
The breakurl package∗

Vilar Camara Neto

neto@dcc.ufmg.br

April 05, 2008

1 Introduction

The hyperref package brings a lot of interesting tools to “boost” documents pro-
duced by LATEX. For instance, a PDF file can have clickable links to references,
section headings, URLs, etc.

Generating a link to a URL may be a concern if it stands near the end of a line
of text. When one uses pdfLATEX to directly generate a PDF document, there’s
no problem: the driver can break a link across more than one line. However, the
dvips driver (used when one prefers the LATEX → DVI → PostScript → PDF
path), because of internal reasons, can’t issue line breaks in the middle of a link.
Sometimes this turns into a serious aesthetic problem, generating largely under-
full/overfull paragraphs; sometimes the final effect is so bad that the link can’t
even fit inside the physical page limits.

To overcome that dvips limitation, the breakurl package was designed with
a simple solution: it provides a command called \burl (it stands for “breakable
URL”). Instead of generating one long, atomic link, this command breaks it into
small pieces, allowing line breaks between them. Each sequence of pieces that
stand together in one line are converted to a hot (clickable) link in the PDF
document.

2 How to use it

At the preamble, just put a \usepackage{breakurl} somewhere after the
\usepackage{hyperref}. The \burl command is defined and, by default, the
package also turns the \url command into a synonym of \burl. This might come
in handy, for example, if you use BibTEX, your .bib-file has lots of \url com-
mands and you don’t want to replace them by \burl. If, for some reason, you
want to preserve the original behavior of \url (i.e., it creates an unbreakable link),
you must supply the preserveurlmacro option to the package (see Section 2.1).

∗This document corresponds to breakurl v1.22, dated 2008/04/05.

1

In the middle of the document, the syntax of \burl (and its synonym \url)
is the same as the original \url: \burl{〈URL〉}, where 〈URL〉 is, of course, the
address to point to. You don’t need to care (escape) about special characters like
%, &, _, and so on.

Another handy command is \burlalt{〈ActualURL〉}{〈DisplayedURL〉}, where
〈ActualURL〉 is the actual link and 〈DisplayedURL〉 is the link text to be displayed
in the document. For consistency, \urlalt is a synonym of \burlalt, unless the
preserveurlmacro package option is specified.1

The default behavior of the package is to break the link after any sequence of
these characters:

‘:’ (colon) ‘/’ (slash) ‘.’ (dot)
‘?’ (question mark) ‘#’ (hash) ‘&’ (ampersand)
‘_’ (underline) ‘,’ (comma) ‘;’ (semicolon)
‘!’ (exclamation mark)

You can add ‘-’ (hyphen) to this list (see below), but read why I decided to
keep it out of the default list.

Remember that breaks are allowed after a sequence of these characters, so a
link starting with http:// will never break before the second slash.

Also note that I decided not to include the ‘-’ (hyphen) character in this default
list. It’s to avoid a possible confusion when someone encounters a break after a
hyphen, e.g.:

Please visit the page at http://internet-
page.com, which shows. . .

Here comes the doubt: the author is pointing to http://internet-page.com

or to http://internetpage.com? The breakurl package never adds a hyphen
when a link is broken across lines — so, the first choice would be the right one
—, but we can’t assume that the reader knows this rule; so, I decided to disallow
breaks after hyphens. Nevertheless, if you want to overcome my decision, use the
hyphenbreaks option:

\usepackage[hyphenbreaks]{breakurl}

2.1 Package options

When using the \usepackage command, you can give some options to customize
the package behavior. Possible options are explained below:

• hyphenbreaks

Instructs the package to allow line breaks after hyphens.

1The \burlalt command resembles \hyperref’s \href, but since it works in a different manner
I decided not to call it “\bhref”.

2

• preserveurlmacro

Instructs the package to leave the \url command exactly as it was before the
package inclusion. Also, \urlalt isn’t defined as a synonym of \burlalt.
In either case (i.e., using preserveurlmacro or not), the breakable link is
available via the \burl command.

• vertfit=〈criterion〉

Estabilishes how the link rectangle’s height (and depth) will behave against
the corresponding URL text’s vertical range. There are three options for
〈criterion〉: local makes each rectangle fit tightly to its text’s vertical range.
This means that each line of a link broken across lines can have a rectangle
with different vertical sizes. global first calculates the height (and depth) to
enclose the entire link and preserves the measures, so the link maintains the
vertical size across lines. strut goes even further and ensures that the rect-
angle’s vertical range corresponds to \strut. With this option, rectangles
in adjacent lines can overlap. The default is vertfit=local.

2.2 Additional comments

As stated in the introduction, the breakurl is designed for those compiling docu-
ments via LATEX, not pdfLATEX. In the latter case, the package doesn’t (re)define
the \url command: it only defines \burl to be a synonym of whatever \url is
defined (e.g., via url or hyperref packages). Of course, \burl may behave differ-
ently compared to (non-pdf)LATEX, because then the system will use other rules
to make line breaks, spacing, etc.

Also, this package was not designed to nor tested against other drivers: it’s
compatible with dvips only. And don’t forget to specify the driver (dvips) to the
hyperref package, i.e.:

\usepackage[dvips]{hyperref}

2.3 Changelog

(presented in reverse chronological order)

v1.22 Corrected blank lines appearing inside tables.

v1.21 \burlalt and the synonym \urlalt now work with pdflatex. Also, there
are a couple of bug fixes (thank you again, Heiko).

v1.20 An update was needed because hyperref’s internals were changed. (Thanks
Heiko for sending the correction patch.) Troubleshooting now includes a note
about \sloppy.

v1.10 A new command, \burlalt (and the synonym \urlalt), allows one to
specify different values for actual and displayed link.

3

v1.01 Fixed a bug that was happening when a link is split into more than one
page.

v1.00 The \UrlLeft and \UrlRight (defined and explained in the url package)
are now partially supported. By “partially” I mean: although the original
(url.sty’s) documentation allows defining \UrlLeft as a command with one
argument (things such \def\UrlLeft#1\UrlRight{do things with #1}, this
isn’t expected to work with breakurl. Please use only the basic definition,
e.g.: \def\UrlLeft{<url:\ } \def\UrlRight{>}.

v0.04 Corrected a bug that prevented URLs to be in color, in despite of
hyperref’s colorlinks and urlcolor options. Added an error message
if vertfit parameter is invalid.

v0.03 The package was tested against pdfeTeX engine (which may be the default
for some teTeX distributions). Introduced a new package option, vertfit.

v0.02 The main issue of the initial release — the odd-looking sequence of small
links in the same line, if one uses hyperref’s link borders — was resolved:
now the package generates only one rectangle per line. Also, breaks after
hyphens, which weren’t allowed in the previous release, are now a users’
option. Finally, the package can be used with pdfLATEX (in this case, \burl
is defined to be a synonym of the original \url command).

v0.01 Initial release.

2.4 Troubleshooting

Here comes a few notes about known issues:

• I received some comments saying that in some cases breakurl destroys the
formatting of the document: the left/right margins aren’t respected, justi-
fication becomes weird, etc. In all these cases, the problems were corrected
when other packages were upgraded, notabily xkeyval.

• If your compilation issues the following error:

! Undefined control sequence.

<argument> \headerps@out . . .

it’s probabily because you forgot to specify the dvips driver as an option to
hyperref. Check if you have it:

\usepackage[dvips]{hyperref}

• If everything compiles but sometimes URLs still don’t respect the right mar-
gin, don’t blame the package yet :-) . Roughly speaking, by default the right
margin is a limit to be respected “only if word spacing is okay”, so it may be
ignored even when URLs aren’t used. Check the following paragraph:

4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin zzzzzzzzzzzzzzzzzzzzzzz. . .

To overcome this (and make right margins a hard limit) use the command
\sloppy, preferably before \begin{document}. This makes the previous
paragraph look like:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin
zzzzzzzzzzzzzzzzzzzzzzz. . .

As a drawback word spacing becomes terrible, but now the text is kept inside
designed margins. You should decide what looks better.

2.5 Acknowledgments

Thanks to Hendri Adriaens, Donald Arseneau, Michael Friendly, Morten Høgholm,
David Le Kim, Damian Menscher, Tristan Miller, Heiko Oberdiek, Christoph
Schiller, Xiaotian Sun, Michael Toews, David Tulloh, and Jinsong Zhao for sugges-
tions, bug reports, comments, and corrections. A special thanks to the participants
of comp.text.tex newsgroups for their constant effort to help hundreds of people
in the beautiful world of TEX/LATEX.

3 Source code

This section describes the breakurl.sty source code.
The breakurl requires some packages, so let’s include them:

1 \RequirePackage{xkeyval}

2 \RequirePackage{ifpdf}

Is the document being processed by pdfLATEX? (Actually, is there a PDF file
being directly generated?) Then, well, this package doesn’t apply: let’s just define
\burl to call the default \url.

3 \ifpdf

4 % Dummy package options

5 \DeclareOptionX{preserveurlmacro}{}

6 \DeclareOptionX{hyphenbreaks}{}

7 \DeclareOptionX{vertfit}{}

8 \ProcessOptionsX\relax

9

10 \PackageWarning{breakurl}{%

11 You are using breakurl while processing via pdflatex.\MessageBreak

12 \string\burl\space will be just a synonym of \string\url.\MessageBreak}

13 \DeclareRobustCommand{\burl}{\url}

14 \DeclareRobustCommand*{\burlalt}{\hyper@normalise\burl@alt}

15 \def\burl@alt#1#2{\hyper@linkurl{\Hurl{#1}}{#2}}

16 \expandafter\endinput

17 \fi

Since breakurl is an extension to hyperref, let’s complain loudly if the latter
was not yet loaded:

5

18 \@ifpackageloaded{hyperref}{}{%

19 \PackageError{breakurl}{The breakurl depends on hyperref package}%

20 {I can’t do anything. Please type X <return>, edit the source file%

21 \MessageBreak

22 and add \string\usepackage\string{hyperref\string} before

23 \string\usepackage\string{breakurl\string}.}

24 \endinput

25 }

The package options are handled by \newifs, which are declared and initialised:

26 \newif\if@preserveurlmacro\@preserveurlmacrofalse

27 \newif\if@burl@fitstrut\@burl@fitstrutfalse

28 \newif\if@burl@fitglobal\@burl@fitglobalfalse

The breakurl package uses a token list to store characters and tokens until a\burl@toks

break point is reached:

29 \newtoks\burl@toks

The following support routines are designed to build the conditional structure\burl@charlist

\burl@defifstructure that is the kernel of \burl: comparing each incoming character with the list of
“breakable” characters and taking decisions on that. This conditional structure
is built by \burl@defifstructure — which is called only at the end of package
loading, because the character list (stored in \burl@charlist) can be modified
by the hyphenbreaks option.

30 \def\burl@charlist{}

31 \def\burl@addtocharlist#1{%

32 \expandafter\gdef\expandafter\burl@charlist\expandafter{%

33 \burl@charlist #1}%

34 }

35

36 \bgroup

37 \catcode‘\&=12\relax

38 \hyper@normalise\burl@addtocharlist{:/.?#&_,;!}

39 \egroup

40

41 \def\burl@growmif#1{%

42 \expandafter\def\expandafter\burl@mif\expandafter{%

43 \burl@mif\def\burl@ttt{#1}\ifx\burl@ttt\@nextchar\@burl@breakabletrue\else

44 }%

45 }

46 \def\burl@growmfi{%

47 \expandafter\def\expandafter\burl@mfi\expandafter{\burl@mfi\fi}%

48 }

49 \def\burl@melse{%

50 \if@burl@breakable\burl@flush\linebreak[0]\@burl@breakablefalse\fi

51 \expandafter\expandafter\expandafter\burl@toks

52 \expandafter\expandafter\expandafter{%

53 \expandafter\the\expandafter\burl@toks\@nextchar}%

54 }

6

55 \def\burl@defifstructure{%

56 \def\burl@mif{}%

57 \def\burl@mfi{}%

58 \expandafter\@tfor\expandafter\@nextchar\expandafter:\expandafter=%

59 \burl@charlist\do{%

60 \expandafter\burl@growmif\@nextchar

61 \burl@growmfi

62 }%

63 }

64

65 \AtEndOfPackage{\burl@defifstructure}

The package options are declared and handled as follows:

66 \def\burl@setvertfit#1{%

67 \lowercase{\def\burl@temp{#1}}%

68 \def\burl@opt{local}\ifx\burl@temp\burl@opt

69 \@burl@fitstrutfalse\@burl@fitglobalfalse

70 \else\def\burl@opt{strut}\ifx\burl@temp\burl@opt

71 \@burl@fitstruttrue\@burl@fitglobalfalse

72 \else\def\burl@opt{global}\ifx\burl@temp\burl@opt

73 \@burl@fitstrutfalse\@burl@fitglobaltrue

74 \else

75 \PackageWarning{breakurl}{Unrecognized vertfit option ‘\burl@temp’.%

76 \MessageBreak

77 Adopting default ‘local’}

78 \@burl@fitstrutfalse\@burl@fitglobalfalse

79 \fi\fi\fi

80 }

81

82 \DeclareOptionX{preserveurlmacro}{\@preserveurlmacrotrue}

83 \DeclareOptionX{hyphenbreaks}{\bgroup

84 \catcode‘\&=12\relax\hyper@normalise\burl@addtocharlist{-}%

85 \egroup}

86 \DeclareOptionX{vertfit}[local]{\burl@setvertfit{#1}}

87

88 \ProcessOptionsX\relax

These supporting routines are modified versions of those found in the hyperref
package. They were adapted to allow a link to be progressively built, i.e., when
we say “put a link rectangle here”, the package will decide if this will be made.

89 \def\burl@hyper@linkurl#1#2{%

90 \begingroup

91 \hyper@chars

92 \burl@condpdflink{#1}%

93 \endgroup

94 }

95

96 \def\burl@condpdflink#1{%

97 \if@burl@fitstrut

98 \sbox\pdf@box{#1\strut}%

7

99 \else\if@burl@fitglobal

100 \sbox\pdf@box{\burl@url}%

101 \else

102 \sbox\pdf@box{#1}%

103 \fi\fi

104 \dimen@\ht\pdf@box\dimen@ii\dp\pdf@box

105 \sbox\pdf@box{#1}%

106 \ifdim\dimen@ii=\z@

107 \literalps@out{BU.SS}%

108 \else

109 \lower\dimen@ii\hbox{\literalps@out{BU.SS}}%

110 \fi

111 \ifHy@breaklinks\unhbox\else\box\fi\pdf@box

112 \ifdim\dimen@=\z@

113 \literalps@out{BU.SE}%

114 \else

115 \raise\dimen@\hbox{\literalps@out{BU.SE}}%

116 \fi

117 \pdf@addtoksx{H.B}%

118 }

\burl prepares the catcodes (via \hyper@normalise) and calls the \burl@\burl

macro, which does the actual work.

119 \DeclareRobustCommand*{\burl}{%

120 \leavevmode

121 \begingroup

122 \let\hyper@linkurl=\burl@hyper@linkurl

123 \catcode‘\&=12\relax

124 \hyper@normalise\burl@

125 }

\burlalt does the same as \burl, but calls another macro (\burl@alt) to\burlalt

read two following arguments instead of only one.

126 \DeclareRobustCommand*{\burlalt}{%

127 \begingroup

128 \let\hyper@linkurl=\burl@hyper@linkurl

129 \catcode‘\&=12\relax

130 \hyper@normalise\burl@alt

131 }

\burl@ {〈URL〉} just eats the next argument to define the URL address and\burl@

\burl@alt

\burl@@alt

the link to be displayed. Both are used by \burl@doit.
\burl@alt {〈ActualURL〉} and \burl@@alt {〈DisplayedURL〉} work together

to eat the two arguments (the actual URL to point to and the link text to be
displayed). Again, both are used by \burl@doit.

132 \newif\if@burl@breakable

133

134 \bgroup

135 \catcode‘\&=12\relax

8

136 \gdef\burl@#1{%

137 \def\burl@url{#1}%

138 \def\burl@urltext{#1}%

139 \burl@doit

140 }

141

142 \gdef\burl@alt#1{%

143 \def\burl@url{#1}%

144 \hyper@normalise\burl@@alt

145 }

146 \gdef\burl@@alt#1{%

147 \def\burl@urltext{#1}%

148 \burl@doit

149 }

\burl@doitworks much like hyperref’s \url@ macro (actually, this code macro\burl@doit

was borrowed and adapted from the original \url@): it builds a series of links,
allowing line breaks between them. The characters are accumulated and eventually
flushed via the \burl@flush macro.

Support for \UrlLeft/\UrlRight: The \UrlRight is emptied until the very
last flush (when it is restored). The \UrlLeft is emptied after the first flush.
So, any string defined in those macros are meant to be displayed only before the
first piece and after the last one, which (of course) is what we expect to happen.
Unfortunately, breaking doesn’t happen inside those strings, since they’re not
rendered verbatim (and so they aren’t processed inside the breaking mechanism).

150 \gdef\burl@doit{%

151 \burl@toks{}%

152 \let\burl@UrlRight=\UrlRight

153 \let\UrlRight=\empty

154 \@ifundefined{@urlcolor}{\Hy@colorlink\@linkcolor}{\Hy@colorlink\@urlcolor}%

155 \@burl@breakablefalse

156 \expandafter\@tfor\expandafter\@nextchar\expandafter:\expandafter=%

157 \burl@urltext\do{%

158 \expandafter\burl@mif\expandafter\burl@melse\burl@mfi

159 \if@burl@breakable

160 \expandafter\expandafter\expandafter\burl@toks

161 \expandafter\expandafter\expandafter{%

162 \expandafter\the\expandafter\burl@toks\@nextchar}%

163 \fi

164 }%

165 \let\UrlRight=\burl@UrlRight

166 \burl@flush

167 \literalps@out{BU.E}%

168 \Hy@endcolorlink

169 \endgroup

170 }

171 \egroup

This macro flushes the characters accumulated during the \burl@ processing,\burl@flush

9

creating a link to the URL.

172 \def\the@burl@toks{\the\burl@toks}

173

174 \def\burl@flush{%

175 \expandafter\def\expandafter\burl@toks@def\expandafter{\the\burl@toks}%

176 \literalps@out{/BU.L (\burl@url) def}%

177 \hyper@linkurl{\expandafter\Hurl\expandafter{\burl@toks@def}}{\burl@url}%

178 \global\burl@toks{}%

179 \let\UrlLeft=\empty

180 }%

Now the synonyms \url and \urlalt are (re)defined, unless the preserveurlmacro
option is given.

181 \if@preserveurlmacro\else\let\url\burl\let\urlalt\burlalt\fi

Internally, the package works as follows: each link segment (i.e., a list of non-
breakable characters followed by breakable characters) ends with a PDF command
that checks if the line ends here. If this check is true, then (and only then) the
PDF link rectangle is built, embracing all link segments of this line.

To make that work, we need some code to work at the PostScript process-
ing level. The supporting routines to do so are introduced in the PS dictionary
initialization block via specials. Each routine is explained below.

The variables used here are: burl@stx and burl@endx, which defines the link’s
horizontal range; burl@boty and burl@topy, which defines the link’s vertical
range; burl@llx, burl@lly, burl@urx, and burl@ury, which define the bounding
box of the current link segment (they resemble the hyperref’s pdf@llx–pdf@ury
counterparts); and BU.L, which holds the target URL.

182 \AtBeginDvi{%

183 \headerps@out{%

184 /burl@stx null def

BU.S is called whenever a link begins:

185 /BU.S {

186 /burl@stx null def

187 } def

BU.SS is called whenever a link segment begins:

188 /BU.SS {

189 currentpoint

190 /burl@lly exch def

191 /burl@llx exch def

192 burl@stx null ne {burl@endx burl@llx ne {BU.FL BU.S} if} if

193 burl@stx null eq {

194 burl@llx dup /burl@stx exch def /burl@endx exch def

195 burl@lly dup /burl@boty exch def /burl@topy exch def

196 } if

197 burl@lly burl@boty gt {/burl@boty burl@lly def} if

198 } def

10

BU.SE is called whenever a link segment ends:

199 /BU.SE {

200 currentpoint

201 /burl@ury exch def

202 dup /burl@urx exch def /burl@endx exch def

203 burl@ury burl@topy lt {/burl@topy burl@ury def} if

204 } def

BU.SE is called whenever the entire link ends:

205 /BU.E {

206 BU.FL

207 } def

BU.FL is called to conditionally flush the group of link segments that we have
so far. This is meant to be called at each line break:

208 /BU.FL {

209 burl@stx null ne {BU.DF} if

210 } def

BU.DF is the routine to actually put the link rectangle in the PDF file:

211 /BU.DF {

212 BU.BB

213 [/H /I /Border [\@pdfborder] /Color [\@urlbordercolor]

214 /Action << /Subtype /URI /URI BU.L >> /Subtype /Link BU.B /ANN pdfmark

215 /burl@stx null def

216 } def

BU.FF adds margins to the calculated tight rectangle:

217 /BU.BB {

218 burl@stx HyperBorder sub /burl@stx exch def

219 burl@endx HyperBorder add /burl@endx exch def

220 burl@boty HyperBorder add /burl@boty exch def

221 burl@topy HyperBorder sub /burl@topy exch def

222 } def

BU.B converts the coordinates into a rectangle:

223 /BU.B {

224 /Rect[burl@stx burl@boty burl@endx burl@topy]

225 } def

Finally, we must redefine eop, which is called just when the page ends, to
handle links that are split into more than one page. (eop-hook isn’t the right
place to do so, since this hook is called after the dictionaries were reverted to a
previous state, vanishing the rectangle coordinates.)

226 /eop where {

227 begin

228 /@ldeopburl /eop load def

229 /eop { SDict begin BU.FL end @ldeopburl } def

230 end

11

231 } {

232 /eop { SDict begin BU.FL end } def

233 } ifelse

234 }%

235 }

12

