of priority) \paket{upgreek}, \paket{textgreek}, \paket{kpfonts} or \paket{newtxmath} have been loaded and use them if available. If you explicitly choose \code{upgreek}, \code{textgreek}, \paket{kpfonts} or \paket{newtxmath} you also have to load the corresponding package. \emph{This option can only be chosen in the preamble}. % iupac \Option[option]{iupac}{auto|restricted|strict}\Default{auto} Take care of how \ac{iupac} naming commands are defined, see page~\pageref{desc:iupac}. % language \Option[option]{language}{american|british|english|french|german|italian|ngerman}\Default{} Load the language used by \chemmacros. \emph{This option can only be chosen in the preamble}. % Nu \Option[option]{Nu}{\default{chemmacros}|mathspec}\Default{chemmacros} The package \paket{mathspec} also defines a macro \cmd{Nu}. This option chooses which definition holds, see page~\pageref{Nu}. \emph{This option can only be chosen in the preamble}. % strict \Option[option]{strict}{\default{true}|false}\Default{false} Setting \key{strict}{true} will turn all warning messages into erros messages. % synchronize \Option[option]{synchronize}{\default{true}|false}\Default{false} The setting \code{true} will tell \chemmacros\ to adapt the font settings of \chemformula. % xspace \Option[option]{xspace}{\default{true}|false}\Default{true} With this option most commands are defined with a \cmd*{xspace}. \end{beschreibung} \secidx*{Package Options} \section{Setup}\label{sec:setup}\secidx{Setup} Various of \chemmacros', \chemformula's and \ghsystem's commands have key/value pairs with which they can be customized. Most times they can be used as (optional) argument of the commands themselves. They also can most times be used with the \cmd{chemsetup} command. \begin{beschreibung} \Befehl{chemsetup}[]{ = } or \Befehl{chemsetup}{/ = } \end{beschreibung} The keys each belong to a module, which defines for which commands they are intended for. If a key is presented, you'll see the module to which it belongs in the left margin. You have two ways to use keys with the \cmd{chemsetup}, as you can see above. The package options can also be seen as keys belonging to the module \textcolor{module}{\code{option}}. This means they can also be used with the \cmd{chemsetup} command (except for the option \key[option]{version}{1/2/3}). \begin{beispiel} \chemsetup[option]{circled=none}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ \chemsetup[option]{circled=formal}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ \chemsetup[option]{circletype=math}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ \chemsetup{option/circletype=chem,option/circled=all}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ \chemsetup{option/circletype=math}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \end{beispiel} Keys \emph{not} belonging to a module \emph{cannot} be used with \cmd{chemsetup}! All options of \chemformula\ belong to the module \textcolor{module}{\code{chemformula}} and all of \ghsystem's options belong to the module \textcolor{module}{\code{ghsystem}}. \secidx*{Setup} \section{Language Settings}\label{sec:languages}\secidx{Language Settings} \subsection{Supported Languages} By choosing the option \begin{beispiel}[code only] \chemsetup[option]{language=} \end{beispiel} you can set the language that is used by \chemmacros\ if you want that to be a different language than your main document language. These translate (if the translations are available) \begin{itemize} \item The header of the list of reactions. \item The beginning of the entries in the list of reactions. \item The H- and P-statements of the \ac{ghs}. \end{itemize} Currently the following translations are provided: \begin{beispiel}[code only] % subscript used in \Ka: \DeclareTranslation{German}{K-acid}{S} % the phases \sld and \lqd: \DeclareTranslation{German}{phase-sld}{f} \DeclareTranslation{German}{phase-lqd}{f{}l} % heading of the list of reactions: \DeclareTranslation{English}{list-of-reactions}{List of reactions} \DeclareTranslation{German} {list-of-reactions}{Reaktionsverzeichnis} \DeclareTranslation{Italian}{list-of-reactions}{Elenco delle reazioni} \DeclareTranslation{French} {list-of-reactions}{Table des r\'eactions} % name at the beginning of each entry in the list of reactions: \DeclareTranslation{English}{lor-reaction}{Reaction } \DeclareTranslation{German} {lor-reaction}{Reaktion } \DeclareTranslation{Italian}{lor-reaction}{Reazione } \DeclareTranslation{French} {lor-reaction}{R\'eaction } \end{beispiel} All other languages will fall back to English. However, you can always add the translation you want. If you send me an email with translations you'd like to have added to \chemmacros\ I'll gladly add them. \subsection{Specialties} \subsubsection{German} If you choose \code{german/ngerman} the phase commands \cmd{sld} and \cmd{lqd} and the command \cmd{pKa} are translated. \subsubsection{Italian} \DeclareChemIUPAC{\ter}{\textit{ter}}\DeclareChemIUPAC{\sin}{\textit{sin}}% Choosing the language \code{italian} defines two additional \ac{iupac} commands: \begin{beschreibung} \Befehl{ter} \iupac{\ter} \Befehl{sin} \iupac{\sin} \end{beschreibung} \secidx*{Language Settings} \secidx*{PRELIMINARIES} \part{\texorpdfstring{\Chemmacros}{chemmacros}}\secidx{CHEMMACROS}\label{part:chemmacros} \section{Particles, Ions and Symbols}\label{sec:teilchen}\secidx{Particles, Ions and Symbols} \subsection{Predefined}\secidx[predefined]{Particles, Ions and Symbols} \chemmacros defines some simple macros for displaying often needed particles and symbols. Please note, that they're displayed differently depending on the package options used, see section~\ref{sec:optionen}. These commands can be used in text as well as in math mode. Note that they are not meant to be used in \chemformula's \cmd{ch}. \begin{beschreibung} \Befehl{Hpl} \Hpl (proton) \Befehl{Hyd} \Hyd (hydroxide) \Befehl{HtO} \HtO (oxonium ion) (\textbf{H} \textbf{t}hree \textbf{O}) \Befehl{water} \water \Befehl{el} \el (electron) \Befehl{prt} \prt (proton) \Befehl{ntr} \ntr (neutron) \Befehl{Nu} \Nu (nucleophile).\newline The package \paket{mathspec} also defines a macro \cmd{Nu}. If you chose package option \key[option]{Nu}{mathspec} \chemmacros\ defines \cmd{Nuc} instead\label{Nu}. \Befehl{El} \El (electrophile) \Befehl{ba} \ba (base) \Befehl{fplus} \fplus \Befehl{fminus} \fminus \Befehl{transitionstatesymbol} \transitionstatesymbol \Befehl{standardstate} \standardstate.\newline This symbol is only provided by \chemmacros, if the package \paket{chemstyle} is not loaded; the idea is borrowed from there\footnote{many thanks to the package author \href{http://www.texdev.net/}{Joseph Wright}.}. \Befehl{Chemalpha} \Chemalpha, \cmd{ChemAlpha} \ChemAlpha\newline For each of the 24 greek letters a lowercase and uppercase \cmd*{Chem...} command is defined that maps to the upright greek letter as set with the option \key{greek}. More details on this can be found in the manual of the \chemgreek\ package. \end{beschreibung} The two particles \cmd{Nu} and \cmd{ba} can be modified. To do that you use the option \begin{beschreibung} \Option[particle]{elpair}{false|\default{dots}|dash}\Default{false} Set how the electron pair of the particles \cmd{Nu} and \cmd{ba} are set. \end{beschreibung} It only has any effect, if the package \paket{chemfig} is loaded, since it uses it's command \cmd*{Lewis}. \begin{beispiel} % needs package `chemfig' \ba[elpair] \Nu[elpair=dash] \chemsetup[particle]{elpair} \ba \Nu \end{beispiel} \label{desc:upgreek}The greek letters aren't newly defined symbols but are defined differently depending on the packages you've loaded. The default definition is the corresponding math letter. If you have loaded the \paket{textgreek} package the letters are taken from there, and if you have loaded the package \paket{upgreek} the macros of that package are used. This is also described in the description of the package option \key{greek}, other details can be found in the documentation of the \chemgreek\ package. This documentation uses \paket{newtxmath} and the setting \key{greek}{newtx} for instance. The reason why \chemmacros\ uses these macros in the first place is \ac{iupac} compliance. \ac{iupac} recommends to use upright greek letters in nomenclature. \begin{zitat}[{\ac{iupac} Green Book {\cite[][p.\,9]{iupac:greenbook}}}] Greek letters are used in systematic organic, inorganic, macromolecular and biochemical nomenclature. These should be roman (upright), since they are not symbols for physical quantities. \end{zitat} \chemmacros\ uses these commands now to define nomenclature commands, see page~\pageref{par:greek_letters}. \subsection{Own Particles}\secidx[own]{Particles, Ions and Symbols} Surely sometimes it can be handy to have other particle macros defined such as \cmd*{positron} or \cmd*{photon}. This can easily be done with this command: \begin{beschreibung} \Befehl{DeclareChemParticle}{}\ma{} \Befehl{RenewChemParticle}{}\ma{} \end{beschreibung} The particle defined this way behaves uses \chemformula' \cmd{ch} to typeset the particle which means that the \code{} should be a vaild \chemformula\ compound. Please have a look at the \chemformula\ manual for details. The particle will obey the \key{circled} option. \begin{beispiel} \DeclareChemParticle{\positron}{\Chembeta+} \DeclareChemParticle{\photon}{\Chemgamma} \RenewChemParticle{\el}{\Chembeta-} \positron\ \photon\ \el \end{beispiel} \cmd{DeclareChemParticle} only defines a particle if \code{} is not already used by any other command. If it \emph{is} already used \chemmacros will either give a warning or an error, depending on the option \key{strict}. \cmd{RenewChemParticle} \emph{only} defines a particle if \code{} \emph{is} already used and issues a warning/error otherwise. \secidx*{Particles, Ions and Symbols} \section{Nomenclature, Stereo Descriptors, Latin Phrases}\label{sec:stereo} \subsection{\acs{iupac} Names}\secidx{IUPAC Names} Similar to the \paket{bpchem} package \chemmacros\ provides a command\footnote{The idea and the implementation is shamelessly borrowed from \paket*{bpchem} by Bjørn Pedersen.} to typeset \ac{iupac} names. Why is that useful? \ac{iupac} names can get very long. So long indeed that they span over more than two lines, especially in two-column documents. This means they must be allowed to be broken more than one time. This is what the following command does. \begin{beschreibung} \Befehl{iupac}{}\newline Inside this command use \cmd{|} and \cmd{-} to indicate a breaking point or a breaking dash. Use {\catcode`\^=11\relax\cmd{^}} as a shortcut for \cmd*{textsuperscript}. (These commands are similar to the shorthands provided by \paket{babel} for certain languages.) \end{beschreibung} \begin{beispiel} \begin{minipage}{.4\linewidth} \iupac{Tetra\|cyclo[2.2.2.1\^{1,4}]\-un\|decane-2\-dodecyl\-5\-(hepta\|decyl\|iso\|dodecyl\|thio\|ester)} \end{minipage} \end{beispiel} The \cmd{iupac} command is more of a semantic command. Most times you can achieve (nearly) the same thing by using \cmd{-} instead of \cmd{|}, \code{-} instead of \cmd{-} and \cmd*{textsuperscript} instead of {\catcode`\^=11\relax\cmd{^}}. There are some subtleties: \cmd{-} inserts a small space before the hyphen and removes a small space after it. The command \cmd{|} not only prevents ligatures but also inserts a small space. \begin{beispiel} \huge\iupac{2,4\-Di\|chlor\|pentan} \\ 2,4-Dichlorpentan \end{beispiel} The spaces inserted by these commands can be customized. \begin{beschreibung} \Option[iupac]{hyphen-pre-space}{}\Default{.01em} Set the space that is inserted before the hyphen set with \cmd{-}. \Option[iupac]{hyphen-post-space}{}\Default{-.03em} Set the space that is inserted after the hyphen set with \cmd{-}. \Option[iupac]{break-space}{}\Default{.01em} Set the space inserted by \cmd{|}. \end{beschreibung} The command \cmd{iupac} serves another purpose, too, however. Regardless of the setting of the \key[option]{iupac} option all the commands presented in this section are always defined \emph{inside} \cmd{iupac}. Quite a number of the naming commands have very general names: \cmd{meta}, \cmd{D}, \cmd{E}, \cmd{L}, \cmd{R}, \cmd{S}, \cmd{trans} and so forth. This means they either are predefined already (\cmd{L} \L) or are easily defined by another package or class (the \paket{cool} package defines both \cmd{D} and \cmd{E}, for example). In order to give you control which commands are defined in which way, there is the package option \key[option]{iupac}\label{desc:iupac}. It has three modes: \begin{itemize} \item \key{iupac}{auto}: if the commands are \emph{not} defined by any package or class you're using they are available generally, otherwise only \emph{inside} \cmd{iupac}. \item \key{iupac}{restricted}: all naming commands are \emph{only} defined inside \cmd{iupac}. If the commands are defined by another package they of course have that meaning outside. They're not defined outside otherwise. \item \key{iupac}{strict}: \chemmacros\ overwrites any other definition and makes the commands available throughout the document. Of course the commands can be redefined (but only in the document body). They will still be available inside \cmd{iupac} then. \end{itemize} Table~\ref{tab:iupac_modes} demonstrates the different modes. \begin{table}[ht] \centering \begin{tabular}{lccc}\toprule & auto & restricted & strict \\\midrule \lstinline=\L= & \L & \L & \iupac{\L} \\ \lstinline=\iupac{\L}= & \iupac{\L} & \iupac{\L} & \iupac{\L} \\ \lstinline=\D= & \D & -- & \D \\ \lstinline=\iupac{\D}= & \iupac{\D} & \iupac{\D} & \iupac{\D} \\\bottomrule \end{tabular} \caption{Demonstration of \protect\key{iupac}'s modes.}\label{tab:iupac_modes} \end{table} \subsubsection{Predefined Commands}\secidx[predefined]{IUPAC Names}\secidx{Stereo Descriptors and Nomenclature} The macros in this section are intended to make the writing of \ac{iupac} names more convenient. \paragraph{Greek Letters}\label{par:greek_letters}\secidx[greek letters]{IUPAC Names} Greek letters in compound names are typeset upright. For this there are for example the packages \paket{upgreek} and \paket{textgreek}. If you have loaded one of them\footnote{There are other options, see the description of the \key{greek} option.} \chemmacros\ typesets the following commands upright: \begin{beschreibung} \Befehl{a} \iupac{\a} \Befehl{b} \iupac{\b} \Befehl{g} \iupac{\g} \Befehl{d} \iupac{\d} \Befehl{k} \iupac{\k} \Befehl{m} \iupac{\m} \Befehl{n} \iupac{\n} \Befehl{w} \iupac{\w} \end{beschreibung} \begin{beispiel} \iupac{5\a\-androstan\-3\b\-ol} \\ \iupac{\a\-(tri\|chloro\|methyl)\-\w\-chloro\|poly(1,4\-phenylene\|methylene)} \end{beispiel} \paragraph{Hetero Atoms and added Hydrogen}\secidx[hetero atoms]{IUPAC Names} Attachments to hetero atoms and added hydrogen atoms are indicated by italic letters~\cite{iupac:greenbook}. \chemmacros\ defines a few shortcuts for the most common ones. \begin{beschreibung} \Befehl{H} \iupac{\H} \Befehl{O} \iupac{\O} \Befehl{N} \iupac{\N} \Befehl{Sf} \iupac{\Sf} \Befehl{P} \iupac{\P} \end{beschreibung} \begin{beispiel} \iupac{\N\-methyl\|benz\|amide} \\ \iupac{3\H\-pyrrole} \\ \iupac{\O\-ethyl hexanethioate} \end{beispiel} \paragraph{Cahn-Ingold-Prelog}\index{Cahn-Ingold-Prelog}\secidx[Cahn-Ingold-Prelog]{IUPAC Names}\label{par:cip} \begin{beschreibung} \Befehl{cip}{} \eg: \cmd{cip}{R,S} \cip{R,S} \Befehl{R} \iupac{\R} \Befehl{S} \iupac{\S} \end{beschreibung} Since the command \cmd{S} has another meaning already (\S) it is only available inside \cmd{iupac} in the default setting. Both these commands and the entgegen/zusammen descriptors get a small additional amount of kerning after the closing parenthesis. This amount can be changed through the following option: \begin{beschreibung} \Option[iupac]{cip-kern}{}\Default{.075em} Set the amount of kerning after the closing parenthesis. \end{beschreibung} \paragraph{Fischer}\index{Fischer}\secidx[Fischer]{IUPAC Names} \begin{beschreibung} \Befehl{D} \iupac{\D} \Befehl{L} \iupac{\L} \end{beschreibung} Since the command \cmd{L} has another meaning already (\L) it is only available inside \cmd{iupac} in the default setting. \paragraph{cis/trans, zusammen/entgegen, syn/anti \& tert} \index{tert}\secidx[tert]{IUPAC Names} \index{cis/trans}\secidx[cis/trans]{IUPAC Names} \index{zusammen/entgegen}\secidx[zusammen/entgegen]{IUPAC Names} \secidx[syn/anti]{IUPAC Names} \begin{beschreibung} \Befehl{cis} \cis \Befehl{trans} \trans \Befehl{Z} \Z \Befehl{E} \E \Befehl{syn} \syn \Befehl{anti} \anti \Befehl{tert} \tert \end{beschreibung} The package \paket{cool} defines the commands \cmd{E} and \cmd{D}, too. If you load it, the \chemmacros version will only be available inside \cmd{iupac} in the default setting. \paragraph{ortho/meta/para}\index{ortho/meta/para}\secidx[ortho/meta/para]{IUPAC Names} \begin{beschreibung} \Befehl{ortho} \ortho \Befehl{meta} \meta \Befehl{para} \para \end{beschreibung} \paragraph{Absolute Configuration}\index{absolute configuration} (uses \TikZ) \begin{beschreibung} \Befehl{Rconf}[] \cmd{Rconf}: \Rconf \quad\cmd{Rconf}[]: \Rconf[] \Befehl{Sconf}[] \cmd{Sconf}: \Sconf \quad\cmd{Sconf}[]: \Sconf[] \end{beschreibung} Examples: \begin{beispiel} \iupac{\D\-Wein\|s\"aure} = \\ \iupac{\cip{2S,3S}\-Wein\|s\"aure} \\ \iupac{\D\-($-$)\-Threose} = \\ \iupac{\cip{2S,3R}\-($-$)\-2,3,4\-Tri\|hydroxy\|butanal} \\ \iupac{\cis\-2\-Butene} = \\ \iupac{\Z\-2\-Butene}, \\ \iupac{\cip{2E,4Z}\-Hexa\|diene} \\ \iupac{\meta\-Xylol} = \\ \iupac{1,3\-Di\|methyl\|benzene} \end{beispiel} \secidx*{Stereo Descriptors and Nomenclature} \paragraph{Coordination Chemistry} \chemmacros\ provides two commands useful with coordination chemistry: \begin{beschreibung} \Befehl{bridge}{} \bridge{3} \Befehl{hapto}{} \hapto{5} \end{beschreibung} \begin{beispiel} Ferrocene = \iupac{bis(\hapto{5}cyclo\|penta\|dienyl)iron} \\ \iupac{tetra\-\bridge{3}iodido\-tetrakis[tri\|methyl\|platinum(IV)]} \end{beispiel} Two options allow customization: \begin{beschreibung} \Option[iupac]{bridge-number}{sub|super}\Default{sub} Appends the number as a subscript or superscript. \ac{iupac} recommendation is the subscript \cite{iupac:redbook}. \Option[iupac]{coord-use-hyphen}{\default{true}|false}\Default{true} Append a hyphen to \cmd{hapto} and \cmd{bridge} or don't. \end{beschreibung} \subsubsection{Own Naming Commands}\secidx[own]{IUPAC Names} If you find any commands missing you can define them using \begin{beschreibung} \Befehl{DeclareChemIUPAC}{}\ma{} \Befehl{RenewChemIUPAC}{}\ma{} \end{beschreibung} A command defined in this way will obey the setting of the option \key[option]{iupac}. This means any existing command is only overwritten with \key{iupac}{strict}. However, \cmd{DeclareChemIUPAC} will \emph{not} change the definition of an existing \ac{iupac} naming command but issue a warning/an error (depending on the package option \key{strict}) if the \ac{iupac} naming command already exists. \begin{beispiel} \DeclareChemIUPAC\endo{\textit{endo}} \RenewChemIUPAC\anti{\textit{anti}} \iupac{(2\-\endo,7\-\anti)\-2\-bromo\-7\-fluoro\|bicyclo[2.2.1]heptane} \end{beispiel} \cmd{RenewChemIUPAC} allows you to redefine the existing \ac{iupac} naming commands. \begin{beispiel} \iupac{\meta\-Xylol} \\ \RenewChemIUPAC\meta{\textit{m}} \iupac{\meta\-Xylol} \end{beispiel} \secidx*{IUPAC Names} \subsection{Latin Phrases}\secidx{Latin Phrases} The package \paket{chemstyle} provides the command \cmd{latin} to typeset common latin phrases in a consistent way. \chemmacros\ defines a similar \cmd{latin} only if \paket{chemstyle} has \emph{not} been loaded and additionally provides these commands: \begin{beschreibung} \Befehl{insitu} \insitu \Befehl{abinitio} \abinitio \Befehl{invacuo} \invacuo \end{beschreibung} If the package \paket{chemstyle} has been loaded they are defined using \paket{chemstyle}'s \cmd{latin} command. This means that then the appearance depends on \paket{chemstyle}'s option \code{abbremph}. The commands are defined through \begin{beschreibung} \Befehl{DeclareChemLatin}{}\ma{} \Befehl{RenewChemLatin}{}\ma{} \end{beschreibung} \begin{beispiel} \DeclareChemLatin\ltn{latin text} \ltn \end{beispiel} If you have \emph{not} loaded \paket{chemstyle} you can change the appearance with this option: \begin{beschreibung} \Option[latin]{format}{}\Default{\cmd*{itshape}} Set the format of the latin phrases. \end{beschreibung} \secidx*{Latin Phrases} \section{Units for the Usage With \textsf{siunitx}}\label{sec:einheiten}\secidx{Units} In chemistry some non-SI units are very common. \paket{siunitx} provides the command \cmd*{DeclareSIUnit}{}\ma{} to add arbitrary units. \chemmacros\ uses that command to provide some units. Like all \paket{siunitx} units they're only valid inside \cmd*{SI}{}\ma{} and \cmd*{si}{}. \begin{beschreibung} \Befehl{atmosphere} \si{\atmosphere} \Befehl{atm} \si{\atm} \Befehl{calory} \si{\calory} \Befehl{cal} \si{\cal} \Befehl{cmc} \si{\cmc}\newline The units \cmd{cmc}, \cmd{molar}, and \cmd{Molar} are defined by the package \paket{chemstyle} as well. \chemmacros\ only defines them, if \paket{chemstyle} is not loaded. \Befehl{molar} \si{\molar} \Befehl{moLar} \si{\moLar} \Befehl{Molar} \si{\Molar} \Befehl{MolMass} \si{\MolMass} \Befehl{normal} \si{\normal} \Befehl{torr} \si{\torr} \end{beschreibung} By the way: \cmd*{mmHg} \si{\mmHg} already is defined by \paket{siunitx} and \paket{chemstyle}. \secidx*{Units} \section{Acid/Base}\label{sec:saeure_base}\secidx{Acid/Base} Easy representation of \pH, \pKa \ldots\ (the command \cmd{pKa} depends on the package option \key[option]{language}). \begin{beschreibung} \Befehl{pH} \pH \Befehl{pOH} \pOH \Befehl{Ka} \Ka \Befehl{Kb} \Kb \Befehl{Kw} \Kw \Befehl{pKa}[] \cmd{pKa}: \pKa, \cmd{pKa}[1]: \pKa[1] \Befehl{pKb}[] \cmd{pKb}: \pKb, \cmd{pKb}[1]: \pKb[1] \Befehl{p}{} \eg \cmd{p}{\cmd{Kw}} \p{\Kw} \end{beschreibung} \begin{beispiel} \Ka \Kb \pKa \pKa[1] \pKb \pKb[1] \end{beispiel} \achtung{The default appearance of the \p{}-commands has changed to follow \ac{iupac} recommendations.} \begin{zitat}[{\acs{iupac} Green Book {\cite[][p.\,103]{iupac:greenbook}}}] The operator \p{} \textelp{} shall be printed in Roman type. \end{zitat} There is one option which changes the style the \p{} is typeset: \begin{beschreibung} \Option[acid-base]{p-style}{italics|slanted|upright}\Default{upright} Set the style of the \p{} operator. \end{beschreibung} \begin{beispiel} \pH, \pKa \chemsetup[acid-base]{p-style=slanted} \pH, \pKa \chemsetup[acid-base]{p-style=italics} \pH, \pKa \end{beispiel} \secidx*{Acid/Base} \section{Oxidation Numbers, Real and Formal Charges}\label{sec:ladungen} \chemmacros\ distinguishes between real ($+$/$-$) and formal (\fplus/\fminus) charge symbols, also see section~\ref{sec:optionen}. All commands using formal charge symbols start with a \code{f}. \subsection{Ion Charges}\label{ssec:ionen}\secidx{Ion Charges} Simple displaying of (real) charges. It is worth noting that these commands really are relicts from a time when \chemmacros\ tried hard to be compliant with \paket{mhchem} and \chemformula didn't exist, yet. They are still provided for backwards compatibility but \emph{my recommendation is to use} \cmd{ch} (see the documentation of the \chemformula\ package) \emph{and forget about these commands:} \begin{beschreibung} \Befehl{pch}[] positive charge (\textbf{p}lus + \textbf{ch}arge) \Befehl{mch}[] negative charge (\textbf{m}inus + \textbf{ch}arge) \end{beschreibung} \begin{beispiel} \pch, Na\pch, Ca\pch[2]\\ \mch, F\mch, S\mch[2] \end{beispiel} The same for formal charges: \begin{beschreibung} \Befehl{fpch}[] positive charge \Befehl{fmch}[] negative charge \end{beschreibung} \begin{beispiel} \fpch\ \fmch\ \fpch[3] \fmch[3] \end{beispiel} \secidx*{Ion Charges} \subsection{Oxidation Numbers}\label{ssec:oxidationszahlen}\secidx{Oxidation Numbers} Typesetting oxidation numbers: \begin{beschreibung} \Befehl{ox}[]{,}\newline Places \code{} above \code{}; \code{} has to be a (rational) number! \end{beschreibung} \begin{beispiel} \ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{-1,F} \end{beispiel} There are a number of keys, that can be used to modify the \cmd{ox} command. \begin{beschreibung} \Option[ox]{parse}{\default{true}|false}\Default{true} When \code{false} an arbitrary entry can be used for \code{}. \Option[ox]{roman}{\default{true}|false}\Default{false} Switches from roman to arabic numbers. \Option[ox]{pos}{top|super|side}\Default{top} \code{top} places \code{} above \code{}, \code{super} to the upper right as superscript and \code{side} to the right and inside brackets. \Option[ox]{explicit-sign}{\default{true}|false}\Default{false} Shows the $+$ for positiv numbers and the $\pm$ for $0$. \Option[ox]{decimal-marker}{comma|point}\Default{point} Choice for the decimal marker for formal oxidation numbers like \ox{1.2,X}. \Option[ox]{align}{center|right}\Default{center} Center the oxidation number relative to the atom or right-align it. \end{beschreibung} \begin{beispiel} \ox[roman=false]{2,Ca} \ox{2,Ca} \\ \ox[pos=super]{3,Fe}-Oxide \\ \ox[pos=side]{3,Fe}-Oxide \\ \ox[parse=false]{?,Mn} \\ \ox[align=right]{2,Ca} \end{beispiel} The \key[ox]{pos}{super} variant also can be set with the shortcut \cmd{ox}*: \begin{beispiel} \ox{3,Fe} \ox*{3,Fe} \end{beispiel} Using the \key[ox]{explicit-sign} key will always show the sign of the oxidation number: \begin{beispiel} \chemsetup[ox]{explicit-sign = true} \ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ch{"\ox{0,F}" {}2} \end{beispiel} \begin{beispiel} Compare \ox{-1,\ch{O2^2-}} to \ch{"\ox{-1,O}" {}2^2-} \end{beispiel} Sometimes one might want to use formal oxidation numbers like \num{.5} or $\frac{1}{3}$: \begin{beispiel} \ox{.5,\ch{Br2}} \ch{"\ox{1/3,I}" {}3+} \end{beispiel} The fraction uses the \cmd*{sfrac} command of the \paket{xfrac} package. For this purpose the instance \code{chemmacros-ox-frac} is defined. \begin{beispiel}[code only] \DeclareInstance{xfrac}{chemmacros-ox-frac}{text} { scale-factor = 1.2 , denominator-bot-sep = -.5ex , numerator-top-sep = -.3ex , slash-left-kern = -.2em , slash-right-kern = -.2em , slash-symbol-font = lmr } \end{beispiel} Of course you can redefine it so that it suits your needs as the output often strongly depends on the used font. \secidx*{Oxidation Numbers} \subsection{Partial Charges and Similar Stuff}\label{ssec:partialladungen}\secidx{Partial Charges} The next ones probably are seldomly needed but nevertheless useful: \begin{beschreibung} \Befehl{delp} \delp\ (\textbf{del}ta + \textbf{p}lus) \Befehl{delm} \delm\ (\textbf{del}ta + \textbf{m}inus) \Befehl{fdelp} \fdelp \Befehl{fdelm} \fdelm \end{beschreibung} These macros for example can be used with the \cmd{ox} command or with the \paket{chemfig} package: \begin{beispiel} \chemsetup{ option/circled = all, ox/parse = false } \ce{\ox{\delp,H}-\ox{\delm,Cl}} \hspace*{1cm} \chemfig{\chemabove[3pt]{\lewis{246,Br}}{\delm}-\chemabove[3pt]{H}{\delp}} \end{beispiel} The following macros are useful together with \paket{chemfig}, too. \begin{beschreibung} \Befehl{scrp} \scrp\ (\textbf{scr}iptstyle + \textbf{p}lus) \Befehl{scrm} \scrm\ (\textbf{scr}iptstyle + \textbf{m}inus) \Befehl{fscrp} \fscrp \Befehl{fscrm} \fscrm \Befehl{fsscrp} \fsscrp\ (using \lstinline+\scriptscriptstyle+) \Befehl{fsscrm} \fsscrm \end{beschreibung} \begin{beispiel} \setatomsep{1.8em}\chemfig{CH_3-\chemabove{C}{\scrp}(-[6]C|H_3)-\vphantom{H_3}CH_3} \chemfig{\fmch{}|O-\chemabove{N}{\fscrp}(-[1]O|\fmch)-[7]O|\fmch} \end{beispiel} \secidx*{Partial Charges} \section{Reaction Mechanisms}\label{sec:mechanismen}\secidx{Reaction Mechanisms} With the command \begin{beschreibung} \Befehl{mech}[] \end{beschreibung} one can specify the most common reaction mechanisms. \code{} can have one of the following values: \begin{beschreibung} \Befehl{mech}\newline (empty, no opt. argument) nucleophilic substitution \mech \Befehl{mech}[1]\newline unimolecular nucleophilic substitution \mech[1] \Befehl{mech}[2]\newline bimolecular nucleophilic substitution \mech[2] \Befehl{mech}[se]\newline electrophilic substitution \mech[se] \Befehl{mech}[1e]\newline unimolecular electrophilic substitution \mech[1e] \Befehl{mech}[2e]\newline bimolecular electrophilic substitution \mech[2e] \Befehl{mech}[ar]\newline electrophilic aromatic substitution \mech[ar] \Befehl{mech}[e]\newline elimination \mech[e] \Befehl{mech}[e1]\newline unimolecular elimination \mech[e1] \Befehl{mech}[e2]\newline bimolecular elimination \mech[e2] \Befehl{mech}[cb]\newline unimolecular elimination \enquote{conjugated base}, \ie via carbanion \mech[cb] \end{beschreibung} \secidx*{Reaction Mechanisms} \section{Redox Reactions}\label{sec:redoxreaktionen}\secidx{Redox Reactions}% TODO: watch pagebreaks! \chemmacros provides two commands to visualize the transfer of electrons in redox reactions. Both commands are using \TikZ. \begin{beschreibung} \Befehl{OX}{,} \Befehl{redox}(,)[]\oa{}{}\newline Only the first argument \da{,} is required, the others are all optional. \end{beschreibung} \cmd{OX} places \code{} into a node, which is named with \code{}. If you have set two \cmd{OX}, they can be connected with a line using \cmd{redox}. To do so the names of the two nodes that are to be connected are written in the round braces. Since \cmd{redox} draws a tikzpicture with options \code{remember picture,overlay}, the document needs to be \emph{compiled at least two times}. \begin{beispiel}[dist] \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation} \end{beispiel} This line can be customized using \TikZ keys in \oa{}: \begin{beispiel}[ox] \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox} \end{beispiel} With the argument \oa{} the length of the vertical parts of the line can be adjusted. The default length is \code{.6em}. This length is multiplied with \code{}. If you use a negative value the line is placed \emph{below} the text. \begin{beispiel}[dist] \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch \redox(a,b)[->,red]{ox} \redox(a,b)[<-,blue][-1]{red} \vspace{7mm} \end{beispiel} The default length of the vertical lines can be customized with the option \begin{beschreibung} \Option[redox]{dist}{}\Default{.6em} A \TeX\ dimension. \end{beschreibung} \begin{beispiel}[dist] \chemsetup{redox/dist=1em} \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox} \end{beispiel} \begin{beschreibung} \Option[redox]{sep}{}\Default{.2em} The option can be used to change the distance between the atom and the beginning of the line. \end{beschreibung} \begin{beispiel}[dist] \chemsetup{redox/sep=.5em} \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox} \end{beispiel} \newpage Examples:% TODO: watch pagebreaks! \begin{beispiel}[dist] \ch{ 2 "\OX{o1,Na}" + "\OX{r1,Cl}" {}2 -> 2 "\OX{o2,Na}" \pch{} + 2 "\OX{r2,Cl}" \mch } \redox(o1,o2){\small OX: $- 2\el$} \redox(r1,r2)[][-1]{\small RED: $+ 2\el$} \vspace{7mm} \end{beispiel} \begin{beispiel}[dist] \ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" \pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch } \redox(o1,o2){\small OX: $- 2\el$} \redox(r1,r2)[][-1]{\small RED: $+ 2\el$} \vspace{7mm} \end{beispiel} \bspmidlength{dist}{15mm} \begin{beispiel}[dist] \ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" \pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch } \redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$} \redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$} \end{beispiel} \bspmidlength{dist}{7mm} \begin{beispiel}[dist] \ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" \pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch } \redox(o1,o2)[green,-stealth]{\small OX} \redox(r1,r2)[purple,-stealth][-1]{\small RED} \vspace{7mm} \end{beispiel} \secidx*{Redox Reactions} \section{(Standard) State, Thermodynamics}\label{sec:standardstate}\secidx{Thermodynamics} \subsection{Thermodynamic Variables}\label{ssec:siunitx} The following commands use \paket{siunitx}: \begin{beschreibung} \Befehl{Enthalpy}[]\da{}\ma{} \Befehl{Entropy}[]\da{}\ma{} \Befehl{Gibbs}[]\da{}\ma{} \end{beschreibung} Their usage is pretty much self-explaining: \begin{beispiel} \Enthalpy{123} \\ \Entropy{123} \\ \Gibbs{123} \end{beispiel} The argument \da{} adds a subscript for specification: \cmd{Enthalpy}(r){123} \Enthalpy(r){123}. There are several keys to customize the commands. \begin{beschreibung} \Option*{exponent}{} \Option*{delta}{|false} \Option*{subscript}{left|right} \Option*{unit}{} \end{beschreibung} The default values depend on the command. \begin{beispiel} \Enthalpy[unit=\kilo\joule]{-285} \\ \Gibbs[delta=false]{0} \\ \Entropy[delta=\Delta,exponent=]{56.7} \end{beispiel} The unit is set corresponding to the rules of \paket{siunitx} and depends on its settings: \begin{beispiel} \Enthalpy{-1234.56e3} \\ \sisetup{per-mode=symbol,exponent-product=\cdot,output-decimal-marker={,},group-four-digits=true} \Enthalpy{-1234.56e3} \end{beispiel} \subsubsection{Create New Variables} You can use the command \begin{beschreibung} \Befehl{DeclareChemState}[]{}\ma{}\ma{} \end{beschreibung} to create new corresponding commands: \begin{beispiel} \DeclareChemState{Helmholtz}{A}{\kilo\joule\per\mole} \DeclareChemState[subscript-left=false,exponent=]{ElPot}{E}{\volt} \Helmholtz{123.4} \\ \ElPot{-1.1} \\ \ElPot[exponent=0]($\ch{Sn}|\ch{Sn^2+}||\ch{Pb^2+}|\ch{Pb}$){0.01} \end{beispiel} The command has some keys with which the default behaviour of the new command can be set. \begin{beschreibung} \Option*{exponent}{} \Option*{delta}{|false} \Option*{subscript-left}{\default{true}|false} \Option*{subscript}{} \end{beschreibung} \subsubsection{Redefine Variables} With \begin{beschreibung} \Befehl{RenewChemState}[]{}\ma{}\ma{} \end{beschreibung} you can redefine the already existing commands: \begin{beispiel} \RenewChemState{Enthalpy}{h}{\joule} \Enthalpy(f){12.5} \end{beispiel} The command is analogous to \cmd{DeclareChemState}, \ie it has the same keys. So \textendash\ for following thermodynamic conventions \textendash\ one could define a molar and an absolute variable: \begin{beispiel} \DeclareChemState[exponent=]{enthalpy}{h}{\kilo\joule\per\mole}% molar \RenewChemState[exponent=]{Enthalpy}{H}{\kilo\joule}% absolute \enthalpy{-12.3} \Enthalpy{-12.3} \end{beispiel} \subsection{State}\label{ssec:state} The commands presented in section~\ref{ssec:siunitx} internally all use the command\footnote{Please note that \ma{} is an \emph{optional} argument.} \begin{beschreibung} \Befehl{State}[]{}\ma{} \end{beschreibung} It can be used to write the thermodynamic variables without value and unit. Examples: \begin{beispiel} \State{A}, \State{G}{f}, \State[subscript-left=false]{E}{\ch{Na}}, \State[exponent=\SI{1000}{\celsius}]{H} \end{beispiel} Again there are some keys to customize the command: \begin{beschreibung} \Option[state]{exponent}{} \Option[state]{subscript-left}{\default{true}|false} \Option[state]{delta}{|false} \end{beschreibung} \secidx*{Thermodynamics} \section{Spectroscopy and Experimental Data}\label{sec:spektroskopie}\secidx{Spectroscopy} \subsection{The \cmd*{NMR} Command} When you're trying to find out if a compound is the one you think it is often NMR spectroscopy is used. The experimental data are typeset similar to this: \begin{center} \NMR(400)[CDCl3] = \num{1.59} \end{center} \chemmacros\ provides a command which simplifies the input (uses \paket{siunitx}). \begin{beschreibung} \Befehl{NMR}*{,}\da{,}\oa{} \end{beschreibung} \emph{All} Argument are optional! Without arguments we get: \begin{beispiel} \NMR \\ \NMR* \end{beispiel} The first argument specifies the kind of NMR: \begin{beispiel} \NMR{13,C} \end{beispiel} The second argument sets the frequency (in \si{\mega\hertz}): \begin{beispiel} \NMR(400) \end{beispiel} You can choose another unit: \begin{beispiel} \NMR(4e8,\hertz) \end{beispiel} Please note that the setup of \paket{siunitx} also affects this command: \begin{beispiel} \sisetup{exponent-product=\cdot}\NMR(4e8,\hertz) \end{beispiel} The third argument specifies the solvent: \begin{beispiel} \NMR[CDCl3] \end{beispiel} \subsection{Short Cuts} It is possible to define short cut commands for specific nuclei. \begin{beschreibung} \Befehl{DeclareChemNMR}{}\ma{,} \Befehl{RenewChemNMR}{}\ma{,} \end{beschreibung} This defines a command with the same arguments as \cmd{NMR} \emph{except} for \ma{,}. \begin{beispiel} \DeclareChemNMR\HNMR{1,H}% \DeclareChemNMR\CNMR{13,C}% \CNMR*(100) \\ \HNMR*(400) \end{beispiel} \subsection{An Environment to Typeset Experimental Data} \chemmacros\ provides an environment to ease the input of experimental data. \begin{beschreibung}\catcode`\#=11 \Umg{experimental}{data}\newline Environment for the output of experimental data. Inside the environment the following commands are defined. \Befehl{data}{}\oa{}\newline Type of data, \eg\ IR, MS\ldots\ The optional argument takes further specifications which are output in parentheses. \Befehl{data}*{}\oa{}\newline Like \cmd{data} but changes the \code{=} into a \code{:}, given that \key{use-equal}{true} is used. \Befehl{NMR}{,\oa{}}\da{,}\oa{}\newline This command gets an additional argument: \cmd{NMR}{13,C[\textasciicircum 1H]} \NMR{13,C[^1H]} \Befehl{J}\da{;}\oa{}\ma{}\newline Coupling constant, values are input separated by \code{;} (NMR). The argument \da{;} is optional and enables further specifications of the coupling. \Befehl{#}{}\newline Number of nuclei (NMR). \Befehl{pos}{}\newline Position of nuclues (NMR). \Befehl{val}{}\newline A number, an alias of \paket*{siunitx}' \cmd*{num}{}. \Befehl{val}{-{}-}\newline An alias of \paket*{siunitx}' \cmd*{numrange}{}\ma{}. \end{beschreibung} \begin{beispiel} \begin{experimental} \data{type1} Data. \data{type2}[specifications] More data. \data*{type3} Even more data. \end{experimental} \end{beispiel} \subsection{Customization} The output of the environment and of the NMR commands can be customized be a number of options. For historical reasons they all belong to the module \textcolor{module}{\code{nmr}}. \begin{beschreibung} \Option[nmr]{unit}{}\Default{\cmd*{mega}\cmd*{hertz}} The used default unit. \Option[nmr]{nucleus}{\{,\}}\Default{\ma{1,H}} The used default nucleus. \Option[nmr]{format}{}\Default{} For example \cmd*{bfseries}. \Option[nmr]{pos-number}{side|sub}\Default{side} Position of the number next to the atom. \Option[nmr]{coupling-unit}{}\Default{\cmd*{hertz}} A \paket{siunitx} unit. \Option[nmr]{parse}{\default{true}|false}\Default{true} Treat the solvent as \chemformula\ formula or not. \Option[nmr]{delta}{}\Default{} The \code{} are added after $\delta$. \Option[nmr]{list}{\default{true}|false}\Default{false} The environment \env{nmr}[]{} is formatted as a list \Option[nmr]{list-setup}{}\newline Setup of the list. See below for the default settings. \Option[nmr]{use-equal}{\default{true}|false}\Default{false} Add egual sign after \cmd{NMR} and \cmd{data}. \end{beschreibung} The default setup of the list: \begin{beispiel}[code only] \topsep\z@skip \partopsep\z@skip \itemsep\z@ \parsep\z@ \itemindent\z@ \leftmargin\z@ \end{beispiel} \begin{beispiel} \begin{experimental}[format=\bfseries] \data{type1} Data. \data{type2}[specifications] More data. \data*{type3} Even more data. \end{experimental} \end{beispiel} The command \cmd{NMR} and all commands defined through \cmd{DeclareChemNMR} can be used like \cmd{data} for the NMR data. \begin{beispiel} \begin{experimental}[format=\bfseries,use-equal] \data{type1} Data. \data{type2}[specifications] More data. \NMR Even more data. \end{experimental} \end{beispiel} \subsection{An Example} The code below is shown with different specifications for \code{}. Of course options can also be chosen with \cmd{chemsetup}. \begin{beispiel}[code only] \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} \begin{experimental}[] \data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole}, \SI{13}{\percent}). % \data{mp.} \SI{277}{\celsius} (DSC). % \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}). % \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}). % \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). % \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). % \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515} (w). % \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} ($\varepsilon = \val{65378}$). % \data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,. \end{experimental} \end{beispiel} \subsubsection{Nearly Standard} Output with these options: \lstinline+: delta=(ppm),pos-number=sub,use-equal+ \bigskip \begin{experimental}[delta=(ppm),pos-number=sub,use-equal] \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} \chemsetup[chemformula]{ font-spec = {[Numbers={Proportional,Lining}]Linux Libertine O} } % \data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole}, \SI{13}{\percent}). % \data{mp.} \SI{277}{\celsius} (DSC). % \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}). % \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}). % \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). % \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). % \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515} (w). % \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} ($\varepsilon = \val{65378}$). % \data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,. \end{experimental} \subsubsection{Formatted List} Output with these options: \lstinline+: format=\bfseries,delta=(ppm),list=true,use-equal+ \bigskip \begin{experimental}[format=\bfseries,delta=(ppm),list=true,use-equal] \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} \chemsetup[chemformula]{ font-spec = {[Numbers={Proportional,Lining}]Linux Libertine O} } % \data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole}, \SI{13}{\percent}). % \data{mp.} \SI{277}{\celsius} (DSC). % \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}). % \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}). % \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). % \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). % \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515} (w). % \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} ($\varepsilon = \val{65378}$). % \data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,. \end{experimental} \subsubsection{Crazy} Output for these options: \code{}: \begin{lstlisting} format=\color{red}\itshape, list=true, delta=\textcolor{green}{\ch{M+ + H2O}}, pos-number=side, coupling-unit=\mega\gram\per\square\second, list-setup=, use-equal \end{lstlisting} \begin{experimental}[ format=\color{red}\itshape, list=true, delta=\textcolor{green}{\ch{M+ + H2O}}, pos-number=side, coupling-unit=\mega\gram\per\square\second, list-setup=,use-equal] \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} \chemsetup[chemformula]{ font-spec = {[Numbers={Proportional,Lining}]Linux Libertine O} } % \data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole}, \SI{13}{\percent}). % \data{mp.} \SI{277}{\celsius} (DSC). % \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}). % \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}). % \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). % \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). % \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515} (w). % \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} ($\varepsilon = \val{65378}$). % \data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,. \end{experimental} \secidx*{Spectroscopy} \section{Commands for \textsf{mhchem}}\label{sec:mhchem}\secidx{Commands for mhchem} \paket{mhchem} is not officially supported by \chemmacros\ as it used \chemformula\ instead. However, for historical reasons the following command is still provided. \begin{beschreibung} \Befehl{mhName}[]{}\ma{} \end{beschreibung} For example: \begin{beispiel} \ce{4 C2H5Cl + Pb{/}Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl} \end{beispiel} There are several keys to customize \cmd{mhName}. \begin{beschreibung} \Option[mhName]{align}{}\Default{\cmd*{centering}} The alignment of the text in the box it is placed in. \Option[mhName]{format}{}\Default{} The format of the text. \Option[mhName]{fontsize}{}\Default{\cmd*{tiny}} The fontsize of the text. \Option[mhName]{width}{|auto}\Default{auto} The width of the box the text is placed in. \end{beschreibung} Since version~3.13 of \paket{mhchem} you need to hide the command in braces if you want to use the optional argument, \begin{beispiel} \ce{4 C2H5Cl + Pb / Na -> {\mhName[fontsize=\footnotesize]{Pb(C2H5)4}{former antiknock additive}} + NaCl}\\ \chemsetup[mhName]{align=\raggedright,fontsize=\small,format=\bfseries\color{red},width=3cm} \ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl} \end{beispiel} \secidx*{Commands for mhchem} \section{Reaction Environments}\label{sec:reactions}\secidx{Reaction Environments} \subsection{Defined by \chemmacros} You can use these environments for numbered\ldots \begin{beschreibung} \Umg{reaction}{} \Umg{reactions}{} \end{beschreibung} \ldots and their starred versions for unnumbered reactions. \begin{beschreibung} \Umg{reaction*}{} \Umg{reactions*}{} \end{beschreibung} With them you can create (un)numbered reaction equations similar to mathematical equations. Theses environments use the \code{equation}/\code{equation*} environments or the \code{align}/\code{align*} environments, respectively, to display the reactions. \begin{beispiel} Reaction with counter: \begin{reaction} A -> B \end{reaction} \end{beispiel} \begin{beispiel} Reaction without counter: \begin{reaction*} C -> D \end{reaction*} \end{beispiel} \begin{beispiel} Several aligned reactions with counter: \begin{reactions} A &-> B + C \\ D + E &-> F \end{reactions} \end{beispiel} \begin{beispiel} Several aligned reactions without counter: \begin{reactions*} G &-> H + I \\ J + K &-> L \end{reactions*} \end{beispiel} If you want to change the layout of the counter tags, you can use \cmd{renewtagform}{}\oa{}\ma{}\ma{}% \footnote{Provided by the \paket*{mathtools} package}. \begin{beispiel} \renewtagform{reaction}[R \textbf]{[}{]} \begin{reaction} H2O + CO2 <<=> H2CO3 \end{reaction} \end{beispiel} With version~3.3 referencing and the use of \AmS math's \cmd{intertext} also function properly: \begin{beispiel} \begin{reactions} A + 2 B &-> 3 C + D \label{rxn:test} \intertext{Some text in between aligned reactions} 3 E + F &<=> G + 1/2 H \end{reactions} See reaction~\ref{rxn:test}. \end{beispiel} \achtung{You should not use \cmd{mch} and its relatives inside the \code{reaction} environments.} \subsection{Own Reactions} You can create new types of reactions with the command: \begin{beschreibung} \Befehl{DeclareChemReaction}[]{}\ma{}\newline \code{} will be the name of the new environment. \code{} is the used math environment. \end{beschreibung} The command has two options. \begin{beschreibung} \Option*{star}{\default{true}|false} \Option*{arg}{\default{true}|false} \end{beschreibung} There is \key*{star}, which will also define a starred version of the new environment, if the starred math environment exists. If it doesn't exist, this will cause an error. Then there is \key*{arg}, which is used to define an environment with a mandatory argument. Of course this only works, if the used math environment has a mandatory argument. The predefined environments are defined via \begin{beschreibung} \Befehl{DeclareChemReaction}[star]{reaction}\ma{equation} and \Befehl{DeclareChemReaction}[star]{reactions}\ma{align}. \end{beschreibung} Let's suppose, you'd like to have the alignment behaviour of the \code{alignat} environment for \chemformula/\paket{mhchem} reactions. You could do the following: \cmd{DeclareChemReaction}[star,arg]{reactionsat}\ma{alignat} With this the \code{reactionsat} environment is defined. \begin{beispiel} \DeclareChemReaction[star,arg]{reactionsat}{alignat} \begin{reactionsat}{3} A &-> B &&-> C &&-> D \\ aaaaa &-> bbbbb &&-> ccccc &&-> ddddd \end{reactionsat} \begin{reactionsat*}{2} A &-> B & C &-> D \\ aaaaa &-> bbbbb &\quad{} ccccc &-> ddddd \end{reactionsat*} \end{beispiel} \subsection{List of Reactions} \chemmacros\ also provides a command to display a list of the reactions created with the \code{reaction} environment. \begin{beschreibung} \Befehl{listofreactions} \end{beschreibung} \begin{beispiel}[below] \listofreactions \end{beispiel} The Output of this list can be modified by two options: \begin{beschreibung} \Option[reaction]{list-name}{}\Default{List of reactions} Let's you set the name of the list manually. The default name is language dependent, see section~\ref{sec:languages}. \Option[reaction]{list-entry}{}\Default{Reaction} Let's you set a prefix to each list entry. The default name is language dependent, see section~\ref{sec:languages}. \end{beschreibung} Instead of using the option \key{list-name} you also could redefine \cmd{reactionlistname}. The list lists all reactions with a number and disregards reactions without number. All reaction environments without star have an optional argument which let's you add a description (or caption) for the entry in the list. \begin{beispiel} \begin{reaction}[Autoprotolyse] 2 H2O <<=> H3O+ + OH- \end{reaction} \end{beispiel} If you use the \code{reactions} environment this will not work, though. In this case you can use \begin{beschreibung} \Befehl{AddRxnDesc}{} \end{beschreibung} \begin{beispiel} \begin{reactions} Cl "\Lewis{0.,\vphantom{Cl}}" + CH4 & -> HCl + "\Lewis{4.,\vphantom{CH}}" CH3 \AddRxnDesc{first~step~of~chain} \\ "\Lewis{4.,\vphantom{CH}}" CH3 + Cl2 & -> CH3Cl + Cl "\Lewis{0.,\vphantom{Cl}}" \AddRxnDesc{second~step~of~chain} \end{reactions} \end{beispiel} Note: you don't have to use the phantom commands if you haven't changed the format of the atoms (see the documentation of the \chemformula\ package for information on how to do this). \secidx*{Reaction Environments} \section{Phases}\label{sec:phasen}\secidx{Phases} \subsection{Basics}\secidx[basics]{Phases} These commands are intended to indicate the phase of a compound. \begin{beschreibung} \Befehl{sld} \sld \Befehl{lqd} \lqd \Befehl{gas} \gas \Befehl{aq} \aq \end{beschreibung} \achtung{The default behaviour of the phases commands has changed to be consistent with \ac{iupac} recommendations. Both \cmd{sld} and \cmd{lqd} have lost their optional argument.} \begin{beispiel} \ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\\ To make it complete: NaCl\aq. \end{beispiel} The \ac{iupac} recommendation to indicate the state of aggregation is to put it in parentheses after the compound \cite{iupac:greenbook}. However, you might want to put it as a subscript which is also very common. \begin{zitat}[{\acs{iupac} Green Book {\cite[][p.\,54]{iupac:greenbook}}}] The \textelp{} symbols are used to represent the states of aggregation of chemical species. The letters are appended to the formula in parentheses and should be printed in Roman (upright) type without a full stop (period). \end{zitat} There are two options to customize the output: \begin{beschreibung} \Option[phases]{pos}{side|sub}\Default{side} Switch the position of the phase indicator. \Option[phases]{space}{}\Default{.1333em} Change the default spacing between compound a phase indicator if \key{pos}{side}. A \TeX\ dimension. \end{beschreibung} \begin{beispiel} \chemsetup[phases]{pos=sub} \ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\\ To make it complete: NaCl\aq. \end{beispiel} \subsection{Define Own Phases}\secidx[own]{Phases} Depending on the subject of your document you might need to indicate other states of aggregation. You can easily define them. \begin{beschreibung} \Befehl{DeclareChemPhase}{}\oa{}\ma{} \Befehl{RenewChemPhase}{}\oa{}\ma{} \Befehl{phase}{}\newline If you need a phase indicator just once or twice. \end{beschreibung} \cmd{DeclareChemPhase} only defines a phase if \code{} is not already used by any other command. If it \emph{is} already used \chemmacros will either give a warning or an error, depending on the option \key{strict}. \cmd{RenewChemPhase} \emph{only} defines a phase if \code{} \emph{is} already used and issues a warning/error otherwise. Unlike the other declaration commands of \chemmacros\ \cmd{DeclareChemPhase} and \cmd{RenewChemPhase} \emph{can only be used in the preamble.} \begin{beispiel} % preamble: % \DeclareChemPhase{\aqi}{aq,$\infty$}% aqueous solution at infinite dilution % \DeclareChemPhase{\cd}{cd}% condensed phase % \RenewChemPhase{\lqd}{lc}% liquid crystal NaOH\aqi\ \ch{H2O\cd} U\phase{cr} A\lqd \\ \chemsetup[phases]{pos=sub} NaOH\aqi\ \ch{H2O\cd} U\phase{cr} A\lqd \end{beispiel} \secidx*{Phases} \section{Newman Projections}\label{sec:newman}\secidx{Newman Projections} \chemmacros provides the command \begin{beschreibung} \Befehl{newman}[]\da{}\ma{<1>,<2>,<3>,<4>,<5>,<6>} \end{beschreibung} which allows you to create newman projections (uses \TikZ). With \code{} the back atoms are rotated counter clockwise with respect to the front atoms. \begin{beispiel} \newman{} \newman(170){} \newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6} \end{beispiel} Several options allow customization: \begin{beschreibung} \Option[newman]{angle}{}\Default{0} Default angle. \Option[newman]{scale}{}\Default{1} Scale the whole projection. \Option[newman]{ring}{}\Default{} Customize the ring with \TikZ keys. \Option[newman]{atoms}{}\Default{} Customize the nodes within which the atoms are set. \Option[newman]{back-atoms}{}\Default{} Explicitly customize the back atoms. \end{beschreibung} \begin{beispiel} \chemsetup[newman]{angle=45} \newman{} \newman[scale=.75,ring={draw=blue,fill=blue!20}]{} \end{beispiel} \begin{beispiel} \chemsetup[newman]{atoms={draw=red,fill=red!20,inner sep=2pt,rounded corners}} \newman{1,2,3,4,5,6} \end{beispiel} \begin{beispiel} \chemsetup[newman]{ atoms = {draw=red,fill=red!20,inner sep=2pt,rounded corners}, back-atoms = {draw=blue,fill=blue!20,inner sep=2pt,rounded corners} } \newman{1,2,3,4,5,6} \newman(170){1,2,3,4,5,6} \end{beispiel} \secidx*{Newman Projections} \section{s, p, and Hybrid Orbitals}\label{sec:orbitale}\secidx{Orbitals} \chemmacros provides the following command to create orbitals: \begin{beschreibung} \Befehl{orbital}[]{}: \begin{description} \item \code{s} \item \code{p} \item \code{sp} \item \code{sp2} \item \code{sp3} \end{description} \begin{beispiel} \orbital{s} \orbital{p} \orbital{sp} \orbital{sp2} \orbital{sp3} \end{beispiel} Depending on the type you have different options to modify the orbitals: \begin{beschreibung} \Option[orbital]{phase}{\default{+}|-}\newline changes the phase of the orbital (all types) \Option[orbital]{scale}{}\newline changes the size of the orbital (all types) \Option[orbital]{color}{}\newline changes the color of the orbital (all types) \Option[orbital]{angle}{}\newline rotates the orbitals with a p contribution counter clockwise (all types except \code{s}) \Option[orbital]{half}{\default{true}|false}\newline displays only half an orbital (only \code{p}) \end{beschreibung} \begin{beispiel} \orbital{s} \orbital[phase=-]{s} \orbital{p} \orbital[phase=-]{p} \orbital{sp3} \orbital[phase=-]{sp3} \orbital[angle=0]{p} \orbital[color=red!50]{p} \orbital[angle=135,scale=1.5]{p} \orbital[half]{p} \end{beispiel} Additionally there are two options, with which the \TikZ behaviour can be changed. \begin{beschreibung} \Option[orbital]{overlay}{\default{true}|false}\newline The orbital \enquote{doesn't need space}; it is displayed with the \TikZ option \code{overlay}. \Option[orbital]{opacity}{}\newline The orbital becomes transparent; \code{} can have values between \code{1} (fully opaque) to \code{0} (invisible). \end{beschreibung} \begin{beispiel}[dist] \hspace{1cm} \chemsetup[orbital]{ overlay, p/color = black!70 } \setbondoffset{0pt} \chemfig{ ?\orbital{p} -[,1.3]{\orbital[phase=-]{p}} -[:30,1.1]\orbital{p} -[:150,.9]{\orbital[phase=-]{p}} -[4,1.3]\orbital{p} -[:-150,1.1]{\orbital[phase=-]{p}}? } \vspace{7mm} \end{beispiel} \bspmidlength{dist}{10mm} \begin{beispiel}[dist] \hspace{2cm} \setbondoffset{0pt} \chemsetup[orbital]{ overlay , opacity = .75 , p/scale = 1.6 , s/color = blue!50 , s/scale = 1.6 } \chemfig{ \orbital{s} -[:-20]{\orbital[scale=2]{p}}{\orbital[half,angle=0]{p}}{\orbital[angle=170,half]{p}}{\orbital[angle=-150,half]{p}} (-[:-150]\orbital{s})-\orbital{s} } \vspace{1cm} \end{beispiel} \bspmidlength{dist}{7mm} \secidx*{Orbitals}\secidx*{CHEMMACROS} \part{Other Packages of the Bundle} The other three package, \chemformula, \ghsystem\ and \chemgreek, all have their own documentation: \begin{itemize} \item \url{chemformula_en.pdf} \item \url{ghsystem_en.pdf} \item \url{chemgreek_en.pdf} \end{itemize} This change has been made \sinceversion{4.0}with version~4.0 since with this version every of those packages can be used independently from the \chemmacros\ package. It made sense to give each of them an own documentation file. You should be able to find them in the same folder as this document as well as via the \code{texdoc} program. You can also try and click on the names in the list above. They are links and \emph{should} open the respective file. \appendix \part{Appendix}\index{APPENDIX@\textbf{APPENDIX}} \addsec{Suggestions and Bug Reports} Feedback on \chemmacros, \chemformula and \ghsystem is highly appreciated and welcome! If you have suggestions for macros, missing features \etc, please don't hesitate to contact me. If you recognize any errors, be it chemical ones, wrong documentation and the like, I'd be grateful about a short email\footnote{\href{mailto:contact@mychemistry.eu}{contact@mychemistry.eu}}. If you find any bugs, it would be best, if you'd send me a minimal example, with which I can reproduce the bug. You can also submit an issue on \url{https://bitbucket.org/cgnieder/chemmacros/} instead. Many thanks to all the people who already provided me with feedback, especially (in alphabetical order): \begin{itemize} \item Peter Cao \item Christina Lüdigk \item Dr.\ Paul King \item Jonas Rivetti (Special thanks for his translation of the hazard and precautionary statements into Italian!) \item Christoph Schäfer \item Timo Stein \end{itemize} \printbibliography {\catcode`\^=11 \catcode`\#=11 \printindex} \end{document}