
The bloX package∗

Ben Reish
ben.reish@alumni.oc.edu

August 18, 2014

Abstract

The bloX package is an English translation of the French schemabloc
package for making block diagrams in LATEX2e. Also, I fixed the chain
feature to auto-create a linear linked chain of blocks from a list which did
not work on my implementation of tikz and schemabloc.

1 Introduction

Have you ever needed to make a block diagram for a control system like Fig. 1?
Or, maybe to explain an algorithm? The bloX package is an option to meet this
need. It allows for the use of most of tikz’s personalization capability for the blocks
themselves and the lines. But, the defaults look pretty good by themselves.

I mention the tikz package because this package is based on the tikzpicture

environment. I refer you to the pgf/tikz1 documentation for specifics on using the
tikzpicture environment. I will only show the necessities to be able to use this
package.

So if schemabloc had not required me to repeatedly use Google R©Translate to
figure out what was going on, I would never have created this package. If you like
French or can read it, please use the schemabloc package.

∗This document corresponds to bloX v2.4, dated 2014/08/18.
1See http://ctan.org/pkg/pgf.

−+
r

Gp
u y

H

\begin{tikzpicture}

\bXInput{A}

\bXComp{B}{A}

\bXLink[r]{A}{B}

\bXBloc[2]{C}{G_p}{B}

\bXLink[u]{B}{C}

\bXOutput{E}{C}

\bXLink[y]{C}{E}

\bXReturn{C-E}{B}{H}

\end{tikzpicture}

Figure 1: Simple Negative Feedback Block Diagram and Code

1

http://ctan.org/pkg/pgf

+
−+

Link
Comp

G1
Output

Block

Return

G2G3

ChainReturn

A

B
C

C-D D

E

fg

\begin{tikzpicture}

\bXInput{A}

\bXCompSum{B}{A}{+}{-}{+}{}

\bXLink[Link]{A}{B}

\bXLinkName[1.3]{Bright}{Comp}

\bXBlocL{C}{G_1}{B}

\bXOutput[8]{D}{C}

\bXLink{C}{D}

\bXLinkName{D}{Output}

\bXLinkName[2]{C}{Block}

\bXLineStyle{red}

\bXReturn{C-D}{B}{Return}

\bXDefaultLineStyle

\bXLineStyle{green!80!black}

\bXStyleBloc{green!60!black}

\bXBranchy[-5]{C-D}{E}

\bXChainReturn[1.5]{E}

{f/G_2,g/G_3}

\bXLinkyx{C-D}{f}

\bXLinkxy{g}{B}

\bXLinkName[2]{f}{ChainReturn}

\bXDefaultLineStyle

\bXStyleBlocDefault

\end{tikzpicture}

Figure 2: This figure shows the Node names below their actual positions in order
to show what’s going on during the build-up of the block diagram. Begin with
an input, A, then add a comparator (I used the general one because I needed an
odd setup), B. The add the link between the two and add the block, C. Now add
the output, D, then links in between each, and you’re done with the first branch.
The return line is added and creates its own branch (red) below the first branch,
by default. The link macro creates a node in the middle of the link which is calls
〈first arg〉-〈second arg.〉, C-D. Now create the third branch (green) by placing E.
Then use the chain return macro to create two blocks and their links, f and g.
Now use the special link macros to connect the first branch to the third.

2 Usage

The idea is to create a tikzpicture environment then place your block diagram
commands inside it. The order is a bit weird. You must create both endpoints to
a connecting line prior to making the line (see Fig. 2). So, instead of saying ‘make
block, make link, make block’, you have to say ‘make block, make block, make
connecting link.’ This is an effect of tikz not being a what-you-see-is-what-you-get
graphics drawing program. It will help you to create a rought draft of your block
diagram with pen and ink prior to trying to create it with this package.

bloX is designed to be linear. It begins at an input and builds the diagram to
the right of the previous item one item at a time. If multiple paths are needed,
besides the normal feedback path like that shown in Fig. 1, special commands
must be used to translate up or down to a new path.

This package is an extension of tikz so \begin{tikzpicture} must be usedtikzpicture

around these commands. This is just a reminder to use the correct environ-
ment. Once the diagram is created, it can be reduced in total size by adding
an optional argument to the environment which uses the keyword scale, e.g.

2

\begin{tikzpicture}[scale=0.5].

2.1 The A and the Ω

Every diagram begins with an entry point. I called mine an input so the command\bXInput

is \bXInput[〈label〉]{〈Name〉}. 〈label〉 is printed text for the entry node. This
can be blank which is default, or not included in the \bXInput call at all. The
link between the input node and the next block will be centered vertically on the
right-hand side of whatever text is given as 〈label〉. 〈Name〉 is the tikz node name
used internally. It will not be displayed. It is used to connect and things and refer
to commponents of the diagram inside tikz.

Like the input, every diagram needs a point of exit. I called mine an output\bXOutput

so the syntax is \bXOutput[〈distance〉]{〈Name〉}{〈Preceding Node〉}. 〈distance〉
is an optional argument whose default is 2 that specifies how many units from
〈Previous Node〉 to place this new node. The unit in question is the em or (the
width of the captial M in the current font). 〈Name〉 is the tikz node name given
to this new block. 〈Previous Node〉 is the tikz node name of the node (block, or
comparator) immediately to the left of this new block.

To place the label of the output at the extreme end of the block diagram,\bXLinkName

use \bXLinkName[〈distance〉]{〈Previos Node〉}{〈Label〉}. 〈distance〉 is an optional
argument whose default is 0.4 units above 〈Previous Node〉 to place 〈Label〉. An
example is shown in Fig. 8.

2.2 Blocks

There are several commands for making blocks in the bloX package. They are
context sensitive, so where you use them matters. Some do multiple things.

Usually, something happens inside a block of a block diagram. You’ll want\bXBloc

to describe what is happening inside the block. The first command for making
blocks in bloX is \bXBloc[〈distance〉]{〈Name〉}{〈Contents〉}{〈Previous Node〉}.
This command makes a single block outline around whatever is in 〈contents〉 and
places it to the right of 〈Previous Node〉 by 〈distance〉 units (the default is 2).

The second command for making blocks to the right of the last item is\bXBlocL

\bXBlocL[〈distance〉]{〈Name〉}{〈Contents〉}{〈Previous Node〉}. This command
makes a block outline around whatever is in 〈contents〉 and places it to the right
of 〈Previous Node〉 by 〈distance〉 units (the default is 2) and then draws the con-
necting link between 〈Previous Node〉 and the new block. (This is a slight labor
savings if you don’t want to label the link between the two.)

The third command for making blocks is used for blocks on the return link or\bXBlocr

the feedback. This uses the same arguments that \bXBloc does but changes how
it is placed relative to the previous block and how the links connect to it. The
syntax is \bXBlocr[〈distance〉]{〈Name〉}{〈Contents〉}{〈Previous Node〉}. The
block created by this command will be place 〈distance〉 (the default is 2) units to
the left of 〈Previous Node〉. Links will connect to the right-hand side of the block
and exit on the left-hand side.

The fourth command is analogous to \bXBlocL but switched to proceed to\bXBlocrL

3

Input Gp Gifeedback World

\begin{tikzpicture}

\bXInput[Input]{A}

\bXBloc[2]{B}{G_p}{A}

\bXBlocL[2]{C}{G_i}{B}

\bXBlocr[4]{F}{feed}{A}

\bXBlocrL[3]{G}{back}{F}

\bXBlocPotato[2]{I}{World}{C}

\end{tikzpicture}

Figure 3: Block Creation Commands and Code

the left instead of the right, again for use on the feedback or return loop. The
syntax is \bXBlocrL[〈distance〉]{〈Name〉}{〈Contents〉}{〈Previous Node〉}. The
block created by this command will be placed 〈distance〉 (the default is 2) units to
the left of 〈Previous Node〉 and then draws the connecting link between 〈Previous
Node〉 and the new block. Links will terminate on the right-hand side of the block
and begin on the left-hand side.

For those of you who do not like rectangles, there is a command for creating\bXBlocPotato

a “block” which is more of a floating potato instead of a rectangle. The syntax is
\bXBlocPotato[〈distance〉]{〈Name〉}{〈Contents〉}{〈Previous Node〉}. This com-
mand makes a single floating potato outline around whatever is in 〈contents〉 and
places it to the right of 〈Previous Node〉 by 〈distance〉 units (the default is 2). See
Fig. 3.

If you only want to have an input, a block, and an output, then this\bXonlyOneBloc

is the command for you. \bXOnlyOneBloc[〈distance〉]{〈Input label〉}{〈Block
label〉}{〈Output label〉}. 〈distance〉 is the length of the links in em’s. The labels,
〈Input label〉, 〈Block label〉, and 〈Output label〉, are the labels for the individual
components. The names are taken care of by the macro assuming that you do not
plan to have multiple instances of this macro in the same tikzpicture.

2.3 Comparators and Summations

Comparators and summing junctions are created with a couple of commands. All
of them are limited to four connections so that the cardinal direction names can be
used to describe them: north, south, west, east2. There is the ability to have the
signs inside the circle or outside. There are several simplified, user-level commands
and one general command, e.g. Fig. 4 The package defines a couple others which
are explained in the Implementation section.

2If you need more connections than that, think about using multiple summing junctions first
or use the full authority of tikz to create a block with the requisite number of connections.

4

−+
n
s

w e

\bXCompSum{n}{s}{w}{e} \bXComp

−
+

\bXCompa

+
+

\bXSuma

+
+

\bXSumb

−

+

\bXComp*

−
+

\bXCompa*

+
+

\bXSuma*
+

+

\bXSumb*

n

s

w e

\bXCompSum*{n}{s}{w}{e}

Figure 4: Labor-Saving Comparator and Summing Junction Macros

The syntax is \bXComp*[〈distance〉]{〈Name〉}{〈Previous Node〉}. This com-\bXComp

mand creates the normal feedback from below comparator 〈distance〉 to the right
of 〈Previous Node〉 named 〈Name〉. Used with the star, the labels will be outside
the empty circle and offset so as to not interfere with the links. Without the star,
the circle is drawn with an X circumscribed in it and the labels will be within the
circle. The default 〈distance〉 is 4.

This command creates the normal input from below summing junction. The\bXSum

syntax is \bXSum[〈distance〉]{〈Name〉}{〈Previous Node〉}{〈a〉}{〈b〉}{〈c〉}. The
circle is drawn with an X circumscribed in it and the labels will be within the
circle, only the east segment is not labeled due to there only being 6 arguments.
Arguments 〈a〉, 〈b〉, and 〈c〉 should be +’s to fulfill the name of the command,
but they don’t have to be.

The comparator can have input from above. The user command to simply\bXCompa

\bXSuma use the north and west segments for comparing is given by the following com-
mand: \bXCompa*[〈distance〉]{〈Name〉}{〈Previous Node〉} and the \bXSuma* is
analogous.

Comparators can have input from below as well. The user command to simply\bXCompb

\bXSumb use the south and west segments for comparing is given by the following com-
mand: \bXCompb*[〈distance〉]{〈Name〉}{〈Previous Node〉} and the \bXSumb* is
analogous.

This is the most general command. All the previous ones used this com-\bXCompSum

mand with arguments pre-defined. It takes seven arguments. The syntax
is \bXCompSum*[〈distance〉]{〈Name〉}{〈Previous Node〉}{〈n〉}{〈s〉}{〈w〉}{〈e〉}.
The starred version creates an empty circle with the labels outside while the
non-starred version creates one where the X and the labels are within the circle.
The command places the circle 〈distance〉 to the right of 〈Previous Node〉 named
〈Name〉. It places 〈n〉 in the northern segment, 〈s〉 in the southern segment, 〈w〉
in the western segment, and 〈e〉 in the eastern segment. For summing junctions,
these arguments are all +’s. For comparators, one or more is a −.

2.4 Links

Connecting the blocks in a block diagram indicates the flow of information in the
diagram. This is assisted by arrows on the connecting lines. I called the lines

5

links. The package expects to move from the left to the right
The syntax is \bXLink[〈label〉]{〈Previous Node〉}{〈Next Node〉}. The length\bXLink

\bXLinkxy of the line is decided by the placement of the 〈Next Node〉 and is not an argument
of the link. This command creates an arrow from 〈Previous Node〉 to 〈Next Node〉
with the arrow tip pointing at 〈Next Node〉 (see Fig. 1 for r, u, or y) and 〈label〉
above the middle of the link. The default label is blank.

The command \bXLinkxy uses the same arguments. It creates a line which
exits from the east side of 〈Previous Node〉, makes a right angle and tries to
connect to the north or south side of 〈Next Node〉. It will place the 〈label〉 along
the vertical segment.

\bXLinkyx{〈Previous Node〉}{〈Next Node〉} is the syntax. It creates a link\bXLinkyx

which goes vertically, makes a right angle, and then goes horizontally. It has no
label.

To create a feedback loop where there is measurement noise, use \bXLinkyx,
then create the noise block with \bXBlocr, and then use \bXLinkxy to finish the
feedback loop. If no noise is in the measurement, then use a return.

2.5 Returns

Returns are what I generalized the simple feedback loop as: a line connecting the
end of a linear block diagram to the beginning.

In order to make the return line, the syntax of the command is defined as\bXReturn

\bXReturn[〈distance〉]{〈Previous Node〉}{〈Next Node〉}{〈label〉}. 〈distance〉 is
the number of em’s the return line should move down prior to going left. 〈Previous
Node〉 and 〈Next Node〉 are the names of the beginning and the terminus of the
return line.〈label〉 is the label for the return line placed near 〈Next Node〉 on the
vertical segment.

2.6 Chains

I worked on the chain mechanism because it did not work correctly for me when I
tried it. Chains are sets of blocks and links that can be automatically assembled
from a list of parameters and a starting node.

These labor saving macros are expected to create a set of linear blocks and links.\bXChain

\bXChainReturn The syntax for their used is \bXChain[〈distance〉]{〈Previous Node〉}{〈list〉} and
\bXChainReturn[〈distance〉]{〈Previous Node〉}{〈list〉}. 〈distance〉 is the number
of em’s separation between blocks in the chain. The default is 4. 〈Previous Node〉
is the starting node for the chain. 〈list〉 is a list of pairs of names and labels of
the form: name/label,name2/label2,... as in Fig. 5. The \bXChainReturn

command is meant for use on the return line of a feedback loop in conjunction
with \bXLinkyx and \bXLinkxy and proceeds to the left.

This macro uses the chain feature and the return feature to build a feed-\bXLoop

back loop from a list, e.g. Fig. 6. The syntax is \bXLoop[〈distance〉]{〈Previous
Node〉}{〈list〉}. This macro uses a comparator and the chain mechanism and then
adds a return. Note that you still need to start with an input3.

3There is something incorrect about the spacing on the Input label in this command

6

45 < 50 noise 65

\begin{tikzpicture}

\bXInput{E}

\bXChain[2]{E}%

{Md/$45<50$,fred/noise,head/65}

\end{tikzpicture}

Figure 5: Example of a Chain and Code

r −+ Md kid 4 <
\begin{tikzpicture}

\bXInput[r]{A}

\bXLoop[1.5]{A}{c/Md,d/kid,e/$4<$}

\end{tikzpicture}

Figure 6: Example of a Loop and Code

2.7 Specialty Items

This section discusses the additional macros that don’t fit into the previous cate-
gories.

2.7.1 New Branches

When you have a highly complex block diagram to create like Fig. 8 or Fig. 2, this
package requires you to make new branches by telling it where in relation to an
existing node to begin the new branch. You may move horizontally or vertically
from an existing node. In Fig. 8, there are two \bXReturn’s used which take care
of placing the new branch internally. But, the upper row with the System block
is the item of interest. In Fig. 2, the branches are noted by color: black for the
first branch, red for the second, and green for the third.

The macro to create a new tikz node at some horizontal distance is given by\bXBranchx

\bXNodeShiftx \bXBranchx[〈distance〉]{〈Previous Node〉}{〈Name〉}. 〈distance〉 is an optional
argument whose default is 5 that specifies how many units to the right of 〈Previous
Node〉 to place this new node. 〈Name〉 is the tikz name for the node. You will
use 〈Name〉 for the 〈Previous Node〉 of the first new block on this branch. I think
the horizontal shift will be used rarely. \bXNodeShiftx is the obsolete version of
this command with the same arguments. This macro is only retained for version
compatibility.

The macro to create a new tikz node vertically displaced is given by\bXBranchy

\bXNodeShifty \bXBranchy[〈distance〉]{〈Previous Node〉}{〈Name〉}. 〈distance〉 is an optional
argument whose default is 5 that specifies how many units below 〈Previous Node〉
to place this new node. 〈Name〉 is the tikz name for the node. You will use 〈Name〉
for the 〈Previous Node〉 of the first new block on this branch. \bXNodeShifty is
the obsolete version of this command with the same arguments. This macro is
only retained for version compatibility. See Fig. 8.

7

−+
r3

C3(s) −
+

r2
C2(s) ≈ 1 P2(s)

u2
P3(s)

y2 = u3 y3

\begin{tikzpicture}[scale=.5]

\bXInput{A}

\bXComp{B}{A}\bXLink[r_3]{A}{B}

\bXStyleBloc{rounded corners,fill=blue!20,text=blue}

\bXBloc[1]{C}{$C_3(s)$}{B}\bXLink{B}{C}

\bXStyleBlocDefault

\begin{tiny}

\bXLineStyle{red, dotted}

\bXStyleBloc{draw=red!20, thick,top color=white,

bottom color=red!50!black}

\bXComp[5]{D}{C}\bXLink[r_2]{C}{D}

\bXChain[1]{D}{E/$C_2(s)$,F/≈1}

\bXBloc[2]{G}{$P_2(s)$}{F}\bXLink[u_2]{F}{G}

\bXStyleBlocDefault

\bXBloc[4]{H}{$P_3(s)$}{G}\bXLink[$y_2=u_3$]{G}{H}

\bXReturn{G-H}{D}{}

\end{tiny

\bXOutput{I}{H}\bXLink[y_3]{H}{I}

\bXLabelStyle{green!80!black}

\bXLineStyle{dashed, brown, text=purple}

\bXReturn{H-I}{B}{}

\end{tikzpicture}

Figure 7: Customized Block Diagram and Code

8

+
−+

r3
C3(s) −

+
r2

C2(s) ≈ 1 P2(s)
u2

P3(s)
y2 = u3 y3

System− +
r1

\begin{tikzpicture}[scale=.5]

\bXInput{A}\bXCompSum{B}{A}{+}{-}{+}{}

\bXLink[r_3]{A}{B}

\bXBloc[1]{C}{$C_3(s)$}{B}\bXLink{B}{C}

\begin{tiny}

\bXComp[5]{D}{C}\bXLink[r_2]{C}{D}

\bXChain[1]{D}{E/$C_2(s)$,F/≈1}

\bXBloc[2]{G}{$P_2(s)$}{F}\bXLink[u_2]{F}{G}

\bXBloc[4]{H}{$P_3(s)$}{G}\bXLink[$y_2=u_3$]{G}{H}

\bXReturn{G-H}{D}{}

\end{tiny}

\bXOutput{I}{H}\bXLink{H}{I}\bXLinkName[.6]{I}{y_3}

\bXReturn{H-I}{B}{}

\bXBranchy[-5]{I}{X}

\bXBlocr[5]{Y}{System}{X}\bXLinkyx{H-I}{Y}{}

\bXBranchy[-5]{A}{Z}

\bXCompSum{W}{Z}{}{}{-}{+}\bXLink{Y}{W}\bXLink[r_1]{Z}{W}

\bXLink{W}{B}

\end{tikzpicture}

Figure 8: A Multi-Input, Branched Example and Code

9

2.7.2 Personalization

Since this package is built on tikz, the full authority of the tikz environment is
available for personalizing the look of your block diagram.

The default line style is stored in \bXDefaultLineStyle. If you change\bXDefaultLineStyle

the line style, using \bXLineStyle then the default can be reapplied by using
\bXDefaultLineStyle. The default line style is a solid black, thin line with
LATEX style arrow tips.

To change the default, use \bXLineStyle{〈Style list〉}. 〈Style list〉 is a comma\bXLineStyle

separated list of tikz keywords to change the display of the line. See Fig. 7 for an
example. Refer to the pgf/tikz Manual for a complete listing of available keywords.

The default block style is stored in \bXStyleBlocDefault and can be used to\bXStyleBlocDefault

restore the default settings if they are changed. The default style is a 3em square,
outlined with a thin black line.

To change the default, use \bXStyleBloc{〈Style list〉}. 〈Style list〉 is a comma\bXStyleBloc

separated list of tikz keywords to change the display of the block. See Fig. 7
for an example. Refer to the pgf/tikz Manual for a complete listing of available
keywords.

The default Sum style is stored in \bXStyleSumDefault and can be used to\bXStyleSumDefault

restore the default settings if they are changed. The default style is a circle
outlined with a thin black line. The default takes the elements of the block style
as a starting point.

To change the default, use \bXStyleSum{〈Style list〉}. 〈Style list〉 is a comma\bXStyleSum

separated list of tikz keywords to change the display of the block. Refer to the
pgf/tikz Manual for a complete listing of available keywords.

The default line style is stored in \bXDefaultLabelStyle. If you change\bXDefaultLabelStyle

the line style, using \bXLabelStyle then the default can be reapplied by us-
ing \bXDefaultLabelStyle. The default line style is a solid black, thin line with
LATEX style arrow tips.

To change the default, use \bXLabelStyle{〈Style list〉}. 〈Style list〉 is a comma\bXLabelStyle

separated list of tikz keywords change the display of the line. See Fig. 7 for an
example. Refer to the pgf/tikz Manual for a complete listing of available keywords.

2.7.3 Scaling

There are some scaling commands that are built into tikz, I think. They are
environments. The tiny environment decreases the font size to about 5pt andtiny

small

Large

scales everything else down equivalently. The small environment decreases the
font size to about 8pt. The Large environment decreases the font size to about
12pt. Fig. 9 shows the same block diagram with these three environments used
and a normal one for reference.

10

tiny

−
+ G1 G2

small

−+ G1 G2

Normal

−+ G1 G2

Large

−+ G1 G2

\begin{tabular}{p{.4\textwidth}p{.4\textwidth}}

tiny\hspace{1in}

\begin{tikzpicture}\begin{tiny}\bXInput{A}\bXLoop[2]{A}{b/G_1,c/G_2}

\end{tiny}\end{tikzpicture}&%

small

\begin{tikzpicture}\begin{small}\bXInput{A}\bXLoop[2]{A}{b/G_1,c/G_2}

\end{small}\end{tikzpicture}\\

Normal

\begin{tikzpicture}\bXInput{A}\bXLoop[2]{A}{b/G_1,c/G_2}\end{tikzpicture}&%

Large

\begin{tikzpicture}\begin{Large}\bXInput{A}\bXLoop[2]{A}{b/G_1,c/G_2}

\end{Large}\end{tikzpicture}

\end{tabular}

Figure 9: A Scaling Example and Code

11

3 Tips

• If you want to work in the opposite direction than the normal one, use
a negative 〈distance〉. This can be useful when working with returns or
branches.

• If you want text under a link, you can use \bXLinkName macro with a neg-
ative 〈distance〉 and a 〈Previous Node〉 of the form D-E.

• It is always a good idea to draw the block diagram by hand first. Then your
code for this package, simple though it is, will be neater and easier to read
because you can create the diagram in order.

• When something really special is needed, do not forget that you may use tikz
commands directly in your tikzpicture environment. This is how I place
the little filled-in blocks with the node names in Fig. 2.

4 Implementation

Here is the listing of the source code for the package. Most things here are as
similar to the schemabloc package as I could make them. These macros group sets
of tikz commands together to utilize the power of tikz but allowing the user to not
have to dig into pgf/tikz.

Normal beginning package commands to provide for making sure the package
works correctly.

1 \typeout{* }

2 \typeout{bloX: Just an English translation of schemabloc package.}

3 \typeout{bloX Copyright (C) 2014 Ben Reish}

4 \typeout{* }

5 \typeout{This program comes with ABSOLUTELY NO WARRANTY.}

6 \typeout{This is free software, and you are welcome to redistribute it}

7 \typeout{under certain conditions.}

8 \typeout{* }

The package has external dependencies beyond the base installation. I am
sorry.

9 \RequirePackage{ifthen}

10 \RequirePackage{tikz}

11 \RequirePackage{pgffor}

12 \usetikzlibrary{shapes,arrows}

Using the tikz commands, initialize the styles for links, blocks, potatoes, and
summing junctions.

13 \tikzstyle{bXLineStyle}=[->,>=latex’,]

14 \tikzstyle{bXStyleBloc}=[draw, rectangle,]

15 \tikzstyle{bXStyleBlocPotato}=[]

16 \tikzstyle{bXStyleSum}=[draw, circle,]%style Sum CC

17 \tikzstyle{bXLabelStyle}=[]

12

\bXDefaultLineStyle

\bXLineStyle

\bXDefaultLineStyle is used to re-establish the default line style once it has been
changed by the below commands. It defines a solid line with a LATEX style arrow
tip. To change the default line style, \bXLineStyle takes one argument which is
added to the default line description by tikz.

18 \newcommand{\bXDefaultLineStyle}{

19 \tikzstyle{bXLineStyle}=[->,>=latex’]

20 }

21 \newcommand{\bXLineStyle}[1]{

22 \tikzstyle{bXLineStyle}+=[#1]

23 }

\bXStyleBloc

\bXStyleBlocDefault

To re-establish the block style, use \bXStyleBlocDefault. To change the default,
the \bXStyleBloc command will take an argument and add it to the current block
style definition.

24 \newcommand{\bXStyleBloc}[1]{

25 \tikzstyle{bXStyleBloc}+=[#1]

26 }

27 \newcommand{\bXStyleBlocDefault}{

28 \tikzstyle{bXStyleBloc}=[draw, rectangle,]

29 }

\bXStylePotato

\bXStylePotatoDefault

To re-establish the potato block style, use \bXStylePotatoDefault. To change
the default, the \bXStylePotato command will take an argument and add it to
the current block style definition.

30 \newcommand{\bXStylePotato}[1]{

31 \tikzstyle{bXStyleBlocPotato}+=[#1]

32 }

33 \newcommand{\bXStylePotatoDefault}{

34 \tikzstyle{bXStyleBlocPotato}=[draw, cloud, cloud puffs=5,]

35 }

\bXStyleSum

\bXStyleSumDefault

To re-establish the block style, use \bXStyleSumDefault. To change the default,
the \bXStyleSum command will take an argument and add it to the current sum
style definition.

36 \newcommand{\bXStyleSum}[1]{

37 \tikzstyle{bXStyleSum}+=[#1]

38 }

39 \newcommand{\bXStyleSumDefault}{

40 \tikzstyle{bXStyleSum}=[draw, circle,]

41 }

\bXLabelStyle

\bXLabelStyleDefault

To re-establish the label style, use \bXLabelStyleDefault. To change the default,
the \bXLabelStyle command will take an argument and add it to the current label
style definition. This is used with the \bXInput and the \bXLinkName macros to
customize the text.

42 \newcommand{\bXLabelStyle}[1]{

43 \tikzstyle{bXLabelStyle}+=[#1]

44 }

13

45 \newcommand{\bXLabelStyleDefault}{

46 \tikzstyle{bXLabelStyle}=[font=\normalfont,]

47 }

\bXInput I redefined the beginning command of the block diagram to take an optional
argument and place it as a label above the node. This required splitting the
\bXInput command into three commands. The user level command is \bXInput

which looks to see if the next character is a ‘[’. If so, it calls \bXInputi, else
it calls \bXInputii. If the optional argument is used, the \bXInputi command
takes the list of arguments and processes them. The \bXBranchx is called to create
the extra node labels for connecting links.

48 \newcommand{\bXInput}{%

49 \@ifnextchar[{\@bXInputi}{\@bXInputii}

50 }

51 \newcommand{\@bXInputi}[2][]{%

52 \node [coordinate,name=#2,bXLabelStyle] {#1};

53 \bXBranchx[0]{#2}{#2};

54 \draw (0,0) node [anchor=east,name=#2label,] {#1};

55 }

56 \newcommand{\@bXInputii}[1]{%

57 \node [coordinate,name=#1] { };

58 \bXBranchx[0]{#1}{#1};

59 }

\bXOutput To end the block diagram with an arrow pointing to the right, place a node at the
right of the previous node to which a link can connect.

60 \newcommand{\bXOutput}[3][2]{

61 \node [coordinate, right of=#3right,

62 node distance=#1em, minimum size=0em,right] (#2) {};

63 }

\bXBloc

\bXBlocr

\bXBlocL

\bXBlocrL

These commands create the paths which make the normal blocks, the return
blocks, the normal block with link, and the return block with link. The big differ-
ence between normal blocks and return blocks is that the orientation is switched.
Instead of being placed to the right of the previous node, the return blocks are
placed to the left.

64 \newcommand{\bXBloc}[4][2]{

65 \node [draw, rectangle,

66 minimum height=3em, minimum width=3em, right of = #4right,

67 node distance=#1em,bXStyleBloc,right] (#2) {#3};

68 \node (#2right) at (#2.east){};

69 \node (Blocrightend) at (#2.east){};

70 }

71 \newcommand{\bXBlocr}[4][2]{

72 \node [

73 minimum height=3em, minimum width=3em, left of = #4left,

74 node distance=#1em, bXStyleBloc,left] (#2) {#3};

75 \node (#2left) at (#2.west){};

14

76 }

77 \newcommand{\bXBlocL}[4][2]{

78 \node [draw, rectangle,

79 minimum height=3em, minimum width=3em,

80 right of = #4right,node distance=#1em,bXStyleBloc,right] (#2) {#3};

81 \node (#2right) at (#2.east){};

82 \node (Blocrightend) at (#2.east){};

83 \draw [bXLineStyle,auto] (#4) -- node[name=#4-#2] {} (#2);

84 }

85 \newcommand{\bXBlocrL}[4][2]{

86 \node [draw, rectangle,

87 minimum height=3em, minimum width=3em, left of = #4left,

88 node distance=#1em, bXStyleBloc,left] (#2) {#3};

89 \node (#2left) at (#2.west){};

90 \node (Blocleftend) at (#2.west){};

91 \draw [bXLineStyle,auto] (#4) -- node[name=#4-#2] {} (#2);

92 }

93

\bXBlocPotato This command gives the user an option for a nondescript object by using tikz’s
built in cloud keyword.

94 \newcommand{\bXBlocPotato}[4][2]{

95 \node [draw, cloud, cloud puffs=5, draw,

96 minimum height=3em, minimum width=5em, right of = #4right,

97 node distance=#1em,bXStyleBlocPotato,right] (#2) {#3};

98 \node (#2right) at (#2.east){};

99 }

\bXOnlyOneBloc This macro creates an entire single block, block diagram by itself. It adds an
input, a block, an output, and two links with the four arguments being the labels
for everything.

100 \newcommand{\bXonlyOneBloc}[4][1.5]{

101 \bXInput{E1}

102 \bXBloc[#1]{B1}{#3}{E1}

103 \bXOutput[#1]{S1}{B1}

104 \bXLink{E1}{B1}{#2}

105 \bXLink{B1}{S1}{#4}

106 }

\bXLink

\bXLinkxy

\bXLinkyx

These macros tell tikz where to place links, between which blocks. The normal
macro is \bXLink which takes 3 arguments. It draws straight lines between the
right edge of the previous node and the left edge of the next node. It names the
link 〈Previous Node〉-〈Next Node〉. This allows the selection of the middle of the
link between to blocks for the having a return link drawn from. This macro will
draw diagonal lines between nodes on different branches of a diagram. To maintain
square corners, use the \bXLinkxy to go first horizontally, then vertically; or use
\bXLinkyx to go first vertically and then horizontally.

107 \newcommand{\bXLink}[3][]{

108 \draw [bXLineStyle,auto] (#2) -- node[name=#2-#3] {#1} (#3);

15

109 }

110 \newcommand{\bXLinkyx}[2]{

111 \draw [bXLineStyle] (#1.south) |- (#2) ;

112 }

113 \newcommand{\bXLinkxy}[3][]{

114 \draw [bXLineStyle] (#2) -|

115 node[name=#2-#3,near end,right] {#1} (#3) ;

116 }

\bXReturn This macro creates two nodes, one directly below the second argument and one
directly below the third argument. Then it draws straight lines to connect them.

117 \newcommand{\bXReturn}[4][4]{

118 \node [below of=#2, node distance=#1em,

119 minimum size=0em](return#2) {};

120 \draw [bXLineStyle] (#2.south)--(return#2.south)

121 -| node[name=#2-#3,near end,right] {#4} (#3) ;

122 }

\bXLinkName This macro adds a label to the output of a diagram at the end like the optional
argument does on the input of the diagram.

123 \newcommand{\bXLinkName}[3][0.4]{

124 \node[above of=#2, node distance=#1em, bXLabelStyle] (#2name) at (#2) {#3};

125 }

\bXCompSum \bXCompSum is broken into three macros to be able to accommodate the starred
version. They all are user level commands so they can be called directly. Gen-
erally, though, use \bXCompSum or \bXCompSum*. \bXCompSum will check if the
next character is a *. If so, it will call \bXCompSumNorm. Otherwise, it calls
\bXCompSumOnly. \bXCompSumOnly places the ‘X’ in the circle and creates four
nodes for the labels of the last four arguments inside the circle. The other com-
mand places the last four arguments outside the circle.

Update: I converted \bXCompSumNorm and \bXCompSumOnly to private func-
tions. Now they have @’s in them.

126 \newcommand*{\bXCompSum}{\@ifstar\bX@CompSumNorm\bX@CompSumOnly}

127 \newcommand{\bX@CompSumOnly}[7][4]{

128 \node [draw, circle,minimum size=2em,

129 right of=#3,node distance=#1em] (#2) {};

130 \node [draw, cross out,minimum size=1.414em,

131 right of=#3,node distance=#1em] {};

132 \node [above of=#2,node distance=0.6em] {$#4$};

133 \node [below of=#2,node distance=0.6em] {$#5$};

134 \node [left of=#2,node distance=0.6em] {$#6$};

135 \node [right of=#2,node distance=0.6em] {$#7$};

136 \node (#2right) at (#2.east){};

137 \node (#2left) at (#2.west){};

138 }

139 \newcommand{\bX@CompSumNorm}[7][4]{

140 \node [draw, circle,minimum size=1.5em,

16

141 right of=#3,node distance=#1em,

142 label=85:$#4$,label=-85:$#5$,label=175:$#6$,

143 label=5:$#7$,bXStyleSum] (#2) {};

144 \node (#2right) at (#2.east){};

145 \node (#2left) at (#2.west){};

146 }

\bXComp In an effort to reduce the keystrokes needed to produce a comparator, \bXComp
is offered. It is broken into three macros to take care of whether or not the user
wants an ‘X’. These macros just hardcode some inputs to the \bXCompSum macro.

147 \newcommand*{\bXComp}{\@ifstar\bX@CompNorm\bX@CompOnly}

148 \newcommand{\bX@CompOnly}[3][4]{

149 \bXCompSum[#1]{#2}{#3}{}{-}{+}{}

150 }

151 \newcommand{\bX@CompNorm}[3][4]{

152 \bXCompSum*[#1]{#2}{#3}{}{-}{+}{}

153 }

\bXCompa Again, in an effort to reduce keystrokes, a macro is offered to make a comparator
whose negative input is from above. It, too, is split into three macros to handle
the starred version.

154 \newcommand*{\bXCompa}{\@ifstar\bX@CompaNorm\bX@CompaOnly}

155 \newcommand{\bX@CompaOnly}[3][4]{

156 \bXCompSum[#1]{#2}{#3}{-}{}{+}{}

157 }

158 \newcommand{\bX@CompaNorm}[3][4]{

159 \bXCompSum*[#1]{#2}{#3}{-}{}{+}{}

160 }

\bXSuma To meet the same need as that of \bXCompa, but with a summing junction, \bXSuma
is offered.

161 \newcommand*{\bXSuma}{\@ifstar\bX@SumaNorm\bX@SumaOnly}

162 \newcommand{\bX@SumaOnly}[3][4]{

163 \bXCompSum[#1]{#2}{#3}{+}{}{+}{}

164 }

165 \newcommand{\bX@SumaNorm}[3][4]{

166 \bXCompSum*[#1]{#2}{#3}{+}{}{+}{}

167 }

\bXSumb To meet the same need as that of \bXComp, but with a summing junction, \bXSumb
is offered.

168 \newcommand*{\bXSumb}{\@ifstar\bX@SumbNorm\bX@SumbOnly}

169 \newcommand{\bX@SumbOnly}[3][4]{

170 \bXCompSum[#1]{#2}{#3}{}{+}{+}{}

171 }

172 \newcommand{\bX@SumbNorm}[3][4]{

173 \bXCompSum*[#1]{#2}{#3}{}{+}{+}{}

174 }

17

\bXSum I think this macro is for printing out an empty comparator or summing junction
with few keystrokes. I think it is redundant, but here it is.

175 \newcommand{\bXSum}[6][4]{

176 \node [draw, circle,minimum size=1.5em,

177 right of=#3,node distance=#1em,

178 label=175:$#4$,label=-85:$#5$,

179 label=85:$#6$,bXStyleSum] (#2) {};

180 \node (#2right) at (#2.east){};

181 \node (#2left) at (#2.west){};

182 }

\bXBranchy

\bXNodeShifty

The \bXBranchy macro is used to create a node vertically displaced from the third
argument by the first argument. This allows for multiple inputs and outputs in a
block diagram. It creates the node names right and left for other macros to use.
The \bXNodeShifty macro is retained for version compatability.

183 \newcommand{\bXBranchy}[3][5]{

184 \node [below of=#2, node distance=#1em, minimum size=0em](#3) {};

185 \node (#3right) at (#3){};

186 \node (#3left) at (#3){};

187 }

188 \newcommand{\bXNodeShifty}[3][5]{

189 \bXBranchy[#1]{#2}{#3}

190 }

\bXBranchx

\bXNodeShiftx

The \bXBranchx macro is used to create a node horizontally displaced from the
third argument by the first argument. It creates the node names right and left for
other macros to use. The \bXNodeShiftx macro is retained for version compata-
bility.

191 \newcommand{\bXBranchx}[3][5]{

192 \node [right of=#2, node distance=#1em, minimum size=0em](#3) {};

193 \node (#3right) at (#3){};

194 \node (#3left) at (#3){};

195 }

196 \newcommand{\bXNodeShiftx}[3][5]{

197 \bXBranchx[#1]{#2}{#3}

198 }

\bXChain A chain is a set of blocks connected to each other created from a list. This
function leans heavily on the tikz foreach command. There are a couple of special
versions of this command which were previously (in schemabloc) used together
unsuccessfully. I don’t think tikz allows the combination of its versions of the
foreach command. I simplified the use to be a selection from a list of comma-
separated values of the form: a/b,c/d,. . . which was useful to me. I then used a
global let statement to redefine what \lastx was each iteration. This seems to
work. The \typeout is for debugging. I like the lists so I left it un-commented.

199 \newcommand{\bXChain}[3][4]{

200 \def\lastx{#2}%

201 \foreach \x / \y in {#3}%

18

202 {\bXBlocL[#1]{\x}{\y}{\lastx} %

203 \typeout{\x, \y, \lastx}%

204 \global\let\lastx\x}

205 }

\bXChainReturn This macro has the same machinations that the previous one does, but is to be
used on the return side, so the block command is swapped out with \bXBlocrL.
Otherwise, it works just as the \bXChain macro does.

206 \newcommand{\bXChainReturn}[3][4]{

207 \def\lastx{#2}%

208 \foreach \x / \y in {#3}%

209 {\bXBlocrL[#1]{\x}{\y}{\lastx} %

210 \typeout{\x, \y, \lastx}%

211 \global\let\lastx\x}

212 }

\bXOnlyLoop This command is supposed to create a block diagram for you, but it errors out so
I have removed it from this version of the bloX package. tikz can not find a node
that it is looking for and I haven’t figured that one out yet.

213 % \newcommand{\bXOnlyLoop}[4][4]{

214 % \bXComp[#1]{Comp#2}{#2}\bXLink{#2}{Comp#2}

215 % \bXChain[#1]{Comp#2}{#3}

216 % \bXOutput[#1]{#4}{BlocdeFin}

217 % \draw [bXLineStyle,auto] (Blocrightend.base) --

218 % node[name=FindeChain-#4] {} (#4);

219 % \bXReturn{FindeChain-#4}{Comp#2}{}

220 % }

\bXLoop This macro is designed to make a loop diagram from a list of values. You make
an input and then hand this macro a 〈distance〉, the name of your input, and a
list like: a/G_1,b/G_2. It just draws a line from the end of the list of block
back to the comparator.

221 \newcommand{\bXLoop}[3][4]{

222 \bXComp[#1]{Comp#2}{#2}\bXLink{#2}{Comp#2}

223 \bXChain[#1]{Comp#2}{#3}

224 \draw [bXLineStyle,auto,-] (Blocrightend.base) --++

225 (1em,0)coordinate[name=EndofChain];

226 \bXReturn{EndofChain}{Comp#2}{}

227 }

\bXLoopReturn This is the same idea as the previous macro, but adds a second list argument
which allows for a set of blocks to be set on the return loop as well. It, too, does
not work properly, so I have commented it out of this version.

228 % \newcommand{\bXLoopReturn}[4][4]{

229 % \bXComp[#1]{Comp#2}{#2}\bXLink{#2}{Comp#2}

230 % \bXChain[#1]{Comp#2}{#3}

231 % \draw [bXLineStyle,auto,-] (Blocrightend.base) --++

232 % (1em,0)coordinate[name=FindeChain];

19

233 % \bXBranchy[5]{FindeChain}{bXDebutReturn}

234 % \bXChainReturn[#1]{bXDebutReturn}{#4}

235 % \draw [bXLineStyle,-] (FindeChain) |- (bXDebutReturn.west) ;

236 % \draw [bXLineStyle] (Blocleftend.base) -|

237 % node[name=bXNomReturn,near end,right] {} (Comp#2) ;

238 % }

Change History

v1.0
General: Initial version 1

v2.0
General: Fixed the chain mecha-

nism to work with my imple-
mentation of tikz 1

\bXChain: Simplified the foreach
statement from tikz and applied
a global let statement 18

v2.1
General: Converted the input com-

mand to actually display what-
ever text is put in the optional
argument 3

v2.2
General: Added Branchx and

Branchy macros and made
bXNodeShiftx/y obsolete 7

\bXOnlyLoop: Removed the bXOn-
lyLoop macro and bXLoopRe-
turn macro for further study. . 19

v2.3
\bXStylePotatoDefault: Added

the style commands for the
potato which were missing. . . 13

v2.4
General: Added discussion of the

bXLabelStyle and bXDefault-
LabelStyle macros. 10

\bXComp: Converted bXCompNorm
and bXCompOnly to private
functions. 17

\bXCompa: Converted bXCom-
paNorm and bXCompaOnly to
private functions. 17

\bXCompSum: Converted bXComp-
SumNorm and bXComp-
SumOnly to private functions. 16

\bXInput: Added usage bXLabel-
Style 14

\bXLabelStyleDefault: Added a
label style and default com-
mand to the bXInput and
bXLinkName macros to allow
customization of the font these
two display. 13

\bXSuma: Converted bXSumaNorm
and bXSumaOnly to private
functions. 17

\bXSumb: Converted bXSumbNorm
and bXSumbOnly to private
functions. 17

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@bXInputi 49, 51

\@bXInputii 49, 56

\@ifnextchar 49

\@ifstar 126,
147, 154, 161, 168

B

\bX@CompaNorm . 154, 158

\bX@CompaOnly . 154, 155

20

\bX@CompNorm . . 147, 151

\bX@CompOnly . . 147, 148

\bX@CompSumNorm 126, 139

\bX@CompSumOnly 126, 127

\bX@SumaNorm . . 161, 165

\bX@SumaOnly . . 161, 162

\bX@SumbNorm . . 168, 172

\bX@SumbOnly . . 168, 169

\bXBloc 64, 102

\bXBlocL 64, 202

\bXBlocPotato 94

\bXBlocr 64

\bXBlocrL 64, 209

\bXBranchx . 53, 58, 191

\bXBranchy . . . 183, 233

\bXChain
. 199, 215, 223, 230

\bXChainReturn 206, 234

\bXComp 147, 214, 222, 229

\bXCompa 154

\bXCompSum 126, 149,
152, 156, 159,
163, 166, 170, 173

\bXDefaultLineStyle 18

\bXInput 48, 101

\bXLabelStyle 42

\bXLabelStyleDefault 42

\bXLineStyle 18
\bXLink . . . 104, 105,

107, 214, 222, 229
\bXLinkName 123
\bXLinkxy 107
\bXLinkyx 107
\bXLoop 221
\bXLoopReturn 228
\bXNodeShiftx 191
\bXNodeShifty 183
\bXOnlyLoop 213
\bXOnlyOneBloc 100
\bXonlyOneBloc 100
\bXOutput . 60, 103, 216
\bXReturn . 117, 219, 226
\bXStyleBloc 24
\bXStyleBlocDefault 24
\bXStylePotato 30
\bXStylePotatoDefault

. 30
\bXStyleSum 36
\bXStyleSumDefault . 36
\bXSum 175
\bXSuma 161
\bXSumb 168

C
Comparators 4

D

Default unit 3

L

\lastx 200, 202–
204, 207, 209–211

N

\normalfont 46

S

Summing Junctions . . . 4

T

\tikzstyle 13–17, 19,
22, 25, 28, 31,
34, 37, 40, 43, 46

\typeout . . 1–8, 203, 210

U

\usetikzlibrary . . . 12

X

\x . . . 201–204, 208–211

Y

\y . . . 201–203, 208–210

21

	Introduction
	Usage
	The Alpha and the Omega
	Blocks
	Comparators and Summations
	Links
	Returns
	Chains
	Specialty Items
	New Branches
	Personalization
	Scaling

	Tips
	Implementation

