
The chemcompounds package∗

Stephan Schenk
mail@schenk-stephan.de

October 24, 2005

Abstract

The chemcompounds.dtx package allows for a simple consecutive num-
bering of chemical compounds. Optionally, it is possible to supply a custom
name for each compound. By default the compound numbering follows the
order of their appearance in the text.

Contents

1 Introduction 1

2 The user interface 2

3 The implementation 4

1 Introduction

In chemical publications it is often necessary to consecutively number every com-
pound mentioned in the text. Although this can be simply accomplished by man-
ually inserting the corresponding numbers into the text, it is generally much more
tedious work since the numbering scheme tends to change several times during
the evolvement of the manuscript. For this reason it would be nice to have an
automaticism which will take care of every change.

Being myself a chemist I’ve been using the chemcono package by Stefan Schulz
for this purpose quite successfully over several years. This package creates a library
very similar to thebibliography. Users can now refer to entries in the library
by a command very similar to \cite. Thus, once you change the library entry
every reference to it will be updated automatically upon running LATEX on the file.
There is only one issue associated with this package: You get a list of all declared
compounds inside your document wich at least looks odd. I therefore decided to
write a new package chemcompounds described in this document to address this
problem.

When taking a closer look at the chemcono package I realised that the only
thing one has to do is to get rid of everything which produces text. Thus, as
a basis I used the mechanism of \bibitem and \cite in pretty much the same
way as chemcono does by extracting the corresponding code from article.cls

∗This file describes version v1.1.2 and has been last revised 2005/10/19.

1

and latex.ltx but deleting any unnecessary commands producing output. I also
introduced several lines of code to make the printing of the compound names more
customisable.

At present the packages knows two different modes of operation. In the de-
fault implicit mode a compound name is created automatically as a consecutive
number when the compound is referenced for the first time by \compound. Thus,
all compounds will be numbered consecutively in the order they appear in the
text. If the automatically generated name is not appropriate, a custom name can
be given to a compound by means of the \declarecompound command described
below.

In noimplicit mode names are not generated fully automatically. Instead for
every compound a \declarecompound must be issued. This will again create a
subsequent number and a custom name can be given as an optional argument.
The main difference to implicit mode is that thus compounds will be numbered
in the order of the corresponding \declarecompound commands rather than in
the order of their appearance in the text.

2 The user interface

Because of the way the implementation works, two LATEX runs are required to get
everything right. This should not be a problem since you have to run LATEX twice
anyway to get the table of contents and references right. The package will issue
a “labels have changed” warning if you have to rerun LATEX. For every unknown
compound name the package will issue a warning, too.

2.1 Package options

This option causes the package to operate in implicit mode. This is the default.implicit

This option is the opposite of implicit and causes the package to operate innoimplicit

noimplicit mode.

2.2 Assigning and accessing compound names

\declarecompound[〈optional name〉]{〈label〉}\declarecompound

assigns a name to a compound. If the optional argument is omitted, a consecutive
number is automatically taken as compound name. This command can only occur
in the preamble. A personal recommendation is to keep all \declarecompounds
together in a separate file and \input this file in the preamble.

In implicit mode, if no optional argument is given, the command does nothing
since the automatic compound name will be generated by \compound.

\compound{〈label1 〉,〈label2 〉,. . . }\compound

prints the name of a compound. If a list of labels is given as argument, a list
of names separated by \compoundseparator is created. In implicit mode this
command also creates a new compound name if the label is used for the first time
and a custom name has not already been assigned to this compound.

The starred version works in almost exactly the same way as \compound. The\compound*

only difference is that it does not create any output at all. However, it still creates

2

the label in implicit mode. It can thus be used to create “hidden” compounds
in implicit mode. This, i.e., can be useful if some compounds are depicted in
an illustration or scheme which are only later or even never mentioned in the text
but the numbering scheme should take care of them.

2.3 Customisation

The commands in this section can be used to fine-tune the appearance of
the compound names. In order to change the default behaviour you have to
\renewcommand the corresponding commands. The defaults for every command
are given in parentheses.

\compoundseparator (,\penalty\@m\)\compoundseparator

defines the separator in a list of compound names.

\compoundglobalprefix ()\compoundglobalprefix

defines the prefix for a list of compound names. This will be printed also in case
the list has length one.

\compoundglobalsuffix ()\compoundglobalsuffix

defines the suffix for a list of compound names. This will be printed also in case
the list has length one.

\compoundprefix ()\compoundprefix

defines the prefix for every compound.

\compoundsuffix ()\compoundsuffix

defines the suffix for every compound.

\compoundstyle (\textbf)\compoundstyle

defines the style of each name.

\printcompound ({\compoundprefix}{\compoundstyle{#1}}{\compoundsuffix})\printcompound

is used to actually format the name of each compound. If the previous possibilities
are not sufficient to meet your formatting demands the thing you should redefine
is this one.

2.4 Examples

The following examples using

\declarecompound{label1}

\declarecompound{label2}

\declarecompound[5b]{label3}

\compound{label1} and \compound{label1,label2,label3}

should clarify the meaning of the above commands. The first two \declarecommands
could be omitted in implicit mode.

• Using the defaults results in 1 and 1, 2, 5b.

• \renewcommand{\compoundstyle}{\underbar}

gives 1 and 1, 2, 5b.

3

• \renewcommand{\compoundseparator}{;}

gives 1 and 1; 2; 5b.

• \renewcommand{\compoundglobalprefix}{(}

\renewcommand{\compoundglobalsuffix}{)}

gives (1) and (1, 2, 5b).

• \renewcommand{\compoundprefix}{(}

\renewcommand{\compoundsuffix}{)}

gives (1) and (1), (2), (5b).

• \renewcommand{\compoundglobalprefix}{\textbf{[}}

\renewcommand{\compoundglobalsuffix}{\textbf{]}}

\renewcommand{\compoundprefix}{\ensuremath{\langle}}

\renewcommand{\compoundsuffix}{\ensuremath{\rangle}}

\renewcommand{\compoundstyle}{\emph}

gives [〈1 〉] and [〈1 〉, 〈2 〉, 〈5b〉].

As shown above customization is not limited solely to parentheses etc. but can
include formating commands, too.

3 The implementation

3.1 Identification

The package identifies itself at the top using something like
1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesPackage{chemcompounds}

3 [\filedate\space \fileversion\space Dictionary for compound numbering]

3.2 Package options

\ifchemcompounds@implicit Define a new boolean variable defining whether implicit mode is enabled.
4 \newif\ifchemcompounds@implicit

implicit

noimplicit

The following package options set ifchemcompounds@implicit either to true or
false. The default is implicit mode.
5 \DeclareOption{implicit}{\chemcompounds@implicittrue}

6 \DeclareOption{noimplicit}{\chemcompounds@implicitfalse}

7 \ExecuteOptions{implicit}

Process options.
8 \ProcessOptions

4

3.3 User interface

The work flow for creating and accessing compound names was borrowed from the
definition of \bibitem and \cite.

\compoundseparator

\compoundglobalprefix

\compoundglobalsuffix

\compoundprefix

\compoundsuffix

\compoundstyle

\printcompound

The following definitions define the default layout of the names in the text (no
surrounding parentheses, multiple compound names separated by comma, names
in bold face). \printcompound defines the way each name is printed.
9 \def\compoundseparator{,\penalty\@m\ }

10 \let\compoundglobalprefix\@empty

11 \let\compoundglobalsuffix\@empty

12 \let\compoundprefix\@empty

13 \let\compoundsuffix\@empty

14 \def\compoundstyle{\textbf}

15 \def\printcompound#1{{\compoundprefix}{\compoundstyle{#1}}{\compoundsuffix}}

\declarecompound This command is used to assign a name to a compound. It just looks ahead
whether an optional argument was given and calls the appropriate internal com-
mand. To avoid problems with the creation of the labels this command is only
allowed in the preamble.
16 \def\declarecompound{\@ifnextchar[\@ldeclarecompound\@declarecompound}

17 \@onlypreamble\declarecompound

\ifchemcompounds@print Define a new boolean variable indicating whether the starred version of \compound
was used.
18 \newif\ifchemcompounds@print

\compound

\compound*

This command will finally print the name associated with a compound label. The
starred version just creates the label (in implicit mode) without printing the
value. The command itself just checks whether the starred version is used, sets an
internal flag appropriately and calls the internal command \@compound.
19 \DeclareRobustCommand{\compound}{%

20 \@ifstar{\chemcompounds@printfalse\@compound}

21 {\chemcompounds@printtrue\@compound}

22 }

3.4 Internal commands

\@compound This command retrieves the name associated with a compound and prints it in
the text using the previously defined format. The code is a modified version of
the definition of \cite in latex.ltx. If this command is invoked by \compound*,
\ifchemcompounds@print will be false and all output will be suppressed.
23 \def\@compound#1{%

Print optional prefix to a list of compounds.
24 \ifchemcompounds@print

25 \compoundglobalprefix

26 \fi

Now loop over every label in the argument list.
27 \let\@compounda\@empty

28 \@for\@compoundb:=#1\do{%

29 \edef\@compoundb{\expandafter\@firstofone\@compoundb}%

5

Print separator. Note that it is empty for the first entry and \compoundseparator
otherwise.
30 \ifchemcompounds@print

31 \@compounda

32 \def\@compounda{{\compoundseparator}}%

33 \fi

If compound is undefined print ’?’ and raise a warning.
34 \@ifcompoundundefined{\@compoundb}{%

35 \ifchemcompounds@print

36 \mbox{\reset@font\bfseries ?}%

37 \fi

38 \G@refundefinedtrue

39 \@latex@warning

40 {compound ‘\@compoundb’ on page \thepage\space undefined}%

41 }{%

If compound is known print formatted name.
42 \ifchemcompounds@print

43 \mbox{\printcompound{\@nameuse{comp@\@compoundb}}}%

44 \fi

45 }%

In implicit mode \@createcompoundhook will generate a new name if this has
not been done before. In noimplicit mode this does nothing.
46 \@createcompoundhook{\@compoundb}%

47 }%

Print optional suffix to a list of compounds.
48 \ifchemcompounds@print

49 \compoundglobalsuffix

Although nothing is printed, under certain conditions an additional space is cre-
ated. Remove it.
50 \else

51 \unskip

52 \fi

53 }

\chemcompounds@counter Define a new counter which will be used for generating the compound names.
54 \newcounter{chemcompounds@counter}

\chemcompounds@label The next command will be used in the .aux file and defines a new label for every
compound.
55 \def\chemcompounds@label{\@newl@bel {comp}}

\chemcompounds@writelabel Write the label and its value to the aux file.
56 \def\chemcompounds@writelabel#1#2{%

57 \if@filesw

58 \begingroup

59 \def\protect{\noexpand}%

60 \immediate\write\@auxout{

61 \string\chemcompounds@label{#1}{#2}

62 }%

63 \endgroup

6

64 \fi

65 \ignorespaces

66 }

\@ldeclarecompound The next command gets called if an additional argument was supplied to
\declarecompound. It creates the compound with the given name as soon as
the aux file is writeable. This command can only be used in the preamble.
67 \def\@ldeclarecompound[#1]#2{%

68 \AtBeginDocument{\@createcompound[#1]{#2}}

69 }

70 \@onlypreamble\@ldeclarecompound

\@declarecompound In implicit mode this command does nothing since default names are created
automatically by \compound.
71 \ifchemcompounds@implicit

72 \let\@declarecompound\@gobble

In noimplicit mode this simply creates the compound as soon as the aux file is
writeable.
73 \else

74 \def\@declarecompound#1{%

75 \AtBeginDocument{\@createcompound{#1}}

76 }

77 \fi

78 \@onlypreamble\@declarecompound

This command can only be used in the preamble.

\@ifcompoundundefined Test whether a compound has already been defined by testing the associated label.
79 \def\@ifcompoundundefined#1{%

80 \@ifundefined{comp@#1}

81 }

\@createcompound This command is used to create a new compound name. It just looks ahead
whether an optional argument was given and calls the appropriate command.
82 \def\@createcompound{%

83 \@ifnextchar[\@@lcreatecompound\@@createcompound

84 }

\@@createcompound If a compound name has not yet been created this command increments
chemcompounds@counter and takes the new value as the compound name. The
new compound name is written to the aux file and a flag is set to indicate that a
name for this compound has already been created.
85 \def\@@createcompound#1{%

86 \@ifnotcompoundcreated{#1}{%

87 \stepcounter{chemcompounds@counter}%

88 \chemcompounds@writelabel{#1}{\the\value{chemcompounds@counter}}

89 \@compoundcreated{#1}%

90 }%

91 }

\@@lcreatecompound This command creates a compound name from the first parameter and writes it
to the aux file. A flag is set to indicate that a name for this compound has already
been created.

7

92 \def\@@lcreatecompound[#1]#2{%

93 \chemcompounds@writelabel{#2}{#1}

94 \@compoundcreated{#2}%

95 }

\@compoundcreated Set a flag indicating that the compound name has been created. This is done by
defining an appropriate label in implicit mode.
96 \ifchemcompounds@implicit

97 \def\@compoundcreated#1{%

98 \global\@namedef{compc@#1}{}%

99 }

In noimplicit mode this is unnecessary thus just gobble the argument.
100 \else

101 \let\@compoundcreated\@gobble

102 \fi

\@ifnotcompoundcreated Check whether a new compound name has already been created. In implicit
mode existence of the corresponding label (flag) is checked. If it does not exist
the code given as the second argument is executed.

103 \ifchemcompounds@implicit

104 \def\@ifnotcompoundcreated#1#2{%

105 \@ifundefined{compc@#1}{#2}{}%

106 }

In noimplicit mode the label (flag) is unused and a new name will always be.
created. Therefore just execute the code given as second argument.

107 \else

108 \let\@ifnotcompoundcreated\@secondoftwo

109 \fi

\@createcompoundhook This command gets called everytime a compound name is printed. In implicit
mode this command is equal to creating a new compound name.

110 \ifchemcompounds@implicit

111 \let\@createcompoundhook\@createcompound

In noimplicit mode this is unnecessary. Therefore just gobble the argument.
112 \else

113 \let\@createcompoundhook\@gobble

114 \fi

115 \endinput

Change History

1.0.0

General: First version posted on
CTAN. 1

1.0.1

\compound: Replaced \hbox by
\mbox to work around some
spacing issues when printing the

compound name. 5

1.1.0

\@@createcompound: New. 7

\@@lcreatecompound: New. 7

\@compoundcreated: New. 8

\@createcompound: New. 7

\@createcompoundhook: New. 8

8

\@declarecompound: Completely
rewritten. 7

\@ifcompoundundefined: New. . . . 7
\@ifnotcompoundcreated: New. . . 8
\@ldeclarecompound: Completly

rewritten. 7
General: Added code to process op-

tions. 4
\chemcompounds@label: Labels are

now prefixed with ’c’ making
them hopefully unique. 6

\chemcompounds@writelabel:
New. 6

\compound: Changed definition of
\compoundseparator. Inserted
\@createcompoundhook. 5

\compoundseparator: Changed de-
fault value to include trailing
space. 5

\declarecompound: Only in pream-
ble. 5

\ifchemcompounds@implicit:
New. 4

implicit: New option. 4
noimplicit: New option. 4

1.1.1
\@compoundcreated: Changed label

prefix to ’compc’. 8

\@ifcompoundundefined: Changed
label prefix to ’comp’. 7

\@ifnotcompoundcreated: Changed
label prefix to ’compc’. 8

\chemcompounds@label: Changed
label prefix to ’comp’ since ’c’
is already in use. 6

\chemcompounds@writelabel:
\noexpand the label value. Re-
quired for improved robustness. 6

\compound: Changed label prefix to
’comp’. 5

1.1.2
\@compound: New. Previ-

ous functionality moved to
\printcompound. 5

General: Posted on CTAN on
2005/10/24. 1

\chemcompounds@writelabel:
Added \ignorespaces. 6

\compound: Only check for starred
version and call internal com-
mand. Functionality moved to
\@compound. 5

\compound*: New. 5
\ifchemcompounds@print: New. . . 5
\printcompound: New. Previous

\@compound command. 5

9

