
c | a | t | o | p | t | i | o | n | s
Setting up \futurelet characters, restoring catcodes, and parsing options

The pcatcode package functionality would work best if it were built into the LATEX 2ε kernel, but it cannot be usefully
added to the kernel now without adversely affecting document compatibility across different systems. This package
therefore modifies one or two of the low-level package-loading functions defined by the kernel. Theoretically speaking,
the pcatcode package itself has to guard against the kind of catcode problems that it is intended to circumvent. If you
would like a nice little TEXnician’s exercise, try your hand, before looking at the code of the pcatcode package, at the
task that I set for myself: find the minimal set of catcode assumptions that one has to make before attempting to establish
normalcy, where normalcy is defined as the state at the end of the LATEX kernel, just before the last \makeatother. This
is the state that may normally be expected at the beginning of a \documentclass file, if the LATEX format file does not
have any extensions (e. g., babel) compiled in. Michael J. Downes, 1958–2003

The catoptions PackageI

Version 0.2

Ahmed Musa�
Preston, Lancashire, UK

28th February 2011

Summary The catoptions package provides several extensions to the pcatcode package. Apart from the
tools related to setting up, preserving and restoring category codes, it includes many (LA)TEX programming
tools and even new list and options processing interfaces. It modifies the LATEX kernel’s options parsing
mechanism to forestall premature expansion of options and values (in the manner of the xkvltxp and
kvoptions-patch packages), so that the catoptions package may be loaded even before \documentclass.
In fact, the package is meant to be loaded on top of other packages, so as to exploit its catcode preserving
scheme. Among other reasons, this necessitated the development of the options parsing scheme of this
package. Only the catcode and options parsing facilities are treated in this manual; the macro programming
interfaces will be covered in the documentation of the ltxtools package. The machinery of the catoptions
package adds no cost to the simple syntax of LATEX’s native options parser. Users who are already familiar
with LATEX’s legacy options processing don’t necessarily have to invest the time that is essential in learning
the extensive machinery of existing key-value and option parsers, although those other packages (e. g.,
xkeyval, kvsetkeys, kvoptions, skeyval, rkeyval, pgfkeys, pgfopts) contain richer featuresets. Existing
packages don’t have to be modified to use the features of the catoptions package. The catoptions package,
while maintaining simplicity, does not strip off even one level of outer braces in parsing package options
and in list processing. It robustly normalizes key-values and options prior to parsing. The options parsing
scheme of the catoptions package has been tried as a replacement parser on many packages, including
hyperref, cleveref and natbib packages without difficulties.

This work (i. e., all the files in the catoptions package bundle) may be distributed and/or
modified under the conditions of the LATEX Project Public License (LPPL), either version 1.3
of this license or any later version.

The LPPL maintenance status of this software is ‘author-maintained.’ This software is provided
‘as it is,’ without warranty of any kind, either expressed or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose.

c© MMXI

IThe package is available at http://www.ctan.org/tex-archive/macros/latex/contrib/catoptions/.

http://www.ctan.org/tex-archive/macros/latex/contrib/catoptions/
mailto:a.musa@rocketmail.com
http://www.ctan.org/tex-archive/macros/latex/contrib/catoptions/


The catoptions package 28th February 2011

Contents

1 Motivation 2

2 Package options 2

3 Saving and restituting category codes 3

4 Future-letting of ‘other’ characters 4

5 Setting up package preliminaries 6

6 Options parsing 7

7 Normalizing csv and kv lists 11

8 Parsing csv and kv lists 12

9 Version history 14

Index 15

1 Motivation

My motivation for turning to the pcatcode package was to save myself the trouble of declaring
category codes at the beginning of my packages. After spending some time on the pcatcode

package, I discovered I had learnt enough to make changes and additions to some of its macros
and functionality. After completing the catcode stuff in the catoptions package, I wanted to pass
options to the package. If the package is to be loaded on top of other packages, as intended, then
its options parsing scheme should be independent of other packages. But realizing the trouble
with passing expandable option values to packages and classes via the LATEX kernel’s scheme, I
decided to implement modifications to the kernel’s options parser. Apart from the problem of
premature expansion of options and values by the LATEX kernel, outer curly braces in option values
are lost during parsing. Indeed, the kernel’s option parsing scheme doesn’t recognize option values
indicated with the equality sign. And the syntaxes (if not also the semantics) of LATEX3, whose
options parser is presumably more robust than that of LATEX 2ε, calls for additional investment in
time that may not be readily affordable to some users.

2 Package options

The catoptions package has the options shown in Table 1. The boolean option verbose instructs
the package to put information onto the log file when existing commands are being redefined by
means of, say, the command \robust@redef (which has the same syntax with TEX’s legacy \def).
This option may be used in the future to provide debugging features for the package.

Table 1: Package options

Option Default Meaning

verbose false The global boolean switch that determines if inform-
ation should be logged for some tasks in the package.

usepox true The boolean switch that determines if the options
parser of catoptions should be used for all options
processing of packages loaded after \documentclass

even if those packages are based on LATEX 2ε’s native
options processing scheme.

If the catoptions package is loaded before documentclass, it will invariably use the options
processing mechanism of the package (namely, the more robust commands \XDeclareOption,
\XExecuteOptions and \XProcessOptions in place of LATEX’s native commands \DeclareOption,

Page 2 of 15



The catoptions package 28th February 2011

\ExecuteOptions and \ProcessOptions)∗. In that case, the legacy commands \DeclareOption,
\ExecuteOptions and \ProcessOptions are aliased to \XDeclareOption, \XExecuteOptions and
\XProcessOptions, respectively. The latter set of commands do immediately recognize that they
have to deal with option functions that are based on the kernel’s semantics. This allows expandable
options and option values to be passed via \documentclass—if catoptions is loaded before
\documentclass. This also implies that existing packages can use the options parsing scheme of
catoptions package without modifying the packages.

The option usepox directs the package to use the catoptions’s options processing scheme for all
the packages loaded after \documentclass, instead of LATEX’s native options parsing procedures.
This allows catoptions’s options parsing scheme to be used for existing packages loaded after
\documentclass without modifying the packages.

Assuming that the options ‘textstyle’ and ‘name’ belong to an existing package (say, ‘mypackage’)
to be loaded later, then the following example demonstrates one feature of the catoptions package:

Example

1 \RequirePackage[verbose, usepox]{catoptions}

2 \documentclass[textstyle=\ttfamily,name={Mr X\"avier Sanchez},a4paper,

3 draft,10pt]{article}

4 \usepackage{mypackage}

3 Saving and restituting category codes

There are the following user commands for saving and returning category codes of ‘other’ characters
to their previous states:

New macros

5 \cptnormalcatcodes

6 \cptpushcatcodes

7 \cptpopcatcodes

8 \UseNormalCatcodes

9 \GetCurrentCatcodeSubset

10 \cptfutureletsetup

The command \cptnormalcatcodes simply resets the category codes of all ‘other’ characters to-
gether with those of the space character and \^^I and \^^J to their standard values. The command
\cptpushcatcodes pushes the current category codes for restitution later with \cptpopcatcodes.
The command \UseNormalCatcodes works only in packages and does more than one thing: it
calls \cptpushcatcodes, \cptnormalcatcodes and \cptfutureletsetup in that order. At the
end of the package, it automatically issues \cptpopcatcodes to recover all the category codes
earlier pushed. The command \UseNormalCatcodes can conveniently be issued at the start of the
package and the developer can be assured of access to the standard category codes of all ‘other’
characters together with those of the space character and \^^I and \^^J. It should be called only
once in a package: subsequent calls will have no effect.

After issuing the command \GetCurrentCatcodeSubset, you can do

Example

11 \show\currentcatcodesubset

∗The user interfaces of \XDeclareOption, \XExecuteOptions and \XProcessOptions are similar to those of

Page 3 of 15



The catoptions package 28th February 2011

to see the current catcode setup. The command \cptfutureletsetup is described in Section 4.

Example: \UseNormalCatcodes

12 \ProvidesPackage{mypackage}[2011/01/16 v0.01]

13 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

14 \RequirePackage[verbose, usepox]{catoptions}

15 \UseNormalCatcodes

4 Future-letting of ‘other’ characters

The command \cptfutureletsetup defines canonical control sequences to represent the following
characters:

Futurelet characters

16 space exclam! dblquote" hash# dollar$ ampersand&

17 lrquote’ lparen( rparen) star* plus+ comma, hyphen- period.

18 slash/ colon: semicolon; less< equal= greater> question? lbracket[

19 rbracket] hat^ underscore_ lquote‘ lbrace{ vert| rbrace} tilde~

20 bslash\

However, for efficiency reasons, the canonical control sequences will be defined for only the char-
acters (or their names) appearing in the user-supplied list \declarefutureletset, whose syntax
is

New macro: \declarefutureletset

21 \declarefutureletset[〈stub〉]{〈set〉}

Here, 〈set〉 is a comma-separated list of names from the ‘other’ characters listed above. The
defined commands are prefixed with an optional 〈stub〉, whose default value is fl@. The defined
commands have the syntaxes

Futurelet characters

22 \〈stub〉〈char〉
23 \if〈stub〉〈char〉

For efficiency gains, a call to \cptfutureletsetup automatically undefines all the canonical control
sequences previously defined with a call to \cptfutureletsetup—before the new canonical control
sequences are defined.

For instance, with the choices

Example: \declarefutureletset

24 \declarefutureletset[fl@]{space, star, lbracket}

25 \cptfutureletsetup

we have the following commands on hand for testing after \futurelet:

\DeclareOption, \ExecuteOptions and \ProcessOptions but they aren’t the same. See Section 6.

Page 4 of 15



The catoptions package 28th February 2011

New macros: Futurelet commands

26 \fl@space \fl@star \fl@lbracket

27 \iffl@space \iffl@star \iffl@lbracket

If any of the commands emanating from concatenating 〈stub〉 with the name of the character
is already defined, an error message is flagged. It should be noted that these commands are
available only after issuing the command \cptfutureletsetup, which isn’t called automatically
anywhere by the catoptions package. Normally, at \AtBeginDocument the catoptions pack-
age calls the command \cptrestorecatcodes, without calling \cptfutureletsetup. Calling
\declarefutureletset and \cptfutureletsetup is the user’s duty.

The commands \declarefutureletset and \cptfutureletsetup are decoupled to allow the user
to call \declarefutureletset only once, and perhaps much earlier, before calling the command
\cptfutureletsetup as often as desired.

An inefficient call of the form

Example: \declarefutureletset

28 \declarefutureletset[fl@]{all}

where ‘all’ means that control sequences should be defined for all the available ‘other’ characters,
will define all the following control sequences whenever \cptfutureletsetup is called:

Examples: Futurelet commands

29 \fl@space \fl@exclam \fl@dblquote \fl@hash

30 \fl@dollar \fl@ampersand \fl@lrquote \fl@lparen

31 \fl@rparen \fl@star \fl@plus \fl@comma

32 \fl@hyphen \fl@period \fl@slash \fl@colon

33 \fl@semicolon \fl@less \fl@equal \fl@greater

34 \fl@question \fl@lbracket \fl@rbracket \fl@hat

35 \fl@underscore \fl@lquote \fl@lbrace \fl@vert

36 \fl@rbrace \fl@tilde \fl@bslash

37 \iffl@space \iffl@exclam \iffl@dblquote \iffl@hash

38 \iffl@dollar \iffl@ampersand \iffl@lrquote \iffl@lparen

39 \iffl@rparen \iffl@star \iffl@plus \iffl@comma

40 \iffl@hyphen \iffl@period \iffl@slash \iffl@colon

41 \iffl@semicolon \iffl@less \iffl@equal \iffl@greater

42 \iffl@question \iffl@lbracket \iffl@rbracket \iffl@hat

43 \iffl@underscore \iffl@lquote \iffl@lbrace \iffl@vert

44 \iffl@rbrace \iffl@tilde \iffl@bslash

This will yield control sequences that may never be needed. While such a facility does exist, using
it will be inefficient despite the large capacities of many modern text engines.

The use syntaxes for the commands \〈stub〉〈char〉 and \〈if〉〈stub〉〈char〉 are as follows:

Example: Futurelet characters

45 \futurelet\next\cmd *

46 \def\cmd{\ifx\fl@star\next ‘I saw star’\else ‘I didn’t see star’\fi}

47 \def\cmd{\iffl@star\next{‘I saw star’}{‘I didn’t see star’}}

Page 5 of 15



The catoptions package 28th February 2011

Notice that \ifx\fl@comma\next is a conventional TEX test, while \iffl@... expects two LATEX
branches (\@firstoftwo and \@secondoftwo). It may be argued that these commands are need-
lessly too many and may be defined by means of only two macros. That would appear a valid
point, but the commands are meant to be easy to recall and use. If, for example, you are testing
for the presence of \tilde, you simply do \iffl@tilde\next{...}{...}, assuming a 〈stub〉 of
fl@.

After setting up \futurelet characters with \cptfutureletsetup, you can reset active characters
to catcode 13 by \futureletresetactives.

5 Setting up package preliminaries

Every package normally requires some preliminary declarations, such as seen below. The com-
mands \StyleFilePurpose, \StyleFileRCSInfo, \StyleFileInfo and \SetStyleFileMessages

are defined by the catoptions package. All of them have intuitive syntaxes, except the command
\SetStyleFileMessages, whose syntax is explained below.

Example: Package preliminaries

48 \StyleFilePurpose{A collection of useful commands}

49 \StyleFileRCSInfo

50 $Id: mypackage.sty,v 0.1 2011/01/01 09:00:00 My Name Exp $

51 \ProvidesPackage{mypackage}[\StyleFileInfo]

52 \NeedsTeXFormat{LaTeX2e}[1996/12/01]

53 \SetStyleFileMessages[mypack@]{err}{warn}{info}

New macro: \SetStyleFileMessages

54 \SetStyleFileMessages[〈stub〉]{〈err〉}{〈warn〉}{〈info〉}

Here, 〈stub〉 is an optional prefix for the three package messages described below. The default
value of 〈stub〉 is the first three characters of the package or class name (\@currname) concatenated
with the ‘at’ sign ‘@.’ The mandatory arguments 〈err〉, 〈warn〉, and 〈info〉 are the suffices for the
package error, warning and information messages, respectively.

For instance, with the declaration

Example: \SetStyleFileMessages

55 \SetStyleFileMessages[mypack@]{error}{warning}{info}

the following commands are automatically defined by the catoptions package:

Example: \SetStyleFileMessages

56 \mypack@error → Error message of two parameters

57 \mypack@warning → Warning message of one parameter

58 \mypack@info → Information message of one parameter

The commands \mypack@error and \mypack@info can be used as follows:

Example: \SetStyleFileMessages

59 \ifcptonetokenTF{#1}{%

60 \mypack@info{Correct single argument ‘\detokenize{#1}’: accepted}%

61 }{%

Page 6 of 15



The catoptions package 28th February 2011

62 \mypack@error{Multiple arguments ‘\detokenize{#1}’}%

63 {Invalid multiple arguments ‘\detokenize{#1}’ rejected}%

64 }

6 Options parsing

The interfaces of the options processing commands are as follows, which, apart from the optional
family 〈fam〉 and default value 〈default〉, are syntactically similar to the corresponding native
LATEX commands. The optional family name is useful for defining unique options that stand only
a remote chance of being mixed up with options of other families. And the optional default value
is handy when the user doesn’t supply a value for an option: no errors are produced in this
case. Existing packages can be processed with these commands without any modifications to those
packages. In fact, we have run many existing packages on the bases of these commands (by letting
LATEX’s \DeclareOption, \ExecuteOptions and \ProcessOptions to these commands), without
encountering difficulties.

New macro: \XDeclareOption

65 \XDeclareOption<〈fam〉>{〈option〉}[〈default〉]{〈fn〉}
66 \XDeclareOption?<〈fam〉>{〈fn〉}

The unstarred variant of the macro \XDeclareOption declares an option that can be used as a
package or class option and executed by \XExecuteOptions or \XProcessOptions. This macro is
similar to the standard LATEX macro \DeclareOption, but with this command the user can pass
a value to the option as well. That value can be accessed by using #1 or \currval in 〈fn〉. This
will contain 〈default〉 when no value has been specified for the option. The default value of the
optional argument 〈default〉 is empty. This implies that when the user does not assign a value to
〈option〉 and when no default value has been defined, no error message will ensue. The optional
argument 〈fam〉 can be used to specify a unique family for the option. When the argument is
not used, the macro will insert the default family name (namely, \@currname.\@currext). The
current option name is available in \curropt.

Example: \XDeclareOption

67 \ProvidesPackage{mypackage}[\StyleFileInfo]

68 \newif\ifmybool

69 \XDeclareOption{mybool}[true]{\@nameuse{mybool#1}}

70 \XDeclareOption{leftmargin}[.5\hsize]{\setlength\leftmargin{#1}}

The options mybool and leftmargin could then be called via any of the following statements:

Example: \XDeclareOption

71 % Inside class or package files:

72 \RequirePackage[mybool=true,leftmargin=20\p@]{mypackage}

73 % Inside document file:

74 \usepackage[mybool=false,leftmargin=20\p@]{mypackage}

75 % Via document class:

76 \documentclass[mybool,leftmargin=20\p@]{myclass}

The starred (?) variant of the macro \XDeclareOption can be used to process unknown options.
It is similar to LATEX’s \DeclareOption?. You can deploy \CurrentOption within the 〈fn〉 of
this macro to access the option name and value for which the option is unknown. These values

Page 7 of 15



The catoptions package 28th February 2011

(possibly including an option) could, for example, be passed on to another class or package or
could be used as an extra class or package option that, for instance, specifies a style that should
be loaded.

The following example produces a warning when the user supplies an option that was not previously
declared.

Example: \XDeclareOption *

77 \XDeclareOption?{\PackageWarningNoLine{mypackage}{Unknown option

78 ‘\CurrentOption’ ignored}}

New macro: \XDeclareOptions

79 \XDeclareOptions<〈fam〉>{〈options〉}[〈default〉]{〈fn〉}

The command \XDeclareOptions is similar to \XDeclareOption but, instead of declaring just
one option, it declares all the options in the comma-separated list 〈options〉. Each option in the
list 〈options〉 is defined with the same family 〈fam〉, default value 〈default〉, and function 〈fn〉.
The command \XDeclareOptions can be used to save tokens when it is required to declare a set
of options with identical attributes.

New macro: \XDeclareCommandOption

80 \XDeclareCommandOption<〈fam〉>{〈option〉}[〈default〉](pref){〈fn〉}

The command \XDeclareCommandOption will, apart from declaring the option 〈option〉, also
create a macro 〈pref〉@〈option〉@ to hold the user-supplied value of the option. The macro so
created can be used in 〈fn〉 or in any other place. The default value of the optional 〈pref〉 is
‘\@currname @’ prefixed with the letters cmd.

New macro: \XDeclareCommandOptions

81 \XDeclareCommandOptions<〈fam〉>{〈options〉}[〈default〉](pref){〈fn〉}

The command \XDeclareCommandOptions is similar to \XDeclareCommandOption but, instead of
declaring just one option, it declares all the options in the comma-separated list 〈options〉. Each
option in the list 〈options〉 is defined with the same family 〈fam〉, default value 〈default〉, and
function 〈fn〉.

New macro: \XDeclareBooleanOption

82 \XDeclareBooleanOption<〈fam〉>{〈option〉}[〈default〉](pref){〈fn〉}

The command \XDeclareBooleanOption will, apart from declaring the option 〈option〉, also
create a boolean 〈if〉@〈pref〉@〈option〉@. It will automatically toggle this boolean (to true or
false) when the option is set and the input is valid, depending on the user-supplied value of the
option. The macros so created can be used in 〈fn〉 or in any other place. The default value of
the optional 〈pref〉 is ‘\@currname @’ with no additional prefix. Only true or false may be
submitted as the value of a boolean option.

New macro: \XDeclareBooleanOptions

83 \XDeclareBooleanOptions<〈fam〉>{〈options〉}[〈default〉](pref){〈fn〉}

The command \XDeclareBooleanOptions is similar to \XDeclareBooleanOption but, instead of

Page 8 of 15



The catoptions package 28th February 2011

declaring just one option, it declares all the options in the comma-separated list 〈options〉. Again,
each option in the list 〈options〉 is defined with the same family 〈fam〉, default value 〈default〉,
and function 〈fn〉.

New macro: \XDeclareBiBooleanOptions

84 \XDeclareBiBooleanOptions<〈fam〉>{〈opt1〉,〈opt2〉}[〈default〉](pref){〈fn1〉}{〈fn2〉}

The command \XDeclareBiBooleanOptions declares the two options 〈opt1〉 and 〈opt2〉 in the
comma-separated list of options. Again, each of the two declared options is defined with the same
family 〈fam〉 and default value 〈default〉, but separate functions 〈fn1〉 and 〈fn2〉. A distinguish-
ing characteristic of bi-boolean options is that when one option is true, the partner option is
automatically turned false, and vice versa.

New macro: \XExecuteOptions

85 \XExecuteOptions<〈fam〉>{〈options〉}

The re-entrant \XExecuteOptions macro sets options created by \XDeclareOption and is basically
a means of setting up the default values of the options. The optional argument 〈fam〉 can be used
to specify a list of families that define the options. When the argument is not used, the macro will
insert the default family name (\@currname.\@currext). This macro will not use the declaration
done by \XDeclareOption? when undeclared options appear in its argument. Instead, in this case
the macro will issue a warning and ignore the option. This differs from the behavior of LATEX’s
\ExecuteOptions.

Example: \XExecuteOptions

86 \XExecuteOptions{leftmargin=0pt}

This initializes \leftmargin to 0pt.

New macro: \XProcessOptions

87 \XProcessOptions<〈fam〉>[〈na〉]
88 \XProcessOptions?<〈fam〉>[〈na〉]

The re-entrant \XProcessOptions macro processes the options and values passed by the user to
the class or package. The optional argument 〈fam〉 can be used to specify the families that have
been used to define the options. The optional argument 〈na〉 can be used to specify options that
should be ignored, i. e., not processed. When used in a class file, this macro will ignore unknown
options. This allows the user to use global options in the \documentclass command which could
be claimed by packages loaded later.

The starred (?) variant of \XProcessOptions works like the unstarred variant except that the
former also copies user input from the \documentclass command and processes the options in the
order specified by the \documentclass. When the user specifies an option in the \documentclass

which also exists in the local family (or families) of the package calling \XProcessOptions?, the
local option will be set as well. In this case, #1 in \XDeclareOption macro will contain the user-
value entered in the \documentclass (or \usepackage or \RequirePackage) command for this
option. First the global options from \documentclass will set local options and afterwards the
local options (specified via \usepackage, \RequirePackage and \LoadClass or similar commands)
will set local options, which could overwrite the global options set earlier, depending on how the
options sections are organized. The macro \XProcessOptions? reduces to \XProcessOptions only
when issued from the class which forms the document class for the file at hand (to avoid setting
the same options twice), but not for classes loaded later using, for instance, \LoadClass. Global

Page 9 of 15



The catoptions package 28th February 2011

options that do not exist in the local families of the package or class calling \XProcessOptions?

will be simply ignored or highlighted.

The implementation here differs significantly from the LATEX kernel’s scheme of carrying out
\ProcessOptions and \ProcessOptions?. It also deviates from the implementations by other
options processing packages. The differences lie mainly in how the local and global options are
distinguished and in the order of processing those options. Among other issues, the family struc-
ture introduced by the catoptions package (though lightweight) makes the independence between
local and global options possible, even if the options from the two categories share the same
namespace and are mixed in, say, \documentclass command. Also, document classes loaded by
\LoadClass don’t have the same primacy as the first document class. When using LATEX kernel’s
\ProcessOptions or \ProcessOptions?, a class file can’t copy document class options, even if the
class file is loaded by \LoadClass. This is not the case with the catoptions package.

Examples: \XDeclareOption, \XExecuteOptions, \XProcessOptions

89 % This is a sample class file. We specify a family for the options,

90 % instead of using the default family (testclass.sty).

91 \ProvidesClass{testclass}[2011/01/15 v1.0 A test class]

92 \NeedsTeXFormat{LaTeX2e}

93 % The following loading of ‘catoptions’ may need to be commented out

94 % to avoid option clash with another loading of the package in the document.

95 % \RequirePackage{catoptions}

96 \UseNormalCatcodes

97 \newif\ifboola

98 \XDeclareOption<testclass>{boola}[true]{%

99 \@nameuse{boola#1}%

100 \ifboola\let\eat\@gobble\fi

101 }

102 % No need for \newif when declaring boolean options:

103 \XDeclareBooleanOption<testclass>{boolb}[true](test@){%

104 \iftest@boolb

105 \AtEndOfPackage{\gdef\tex{\TeX\xspace}}%

106 \fi

107 }

108 \XDeclareBiBooleanOptions{draft,final}[true]test@{}{}

109 \XDeclareCommandOption<testclass>{color}[blue](test@){%

110 \def\text{\textcolor{\test@color}{Result of test}}%

111 }

112 \XDeclareOption<testclass>{align}[left]{%

113 \ifstrcmpTF{#1}{left}{%

114 \let\align\raggedright

115 }{%

116 \ifstrcmpTF{#1}{right}{%

117 \let\align\raggedleft

118 }{%

119 \ifstrcmpTF{#1}{center}{%

120 \let\align\centering

121 }{%

122 \@latex@error{Invalid value ‘#1’ for align}{%

123 You have issued an illegal value ‘#1’ for the variable ‘align’.

124 }%

125 }%

126 }%

127 }%

Page 10 of 15



The catoptions package 28th February 2011

128 }

129 \XDeclareOption*<testclass>{\PassOptionsToClass{\CurrentOption}{article}}

130 \XExecuteOptions<testclass>{boola,boolb}

131 \XProcessOptions*<testclass>\relax

132 \LoadClass{article}

133 \RequirePackage{xcolor}

134 \endinput

135 % This is a sample document:

136 \RequirePackage[usepox]{catoptions}

137 \documentclass[

138 align = right,

139 boola = false,

140 boolb = true,

141 name = {Mr J\"avier Claudioos},

142 a4paper,

143 draft,

144 10pt

145 ]{testclass}

146 % You can call \usepackage{catoptions}, instead of

147 % \RequirePackage{catoptions}, after \documentclass, but then the

148 % \documentclass option ‘name={Mr J\"avier Claudioos}’ can’t be processed.

149 \usepackage{cleveref}

150 \begin{document}

151 Blackberry bush ... blackberry-lily.

152 \end{document}

7 Normalizing csv and kv lists

Any arbitrary parser-separated-values list can be normalized by means of package the command
\csv@@normalize before processing the list.

New macro: \csv@@normalize

153 \csv@@normalize[〈parser〉]{〈list〉}
154 \csv@@normalize?[〈parser〉]〈listcmd〉

Here, 〈list〉, which is populated by parser-separated elements, is not expanded before normaliz-
ation; 〈listcmd〉, on the other hand, is expanded once before normalization. The default value
of the optional 〈parser〉 is ‘,’ (comma). ‘Normalization’ implies changing the category codes of
all the active parsers to their standard values, as well as trimming leading and trailing spaces
around the elements of the list and removing consecutive multiple parsers. Thus empty entries
that are not enforced by curly braces are removed. The result (i. e., normalized list) is available in
the macro \normalized@csvlist (in the unstarred variant case) or 〈listcmd〉 (in the starred (?)
variant case).

Example: \csv@@normalize

155 \begingroup

156 \catcode‘\;=\active

157 \gdef\x{x ; ; {y}; ; z}

158 \endgroup

Page 11 of 15



The catoptions package 28th February 2011

159 \csv@@normalize*[;]\x

160 % \show\x

New macro: \kv@@normalize

161 \kv@@normalize[〈parser〉]{〈list〉}
162 \kv@@normalize?[〈parser〉]〈listcmd〉

The command \kv@@normalize normalizes a list of key-value pairs, returning the result in the
macro \normalized@kvlist (in the unstarred variant case) or 〈listcmd〉 (in the starred (?) variant
case). Besides dealing with multiple commas and the spaces between entries, in this case the spaces
between keys and the equality sign are removed and multiple equality signs are made only one.
Moreover, the category codes of the arbitrary parser and the equality sign is made normal/other
throughout the list. The command \kv@@normalize is meant for options or key-value parsing; it
is used in the options processing scheme of catoptions package.

Example: \csv@@normalize

163 \begingroup

164 \catcode‘\;\string=\active

165 \catcode‘\=\string=\active

166 \gdef\x{x=A ; ; y=={B} ; ; z=C}

167 \endgroup

168 \kv@@normalize*[;]\x

169 % \show\x

8 Parsing csv and kv lists

New macro: \csv@@parse ,\kv@@parse

170 \csv@@parse[〈parser〉][〈list〉]
171 \csv@@parse?[〈parser〉][〈listcmd〉]
172 \kv@@parse[〈parser〉][〈list〉]
173 \kv@@parse?[〈parser〉][〈listcmd〉]

The macros \csv@@parse and \kv@@parse call \csv@@normalize and \kv@@normalize, respect-
ively. The macro \csv@@parse is meant for general csv-list processing with an arbitrary parser,
while the command \kv@@parse is designed for processing key-value lists. The macros \csv@@parse
and \kv@@parse loop over a given 〈parser〉-separated 〈list〉 and execute the user-defined, para-
metered commands \csv@do and \kv@do, respectively, for every item in the list, passing the item
as an argument and preserving outer braces.

The commands \csv@@parse and \kv@@parse aren’t expandable. White spaces before and after
the list separator are always ignored. If an item contains 〈parser〉 or starts with a space, it must
be wrapped in curly braces. The braces will persist thereafter, but will of course be removed during
printing (if the items are printed). The default value of 〈parser〉 is comma (‘,’).

The starred variants of \csv@@parse and \kv@@parse expand 〈listcmd〉 once before commencing
the loop.

Empty entries in 〈list〉 or 〈listcmd〉 will be processed if the boolean @useempty is true. You
may thus issue the command \UseEmptyEntry or \DiscardEmptyEntry before commencing the

Page 12 of 15



The catoptions package 28th February 2011

iteration. Issuing any of these commands prior to the commencement of the loop is recommended,
because a previous call to either \csv@@parse or \kv@@parse (perhaps by another package) could
have set @useempty to a state that is no longer valid or desired. Both \csv@@parse and \kv@@parse

will execute at least once for empty 〈list〉 or 〈listcmd〉. Both commands \csv@@parse and
\kv@@parse can be nested to any level and can be mixed.

Example: \csv@@parse

174 \begingroup

175 \catcode‘\;=\active

176 \gdef\x{a ; ; {b}; ; c}

177 \endgroup

178 \@tempcnta\z@

179 \def\csv@do#1{%

180 \advance\@tempcnta\@ne

181 \@namedef{x@\romannumeral\@tempcnta}{#1}%

182 }

183 \csv@@parse*[;]\x

184 % \show\x@ii

185 \def\xa{a,b,c}

186 \def\xb{x,y,z}

187 \def\csv@do#1{%

188 \pushnumber\nra

189 \csn@edef{arg@\romannumeral\nra}{#1}%

190 \let\nrb\z@

191 \def\csv@do##1{%

192 \pushnumber\nrb

193 \csn@edef{arg@\romannumeral\nra @\romannumeral\nrb}{#1,##1}%

194 }%

195 \csv@@parse*\xb

196 }

197 \csv@@parse*\xa

The following is a pseudocode that depicts the use of \kv@@parse:

Example: \kv@@parse

198 \def\kv@do#1{%

199 \def\CurrentOption{#1}%

200 if \CurrentOption is not empty then

201 split \CurrentOption into option and value;

202 search if option exists in \@declaredoptions;

203 if option is found then

204 Execute the option’s function

205 else

206 Report option as unknown

207 fi

208 fi

209 }

210 % \kv@@parse will normalize \@classoptions before parsing it:

211 if there are declared options then

212 \kv@@parse*\@classoptions

Page 13 of 15



The catoptions package 28th February 2011

213 fi

9 Version history

The following change history highlights significant changes that affect user utilities and interfaces;
mutations of technical nature are not documented in this section. The numbers on the right-hand
side of the following lists are section numbers; the star sign (?) means the subject features in the
package but is not reflected anywhere in this user guide.

Version 0.2 [2011/02/15]

For efficiency reasons, canonical control sequences for futurelet characters are no longer defined
automatically. The user is now responsible for specifying the canonical control sequences that
should be defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The following plural-form commands have been introduced . . . . . . . . . . . . . . . . . 6

\XDeclareOptions \XDeclareCommandOptions \XDeclareBooleanOptions

\XDeclareBiBooleanOptions

Version 0.1 [2011/01/25]

First public release.

Page 14 of 15



The catoptions package 28th February 2011

Index

Index numbers refer to page numbers.

C

\cptfutureletsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

\cptnormalcatcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

\cptpopcatcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

\cptpushcatcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

\csv@@normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

\csv@@parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

\currentcatcodesubset . . . . . . . . . . . . . . . . . . . . . . . . . 4

D

\documentclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

F

Futurelet commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

G

\GetCurrentCatcodeSubset . . . . . . . . . . . . . . . . . . . . . . 3

K

\kv@@normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

\kv@@parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

N

Normalizing lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

P

Package options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cleveref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

kvoptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

kvsetkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

natbib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

pgfkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

pgfopts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

rkeyval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

skeyval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

babel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

catoptions . . . . . . . . . . . . . . . . . . 1–3, 5, 6, 10, 12

hyperref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

kvoptions-patch . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ltxtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

pcatcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

xkeyval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

xkvltxp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Parsing lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

R

\RequirePackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

S

\SetStyleFileMessages . . . . . . . . . . . . . . . . . . . . . . . . . 6

U

\UseNormalCatcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

\usepackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

usepox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

V

verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

X

\XDeclareBiBooleanOptions . . . . . . . . . . . . . . . . . . . . .9

\XDeclareBooleanOption . . . . . . . . . . . . . . . . . . . . . . . . 8

\XDeclareBooleanOptions . . . . . . . . . . . . . . . . . . . . . . . 8

\XDeclareCommandOption . . . . . . . . . . . . . . . . . . . . . . . . 8

\XDeclareCommandOptions . . . . . . . . . . . . . . . . . . . . . . . 8

\XDeclareOption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

\XDeclareOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

\XExecuteOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

\XProcessOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Page 15 of 15


	1 Motivation
	2 Package options
	3 Saving and restituting category codes
	4 Future-letting of other characters
	5 Setting up package preliminaries
	6 Options parsing
	7 Normalizing csv and kv lists
	8 Parsing csv and kv lists
	9 Version history
	Index

