
Rebecca Turner Problem Set 3 (due 2018-10-20) Dr. Liuba Shrira 1

Note: This example document is provided for illustrative purposes. The solutions below
are not guaranteed to be correct or relevant.

Rebecca Turner Problem Set 3 (due 2018-10-20) Dr. Liuba Shrira 2

Problem 1
An assembly language program implements the following loop:

1 int A[51];
2 int i = 1;
3 while(i <= 50) {
4 A[i] = i;
5 i++;
6 }

The array of integers 𝐴 is stored at memory location 𝑥 + 200, where 𝑥 is
the address of the memory location where the assembly program is loaded.
Write the assembly program using the assembly language introduced in class.

x + 0 LOAD R1, $200 ; A = (program location) + 200
x + 4 LOAD R2, =1 ; i = 1
x + 8 LOOP: STORE R2, @R1 ; *A = i

x + 12 ADD R1, =4 ; A++
x + 16 INC R2 ; i++
x + 20 BLEQ R2, =50, LOOP ; Ensure i <= 50
x + 24 HALT

Rebecca Turner Problem Set 3 (due 2018-10-20) Dr. Liuba Shrira 3

Problem 1.11
Direct memory access is used for high-speed io devices in order to avoid
increasing the cpu’s execution load.

1. How does the cpu interface with the device to coordinate the transfer?
2. How does the cpu know when the memory operations are complete?
3. The cpu is allowed to execute other programs while the dma controller

is transferring data. Does this process interfere with the execution of
user programs? If so, describe what forms of interference are caused.

1. The cpu sets up “buffers, pointers, and counters for the io device” and then ignores the
transaction entirely; because dma transfers don’t involve the cpu at all, they’re especially
efficient because they don’t saturate the cpu bus.

2. The device controller sends a cpu interrupt when each block of data finishes transferring.

3. A dma transfer only interferes with user programs as much as any other io operation might,
i.e. the program may not be able to complete other meaningful work before the transfer
finishes. From the user’s perspective, a dma transfer is indistinguishable from any other
type of io operation.
Additionally, a dma takes a lock on ram; while a dma transfer is in progress, no other
processes may access ram, which can be extremely limiting.

Rebecca Turner Problem Set 3 (due 2018-10-20) Dr. Liuba Shrira 4

Problem 2
In the following, use either a direct proof for the statements (by giving values
for 𝑐 and 𝑛0 in the definition of big-O notation) or cite the rules given in the
lecture notes.

1. max(𝑓 (𝑛), 𝑔(𝑛)) is 𝑂(𝑓(𝑛) + 𝑔(𝑛)). Assume that 𝑓(𝑛) and 𝑔(𝑛) are non-
negative for 𝑛 > 0

2. If 𝑑(𝑛) is 𝑂(𝑓(𝑛)) and 𝑒(𝑛) is 𝑂(𝑔(𝑛)), then the product 𝑑(𝑛) ⋅ 𝑒(𝑛) is
𝑂(𝑓(𝑛) ⋅ 𝑔(𝑛))

3. (𝑛 + 1)5 is 𝑂(𝑛5)
4. 𝑛2 is Ω(𝑛 log 𝑛)
5. 2𝑛4 − 3𝑛2 + 32𝑛√𝑛 − 5𝑛 + 60 is Θ(𝑛4)
6. 5𝑛√𝑛 ⋅ log 𝑛 is 𝑂(𝑛2)

“Rule 𝑛” should be taken to refer to the 𝑛th rule on page 3 of the 5th lecture notes, and “𝑎
is faster-growing than 𝑏” is written as “𝑂(𝑎) > 𝑂(𝑏)”.

1. Given that big-O notation describes asymptotic growth, only the fastest-growing term mat-
ters — therefore, given some 𝑎 and 𝑏 that are functions of 𝑛, 𝑂(𝑎) > 𝑂(𝑏) ⟹ 𝑂(𝑎 + 𝑏) =
𝑂(𝑎).
max(𝑎, 𝑏) is defined to be the greater of 𝑎 and 𝑏, so max(𝑎, 𝑏) ≥ 𝑎 and max(𝑎, 𝑏) ≥ 𝑏. If
𝑂(𝑎) > 𝑂(𝑏), 𝑂(max(𝑎, 𝑏)) = 𝑂(𝑎) (and vice-versa).
Given these facts, if 𝑂(𝑓(𝑛)) > 𝑂(𝑔(𝑛)), lim𝑛→∞ max(𝑓 (𝑛), 𝑔(𝑛)) = 𝑓(𝑛). Alternatively, if
𝑂(𝑓(𝑛)) < 𝑂(𝑔(𝑛)), lim𝑛→∞ max(𝑓 (𝑛), 𝑔(𝑛)) = 𝑔(𝑛). More briefly, 𝑂(max(𝑓 (𝑛), 𝑔(𝑛)) =
𝑂(𝑓(𝑛)) or 𝑂(𝑔(𝑛)).
And finally, because 𝑂(𝑎) > 𝑂(𝑏) ⟹ 𝑂(𝑎+𝑏) = 𝑂(𝑎) and 𝑂(𝑎) < 𝑂(𝑏) ⟹ 𝑂(𝑎+𝑏) =
𝑂(𝑏), we may note that 𝑂(𝑎 + 𝑏) simplifies to the faster-growing of 𝑂(𝑎) and 𝑂(𝑏). The
mathematical operation for “the greater of two terms” is max(𝑎, 𝑏), so max(𝑓 (𝑛), 𝑔(𝑛)) =
𝑂(𝑓(𝑛) + 𝑔(𝑛)).

2. This is true as stated in rule 3, although it’s very similar to how 𝑂(𝑎) > 𝑂(𝑏) ⟹ 𝑂(𝑎+𝑏) =
𝑂(𝑎) — in the asymptotic case, the smaller factor becomes irrelevant.

3. Given that (𝑛 + 1)5 = 𝑛5 + 5𝑛4 + 10𝑛3 + 10𝑛2 + 5𝑛 + 1 and as rule 5 states, only the highest
degree of a polynomial matters (because lim𝑛→∞ ∑𝑖=𝑘

𝑖=0 𝑎𝑖𝑛𝑖 = 𝑎𝑘𝑛𝑘), (𝑛 + 1)5 = 𝑂(𝑛5).

4. 𝑐 = 1, 𝑛0 = 1

5. 𝑐1 = 1, 𝑐2 = 3, 𝑛0 = 4

6. 𝑐 = 2, 𝑛0 = 1

Rebecca Turner Problem Set 3 (due 2018-10-20) Dr. Liuba Shrira 5

Problem 3
What do the following two algorithms do? Analyze its worst-case running
time and express it using big-O notation.

1 Foo(a, n)
2 Input: two integers , a and n
3 Output: a^n
4 k ← 0
5 b ← 1
6 while k < n do
7 k ← k + 1
8 b ← b * a
9 return b

1 Bar(a, n)
2 Input: two integers , a and n
3 Output: a^n
4 k ← n
5 b ← 1
6 c ← a
7 while k > 0 do
8 if k mod 2 = 0 then
9 k ← k/2

10 c ← c * c
11 else
12 k ← k - 1
13 b ← b * c
14 return b

Foo(𝑎, 𝑛) computes 𝑎𝑛, and will run in 𝑂(𝑛) time always.

Bar(𝑎, 𝑛) also computes 𝑎𝑛, and runs in 𝑂(log 𝑛) time — this is referred to as exponentiation
by squaring.

Rebecca Turner Problem Set 3 (due 2018-10-20) Dr. Liuba Shrira 6

Problem 5.4
Consider the following set of processes, with the length of the cpu burst
given in milliseconds:

Process Burst time Priority
𝑃1 10 3
𝑃2 1 1
𝑃3 2 3
𝑃4 1 4
𝑃5 5 2

The processes are assumed to have arrived in the order 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5,
all at time 0.

1. Draw four Gantt charts that illustrate the execution of these processes
using the following scheduling algorithms: fcfs, sjf, nonpreemptive
priority (a smaller priority number implies a higher priority), and rr
(quantum = 1).

2. What is the turnaround time of each process for each of these scheduling
algorithms?

3. What is the waiting time of each process for each of the scheduling
algorithms?

4. Which of the algorithms results in the minimum average waiting time
(over all processes)?

1. sjf
Average wait = 3.2.
Process Turnaround Waiting
𝑃1 19 9
𝑃2 1 0
𝑃3 4 2
𝑃4 2 1
𝑃5 9 4

𝑃2

1

𝑃4

1

𝑃3

2

𝑃5

5

𝑃1

10

	Problem 1
	Problem 1.11
	Problem 2
	Problem 3
	Problem 5.4

