
The Biblatex Package
Programmable Bibliographies and Citations

Philipp Lehman
(with Philip Kime, Audrey

Boruvka and Joseph Wright)

Version 3.1
21/10/2015

Contents

List of Tables 1

1 Introduction 2
1.1 About 2
1.2 License 2
1.3 Feedback 2
1.4 Acknowledgments . . . 2
1.5 Prerequisites 3

2 Database Guide 6
2.1 Entry Types 7
2.2 Entry Fields 13
2.3 Usage Notes 30
2.4 Hints and Caveats . . . 36

3 User Guide 44
3.1 Package Options 44
3.2 Global Customization . 62
3.3 Standard Styles 63
3.4 Related Entries 68
3.5 Sorting Options 70
3.6 Bibliography Commands 71
3.7 Citation Commands . . 85
3.8 Localization Commands 96
3.9 Formatting Commands 97
3.10 Language notes 105
3.11 Usage Notes 106
3.12 Hints and Caveats . . . 117

4 Author Guide 122
4.1 Overview 122

4.2 Bibliography Styles . . 125
4.3 Citation Styles 138
4.4 Data Interface 141
4.5 Customization 148
4.6 Auxiliary Commands . 180
4.7 Punctuation 200
4.8 Localization Strings . . 206
4.9 Localization Modules . 208
4.10 Formatting Commands 221
4.11 Hints and Caveats . . . 233

Appendix 248

A Default Driver Source Map-
pings 248
A.1 bibtex 248
A.2 endnotexml 249
A.3 ris 251
A.4 zoterordfxml . . . 253

B Default Inheritance Setup 255

C Default Sorting Schemes 256
C.1 Alphabetic 1 256
C.2 Alphabetic 2 257
C.3 Chronological 257

D Option Scope 258

E Revision History 259

List of Tables

1 Biber/Biblatex compatibility
matrix 6

2 Supported Languages 25
3 Date Specifications 35
4 Capacity of bibtex8 39
5 Disambiguation counters . . 60

6 mcite-like commands . . . 95
7 mcite-like syntax 96
8 Date Interface 135
9 Field types for \nosort . . 176
10 \mkcomprange setup . . . 196

1

http://sourceforge.net/projects/biblatex/

1 Introduction

This document is a systematic reference manual for the Biblatex package. Look at
the sample documents which ship with Biblatex to get a first impression.1 For a
quick start guide, browse §§ 1.1, 2.1, 2.2, 2.3, 3.1, 3.3, 3.6, 3.7, 3.11.

1.1 About Biblatex

This package provides advanced bibliographic facilities for use with LaTeX in conjunc-
tion with BibTeX. The package is a complete reimplementation of the bibliographic
facilities provided by LaTeX. A custom backend Biber by default is used which pro-
cesses the BibTeX format data files and them performs all sorting, label generation
(and a great deal more). Legacy BibTeX is also supported as a backend, albeit with a
reduced feature set. Biblatex does not use the backend to format the bibliography
information as with traditional BibTeX: instead of being implemented in BibTeX
style files, the formatting of the bibliography is entirely controlled by TeX macros.
Good working knowledge in LaTeX should be sufficient to design new bibliography
and citation styles. There is no need to learn BibTeX’s postfix stack language. This
package also supports subdivided bibliographies, multiple bibliographies within
one document, and separate lists of bibliographic information such as abbreviations
of various fields. Bibliographies may be subdivided into parts and/or segmented
by topics. Just like the bibliography styles, all citation commands may be freely
defined. With Biber as the backend, features such as customisable sorting, multiple
bibliographies with different sorting, customisable labels, dynamic data modification
are available. Please refer to § 1.5.5 for information on Biber/Biblatex version com-
patibility. The package is completely localized and can interface with the babel
package. Please refer to table 2 for a list of languages currently supported by this
package.

1.2 License

Copyright © 2006–2012 Philipp Lehman, 2012–2013 Philip Kime, Audrey Boruvka,
Joseph Wright. Permission is granted to copy, distribute and/or modify this software
under the terms of the LaTeX Project Public License, version 1.3.2

1.3 Feedback

Please use the Biblatex project page on GitHub to report bugs and submit feature
requests.3 Before making a feature request, please ensure that you have thoroughly
studied this manual. If you do not want to report a bug or request a feature but are
simply in need of assistance, you might want to consider posting your question on
the comp.text.tex newsgroup or TeX-LaTeX Stack Exchange.4

1.4 Acknowledgments

The language modules of this package are made possible thanks to the following
contributors: Augusto Ritter Stoffel, Mateus Araújo (Brazilian); Sebastià Vila-Marta
(Catalan); Ivo Pletikosić (Croatian); Michal Hoftich (Czech); Jonas Nyrup (Danish);

1
http://www.ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/

examples
2
http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt

3
http://github.com/plk/biblatex

4
http://tex.stackexchange.com/questions/tagged/biblatex

2

http://www.ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/examples
http://www.ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/examples
http://www.ctan.org/tex-archive/macros/latex/base/lppl.txt
http://github.com/plk/biblatex
http://tex.stackexchange.com/questions/tagged/biblatex

Johannes Wilm (Danish/Norwegian); Alexander van Loon, Pieter Belmans, Hen-
drik Maryns (Dutch); Hannu Väisänen, Janne Kujanpää (Finnish); Denis Bitouzé
(French); Apostolos Syropoulos, Prokopis (Greek); Baldur Kristinsson (Icelandic);
Enrico Gregorio, Andrea Marchitelli (Italian); Håkon Malmedal (Norwegian); Anas-
tasia Kandulina, Yuriy Chernyshov (Polish); José Carlos Santos (Portuguese); Oleg
Domanov (Russian); Tea Tušar and Bogdan Filipič (Slovene); Ignacio Fernández
Galván (Spanish); Per Starbäck, Carl-Gustav Werner, Filip Åsblom (Swedish).

1.5 Prerequisites

This section gives an overview of all resources required by this package and discusses
compatibility issues.

1.5.1 Requirements

The resources listed in this section are strictly required for Biblatex to function. The
package will not work if they are not available.

e-TeX The Biblatex package requires e-TeX. TeX distributions have been shipping e-TeX
binaries for quite some time, the popular distributions use them by default these
days. The Biblatex package checks if it is running under e-TeX. Simply try compiling
your documents as you usually do, the chances are that it just works. If you get
an error message, try compiling the document with elatex instead of latex or
pdfelatex instead of pdflatex, respectively.

Biber Biber is the default backend of Biblatex. You only need one backend, either BibTeX
or Biber. Biber comes with TeXLive and is also available from SourceForge.5. There
are some slight differences in name parsing of ‘von’ parts with Biber as compared
with BibTeX which you probably won’t normally notice. Biber uses the btparse C
library for BibTeX format file parsing which aimed to be compatible with BibTeX’s
parsing rules but also aimed at correcting some of the common problems. For details,
see the manual page for the Perl Text::BibTeX module6.

BibTeX The Biblatex package can use legacy BibTeX as a data backend. While a legacy BibTeX
binary is sufficient to run Biblatex, using bibtex8 is recommended. If your TeX
distribution does not ship with bibtex8, you can get it from ctan.7

etoolbox This LaTeX package, which is loaded automatically, provides generic programming
facilities required by Biblatex. It is available from ctan.8

kvoptions This LaTeX package, which is also loaded automatically, is used for internal option
handling. It is available with the oberdiek package bundle from ctan.9

logreq This LaTeX package, which is also loaded automatically, provides a frontend for
writing machine-readable messages to an auxiliary log file. It is available from
ctan.10

Apart from the above resources, Biblatex also requires the standard LaTeX packages
keyval and ifthen as well as the url package. These package are included in
all common TeX distributions and will be loaded automatically.

5
http://biblatex-biber.sourceforge.net/

6
http://search.cpan.org/~ambs/Text-BibTeX

7
http://www.ctan.org/tex-archive/biblio/bibtex/8-bit/

8
http://www.ctan.org/tex-archive/macros/latex/contrib/etoolbox/

9
http://www.ctan.org/pkg/kvoptions

10
http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/

3

http://biblatex-biber.sourceforge.net/
http://search.cpan.org/~ambs/Text-BibTeX
http://www.ctan.org/tex-archive/biblio/bibtex/8-bit/
http://www.ctan.org/tex-archive/macros/latex/contrib/etoolbox/
http://www.ctan.org/pkg/kvoptions
http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/

1.5.2 Recommended Packages

The packages listed in this section are not required for Biblatex to function, but
they provide recommended additional functions or enhance existing features. The
package loading order does not matter.

babel/polyglossia The babel and polyglossia packages provides the core architecture for multi-
lingual typesetting. If you are writing in a language other than American English,
using one of these packages is strongly recommended. If loaded, Biblatex package
will detect babel or polyglossia automatically.

csquotes If this package is available, Biblatex will use its language sensitive quotation facilities
to enclose certain titles in quotation marks. If not, Biblatex uses quotes suitable
for American English as a fallback. When writing in any other language, loading
csquotes is strongly recommended.11

xpatch The xpatch package extends the patching commands of etoolbox to Biblatex
bibliography macros, drivers and formatting directives.12

1.5.3 Compatible Classes and Packages

The Biblatex package provides dedicated compatibility code for the classes and
packages listed in this section.

hyperref The hyperref package transforms citations into hyperlinks. See the hyperref
and backref package options in § 3.1.2.1 for further details. When using the
hyperref package, it is preferable to load it after Biblatex.

showkeys The showkeys package prints the internal keys of, among other things, citations in
the text and items in the bibliography. The package loading order does not matter.

memoir When using the memoir class, the default bibliography headings are adapted such
that they blend well with the default layout of this class. See § 3.12.2 for further
usage hints.

KOMA-Script When using any of the scrartcl, scrbook, or scrreprt classes, the default
bibliography headings are adapted such that they blend with the default layout of
these classes. See § 3.12.1 for further usage hints.

1.5.4 Incompatible Packages

The packages listed in this section are not compatible with Biblatex. Since it reimple-
ments the bibliographic facilities of LaTeX from the ground up, Biblatex naturally
conflicts with all packages modifying the same facilities. This is not specific to
Biblatex. Some of the packages listed below are also incompatible with each other
for the same reason.

babelbib The babelbib package provides support for multilingual bibliographies. This
is a standard feature of Biblatex. Use the langid field and the package option
autolang for similar functionality. Note that Biblatex automatically adjusts to
the main document language if babel or polyglossia is loaded. You only need
the above mentioned features if you want to switch languages on a per-entry basis
within the bibliography. See §§ 2.2.3 and 3.1.2.1 for details. Also see § 3.8.
11
http://www.ctan.org/tex-archive/macros/latex/contrib/csquotes/

12
http://www.ctan.org/tex-archive/macros/latex/contrib/xpatch/

4

http://www.ctan.org/tex-archive/macros/latex/contrib/csquotes/
http://www.ctan.org/tex-archive/macros/latex/contrib/xpatch/

backref The backref package creates back references in the bibliography. See the package
options hyperref and backref in § 3.1.2.1 for comparable functionality.

bibtopic The bibtopic package provides support for bibliographies subdivided by topic,
type, or other criteria. For bibliographies subdivided by topic, see the category
feature in § 3.6.7 and the corresponding filters in § 3.6.2. Alternatively, you may use
the keywords field in conjunction with the keyword and notkeyword filters
for comparable functionality, see §§ 2.2.3 and 3.6.2 for details. For bibliographies sub-
divided by type, use the type and nottype filters. Also see § 3.11.4 for examples.

bibunits The bibunits package provides support for multiple partial (e. g., per chapter)
bibliographies. See chapterbib.

chapterbib The chapterbib package provides support for multiple partial bibliographies. Use
therefsection environment and thesection filter for comparable functionality.
Alternatively, you might also want to use the refsegment environment and the
segment filter. See §§ 3.6.5, 3.6.6, 3.6.2 for details. Also see § 3.11.3 for examples.

cite The cite package automatically sorts numeric citations and can compress a list
of consecutive numbers to a range. It also makes the punctuation used in citations
configurable. For sorted and compressed numeric citations, see the sortcites
package option in § 3.1.2.1 and the numeric-comp citation style in § 3.3.1. For
configurable punctuation, see § 3.9.

citeref Another package for creating back references in the bibliography. See backref.

inlinebib The inlinebib package is designed for traditional citations given in footnotes.
For comparable functionality, see the verbose citation styles in § 3.3.1.

jurabib Originally designed for citations in law studies and (mostly German) judicial docu-
ments, the jurabib package also provides features aimed at users in the humanities.
In terms of the features provided, there are some similarities between jurabib
and Biblatex but the approaches taken by both packages are quite different. Since
both jurabib and Biblatex are full-featured packages, the list of similarities and
differences is too long to be discussed here.

mcite The mcite package provides support for grouped citations, i. e., multiple items can
be cited as a single reference and listed as a single block in the bibliography. The
citation groups are defined as the items are cited. This only works with unsorted
bibliographies. The Biblatex package also supports grouped citations, which are
called ‘entry sets’ or ‘reference sets’ in this manual. See §§ 3.11.5, 3.6.12, 3.7.10 for
details.

mciteplus A significantly enhanced reimplementation of the mcite package which supports
grouping in sorted bibliographies. See mcite.

multibib The multibib package provides support for bibliographies subdivided by topic or
other criteria. See bibtopic.

natbib The natbib package supports numeric and author-year citation schemes, incorpo-
rating sorting and compression code found in the cite package. It also provides
additional citation commands and several configuration options. See the numeric
and author-year citation styles and their variants in § 3.3.1, the sortcites
package option in § 3.1.2.1, the citation commands in § 3.7, and the facilities discussed
in §§ 3.6.8, 3.6.9, 3.9 for comparable functionality. Also see § 3.7.9.

5

Biber version Biblatex version

2.2 3.1
2.1 3.0
2.0 3.0
1.9 2.9
1.8 2.8
1.7 2.7
1.6 2.6
1.5 2.5
1.4 2.4
1.3 2.3
1.2 2.1, 2.2
1.1 2.1
1.0 2.0
0.9.9 1.7x
0.9.8 1.7x
0.9.7 1.7x
0.9.6 1.7x
0.9.5 1.6x
0.9.4 1.5x
0.9.3 1.5x
0.9.2 1.4x
0.9.1 1.4x
0.9 1.4x

Table 1: Biber/Biblatex compatibility matrix

splitbib The splitbib package provides support for bibliographies subdivided by topic.
See bibtopic.

titlesec The titlesec package redefines user-level document division commands such as
\chapter or \section. This approach is not compatible with internal command
changes applied by the Biblatex refsection and refsegment option settings
described in § 3.1.2.1.

ucs The ucs package provides support for utf-8 encoded input. Either use inputenc’s
standard utf8module or a Unicode enabled engine such as XeTeX or LuaTeX instead.

1.5.5 Compatibility Matrix for Biber

Biber versions are closely coupled with Biblatex versions. You need to have the
right combination of the two. Biber will warn you during processing if it encounters
information which comes from a Biblatex version which is incompatible. table 1
shows a compatibility matrix for the recent versions.

2 Database Guide

It is important to distinguish between BibTeX the program and BibTeX the file format.
Biblatex can be used with or without BibTeX the program since its default backend
Biber uses fully supports the BibTeX file format (bib) and users should be able to
move to Biblatex will little or no changes to their BibTeX data files when using Biber
as a backend. If using BibTeX as the data backend, note that you cannot use arbitrary
bst files because the package depends on a special BibTeX interface. When using
BibTeX as a backend, Biblatex uses its own special bst file only. The entry guide
below is backend agnostic unless otherwise stated.

6

This section describes the default data model defined in the blx-dm.def file
which is part of biblatex. The data model is defined using the macros documented
in § 4.5.3. It is possible to redefine the data model which both Biblatex and Biber
use so that datasources can contain new entrytypes and fields (which of course will
need style support). The data model specification also allows for constraints to be
defined so that data sources can be validated against the data model (using Biber’s
--validate_datamodel option). Users who want to customise the data model
need to look at the blx-dm.def file and to read § 4.5.3.

2.1 Entry Types

This section gives an overview of the entry types supported by the default Biblatex
data model along with the fields supported by each type.

2.1.1 Regular Types

The lists below indicate the fields supported by each entry type. Note that the
mapping of fields to an entry type is ultimately at the discretion of the bibliography
style. The lists below therefore serve two purposes. They indicate the fields supported
by the standard styles which ship with this package and they also serve as a model
for custom styles. Note that the ‘required’ fields are not strictly required in all cases,
see § 2.3.2 for details. The fields marked as ‘optional’ are optional in a technical
sense. Bibliographical formatting rules usually require more than just the ‘required’
fields. The default data model defined a few constraints for the format of date fields,
ISBNs and some special fields like gender but the constraints are only used if
validating against the data model with Biber’s --validate_datamodel option.
Generic fields like abstract and annotation or label and shorthand are
not included in the lists below because they are independent of the entry type. The
special fields discussed in § 2.2.3, which are also independent of the entry type, are
not included in the lists either. See the default data model specification in the file
blx-dm.def which comes with Biblatex for a complete specification.

article An article in a journal, magazine, newspaper, or other periodical which forms a
self-contained unit with its own title. The title of the periodical is given in the
journaltitle field. If the issue has its own title in addition to the main title of
the periodical, it goes in the issuetitle field. Note that editor and related
fields refer to the journal while translator and related fields refer to the article.

Required fields: author, title, journaltitle, year/date

Optional fields: translator, annotator, commentator, subtitle,
titleaddon, editor, editora, editorb, editorc, journalsubtitle,
issuetitle, issuesubtitle, language, origlanguage, series,
volume, number, eid, issue, month, pages, version, note, issn,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

book A single-volume book with one or more authors where the authors share credit for
the work as a whole. This entry type also covers the function of the @inbook type
of traditional BibTeX, see § 2.3.1 for details.

Required fields: author, title, year/date

7

Optional fields: editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, maintitle, mainsubtitle, maintitleaddon,
language, origlanguage, volume, part, edition, volumes, series,
number, note, publisher, location, isbn, chapter, pages,
pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

mvbook A multi-volume @book. For backwards compatibility, multi-volume books are also
supported by the entry type @book. However, it is advisable to make use of the
dedicated entry type @mvbook.

Required fields: author, title, year/date

Optional fields: editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, language, origlanguage, edition, volumes,
series, number, note, publisher, location, isbn, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

inbook A part of a book which forms a self-contained unit with its own title. Note that the
profile of this entry type is different from standard BibTeX, see § 2.3.1.

Required fields: author, title, booktitle, year/date

Optional fields: bookauthor, editor, editora, editorb, editorc,
translator, annotator, commentator, introduction, foreword,
afterword, subtitle, titleaddon, maintitle, mainsubtitle,
maintitleaddon, booksubtitle, booktitleaddon, language,
origlanguage, volume, part, edition, volumes, series, number,
note, publisher, location, isbn, chapter, pages, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

bookinbook This type is similar to @inbook but intended for works originally published as a
stand-alone book. A typical example are books reprinted in the collected works of
an author.

suppbook Supplemental material in a @book. This type is closely related to the @inbook
entry type. While @inbook is primarily intended for a part of a book with its own
title (e. g., a single essay in a collection of essays by the same author), this type is
provided for elements such as prefaces, introductions, forewords, afterwords, etc.
which often have a generic title only. Style guides may require such items to be
formatted differently from other @inbook items. The standard styles will treat this
entry type as an alias for @inbook.

booklet A book-like work without a formal publisher or sponsoring institution. Use the field
howpublished to supply publishing information in free format, if applicable. The
field type may be useful as well.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
type, note, location, chapter, pages, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

8

collection A single-volume collection with multiple, self-contained contributions by distinct
authors which have their own title. The work as a whole has no overall author but it
will usually have an editor.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle,
titleaddon, maintitle, mainsubtitle, maintitleaddon, language,
origlanguage, volume, part, edition, volumes, series, number,
note, publisher, location, isbn, chapter, pages, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

mvcollection A multi-volume @collection. For backwards compatibility, multi-volume collec-
tions are also supported by the entry type @collection. However, it is advisable
to make use of the dedicated entry type @mvcollection.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle,
titleaddon, language, origlanguage, edition, volumes, series,
number, note, publisher, location, isbn, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

incollection A contribution to a collection which forms a self-contained unit with a distinct author
and title. The author refers to the title, the editor to the booktitle, i. e.,
the title of the collection.

Required fields: author, title, booktitle, year/date

Optional fields: editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, maintitle, mainsubtitle, maintitleaddon,
booksubtitle, booktitleaddon, language, origlanguage, volume,
part, edition, volumes, series, number, note, publisher,
location, isbn, chapter, pages, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

suppcollection Supplemental material in a @collection. This type is similar to @suppbook but
related to the @collection entry type. The standard styles will treat this entry
type as an alias for @incollection.

manual Technical or other documentation, not necessarily in printed form. The author or
editor is omissible in terms of § 2.3.2.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, edition, type,
series, number, version, note, organization, publisher,
location, isbn, chapter, pages, pagetotal, addendum, pubstate,
doi, eprint, eprintclass, eprinttype, url, urldate

misc A fallback type for entries which do not fit into any other category. Use the field
howpublished to supply publishing information in free format, if applicable. The
field type may be useful as well. author, editor, and year are omissible in
terms of § 2.3.2.

9

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
type, version, note, organization, location, date, month, year,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

online An online resource. author, editor, and year are omissible in terms of § 2.3.2.
This entry type is intended for sources such as web sites which are intrinsically
online resources. Note that all entry types support the url field. For example, when
adding an article from an online journal, it may be preferable to use the @article
type and its url field.

Required fields: author/editor, title, year/date, url

Optional fields: subtitle, titleaddon, language, version, note,
organization, date, month, year, addendum, pubstate, urldate

patent A patent or patent request. The number or record token is given in the number
field. Use the type field to specify the type and the location field to indicate the
scope of the patent, if different from the scope implied by the type. Note that the
location field is treated as a key list with this entry type, see § 2.2.1 for details.

Required fields: author, title, number, year/date

Optional fields: holder, subtitle, titleaddon, type, version,
location, note, date, month, year, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

periodical An complete issue of a periodical, such as a special issue of a journal. The title of
the periodical is given in the title field. If the issue has its own title in addition to
the main title of the periodical, it goes in the issuetitle field. The editor is
omissible in terms of § 2.3.2.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, subtitle, issuetitle,
issuesubtitle, language, series, volume, number, issue, date,
month, year, note, issn, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

suppperiodical Supplemental material in a @periodical. This type is similar to @suppbook
but related to the @periodical entry type. The role of this entry type may be
more obvious if you bear in mind that the @article type could also be called
@inperiodical. This type may be useful when referring to items such as regular
columns, obituaries, letters to the editor, etc. which only have a generic title. Style
guides may require such items to be formatted differently from articles in the strict
sense of the word. The standard styles will treat this entry type as an alias for
@article.

proceedings A single-volume conference proceedings. This type is very similar to@collection.
It supports an optional organization field which holds the sponsoring institution.
The editor is omissible in terms of § 2.3.2.

Required fields: title, year/date

10

Optional fields: editor, subtitle, titleaddon, maintitle,
mainsubtitle, maintitleaddon, eventtitle, eventtitleaddon,
eventdate, venue, language, volume, part, volumes, series,
number, note, organization, publisher, location, month, isbn,
chapter, pages, pagetotal, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

mvproceedings A multi-volume @proceedings entry. For backwards compatibility, multi-volume
proceedings are also supported by the entry type @proceedings. However, it is
advisable to make use of the dedicated entry type @mvproceedings

Required fields: title, year/date

Optional fields: editor, subtitle, titleaddon, eventtitle,
eventtitleaddon, eventdate, venue, language, volumes, series,
number, note, organization, publisher, location, month, isbn,
pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

inproceedings An article in a conference proceedings. This type is similar to @incollection. It
supports an optional organization field.

Required fields: author, title, booktitle, year/date

Optional fields: editor, subtitle, titleaddon, maintitle,
mainsubtitle, maintitleaddon, booksubtitle, booktitleaddon,
eventtitle, eventtitleaddon, eventdate, venue, language,
volume, part, volumes, series, number, note, organization,
publisher, location, month, isbn, chapter, pages, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

reference A single-volume work of reference such as an encyclopedia or a dictionary. This is a
more specific variant of the generic @collection entry type. The standard styles
will treat this entry type as an alias for @collection.

mvreference A multi-volume @reference entry. The standard styles will treat this entry type
as an alias for @mvcollection. For backwards compatibility, multi-volume refer-
ences are also supported by the entry type @reference. However, it is advisable
to make use of the dedicated entry type @mvreference.

inreference An article in a work of reference. This is a more specific variant of the generic
@incollection entry type. The standard styles will treat this entry type as an
alias for @incollection.

report A technical report, research report, or white paper published by a university or some
other institution. Use the type field to specify the type of report. The sponsoring
institution goes in the institution field.

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, number, version,
note, location, month, isrn, chapter, pages, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

set An entry set. This entry type is special, see § 3.11.5 for details.

thesis A thesis written for an educational institution to satisfy the requirements for a degree.
Use the type field to specify the type of thesis.

11

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, note, location,
month, isbn, chapter, pages, pagetotal, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url, urldate

unpublished A work with an author and a title which has not been formally published, such as
a manuscript or the script of a talk. Use the fields howpublished and note to
supply additional information in free format, if applicable.

Required fields: author, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
note, location, isbn, date, month, year, addendum, pubstate, url,
urldate

xdata This entry type is special. @xdata entries hold data which may be inherited by other Biber only
entries using the xdata field. Entries of this type only serve as data containers;
they may not be cited or added to the bibliography. See § 3.11.6 for details.

custom[a–f] Custom types for special bibliography styles. Not used by the standard styles.

2.1.2 Type Aliases

The entry types listed in this section are provided for backwards compatibility with
traditional BibTeX styles. These aliases are resolved by the backend as the data is
processed. Bibliography styles will see the entry type the alias points to, not the
alias name. All unknown entry types are generally exported as @misc.

conference A BibTeX legacy alias for @inproceedings.

electronic An alias for @online.

mastersthesis Similar to @thesis except that the type field is optional and defaults to the
localized term ‘Master’s thesis’. You may still use the type field to override that.

phdthesis Similar to @thesis except that the type field is optional and defaults to the
localized term ‘PhD thesis’. You may still use the type field to override that.

techreport Similar to @report except that the type field is optional and defaults to the
localized term ‘technical report’. You may still use the type field to override that.

www An alias for @online, provided for jurabib compatibility.

2.1.3 Unsupported Types

The types in this section are similar to the custom types @custom[a–f], i. e., the
standard bibliography styles provide no support for these types. When using the
standard styles, they will be treated as @misc entries.

artwork Works of the visual arts such as paintings, sculpture, and installations.

audio Audio recordings, typically on audio cd, dvd, audio cassette, or similar media. See
also @music.

12

bibnote This special entry type is not meant to be used in the bib file like other types. It is
provided for third-party packages like notes2bib which merge notes into the bib-
liography. The notes should go into the note field. Be advised that the @bibnote
type is not related to the \defbibnote command in any way. \defbibnote
is for adding comments at the beginning or the end of the bibliography, whereas
the @bibnote type is meant for packages which render endnotes as bibliography
entries.

commentary Commentaries which have a status different from regular books, such as legal com-
mentaries.

image Images, pictures, photographs, and similar media.

jurisdiction Court decisions, court recordings, and similar things.

legislation Laws, bills, legislative proposals, and similar things.

legal Legal documents such as treaties.

letter Personal correspondence such as letters, emails, memoranda, etc.

movie Motion pictures. See also @video.

music Musical recordings. This is a more specific variant of @audio.

performance Musical and theatrical performances as well as other works of the performing arts.
This type refers to the event as opposed to a recording, a score, or a printed play.

review Reviews of some other work. This is a more specific variant of the @article type.
The standard styles will treat this entry type as an alias for @article.

software Computer software.

standard National and international standards issued by a standards body such as the Interna-
tional Organization for Standardization.

video Audiovisual recordings, typically on dvd, vhs cassette, or similar media. See also
@movie.

2.2 Entry Fields

This section gives an overview of the fields supported by the Biblatex default data
model. See § 2.2.1 for an introduction to the data types used by the data model
specification and §§ 2.2.2 and 2.2.3 for the actual field listings.

2.2.1 Data Types

In datasources such as a bib file, all bibliographic data is specified in fields. Some of
those fields, for example author and editor, may contain a list of items. This list
structure is implemented by the BibTeX file format via the keyword ‘and’, which is
used to separate the individual items in the list. The Biblatex package implements
three distinct data types to handle bibliographic data: name lists, literal lists, and
fields. There are also several list and field subtypes and a content type which can be
used to semantically distinguish fields which are otherwise not distinguishable on
the basis of only their datatype (see § 4.5.3). This section gives an overview of the
data types supported by this package. See §§ 2.2.2 and 2.2.3 for information about
the mapping of the BibTeX file format fields to Biblatex’s data types.

13

Name lists are parsed and split up into the individual items at the and delimiter.
Each item in the list is then dissected into four name components: the first
name, the name prefix (von, van, of, da, de, della, …), the last name, and the
name suffix (junior, senior, …). Name lists may be truncated in the bib file
with the keyword ‘and others’. Typical examples of name lists are author
and editor.

With Biber, name list fields automatically have an \ifuse* test created as per Biber only
the name lists in the default data model (see § 4.6.2). They are also automatically
have a ifuse* option created which controls labelling and sorting behaviour
with the name (see § 3.1.3.1).

Literal lists are parsed and split up into the individual items at the and delimiter
but not dissected further. Literal lists may be truncated in the bib file with
the keyword ‘and others’. There are two subtypes:

Literal lists in the strict sense are handled as described above. The individual
items are simply printed as is. Typical examples of such literal lists are
publisher and location.

Key lists are a variant of literal lists which may hold printable data or local-
ization keys. For each item in the list, a test is performed to determine
whether it is a known localization key (the localization keys defined by
default are listed in § 4.9.2). If so, the localized string is printed. If not,
the item is printed as is. A typical example of a key list is language.

Fields are usually printed as a whole. There are several subtypes:

Literal fields are printed as is. Typical examples of literal fields are title
and note.

Range fields consist of one or more ranges where all dashes are normalized
and replaced by the command \bibrangedash. A range is something
optionally followed by one or more dashes optionally followed by some
non-dash (e.g. 5–7). Any number of consecutive dashes will only yield
a single range dash. A typical example of a range field is the pages
field. See also the \bibrangessep command which can be used to Biber only
customise the separator between multiple ranges. With Biber, range
fields will be skipped and will generate a warning if they do not consist
of one or more ranges. You can normalise messy range fields before they
are parsed using \DeclareSourcemap (see § 4.5.2).

Integer fields hold unformatted integers which may be converted to ordinals
or strings as they are printed. A typical example is the extrayear field.

Datepart fields hold unformatted integers which may be converted to or-
dinals or strings as they are printed. A typical example is the month
field.

Date fields hold a date specification in yyyy-mm-dd format or a date range
in yyyy-mm-dd/yyyy-mm-dd format. Date fields are special in that
the date is parsed and split up into its components. See § 2.3.8 for details.
A typical example is the date field.

Verbatim fields are processed in verbatim mode and may contain special
characters. Typical examples of verbatim fields are file and doi.

14

URI fields are processed in verbatim mode and may contain special charac-
ters. They are also URL-escaped if they don’t look like they already are.
The typical example of a uri field is url.

Separated value fields A separated list of literal values. Examples are the
keywords and options fields. The separator is always a commawhen
using BibTeX as the backend but can be configured to be any Perl regular
expression when using Biber via the xsvsep option which defaults to
the usual BibTeX comma surrounded by optional whitespace.

Pattern fields A literal field which must match a particular pattern. An
example is the gender field from § 2.2.3.

Key fields May hold printable data or localization keys. A test is performed
to determine whether the value of the field is a known localization key
(the localization keys defined by default are listed in § 4.9.2). If so, the
localized string is printed. If not, the value is printed as is. A typical
example is the type field.

Code fields Holds TeX code.

2.2.2 Data Fields

The fields listed in this section are the regular ones holding printable data in the
default data model. The name on the left is the default data model name of the field
as used by Biblatex and its backend. The Biblatex data type is given to the right of
the name. See § 2.2.1 for explanation of the various data types.

Some fields are marked as ‘Label fields’ which means that they are often used as Biber only
abbreviation labels when printing bibliography lists in the sense of section § 3.6.4.
Biblatex automatically creates supporting macros for such fields. See § 3.6.4.

abstract field (literal)

This field is intended for recording abstracts in a bib file, to be printed by a special
bibliography style. It is not used by all standard bibliography styles.

addendum field (literal)

Miscellaneous bibliographic data to be printed at the end of the entry. This is similar
to the note field except that it is printed at the end of the bibliography entry.

afterword list (name)

The author(s) of an afterword to the work. If the author of the afterword is identical
to the editor and/or translator, the standard styles will automatically con-
catenate these fields in the bibliography. See also introduction and foreword.

annotation field (literal)

This field may be useful when implementing a style for annotated bibliographies.
It is not used by all standard bibliography styles. Note that this field is completely
unrelated to annotator. The annotator is the author of annotations which are
part of the work cited.

annotator list (name)

The author(s) of annotations to the work. If the annotator is identical to the editor
and/or translator, the standard styles will automatically concatenate these fields
in the bibliography. See also commentator.

15

author list (name)

The author(s) of the title.

authortype field (key)

The type of author. This field will affect the string (if any) used to introduce the
author. Not used by the standard bibliography styles.

bookauthor list (name)

The author(s) of the booktitle.

bookpagination field (key)

If the work is published as part of another one, this is the pagination scheme of the en-
closing work, i. e., bookpagination relates to pagination like booktitle
to title. The value of this field will affect the formatting of the pages and
pagetotal fields. The key should be given in the singular form. Possible
keys are page, column, line, verse, section, and paragraph. See also
pagination as well as § 2.3.10.

booksubtitle field (literal)

The subtitle related to the booktitle. If the subtitle field refers to a work
which is part of a larger publication, a possible subtitle of the main work is given in
this field. See also subtitle.

booktitle field (literal)

If the title field indicates the title of a work which is part of a larger publication,
the title of the main work is given in this field. See also title.

booktitleaddon field (literal)

An annex to the booktitle, to be printed in a different font.

chapter field (literal)

A chapter or section or any other unit of a work.

commentator list (name)

The author(s) of a commentary to the work. Note that this field is intended for
commented editions which have a commentator in addition to the author. If the
work is a stand-alone commentary, the commentator should be given in the author
field. If the commentator is identical to the editor and/or translator, the
standard styles will automatically concatenate these fields in the bibliography. See
also annotator.

date field (date)

The publication date. See also month and year as well as § 2.3.8.

doi field (verbatim)

The Digital Object Identifier of the work.

16

edition field (integer or literal)

The edition of a printed publication. This must be an integer, not an ordinal. Don’t say
edition={First} or edition={1st} but edition={1}. The bibliography
style converts this to a language dependent ordinal. It is also possible to give the
edition as a literal string, for example “Third, revised and expanded edition”.

editor list (name)

The editor(s) of the title, booktitle, or maintitle, depending on the entry
type. Use the editortype field to specify the role if it is different from ‘editor’.
See § 2.3.6 for further hints.

editora list (name)

A secondary editor performing a different editorial role, such as compiling, redacting,
etc. Use the editoratype field to specify the role. See § 2.3.6 for further hints.

editorb list (name)

Another secondary editor performing a different role. Use the editorbtype field
to specify the role. See § 2.3.6 for further hints.

editorc list (name)

Another secondary editor performing a different role. Use the editorctype field
to specify the role. See § 2.3.6 for further hints.

editortype field (key)

The type of editorial role performed by the editor. Roles supported by default are
editor, compiler, founder, continuator, redactor, reviser, col-
laborator. The role ‘editor’ is the default. In this case, the field is omissible.
See § 2.3.6 for further hints.

editoratype field (key)

Similar to editortype but referring to the editora field. See § 2.3.6 for further
hints.

editorbtype field (key)

Similar to editortype but referring to the editorb field. See § 2.3.6 for further
hints.

editorctype field (key)

Similar to editortype but referring to the editorc field. See § 2.3.6 for further
hints.

eid field (literal)

The electronic identifier of an @article.

entrysubtype field (literal)

This field, which is not used by the standard styles, may be used to specify a subtype
of an entry type. This may be useful for bibliography styles which support a finer-
grained set of entry types.

17

eprint field (verbatim)

The electronic identifier of an online publication. This is roughly comparable to a
doi but specific to a certain archive, repository, service, or system. See § 3.11.7 for
details. Also see eprinttype and eprintclass.

eprintclass field (literal)

Additional information related to the resource indicated by the eprinttype field.
This could be a section of an archive, a path indicating a service, a classification of
some sort, etc. See § 3.11.7 for details. Also see eprint and eprinttype.

eprinttype field (literal)

The type of eprint identifier, e. g., the name of the archive, repository, service, or
system the eprint field refers to. See § 3.11.7 for details. Also see eprint and
eprintclass.

eventdate field (date)

The date of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. See also eventtitle and venue as well as § 2.3.8.

eventtitle field (literal)

The title of a conference, a symposium, or some other event in @proceedings and
@inproceedings entries. This field may also be useful for the custom types listed
in § 2.1.3. Note that this field holds the plain title of the event. Things like “Proceed-
ings of the Fifth XYZ Conference” go into the titleaddon or booktitleaddon
field, respectively. See also eventdate and venue.

eventtitleaddon field (literal)

An annex to the eventtitle field. Can be used for known event acronyms, for
example.

file field (verbatim)

A local link to a pdf or other version of the work. Not used by the standard biblio-
graphy styles.

foreword list (name)

The author(s) of a foreword to thework. If the author of the foreword is identical to the
editor and/or translator, the standard styles will automatically concatenate
these fields in the bibliography. See also introduction and afterword.

holder list (name)

The holder(s) of a @patent, if different from the author. Not that corporate
holders need to be wrapped in an additional set of braces, see § 2.3.3 for details. This
list may also be useful for the custom types listed in § 2.1.3.

howpublished field (literal)

A publication notice for unusual publications which do not fit into any of the common
categories.

18

indextitle field (literal)

A title to use for indexing instead of the regular title field. This field may be useful
if you have an entry with a title like “An Introduction to …” and want that indexed
as “Introduction to …, An”. Style authors should note that Biblatex automatically
copies the value of the title field to indextitle if the latter field is undefined.

institution list (literal)

The name of a university or some other institution, depending on the entry type.
Traditional BibTeX uses the field name school for theses, which is supported as an
alias. See also §§ 2.2.5 and 2.3.4.

introduction list (name)

The author(s) of an introduction to the work. If the author of the introduction is
identical to the editor and/or translator, the standard styles will automatically
concatenate these fields in the bibliography. See also foreword and afterword.

isan field (literal)

The International Standard Audiovisual Number of an audiovisual work. Not used
by the standard bibliography styles.

isbn field (literal)

The International Standard Book Number of a book.

ismn field (literal)

The International Standard Music Number for printed music such as musical scores.
Not used by the standard bibliography styles.

isrn field (literal)

The International Standard Technical Report Number of a technical report.

issn field (literal)

The International Standard Serial Number of a periodical.

issue field (literal)

The issue of a journal. This field is intended for journals whose individual issues
are identified by a designation such as ‘Spring’ or ‘Summer’ rather than the month
or a number. Since the placement of issue is similar to month and number, this
field may also be useful with double issues and other special cases. See also month,
number, and § 2.3.9.

issuesubtitle field (literal)

The subtitle of a specific issue of a journal or other periodical.

issuetitle field (literal)

The title of a specific issue of a journal or other periodical.

19

iswc field (literal)

The International Standard Work Code of a musical work. Not used by the standard
bibliography styles.

journalsubtitle field (literal)

The subtitle of a journal, a newspaper, or some other periodical.

journaltitle field (literal)

The name of a journal, a newspaper, or some other periodical.

label field (literal)

A designation to be used by the citation style as a substitute for the regular label if
any data required to generate the regular label is missing. For example, when an
author-year citation style is generating a citation for an entry which is missing the
author or the year, it may fall back to label. See § 2.3.2 for details. Note that, in
contrast to shorthand, label is only used as a fallback. See also shorthand.

language list (key)

The language(s) of the work. Languages may be specified literally or as localiza-
tion keys. If localization keys are used, the prefix lang is omissible. See also
origlanguage and compare langid in § 2.2.3.

library field (literal)

This field may be useful to record information such as a library name and a call
number. This may be printed by a special bibliography style if desired. Not used by
the standard bibliography styles.

location list (literal)

The place(s) of publication, i. e., the location of the publisher or institution,
depending on the entry type. Traditional BibTeX uses the field name address,
which is supported as an alias. See also §§ 2.2.5 and 2.3.4. With @patent entries,
this list indicates the scope of a patent. This list may also be useful for the custom
types listed in § 2.1.3.

mainsubtitle field (literal)

The subtitle related to the maintitle. See also subtitle.

maintitle field (literal)

The main title of a multi-volume book, such as Collected Works. If the title or
booktitle field indicates the title of a single volume which is part of multi-volume
book, the title of the complete work is given in this field.

maintitleaddon field (literal)

An annex to the maintitle, to be printed in a different font.

month field (datepart)

The publication month. This must be an integer, not an ordinal or a string. Don’t
say month={January} but month={1}. The bibliography style converts this to
a language dependent string or ordinal where required. See also date as well as
§§ 2.3.9 and 2.3.8.

20

nameaddon field (literal)

An addon to be printed immediately after the author name in the bibliography. Not
used by the standard bibliography styles. This field may be useful to add an alias or
pen name (or give the real name if the pseudonym is commonly used to refer to that
author).

note field (literal)

Miscellaneous bibliographic data which does not fit into any other field. The note
field may be used to record bibliographic data in a free format. Publication facts such
as “Reprint of the edition London 1831” are typical candidates for the note field.
See also addendum.

number field (literal)

The number of a journal or the volume/number of a book in a series. See also
issue as well as §§ 2.3.7 and 2.3.9. With @patent entries, this is the number or
record token of a patent or patent request.

organization list (literal)

The organization(s) that published a @manual or an @online resource, or spon-
sored a conference. See also § 2.3.4.

origdate field (date)

If the work is a translation, a reprint, or something similar, the publication date of
the original edition. Not used by the standard bibliography styles. See also date.

origlanguage field (key)

If the work is a translation, the language of the original work. See also language.

origlocation list (literal)

If the work is a translation, a reprint, or something similar, the location of the
original edition. Not used by the standard bibliography styles. See also location
and § 2.3.4.

origpublisher list (literal)

If the work is a translation, a reprint, or something similar, the publisher of the
original edition. Not used by the standard bibliography styles. See also publisher
and § 2.3.4.

origtitle field (literal)

If the work is a translation, the title of the original work. Not used by the standard
bibliography styles. See also title.

pages field (range)

One or more page numbers or page ranges. If the work is published as part of another
one, such as an article in a journal or a collection, this field holds the relevant page
range in that other work. It may also be used to limit the reference to a specific part
of a work (a chapter in a book, for example).

21

pagetotal field (literal)

The total number of pages of the work.

pagination field (key)

The pagination of the work. The value of this field will affect the formatting the
〈postnote〉 argument to a citation command. The key should be given in the singular
form. Possible keys are page, column, line, verse, section, and para-

graph. See also bookpagination as well as §§ 2.3.10 and 3.12.3.

part field (literal)

The number of a partial volume. This field applies to books only, not to journals. It
may be used when a logical volume consists of two or more physical ones. In this
case the number of the logical volume goes in the volume field and the number of
the part of that volume in the part field. See also volume.

publisher list (literal)

The name(s) of the publisher(s). See also § 2.3.4.

pubstate field (key)

The publication state of the work, e. g., ‘in press’. See § 4.9.2.11 for known publication
states.

reprinttitle field (literal)

The title of a reprint of the work. Not used by the standard styles. BibTeX only

series field (literal)

The name of a publication series, such as “Studies in …”, or the number of a journal
series. Books in a publication series are usually numbered. The number or volume of
a book in a series is given in the number field. Note that the @article entry type
makes use of the series field as well, but handles it in a special way. See § 2.3.7
for details.

shortauthor list (name) Label field

The author(s) of the work, given in an abbreviated form. This field is mainly intended
for abbreviated forms of corporate authors, see § 2.3.3 for details.

shorteditor list (name) Label field

The editor(s) of the work, given in an abbreviated form. This field is mainly intended
for abbreviated forms of corporate editors, see § 2.3.3 for details.

shorthand field (literal) Label field

A special designation to be used by the citation style instead of the usual label. If
defined, it overrides the default label. See also label.

shorthandintro field (literal)

The verbose citation styles which comes with this package use a phrase like “hence-
forth cited as [shorthand]” to introduce shorthands on the first citation. If the
shorthandintro field is defined, it overrides the standard phrase. Note that the
alternative phrase must include the shorthand.

22

shortjournal field (literal) Label field

A short version or an acronym of the journaltitle. Not used by the standard
bibliography styles.

shortseries field (literal) Label field

A short version or an acronym of the series field. Not used by the standard
bibliography styles.

shorttitle field (literal) Label field

The title in an abridged form. This field is usually not included in the bibliography.
It is intended for citations in author-title format. If present, the author-title citation
styles use this field instead of title.

subtitle field (literal)

The subtitle of the work.

title field (literal)

The title of the work.

titleaddon field (literal)

An annex to the title, to be printed in a different font.

translator list (name)

The translator(s) of the title or booktitle, depending on the entry type. If
the translator is identical to the editor, the standard styles will automatically
concatenate these fields in the bibliography.

type field (key)

The type of a manual, patent, report, or thesis. This field may also be useful
for the custom types listed in § 2.1.3.

url field (uri)

The url of an online publication. If it is not URL-escaped (no ‘%’ chars), with Biber,
it will be URI-escaped according to RFC 3987, that is, even Unicode chars will be
correctly escaped.

urldate field (date)

The access date of the address specified in the url field. See also § 2.3.8.

venue field (literal)

The location of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. Note that the location list holds the place of publication. It
therefore corresponds to the publisher and institution lists. The location
of the event is given in the venue field. See also eventdate and eventtitle.

version field (literal)

The revision number of a piece of software, a manual, etc.

23

volume field (literal)

The volume of a multi-volume book or a periodical. See also part.

volumes field (literal)

The total number of volumes of a multi-volume work. Depending on the entry type,
this field refers to title or maintitle.

year field (literal)

The year of publication. See also date and § 2.3.8.

2.2.3 Special Fields

The fields listed in this section do not hold printable data but serve a different purpose.
They apply to all entry types in the default data model.

crossref field (entry key)

This field holds an entry key for the cross-referencing feature. Child entries with
a crossref field inherit data from the parent entry specified in the crossref
field. If the number of child entries referencing a specific parent entry hits a certain
threshold, the parent entry is automatically added to the bibliography even if it
has not been cited explicitly. The threshold is settable with the mincrossrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
crossref fields of the child entries are defined on the Biblatex level depends on
the availability of the parent entry. If the parent entry is available, the crossref
fields of the child entries will be defined. If not, the child entries still inherit the
data from the parent entry but their crossref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold or
explicitly because it has been cited does not matter. See also the xref field in this
section as well as § 2.4.1.

entryset field (separated values)

This field is specific to entry sets. See § 3.11.5 for details. This field is consumed by
the backend processing and does not appear in the .bbl.

execute field (code)

A special field which holds arbitrary TeX code to be executed whenever the data of the
respective entry is accessed. This may be useful to handle special cases. Conceptually,
this field is comparable to the hooks \AtEveryBibitem, \AtEveryLositem,
and \AtEveryCitekey from § 4.10.6, except that it is definable on a per-entry
basis in the bib file. Any code in this field is executed automatically immediately
after these hooks.

gender field (Pattern matching one of: sf, sm, sn, pf, pm, pn, pp)

The gender of the author or the gender of the editor, if there is no author. The
following identifiers are supported: sf (feminine singular, a single female name), sm
(masculine singular, a single male name), sn (neuter singular, a single neuter name),
pf (feminine plural, a list of female names), pm (masculine plural, a list of male
names), pn (neuter plural, a list of neuter names), pp (plural, a mixed gender list of
names). This information is only required by special bibliography and citation styles

24

Language Region/Dialect Identifiers

Catalan Spain, France, Andorra, Italy catalan

Croatian Croatia, Bosnia and Herzegovina, Serbia croatian

Czech Czech Republic czech

Danish Denmark danish

Dutch Netherlands dutch

English USA american, USenglish,
english

United Kingdom british, UKenglish
Canada canadian

Australia australian

New Zealand newzealand

Finnish Finland finnish

French France, Canada french

German Germany german

Austria austrian

German (new) Germany ngerman

Austria naustrian

Greek Greece greek

Italian Italy italian

Norwegian Norway norwegian, norsk,
nynorsk

Polish Poland polish

Portuguese Brazil brazil

Portugal portuguese, portuges
Russian Russia russian

Slovene Slovenian slovene

Spanish Spain spanish

Swedish Sweden swedish

Table 2: Supported Languages

and only in certain languages. For example, a citation style may replace recurrent
author names with a term such as ‘idem’. If the Latin word is used, as is custom in
English and French, there is no need to specify the gender. In German publications,
however, such key terms are usually given in German and in this case they are
gender-sensitive.

langid field (identifier)

The language id of the bibliography entry. The alias hyphenation is provided
for backwards compatibility. The identifier must be a language name known to
the babel/polyglossia packages. This information may be used to switch
hyphenation patterns and localize strings in the bibliography. Note that the language
names are case sensitive. The languages currently supported by this package are
given in table 2. Note that babel treats the identifier english as an alias for
british or american, depending on the babel version. The Biblatex package
always treats it as an alias for american. It is preferable to use the language
identifiers american and british (babel) or a language specific option to
specify a language variant (polyglossia, using the langidopts field) to avoid
any possible confusion. Compare language in § 2.2.2.

langidopts field (literal)

For polyglossia users, allows per-entry language specific options. The literal
value of this field is passed to polyglossia’s language switching facility when
using the package option autolang=langname. For example, the fields:

25

langid = {english},

langidopts = {variant=british},

would wrap the bibliography entry in:

\english[variant=british]

...

\endenglish

ids field (separated list of entrykeys) Biber only

Citation key aliases for the main citation key. An entry may be cited by any of its
aliases and Biblatex will treat the citation as if it had used the primary citation key.
This is to aid users who change their citation keys but have legacy documents which
use older keys for the same entry. This field is consumed by the backend processing
and does not appear in the .bbl.

indexsorttitle field (literal)

The title used when sorting the index. In contrast to indextitle, this field is used
for sorting only. The printed title in the index is the indextitle or the title
field. This field may be useful if the title contains special characters or commands
which interfere with the sorting of the index. Consider this example:

title = {The \LaTeX\ Companion},

indextitle = {\LaTeX\ Companion, The},

indexsorttitle = {LATEX Companion},

Style authors should note that Biblatex automatically copies the value of either
the indextitle or the title field to indexsorttitle if the latter field is
undefined.

keywords field (separated values)

A separated list of keywords. These keywords are intended for the bibliography
filters (see §§ 3.6.2 and 3.11.4), they are usually not printed. Note that with the default
separator (comma), spaces around the separator are ignored.

options field (separated 〈key〉=〈value〉 options)

A separated list of entry options in 〈key〉=〈value〉 notation. This field is used to
set options on a per-entry basis. See § 3.1.3 for details. Note that citation and
bibliography styles may define additional entry options.

presort field (string)

A special field used to modify the sorting order of the bibliography. This field is
the first item the sorting routine considers when sorting the bibliography, hence it
may be used to arrange the entries in groups. This may be useful when creating
subdivided bibliographies with the bibliography filters. Please refer to § 3.5 for
further details. Also see § 4.5.5. This field is consumed by the backend processing
and does not appear in the .bbl.

26

related field (separated values) Biber only

Citation keys of other entries which have a relationship to this entry. The relationship
is specified by the relatedtype field. Please refer to § 3.4 for further details.

relatedoptions field (separated values) Biber only

Per-type options to set for a related entry. Note that this does not set the options on
the related entry itself, only the dataonly clone which is used as a datasource for
the parent entry.

relatedtype field (identifier) Biber only

An identifier which specified the type of relationship for the keys listed in the
related field. The identifier is a localized bibliography string printed before the
data from the related entry list. It is also used to identify type-specific formatting
directives and bibliography macros for the related entries. Please refer to § 3.4 for
further details.

relatedstring field (literal) Biber only

A field used to override the bibliography string specified by relatedtype. Please
refer to § 3.4 for further details.

sortkey field (literal)

A field used to modify the sorting order of the bibliography. Think of this field as
the master sort key. If present, Biblatex uses this field during sorting and ignores
everything else, except for the presort field. Please refer to § 3.5 for further details.
This field is consumed by the backend processing and does not appear in the .bbl.

sortname list (name)

A name or a list of names used to modify the sorting order of the bibliography. If
present, this list is used instead ofauthor oreditorwhen sorting the bibliography.
Please refer to § 3.5 for further details. This field is consumed by the backend
processing and does not appear in the .bbl.

sortshorthand field (literal) Biber only

Similar to sortkey but used in the list of shorthands. If present, Biblatex uses this
field instead of shorthand when sorting the list of shorthands. This is useful if the
shorthand field holds shorthands with formatting commands such as \emph or
\textbf. This field is consumed by the backend processing and does not appear in
the .bbl.

sorttitle field (literal)

A field used to modify the sorting order of the bibliography. If present, this field is
used instead of the title field when sorting the bibliography. The sorttitle
field may come in handy if you have an entry with a title like “An Introduction
to…” and want that alphabetized under ‘I’ rather than ‘A’. In this case, you could put
“Introduction to…” in the sorttitle field. Please refer to § 3.5 for further details.
This field is consumed by the backend processing and does not appear in the .bbl.

27

sortyear field (literal)

A field used to modify the sorting order of the bibliography. If present, this field is
used instead of the year field when sorting the bibliography. Please refer to § 3.5
for further details. This field is consumed by the backend processing and does not
appear in the .bbl.

xdata field (separated list of entrykeys) Biber only

This field inherits data from one or more @xdata entries. Conceptually, the xdata
field is related to crossref and xref: crossref establishes a logical paren-
t/child relation and inherits data; xref establishes as logical parent/child relation
without inheriting data; xdata inherits data without establishing a relation. The
value of the xdatamay be a single entry key or a separated list of keys. See § 3.11.6
for further details. This field is consumed by the backend processing and does not
appear in the .bbl.

xref field (entry key)

This field is an alternative cross-referencing mechanism. It differs from crossref

in that the child entry will not inherit any data from the parent entry specified in the
xref field. If the number of child entries referencing a specific parent entry hits a
certain threshold, the parent entry is automatically added to the bibliography even if
it has not been cited explicitly. The threshold is settable with the mincrossrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
xref fields of the child entries are defined on the Biblatex level depends on the
availability of the parent entry. If the parent entry is available, the xref fields of
the child entries will be defined. If not, their xref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold or
explicitly because it has been cited does not matter. See also the crossref field in
this section as well as § 2.4.1.

2.2.4 Custom Fields

The fields listed in this section are intended for special bibliography styles. They are
not used by the standard bibliography styles.

name[a–c] list (name)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

name[a–c]type field (key)

Similar to authortype and editortype but referring to the fields name[a–c].
Not used by the standard bibliography styles.

list[a–f] list (literal)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

user[a–f] field (literal)

Custom fields for special bibliography styles. Not used by the standard bibliography
styles.

28

verb[a–c] field (literal)

Similar to the custom fields above except that these are verbatim fields. Not used by
the standard bibliography styles.

2.2.5 Field Aliases

The aliases listed in this section are provided for backwards compatibility with tradi-
tional BibTeX and other applications based on traditional BibTeX styles. Note that
these aliases are immediately resolved as the bib file is processed. All bibliography
and citation styles must use the names of the fields they point to, not the alias. In
bib files, you may use either the alias or the field name but not both at the same
time.

address list (literal)

An alias for location, provided for BibTeX compatibility. Traditional BibTeX uses
the slightly misleading field name address for the place of publication, i. e., the
location of the publisher, while Biblatex uses the generic field name location. See
§§ 2.2.2 and 2.3.4.

annote field (literal)

An alias for annotation, provided for jurabib compatibility. See § 2.2.2.

archiveprefix field (literal)

An alias for eprinttype, provided for arXiv compatibility. See §§ 2.2.2 and 3.11.7.

journal field (literal)

An alias for journaltitle, provided for BibTeX compatibility. See § 2.2.2.

key field (literal)

An alias for sortkey, provided for BibTeX compatibility. See § 2.2.3.

pdf field (verbatim)

An alias for file, provided for JabRef compatibility. See § 2.2.2.

primaryclass field (literal)

An alias for eprintclass, provided for arXiv compatibility. See §§ 2.2.2 and
3.11.7.

school list (literal)

An alias forinstitution, provided for BibTeX compatibility. Theinstitution
field is used by traditional BibTeX for technical reports whereas the school field
holds the institution associated with theses. The Biblatex package employs the
generic field name institution in both cases. See §§ 2.2.2 and 2.3.4.

29

2.3 Usage Notes

The entry types and fields supported by this package should for the most part be
intuitive to use for anyone familiar with BibTeX. However, apart from the additional
types and fields provided by this package, some of the familiar ones are handled in
a way which is in need of explanation. This package includes some compatibility
code for bib files which were generated with a traditional BibTeX style in mind.
Unfortunately, it is not possible to handle all legacy files automatically because
Biblatex’s data model is slightly different from traditional BibTeX. Therefore, such
bib files will most likely require editing in order to work properly with this package.
In sum, the following items are different from traditional BibTeX styles:

• The entry type @inbook. See §§ 2.1.1 and 2.3.1 for details.

• The fields institution, organization, and publisher as well as the
aliases address and school. See §§ 2.2.2, 2.2.5, 2.3.4 for details.

• The handling of certain types of titles. See § 2.3.5 for details.

• The field series. See §§ 2.2.2 and 2.3.7 for details.

• The fields year and month. See §§ 2.2.2, 2.3.8, 2.3.9 for details.

• The field edition. See § 2.2.2 for details.

• The field key. See § 2.3.2 for details.

Users of the jurabib package should note that the shortauthor field is
treated as a name list by Biblatex, see § 2.3.3 for details.

2.3.1 The Entry Type @inbook

Use the @inbook entry type for a self-contained part of a book with its own title
only. It relates to @book just like @incollection relates to @collection. See
§ 2.3.5 for examples. If you want to refer to a chapter or section of a book, simply use
the book type and add a chapter and/or pages field. Whether a bibliography
should at all include references to chapters or sections is controversial because a
chapter is not a bibliographic entity.

2.3.2 Missing and Omissible Data

The fields marked as ‘required’ in § 2.1.1 are not strictly required in all cases. The
bibliography styles which ship with this package can get by with as little as a title
field for most entry types. A book published anonymously, a periodical without
an explicit editor, or a software manual without an explicit author should pose no
problem as far as the bibliography is concerned. Citation styles, however, may
have different requirements. For example, an author-year citation scheme obviously
requires an author/editor and a year field.

You may generally use the label field to provide a substitute for any missing data
required for citations. How the label field is employed depends on the citation style.
The author-year citation styles which come with this package use the label field as
a fallback if either the author/editor or the year is missing. The numeric styles,
on the other hand, do not use it at all since the numeric scheme is independent of
the available data. The author-title styles ignore it as well, because the bare title
is usually sufficient to form a unique citation and a title is expected to be available in
any case. The label field may also be used to override the non-numeric portion of

30

the automatically generated labelalpha field used by alphabetic citation styles.
See § 4.2.4 for details.

Note that traditional BibTeX styles support a key field which is used for alphabet-
izing if both author and editor are missing. The Biblatex package treats key as
an alias for sortkey. In addition to that, it offers very fine-grained sorting controls,
see §§ 2.2.3 and 3.5 for details. The natbib package employs the key field as a
fallback label for citations. Use the label field instead.

2.3.3 Corporate Authors and Editors

Corporate authors and editors are given in theauthor oreditor field, respectively.
Note that they must be wrapped in an extra pair of curly braces to prevent data
parsing from treating them as personal names which are to be dissected into their
components. Use the shortauthor field if you want to give an abbreviated form
of the name or an acronym for use in citations.

author = {{National Aeronautics and Space Administration}},

shortauthor = {NASA},

The default citation styles will use the short name in all citations while the full name
is printed in the bibliography. For corporate editors, use the corresponding fields
editor and shorteditor. Since all of these fields are treated as name lists, it is
possible to mix personal names and corporate names, provided that the names of all
corporations and institutions are wrapped in braces.

editor = {{National Aeronautics and Space Administration}

and Doe, John},

shorteditor = {NASA and Doe, John},

Users switching from the jurabib package to Biblatex should note that the
shortauthor field is treated as a name list.

2.3.4 Literal Lists

The fields institution, organization, publisher, and location are lit-
eral lists in terms of § 2.2. This also applies to origlocation, origpublisher
and to the field aliases address and school. All of these fields may contain a list
of items separated by the keyword ‘and’. If they contain a literal ‘and’, it must be
wrapped in braces.

publisher = {William Reid {and} Company},

institution = {Office of Information Management {and} Communications},

organization = {American Society for Photogrammetry {and} Remote Sensing

and

American Congress on Surveying {and} Mapping},

Note the difference between a literal ‘{and}’ and the list separator ‘and’ in the
above examples. You may also wrap the entire name in braces:

publisher = {{William Reid and Company}},

institution = {{Office of Information Management and Communications}},

organization = {{American Society for Photogrammetry and Remote Sensing}

and

{American Congress on Surveying and Mapping}},

31

Legacy files which have not been updated for use with Biblatex will still work if
these fields do not contain a literal ‘and’. However, note that you will miss out on
the additional features of literal lists in this case, such as configurable formatting
and automatic truncation.

2.3.5 Titles

The following examples demonstrate how to handle different types of titles. Let’s
start with a five-volume work which is referred to as a whole:

@MvBook{works,

author = {Shakespeare, William},

title = {Collected Works},

volumes = {5},

...

The individual volumes of a multi-volume work usually have a title of their own.
Suppose the fourth volume of the Collected Works includes Shakespeare’s sonnets
and we are referring to this volume only:

@Book{works:4,

author = {Shakespeare, William},

maintitle = {Collected Works},

title = {Sonnets},

volume = {4},

...

If the individual volumes do not have a title, we put the main title in the title field
and include a volume number:

@Book{works:4,

author = {Shakespeare, William},

title = {Collected Works},

volume = {4},

...

In the next example, we are referring to a part of a volume, but this part is a self-
contained work with its own title. The respective volume also has a title and there is
still the main title of the entire edition:

@InBook{lear,

author = {Shakespeare, William},

bookauthor = {Shakespeare, William},

maintitle = {Collected Works},

booktitle = {Tragedies},

title = {King Lear},

volume = {1},

pages = {53-159},

...

Suppose the first volume of the Collected Works includes a reprinted essay by a well-
known scholar. This is not the usual introduction by the editor but a self-contained
work. The Collected Works also have a separate editor:

32

@InBook{stage,

author = {Expert, Edward},

title = {Shakespeare and the Elizabethan Stage},

bookauthor = {Shakespeare, William},

editor = {Bookmaker, Bernard},

maintitle = {Collected Works},

booktitle = {Tragedies},

volume = {1},

pages = {7-49},

...

See § 2.3.7 for further examples.

2.3.6 Editorial Roles

The type of editorial role performed by an editor in one of the editor fields (i. e.,
editor, editora, editorb, editorc) may be specified in the corresponding
editor...type field. The following roles are supported by default. The role
‘editor’ is the default. In this case, the editortype field is omissible.

editor The main editor. This is the most generic editorial role and the default value.

compiler Similar to editor but used if the task of the editor is mainly compiling.

founder The founding editor of a periodical or a comprehensive publication project such as a
‘Collected Works’ edition or a long-running legal commentary.

continuator An editor who continued the work of the founding editor (founder) but was
subsequently replaced by the current editor (editor).

redactor A secondary editor whose task is redacting the work.

reviser A secondary editor whose task is revising the work.

collaborator A secondary editor or a consultant to the editor.

For example, if the task of the editor is compiling, you may indicate that in the
corresponding editortype field:

@Collection{...,

editor = {Editor, Edward},

editortype = {compiler},

...

There may also be secondary editors in addition to the main editor:

@Book{...,

author = {...},

editor = {Editor, Edward},

editora = {Redactor, Randolph},

editoratype = {redactor},

editorb = {Consultant, Conrad},

editorbtype = {collaborator},

...

Periodicals or long-running publication projects may see several generations of
editors. For example, there may be a founding editor in addition to the current
editor:

33

@Book{...,

author = {...},

editor = {Editor, Edward},

editora = {Founder, Frederic},

editoratype = {founder},

...

Note that only the editor is considered in citations and when sorting the biblio-
graphy. If an entry is typically cited by the founding editor (and sorted accordingly
in the bibliography), the founder goes into the editor field and the current editor
moves to one of the editor... fields:

@Collection{...,

editor = {Founder, Frederic},

editortype = {founder},

editora = {Editor, Edward},

...

You may add more roles by initializing and defining a new localization key whose
name corresponds to the identifier in the editor...type field. See §§ 3.8 and
4.9.1 for details.

2.3.7 Publication and Journal Series

The series field is used by traditional BibTeX styles both for the main title of
a multi-volume work and for a publication series, i. e., a loosely related sequence
of books by the same publisher which deal with the same general topic or belong
to the same field of research. This may be ambiguous. This package introduces a
maintitle field for multi-volume works and employs series for publication
series only. The volume or number of a book in the series goes in the number field
in this case:

@Book{...,

author = {Expert, Edward},

title = {Shakespeare and the Elizabethan Age},

series = {Studies in English Literature and Drama},

number = {57},

...

The @article entry type makes use of the series field as well, but handles it in
a special way. First, a test is performed to determine whether the value of the field is
an integer. If so, it will be printed as an ordinal. If not, another test is performed to
determine whether it is a localization key. If so, the localized string is printed. If not,
the value is printed as is. Consider the following example of a journal published in
numbered series:

@Article{...,

journal = {Journal Name},

series = {3},

volume = {15},

number = {7},

year = {1995},

...

34

Date Specification Formatted Date (Examples)

Short Format Long Format

1850 1850 1850
1997/ 1997– 1997–
1967-02 02/1967 February 1967
2009-01-31 31/01/2009 31st January 2009
1988/1992 1988–1992 1988–1992
2002-01/2002-02 01/2002–02/2002 January 2002–February 2002
1995-03-30/1995-04-05 30/03/1995–05/04/1995 30th March 1995–5th April 1995

Table 3: Date Specifications

This entry will be printed as “Journal Name. 3rd ser. 15.7 (1995)”. Some journals
use designations such as “old series” and “new series” instead of a number. Such
designations may be given in the series field as well, either as a literal string
or as a localization key. Consider the following example which makes use of the
localization key newseries:

@Article{...,

journal = {Journal Name},

series = {newseries},

volume = {9},

year = {1998},

...

This entry will be printed as “Journal Name. New ser. 9 (1998)”. See § 4.9.2 for a list
of localization keys defined by default.

2.3.8 Date Specifications

The date fields date, origdate, eventdate, and urldate require a date
specification in yyyy-mm-dd format. Date ranges are given as yyyy-mm-dd/
yyyy-mm-dd. Partial dates are valid provided that date components are omitted
at the end only. You may specify an open ended date range by giving the range
separator and omitting the end date (e. g., yyyy/). See table 3 for some examples of
valid date specifications and the formatted date automatically generated by Biblatex.
The formatted date is language specific and will be adapted automatically. If there is
no date field in an entry, Biblatex will also consider the fields year and month
for backwards compatibility with traditional BibTeX. Style author should note that
date fields like date or origdate are only available in the bib file. All dates are
parsed and dissected into their components as the bib file is processed. The date
components are made available to styles by way of the special fields discussed in
§ 4.2.4.3. See this section and table 8 on page 135 for further information.

2.3.9 Months and Journal Issues

The month field is an integer field. The bibliography style converts the month to
a language-dependent string as required. For backwards compatibility, you may
also use the following three-letter abbreviations in the month field: jan, feb, mar,
apr, may, jun, jul, aug, sep, oct, nov, dec. Note that these abbreviations are
BibTeX strings which must be given without any braces or quotes. When using them,
don’t say month={jan} or month=”jan” but month=jan. It is not possible
to specify a month such as month={8/9}. Use the date field for date ranges

35

instead. Quarterly journals are typically identified by a designation such as ‘Spring’
or ‘Summer’ which should be given in the issue field. The placement of the issue
field in @article entries is similar to and overrides the month field.

2.3.10 Pagination

When specifying a page or page range, either in the pages field of an entry or in
the 〈postnote〉 argument to a citation command, it is convenient to have Biblatex add
prefixes like ‘p.’ or ‘pp.’ automatically and this is indeed what this package does by
default. However, some works may use a different pagination scheme or may not be
cited by page but rather by verse or line number. This is when the pagination and
bookpagination fields come into play. As an example, consider the following
entry:

@InBook{key,

title = {...},

pagination = {verse},

booktitle = {...},

bookpagination = {page},

pages = {53--65},

...

The bookpagination field affects the formatting of the pages and pagetotal
fields in the list of references. Since page is the default, this field is omissible in
the above example. In this case, the page range will be formatted as ‘pp. 53–65’.
Suppose that, when quoting from this work, it is customary to use verse numbers
rather than page numbers in citations. This is reflected by the pagination field,
which affects the formatting of the 〈postnote〉 argument to any citation command.
With a citation like \cite[17]{key}, the postnote will be formatted as ‘v. 17’.
Setting the pagination field to section would yield ‘§ 17’. See § 3.12.3 for
further usage instructions.

Thepagination andbookpagination fields are key fields. This packagewill
try to use their value as a localization key, provided that the key is defined. Always use
the singular form of the key name in bib files, the plural is formed automatically. The
keys page, column, line, verse, section, and paragraph are predefined,
with page being the default. The string ‘none’ has a special meaning when used
in a pagination or bookpagination field. It suppresses the prefix for the
respective entry. If there are no predefined localization keys for the pagination
scheme required by a certain entry, you can simply add them. See the commands
\NewBibliographyString and \DefineBibliographyStrings in § 3.8.
You need to define two localization strings for each additional pagination scheme: the
singular form (whose localization key corresponds to the value of the pagination
field) and the plural form (whose localization key must be the singular plus the letter
‘s’). See the predefined keys in § 4.9.2 for examples.

2.4 Hints and Caveats

This section provides some additional hints concerning the data interface of this
package. It also addresses some common problems.

2.4.1 Cross-referencing

36

2.4.1.1 The crossref field (BibTeX) The crossref field is a convenient way
to establish a parent/child relation between two associated entries. Unfortunately,
the BibTeX program uses symmetric field mapping which reduces the usefulness of
the crossref field significantly. The are two issues with symmetric field mapping,
as seen in the following example:

@Book{book,

author = {Author},

bookauthor = {Author},

title = {Booktitle},

booktitle = {Booktitle},

subtitle = {Booksubtitle},

booksubtitle = {Booksubtitle},

publisher = {Publisher},

location = {Location},

date = {1995},

}

@InBook{inbook,

crossref = {book},

title = {Title},

subtitle = {},

pages = {5--25},

}

As BibTeX is not capable of mapping the title field of the parent to the
booktitle field of the child, the title of the book needs to be given twice. The style
then needs to ignore the booktitle of the parent since it is only required to work
around this fundamental limitation of BibTeX. The problem with the subtitle
field is the inverse of that. Since the subtitle of the parent would become the
subtitle, rather than in the booksubtitle, of the child, we need to add an
empty subtitle field to the child entry to prevent inheritance of this field. Of
course we also need to duplicate the subtitle in the parent entry to ensure that it is
available as booksubtitle in the child entry. In short, using BibTeX’s crossref
field tends to bloat database files and corrupt the data model.

2.4.1.2 The crossref field (Biber) With Biber, the limitations of BibTeX’s
crossref field belong to the past. Biber features a highly customizable cross-
referencing mechanism with flexible data inheritance rules. Duplicating certain
fields in the parent entry or adding empty fields to the child entry is no longer
required. Entries are specified in a natural way:

@Book{book,

author = {Author},

title = {Booktitle},

subtitle = {Booksubtitle},

publisher = {Publisher},

location = {Location},

date = {1995},

}

@InBook{inbook,

crossref = {book},

title = {Title},

37

pages = {5--25},

}

The title field of the parent will be copied to the booktitle field of the child,
the subtitle becomes the booksubtitle. The author of the parent becomes
the bookauthor of the child and, since the child does not provide an author
field, it is also duplicated as the author of the child. After data inheritance, the
child entry is similar to this:

author = {Author},

bookauthor = {Author},

title = {Title},

booktitle = {Booktitle},

booksubtitle = {Booksubtitle},

publisher = {Publisher},

location = {Location},

date = {1995},

pages = {5--25},

See appendix B for a list of mapping rules set up by default. Note that all of this is
customizable. See § 4.5.10 on how to configure Biber’s cross-referencing mechanism.
See also § 2.2.3.

2.4.1.3 The xref field In addition to the crossref field, Biblatex supports a
simplified cross-referencing mechanism based on the xref field. This is useful if
you want to establish a parent/child relation between two associated entries but
prefer to keep them independent as far as the data is concerned. The xref field
differs from crossref in that the child entry will not inherit any data from the
parent. If the parent is referenced by a certain number of child entries, Biblatex
will automatically add it to the bibliography. The threshold is controlled by the
mincrossrefs package option from § 3.1.2.1. The xref field is supported with
all backends. See also § 2.2.3.

2.4.2 Capacity Issues

2.4.2.1 BibTeX A venerable tool originally developed in the 1980s, BibTeX uses
static memory allocation, much to the dismay of users working with large biblio-
graphical databases. With a large bib file which contains several hundred entries,
BibTeX is very likely to run out of memory. The number of entries it can cope with
depends on the number of fields defined by the BibTeX style (bst). Style files which
define a considerable number of fields, such as biblatex.bst, are more likely
to trigger such problems. Unfortunately, traditional BibTeX does not output a clear
error message when it runs out of memory but exposes a rather cryptical kind of
faulty behavior. The warning messages printed in this case look like this:

Warning--I’m ignoring Jones1995’s extra ”year” field

--line 422 of file huge.bib

Warning--I’m ignoring Jones1995’s extra ”volume” field

--line 423 of file huge.bib

These warning messages could indeed indicate that the entry Jones1995 is faulty
because it includes two year and two volume fields. If that is not the case and
the bib file is fairly large, this is most likely a capacity issue. What makes these

38

Parameter Switch Capacity

Default –big –huge –wolfgang

max_cites –mcites 750 2000 5000 7500
max_ent_ints –mentints 3000 4000 5000 7500
max_ent_strs –mentstrs 3000 6000 10000 10000
max_fields –mfields 17250 30000 85000 125000
max_strings –mstrings 4000 10000 19000 30000
pool_size –mpool 65530 130000 500000 750000
wiz_fn_space –mwizfuns 3000 6000 10000 10000
hash_prime 4253 8501 16319 30011
hash_size 5000 10000 19000 35000

Table 4: Capacity and Switches of bibtex8

warnings so confusing is that they are not tied to a specific entry. If you remove
the allegedly faulty entry, a different one will trigger similar warnings. This is one
reason why switching to bibtex8 or Biber is advisable.

2.4.2.2 bibtex8 bibtex8 is a venerable tool as well and will also run out of
memory with its default capacity. Switching from traditional BibTeX to bibtex8
is still an improvement because the capacity of the latter may be increased at run-
time via command-line switches and it also prints unambiguous error messages, for
example:

17289 fields:

Sorry---you’ve exceeded BibTeX’s total number of fields 17250

Table 4 gives an overview of the various capacity parameters of bibtex8 and
the command-line switches used to increase their default values. There are two
ways to increase the capacity on the command-line. You may use a high-level
switch like --huge to select a different set of defaults or low-level switches such as
--mfields to modify a single parameter. The first thing you should always do is
run bibtex8 with the --wolfgang switch. Don’t even bother trying anything
else. With a very large database, however, even that capacity may be too small. In
this case, you need to resort to the low-level switches. Here is an example of a set of
switches which should cope with a bib file containing about 1000 entries:

bibtex8 --wolfgang --mcites 30000 --mentints 30000 --mentstrs 40000

--mfields 250000 --mstrings 35000 --mpool 750000 --csfile csfile.csf

auxfile

When taking a closer look at table 4, you will notice that there are two parameters
which can not be modified directly, hash_prime and hash_size. Increasing
these values is only possible with the high-level switches. That is why the above com-
mand includes the --wolfgang switch in addition to the low-level switches. This
situation is very unfortunate because the hash size effectively sets a cap on some other
parameters. For example, max_strings can not be greater than hash_size. If
you hit this cap, all you can do is recompile bibtex8 with a larger capacity. Also
note that the wiz_fn_space parameter is not related to the bib file but to the
memory requirements of the bst file. biblatex.bst needs a value of about 6000.
The value 10000 implicitly used by the --wolfgang switch is fine.

2.4.2.3 Biber Biber eliminates all of the above limitations.

39

2.4.3 Sorting and Encoding Issues

2.4.3.1 BibTeX Traditional BibTeX can only alphabetize Ascii characters correctly.
If the bibliographic data includes non-Ascii characters, they have to be given in Ascii
notation. For example, instead of typing a letter like ‘ä’ directly, you need to input it
as \”a, using an accent command and the Ascii letter. This Ascii notation needs to
be wrapped in a pair of curly braces. Traditional BibTeX will then ignore the accent
and use the Ascii letter for sorting. Here are a few examples:

author = {S{\’a}nchez, Jos{\’e}},

editor = {Ma{\ss}mann, R{\”u}diger},

translator = {Ferdi{\‘e}re, Fr{\c{c}}ois},

title = {{\OE}uvres compl{\‘e}tes},

Apart from it being inconvenient, there are two major issues with this convention.
One subtle problem is that the extra set of braces suppresses the kerning on both
sides of all non-Ascii letters. But first and foremost, simply ignoring all accents may
not be the correct way to handle them. For example, in Danish, the letter ‘å’ is the
very last letter of the alphabet, so it should be alphabetized after ‘z’. BibTeX will
sort it like an ‘a’. The ‘æ’ ligature and the letter ‘ø’ are also sorted after ‘z’ in this
language. There are similar cases in Norwegian. In Swedish, the letter ‘ö’ is the very
last letter of the alphabet and the letters ‘å’ and ‘ä’ are also alphabetized after ‘z’,
rather than like an ‘a’. What’s more, even the sorting of Ascii characters is done in a
rather peculiar way by traditional BibTeX because the sorting algorithm uses Ascii
codepage order (0-9,A-Z,a-z). This implies that the lowercase letter ‘a’ would
end up after the uppercase ‘Z’, which is not even acceptable in the language BibTeX
was originally designed for. The traditional bst files work around this problem by
converting all strings used for sorting to lowercase, i. e., sorting is effectively case-
insensitive. See also § 2.4.3.4.

2.4.3.2 bibtex8 Switching to bibtex8 will help in such cases. bibtex8 can
sort case-sensitively and it can handle 8-bit characters properly, provided that you
supply it with a suitable csf file and give the --csfile switch on the com-
mand line. This also implies that it is possible to apply language specific sorting
rules to the bibliography. The Biblatex package comes with csf files for some
common Western European encodings. bibtex8 also ships with a few csf files.
Note that biblatex.bst can not detect if it is running under traditional BibTeX
or bibtex8, hence the bibtex8 package option. By default, sorting is case-
insensitive since this is required for traditional BibTeX. If the bibtex8 package
option is enabled, sorting is case-sensitive.

Since bibtex8 is backwards compatible with traditional BibTeX, it is possible
to mix 8-bit input and Ascii notation. This is useful if the encoding used in the
bib file does not cover all required characters. There are also a few marginal cases
in which the Ascii notation scheme would yield better sorting results. A typical
example is the ligature ‘œ’. bibtex8 will handle this ligature like a single character.
Depending on the sorting scheme defined in the csf file, it could be treated like
an ‘o’ or alphabetized after the letter ‘o’ but it can not be sorted as ‘oe’. The Ascii
notation (\oe) is equivalent to ‘oe’ during sorting:

title = {Œuvres complètes},

title = {{\OE}uvres complètes},

40

Sometimes even that is not sufficient and further tricks are required. For example,
the letter ‘ß’ in German is particularly tricky. This letter is essentially alphabetized as
‘ss’ but after ‘ss’. The name ‘Baßmann’ would be alphabetized as follows: Basmann/
Bassmann/Baßmann/Bastmann. In this case, the Ascii notation (\ss) would yield
slightly better sorting results than ‘ß’ in conjunction with a csf file which treats ‘ß’
like ‘s’:

author = {Ba{\ss}mann, Paul},

To get it absolutely right, however, you need to resort to the sortname field:

author = {Baßmann, Paul},

sortname = {Basszzmann, Paul},

Not only BibTeX, LaTeX needs to know about the encoding as well. See § 2.4.3.4 on
how to specify encodings.

2.4.3.3 Biber Biber handles Ascii, 8-bit encodings such as Latin 1, and utf-8. It
features true Unicode support and is capable of reencoding the bib data on the fly in
a robust way. For sorting, Biber uses a Perl implementation of the Unicode Collation
Algorithm (uca), as outlined in Unicode Technical Standard #10.13 Collation tailoring
based on the Unicode Common Locale Data Repository (cldr) is also supported.14
The bottom line is that Biber will deliver sorting results far superior to both BibTeX
and bibtex8 in many cases. If you are interested in the technical details, section
1.8 of Unicode Technical Standard #10 will provide you with a very concise summary
of why the inadequateness of traditional BibTeX and even bibtex8 is of a very
general nature and not limited to the lack of utf-8 support.15

Supporting Unicode implies much more than handling utf-8 input. Unicode is
a complex standard covering more than its most well-known parts, the Unicode
character encoding and transport encodings such as utf-8. It also standardizes
aspects such as string collation, which is required for language-sensitive sorting. For
example, by using the Unicode Collation Algorithm, Biber can handle the character
‘ß’ mentioned as an example in § 2.4.3.2 without any manual intervention. All you
need to do to get localized sorting is specify the locale:

\usepackage[backend=biber,sortlocale=de]{biblatex}

or if you are using german as the main document language via Babel or Polyglossia:

\usepackage[backend=biber,sortlocale=auto]{biblatex}

This will make Biblatex pass the Babel/Polyglossia main document language as the
locale which Biber will map into a suitable default locale. Biber will not try to get lo-
cale information from its environment as this makes document processing dependent
on something not in the document which is against TeX’s spirit of reproducibility.
This also makes sense since Babel/Polyglossia are in fact the relevant environment
for a document. Note that this will also work with 8-bit encodings such as Latin 9,
i. e., you can take advantage of Unicode-based sorting even though you are not using
utf-8 input. See § 2.4.3.4 on how to specify input and data encodings properly.

13
http://unicode.org/reports/tr10/

14
http://cldr.unicode.org/

15
http://unicode.org/reports/tr10/#Common_Misperceptions

41

http://unicode.org/reports/tr10/
http://cldr.unicode.org/
http://unicode.org/reports/tr10/#Common_Misperceptions

2.4.3.4 Specifying Encodings When using a non-Ascii encoding in the bib file,
it is important to understand what Biblatex can do for you and what may require
manual intervention. The package takes care of the LaTeX side, i. e., it ensures
that the data imported from the bbl file is interpreted correctly, provided that the
bibencoding package option is set properly. Depending on the backend, the
BibTeX side may demand attention, too. When using bibtex8, you need to supply
bibtex8 with a matching csf file as it needs to know about the encoding of the
bib file to be able to alphabetize the entries correctly. Unfortunately, there is no way
for Biblatex to pass this information to bibtex8 automatically. The only way is
setting its --csfile option on the command line when running bibtex8. When
using Biber, all of this is handled automatically and no further steps, apart from
setting the bibencoding option in certain cases, are required. Here are a few
typical usage scenarios along with the relevant lines from the document preamble:

• Ascii notation in both the tex and the bib file with pdfTeX or traditional
TeX (this will work with BibTeX, bibtex8, and Biber):

\usepackage{biblatex}

• Latin 1 encoding (iso-8859-1) in the tex file, Ascii notation in the bib file
with pdfTeX or traditional TeX (BibTeX, bibtex8, Biber):

\usepackage[latin1]{inputenc}

\usepackage[bibencoding=ascii]{biblatex}

• Latin 9 encoding (iso-8859-15) in both the tex and the bib file with pdfTeX
or traditional TeX (bibtex8, Biber):

\usepackage[latin9]{inputenc}

\usepackage[bibencoding=auto]{biblatex}

Since bibencoding=auto is the default setting, the option is omissible.
The following setup will have the same effect:

\usepackage[latin9]{inputenc}

\usepackage{biblatex}

• utf-8 encoding in the tex file, Latin 1 (iso-8859-1) in the bib file with pdfTeX
or traditional TeX (bibtex8, Biber):

\usepackage[utf8]{inputenc}

\usepackage[bibencoding=latin1]{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage[bibencoding=latin1]{biblatex}

• Using utf-8 encoding in both the tex and the bib file is not possible with
traditional BibTeX or bibtex8 since neither of them is capable of handling
utf-8. Unless you switch to Biber, you need to use an 8-bit encoding such as
Latin 1 (see above) or resort to Ascii notation in this case:

42

\usepackage[utf8]{inputenc}

\usepackage[bibencoding=ascii]{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage[bibencoding=ascii]{biblatex}

Biber can handle Ascii notation, 8-bit encodings such as Latin 1, and utf-8. It is
also capable of reencoding the bib data on the fly (replacing the limited macro-level
reencoding feature of Biblatex). This will happen automatically if required, provided
that you specify the encoding of the bib files properly. In addition to the scenarios
discussed above, Biber can also handle the following cases:

• Transparent utf-8 workflow, i. e., utf-8 encoding in both the tex and the
bib file with pdfTeX or traditional TeX:

\usepackage[utf8]{inputenc}

\usepackage[bibencoding=auto]{biblatex}

Since bibencoding=auto is the default setting, the option is omissible:

\usepackage[utf8]{inputenc}

\usepackage{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage{biblatex}

• It is even possible to combine an 8-bit encoded tex file with utf-8 encoding
in the bib file, provided that all characters in the bib file are also covered by
the selected 8-bit encoding:

\usepackage[latin1]{inputenc}

\usepackage[bibencoding=utf8]{biblatex}

Some workarounds may be required when using traditional TeX or pdfTeX with
utf-8 encoding because inputenc’s utf8 module does not cover all of Unicode.
Roughly speaking, it only covers the Western European Unicode range. When
loading inputenc with the utf8 option, Biblatex will normally instruct Biber
to reencode the bib data to utf-8. This may lead to inputenc errors if some of
the characters in the bib file are outside the limited Unicode range supported by
inputenc.

• If you are affected by this problem, try setting the safeinputenc option:

\usepackage[utf8]{inputenc}

\usepackage[safeinputenc]{biblatex}

43

If this option is enabled, Biblatexwill ignoreinputenc’sutf8 option and use
Ascii. Biber will then try to convert thebib data to Ascii notation. For example,
it will convert S̨ to \k{S}. This option is similar to setting texencod-
ing=ascii but will only take effect in this specific scenario (inputenc/
inputenx with utf-8). This workaround takes advantage of the fact that
both Unicode and the utf-8 transport encoding are backwards compatible
with Ascii.

This solution may be acceptable as a workaround if the data in the bib file is
mostly Ascii anyway, with only a few strings, such as some authors’ names, causing
problems. However, keep in mind that it will not magically make traditional TeX or
pdfTeX support Unicode. It may help if the occasional odd character is not supported
by inputenc, but may still be processed by TeX when using an accent command
(e. g., \d{S} instead of Ṣ). If you need full Unicode support, however, switch to
XeTeX or LuaTeX.

Typical errors when inputenc cannot handle a certain UTF-8 character are:

Package inputenc Error: Unicode char \u8: not set up for use with LaTeX

but also less obvious things like:

! Argument of \UTFviii@three@octets has an extra }.

2.4.4 Editors and Compiler Scripts

This section is in need of an update to match the new script interface used by Biblatex.
For the time being, see the documentation of the logreq package16 and the Biblatex
Developer’s Wiki for a draft spec.17

3 User Guide

This part of the manual documents the user interface of the Biblatex package. The
user guide covers everything you need to know in order to use Biblatex with the
default styles that come with this package. You should read the user guide first in
any case. If you want to write your own citation and/or bibliography styles, continue
with the author guide afterwards.

3.1 Package Options

All package options are given in 〈key〉=〈value〉 notation. The value true is omissible
with all boolean keys. For example, giving sortciteswithout a value is equivalent
to sortcites=true.

3.1.1 Load-time Options

The following optionsmust be used as Biblatex is loaded, i. e., in the optional argument
to \usepackage.

backend=bibtex, bibtex8, bibtexu, biber default: biber

Specifies the database backend. The following backends are supported:
16
http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/

17
http://sourceforge.net/apps/mediawiki/biblatex/index.php?title=

Workflow_Automation

44

http://www.ctan.org/tex-archive/macros/latex/contrib/logreq/
http://sourceforge.net/apps/mediawiki/biblatex/index.php?title=Workflow_Automation
http://sourceforge.net/apps/mediawiki/biblatex/index.php?title=Workflow_Automation

biber Biber, the default backend of Biblatex, supports Ascii, 8-bit encodings,
utf-8, on-the-fly reencoding, locale-specific sorting, and many other
features. Locale-specific sorting, case-sensitive sorting, and upper/
lowercase precedence are controlled by the options sortlocale,
sortcase, and sortupper, respectively.

bibtex Legacy BibTeX. Traditional BibTeX supports Ascii encoding only. Sort-
ing is always case-insensitive.

bibtex8 bibtex8, the 8-bit implementation of BibTeX, supports Ascii and
8-bit encodings such as Latin 1. Depending on the csf file, case-
sensitive sorting may be supported.

bibtexu bibtexu is a Unicode-enabled implementation of BibTeX which
supports utf-8. Note that bibtexu is not actively supported by
Biblatex and has not been tested as backend in any way. Biber is the
recommended backend.

See § 2.4.3 for further instructions concerning the encoding of bib files. This option
is only available at load-time as internally, the code chooses completely different
paths depending on the backend. This means that you can’t set the backend with,
for example, \ExecuteBibliographyOptions in the preamble.

style=〈file〉 default: numeric

Loads the bibliography style file.bbx and the citation style file.cbx. See § 3.3
for an overview of the standard styles.

bibstyle=〈file〉 default: numeric

Loads the bibliography style file.bbx. See § 3.3.2 for an overview of the standard
bibliography styles.

citestyle=〈file〉 default: numeric

Loads the citation style file.cbx. See § 3.3.1 for an overview of the standard
citation styles.

natbib=true, false default: false

Loads compatibility module which provides aliases for the citation commands of the
natbib package. See § 3.7.9 for details.

mcite=true, false default: false

Loads a citation module which provides mcite/mciteplus-like citation com-
mands. See § 3.7.10 for details.

3.1.2 Preamble Options

3.1.2.1 General The following options may be used in the optional argument to
\usepackage as well as in the configuration file and the document preamble. The
default value listed to the right is the package default. Note that bibliography and
citation styles may modify the default setting at load time, see § 3.3 for details.

sorting=nty, nyt, nyvt, anyt, anyvt, ynt, ydnt, none, debug,
〈name〉

default: nty

The sorting order of the bibliography. Unless stated otherwise, the entries are sorted
in ascending order. The following choices are available by default:

45

nty Sort by name, title, year.

nyt Sort by name, year, title.

nyvt Sort by name, year, volume, title.

anyt Sort by alphabetic label, name, year, title.

anyvt Sort by alphabetic label, name, year, volume, title.

ynt Sort by year, name, title.

ydnt Sort by year (descending), name, title.

none Do not sort at all. All entries are processed in citation order.

debug Sort by entry key. This is intended for debugging only.

〈name〉 Use 〈name〉, as defined with \DeclareSortingScheme (§ 4.5.5) Biber only

Using any of the ‘alphabetic’ sorting schemes only makes sense in conjunction
with a bibliography style which prints the corresponding labels. Note that some
bibliography styles initialize this package option to a value different from the package
default (nty). See § 3.3.2 for details. Please refer to § 3.5 for an in-depth explanation
of the above sorting options as well as the fields considered in the sorting process.
See also § 4.5.5 on how to adapt the predefined schemes or define new ones.

sortcase=true, false default: true

Whether or not to sort the bibliography and the list of shorthands case-sensitively.
Note that case-sensitive sorting is only supported by the bibtex8 and Biber back-
ends. Sorting is always case-insensitive with legacy BibTeX. See the backend
option for details.

sortupper=true, false default: true Biber only

This option corresponds to Biber’s --sortupper command-line option. It has no
effect with any other backend. If enabled, the bibliography is sorted in ‘uppercase
before lowercase’ order. Disabling this option means ‘lowercase before uppercase’
order.

sortlocale=auto, 〈locale〉 Biber only

This option sets the global sorting locale. Every sorting scheme inherits this locale
if none is specified using the 〈locale〉 option to \printbibliography. Setting
this to auto requests that it be set to the Babel/Polyglossia main document lan-
guage identifier, if these packages are used and en_US otherwise. Biber will map
Babel/Polyglossia language identifiers into sensible locale identifiers (see the Biber
documentation). You can therefore specify either a normal locale identifier like
de_DE_phonebook, es_ES or one of the supported Babel/Polyglossia language
identifiers if the mapping Biber makes of this is fine for you.

sortlos=bib, los default: los BibTeX only

The sorting order of the list of shorthands. The following choices are available:

bib Sort according to the sorting order of the bibliography.

los Sort by shorthand.

The sorting order of shorthands with Biber is more flexible and is set with the
sorting option to the \printbiblist command.

46

related=true, false default: true Biber only

Whether or not to use information from related entries or not. See § 3.4.

sortcites=true, false default: false

Whether or not to sort citations if multiple entry keys are passed to a citation
command. If this option is enabled, citations are sorted according to the current
bibliography context sorting scheme (see § 3.6.11). This feature works with all citation
styles.

maxnames=〈integer〉 default: 3

A threshold affecting all lists of names (author, editor, etc.). If a list exceeds this
threshold, i. e., if it holds more than 〈integer〉 names, it is automatically truncated
according to the setting of the minnames option. maxnames is the master option
which sets both maxbibnames and maxcitenames.

minnames=〈integer〉 default: 1

A limit affecting all lists of names (author, editor, etc.). If a list holds more
than 〈maxnames〉 names, it is automatically truncated to 〈minnames〉 names. The
〈minnames〉 value must be smaller than or equal to 〈maxnames〉. minnames is the
master option which sets both minbibnames and mincitenames.

maxbibnames=〈integer〉 default: 〈maxnames〉

Similar to maxnames but affects only the bibliography.

minbibnames=〈integer〉 default: 〈minnames〉

Similar to minnames but affects only the bibliography.

maxcitenames=〈integer〉 default: 〈maxnames〉

Similar to maxnames but affects only the citations in the document body.

mincitenames=〈integer〉 default: 〈minnames〉

Similar to minnames but affects only the citations in the document body.

maxitems=〈integer〉 default: 3

Similar to maxnames, but affecting all literal lists (publisher, location, etc.).

minitems=〈integer〉 default: 1

Similar to minnames, but affecting all literal lists (publisher, location, etc.).

autocite=plain, inline, footnote, superscript, ...

This option controls the behavior of the \autocite command discussed in § 3.7.4.
The plain option makes \autocite behave like \cite, inline makes it
behave like \parencite, footnote makes it behave like \footcite, and
superscript makes it behave like \supercite. The options plain, inline,
and footnote are always available, the superscript option is only provided
by the numeric citation styles which come with this package. The citation style may
also define additional options. The default setting of this option depends on the
selected citation style, see § 3.3.1.

47

autopunct=true, false default: true

This option controls whether the citation commands scan ahead for punctuation
marks. See § 3.7 and \DeclareAutoPunctuation in § 4.7.5 for details.

language=autobib, autocite, auto, 〈language〉 default: autobib

This option controls multilingual support. When set to autobib, autocite
or auto, Biblatex will try to get the main document language from the
babel/polyglossia package (and fall back to English if babel/polyglossia
is not available). It is also possible to select the document language manually. In this
case, the autolang option below will have no effect. Please refer to table 2 for a
list of supported languages and the corresponding identifiers. autobib switches
the language for each entry in the bibliography using the langid field and the
language environment specified by the autolang option. autocite switches the
language for each citation using the langid field and the language environment
specified by the autolang option. auto is a shorthand to set both autobib and
autocite. The default is to switch languages automatically only for bibliography
entries (autobib).

clearlang=true, false default: true

If this option is enabled, Biblatex will automatically clear the language field of
all entries whose language matches the babel/polyglossia language of the
document (or the language specified explicitly with the language option) in order
to omit redundant language specifications. The language mappings required by this
feature are provided by the \DeclareRedundantLanguages command from
§ 4.9.1.

autolang=none, hyphen, other, other*, langname default: none

This option controls which babel language environment18 is used if the
babel/polyglossia package is loaded and a bibliography entry includes a
langid field (see § 2.2.3). Note that Biblatex automatically adjusts to the main
document language if babel/polyglossia is loaded. In multilingual documents,
it will also continually adjust to the current language as far as citations and the
default language of the bibliography is concerned. This option is for switching
languages on a per-entry basis within the bibliography. The possible choices are:

none Disable this feature, i. e., do not use any language environment at all.
hyphen Enclose the entry in a hyphenrules environment. This will load hy-

phenation patterns for the language specified in the hyphenation
field of the entry, if available.

other Enclose the entry in an otherlanguage environment. This will
load hyphenation patterns for the specified language, enable all extra
definitions which babel/polyglossia and Biblatex provide for
the respective language, and translate key terms such as ‘editor’ and
‘volume’. The extra definitions include localizations of the date format,
of ordinals, and similar things.

other* Enclose the entry in an otherlanguage* environment. Please
note that Biblatex treats otherlanguage* like otherlanguage
but other packages may make a distinction in this case.

18
polyglossia understands the babel language environments too and so this option controls
both the babel and polyglossia language environments.

48

langname polyglossia only. Enclose the entry in a ‘languagename’
environment. The benefit of this option value for polyglossia
users is that it takes note of thelangidopts field so that you can add
per-language options to an entry (like selecting a language variant).
When using babel, this option does the same as the other option
value.

block=none, space, par, nbpar, ragged default: none

This option controls the extra spacing between blocks, i. e., larger segments of a
bibliography entry. The possible choices are:

none Do not add anything at all.
space Insert additional horizontal space between blocks. This is similar to

the default behavior of the standard LaTeX document classes.
par Start a new paragraph for every block. This is similar to the openbib

option of the standard LaTeX document classes.
nbpar Similar to the par option, but disallows page breaks at block bound-

aries and within an entry.
ragged Inserts a small negative penalty to encourage line breaks at block

boundaries and sets the bibliography ragged right.

The\newblockpunct commandmay also be redefined directly to achieve different
results, see § 3.9.1. Also see § 4.7.1 for additional information.

notetype=foot+end, footonly, endonly default: foot+end

This option controls the behavior of \mkbibfootnote, \mkbibendnote, and
similar wrappers from § 4.10.4. The possible choices are:

foot+end Support both footnotes and endnotes, i. e., \mkbibfootnote will
generate footnotes and \mkbibendnote will generate endnotes.

footonly Force footnotes, i. e., make \mkbibendnote generate footnotes.
endonly Force endnotes, i. e., make \mkbibfootnote generate endnotes.

hyperref=true, false, auto default: auto

Whether or not to transform citations and back references into clickable hyperlinks.
This feature requires the hyperref package. It also requires support by the selected
citation style. All standard styles which ship with this package support hyperlinks.
hyperref=auto automatically detects if the hyperref package has been loaded.

backref=true, false default: false

Whether or not to print back references in the bibliography. The back references are
a list of page numbers indicating the pages on which the respective bibliography
entry is cited. If there are refsection environments in the document, the back
references are local to the reference sections. Strictly speaking, this option only con-
trols whether the Biblatex package collects the data required to print such references.
This feature still has to be supported by the selected bibliography style. All standard
styles which ship with this package do so.

backrefstyle=none, three, two, two+, three+, all+ default: three

This option controls how sequences of consecutive pages in the list of back references
are formatted. The following styles are available:

49

none Disable this feature, i. e., do not compress the page list.

three Compress any sequence of three or more consecutive pages to a range,
e. g., the list ‘1, 2, 11, 12, 13, 21, 22, 23, 24’ is compressed to ‘1, 2, 11–13,
21–24’.

two Compress any sequence of two or more consecutive pages to a range,
e. g., the above list is compressed to ‘1–2, 11–13, 21–24’.

two+ Similar in concept to two but a sequence of exactly two consecutive
pages is printed using the starting page and the localization string
sequens, e. g., the above list is compressed to ‘1 sq., 11–13, 21–24’.

three+ Similar in concept to two+ but a sequence of exactly three consec-
utive pages is printed using the starting page and the localization
string sequentes, e. g., the above list is compressed to ‘1 sq., 11 sqq.,
21–24’.

all+ Similar in concept to three+ but any sequence of consecutive pages
is printed as an open-ended range, e. g., the above list is compressed
to ‘1 sq., 11 sqq., 21 sqq.’.

All styles support both Arabic and Roman numerals. In order to avoid potentially
ambiguous lists, different sets of numerals will not be mixed when generating ranges,
e. g., the list ‘iii, iv, v, 6, 7, 8’ is compressed to ‘iii–v, 6–8’.

backrefsetstyle=setonly, memonly, setormem, setandmem,
memandset, setplusmem

default: setonly

This option controls how back references to @set entries and their members are
handled. The following options are available:

setonly All back references are added to the @set entry. The pageref lists
of set members remain blank.

memonly References to set members are added to the respective member. Ref-
erences to the @set entry are added to all members. The pageref
list of the @set entry remains blank.

setormem References to the@set entry are added to the@set entry. References
to set members are added to the respective member.

setandmem References to the @set entry are added to the @set entry. Refer-
ences to set members are added to the respective member and to the
@set entry.

memandset References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member.

setplusmem References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member and to the @set entry.

indexing=true, false, cite, bib default: false

This option controls indexing in citations and in the bibliography. More precisely,
it affects the \ifciteindex and \ifbibindex commands from § 4.6.2. The
option is settable on a global, a per-type, or on a per-entry basis. The possible choices
are:

50

true Enable indexing globally.

false Disable indexing globally.

cite Enable indexing in citations only.

bib Enable indexing in the bibliography only.

This feature requires support by the selected citation style. All standard styles
which ship with this package support indexing of both citations and entries in the
bibliography. Note that you still need to enable indexing globally with \makeindex
to get an index.

loadfiles=true, false default: false

This option controls whether external files requested by way of the \printfile
command are loaded. See also § 3.11.8 and \printfile in § 4.4.1. Note that this
feature is disabled by default for performance reasons.

refsection=none, part, chapter, section, subsection default: none

This option automatically starts a new reference section at a document division such
as a chapter or a section. This is equivalent to the \newrefsection command,
see § 3.6.5 for details. The following choice of document divisions is available:

none Disable this feature.

part Start a reference section at every \part command.

chapter Start a reference section at every \chapter command.

section Start a reference section at every \section command.

subsection Start a reference section at every \subsection command.

The starred versions of these commands will not start a new reference section.

refsegment=none, part, chapter, section, subsection default: none

Similar to the refsection option but starts a new reference segment. This is
equivalent to the \newrefsegment command, see § 3.6.6 for details. When using
both options, note that you can only apply this option to a lower-level document
division than the one refsection is applied to and that nested reference segments
will be local to the enclosing reference section.

citereset=none, part, chapter, section, subsection default: none

This option automatically executes the \citereset command from § 3.7.8 at a
document division such as a chapter or a section. The following choice of document
divisions is available:

none Disable this feature.

part Perform a reset at every \part command.

chapter Perform a reset at every \chapter command.

section Perform a reset at every \section command.

subsection Perform a reset at every \subsection command.

The starred versions of these commands will not trigger a reset.

51

abbreviate=true, false default: true

Whether or not to use long or abbreviated strings in citations and in the bibliography.
This option affects the localization modules. If this option is enabled, key terms such
as ‘editor’ are abbreviated. If not, they are written out.

date=year, short, long, terse, comp, iso8601 default: comp

This option controls the basic format of printed date specifications. The following
choices are available:

year Use only years, for example:

2010

2010–2012

short Use the short format with verbose ranges, for example:

01/01/2010

21/01/2010–30/01/2010

01/21/2010–01/30/2010

long Use the long format with verbose ranges, for example:

1st January 2010

21st January 2010–30th January 2010

January 21, 2010–January 30, 2010

terse Use the short format with compact ranges, for example:

21–30/01/2010

01/21–01/30/2010

comp Use the long format with compact ranges, for example:

21st–30th January 2010

January 21–30, 2010

iso8601 Use extended iso-8601 format (yyyy-mm-dd), for example:

2010-01-01

2010-01-21/2010-01-30

As seen in the above examples, the actual date format is language specific. Note
that the month name in all long formats is responsive to the abbreviate package
option. The leading zeros in all short formats may be controlled separately with the
datezeros package option.

datelabel=year, short, long, terse, comp, iso8601 default: year

Similar to the date option but controls the format of the date field selected with
\DeclareLabeldate.

origdate=year, short, long, terse, comp, iso8601 default: comp

Similar to the date option but controls the format of the origdate.

eventdate=year, short, long, terse, comp, iso8601 default: comp

Similar to the date option but controls the format of the eventdate.

52

urldate=year, short, long, terse, comp, iso8601 default: short

Similar to the date option but controls the format of the urldate.

alldates=year, short, long, terse, comp, iso8601

Sets all of the above date options to the same value.

datezeros=true, false default: true

This option controls whether short and terse dates are printed with leading
zeros.

dateabbrev=true, false default: true

This option controls whether long and comp dates are printed with long or abbre-
viated month names. The option is similar to the generic abbreviate option but
specific to the date formatting.

defernumbers=true, false default: false

In contrast to standard LaTeX, the numeric labels generated by this package are
normally assigned to the full list of references at the beginning of the document body.
If this option is enabled, numeric labels (i. e., the labelnumber field discussed in
§ 4.2.4) are assigned the first time an entry is printed in any bibliography. See § 3.12.5
for further explanation. This option requires two LaTeX runs after the data has been
exported to the bbl file by the backend (in addition to any other runs required by
page breaks changing etc.). An important thing to note is that if you change the
value of this option in your document (or the value of options which depend on this
like some of the options to the \printbibliography macro, see § 3.6.2), then
it is likely that you will need to delete your current aux file and re-run LaTeX to
obtain the correct numbering. See § 4.1.

punctfont=true, false default: false

This option enables an alternative mechanism for dealing with unit punctuation
after a field printed in a different font (for example, a title printed in italics). See
\setpunctfont in § 4.7.1 for details.

arxiv=abs, ps, pdf, format default: abs

Path selector for arXiv links. If hyperlink support is enabled, this option controls
which version of the document the arXiv eprint links will point to. The following
choices are available:

abs Link to the abstract page.

ps Link to the PostScript version.

pdf Link to the pdf version.

format Link to the format selector page.

See § 3.11.7 for details on support for arXiv and electronic publishing information.

texencoding=auto, 〈encoding〉 default: auto

Specifies the encoding of the tex file. This option affects the data transferred
from the backend to Biblatex. When using Biber, this corresponds to Biber’s
--output_encoding option. The following choices are available:

53

auto Try to auto-detect the input encoding. If the inputenc/inputenx/
luainputenc package is available, Biblatex will get the main en-
coding from that package. If not, it assumes utf-8 encoding if XeTeX
or LuaTeX has been detected, and Ascii otherwise.

〈encoding〉 Specifies the 〈encoding〉 explicitly. This is for odd cases in which
auto-detection fails or you want to force a certain encoding for some
reason.

Note that setting texencoding=〈encoding〉 will also affect the bibencoding
option if bibencoding=auto.

bibencoding=auto, 〈encoding〉 default: auto

Specifies the encoding of the bib files. When using Biber, this corresponds to Biber’s
--input_encoding option. The following choices are available:

auto Use this option if the workflow is transparent, i. e., if the encoding of
the bib file is identical to the encoding of the tex file.

〈encoding〉 If the encoding of the bib file is different from the one of the tex
file, you need to specify it explicitly.

By default, Biblatex assumes that the tex file and the bib file use the same encoding
(bibencoding=auto). Note that some backends only support a limited number
of encodings. See § 2.4.3 for further instructions.

safeinputenc=true, false default: false Biber only

If this option is enabled, Biblatex will automatically force texencoding=ascii
if the inputenc/inputenx package has been loaded and the input encoding is
utf-8, i. e., it will ignore any macro-based utf-8 support and use Ascii only. Biber
will then try to convert any non-Ascii data in the bib file to Ascii. For example, it
will convert Ṣ to \d{S}. See § 2.4.3.4 for an explanation of why you may want to
enable this option.

bibwarn=true, false default: true

By default, Biblatex will report warnings issued by the backend concerning the data
in the bib file as LaTeX warnings. Use this option to suppress such warnings.

mincrossrefs=〈integer〉 default: 2

Sets the minimum number of cross references to 〈integer〉 when requesting a backend
run.19 Note that when using the BibTeX backend, this package option merely affects
the format of certain requests written to the transcript file. It will not have any
effect if the editor or compiler script launching BibTeX does not include dedicated
Biblatex support or if BibTeX is manually launched from the command-line.20 See
§ 2.4.4 for details. This option also affects the handling of the xref field. See the
field description in § 2.2.3 as well as § 2.4.1 for details.

19If an entry which is cross-referenced by other entries in the bib file hits this threshold, it is included
in the bibliography even if it has not been cited explicitly. This is a standard feature of the BibTeX
(also Biber) and not specific to Biblatex. See the description of the crossref field in § 2.2.3 for
further information.

20As of this writing, no LaTeX editors or compiler scripts with dedicated Biblatex support are known,
but this will hopefully change in the future.

54

3.1.2.2 Style-specific The following options are provided by the standard styles
(as opposed to the core package). Technically, they are preamble options like those
in § 3.1.2.1.

isbn=true, false default: true

This option controls whether the fields isbn/issn/isrn are printed.

url=true, false default: true

This option controls whether the url field and the access date is printed. The
option only affects entry types whose url information is optional. The url field of
@online entries is always printed.

doi=true, false default: true

This option controls whether the field doi is printed.

eprint=true, false default: true

This option controls whether eprint information is printed.

3.1.2.3 Internal The default settings of the following preamble options are con-
trolled by bibliography and citation styles. Apart from the pagetracker and
firstinits options, which you may want to adapt, there is normally no need to
set them explicitly.

pagetracker=true, false, page, spread default: false

This option controls the page tracker which is required by the \ifsamepage and
\iffirstonpage tests from § 4.6.2. The possible choices are:

true Enable the tracker in automatic mode. This is like spread if LaTeX
is in twoside mode, and like page otherwise.

false Disable the tracker.

page Enable the tracker in page mode. In this mode, tracking works on a
per-page basis.

spread Enable the tracker in spread mode. In this mode, tracking works on a
per-spread (double page) basis.

Note that this tracker is disabled in all floats, see § 4.11.5.

citecounter=true, false, context default: false

This option controls the citation counter which is required by citecounter from
§ 4.6.2. The possible choices are:

true Enable the citation counter in global mode.

false Disable the citation counter.

context Enable the citation counter in context-sensitive mode. In this mode,
citations in footnotes and in the body text are counted independently.

citetracker=true, false, context, strict, constrict default: false

This option controls the citation tracker which is required by the \ifciteseen
and \ifentryseen tests from § 4.6.2. The possible choices are:

55

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked independently.

strict Enable the tracker in strict mode. In this mode, an item is only con-
sidered by the tracker if it appeared in a stand-alone citation, i. e., if a
single entry key was passed to the citation command.

constrict This mode combines the features of context and strict.

Note that this tracker is disabled in all floats, see § 4.11.5.

ibidtracker=true, false, context, strict, constrict default: false

This option controls the ‘ibidem’ tracker which is required by the \ifciteibid
test from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. A reference is considered ambiguous if
either the current citation (the one including the ‘ibidem’) or the
previous citation (the one the ‘ibidem’ refers to) consists of a list of
references.21

constrict This mode combines the features of context and strict. It also
keeps track of footnote numbers and detects potentially ambiguous
references in footnotes in a stricter way than the strict option. In
addition to the conditions imposed by the strict option, a reference
in a footnote will only be considered as unambiguous if the current
citation and the previous citation are given in the same footnote or in
immediately consecutive footnotes.

Note that this tracker is disabled in all floats, see § 4.11.5.

opcittracker=true, false, context, strict, constrict default: false

This option controls the ‘opcit’ tracker which is required by the \ifopcit test from
§ 4.6.2. This feature is similar to the ‘ibidem’ tracker, except that it tracks citations
on a per-author/editor basis, i. e., \ifopcit will yield true if the cited item is the
same as the last one by this author/editor. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

21For example, suppose the initial citation is “Jones, Title; Williams, Title” and the following one
“ibidem”. From a technical point of view, it is fairly clear that the ‘ibidem’ refers to ‘Williams’
because this is the last reference processed by the previous citation command. To a human reader,
however, this may not be obvious because the ‘ibidem’ may also refer to both titles. The strict mode
avoids such ambiguous references.

56

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. See ibidtracker=strict for details.

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details.

Note that this tracker is disabled in all floats, see § 4.11.5.

loccittracker=true, false, context, strict, constrict default: false

This option controls the ‘loccit’ tracker which is required by the \ifloccit test
from § 4.6.2. This feature is similar to the ‘opcit’ tracker except that it also checks
whether the 〈postnote〉 arguments match, i. e., \ifloccit will yield true if the
citation refers to the same page cited before. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. See ibidtracker=strict for details.
In addition to that, this mode also checks if the 〈postnote〉 argument
is numerical (based on \ifnumerals from § 4.6.2).

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details. In addition
to that, this mode also checks if the 〈postnote〉 argument is numerical
(based on \ifnumerals from § 4.6.2).

Note that this tracker is disabled in all floats, see § 4.11.5.

idemtracker=true, false, context, strict, constrict default: false

This option controls the ‘idem’ tracker which is required by the \ifciteidem test
from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict This is an alias for true, provided only for consistency with the other
trackers. Since ‘idem’ replacements do not get ambiguous in the same
way as ‘ibidem’ or ‘op. cit.’, the strict tracking mode does not apply
to them.

constrict This mode is similar to context with one additional condition: a
reference in a footnote will only be considered as unambiguous if
the current citation and the previous citation are given in the same
footnote or in immediately consecutive footnotes.

Note that this tracker is disabled in all floats, see § 4.11.5.

parentracker=true, false default: true

This option controls the parenthesis tracker which keeps track of nested
parentheses and brackets. This information is used by \parentext and

57

\brackettext from § 3.7.5, \mkbibparens and \mkbibbrackets from
§ 4.10.4 and \bibopenparen, \bibcloseparen, \bibopenbracket,
\bibclosebracket (also § 4.10.4).

maxparens=〈integer〉 default: 3

The maximum permitted nesting level of parentheses and brackets. If parentheses
and brackets are nested deeper than this value, Biblatex will issue errors.

firstinits=true, false default: false

When enabled, all first and middle names will be rendered as initials. The option will
affect the \iffirstinits test from § 4.6.2.

sortfirstinits=true, false default: false

When enabled, sorting names will only use their initials. This is separate from Biber only
firstinits in case users want to show only inits but sort on full names, for
example.

terseinits=true, false default: false

This option controls the format of initials generated by Biblatex. If enabled, initials
are rendered using a terse format without dots and spaces. For example, the initials
of Donald Ervin Knuth would be rendered as ‘D. E.’ by default, and as ‘DE’ if this
option is enabled. The option will affect the \ifterseinits test from § 4.6.2.
With Biber, the option works by redefining some macros which control the format Biber only
of initials. See § 3.12.4 for details.

labelalpha=true, false default: false

Whether or not to provide the special fields labelalpha and extraalpha, see
§ 4.2.4 for details. With Biber, this option is also settable on a per-type basis. See Biber only
also maxalphanames and minalphanames. Table 5 summarises the various
extra* disambiguation counters and what they track.

maxalphanames=〈integer〉 default: 3 Biber only

Similar to the maxnames option but customizes the format of the labelalpha
field.

minalphanames=〈integer〉 default: 1 Biber only

Similar to the minnames option but customizes the format of the labelalpha
field.

labelnumber=true, false default: false

Whether or not to provide the special field labelnumber, see § 4.2.4 for details.
This option is also settable on a per-type basis.

labeltitle=true, false default: false Biber only

Whether or not to provide the special field extratitle, see § 4.2.4 for details.
Note that the special field labeltitle is always provided and this option controls
rather whether labeltitle is used to generate extratitle information. This
option is also settable on a per-type basis. Table 5 summarises the various extra*
disambiguation counters and what they track.

58

labeltitleyear=true, false default: false Biber only

Whether or not to provide the special field extratitleyear, see § 4.2.4 for details.
Note that the special field labeltitle is always provided and this option controls
rather whether labeltitle is used to generate extratitleyear information.
This option is also settable on a per-type basis. Table 5 summarises the various
extra* disambiguation counters and what they track.

labeldate=true, false default: false

Whether or not to provide the special fields labelyear, labelmonth,
labelday and extrayear, see § 4.2.4 for details. With Biber, this option is also Biber only
settable on a per-type basis. Table 5 summarises the various extra* disambiguation
counters and what they track.

singletitle=true, false default: false

Whether or not to provide the data required by the \ifsingletitle test, see
§ 4.6.2 for details. With Biber, this option is also settable on a per-type basis. Biber only

uniquename=true, false, init, full, allinit, allfull,
mininit, minfull

default: false Biber only

Whether or not to update the uniquename counter, see § 4.6.2 for details. This
feature will disambiguate individual names in the labelname list. This option is
also settable on a per-type basis. The possible choices are:

true An alias for full.

false Disable this feature.

init Disambiguate names using initials only.

full Disambiguate names using initials or full names, as required.

allinit Similar to init but disambiguates all names in the labelname list,
beyond maxnames/minnames/uniquelist.

allfull Similar to full but disambiguates all names in the labelname list,
beyond maxnames/minnames/uniquelist.

mininit A variant of init which only disambiguates names in lists with
identical last names.

minfull A variant of full which only disambiguates names in lists with
identical last names.

Note that the uniquename option will also affect uniquelist, the
\ifsingletitle test, and the extrayear field. See § 4.11.4 for further de-
tails and practical examples.

uniquelist=true, false, minyear default: false Biber only

Whether or not to update the uniquelist counter, see § 4.6.2 for details.
This feature will disambiguate the labelname list if it has become ambiguous
after maxnames/minnames truncation. Essentially, it overrides maxnames/
minnames on a per-field basis. This option is also settable on a per-type basis.
The possible choices are:

true Disambiguate the labelname list.

false Disable this feature.

59

Option Enabled field Enabled counter Counter tracks

labelalpha labelalpha extraalpha label

labeldate labelyear extrayear labelname+la-

belyear

labeltitle — extratitle labelname+labelti-

tle

labeltitleyear — extratitleyear labeltitle+la-

belyear

Table 5: Disambiguation counters

minyear Disambiguate the labelname list only if the truncated list is identi-
cal to another onewith the samelabelyear. Thismode of operation
is useful for author-year styles and requires labeldate=true.

Note that the uniquelist option will also affect the \ifsingletitle test and
the extrayear field. See § 4.11.4 for further details and practical examples.

3.1.3 Entry Options

Entry options are package options which determine how bibliography data entries
are handled. They may be set at various scopes defined below.

3.1.3.1 Preamble/Type/Entry Options The following options are settable on a
per-type basis or on a per-entry in the options field. In addition to that, they
may also be used in the optional argument to \usepackage as well as in the
configuration file and the document preamble. This is useful if you want to change
the default behaviour globally.

useauthor=true, false default: true

Whether the author is used in labels and considered during sorting. This may
be useful if an entry includes an author field but is usually not cited by author
for some reason. Setting useauthor=false does not mean that the author is
ignored completely. It means that the author is not used in labels and ignored
during sorting. The entry will then be alphabetized by editor or title. With
the standard styles, the author is printed after the title in this case. See also § 3.5.
With Biber, this option is also settable on a per-type and per-entry basis. Biber only

useeditor=true, false default: true

Whether the editor replaces a missing author in labels and during sorting. This
may be useful if an entry includes an editor field but is usually not cited by editor.
Setting useeditor=false does not mean that the editor is ignored completely.
It means that the editor does not replace a missing author in labels and during
sorting. The entry will then be alphabetized by title. With the standard styles,
the editor is printed after the title in this case. See also § 3.5. With Biber, this Biber only
option is also settable on a per-type and per-entry basis.

usetranslator=true, false default: false

Whether the translator replaces a missing author/editor in labels and dur-
ing sorting. Settingusetranslator=true does notmean that thetranslator
overrides the author/editor. It means that the translator is considered as a

60

fallback if the author/editor is missing or if useauthor and useeditor are
set to false. In other words, in order to cite a book by translator rather than by
author, you need to set the following options: With Biber, this option is also settable Biber only
on a per-type and per-entry basis.

@Book{...,

options = {useauthor=false,usetranslator=true},

author = {...},

translator = {...},

...

With the standard styles, the translator is printed after the title by default. See
also § 3.5.

use<name>=true, false default: true

As per useauthor, useeditor and usetranslator, all name lists defined in
the data model have an option controlling their behaviour in sorting and labelling au-
tomatically defined. Global, per-type and per-entry options called ‘use<name>’are
automatically created.

useprefix=true, false default: false

Whether the name prefix (von, van, of, da, de, della, etc.) is considered when printing
the last name in citations. This also affects the sorting and formatting of the biblio-
graphy as well as the generation of certain types of labels. If this option is enabled,
Biblatex always precedes the last name with the prefix. For example, Ludwig van
Beethoven would be cited as “Beethoven” and alphabetized as “Beethoven, Ludwig
van” by default. If this option is enabled, he is cited as “van Beethoven” and alpha-
betized as “Van Beethoven, Ludwig” instead. With Biber, this option is also settable Biber only
on a per-type basis.

indexing=true, false, cite, bib

The indexing option is also settable per-type or per-entry basis. See § 3.1.2.1 for
details.

3.1.3.2 Type/Entry Options The following options are settable on a per-type
basis or on a per-entry in the options field. They are not available globally.

skipbib=true, false default: false

If this option is enabled, the entry is excluded from the bibliography but it may still
be cited. With Biber, this option is also settable on a per-type basis. Biber only

skiplos=true, false default: false BibTeX only

If this option is enabled, the entry is excluded from the list of shorthands. It is still
included in the bibliography and it may also be cited by shorthand. This option is
deprecated when using Biber as the backend. Use skipbiblist instead.

skipbiblist=true, false default: false Biber only

This is the same as the skiplos option when using the BibTeX backend. It is
renamed for Biber to be consistent with the more generalised bibliography list

61

functionality See § 3.6.4. If this option is enabled, the entry is excluded from the
list of shorthands. It is still included in the bibliography and it may also be cited by
shorthand. This option is also settable on a per-type basis.

skiplab=true, false default: false

If this option is enabled, Biblatex will not assign any labels to the entry. It is not
required for normal operation. Use it with care. If enabled, Biblatex can not guarantee
unique citations for the respective entry and citations styles which require labels
may fail to create valid citations for the entry. With Biber, this option is also settable Biber only
on a per-type basis.

dataonly=true, false default: false

Setting this option is equivalent to uniquename=false, uniquelist=false,
skipbib, skiplos/skipbiblist, and skiplab. It is not required for normal
operation. Use it with care. With Biber, this option is also settable on a per-type Biber only
basis.

3.1.3.3 Entry Only Options The following options are settable only on a per-
entry in the options field. They are not available globally or per-type.

labelnamefield=〈fieldname〉

Specifies the field to consider first when looking for a labelname candidate. It is
essentially prepended to the search list created by \DeclareLabelname for just
this entry.

labeltitlefield

=〈fieldname〉

Specifies the field to consider first when looking for a labeltitle candidate. It
is essentially prepended to the search list created by \DeclareLabeltitle for
just this entry.

3.1.4 Legacy Options

The following legacy option may be used globally in the optional argument to
\documentclass or locally in the optional argument to \usepackage:

openbib This option is provided for backwards compatibility with the standard LaTeX docu- Deprecated
ment classes. openbib is similar to block=par.

3.2 Global Customization

Apart from writing new citation and bibliography styles, there are numerous ways to
customize the styles which ship with this package. Customization will usually take
place in the preamble, but there is also a configuration file for permanent adaptions.
The configuration file may also be used to initialize the package options to a value
different from the package default.

3.2.1 Configuration File

If available, this package will load the configuration file biblatex.cfg. This file
is read at the end of the package, immediately after the citation and bibliography
styles have been loaded.

62

3.2.2 Setting Package Options

The load-time package options in § 3.1.1 must be given in the optional argument to
\usepackage. The package options in § 3.1.2 may also be given in the preamble.
The options are executed with the following command:

\ExecuteBibliographyOptions[〈entrytype, …〉]{〈key=value, …〉}

This command may also be used in the configuration file to modify the default setting
of a package option. Certain options are also settable on a per-type basis. In this
case, the optional 〈entrytype〉 argument specifies the entry type. The 〈entrytype〉
argument may be a comma-separated list of values.

3.3 Standard Styles

This section provides a short description of all bibliography and citation styles which
ship with the Biblatex package. If you want to write your own styles, see § 4.

3.3.1 Citation Styles

The citation styles which come with this package implement several common citation
schemes. All standard styles cater for the shorthand field and support hyperlinks
as well as indexing.

numeric This style implements a numeric citation scheme similar to the standard biblio-
graphic facilities of LaTeX. It should be employed in conjunction with a numeric
bibliography style which prints the corresponding labels in the bibliography. It is
intended for in-text citations. The style will set the following package options at
load time: autocite=inline, labelnumber=true. This style also provides
an additional preamble option called subentry which affects the handling of entry
sets. If this option is disabled, citations referring to a member of a set will point to
the entire set. If it is enabled, the style supports citations like “[5c]” which point to a
subentry in a set (the third one in this example). See the style example for details.

numeric-comp A compact variant of the numeric style which prints a list of more than two con-
secutive numbers as a range. This style is similar to the cite package and the
sort&compress option of the natbib package in numerical mode. For exam-
ple, instead of “[8, 3, 1, 7, 2]” this style would print “[1–3, 7, 8]”. It is intended
for in-text citations. The style will set the following package options at load time:
autocite=inline, sortcites=true, labelnumber=true. It also pro-
vides the subentry option.

numeric-verb A verbose variant of the numeric style. The difference affects the handling of
a list of citations and is only apparent when multiple entry keys are passed to a
single citation command. For example, instead of “[2, 5, 6]” this style would print
“[2]; [5]; [6]”. It is intended for in-text citations. The style will set the following
package options at load time: autocite=inline, labelnumber=true. It also
provides the subentry option.

alphabetic This style implements an alphabetic citation scheme similar to the alpha.bst
style of traditional BibTeX. The alphabetic labels resemble a compact author-year
style to some extent, but the way they are employed is similar to a numeric citation
scheme. For example, instead of “Jones 1995” this style would use the label “[Jon95]”.
“Jones and Williams 1986” would be rendered as “[JW86]”. This style should be

63

employed in conjunction with an alphabetic bibliography style which prints the
corresponding labels in the bibliography. It is intended for in-text citations. The
style will set the following package options at load time: autocite=inline,
labelalpha=true.

alphabetic-verb A verbose variant of the alphabetic style. The difference affects the handling
of a list of citations and is only apparent when multiple entry keys are passed to
a single citation command. For example, instead of “[Doe92; Doe95; Jon98]” this
style would print “[Doe92]; [Doe95]; [Jon98]”. It is intended for in-text citations.
The style will set the following package options at load time: autocite=inline,
labelalpha=true.

authoryear This style implements an author-year citation scheme. If the bibliography contains
two or more works by the same author which were all published in the same year, a
letter is appended to the year. For example, this style would print citations such as
“Doe 1995a; Doe 1995b; Jones 1998”. This style should be employed in conjunction
with an author-year bibliography style which prints the corresponding labels in the
bibliography. It is primarily intended for in-text citations, but it could also be used
with citations given in footnotes. The style will set the following package options
at load time: autocite=inline, labeldate=true, uniquename=full,
uniquelist=true.

authoryear-comp A compact variant of the authoryear style which prints the author only once if
subsequent references passed to a single citation command share the same author. If
they share the same year as well, the year is also printed only once. For example,
instead of “Doe 1995b; Doe 1992; Jones 1998; Doe 1995a” this style would print “Doe
1992, 1995a,b; Jones 1998”. It is primarily intended for in-text citations, but it could
also be used with citations given in footnotes. The style will set the following package
options at load time: autocite=inline, sortcites=true, labeldate=
true, uniquename=full, uniquelist=true.

authoryear-ibid A variant of the authoryear style which replaces repeated citations by the ab-
breviation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of the package op-
tion ibidtracker=constrict. The style will set the following package op-
tions at load time: autocite=inline, labeldate=true, uniquename=
full, uniquelist=true, ibidtracker=constrict, pagetracker=
true. This style also provides an additional preamble option called ibidpage. See
the style example for details.

authoryear-icomp A style combining authoryear-comp and authoryear-ibid. The
style will set the following package options at load time: autocite =

inline, labeldate = true, uniquename = full, uniquelist = true,
ibidtracker=constrict, pagetracker=true, sortcites=true. This
style also provides an additional preamble option called ibidpage. See the style
example for details.

authortitle This style implements a simple author-title citation scheme. It will make use of the
shorttitle field, if available. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
uniquename=full, uniquelist=true.

authortitle-comp A compact variant of the authortitle style which prints the author only once if
subsequent references passed to a single citation command share the same author.

64

For example, instead of “Doe, First title; Doe, Second title” this style would print
“Doe, First title, Second title”. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
sortcites=true, uniquename=full, uniquelist=true.

authortitle-ibid A variant of the authortitle style which replaces repeated citations by the
abbreviation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of the package option
ibidtracker=constrict. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
uniquename = full, uniquelist = true, ibidtracker = constrict,
pagetracker=true. This style also provides an additional preamble option
called ibidpage. See the style example for details.

authortitle-icomp A style combining the features of authortitle-comp and
authortitle-ibid. The style will set the following package options at
load time: autocite=footnote, uniquename=full, uniquelist=true,
ibidtracker=constrict, pagetracker=true, sortcites=true. This
style also provides an additional preamble option called ibidpage. See the style
example for details.

authortitle-terse A terse variant of the authortitle style which only prints the title if the biblio-
graphy contains more than one work by the respective author/editor. This style will
make use of the shorttitle field, if available. It is suitable for in-text citations as
well as citations given in footnotes. The style will set the following package options
at load time: autocite=inline, singletitle=true, uniquename=full,
uniquelist=true.

authortitle-tcomp A style combining the features of authortitle-comp and
authortitle-terse. This style will make use of the shorttitle field, if
available. It is suitable for in-text citations as well as citations given in footnotes.
The style will set the following package options at load time: autocite =

inline, sortcites= true, singletitle= true, uniquename= full,
uniquelist=true.

authortitle-ticomp A style combining the features of authortitle-icomp and
authortitle-terse. In other words: a variant of the authortitle-tcomp
style with an ibidem feature. This style is suitable for in-text citations as well
as citations given in footnotes. It will set the following package options at load
time: autocite = inline, ibidtracker = constrict, pagetracker =
true, sortcites = true, singletitle = true, uniquename = full,
uniquelist=true. This style also provides an additional preamble option called
ibidpage. See the style example for details.

verbose A verbose citation style which prints a full citation similar to a bibliography entry
when an entry is cited for the first time, and a short citation afterwards. If available,
the shorttitle field is used in all short citations. If the shorthand field is
defined, the shorthand is introduced on the first citation and used as the short
citation thereafter. This style may be used without a list of references and shorthands
since all bibliographic data is provided on the first citation. It is intended for citations
given in footnotes. The style will set the following package options at load time:
autocite=footnote, citetracker=context. This style also provides an
additional preamble option called citepages. See the style example for details.

65

verbose-ibid A variant of the verbose style which replaces repeated citations by the abbreviation
ibidem unless the citation is the first one on the current page or double-page spread,
or the ibidem would be ambiguous in the sense of ibidtracker=strict. This
style is intended for citations given in footnotes. The style will set the following
package options at load time: autocite=footnote, citetracker=context,
ibidtracker=constrict, pagetracker=true. This style also provides
additional preamble options called ibidpage and citepages. See the style
example for details.

verbose-note This style is similar to the verbose style in that it prints a full citation similar to
a bibliography entry when an entry is cited for the first time, and a short citation
afterwards. In contrast to the verbose style, the short citation is a pointer to the
footnote with the full citation. If the bibliography contains more than one work
by the respective author/editor, the pointer also includes the title. If available, the
shorttitle field is used in all short citations. If the shorthand field is defined,
it is handled as with the verbose style. This style may be used without a list of
references and shorthands since all bibliographic data is provided on the first citation.
It is exclusively intended for citations given in footnotes. The style will set the
following package options at load time: autocite=footnote, citetracker=
context, singletitle=true. This style also provides additional preamble
options called pageref and citepages. See the style example for details.

verbose-inote A variant of the verbose-note style which replaces repeated citations by the
abbreviation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of ibidtracker=
strict. This style is exclusively intended for citations given in footnotes. It
will set the following package options at load time: autocite = footnote,
citetracker = context, ibidtracker = constrict, singletitle =
true, pagetracker=true. This style also provides additional preamble op-
tions called ibidpage, pageref, and citepages. See the style example for
details.

verbose-trad1 This style implements a traditional citation scheme. It is similar to the verbose
style in that it prints a full citation similar to a bibliography entry when an item
is cited for the first time, and a short citation afterwards. Apart from that, it
uses the scholarly abbreviations ibidem, idem, op. cit., and loc. cit. to replace re-
current authors, titles, and page numbers in repeated citations in a special way.
If the shorthand field is defined, the shorthand is introduced on the first ci-
tation and used as the short citation thereafter. This style may be used with-
out a list of references and shorthands since all bibliographic data is provided
on the first citation. It is intended for citations given in footnotes. The style
will set the following package options at load time: autocite = footnote,
citetracker = context, ibidtracker = constrict, idemtracker =
constrict, opcittracker=context, loccittracker=context. This
style also provides additional preamble options called ibidpage, strict, and
citepages. See the style example for details.

verbose-trad2 Another traditional citation scheme. It is also similar to the verbose style but uses
scholarly abbreviations like ibidem and idem in repeated citations. In contrast to
the verbose-trad1 style, the logic of the op. cit. abbreviations is different in this
style and loc. cit. is not used at all. It is in fact more similar to verbose-ibid and
verbose-inote than to verbose-trad1. The style will set the following pack-
age options at load time: autocite=footnote, citetracker=context,

66

ibidtracker=constrict, idemtracker=constrict. This style also pro-
vides additional preamble options called ibidpage, strict, and citepages.
See the style example for details.

verbose-trad3 Yet another traditional citation scheme. It is similar to the verbose-trad2 style
but uses the scholarly abbreviations ibidem and op. cit. in a slightly different way. The
style will set the following package options at load time: autocite=footnote,
citetracker=context, ibidtracker=constrict, loccittracker=
constrict. This style also provides additional preamble options called strict
and citepages. See the style example for details.

reading A citation style which goes with the bibliography style by the same name. It simply
loads the authortitle style.

The following citation styles are special purpose styles. They are not intended for
the final version of a document:

draft A draft style which uses the entry keys in citations. The style will set the following
package options at load time: autocite=plain.

debug This style prints the entry key rather than some kind of label. It is intended for
debugging only and will set the following package options at load time: autocite=
plain.

3.3.2 Bibliography Styles

All bibliography styles which come with this package use the same basic format for
the individual bibliography entries. They only differ in the kind of label printed in the
bibliography and the overall formatting of the list of references. There is a matching
bibliography style for every citation style. Note that some bibliography styles are
not mentioned below because they simply load a more generic style. For example,
the bibliography style authortitle-comp will load the authortitle style.

numeric This style prints a numeric label similar to the standard bibliographic facilities of
LaTeX. It is intended for use in conjunction with a numeric citation style. Note that
the shorthand field overrides the default label. The style will set the following
package options at load time: labelnumber=true. This style also provides an
additional preamble option called subentry which affects the formatting of entry
sets. If this option is enabled, all members of a set are marked with a letter which
may be used in citations referring to a set member rather than the entire set. See the
style example for details.

alphabetic This style prints an alphabetic label similar to the alpha.bst style of traditional
BibTeX. It is intended for use in conjunction with an alphabetic citation style. Note
that the shorthand field overrides the default label. The style will set the following
package options at load time: labelalpha=true, sorting=anyt.

authoryear This style differs from the other styles in that the publication date is not printed
towards the end of the entry but rather after the author/editor. It is intended for
use in conjunction with an author-year citation style. Recurring author and editor
names are replaced by a dash unless the entry is the first one on the current page
or double-page spread. This style provides an additional preamble option called
dashed which controls this feature. It also provided a preamble option called

67

mergedate. See the style example for details. The style will set the following pack-
age options at load time: labeldate=true, sorting=nyt, pagetracker=
true, mergedate=true.

authortitle This style does not print any label at all. It is intended for use in conjunction with
an author-title citation style. Recurring author and editor names are replaced by a
dash unless the entry is the first one on the current page or double-page spread. This
style also provides an additional preamble option called dashed which controls this
feature. See the style example for details. The style will set the following package
options at load time: pagetracker=true.

verbose This style is similar to the authortitle style. It also provides an additional
preamble option called dashed. See the style example for details. The style will set
the following package options at load time: pagetracker=true.

reading This special bibliography style is designed for personal reading lists, annotated bibli-
ographies, and similar applications. It optionally includes the fields annotation,
abstract, library, and file in the bibliography. If desired, it also adds var-
ious kinds of short headers to the bibliography. This style also provides the ad-
ditional preamble options entryhead, entrykey, annotation, abstract,
library, and file which control whether or not the corresponding items are
printed in the bibliography. See the style example for details. See also § 3.11.8. The
style will set the following package options at load time: loadfiles=true,
entryhead=true, entrykey=true, annotation=true, abstract=
true, library=true, file=true.

The following bibliography styles are special purpose styles. They are not intended
for the final version of a document:

draft This draft style includes the entry keys in the bibliography. The bibliography will be
sorted by entry key. The style will set the following package options at load time:
sorting=debug.

debug This style prints all bibliographic data in tabular format. It is intended for debugging
only and will set the following package options at load time: sorting=debug.

3.4 Related Entries

Almost all bibliography styles require authors to specify certain types of relation-
ship between entries such as “Reprint of”, “Reprinted in” etc. It is impossible to
provide data fields to cover all of these relationships and so Biblatex provides a
general mechanism for this using the entry fields related, relatedtype and
relatedstring. A related entry does not need to be cited and does not appear in
the bibliography itself (unless of course it is also cited itself independently) as a clone
is taken of the related entry to be used as a data source. The relatedtype field
should specify a localization string which will be printed before the information from
the related entries is printed, for example “Orig. Pub. as”. The relatedstring
field can be used to override the string determined via relatedtype. Some exam-
ples:

@Book{key1,

...

related = {key2},

relatedtype = {reprintof},

68

...

}

@Book{key2,

...

}

Here we specify that entry key1 is a reprint of entry key2. In the bibliography
driver for Book entries, when \usebibmacro{related} is called for entry
key1:

• If the localization string “reprintof” is defined, it is printed in the
relatedstring:reprintof format. If this formatting directive is unde-
fined, the string is printed in the relatedstring:default format.

• If the related:reprintof macro is defined, it is used to format the infor-
mation contained in entry key2, otherwise the related:default macro
is used

• If the related:reprintof format is defined, it is used to format both the
localization string and data. If this format is not defined, then the related
format is used instead.

It is also supported to have cascading and/or circular relations:

@Book{key1,

...

related = {key2},

relatedtype = {reprintof},

...

}

@Book{key2,

...

related = {key3},

relatedtype = {translationof},

...

}

@Book{key3,

...

related = {key2},

relatedtype = {translatedas},

...

}

Multiple relations to the same entry are also possible:

@MVBook{key1,

...

related = {key2,key3},

relatedtype = {multivolume},

...

69

}

@Book{key2,

...

}

@Book{key3,

...

}

Note the the order of the keys in lists of multiple related entries is important. The
data from multiple related entries is printed in the order of the keys listed in this
field. See § 4.5.1 for a more details on the mechanisms behind this feature. You can
turn this feature off using the package option related from § 3.1.2.1.

You can use the relatedoptions to set options on the related entry data clone.
This is useful if you need to override the dataonly option which is set by default
on all related entry clones. For example, if you will expose some of the names in
the related clone in your document, you may want to have them disambiguated
from names in other entries but normally this won’t happen as related clones have
the per-entry dataonly option set and this in turn sets uniquename=false
and uniquelist=false. In such a case, you can set relatedoptions to just
skiplab, skipbib, skiplos/skipbiblist.

3.5 Sorting Options

This package supports various sorting schemes for the bibliography. The sorting
scheme is selected with the sorting package option from § 3.1.2.1. Apart from the
regular data fields there are also some special fields whichmay be used to optimize the
sorting of the bibliography. Appendices C.1 and C.2 give an outline of the alphabetic
sorting schemes supported by Biblatex. Chronological sorting schemes are listed in
appendix C.3. A few explanations concerning these schemes are in order.

The first item considered in the sorting process is always the presort field of
the entry. If this field is undefined, Biblatex will use the default value ‘mm’ as a
presort string. The next item considered is the sortkey field. If this field is defined,
it serves as the master sort key. Apart from the presort field, no further data
is considered in this case. If the sortkey field is undefined, sorting continues
with the name. The package will try using the sortname, author, editor,
and translator fields, in this order. Which fields are considered also depends
on the setting of the use<name> options. If all such options are disabled, the
sortname field is ignored as well. Note that all name fields are responsive to
maxnames and minnames. If no name field is available, either because all of them
are undefined or because all use<name> options are disabled, Biblatex will fall
back to the sorttitle and title fields as a last resort. The remaining items are,
in various order: the sortyear field, if defined, or the first four digits of the year
field otherwise; the sorttitle field, if defined, or the title field otherwise; the
volume field, which is padded to four digits with leading zeros, or the string 0000
otherwise. Note that the sorting schemes shown in appendix C.2 include an additional
item: labelalpha is the label used by ‘alphabetic’ bibliography styles. Strictly
speaking, the string used for sorting is labelalpha + extraalpha. The sorting
schemes in appendix C.2 are intended to be used in conjunction with alphabetic
styles only.

70

The chronological sorting schemes presented in appendix C.3 also make use of
the presort and sortkey fields, if defined. The next item considered is the
sortyear or the year field, depending on availability. The ynt scheme extracts
the first four Arabic figures from the field. If both fields are undefined, the string
9999 is used as a fallback value. This means that all entries without a year will be
moved to the end of the list. The ydnt scheme is similar in concept but sorts the year
in descending order. As with the ynt scheme, the string 9999 is used as a fallback
value. The remaining items are similar to the alphabetic sorting schemes discussed
above. Note that the ydnt sorting scheme will only sort the date in descending
order. All other items are sorted in ascending order as usual.

Using special fields such as sortkey, sortname, or sorttitle is usually not
required. The Biblatex package is quite capable of working out the desired sorting
order by using the data found in the regular fields of an entry. You will only need
them if you want to manually modify the sorting order of the bibliography or if any
data required for sorting is missing. Please refer to the field descriptions in § 2.2.3
for details on possible uses of the special fields. Also note that using Biber instead of
legacy BibTeX is strongly recommended.

3.6 Bibliography Commands

3.6.1 Resources

\addbibresource[〈options〉]{〈resource〉}

Adds a 〈resource〉, such as a .bib file, to the default resource list. This command is
only available in the preamble. It replaces the \bibliography legacy command.
Note that files must be specified with their full name, including the extension. Do
not omit the .bib extension from the filename. Also note that the 〈resource〉 is a
single resource. Invoke \addbibresource multiple times to add more resources,
for example:

\addbibresource{bibfile1.bib}

\addbibresource{bibfile2.bib}

\addbibresource[location=remote]{http://www.citeulike.org/bibtex/group/9517}

\addbibresource[location=remote,label=lan]{ftp://192.168.1.57/~user/file.bib}

Since the 〈resource〉 string is read in a verbatim-like mode, it may contain arbitrary
characters. The only restriction is that any curly braces must be balanced. The
following 〈options〉 are available:

label=〈identifier〉
Assigns a label to a resource. The 〈identifier〉 may be used in place of the full resource
name in the optional argument of refsection (see § 3.6.5).

location=〈location〉 default: local

The location of the resource. The 〈location〉 may be either local for local resources
or remote for urls. Remote resources require Biber. The protocols http and ftp
are supported. The remote url must be a fully qualified path to a bib file or a url
which returns a bib file.

type=〈type〉 default: file

The type of resource. Currently, the only supported type is file.

71

datatype=〈datatype〉 default: bibtex

The data type (format) of the resource. The following formats are currently supported:

bibtex BibTeX format.

ris Research Information Systems (ris) format.22 Note that an ID Biber only
tag is required in all ris records. The ID value corresponds to
the entry key. Support for this format is experimental.

zoterordfxml Zotero rdf/xml format. Support for this format is experimental. Biber only
Refer to the Biber manual for details.

endnotexml EndNote xml format. Support for this format is experimental. Biber only
Refer to the Biber manual for details.

\addglobalbib[〈options〉]{〈resource〉}

This command differs from \addbibresource in that the 〈resource〉 is added to
the global resource list. The difference between default resources and global resources
is only relevant if there are reference sections in the document and the optional
argument of refsection (§ 3.6.5) is used to specify alternative resources which
replace the default resource list. Any global resources are added to all reference
sections.

\addsectionbib[〈options〉]{〈resource〉}

This command differs from \addbibresource in that the resource 〈options〉 are
registered but the 〈resource〉 not added to any resource list. This is only required for
resources which 1) are given exclusively in the optional argument of refsection
(§ 3.6.5) and 2) require options different from the default settings. In this case,
\addsectionbib is employed to qualify the 〈resource〉 prior to using it by setting
the appropriate 〈options〉 in the preamble. The label option may be useful to assign
a short name to the resource.

\bibliography{〈bibfile, …〉} Deprecated

The legacy command for adding bibliographic resources, supported for backwards
compatibility. Like \addbibresource, this command is only available in the
preamble and adds resources to the default resource list. Its argument is a comma-
separated list of bib files. The .bib extension may be omitted from the filename.
Invoking this commandmultiple times to addmore files is permissible. This command
is deprecated. Please consider using \addbibresource instead.

3.6.2 The Bibliography

\printbibliography[〈key=value, …〉]

This command prints the bibliography. It takes one optional argument, which is a
list of options given in 〈key〉=〈value〉 notation. The following options are available:

env=〈name〉 default: bibliography/shorthands

The ‘high-level’ layout of the bibliography and the list of shorthands is con-
trolled by environments defined with \defbibenvironment. This op-
tion selects an environment. The 〈name〉 corresponds to the identifier used
22
http://en.wikipedia.org/wiki/RIS_(file_format)

72

http://en.wikipedia.org/wiki/RIS_(file_format)

when defining the environment with \defbibenvironment. By default,
the \printbibliography command uses the identifier bibliography;
\printbiblist uses shorthands. See also §§ 3.6.4 and 3.6.8.

heading=〈name〉 default: bibliography/shorthands

Thebibliography and the list of shorthands typically have a chapter or section heading.
This option selects the heading 〈name〉, as defined with \defbibheading. By
default, the\printbibliography command uses the headingbibliography;
\printbiblist uses shorthands. See also §§ 3.6.4 and 3.6.8.

title=〈text〉

This option overrides the default title provided by the heading selected with the
heading option, if supported by the heading definition. See § 3.6.8 for details.

prenote=〈name〉

The prenote is an arbitrary piece of text to be printed after the heading but be-
fore the list of references. This option selects the prenote 〈name〉, as defined with
\defbibnote. By default, no prenote is printed. The note is printed in the standard
text font. It is not affected by \bibsetup and \bibfont but it may contain its
own font declarations. See § 3.6.9 for details.

postnote=〈name〉

The postnote is an arbitrary piece of text to be printed after the list of references.
This option selects the postnote 〈name〉, as defined with \defbibnote. By default,
no postnote is printed. The note is printed in the standard text font. It is not affected
by \bibsetup and \bibfont but it may contain its own font declarations. See
§ 3.6.9 for details.

section=〈integer〉 default: current section

Print only entries cited in reference section 〈integer〉. The reference sections are
numbered starting at 1. All citations given outside a refsection environment are
assigned to section 0. See § 3.6.5 for details and § 3.11.3 for usage examples.

segment=〈integer〉 default: 0

Print only entries cited in reference segment 〈integer〉. The reference segments are
numbered starting at 1. All citations given outside a refsegment environment
are assigned to segment 0. See § 3.6.6 for details and § 3.11.3 for usage examples.
Remember that segments within a section are numbered local to the section so the
segment you request will be the nth segment in the requested (or currently active
enclosing) section.

type=〈entrytype〉

Print only entries whose entry type is 〈entrytype〉.

nottype=〈entrytype〉

Print only entries whose entry type is not 〈entrytype〉. This option may be used
multiple times.

73

subtype=〈subtype〉

Print only entries whose entrysubtype is defined and 〈subtype〉.

notsubtype=〈subtype〉

Print only entries whose entrysubtype is undefined or not 〈subtype〉. This option
may be used multiple times.

keyword=〈keyword〉

Print only entries whose keywords field includes 〈keyword〉. This option may be
used multiple times.

notkeyword=〈keyword〉

Print only entries whose keywords field does not include 〈keyword〉. This option
may be used multiple times.

category=〈category〉

Print only entries assigned to category 〈category〉. This option may be used multiple
times.

notcategory=〈category〉

Print only entries not assigned to category 〈category〉. This option may be used
multiple times.

filter=〈name〉

Filter the entries with filter 〈name〉, as defined with \defbibfilter. See § 3.6.10
for details.

check=〈name〉

Filter the entries with check 〈name〉, as defined with \defbibcheck. See § 3.6.10
for details.

prefixnumbers=〈string〉

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. Setting this option
will implicitly enable resetnumbers for the current bibliography. The option as-
signs the 〈string〉 as a prefix to all entries in the respective bibliography. For example,
if the 〈string〉 is A, the numerical labels printed will be [A1], [A2], [A3], etc. This
is useful for subdivided numerical bibliographies where each subbibliography uses a
different prefix. The 〈string〉 is available to styles in the prefixnumber field of all
affected entries. See § 4.2.4.2 for details.

resetnumbers=〈true,false,number〉

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. If enabled, it will
reset the numerical labels assigned to the entries in the respective bibliography,
i. e., the numbering will restart at 1. You can also pass a number to this option, for
example: resetnumbers=10 to reset numbering to the specified number to aid
numbering continuity across documents. Use this option with care as Biblatex can
not guarantee unique labels globally if they are reset manually.

74

omitnumbers=true, false

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. If enabled, Biblatex
will not assign a numerical label to the entries in the respective bibliography. This is
useful when mixing a numerical subbibliography with one or more subbibliographies
using a different scheme (e. g., author-title or author-year).

\bibbysection[〈key=value, …〉]

This command automatically loops over all reference sections. This is equivalent
to giving one \printbibliography command for every section but has the
additional benefit of automatically skipping sections without references. Note that
\bibbysection starts looking for references in section 1. It will ignore ref-
erences given outside of refsection environments since they are assigned to
section 0. See § 3.11.3 for usage examples. The options are a subset of those sup-
ported by \printbibliography. Valid options are env, heading, prenote,
postnote. The current bibliography context sorting scheme is used for all sections
(see § 3.6.11).

\bibbysegment[〈key=value, …〉]

This command automatically loops over all reference segments. This is equivalent
to giving one \printbibliography command for every segment in the current
refsection but has the additional benefit of automatically skipping segments
without references. Note that \bibbysegment starts looking for references in
segment 1. It will ignore references given outside of refsegment environments
since they are assigned to segment 0. See § 3.11.3 for usage examples. The options
are a subset of those supported by \printbibliography. Valid options are
env, heading, prenote, postnote. The current bibliography context sorting
scheme is used for all segments (see § 3.6.11).

\bibbycategory[〈key=value, …〉]

This command loops over all bibliography categories. This is equivalent to giving one
\printbibliography command for every category but has the additional benefit
of automatically skipping empty categories. The categories are processed in the order
in which they were declared. See § 3.11.3 for usage examples. The options are a subset
of those supported by \printbibliography. Valid options are env, prenote,
postnote, section. Note that heading is not available with this command.
The name of the current category is automatically used as the heading name. This
is equivalent to passing heading=〈category〉 to \printbibliography and
implies that there must be a matching heading definition for every category. The
current bibliography context sorting scheme is used for all categories (see § 3.6.11).

\printbibheading[〈key=value, …〉]

This command prints a bibliography heading defined with \defbibheading. It
takes one optional argument, which is a list of options given in 〈key〉=〈value〉 nota-
tion. The options are a small subset of those supported by \printbibliography.
Valid options are heading and title. By default, this command uses the heading
bibliography. See § 3.6.8 for details. Also see §§ 3.11.3 and 3.11.4 for usage
examples.

To print a bibliographywith a different sorting scheme than the global sorting scheme,
use the bibliography context switching commands from § 3.6.11.

75

3.6.3 The List of Shorthands

This section applies only to BibTeX. When using Biber, the list of shorthands is just a BibTeX only
special case of a bibliography list. See § 3.6.4.

If any entry includes a shorthand field, biblatex automatically builds a list
of shorthands which may be printed in addition to the regular bibliography. The
following command prints the list of shorthands.

\printshorthands[〈key=value, …〉]

This command prints the list of shorthands. It takes one optional argument, which
is a list of options given in 〈key〉=〈value〉 notation. Valid options are all op-
tions supported by \printbibliography (§ 3.6.2) except prefixnumbers,
resetnumbers, and omitnumbers. If there are any refsection environ-
ments in the document, the list of shorthands will be local to these environments;
see § 3.6.5 for details. By default, this command uses the heading shorthands.
See § 3.6.8 for details.

The sorting option differs from \printbibliography in that if omitted, the
default is to sort by shorthand.

3.6.4 Bibliography Lists

This section applies only to Biber. It is a generalisation of the shorthands facility Biber only
available in earlier versions and with BibTeX. When using BibTeX as the backend,
please refer to section § 3.6.3.

Biblatex can, in addition to printing normal bibliographies, also print arbitrary
lists of information derived from the bibliography data such as a list of shorthand
abbreviations for particular entries or a list of abbreviations of journal titles.

A bibliography list differs from a normal bibliography in that the same bibliography
driver is used to print all entries rather than a specific driver being used for each
entry depending on the entry type.

\printbiblist[〈key=value, …〉]{〈<biblistname>〉}

This command prints a bibliography list. It takes an optional argument, which is a list
of options given in 〈key〉=〈value〉 notation. Valid options are all options supported
by \printbibliography (§ 3.6.2) except prefixnumbers, resetnumbers,
and omitnumbers. If there are any refsection environments in the document,
the bibliography list will be local to these environments; see § 3.6.5 for details. By
default, this command uses the heading biblist. See § 3.6.8 for details.

The 〈biblistname〉 is a mandatory argument which names the bibliography list. This
name is used to identify:

•The default bibliography driver used to print the list entries

•A default filter declared with \DeclareBiblistFilter (see § 4.5.6) used
to filter the entries returned from Biber

•A default check declared with \defbibcheck (see § 3.6.10) used to post-
process the list entries

•The default bib environment to use

•The default sorting scheme name to use

76

In terms of sorting the list, the default is to sort use the sorting scheme named after
the bibliography list (if it exists) and only then to fall back to the current context
sorting scheme is this is not defined (see § 3.6.11).

The most common bibliography list is a list of shorthand abbreviations for certain
entries and so this has a convenience alias \printshorthands[…] for backwards
compatibility which is defined as:

\printbiblist[...]{shorthand}

Biblatex provides automatic support for data source fields in the default data model
marked as ‘Label fields’ (See § 2.2.2). Such fields automatically have defined for them:

•A default bib environment (See § 3.6.8)

•A bibliography list filter (See § 4.5.6)

•Some supporting formats and lengths (See § 4.10.5 and § 4.10.4)

Therefore only a minimal setup is required to print bibliography lists with such fields.
For example, to print a list of journal title abbreviations, you can minimally put this
in your preamble:

\DeclareBibliographyDriver{shortjournal}{%

\printfield{journaltitle}}

Then you can put this in your document where you want to print the list:

\printbiblist[title={Journal Shorthands}]{shortjournal}

Since shortjournal is defined in the default data model as a ‘Label field’, this
example:

•Uses the automatically created ‘shortjournal’ bib environment

•Uses the automatically created ‘shortjournal’ bibliography list filter to return
only entries with a shortjournal field in the .bbl

•Uses the defined ‘shortjournal’ bibliography driver to print the entries

•Uses the default ‘biblist’ heading but overrides the title with ‘Journal Short-
hands’

•Uses the current bibliography context sorting scheme no scheme exists with
the name shortjournal

Often, you will want to sort on the label field of the list and since a sorting scheme is
automatically picked up if it is named after the list, in this case you could simply do:

\DeclareSortingScheme{shortjournal}{

\sort{

\field{shortjournal}

}

}

Naturally all defaults can be overridden by options to \printbiblist and defini-
tions of the environments, filters etc. and in this way arbitrary types of bibliography
lists can be printed containing a variety of information from the bibliography data.

77

Bibliography lists are often used to print lists of various kinds of shorthands and
this can result in duplicate entries if more than one bibliography entry has the same
shorthand. For example, several journal articles in the same journal would result
in duplicate entries in a list of journal shorthands. You can use the fact that such
lists automatically pick up a \bibcheck with the same name as the list to define
a check to remove duplicates. If you are defining a list to print all of the journal
shorthands using the shortjournal field, you could define a \bibcheck like
this:

\defbibcheck{shortjournal}{%

\iffieldundef{shortjournal}{\skipentry}{%

\iffieldundef{journal}{\skipentry}{%

\ifcsdef{\strfield{shortjournal}=\strfield{journal}}

{\skipentry}

{\savefieldcs{journal}{\strfield{shortjournal}=\strfield{journal}}}}}}

3.6.5 Bibliography Sections

The refsection environment is used in the document body to mark a reference
section. This environment is useful if you want separate, independent bibliographies
and bibliography lists in each chapter, section, or any other part of a document.
Within a reference section, all cited works are assigned labels which are local to
the environment. Technically, reference sections are completely independent from
document divisions such as \chapter and \section even though they will most
likely be used per chapter or section. See the refsection package option in
§ 3.1.2.1 for a way to automate this. Also see § 3.11.3 for usage examples.

\begin{refsection}[〈resource, …〉]
\end{refsection}

The optional argument is a comma-separated list of resources specific to the reference
section. If the argument is omitted, the reference section will use the default re-
source list, as specified with \addbibresource in the preamble. If the argument
is provided, it replaces the default resource list. Global resources specified with
\addglobalbib are always considered. refsection environments may not
be nested, but you may use refsegment environments within a refsection to
subdivide it into segments. Use the section option of \printbibliography
to select a section when printing the bibliography, and the corresponding option
of \printbiblist when printing bibliography lists. Bibliography sections are
numbered starting at 1. The number of the current section is also written to the
transcript file. All citations given outside a refsection environment are assigned
to section 0. If \printbibliography is used within a refsection, it will
automatically select the current section. The section option is not required in this
case. This also applies to \printbiblist.

\newrefsection[〈resource, …〉]

This command is similar to the refsection environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference section (if any) and immediately starts a new one. Note that the reference
section started by the last\newrefsection command in the document will extend
to the very end of the document. Use \endrefsection if you want to terminate
it earlier.

78

3.6.6 Bibliography Segments

The refsegment environment is used in the document body to mark a reference
segment. This environment is useful if you want one global bibliography which
is subdivided by chapter, section, or any other part of the document. Technically,
reference segments are completely independent from document divisions such as
\chapter and \section even though they will typically be used per chapter or
section. See the refsegment package option in § 3.1.2.1 for a way to automate
this. Also see § 3.11.3 for usage examples.

\begin{refsegment}

\end{refsegment}

The difference between a refsection and a refsegment environment is that
the former creates labels which are local to the environment whereas the latter pro-
vides a target for the segment filter of \printbibliography without affect-
ing the labels. They will be unique across the entire document. refsegment
environments may not be nested, but you may use them in conjunction with
refsection to subdivide a reference section into segments. In this case, the
segments are local to the enclosing refsection environment. Use the segment
option of \printbibliography to select a segment when printing the biblio-
graphy. Within a section, the reference segments are numbered starting at 1 and
the number of the current segment will be written to the transcript file. All citations
given outside a refsegment environment are assigned to segment 0. In contrast to
the refsection environment, the current segment is not selected automatically
if \printbibliography is used within a refsegment environment.

\newrefsegment This command is similar to the refsegment environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference segment (if any) and immediately starts a new one. Note that the reference
segment started by the last \newrefsegment command will extend to the end of
the document. Use \endrefsegment if you want to terminate it earlier.

3.6.7 Bibliography Categories

Bibliography categories allow you to split the bibliography into multiple parts dedi-
cated to different topics or different types of references, for example primary and
secondary sources. See § 3.11.4 for usage examples.

\DeclareBibliographyCategory{〈category〉}

Declares a new 〈category〉, to be used in conjunction with \addtocategory

and the category and notcategory filters of \printbibliography. This
command is used in the document preamble.

\addtocategory{〈category〉}{〈key〉}

Assigns a 〈key〉 to a 〈category〉, to be used in conjunction with the category and
notcategory filters of \printbibliography. This command may be used in
the preamble and in the document body. The 〈key〉 may be a single entry key or a
comma-separated list of keys. The assignment is global.

79

3.6.8 Bibliography Headings and Environments

\defbibenvironment{〈name〉}{〈begin code〉}{〈end code〉}{〈item code〉}

This command defines bibliography environments. The 〈name〉 is an identifier passed
to the env option of \printbibliography and \printbiblistwhen select-
ing the environment. The 〈begin code〉 is LaTeX code to be executed at the beginning
of the environment; the 〈end code〉 is executed at the end of the environment; the
〈item code〉 is code to be executed at the beginning of each entry in the bibliography
or a bibliography list. Here is an example of a definition based on the standard LaTeX
list environment:

\defbibenvironment{bibliography}

{\list{}

{\setlength{\leftmargin}{\bibhang}%

\setlength{\itemindent}{-\leftmargin}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}}}

{\endlist}

{\item}

As seen in the above example, usage of \defbibenvironment is roughly similar
to \newenvironment except that there is an additional mandatory argument for
the 〈item code〉.

\defbibheading{〈name〉}[〈title〉]{〈code〉}

This command defines bibliography headings. The 〈name〉 is an identifier to be passed
to theheading option of\printbibliography or\printbibheading and
\printbiblist when selecting the heading. The 〈code〉 should be LaTeX code
generating a fully-fledged heading, including page headers and an entry in the table of
contents, if desired. If \printbibliography or \printbiblist are invoked
with a title option, the title will be passed to the heading definition as #1. If not,
the default title specified by the optional 〈title〉 argument is passed as #1 instead.
The 〈title〉 argument will typically be \bibname, \refname, or \biblistname
(see § 4.9.2.1). This command is often needed after changes to document headers in
the preamble. Here is an example of a simple heading definition:

\defbibheading{bibliography}[\bibname]{%

\chapter*{#1}%

\markboth{#1}{#1}}

The following headings, which are intended for use with
\printbibliography and \printbibheading, are predefined:

bibliography

This is the default heading used by \printbibliography if the heading op-
tion is not given. Its default definition depends on the document class. If the class
provides a \chapter command, the heading is similar to the bibliography heading
of the standard LaTeX book class, i. e., it uses \chapter* to create an unnum-
bered chapter heading which is not included in the table of contents. If there is
no \chapter command, it is similar to the bibliography heading of the standard

80

LaTeX article class, i. e., it uses \section* to create an unnumbered section
heading which is not included in the table of contents. The string used in the heading
also depends on the document class. With book-like classes the localization string
bibliography is used, with other classes it is references (see § 4.9.2). See
also §§ 3.12.1 and 3.12.2 for class-specific hints.

subbibliography

Similar to bibliography but one sectioning level lower. This heading defi-
nition uses \section* instead of \chapter* with a book-like class and
\subsection* instead of \section* otherwise.

bibintoc

Similar to bibliography above but adds an entry to the table of contents.

subbibintoc

Similar to subbibliography above but adds an entry to the table of contents.

bibnumbered

Similar to bibliography above but uses \chapter or \section to create a
numbered heading which is also added to the table of contents.

subbibnumbered

Similar to subbibliography above but uses \section or \subsection to
create a numbered heading which is also added to the table of contents.

none

A blank heading definition. Use this to suppress the heading.

The following headings intended for use with \printbiblist are predefined:

biblist

This is the default heading used by \printbiblist if the heading option is
not given. It is similar to bibliography above except that it uses the localization
string shorthands instead of bibliography or references (see § 4.9.2). See
also §§ 3.12.1 and 3.12.2 for class-specific hints.

biblistintoc

Similar to biblist above but adds an entry to the table of contents.

biblistnumbered

Similar to biblist above but uses \chapter or \section to create a numbered
heading which is also added to the table of contents.

3.6.9 Bibliography Notes

\defbibnote{〈name〉}{〈text〉}

Defines the bibliography note 〈name〉, to be used via the prenote and postnote
options of \printbibliography and \printbiblist. The 〈text〉 may be
any arbitrary piece of text, possibly spanning several paragraphs and containing font
declarations. Also see § 3.12.6.

81

3.6.10 Bibliography Filters and Checks

\defbibfilter{〈name〉}{〈expression〉}

Defines the custom bibliography filter 〈name〉, to be used via the filter option of
\printbibliography. The 〈expression〉 is a complex test based on the logical
operators and, or, not, the group separator (...), and the following atomic tests:

segment=〈integer〉

Matches all entries cited in reference segment 〈integer〉.

type=〈entrytype〉

Matches all entries whose entry type is 〈entrytype〉.

subtype=〈subtype〉

Matches all entries whose entrysubtype is 〈subtype〉.

keyword=〈keyword〉

Matches all entries whose keywords field includes 〈keyword〉. If the 〈keyword〉
contains spaces, it needs to be wrapped in braces.

category=〈category〉

Matches all entries assigned to 〈category〉 with \addtocategory.

Here is an example of a filter expression:

\defbibfilter{example}{%

(type=book or type=inbook)

and keyword=abc

and not keyword={x y z}

}

This filter will match all entries whose entry type is either @book or @inbook
and whose keywords field includes the keyword ‘abc’ but not ‘x y z’. As seen
in the above example, all elements are separated by whitespace (spaces, tabs, or
line endings). There is no spacing around the equal sign. The logical operators are
evaluated with the \ifboolexpr command from the etoolbox package. See the
etoolbox manual for details about the syntax. The syntax of the \ifthenelse
command from the ifthen package, which has been employed in older versions of
Biblatex, is still supported. This is the same test using ifthen-like syntax:

\defbibfilter{example}{%

\(\type{book} \or \type{inbook} \)

\and \keyword{abc}

\and \not \keyword{x y z}

}

Note that custom filters are local to the reference section in which they are used. Use
the section filter of \printbibliography to select a different section. This
is not possible from within a custom filter.

82

\defbibcheck{〈name〉}{〈code〉}

Defines the custom bibliography filter 〈name〉, to be used via the check op-
tion of \printbibliography. \defbibcheck is similar in concept to
\defbibfilter but much more low-level. Rather than a high-level expression,
the 〈code〉 is LaTeX code, much like the code used in driver definitions, which may
perform arbitrary tests to decide whether or not a given entry is to be printed. The
bibliographic data of the respective entry is available when the 〈code〉 is executed.
Issuing the command \skipentry in the 〈code〉 will cause the current entry to be
skipped. For example, the following filter will only output entries with anabstract
field:

\defbibcheck{abstract}{%

\iffieldundef{abstract}{\skipentry}{}}

...

\printbibliography[check=abstract]

The following check will exclude all entries published before the year 2000:

\defbibcheck{recent}{%

\iffieldint{year}

{\ifnumless{\thefield{year}}{2000}

{\skipentry}

{}}

{\skipentry}}

See the author guide, in particular §§ 4.6.2 and 4.6.3, for further details.

3.6.11 Bibliography Contexts

Biber only
References in a bibliography are cited and printed in a ‘context’. The context

determines the data which is actually used to cite or provide bibliographic data for
an entry. A context consists currently of the following information (the ‘context’
concept is designed for future extensibility):

• A sorting scheme

The point of bibliography contexts is twofold. Firstly, they are used to set options
which influence a printed bibliography and secondly to influence the data printed by
citation commands. The former use is the most common when one needs to print
more than one bibliography list with different, for example, sorting.

\usepackage[sorting=nyt]{biblatex}

\begin{document}

\cite{one}

\cite{two}

\printbibliography

\newrefcontext[sorting=ydnt]

\printbibliography

83

Here we print two bibliographies, one with the default ‘nyt’ sorting scheme and one
with the ‘ydnt’ sorting scheme.

To demonstrate the second type of use of bibliography contexts, we have to
understand that the actual data for an entry can vary depending on the context.
This is most obvious in the case of the extra* fields like extrayear which are
generated by the backend according to the order of entries after sorting so that they
come out in the expected ‘a, b, c’ order. This clearly shows that the data in an entry
can be different between sorting schemes. If a document contains more than one
bibliography list with different sorting schemes, it can happen then that the .bbl
contains sorting lists with the same entry but containing different data (a different
value for extrayear, for example). The purpose of bibliography contexts is to
encapsulate things inside a context so that Biblatex can use the correct entry data.
An example is printing a bibliography list with a different sorting order to the global
sorting order where the extra* fields are different for the same entry between
sorting lists:

\usepackage[sorting=nyt,style=authoryear]{biblatex}

\DeclareSortingScheme{yntd}{

\sort{

\field[strside=left,strwidth=4]{sortyear}

\field[strside=left,strwidth=4]{year}

\literal{9999}

}

\sort{

\field{sortname}

\field{author}

\field{editor}

}

\sort[direction=descending]{

\field{sorttitle}

\field{title}

}

}

\begin{document}

\cite{one}

\cite{two}

\printbibliography

\newrefcontext[sorting=yntd]

\cite{one}

\cite{two}

\printbibliography

Here, the second use of the citations, along with the \printbibliography
command will use data from the context of the custom ‘yntd’ sorting scheme which
may well be different from the data associated with the default ‘nyt’ scheme. That is,
the citation labels (in an authoryear style which uses extrayear) may be different
for the exact same entries between different bibliography contexts and so the citations
themselves may look different.

\begin{refcontext}[〈key=value, …〉]
\end{refcontext}

Wraps a bibliography context environment. The options define the context attributes.

84

All context attributes are optional and default to the global settings if absent. The
current options are:

sorting=〈name〉
Specify a sorting scheme defined previously with \DeclareSortingScheme.
This scheme is used to determine which data to retrieve and/or print for an entry in
the commands inside the context.

The refcontext environment cannot be nested and Biblatex will generate an error
if you try to do so.

\newrefcontext[〈key=value, …〉]

This command is similar to the refcontext environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
context section (if any) and immediately starts a new one. Note that the context
section started by the last\newrefcontext command in the document will extend
to the very end of the document. Use \endrefcontext if you want to terminate
it earlier.

At the beginning of the document, there is always a global context containing global
settings for each of the context attributes.

3.6.12 Dynamic Entry Sets

In addition to the @set entry type, Biblatex also supports dynamic entry sets defined
on a per-document/per-refsection basis. The following command, which may be
used in the document preamble or the document body, defines the set 〈key〉:

\defbibentryset{〈key〉}{〈key1,key2,key3, …〉}
Biber only

The 〈key〉 is the entry key of the set, which is used like any other entry keywhen refer-
ring to the set. The 〈key〉 must be unique and it must not conflict with any other entry
key. The second argument is a comma-separated list of the entry keys which make
up the set. \defbibentryset implies the equivalent of a \nocite command,
i. e., all sets which are declared are also added to the bibliography. When declaring
the same set more than once, only the first invocation of \defbibentryset will
define the set. Subsequent definitions of the same 〈key〉 are ignored and work like
\nocite〈key〉. Dynamic entry sets defined in the document body are local to the
enclosing refsection environment, if any. Otherwise, they are assigned to refer-
ence section 0. Those defined in the preamble are assigned to reference section 0.
Note that dynamic entry sets require Biber. They will not work with any other
backend. See § 3.11.5 for further details.

3.7 Citation Commands

All citation commands generally take one mandatory and two optional arguments.
The 〈prenote〉 is text to be printed at the beginning of the citation. This is usually
a notice such as ‘see’ or ‘compare’. The 〈postnote〉 is text to be printed at the very
end of the citation. This is usually a page number. If only one of these arguments is
given, it is taken as a postnote. If you want to specify a prenote but no postnote, you
need to leave the second optional argument empty, as in \cite[see][]{key}.
The 〈key〉 argument to all citation commands is mandatory. This is the entry key or
a comma-separated list of keys corresponding to the entry keys in the bib file. In
sum, all basic citations commands listed further down have the following syntax:

85

\command[〈prenote〉][〈postnote〉]{〈keys〉}〈punctuation〉

If the autopunct package option from § 3.1.2.1 is enabled, they will scan ahead
for any 〈punctuation〉 immediately following their last argument. This is useful to
avoid spurious punctuation marks after citations. This feature is configured with
\DeclareAutoPunctuation, see § 4.7.5 for details.

3.7.1 Standard Commands

The following commands are defined by the citation style. Citation styles may
provide any arbitrary number of specialized commands, but these are the standard
commands typically provided by general-purpose styles.

\cite[〈prenote〉][〈postnote〉]{〈key〉}
\Cite[〈prenote〉][〈postnote〉]{〈key〉}

These are the bare citation commands. They print the citation without any addi-
tions such as parentheses. The numeric and alphabetic styles still wrap the label in
square brackets since the reference may be ambiguous otherwise. \Cite is similar
to \cite but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

\parencite[〈prenote〉][〈postnote〉]{〈key〉}
\Parencite[〈prenote〉][〈postnote〉]{〈key〉}

These commands use a format similar to \cite but enclose the entire citation
in parentheses. The numeric and alphabetic styles use square brackets instead.
\Parencite is similar to \parencite but capitalizes the name prefix of the first
name in the citation if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all.

\footcite[〈prenote〉][〈postnote〉]{〈key〉}
\footcitetext[〈prenote〉][〈postnote〉]{〈key〉}

These command use a format similar to\cite but put the entire citation in a footnote
and add a period at the end. In the footnote, they automatically capitalize the name
prefix of the first name if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all. \footcitetext differs
from \footcite in that it uses \footnotetext instead of \footnote.

3.7.2 Style-specific Commands

The following additional citation commands are only provided by some of the citation
styles which ship with this package.

\textcite[〈prenote〉][〈postnote〉]{〈key〉}
\Textcite[〈prenote〉][〈postnote〉]{〈key〉}

These citation commands are provided by all styles that ship with this package. They
are intended for use in the flow of text, replacing the subject of a sentence. They print
the authors or editors followed by a citation label which is enclosed in parentheses.
Depending on the citation style, the label may be a number, the year of publication,
an abridged version of the title, or something else. The numeric and alphabetic styles
use square brackets instead of parentheses. In the verbose styles, the label is provided

86

in a footnote. Trailing punctuation is moved between the author or editor names
and the footnote mark. \Textcite is similar to \textcite but capitalizes the
name prefix of the first name in the citation if the useprefix option is enabled,
provided that there is a name prefix.

\smartcite[〈prenote〉][〈postnote〉]{〈key〉}
\Smartcite[〈prenote〉][〈postnote〉]{〈key〉}

Like \parencite in a footnote and like \footcite in the body.

\cite*[〈prenote〉][〈postnote〉]{〈key〉}

This command is provided by all author-year and author-title styles. It is similar to
the regular \cite command but merely prints the year or the title, respectively.

\parencite*[〈prenote〉][〈postnote〉]{〈key〉}

This command is provided by all author-year and author-title styles. It is similar to the
regular \parencite command but merely prints the year or the title, respectively.

\supercite{〈key〉}

This command, which is only provided by the numeric styles, prints numeric ci-
tations as superscripts without brackets. It uses \supercitedelim instead of
\multicitedelim as citation delimiter. Note that any 〈prenote〉 and 〈postnote〉
arguments are ignored. If they are given, \supercite will discard them and issue
a warning message.

3.7.3 Qualified Citation Lists

This package supports a class of special citation commands called ‘multicite’ com-
mands. The point of these commands is that their argument is a list of citations where
each item forms a fully qualified citation with a pre- and/or postnote. This is particu-
larly useful with parenthetical citations and citations given in footnotes. It is also
possible to assign a pre- and/or postnote to the entire list. The multicite commands
are built on top of backend commands like \parencite and \footcite. The ci-
tation style provides a multicite definition with \DeclareMultiCiteCommand
(see § 4.3.1). The following example illustrates the syntax of multicite commands:

\parencites[35]{key1}[88--120]{key2}[23]{key3}

The format of the arguments is similar to that of the regular citation commands,
except that only one citation command is given. If only one optional argument is
given for an item in the list, it is taken as a postnote. If you want to specify a prenote
but no postnote, you need to leave the second optional argument of the respective
item empty:

\parencites[35]{key1}[chapter 2 in][]{key2}[23]{key3}

In addition to that, the entire citation list may also have a pre- and/or postnote. The
syntax of these global notes differs from other optional arguments in that they are
given in parentheses rather than the usual brackets:

\parencites(and chapter 3)[35]{key1}[78]{key2}[23]{key3}

\parencites(Compare)()[35]{key1}[78]{key2}[23]{key3}

\parencites(See)(and the introduction)[35]{key1}[78]{key2}[23]{key3}

87

Note that the multicite commands keep on scanning for arguments until they en-
counter a token that is not the start of an optional or mandatory argument. If a
left brace or bracket follows a multicite command, you need to mask it by adding
\relax or a control space (a backslash followed by a space) after the last valid
argument. This will cause the scanner to stop.

\parencites[35]{key1}[78]{key2}\relax[...]

\parencites[35]{key1}[78]{key2}\␣{...}

By default, this package provides the following multicite commands which corre-
spond to regular commands from §§ 3.7.1 and 3.7.2:

\cites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Cites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \cite and \Cite, respectively.

\parencites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Parencites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \parencite and \Parencite, respectively.

\footcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\footcitetexts(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \footcite and \footcitetext, respectively.

\smartcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Smartcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \smartcite and \Smartcite, respectively.

\textcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Textcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \textcite and \Textcite, respectively.

\supercites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \supercite. This command is only provided by the
numeric styles.

3.7.4 Style-independent Commands

Sometimes it is desirable to give the citations in the source file in a format that is
not tied to a specific citation style and can be modified globally in the preamble.
The format of the citations is easily changed by loading a different citation style.
However, when using commands such as \parencite or \footcite, the way
the citations are integrated with the text is still effectively hard-coded. The idea
behind the \autocite command is to provide higher-level citation markup which
makes global switching from inline citations to citations given in footnotes (or
as superscripts) possible. The \autocite command is built on top of backend
commands like \parencite and \footcite. The citation style provides an
\autocite definition with \DeclareAutoCiteCommand (see § 4.3.1). This
definition may be activated with the autocite package option from § 3.1.2.1. The
citation style will usually initialize this package option to a value which is suitable

88

for the style, see § 3.3.1 for details. Note that there are certain limits to high-level
citation markup. For example, inline author-year citation schemes often integrate
citations so tightly with the text that it is virtually impossible to automatically convert
them to footnotes. The \autocite command is only applicable in cases in which
you would normally use \parencite or \footcite (or \supercite, with a
numeric style). The citations should be given at the end of a sentence or a partial
sentence, immediately preceding the terminal punctuation mark, and they should
not be a part of the sentence in a grammatical sense (like \textcite, for example).

\autocite[〈prenote〉][〈postnote〉]{〈key〉}
\Autocite[〈prenote〉][〈postnote〉]{〈key〉}

In contrast to other citation commands, the \autocite command does not only
scan ahead for punctuation marks following its last argument to avoid double
punctuation marks, it actually moves them around if required. For example, with
autocite=footnote, a trailing punctuation mark will be moved such that
the footnote mark is printed after the punctuation. \Autocite is similar to
\autocite but capitalizes the name prefix of the first name in the citation if
the useprefix option is enabled, provided that there is a name prefix and the
citation style prints any name at all.

\autocite*[〈prenote〉][〈postnote〉]{〈key〉}
\Autocite*[〈prenote〉][〈postnote〉]{〈key〉}

The starred variants of \autocite do not behave differently from the regular
ones. The asterisk is simply passed on to the backend command. For example, if
\autocite is configured to use \parencite, then \autocite* will execute
\parencite*.

\autocites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Autocites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

This is the multicite version of \autocite. It also detects and moves punctua-
tion if required. Note that there is no starred variant. \Autocites is similar to
\autocites but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

3.7.5 Text Commands

The following commands are provided by the core of Biblatex. They are intended
for use in the flow of text. Note that all text commands are excluded from citation
tracking.

\citeauthor[〈prenote〉][〈postnote〉]{〈key〉}
\citeauthor*[〈prenote〉][〈postnote〉]{〈key〉}
\Citeauthor[〈prenote〉][〈postnote〉]{〈key〉}
\Citeauthor*[〈prenote〉][〈postnote〉]{〈key〉}

These commands print the authors. Strictly speaking, it prints the labelname list,
which may be the author, the editor, or the translator. \Citeauthor is
similar to \citeauthor but capitalizes the name prefix of the first name in the
citation if the useprefix option is enabled, provided that there is a name prefix.
The starred variants effectively force maxcitenames to 1 for just this command on

89

so only print the first name in the labelname list (potentially followed by the “et
al” string if there are more names). This allows more natural textual flow when
refering to a paper in the singular when otherwise \citeauthor would generate
a (naturally plural) list of names.

\citetitle[〈prenote〉][〈postnote〉]{〈key〉}
\citetitle*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the title. It will use the abridged title in the shorttitle
field, if available. Otherwise it falls back to the full title found in the title field.
The starred variant always prints the full title.

\citeyear[〈prenote〉][〈postnote〉]{〈key〉}
\citeyear*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the year (year field or year component of date). The starred
variant includes the extrayear information, if any.

\citedate[〈prenote〉][〈postnote〉]{〈key〉}
\citedate*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the full date (date or year). The starred variant includes the
extrayear information, if any.

\citeurl[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the url field.

\parentext{〈text〉}

This command wraps the 〈text〉 in context sensitive parentheses.

\brackettext{〈text〉}

This command wraps the 〈text〉 in context sensitive brackets.

3.7.6 Special Commands

The following special commands are also provided by the core of Biblatex.

\nocite{〈key〉}
\nocite{*}

This command is similar to the standard LaTeX \nocite command. It adds the
〈key〉 to the bibliography without printing a citation. If the 〈key〉 is an asterisk, all
entries available in the bib file are added to the bibliography. Like all other citation
commands, \nocite commands in the document body are local to the enclosing
refsection environment, if any. In contrast to standard LaTeX, \nocite may
also be used in the document preamble. In this case, the references are assigned to
reference section 0.

\fullcite[〈prenote〉][〈postnote〉]{〈key〉}

This command uses the bibliography driver for the respective entry type to create a
full citation similar to the bibliography entry. It is thus related to the bibliography
style rather than the citation style.

90

\footfullcite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \fullcite but puts the entire citation in a footnote and adds a period
at the end.

\volcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Volcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

These commands are similar to \cite and \Cite but intended for references to
multi-volume works which are cited by volume and page number. Instead of the
〈postnote〉, they take a mandatory 〈volume〉 and an optional 〈page〉 argument. Since
they merely compose the postnote and pass it to the \cite command provided by
the citation style as a 〈postnote〉 argument, these commands are style independent.
The format of the volume portion is controlled by the field formatting directive
volcitevolume, the format of the page/text portion is controlled by the field
formatting directive volcitepages (§ 4.10.4). The delimiter printed between the
volume portion and the page/text portion may be modified by redefining the macro
\volcitedelim (§ 4.10.1).

\volcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

\Volcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

The multicite version of \volcite and \Volcite, respectively.

\pvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Pvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \parencite.

\pvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

\Pvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

The multicite version of \pvolcite and \Pvolcite, respectively.

\fvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\ftvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \footcite and \footcitetext, respec-
tively.

\fvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

\Fvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

The multicite version of \fvolcite and \Fvolcite, respectively.

\svolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Svolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \smartcite.

91

\svolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

\Svolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

The multicite version of \svolcite and \Svolcite, respectively.

\tvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Tvolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \textcite.

\tvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

\Tvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

The multicite version of \tvolcite and \Tvolcite, respectively.

\avolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
\Avolcite[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

Similar to \volcite but based on \autocite.

\avolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

\Avolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈page〉]{〈key〉}

The multicite version of \avolcite and \Avolcite, respectively.

\notecite[〈prenote〉][〈postnote〉]{〈key〉}
\Notecite[〈prenote〉][〈postnote〉]{〈key〉}

These commands print the 〈prenote〉 and 〈postnote〉 arguments but no citation. In-
stead, a \nocite command is issued for every 〈key〉. This may be useful for
authors who incorporate implicit citations in their writing, only giving information
not mentioned before in the running text, but who still want to take advantage of
the automatic 〈postnote〉 formatting and the implicit \nocite function. This is a
generic, style-independent citation command. Special citation styles may provide
smarter facilities for the same purpose. The capitalized version forces capitalization
(note that this is only applicable if the note starts with a command which is sensitive
to Biblatex’s punctuation tracker).

\pnotecite[〈prenote〉][〈postnote〉]{〈key〉}
\Pnotecite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \notecite but the notes are printed in parentheses.

\fnotecite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \notecite but the notes are printed in a footnote.

92

3.7.7 Low-level Commands

The following commands are also provided by the core of Biblatex. They grant access
to all lists and fields at a lower level.

\citename[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉]{〈name list〉}

The 〈format〉 is a formatting directive defined with \DeclareNameFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citename. The last argument is the name of a
〈name list〉, in the sense explained in § 2.2.

\citelist[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉]{〈literal list〉}

The 〈format〉 is a formatting directive defined with \DeclareListFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citelist. The last argument is the name of a
〈literal list〉, in the sense explained in § 2.2.

\citefield[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉]{〈field〉}

The 〈format〉 is a formatting directive defined with \DeclareFieldFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citefield. The last argument is the name of a
〈field〉, in the sense explained in § 2.2.

3.7.8 Miscellaneous Commands

The commands in this section are little helpers related to citations.

\citereset This command resets the citation style. This may be useful if the style replaces
repeated citations with abbreviations like ibidem, idem, op. cit., etc. and you want
to force a full citation at the beginning of a new chapter, section, or some other
location. The command executes a style specific initialization hook defined with
the \InitializeCitationStyle command from § 4.3.1. It also resets the
internal citation trackers of this package. The reset will affect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2.
When used inside a refsection environment, the reset of the citation tracker is
local to the current refsection environment. Also see the citereset package
option in § 3.1.2.1.

\citereset* Similar to \citereset but only executes the style’s initialization hook, without
resetting the internal citation trackers.

\mancite Use this command to mark manually inserted citations if you mix automatically
generated and manual citations. This is particularly useful if the citation style
replaces repeated citations by an abbreviation like ibidem which may get ambiguous
or misleading otherwise. Always use \mancite in the same context as the manual
citation, e. g., if the citation is given in a footnote, include \mancite in the footnote.
The \mancite command executes a style specific reset hook defined with the
\OnManualCitation command from § 4.3.1. It also resets the internal ‘ibidem’
and ‘idem’ trackers of this package. The reset will affect the \ifciteibid and
\ifciteidem tests discussed in § 4.6.2.

93

\pno This command forces a single page prefix in the 〈postnote〉 argument to a citation
command. See § 3.12.3 for further details and usage instructions. Note that this
command is only available locally in citations and the bibliography.

\ppno Similar to \pno but forces a range prefix. See § 3.12.3 for further details and usage
instructions. Note that this command is only available locally in citations and the
bibliography.

\nopp Similar to \pno but suppresses all prefixes. See § 3.12.3 for further details and usage
instructions. Note that this command is only available locally in citations and the
bibliography.

\psq In the 〈postnote〉 argument to a citation command, this command indicates a range of
two pages where only the starting page is given. See § 3.12.3 for further details and
usage instructions. The suffix printed is the localization string sequens, see § 4.9.2.
The spacing inserted between the suffix and the page number may be modified by
redefining the macro \sqspace. The default is an unbreakable interword space.
Note that this command is only available locally in citations and the bibliography.

\psqq Similar to \psq but indicates an open-ended page range. See § 3.12.3 for further de-
tails and usage instructions. The suffix printed is the localization string sequentes,
see § 4.9.2. This command is only available locally in citations and the bibliography.

\RN{〈integer〉}

This command prints an integer as an uppercase Roman numeral. The formatting
applied to the numeral may be modified by redefining the macro \RNfont.

\Rn{〈integer〉}

Similar to \RN but prints a lowercase Roman numeral. The formatting applied to
the numeral may be modified by redefining the macro \Rnfont.

3.7.9 natbib Compatibility Commands

The natbib package option loads a natbib compatibility module. The module
defines aliases for the citation commands provided by the natbib package. This
includes aliases for the core citation commands \citet and \citep as well as the
variants\citealt and\citealp. The starred variants of these commands, which
print the full author list, are also supported. The \cite command, which is handled
in a particular way by natbib, is not treated in a special way. The text commands
(\citeauthor, \citeyear, etc.) are also supported, as are all commands which
capitalize the name prefix (\Citet, \Citep, \Citeauthor, etc.). Aliasing with
\defcitealias, \citetalias, and \citepalias is possible as well. Note
that the compatibility commands will not emulate the citation format of the natbib
package. They merely alias natbib’s commands to functionally equivalent facilities
of the Biblatex package. The citation format depends on the main citation style.
However, the compatibility style will adapt \nameyeardelim to match the default
style of the natbib package.

3.7.10 mcite-like Citation Commands Biber only

The mcite package option loads a special citation module which provides mcite/
mciteplus-like citation commands. Strictly speaking, what the module provides
are wrappers for the commands of the main citation style. For example, the following
command:

94

Standard Command mcite-like Command

\cite \mcite

\Cite \Mcite

\parencite \mparencite

\Parencite \Mparencite

\footcite \mfootcite

\footcitetext \mfootcitetext

\textcite \mtextcite

\Textcite \Mtextcite

\supercite \msupercite

Table 6: mcite-like commands

\mcite{key1,setA,*keyA1,*keyA2,*keyA3,key2,setB,*keyB1,*keyB2,*keyB3}

is essentially equivalent to this:

\defbibentryset{setA}{keyA1,keyA2,keyA3}%

\defbibentryset{setB}{keyB1,keyB2,keyB3}%

\cite{key1,setA,key2,setB}

The \mcite command will work with any style since the \cite backend command
is controlled by the main citation style as usual. The mcite module provides
wrappers for the standard commands in §§ 3.7.1 and 3.7.2. See table 7 for an overview.
Pre and postnotes as well as starred variants of all commands are also supported.
The parameters will be passed to the backend command. For example:

\mcite*[pre][post]{setA,*keyA1,*keyA2,*keyA3}

will execute:

\defbibentryset{setA}{keyA1,keyA2,keyA3}%

\cite*[pre][post]{setA}

Note that the mcite module is not a compatibility module. It provides commands
which are very similar but not identical in syntax and function to mcite’s commands.
When migrating from mcite/mciteplus to Biblatex, legacy files must be updated.
With mcite, the first member of the citation group is also the identifier of the group
as a whole. Borrowing an example from the mcite manual, this group:

\cite{glashow,*salam,*weinberg}

consists of three entries and the entry key of the first one also serves as identifier of
the entire group. In contrast to that, a Biblatex entry set is an entity in its own right.
Therefore, it requires a unique entry key which is assigned to the set as it is defined:

\mcite{set1,*glashow,*salam,*weinberg}

Once defined, an entry set is handled like any regular entry in a bib file. When
using one of the numeric styles which ship with biblatex and activating its
subentry option, it is even possible to refer to set members. See table 7 for some
examples. Restating the original definition of the set is redundant, but permissible.
In contrast to mciteplus, however, restating a part of the original definition is
invalid. Use the entry key of the set instead.

95

Input Output Comment

\mcite{set1,*glashow,*salam,*weinberg}[1] Defining and citing the set
\mcite{set1} [1] Subsequent citation of the set
\cite{set1} [1] Regular \cite works as usual
\mcite{set1,*glashow,*salam,*weinberg}[1] Redundant, but permissible
\mcite{glashow} [1a] Citing a set member
\cite{weinberg} [1c] Regular \cite works as well

Table 7: mcite-like syntax (sample output with style = numeric and
subentry option)

3.8 Localization Commands

The Biblatex package provides translations for key terms such as ‘edition’ or ‘volume’
as well as definitions for language specific features such as the date format and
ordinals. These definitions, which are loaded automatically, may be modified or
extended in the document preamble or the configuration file with the commands
introduced in this section.

\DefineBibliographyStrings{〈language〉}{〈definitions〉}

This command is used to define localization strings. The 〈language〉 must be a
language name known to the babel/polyglossia packages, i. e., one of the
identifiers listed in table 2 on page 25. The 〈definitions〉 are 〈key〉=〈value〉 pairs
which assign an expression to an identifier:

\DefineBibliographyStrings{american}{%

bibliography = {Bibliography},

shorthands = {Abbreviations},

editor = {editor},

editors = {editors},

}

A complete list of all keys supported by default is given is § 4.9.2. Note that all
expressions should be capitalized as they usually are when used in the middle
of a sentence. The Biblatex package will automatically capitalize the first word
when required at the beginning of a sentence. Expressions intended for use in
headings should be capitalized in a way that is suitable for titling. In contrast
to \DeclareBibliographyStrings, \DefineBibliographyStrings
overrides both the full and the abbreviated version of the string. See § 4.9.1 for
further details.

\DefineBibliographyExtras{〈language〉}{〈code〉}

This command is used to adapt language specific features such as the date for-
mat and ordinals. The 〈language〉 must be a language name known to the
babel/polyglossia packages. The 〈code〉, which may be arbitrary LaTeX code,
will usually consist of redefinitions of the formatting commands from § 3.9.2.

\UndefineBibliographyExtras{〈language〉}{〈code〉}

This command is used to restore the original definition of any commands modified
with \DefineBibliographyExtras. If a redefined command is included in
§ 3.9.2, there is no need to restore its previous definition since these commands are
adapted by all language modules anyway.

96

\DefineHyphenationExceptions{〈language〉}{〈text〉}

This is a LaTeX frontend to TeX’s \hyphenation command which defines hy-
phenation exceptions. The 〈language〉 must be a language name known to the
babel/polyglossia packages. The 〈text〉 is a whitespace-separated list of words.
Hyphenation points are marked with a dash:

\DefineHyphenationExceptions{american}{%

hy-phen-ation ex-cep-tion

}

\NewBibliographyString{〈key〉}

This command declares new localization strings, i. e., it initializes a new 〈key〉 to be
used in the 〈definitions〉 of \DefineBibliographyStrings. The 〈key〉 argu-
ment may also be a comma-separated list of key names. The keys listed in § 4.9.2 are
defined by default.

3.9 Formatting Commands

The commands and facilities presented in this section may be used to adapt the
format of citations and the bibliography.

3.9.1 Generic Commands and Hooks

The commands in this section may be redefined with \renewcommand in the
document preamble. Note that all commands starting with \mk… take one argument.
All of these commands are defined in biblatex.def.

\bibsetup Arbitrary code to be executed at the beginning of the bibliography, intended for
commands which affect the layout of the bibliography.

\bibfont Arbitrary code setting the font used in the bibliography. This is very similar to
\bibsetup but intended for switching fonts.

\citesetup Arbitrary code to be executed at the beginning of each citation command.

\newblockpunct The separator inserted between ‘blocks’ in the sense explained in § 4.7.1. The default
definition is controlled by the package option block (see § 3.1.2.1).

\newunitpunct The separator inserted between ‘units’ in the sense explained in § 4.7.1. This will
usually be a period or a comma plus an interword space. The default definition is a
period and a space.

\finentrypunct The punctuation printed at the very end of every bibliography entry, usually a
period. The default definition is a period.

\entrysetpunct The punctuation printed between bibliography subentries of an entry set. The Biber only
default definition is a semicolon and a space.

\bibnamedelima This delimiter controls the spacing between the elements which make up a name Biber only
part. It is inserted automatically after the first name element if the element is less
than three characters long and before the last element. The default definition is an
interword space penalized by the value of the highnamepenalty counter (§ 3.9.3).
Please refer to § 3.12.4 for further details.

97

\bibnamedelimb This delimiter is inserted between the elements which make up a name part where Biber only
\bibnamedelima does not apply. The default definition is an interword space
penalized by the value of the lownamepenalty counter (§ 3.9.3). Please refer to
§ 3.12.4 for further details.

\bibnamedelimc This delimiter controls the spacing between name parts. It is inserted between the
name prefix and the last name if useprefix=true. The default definition is an
interword space penalized by the value of the highnamepenalty counter (§ 3.9.3).
Please refer to § 3.12.4 for further details.

\bibnamedelimd This delimiter is inserted between all name parts where \bibnamedelimc does
not apply. The default definition is an interword space penalized by the value of the
lownamepenalty counter (§ 3.9.3). Please refer to § 3.12.4 for further details.

\bibnamedelimi This delimiter replaces \bibnamedelima/b after initials. Note that this only Biber only
applies to initials given as such in the bib file, not to the initials automatically
generated by Biblatex which use their own set of delimiters.

\bibinitperiod The punctuation inserted after initials unless \bibinithyphendelim applies. Biber only
The default definition is a period (\adddot). Please refer to § 3.12.4 for further
details.

\bibinitdelim The spacing inserted between multiple initials unless \bibinithyphendelim Biber only
applies. The default definition is an unbreakable interword space. Please refer to
§ 3.12.4 for further details.

\bibinithyphendelim The punctuation inserted between the initials of hyphenated name parts, Biber only
replacing \bibinitperiod and \bibinitdelim. The default definition is a
period followed by an unbreakable hyphen. Please refer to § 3.12.4 for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\revsdnamepunct The punctuation to be printed between the first and last name parts when a
name is reversed. Here is an example showing a name with the default comma as
\revsdnamedelim:

Jones, Edward

This command should be used with \bibnamedelimd as a reversed-name sep-
arator in formatting directives for name lists. Please refer to § 3.12.4 for further
details.

98

\bibnamedash The dash to be used as a replacement for recurrent authors or editors in the biblio-
graphy. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of the
list of references.

\labelnamepunct The separator printed after the name used for alphabetizing in the bibliography
(author or editor, if the author field is undefined). With the default styles,
this separator replaces \newunitpunct at this location. The default definition is
\newunitpunct, i. e., it is not handled differently from regular unit punctuation.

\subtitlepunct The separator printed between the fields title and subtitle, booktitle
and booksubtitle, as well as maintitle and mainsubtitle. With the
default styles, this separator replaces \newunitpunct at this location. The default
definition is \newunitpunct, i. e., it is not handled differently from regular unit
punctuation.

\intitlepunct The separator between the word “in” and the following title in entry types such as
@article, @inbook, @incollection, etc. The default definition is a colon
plus an interword space (e. g.,“Article, in: Journal” or “Title, in: Book”). Note that
this is the separator string, not only the punctuation mark. If you don’t want a colon
after “in”, \intitlepunct should still insert a space.

\bibpagespunct The separator printed before the pages field. The default is a comma plus an
interword space.

\bibpagerefpunct The separator printed before the pageref field. The default is an interword
space.

\multinamedelim The delimiter printed between multiple items in a name list like author or
editor if there are more than two names in the list. The default is a comma plus
an interword space. See \finalnamedelim for an example.23

\finalnamedelim The delimiter printed instead of \multinamedelim before the final name in
a name list. The default is the localized term ‘and’, separated by interword spaces.
Here is an example:

Michel Goossens, Frank Mittelbach and Alexander Samarin

Edward Jones and Joe Williams

The comma in the first example is the \multinamedelim whereas the string
‘and’ in both examples is the \finalnamedelim. See also \finalandcomma
in § 3.9.2.

\revsdnamedelim An extra delimiter printed after the first name in a name list if the first name is
reversed. The default is an empty string, i. e., no extra delimiter will be printed. Here
is an example showing a name list with a comma as \revsdnamedelim:

Jones, Edward, and Joe Williams

In this example, the comma after ‘Edward’ is the \revsdnamedelim whereas the
string ‘and’ is the \finalnamedelim, printed in addition to the former.

\andothersdelim The delimiter printed before the localization string ‘andothers’ if a name list
like author or editor is truncated. The default is an interword space.
23Note that \multinamedelim is not used at all if there are only two names in the list. In this case,

the default styles use the \finalnamedelim.

99

\multilistdelim The delimiter printed between multiple items in a literal list like publisher or
location if there are more than two items in the list. The default is a comma plus
an interword space. See \multinamedelim for further explanation.

\finallistdelim The delimiter printed instead of \multilistdelim before the final item in a
literal list. The default is the localized term ‘and’, separated by interword spaces. See
\finalnamedelim for further explanation.

\andmoredelim The delimiter printed before the localization string ‘andmore’ if a literal list like
publisher or location is truncated. The default is an interword space.

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to a
single citation command. The default is a semicolon plus an interword space.

\supercitedelim Similar to \multicitedelim, but used by the \supercite command only.
The default is a comma.

\compcitedelim Similar to \multicitedelim, but used by certain citation styles when ‘com-
pressing’ multiple citations. The default definition is a comma plus an interword
space.

\textcitedelim Similar to \multicitedelim, but used by \textcite and related commands
(§ 3.7.2). The default is a comma plus an interword space. The standard styles modify
this provisional definition to ensure that the delimiter before the final citation is the
localized term ‘and’, separated by interword spaces. See also \finalandcomma
and \finalandsemicolon in § 3.9.2.

\nametitledelim The delimiter printed between the author/editor and the title by author-title and
some verbose citation styles. The default definition is a comma plus an interword
space.

\nameyeardelim Thedelimiter printed between the author/editor and the year by author-year citation
styles. The default definition is an interword space.

\labelalphaothers A string to be appended to the non-numeric portion of the labelalpha
field (i. e., the field holding the citation label used by alphabetic citation styles) if the
number of authors/editors exceeds the maxalphanames threshold or the author/
editor list was truncated in the bib file with the keyword ‘and others’. This
will typically be a single character such as a plus sign or an asterisk. The default is a
plus sign. This command may also be redefined to an empty string to disable this
feature. In any case, it must be redefined in the preamble.

\sortalphaothers Similar to \labelalphaothers but used in the sorting process. Setting it to Biber only
a different value is advisable if the latter contains formatting commands, for example:

\renewcommand*{\labelalphaothers}{\textbf{+}}

\renewcommand*{\sortalphaothers}{+}

If \sortalphaothers is not redefined, it defaults to \labelalphaothers.

\prenotedelim The delimiter printed after the 〈prenote〉 argument of a citation command. See § 3.7
for details. The default is an interword space.

\postnotedelim The delimiter printed before the 〈postnote〉 argument of a citation command. See
§ 3.7 for details. The default is a comma plus an interword space.

100

\mkbibnamelast{〈text〉}This command, which takes one argument, is used to format the last name
of all authors, editors, translators, etc.

\mkbibnamefirst{〈text〉}Similar to \mkbibnamelast, but intended for the first name.

\mkbibnameprefix{〈text〉}Similar to \mkbibnamelast, but intended for the name prefix.

\mkbibnameaffix{〈text〉}Similar to \mkbibnamelast, but intended for the name affix.

\relatedpunct The separator between the relatedtype bibliography localization string and the
data from the first related entry. Here is an example with \relatedpunct set to
a dash:

A. Smith. Title. 2000, (Orig. pub. as-Origtitle)

\relateddelim The separator between the data of multiple related entries. The default definition is
an optional dot plus linebreak. Here is an example where volumes A-E are related
entries of the 5 volume main work:

Donald E. Knuth. Computers & Typesetting. 5 vols. Reading, Mass.: Addison-

Wesley, 1984-1986.

Vol. A: The TEXbook. 1984.

Vol. B: TEX: The Program. 1986.

Vol. C: The METAFONTbook. By. 1986.

Vol. D: METAFONT: The Program. 1986.

Vol. E: Computer Modern Typefaces. 1986.

3.9.2 Language-specific Commands

The commands in this section are language specific. When redefining them, you need
to wrap the new definition in a \DeclareBibliographyExtras command (in
an .lbx file) or a \DefineBibliographyExtras command (user documents),
see § 3.8 for details. Note that all commands starting with \mk… take one or more
arguments.

\bibrangedash The language specific dash to be used for ranges of numbers.

\bibrangessep Biber only

The language specific separator to be used between multiple ranges.

\bibdatedash The language specific dash to be used for date ranges.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in the
language specific long date format.

\mkbibdateshort Similar to \mkbibdatelong but using the language specific short date format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in a list, if applicable in the
respective language. Here is an example:

Michel Goossens, Frank Mittelbach, and Alexander Samarin

\finalandcomma is the comma before the word ‘and’. See also
\multinamedelim, \finalnamedelim, \textcitedelim, and
\revsdnamedelim in § 3.9.1.

101

\finalandsemicolon Prints the semicolon to be inserted before the final ‘and’ in a list of lists, if
applicable in the respective language. Here is an example:

Goossens, Mittelbach, and Samarin; Bertram and Wenworth; and Knuth

\finalandsemicolon is the semicolon before the word ‘and’. See also
\textcitedelim in § 3.9.1.

\mkbibordinal{〈integer〉}

This command, which takes an integer as its argument, prints an ordinal number.

\mkbibmascord{〈integer〉}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the
respective language.

\mkbibfemord{〈integer〉}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the
respective language.

\mkbibneutord{〈integer〉}

Similar to \mkbibordinal, but prints a neuter ordinal, if applicable in the respec-
tive language.

\mkbibordedition{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

\mkbibordseries{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘series’.

3.9.3 Lengths and Counters

The length registers and counters in this section may be changed in the document
preamble with \setlength and \setcounter, respectively.

\bibhang The hanging indentation of the bibliography, if applicable. This length is initialized
to \parindent at load-time.

\biblabelsep The horizontal space between entries and their corresponding labels in the biblio-
graphy. This only applies to bibliography styles which print labels, such as the
numeric and alphabetic styles. This length is initialized to twice the value of
\labelsep at load-time.

\bibitemsep The vertical space between the individual entries in the bibliography. This length is
initialized to \itemsep at load-time. Note that \bibitemsep, \bibnamesep,
and \bibinitsep obey the rules for \addvspace, that is, when vertical space
introduced by any of these commands immediately follows on from space introduced
by another of them, the resulting total space is equal to the largest of them.

102

\bibnamesep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a name which is different from the initial name of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography by author/editor name.
Note that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

\bibinitsep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a letter which is different from the initial letter of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography alphabetically. Note
that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

\bibparsep The vertical space between paragraphs within an entry in the bibliography. The
default value is zero.

abbrvpenalty This counter, which is used by the localization modules, holds the penalty used in
short or abbreviated localization strings. For example, a linebreak in expressions
such as “et al.” or “ed. by” is unfortunate, but should still be possible to prevent
overfull boxes. This counter is initialized to \hyphenpenalty at load-time. The
idea is making TeX treat the whole expression as if it were a single, hyphenatable
word as far as line-breaking is concerned. If you dislike such linebreaks, use a higher
value. If you do not mind them at all, set this counter to zero. If you want to suppress
them unconditionally, set it to ‘infinite’ (10 000 or higher).24

highnamepenalty This counter holds a penalty affecting line-breaking in names. Please refer to
§§ 3.12.4 and 3.9.1 for explanation. The counter is initialized to \hyphenpenalty
at load-time. Use a higher value if you dislike the respective linebreaks. If you do not
mind them at all, set this counter to zero. If you prefer the traditional BibTeX behavior
(no linebreaks at highnamepenalty breakpoints), set it to ‘infinite’ (10 000 or
higher).

lownamepenalty Similar to highnamepenalty. Please refer to §§ 3.12.4 and 3.9.1 for explanation.
The counter is initialized to half the \hyphenpenalty at load-time. Use a higher
value if you dislike the respective linebreaks. If you do not mind them at all, set this
counter to zero.

3.9.4 All-purpose Commands

The commands in this section are all-purpose text commands which are generally
available, not only in citations and the bibliography.

\bibellipsis An ellipsis symbol with brackets: ‘[…]’.
24The default values assigned to abbrvpenalty, lownamepenalty, and highnamepenalty

are deliberately very low to prevent overfull boxes. This implies that you will hardly notice any
effect on line-breaking if the text is set justified. If you set these counters to 10 000 to suppress the
respective breakpoints, you will notice their effect but you may also be confronted with overfull
boxes. Keep in mind that line-breaking in the bibliography is often more difficult than in the body
text and that you can not resort to rephrasing a sentence. In some cases it may be preferable to set
the entire bibliography \raggedright to prevent suboptimal linebreaks. In this case, even the
fairly low default penalties will make a visible difference.

103

\noligature Disables ligatures at this position and adds some space. Use this command to break
up standard ligatures like ‘fi’ and ‘fl’. It is similar to the ”| shorthand provided by
some language modules of the babel/polyglossia packages.

\hyphenate A conditional hyphen. In contrast to the standard \- command, this one allows
hyphenation in the rest of the word. It is similar to the ”- shorthand provided by
some language modules of the babel/polyglossia packages.

\hyphen An explicit, breakable hyphen intended for compound words. In contrast to a literal
‘-’, this command allows hyphenation in the rest of the word. It is similar to the
”= shorthand provided by some language modules of the babel/polyglossia
packages.

\nbhyphen An explicit, non-breakable hyphen intended for compound words. In contrast to a
literal ‘-’, this command does not permit line breaks at the hyphen but still allows
hyphenation in the rest of the word. It is similar to the ”~ shorthand provided by
some language modules of the babel/polyglossia packages.

\nohyphenation A generic switch which suppresses hyphenation locally. Its scope should normally
be confined to a group.

\textnohyphenation{〈text〉}

Similar to \nohyphenation but restricted to the 〈text〉 argument.

\mknumalph{〈integer〉}

Takes an integer in the range 1–702 as its argument and converts it to a string as
follows: 1=a, …, 26=z, 27=aa, …, 702=zz. This is intended for use in formatting
directives for the extrayear and extraalpha fields.

\mkbibacro{〈text〉}

Generic command which typesets an acronym using the small caps variant of the
current font, if available, and as-is otherwise. The acronym should be given in
uppercase letters.

\autocap{〈character〉}

Automatically converts the 〈character〉 to its uppercase form if Biblatex’s punctuation
tracker would capitalize a localization string at the current location. This command
is robust. It is useful for conditional capitalization of certain strings in an entry. Note
that the 〈character〉 argument is a single character given in lowercase. For example:

\autocap{s}pecial issue

will yield ‘Special issue’ or ‘special issue’, as appropriate. If the string to be capitalized
starts with an inflected character given in Ascii notation, include the accent command
in the 〈character〉 argument as follows:

\autocap{\’e}dition sp\’eciale

This will yield ‘Édition spéciale’ or ‘édition spéciale’. If the string to be capitalized
starts with a command which prints a character, such as \ae or \oe, simply put
the command in the 〈character〉 argument:

\autocap{\oe}uvres

This will yield ‘Œuvres’ or ‘œuvres’.

104

3.10 Language-specific Notes

The facilities discussed in this section are specific to certain localization modules.

3.10.1 American

The American localization module uses \uspunctuation from § 4.7.5 to enable
‘American-style’ punctuation. If this feature is enabled, all trailing commas and
periods after \mkbibquote will be moved inside the quotes. If you want to disable
this feature, use \stdpunctuation as follows:

\DefineBibliographyExtras{american}{%

\stdpunctuation

}

By default, the ‘American punctuation’ feature is enabled by the american localiza-
tion module only. The above code is only required if you want American localization
without American punctuation. Since standard punctuation is the package default, it
would be redundant with any other language.

It is highly advisable to always specify american, british, australian, etc.
rather than english when loading the babel/polyglossia packages to avoid
any possible confusion. Older versions of the babel package used to treat english
as an alias for british; more recent ones treat it as an alias for american. The
biblatex package essentially treats english as an alias for american, except for
the above feature which is only enabled if american is requested explicitly.

3.10.2 Spanish

Handling the word ‘and’ is more difficult in Spanish than in the other languages
supported by this package because it may be ‘y’ or ‘e’, depending on the initial sound
of the following word. Therefore, the Spanish localization module does not use the
localization string ‘and’ but a special internal ‘smart and’ command. The behavior
of this command is controlled by the smartand counter.

smartand This counter controls the behavior of the internal ‘smart and’ command. When set
to 1, it prints ‘y’ or ‘e’, depending on the context. When set to 2, it always prints ‘y’.
When set to 3, it always prints ‘e’. When set to 0, the ‘smart and’ feature is disabled.
This counter is initialized to 1 at load-time and may be changed in the preamble.
Note that setting this counter to a positive value implies that the Spanish localization
module ignores \finalnamedelim and \finallistdelim.

\forceE Use this command in bib files if Biblatex gets the ‘and’ before a certain name wrong.
As its name suggests, it will enforce ‘e’. This command must be used in a special way
to prevent confusing BibTeX. Here is an example:

author = {Edward Jones and Eoin Maguire},

author = {Edward Jones and {\forceE{E}}oin Maguire},

Note that the initial letter of the respective name component is given as an argument
to \forceE and that the entire construct is wrapped in an additional pair of curly
braces.

105

\forceY Similar to \forceE but enforces ‘y’.

3.10.3 Greek

The Greek localization module requires utf-8 support. It will not work with any
other encoding. Generally speaking, the Biblatex package is compatible with the
inputenc package and with XeLaTeX. The ucs package will not work. Since
inputenc’s standard utf8 module is missing glyph mappings for Greek, this
leaves Greek users with XeLaTeX. Note that youmay need to load additional packages
which set up Greek fonts. As a rule of thumb, a setup which works for regular Greek
documents should also work with Biblatex. However, there is one fundamental
limitation. As of this writing, Biblatex has no support for switching scripts. Greek
titles in the bibliography should work fine, provided that you use Biber as a backend,
but English and other titles in the bibliography may be rendered in Greek letters. If
you need multi-script bibliographies, using XeLaTeX is the only sensible choice.

3.10.4 Russian

Like the Greek localization module, the Russian module also requires utf-8 support.
It will not work with any other encoding.

3.11 Usage Notes

The following sections give a basic overview of the Biblatex package and discuss
some typical usage scenarios.

3.11.1 Overview

Using the Biblatex package is slightly different from using traditional BibTeX styles
and related packages. Before we get to specific usage scenarios, we will therefore
have a look at the structure of a typical document first:

\documentclass{...}

\usepackage[...]{biblatex}

\addbibresource{bibfile.bib}

\begin{document}

\cite{...}

...

\printbibliography

\end{document}

With traditional BibTeX, the \bibliography command serves two purposes. It
marks the location of the bibliography and it also specifies the bib file(s). The file
extension is omitted. With Biblatex, resources are specified in the preamble with
\addbibresource using the full name with .bib suffix. The bibliography is
printed using the \printbibliography command which may be used multiple
times (see § 3.6 for details). The document body may contain any number of citation
commands (§ 3.7). Processing this example file requires that a certain procedure be
followed. Suppose our example file is called example.tex and our bibliographic
data is in bibfile.bib. The procedure, then, is as follows:

106

3.11.1.1 Biber

1. Run latex on example.tex. If the file contains any citations, Biblatex will
request the respective data from Biber by writing commands to the auxiliary
file example.bcf.

2. Run biber on example.bcf. Biber will retrieve the data from bibfile.

bib and write it to the auxiliary file example.bbl in a format which can
be processed by Biblatex.

3. Run latex on example.tex. Biblatex will read the data from example.

bbl and print all citations as well as the bibliography.

3.11.1.2 BibTeX

1. Run latex on example.tex. If the file contains any citations, Biblatex will
request the respective data from BibTeX by writing commands to the auxiliary
file example.aux.

2. Run bibtex on example.aux. BibTeX will retrieve the data from
bibfile.bib and write it to the auxiliary file example.bbl in a format
which can be processed by Biblatex.

3. Run latex on example.tex. Biblatex will read the data from example.

bbl and print all citations as well as the bibliography.

Whenever a reference to a work which has not been cited before is added, this
procedure must be repeated. This is also the case if the last reference to a work which
has been cited before is removed because some citation labels may change in this
case. In contrast to traditional BibTeX, there is normally no need to run latex twice
after running the backend as far as the handling of bibliographic data is concerned.25

Note that when using BibTeX as the backend this only applies to the most ba- BibTeX only
sic case. Using the xref field or the entryset field may require an additional
LaTeX/BibTeX/LaTeX cycle. Some other facilities provided by Biblatex may also re-
quire an additional latex run to get certain references and the page tracking right.
In this case, the usual warning messages such as “There were undefined references”
and “Label(s) may have changed. Rerun to get cross-references right” will be printed.

3.11.2 Auxiliary Files

3.11.2.1 Biber The Biblatex package uses one auxiliary bcf file only. Even if
there are citation commands in a file included via \include, you only need to run
Biber on the main bcf file. All information Biber needs is in the bcf file, including
information about all refsections if using multiple refsection environments (see
§ 3.11.3).

3.11.2.2 BibTeX By default, the Biblatex package uses the main aux file only.
Even if there are citation commands in a file included via \include, which has its
own aux file, you only need to run BibTeX on the main aux file. If you are using
refsection environments in a document (see § 3.11.3) Biblatex will create one
additional aux file for every refsection environment. In this case, you also need
to run bibtex on each additional aux file. The name of the additional aux files is

25That is, unless the defernumbers package option is enabled. See § 4.1

107

the base name of the main input file with the string -blx and a running number
appended at the end. The Biblatex package issues a warning listing the files which
require an additional BibTeX run. With the basic example presented in § 3.11.1, it
would issue the following warning:

Package biblatex Warning: Please (re)run BibTeX on the file(s):

(biblatex) example.aux

(biblatex) and rerun LaTeX afterwards.

If the input file contained three refsection environments, the warning would
read as follows:

Package biblatex Warning: Please (re)run BibTeX on the file(s):

(biblatex) example1-blx.aux

(biblatex) example2-blx.aux

(biblatex) example3-blx.aux

(biblatex) and rerun LaTeX afterwards.

Apart from these aux files, Biblatex uses an additional bib file with the same suffix
to pass certain control parameters to BibTeX. In the example above, this file would be
named example-blx.bib. In the event of a file name conflict, you can change
the suffix by redefining the macro \blxauxsuffix in the document preamble.
When using Biber, Biblatex writes a control file named example.bcf and ignores
\blxauxsuffix. There is also no auxiliary bib file in this case.

Note that Biblatex will not overwrite any files it did not create. All auxiliary files
created automatically by this package start with a special signature line. Before
overwriting a file (excluding the main aux file, which is managed by LaTeX), Biblatex
inspects the first line of the file to make sure that there is no file name conflict. If the
file in question is missing the signature line, Biblatex will immediately issue an error
message and abort before opening the output stream. In this case you should delete
any spurious files accidentally left in the working directory. If the error persists, there
may be a file name conflict with a file found in one of the TeX installation trees. Since
the installation trees usually do not contain any aux files and the string -blx is
fairly exotic in the name of a bib file, this is rather unlikely but theoretically possible.
If you find out that this is indeed the case, you should redefine \blxauxsuffix
permanently in the Biblatex configuration file, biblatex.cfg.

3.11.3 Multiple Bibliographies

In a collection of articles by different authors, such as a conference proceedings
volume for example, it is very common to have one bibliography for each article
rather than a global one for the entire book. In the example below, each article would
be presented as a separate \chapter with its own bibliography.

Note that with the BibTeX backend, Biblatex creates one additional aux file for BibTeX only
every refsection environment. These files have to be processed by BibTeX as
well, see § 3.11.2 for details.

\documentclass{...}

\usepackage{biblatex}

\addbibresource{...}

\begin{document}

\chapter{...}

108

\begin{refsection}

...

\printbibliography[heading=subbibliography]

\end{refsection}

\chapter{...}

\begin{refsection}

...

\printbibliography[heading=subbibliography]

\end{refsection}

\end{document}

If \printbibliography is used inside a refsection environment, it auto-
matically restricts the scope of the list of references to the enclosing refsection
environment. For a cumulative bibliography which is subdivided by chapter but
printed at the end of the book, use thesection option of\printbibliography
to select a reference section, as shown in the next example.

\documentclass{...}

\usepackage{biblatex}

\defbibheading{subbibliography}{%

\section*{References for Chapter \ref{refsection:\therefsection}}}

\addbibresource{...}

\begin{document}

\chapter{...}

\begin{refsection}

...

\end{refsection}

\chapter{...}

\begin{refsection}

...

\end{refsection}

\printbibheading

\printbibliography[section=1,heading=subbibliography]

\printbibliography[section=2,heading=subbibliography]

\end{document}

Note the definition of the bibliography heading in the above example. This is the
definition taking care of the subheadings in the bibliography. The main heading is
generated with a plain \chapter command in this case. The Biblatex package au-
tomatically sets a label at the beginning of every refsection environment, using
the standard \label command. The identifier used is the string refsection:
followed by the number of the respective refsection environment. The number
of the current section is accessible via the refsection counter. When using the
section option of \printbibliography, this counter is also set locally. This
means that you may use the counter in heading definitions to print subheadings
like “References for Chapter 3”, as shown above. You could also use the title of the
respective chapter as a subheading by loading the nameref package and using
\nameref instead of \ref:

\usepackage{nameref}

\defbibheading{subbibliography}{%

\section*{\nameref{refsection:\therefsection}}}

109

Since giving one \printbibliography command for each part of a subdivided
bibliography is tedious, Biblatex provides a shorthand. The \bibbysection
command automatically loops over all reference sections. This is equivalent to giving
one \printbibliography command for every section but has the additional
benefit of automatically skipping sections without references. In the example above,
the bibliography would then be generated as follows:

\printbibheading

\bibbysection[heading=subbibliography]

When using a format with one cumulative bibliography subdivided by chapter (or
any other document division) it may be more appropriate to use refsegment
rather than refsection environments. The difference is that the refsection
environment generates labels local to the environment while refsegment does not
affect the generation of labels, hence they will be unique across the entire document.
Note that when using BibTeX as the backend, refsegment environments do not
require additional aux files. The next example could also be given in § 3.11.4 because,
visually, it creates one global bibliography subdivided into multiple segments.

\documentclass{...}

\usepackage{biblatex}

\defbibheading{subbibliography}{%

\section*{References for Chapter \ref{refsegment:\therefsection\therefsegment}}}

\addbibresource{...}

\begin{document}

\chapter{...}

\begin{refsegment}

...

\end{refsegment}

\chapter{...}

\begin{refsegment}

...

\end{refsegment}

\printbibheading

\printbibliography[segment=1,heading=subbibliography]

\printbibliography[segment=2,heading=subbibliography]

\end{document}

The use of refsegment is similar to refsection and there is also a correspond-
ing segment option for \printbibliography. The Biblatex package automat-
ically sets a label at the beginning of every refsegment environment using the
string refsegment: followed by the number of the respective refsegment
environment as an identifier. There is a matching refsegment counter which may
be used in heading definitions, as shown above. As with reference sections, there is
also a shorthand command which automatically loops over all reference segments:

\printbibheading

\bibbysegment[heading=subbibliography]

This is equivalent to giving one \printbibliography command for every seg-
ment in the current refsection.

110

3.11.4 Subdivided Bibliographies

It is very common to subdivide a bibliography by certain criteria. For example, you
may want to list printed and online resources separately or divide a bibliography
into primary and secondary sources. The former case is straightforward because
you can use the entry type as a criterion for the type and nottype filters of
\printbibliography. The next example also demonstrates how to generate
matching subheadings for the two parts of the bibliography.

\documentclass{...}

\usepackage{biblatex}

\addbibresource{...}

\begin{document}

...

\printbibheading

\printbibliography[nottype=online,heading=subbibliography,

title={Printed Sources}]

\printbibliography[type=online,heading=subbibliography,

title={Online Sources}]

\end{document}

You may also use more than two subdivisions:

\printbibliography[type=article,...]

\printbibliography[type=book,...]

\printbibliography[nottype=article,nottype=book,...]

It is even possible to give a chain of different types of filters:

\printbibliography[section=2,type=book,keyword=abc,notkeyword=xyz]

This would print all works cited in reference section 2 whose entry type is @book
and whose keywords field includes the keyword ‘abc’ but not ‘xyz’. When using
bibliography filters in conjunction with a numeric style, see § 3.12.5. If you need
complex filters with conditional expressions, use the filter option in conjunction
with a custom filter defined with \defbibfilter. See § 3.6.10 for details on
custom filters.

\documentclass{...}

\usepackage{biblatex}

\addbibresource{...}

\begin{document}

...

\printbibheading

\printbibliography[keyword=primary,heading=subbibliography,%

title={Primary Sources}]

\printbibliography[keyword=secondary,heading=subbibliography,%

title={Secondary Sources}]

\end{document}

111

Dividing a bibliography into primary and secondary sources is possible with a
keyword filter, as shown in the above example. In this case, with only two subdivi-
sions, it would be sufficient to use one keyword as filter criterion:

\printbibliography[keyword=primary,...]

\printbibliography[notkeyword=primary,...]

Since Biblatex has no way of knowing if an item in the bibliography is considered to
be primary or secondary literature, we need to supply the bibliography filter with
the required data by adding a keywords field to each entry in the bib file. These
keywords may then be used as targets for the keyword and notkeyword filters,
as shown above. It may be a good idea to add such keywords right away while
building a bib file.

@Book{key,

keywords = {primary,some,other,keywords},

...

An alternative way of subdividing the list of references are bibliography categories.
They differ from the keywords-based approach shown in the example above in that
they work on the document level and do not require any changes to the bib file.

\documentclass{...}

\usepackage{biblatex}

\DeclareBibliographyCategory{primary}

\DeclareBibliographyCategory{secondary}

\addtocategory{primary}{key1,key3,key6}

\addtocategory{secondary}{key2,key4,key5}

\addbibresource{...}

\begin{document}

...

\printbibheading

\printbibliography[category=primary,heading=subbibliography,%

title={Primary Sources}]

\printbibliography[category=secondary,heading=subbibliography,%

title={Secondary Sources}]

\end{document}

In this case it would also be sufficient to use one category only:

\printbibliography[category=primary,...]

\printbibliography[notcategory=primary,...]

It is still a good idea to declare all categories used in the bibliography explicitly
because there is a \bibbycategory command which automatically loops over
all categories. This is equivalent to giving one \printbibliography command
for every category, in the order in which they were declared.

\documentclass{...}

\usepackage{biblatex}

\DeclareBibliographyCategory{primary}

\DeclareBibliographyCategory{secondary}

112

\addtocategory{primary}{key1,key3,key6}

\addtocategory{secondary}{key2,key4,key5}

\defbibheading{primary}{\section*{Primary Sources}}

\defbibheading{secondary}{\section*{Secondary Sources}}

\addbibresource{...}

\begin{document}

...

\printbibheading

\bibbycategory

\end{document}

The handling of the headings is different from \bibbysection and
\bibbysegment in this case. \bibbycategory uses the name of the current
category as a heading name. This is equivalent to passing heading=〈category〉 to
\printbibliography and implies that you need to provide a matching heading
for every category.

3.11.5 Entry Sets

An entry set is a group of entries which are cited as a single reference and listed as
a single item in the bibliography. The individual entries in the set are separated by
\entrysetpunct (§ 4.10.1). The Biblatex package supports two types of entry sets.
Static entry sets are defined in the bib file like any other entry. Dynamic entry sets
are defined with \defbibentryset (§ 3.6.12) on a per-document/per-refsection
basis in the document preamble or the document body. This section deals with the
definition of entry sets; style authors should also see § 4.11.1 for further information.

3.11.5.1 Static entry sets Static entry sets are defined in the bib file like any Biber only
other entry. When using Biber as the backend, defining an entry set is as simple
as adding an entry of type @set. The entry has an entryset field defining the
members of the set as a separated list of entry keys:

@Set{set1,

entryset = {key1,key2,key3},

}

Entries may be part of a set in one document/refsection and stand-alone references
in another one, depending on the presence of the @set entry. If the @set entry is
cited, the set members are grouped automatically. If not, they will work like any
regular entry.

When using BibTeX as the backend, which has no native support for entry
sets, setting up entry sets involves more work. BibTeX requires entryset and
crossref fields to be used in a special way. The members of the set are given in
the entryset field of the @set entry. The @set entry also requires a crossref
field which points to the first key in the entryset field. In addition to that, all
members of the set require entryset fields which are reverse pointers to the entry
key of the @set head entry:

@Set{set1,

entryset = {key1,key2,key3},

crossref = {key1},

}

113

@Article{key1,

entryset = {set1},

author = {...},

title = {...},

...

}

@InCollection{key2,

entryset = {set1},

author = {...},

title = {...},

...

}

@Article{key3,

entryset = {set1},

author = {...},

title = {...},

...

}

Note that citing any set member will automatically load the entire set with BibTeX.
If you want to refer to an item as part of a set in one document/refsection and as a
stand-alone reference in another one, you need two distinct entries with BibTeX.

3.11.5.2 Dynamic entry sets Dynamic entry sets are set up and work much like Biber only
static ones. The main difference is that they are defined in the document preamble
or on the fly in the document body using the \defbibentryset command from
§ 3.6.12:

\defbibentryset{set1}{key1,key2,key3}

Dynamic entry sets in the document body are local to the enclosing refsection
environment, if any. Otherwise, they are assigned to reference section 0. Those
defined in the preamble are assigned to reference section 0. Note that dynamic entry
sets require Biber. They will not work with any other backend.

3.11.6 Data Containers Biber only

The @xdata entry type serves as a data container holding one or more fields. These
fields may be inherited by other entries using the xdata field. @xdata entries may
not be cited or added to the bibliography, they only serve as a data source for other
entries. This data inheritance mechanism is useful for fixed field combinations such
as publisher/location and for other frequently used data:

@XData{hup,

publisher = {Harvard University Press},

location = {Cambridge, Mass.},

}

@Book{...,

author = {...},

title = {...},

date = {...},

xdata = {hup},

}

114

Using a separated list of keys in its xdata field, an entry may inherit data from
several @xdata entries. Cascading @xdata entries are supported as well, i. e., an
@xdata entry may reference one or more other @xdata entries:

@XData{macmillan:name,

publisher = {Macmillan},

}

@XData{macmillan:place,

location = {New York and London},

}

@XData{macmillan,

xdata = {macmillan:name,macmillan:place},

}

@Book{...,

author = {...},

title = {...},

date = {...},

xdata = {macmillan},

}

See also §§ 2.1.1 and 2.2.3.

3.11.7 Electronic Publishing Information

The Biblatex package provides three fields for electronic publishing information:
eprint, eprinttype, and eprintclass. The eprint field is a verbatim field
similar to doi which holds the identifier of the item. The eprinttype field holds
the resource name, i. e., the name of the site or electronic archive. The optional
eprintclass field is intended for additional information specific to the resource
indicated by the eprinttype field. This could be a section, a path, classification
information, etc. If the eprinttype field is available, the standard styles will use
it as a literal label. In the following example, they would print “Resource: identifier”
rather than the generic “eprint: identifier”:

eprint = {identifier},

eprinttype = {Resource},

The standard styles feature dedicated support for a few online archives. For arXiv
references, put the identifier in the eprint field and the string arxiv in the
eprinttype field:

eprint = {math/0307200v3},

eprinttype = {arxiv},

For papers which use the new identifier scheme (April 2007 and later) add the primary
classification in the eprintclass field:

eprint = {1008.2849v1},

eprinttype = {arxiv},

eprintclass = {cs.DS},

There are two aliases which ease the integration of arXiv entries. archiveprefix
is treated as an alias for eprinttype; primaryclass is an alias for

115

eprintclass. If hyperlinks are enabled, the eprint identifier will be transformed
into a link to arxiv.org. See the package option arxiv in § 3.1.2.1 for further
details.

For jstor references, put the stable jstor number in the eprint field and the
string jstor in the eprinttype field:

eprint = {number},

eprinttype = {jstor},

When using jstor’s export feature to export citations in BibTeX format, jstor uses
the url field by default (where the 〈number〉 is a unique and stable identifier):

url = {http://www.jstor.org/stable/number},

While this will work as expected, full urls tend to clutter the bibliography. With
the eprint fields, the standard styles will use the more readable “jstor: 〈number〉”
format which also supports hyperlinks. The 〈number〉 becomes a clickable link if
hyperref support is enabled.

For PubMed references, put the stable PubMed identifier in the eprint field and
the string pubmed in the eprinttype field. This means that:

url = {http://www.ncbi.nlm.nih.gov/pubmed/pmid},

becomes:

eprint = {pmid},

eprinttype = {pubmed},

and the standard styles will print “pmid: 〈pmid〉” instead of the lengthy url. If
hyperref support is enabled, the 〈pmid〉 will be a clickable link to PubMed.

For handles (hdls), put the handle in the eprint field and the string hdl in the
eprinttype field:

eprint = {handle},

eprinttype = {hdl},

For Google Books references, put Google’s identifier in the eprint field and the
string googlebooks in the eprinttype field. This means that, for example:

url = {http://books.google.com/books?id=XXu4AkRVBBoC},

would become:

eprint = {XXu4AkRVBBoC},

eprinttype = {googlebooks},

and the standard styles would print “Google Books: XXu4AkRVBBoC” instead of
the full url. If hyperref support is enabled, the identifier will be a clickable link to
Google Books.26

Note that eprint is a verbatim field. Always give the identifier in its unmodified
form. For example, there is no need to replace _ with _. Also see § 4.11.2 on how
to add dedicated support for other eprint resources.
26Note that the Google Books id seems to be a bit of an ‘internal’ value. As of this writing, there does

not seem to be any way to search for an id on Google Books. You may prefer to use the url in
this case.

116

3.11.8 External Abstracts and Annotations

Styles which print the fields abstract and/or annotation may support an
alternative way of adding abstracts or annotations to the bibliography. Instead of
including the text in the bib file, it may also be stored in an external LaTeX file. For
example, instead of saying

@Article{key1,

...

abstract = {This is an abstract of entry ‘key1’.}

}

in the bib file, you may create a file named bibabstract-key1.tex and put
the abstract in this file:

This is an abstract of entry ‘key1’.

\endinput

The name of the external file must be the entry key prefixed with bibabstract-
or bibannotation-, respectively. You can change these prefixes by redefining
\bibabstractprefix and \bibannotationprefix. Note that this feature
needs to be enabled explicitly by setting the package option loadfiles from
§ 3.1.2.1. The option is disabled by default for performance reasons. Also note that
any abstract and annotation fields in the bib file take precedence over the
external files. Using external files is strongly recommended if you have long abstracts
or a lot of annotations since this may increase memory requirements significantly.
It is also more convenient to edit the text in a dedicated LaTeX file. Style authors
should see § 4.11.3 for further information.

3.12 Hints and Caveats

This section provides additional usage hints and addresses some common problems
and potential misconceptions.

3.12.1 Usage with KOMA-Script Classes

When using Biblatex in conjunction with one of the scrbook, scrreprt, or
scrartcl classes, the headings bibliography and biblist from § 3.6.8 are
responsive to the bibliography-related options of these classes.27 You can override
the default headings by using the heading option of \printbibliography,
\printbibheading and \printbiblist. See §§ 3.6.2, 3.6.4, 3.6.8 for details.
All default headings are adapted at load-time such that they blend with the behavior
of these classes. If one of the above classes is detected, Biblatex will also provide the
following additional tests which may be useful in custom heading definitions:

27This applies to the traditional syntax of these options (bibtotoc and bibtotocnumbered)
as well as to the 〈key〉=〈value〉 syntax introduced in koma-Script 3.x, i. e., to bibliography=
nottotoc, bibliography=totoc, and bibliography=totocnumbered. The global
toc=bibliography and toc=bibliographynumbered options as well as their aliases
are detected as well. In any case, the options must be set globally in the optional argument to
\documentclass.

117

\ifkomabibtotoc{〈true〉}{〈false〉}

Expands to 〈true〉 if the class would add the bibliography to the table of contents,
and to 〈false〉 otherwise.

\ifkomabibtotocnumbered{〈true〉}{〈false〉}

Expands to 〈true〉 if the class would add the bibliography to the table of con-
tents as a numbered section, and to 〈false〉 otherwise. If this test yields 〈true〉,
\ifkomabibtotoc will always yield 〈true〉 as well, but not vice versa.

3.12.2 Usage with the Memoir Class

When using Biblatex with the memoir class, most class facilities for adapting the
bibliography have no effect. Use the corresponding facilities of this package in-
stead (§§ 3.6.2, 3.6.8, 3.6.9). Instead of redefining memoir’s \bibsection, use the
heading option of \printbibliography and \defbibheading (§§ 3.6.2
and 3.6.8). Instead of \prebibhook and \postbibhook, use the prenote and
postnote options of \printbibliography and \defbibnote (§§ 3.6.2 and
3.6.9). All default headings are adapted at load-time such that they blend well with the
default layout of this class. The default headings bibliography and biblist
(§ 3.6.8) are also responsive to memoir’s \bibintoc and \nobibintoc switches.
The length register \bibitemsep is used by Biblatex in a way similar to memoir
(§ 3.9.3). This section also introduces some additional length registers which corre-
spond to memoir’s \biblistextra. Lastly, \setbiblabel does not map to a
single facility of the Biblatex package since the style of all labels in the bibliography
is controlled by the bibliography style. See § 4.2.2 in the author section of this manual
for details. If the memoir class is detected, Biblatex will also provide the following
additional test which may be useful in custom heading definitions:

\ifmemoirbibintoc{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on memoir’s \bibintoc and
\nobibintoc switches. This is a LaTeX frontend to memoir’s \ifnobibintoc
test. Note that the logic of the test is reversed.

3.12.3 Page Numbers in Citations

If the 〈postnote〉 argument to a citation command is a page number or page range,
Biblatex will automatically prefix it with ‘p.’ or ‘pp.’ by default. This works reliably
in typical cases, but sometimes manual intervention may be required. In this case, it
is important to understand how this argument is handled in detail. First, Biblatex
checks if the postnote is an Arabic or Roman numeral (case insensitive). If this test
succeeds, the postnote is considered as a single page or other number which will be
prefixed with ‘p.’ or some other string which depends on the pagination field
(see § 2.3.10). If it fails, a second test is performed to find out if the postnote is a
range or a list of Arabic or Roman numerals. If this test succeeds, the postnote will
be prefixed with ‘pp.’ or some other string in the plural form. If it fails as well, the
postnote is printed as is. Note that both tests expand the 〈postnote〉. All commands
used in this argument must therefore be robust or prefixed with \protect. Here
are a few examples of 〈postnote〉 arguments which will be correctly recognized as a
single number, a range of numbers, or a list of numbers, respectively:

118

\cite[25]{key}

\cite[vii]{key}

\cite[XIV]{key}

\cite[34--38]{key}

\cite[iv--x]{key}

\cite[185/86]{key}

\cite[XI \& XV]{key}

\cite[3, 5, 7]{key}

\cite[vii--x; 5, 7]{key}

In some other cases, however, the tests may get it wrong and you need to resort
to the auxiliary commands \pno, \ppno, and \nopp from § 3.7.8. For example,
suppose a work is cited by a special pagination scheme consisting of numbers and
letters. In this scheme, the string ‘27a’ would mean ‘page 27, part a’. Since this
string does not look like a number or a range to Biblatex, you need to force the prefix
for a single number manually:

\cite[\pno~27a]{key}

There is also a \ppno command which forces a range prefix as well as a \nopp
command which suppresses all prefixes:

\cite[\ppno~27a--28c]{key}

\cite[\nopp 25]{key}

These commands may be used anywhere in the 〈postnote〉 argument. They may also
be used multiple times. For example, when citing by volume and page number, you
may want to suppress the prefix at the beginning of the postnote and add it in the
middle of the string:

\cite[VII, \pno~5]{key}

\cite[VII, \pno~3, \ppno~40--45]{key}

\cite[see][\ppno~37--46, in particular \pno~40]{key}

There are also two auxiliary command for suffixes like ‘the following page(s)’. Instead
of inserting such suffixes literally (which would require \ppno to force a prefix):

\cite[\ppno~27~sq.]{key}

\cite[\ppno~55~sqq.]{key}

use the auxiliary commands \psq and \psqq. Note that there is no space between
the number and the command. This space will be inserted automatically and may be
modified by redefining the macro \sqspace.

\cite[27\psq]{key}

\cite[55\psqq]{key}

Since the postnote is printed without any prefix if it includes any character which is
not an Arabic or Roman numeral, you may also type the prefix manually:

\cite[p.~5]{key}

It is possible to suppress the prefix on a per-entry basis by setting the pagination
field of an entry to ‘none’, see § 2.3.10 for details. If you do not want any prefixes at
all or prefer to type them manually, you can also disable the entire mechanism in
the document preamble or the configuration file as follows:

119

\DeclareFieldFormat{postnote}{#1}

The 〈postnote〉 argument is handled as a field and the formatting of this field is
controlled by a field formatting directive which may be freely redefined. The above
definition will simply print the postnote as is. See §§ 4.3.2 and 4.4.2 in the author
guide for further details.

3.12.4 Name Parts and Name Spacing

The Biblatex package gives users and style authors very fine-grained control of name
spacing and the line-breaking behavior of names, especially when they are using
Biber as the backend. The commands discussed in the following are documented
in §§ 3.9.1 and 4.10.1. This section is meant to give an overview of how they are
put together. A note on terminology: a name part is a basic part of the name, for
example the first or the last name. Each part of a name may be a single name or it
may be composed of multiple names. For example, the name part ‘first name’ may
be composed of a first and a middle name. The latter are referred to as name elements
in this section. Let’s consider a simple name first: “John Edward Doe”. This name is
composed of the following parts:

First John Edward
Prefix —
Last Doe
Suffix —

The spacing, punctuation and line-breaking behavior of names is controlled by six
macros:

a=\bibnamedelima Inserted by the backend after the first element of every
name part if that element is less than three characters
long and before the last element of every name part.

b=\bibnamedelimb Inserted by the backend between all elements of a name
part where \bibnamedelima does not apply.

c=\bibnamedelimc Inserted by a formatting directive between the name
prefix and the last name if useprefix=true. If
useprefix=false, \bibnamedelimd is used
instead.

d=\bibnamedelimd Inserted by a formatting directive between name parts
where \bibnamedelimc does not apply.

i=\bibnamedelimi Replaces \bibnamedelima/b after initials
p=\revsdnamepunct Inserted by a formatting directive after the last name

when the name parts are reversed.

This is how the delimiters are employed:

John
a
Edward

d
Doe

Doe,
p d
John

a
Edward

Initials in the bib file get a special delimiter:

J.
i
Edward

d
Doe

Let’s consider a more complex name: “Charles-Jean Étienne Gustave Nicolas de La
Vallée Poussin”. This name is composed of the following parts:

120

First Charles-Jean Étienne Gustave Nicolas
Prefix de
Last La Vallée Poussin
Suffix —

The delimiters:

Charles-Jean
b
Étienne

b
Gustave

a
Nicolas

d
de

c
La

a
Vallée

a
Poussin

Note that \bibnamedelima/b/i are inserted by the backend. The backend
processes the name parts and takes care of the delimiters between the elements
that make up a name part, processing each part individually. In contrast to that,
the delimiters between the parts of the complete name (\bibnamedelimc/d)
are added by name formatting directives at a later point in the processing chain.
The spacing and punctuation of initials is also handled by the backend and may be
customized by redefining the following three macros:

a=\bibinitperiod Inserted by the backend after initials.
b=\bibinitdelim Inserted by the backend between multiple initials.
c=\bibinithyphendelim Inserted by the backend between the initials of

hyphenated name parts, replacing
\bibinitperiod and \bibinitdelim.

This is how they are employed:

J.
a b
E.

a
Doe

K.-
c
H.

a
Mustermann

3.12.5 Bibliography Filters and Citation Labels

The citation labels generated by this package are assigned to the full list of references
before it is split up by any bibliography filters. They are guaranteed to be unique
across the entire document (or a refsection environment), no matter how many
bibliography filters you are using. When using a numeric citation scheme, however,
this will most likely lead to discontinuous numbering in split bibliographies. Use
the defernumbers package option to avoid this problem. If this option is enabled,
numeric labels are assigned the first time an entry is printed in any bibliography.

3.12.6 Active Characters in Bibliography Headings

Packages using active characters, such as babel, polyglossia, csquotes, or
underscore, usually do not make them active until the beginning of the docu-
ment body to avoid interference with other packages. A typical example of such
an active character is the Ascii quote ”, which is used by various language mod-
ules of the babel/polyglossia packages. If shorthands such as ”< and ”a are
used in the argument to \defbibheading and the headings are defined in the
document preamble, the non-active form of the characters is saved in the heading
definition. When the heading is typeset, they do not function as a command but
are simply printed literally. The most straightforward solution consists in mov-
ing \defbibheading after \begin{document}. Alternatively, you may use
babel’s \shorthandon and \shorthandoff commands to temporarily make
the shorthands active in the preamble. The above also applies to bibliography notes
and the \defbibnote command.

121

3.12.7 Grouping in Reference Sections and Segments

All LaTeX environments enclosed in \begin and \end form a group. This may have
undesirable side effects if the environment contains anything that does not expect to
be usedwithin a group. This issue is not specific torefsection andrefsegment
environments, but it obviously applies to them as well. Since these environments
will usually enclose much larger portions of the document than a typical itemize
or similar environment, they are simply more likely to trigger problems related to
grouping. If you observe any malfunctions after adding refsection environments
to a document (for example, if anything seems to be ‘trapped’ inside the environment),
try the following syntax instead:

\chapter{...}

\refsection

...

\endrefsection

This will not from a group, but otherwise works as usual. As far as Biblatex
is concerned, it does not matter which syntax you use. The alternative syntax
is also supported by the refsegment environment. Note that the commands
\newrefsection and \newrefsegment do not form a group. See §§ 3.6.5 and
3.6.6 for details.

4 Author Guide

This part of the manual documents the author interface of the Biblatex package. The
author guide covers everything you need to know in order to write new citation
and bibliography styles or localization modules. You should read the user guide first
before continuing with this part of the manual.

4.1 Overview

Before we get to the commands and facilities provided by Biblatex, we will have
a look at some of its fundamental concepts. The Biblatex package uses auxiliary
files in a special way. Most notably, the bbl file is used differently and when using
BibTeX as the backend, there is only one bst file which implements a structured data
interface rather than exporting printable data. With LaTeX’s standard bibliographic
facilities, a document includes any number of citation commands in the document
body plus \bibliographystyle and \bibliography, usually towards the
end of the document. The location of the former is arbitrary, the latter marks the
spot where the list of references is to be printed:

\documentclass{...}

\begin{document}

\cite{...}

...

\bibliographystyle{...}

\bibliography{...}

\end{document}

Processing this files requires that a certain procedure be followed. This procedure is
as follows:

122

1. Run latex: On the first run, \bibstyle and \bibdata commands are
written to the aux file, along with \citation commands for all citations.
At this point, the references are undefined because LaTeX is waiting for BibTeX
to supply the required data. There is also no bibliography yet.

2. Run bibtex: BibTeX writes a thebibliography environment to the bbl
file, supplying all entries from the bib file which were requested by the
\citation commands in the aux file.

3. Run latex: Starting with the second run, the \bibitem commands in the
thebibliography environment write one \bibcite command for each
bibliography entry to the aux file. These \bibcite commands define the
citation labels used by \cite. However, the references are still undefined
because the labels are not available until the end of this run.

4. Run latex: Starting with the third run, the citation labels are defined as the
aux file is read in at the end of the preamble. All citations can now be printed.

Note that all bibliographic data is written to the bbl file in the final format. The
bbl file is read in and processed like any printable section of the document. For
example, consider the following entry in a bib file:

@Book{companion,

author = {Michel Goossens and Frank Mittelbach and Alexander Samarin},

title = {The LaTeX Companion},

publisher = {Addison-Wesley},

address = {Reading, Mass.},

year = {1994},

}

With the plain.bst style, BibTeX exports this entry to the bbl file as follows:

\bibitem{companion}

Michel Goossens, Frank Mittelbach, and Alexander Samarin.

\newblock {\em The LaTeX Companion}.

\newblock Addison-Wesley, Reading, Mass., 1994.

By default, LaTeX generates numeric citation labels, hence \bibitem writes lines
such as the following to the aux file:

\bibcite{companion}{1}

Implementing a different citation style implies that more data has to be transferred
via the aux file. With the natbib package, for example, the aux file contains lines
like this one:

\bibcite{companion}{{1}{1994}{{Goossens et~al.}}{{Goossens, Mittelbach,

and Samarin}}}

The Biblatex package supports citations in any arbitrary format, hence citation
commands need access to all bibliographic data. What this would mean within
the scope of the procedure outlined above becomes obvious when looking at the
output of the jurabib package which also makes all bibliographic data available
in citations:

123

\bibcite{companion}{{Goossens\jbbfsasep Mittelbach\jbbstasep Samarin}%

{}{{0}{}{book}{1994}{}{}{}{}{Reading, Mass.\bpubaddr{}Addison-Wesley%

\bibbdsep{} 1994}}{{The LaTeX Companion}{}{}{2}{}{}{}{}{}}{\bibnf

{Goossens}{Michel}{M.}{}{}\Bibbfsasep\bibnf{Mittelbach}{Frank}{F.}%

{}{}\Bibbstasep\bibnf{Samarin}{Alexander}{A.}{}{}}{\bibtfont{The

LaTeX Companion}.\ \apyformat{Reading, Mass.\bpubaddr{}

Addison-Wesley\bibbdsep{} 1994}}}

In this case, the contents of the entire thebibliography environment are effec-
tively transferred via the aux file. The data is read from the bbl file, written to the
aux file, read back from the aux file and then kept in memory. The bibliography
itself is still generated as the bbl file is read in. The Biblatex package would also be
forced to cycle all data through the aux file. This implies processing overhead and
is also redundant because the data has to be kept in memory anyway.

The traditional procedure is based on the assumption that the full bibliographic
data of an entry is only required in the bibliography and that all citations use
short labels. This makes it very effective in terms of memory requirements, but
it also implies that it does not scale well. That is why Biblatex takes a different
approach. First of all, the document structure is slightly different. Instead of using
\bibliography in the document body, database files are specified in the pream-
ble with \addbibresource, \bibliographystyle is omitted entirely (all
features are controlled by package options), and the bibliography is printed using
\printbibliography:

\documentclass{...}

\usepackage[...]{biblatex}

\addbibresource{...}

\begin{document}

\cite{...}

...

\printbibliography

\end{document}

In order to streamline the whole procedure, Biblatex essentially employs the bbl
file like an aux file, rendering \bibcite obsolete. We then get the following
procedure:

1. Run latex: The first step is similar to the traditional procedure described
above: \bibstyle and \bibdata commands are written to the aux file
(BibTeX backend) or bcf file (Biber backend), along with \citation com-
mands for all citations. We then wait for the backend to supply the required
data. With BibTeX as a backend, since Biblatex uses a special bst file which
implements its data interface on the BibTeX end, the \bibstyle command
is always \bibstyle{biblatex}.

2. Run biber or bibtex: The backend supplies those entries from the bib
file which were requested by the \citation commands in the auxiliary file.
However, it does not write a printable bibliography to the bbl file, but rather
a structured representation of the bibliographic data. Just like an aux file, this
bbl file does not print anything when read in. It merely puts data in memory.

3. Run latex: Starting with the second run, the bbl file is processed right at
the beginning of the document body, just like an aux file. From this point on,

124

all bibliographic data is available in memory so that all citations can be printed
right away.28 The citation commands have access to the complete bibliographic
data, not only to a predefined label. The bibliography is generated frommemory
using the same data and may be filtered or split as required.

Let’s consider the sample entry given above once more:

@Book{companion,

author = {Michel Goossens and Frank Mittelbach and Alexander Samarin},

title = {The LaTeX Companion},

publisher = {Addison-Wesley},

address = {Reading, Mass.},

year = {1994},

}

With Biblatex and the Biber backend, this entry is essentially exported in the following
format:

\entry{companion}{book}{}

\labelname{author}{3}{}{%

{{uniquename=0,hash=...}{Goossens}{G.}{Michel}{M.}{}{}{}{}}%

{{uniquename=0,hash=...}{Mittelbach}{M.}{Frank}{F.}{}{}{}{}}%

{{uniquename=0,hash=...}{Samarin}{S.}{Alexander}{A.}{}{}{}{}}%

}

\name{author}{3}{}{%

{{uniquename=0,hash=...}{Goossens}{G.}{Michel}{M.}{}{}{}{}}%

{{uniquename=0,hash=...}{Mittelbach}{M.}{Frank}{F.}{}{}{}{}}%

{{uniquename=0,hash=...}{Samarin}{S.}{Alexander}{A.}{}{}{}{}}%

}

\list{publisher}{1}{%

{Addison-Wesley}%

}

\list{location}{1}{%

{Reading, Mass.}%

}

\field{title}{The LaTeX Companion}

\field{year}{1994}

\endentry

As seen in this example, the data is presented in a structured format that resembles
the structure of a bib file to some extent. At this point, no decision concerning
the final format of the bibliography entry has been made. The formatting of the
bibliography and all citations is controlled by LaTeX macros, which are defined in
bibliography and citation style files.

4.2 Bibliography Styles

A bibliography style is a set of macros which print the entries in the bibliography.
Such styles are defined in files with the suffix bbx. The Biblatex package loads the
28If the defernumbers package option is enabled Biblatex uses an algorithm similar to the traditional

procedure to generate numeric labels. In this case, the numbers are assigned as the bibliography is
printed and then cycled through the backend auxiliary file. It will take an additional LaTeX run for
them to be picked up in citations.

125

selected bibliography style file at the end of the package. Note that a small repertory
of frequently used macros shared by several of the standard bibliography styles is
included in biblatex.def. This file is loaded at the end of the package as well,
prior to the selected bibliography style.

4.2.1 Bibliography Style Files

Before we go over the individual components of a bibliography style, consider this
example of the overall structure of a typical bbx file:

\ProvidesFile{example.bbx}[2006/03/15 v1.0 biblatex bibliography style]

\defbibenvironment{bibliography}

{...}

{...}

{...}

\defbibenvironment{shorthand}

{...}

{...}

{...}

\InitializeBibliographyStyle{...}

\DeclareBibliographyDriver{article}{...}

\DeclareBibliographyDriver{book}{...}

\DeclareBibliographyDriver{inbook}{...}

...

\DeclareBibliographyDriver{shorthand}{...}

\endinput

The main structure of a bibliography style file consists of the following commands:

\RequireBibliographyStyle{〈style〉}

This command is optional and intended for specialized bibliography styles built on
top of a more generic style. It loads the bibliography style style.bbx.

\InitializeBibliographyStyle{〈code〉}

Specifies arbitrary 〈code〉 to be inserted at the beginning of the bibliography, but
inside the group formed by the bibliography. This command is optional. It may be
useful for definitions which are shared by several bibliography drivers but not used
outside the bibliography. Keep in mind that there may be several bibliographies in a
document. If the bibliography drivers make any global assignments, they should be
reset at the beginning of the next bibliography.

\DeclareBibliographyDriver{〈entrytype〉}{〈code〉}

Defines a bibliography driver. A ‘driver’ is a macro which handles a specific entry
type (when printing bibliography lists) or a specific named bibliography list (when
printing bibliography lists). The 〈entrytype〉 corresponds to the entry type used in
bib files, specified in lowercase letters (see § 2.1). The 〈entrytype〉 argument may
also be an asterisk. In this case, the driver serves as a fallback which is used if no
specific driver for the entry type has been defined. The 〈code〉 is arbitrary code
which typesets all bibliography entries of the respective 〈entrytype〉. This command
is mandatory. Every bibliography style should provide a driver for each entry type.

126

\DeclareBibliographyAlias{〈alias〉}{〈entrytype〉}

If a bibliography driver covers more than one entry type, this command may be used
to define an alias where 〈entrytype〉 is the name of a defined driver. This command is
optional. The 〈alias〉 argument may also be an asterisk. In this case, the 〈entrytype〉
driver serves as a fallback which is used if no specific driver for an entry has been
defined.

\DeclareBibliographyOption{〈key〉}[〈value〉]{〈code〉}

This command defines additional preamble options in 〈key〉=〈value〉 format. The
〈key〉 is the option key. The 〈code〉 is arbitrary TeX code to be executed whenever
the option is used. The value passed to the option is passed on to the 〈code〉 as #1.
The optional 〈value〉 is a default value to be used if the bare key is given without any
value. This is useful for boolean switches. For example, with a definition like the
following:

\DeclareBibliographyOption{somekey}[true]{...}

giving ‘somekey’ without a value is equivalent to ‘somekey=true’.

\DeclareEntryOption{〈key〉}[〈value〉]{〈code〉}

Similar to \DeclareBibliographyOption but defines options which are
settable on a per-entry basis in the options field from § 2.2.3. The 〈code〉 is
executed whenever Biblatex prepares the data of the entry for use by a citation
command or a bibliography driver.

4.2.2 Bibliography Environments

Apart from defining bibliography drivers, the bibliography style is also responsible
for the environments which control the layout of the bibliography and bibliogra-
phy lists. These environments are defined with \defbibenvironment. By de-
fault, \printbibliography uses the environment bibliography. Here is a
definition suitable for a bibliography style which does not print any labels in the
bibliography:

\defbibenvironment{bibliography}

{\list

{}

{\setlength{\leftmargin}{\bibhang}%

\setlength{\itemindent}{-\leftmargin}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}}}

{\endlist}

{\item}

This definition employs a list environment with hanging indentation, using the
\bibhang length register provided by Biblatex. It allows for a certain degree of
configurability by using \bibitemsep and \bibparsep, two length registers
provided by Biblatex for this very purpose (see § 4.10.3). The authoryear and
authortitle bibliography styles use a definition similar to this example.

127

\defbibenvironment{bibliography}

{\list

{\printfield[labelnumberwidth]{labelnumber}}

{\setlength{\labelwidth}{\labelnumberwidth}%

\setlength{\leftmargin}{\labelwidth}%

\setlength{\labelsep}{\biblabelsep}%

\addtolength{\leftmargin}{\labelsep}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}}%

\renewcommand*{\makelabel}[1]{\hss##1}}

{\endlist}

{\item}

Some bibliography styles print labels in the bibliography. For example, a bibliogra-
phy style designed for a numeric citation scheme will print the number of every
entry such that the bibliography looks like a numbered list. In the first example,
the first argument to \list was empty. In this example, we need it to insert the
number, which is provided by Biblatex in the labelnumber field. We also em-
ploy several length registers and other facilities provided by Biblatex, see §§ 4.10.4
and 4.10.5 for details. The numeric bibliography style uses the definition given
above. The alphabetic style is similar, except that labelnumber is replaced
by labelalpha and labelnumberwidth by labelalphawidth.

Bibliography lists are handled in a similar way. \printbiblist uses the
environment named after the bibliography list by default (when using BibTeX,
\printshorthands always uses the shorthand environment). A typical ex-
ample is given below. See §§ 4.10.4 and 4.10.5 for details on the length registers and
facilities used in this example.

\defbibenvironment{shorthand}

{\list

{\printfield[shorthandwidth]{shorthand}}

{\setlength{\labelwidth}{\shorthandwidth}%

\setlength{\leftmargin}{\labelwidth}%

\setlength{\labelsep}{\biblabelsep}%

\addtolength{\leftmargin}{\labelsep}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}%

\renewcommand*{\makelabel}[1]{##1\hss}}}

{\endlist}

{\item}

4.2.3 Bibliography Drivers

Before we go over the commands which form the data interface of the Biblatex
package, it may be instructive to have a look at the structure of a bibliography driver.
Note that the example given below is greatly simplified, but still functional. For the
sake of readability, we omit several fields which may be part of a @book entry and
also simplify the handling of those which are considered. The main point is to give
you an idea of how a driver is structured. For information about the mapping of the
BibTeX file format fields to Biblatex’s data types, see § 2.2.

\DeclareBibliographyDriver{book}{%

128

\printnames{author}%

\newunit\newblock

\printfield{title}%

\newunit\newblock

\printlist{publisher}%

\newunit

\printlist{location}%

\newunit

\printfield{year}%

\finentry}

The standard bibliography styles employ two bibliography macros begentry and
finentry:

\DeclareBibliographyDriver{entrytype}{%

\usebibmacro{begentry}

...

\usebibmacro{finentry}}

with the default definitions

\newbibmacro*{begentry}{}

\newbibmacro*{finentry}{\finentry}

Use of these macros is recommended for easy hooks into the beginning and end of
the driver.

Returning to the driver for the book entrytype above, there is still one piece
missing: the formatting directives used by \printnames, \printlist, and
\printfield. To give you an idea of what a formatting directive looks like, here
are some fictional ones used by our sample driver. Field formats are straightforward,
the value of the field is passed to the formatting directive as an argument which may
be formatted as desired. The following directive will simply wrap its argument in an
\emph command:

\DeclareFieldFormat{title}{\emph{#1}}

List formats are slightly more complex. After splitting up the list into individual
items, Biblatex will execute the formatting directive once for every item in the list.
The item is passed to the directive as an argument. The separator to be inserted
between the individual items in the list is also handled by the corresponding directive,
hence we have to check whether we are in the middle of the list or at the end when
inserting it.

\DeclareListFormat{location}{%

#1%

\ifthenelse{\value{listcount}<\value{liststop}}

{\addcomma\space}

{}}

Formatting directives for names are similar to those for literal lists, but the individual
items in the list are names which are automatically dissected into their components.
The list formatting directive is executed once for each name in the list and the
components of the name are passed to the formatting directive as separate arguments.
For example, #1 is the last name and#3 is the first name. Here is a simplified example:

129

\DeclareNameFormat{author}{%

\ifthenelse{\value{listcount}=1}

{#1%

\ifblank{#3}{}{\addcomma\space #3}}

{\ifblank{#3}{}{#3\space}%

#1}%

\ifthenelse{\value{listcount}<\value{liststop}}

{\addcomma\space}

{}}

The above directive reverses the name of the first author (“Last, First”) and prints
the remaining names in their regular sequence (“First Last”). Note that the only
component which is guaranteed to be available is the last name, hence we have to
check which parts of the name are actually present. If a certain component of a name
is not available, the corresponding argument will be blank. As with directives for
literal lists, the separator to be inserted between the individual items in the list is
also handled by the formatting directive, hence we have to check whether we are
in the middle of the list or at the end when inserting it. This is what the second
\ifthenelse test does.

4.2.4 Special Fields

The following lists and fields are used by Biblatex to pass data to bibliography drivers
and citation commands. They are not used in bib files but defined automatically by
the package. From the perspective of a bibliography or citation style, they are not
different from the fields in a bib file.

4.2.4.1 Generic Fields

entrykey field (string)

The entry key of an item in the bib file. This is the string used by Biblatex and the
backend to identify an entry in the bib file.

childentrykey field (string)

When citing a subentry of an entry set, Biblatex provides the data of the parent
@set entry to citation commands. This implies that the entrykey field holds the
entry key of the parent. The entry key of the child entry being cited is provided in
the childentrykey field. This field is only available when citing a subentry of
an entry set.

datelabelsource field (literal) Biber only

Holds the prefix coming before ‘date’ of the date field name chosen by
\DeclareLabeldate. For example, if the label date field is eventdate, then
datelabelsource will be ‘event’. In case \DeclareLabeldate selects the
date field, then datelabelsource will be defined but will be an empty string
as the prefix coming before ‘date’ in the date label name is empty. This is so that the
contents of datelabelsource can be used in constructing references to the field
which \DeclareLabeldate chooses. Since \DeclareLabeldate can also
select literal strings for fallbacks, if datelabelsource is undefined, then either
the labeldate package option is set to false or \DeclareLabeldate chose
a literal string instead of a date field. Bear in mind that \DeclareLabeldate

130

can also be used to select non-date fields as a fallback and so datelabelsource
might contain a field name. So, in summary, the rules are

\iffieldundef{datelabelsource}

{

% labeldate package option is not set or

% \DeclareLabeldate resolved to a literal string

}

{

\iffieldundef{\thefield{datelabelsource}date}

{

% datelabelsource contains a date field name

% prefix like ””, ”event”, ”url” or ”orig”

}

{

% datelabelsource contains a non-date field

}

}

entrytype field (string)

The entry type (@book, @inbook, etc.), given in lowercase letters.

childentrytype field (string)

When citing a subentry of an entry set, Biblatex provides the data of the parent
@set entry to citation commands. This implies that the entrytype field holds the
entry type of the parent. The entry type of the child entry being cited is provided in
the childentrytype field. This field is only available when citing a subentry of
an entry set.

entrysetcount field (integer)

This field holds an integer indicating the position of a set member in the entry set
(starting at 1). This field is only available in the subentries of an entry set.

hash field (string) Biber only

This field is special in that it is only available locally in name formatting directives.
It holds a hash string which uniquely identifies individual names in a name list. This
information is available for all names in all name lists. See also namehash and
fullhash.

namehash field (string)

A hash string which uniquely identifies the labelname list. This is useful for
recurrence checks. For example, a citation style which replaces recurrent authors or
editors with a string like ‘idem’ could save the namehash field with \savefield
and use it in a comparison with \iffieldequals later (see §§ 4.6.1 and 4.6.2).
The namehash is derived from the truncated labelname list, i. e., it is responsive
to maxnames and minnames. See also hash and fullhash.

fullhash field (string)

A hash string which uniquely identifies the labelname list. This fields differs
from namehash in two details: 1) The shortauthor and shorteditor lists

131

are ignored when generating the hash. 2) The hash always refers to the full list,
ignoring maxnames and minnames. See also hash and namehash.

pageref list (literal)

If the backref package option is enabled, this list holds the page numbers of the
pages on which the respective bibliography entry is cited. If there are refsection
environments in the document, the back references are local to the reference sections.

sortinit field (literal)

This field holds the initial character of the information used during sorting. With
BibTeX, this field is also used internally instead of sortinithash.

sortinithash field (string) Biber only

With Biber, this field holds a hash of the (locale-specific) Unicode Collation Algorithm
primary weight of the first extended grapheme cluster (essentially the first character)
of the string used during sorting. This is useful when subdividing the bibliography
alphabetically and is used internally by \bibinitsep (see § 3.9.3).

clonesourcekey field (string) Biber only

This field holds the entry key of the entry from which an entry was cloned. Clones
are created for entries which are mentioned in related fields as part of related
entry processing, for example.

4.2.4.2 Fields for Use in Citation Labels

labelalpha field (literal)

When using BibTeX as the backend, a label similar to the labels generated by the
alpha.bst style of traditional BibTeX. This default label consists of initials drawn
from the labelname list plus the last two digits of the publication year. The label
field may be used to override its non-numeric portion. If the label field is defined,
Biblatex will use its value and append the last two digits of the publication year when
generating labelalpha. The shorthand field may be used to override the entire
label. If defined, labelalpha is the shorthand rather than an automatically
generated label. With Biber, users can specify a template used to construct the Biber only
alphabetic label (see § 4.5.4) and the default templatemirrors the formatmentioned for
bibtex above. A complete ‘alphabetic’ label consists of the fields labelalpha plus
extraalpha. Note that the labelalpha and extraalpha fields need to be
requested with the package option labelalpha (§ 3.1.2.3). See also extraalpha
as well as \labelalphaothers in § 3.9.1.

extraalpha field (integer)

The ‘alphabetic’ citation scheme usually requires a letter to be appended to the label
if the bibliography contains two or more works by the same author which were all
published in the same year. In this case, the extraalpha field holds an integer
which may be converted to a letter with \mknumalph or formatted in some other
way. This field is similar to the role of extrayear in the author-year scheme. A
complete ‘alphabetic’ label consists of the fields labelalpha plus extraalpha.
Note that the labelalpha and extraalpha fields need to be requested with the
package option labelalpha, see § 3.1.2.3 for details. See also labelalpha as
well as \labelalphaothers in § 3.9.1. Table 5 summarises the various extra*
disambiguation counters and what they track.

132

labelname list (name)

The name to be printed in citations. This list is a copy of either the shortauthor,
the author, the shorteditor, the editor, or the translator list, which
are normally checked for in this order. If no authors and editors are available, this
list is undefined. Note that this list is also responsive to the use<name>, options,
see § 3.1.3. Citation styles should use this list when printing the name in a citation.
This list is provided for convenience only and does not carry any additional meaning.
With Biber, this field may be customized. See § 4.5.9 for details. Biber only

labelnumber field (literal)

The number of the bibliography entry, as required by numeric citation schemes. If
the shorthand field is defined, Biblatex does not assign a number to the respective
entry. In this case labelnumber is the shorthand rather than a number. Numeric
styles must use the value of this field instead of a counter. Note that this field needs
to be requested with the package option labelnumber, see § 3.1.2.3 for details.
Also see the package option defernumbers in § 3.1.2.1.

prefixnumber field (literal)

If the prefixnumbers option of \printbibliography has been set in or-
der to prefix all entries in a subbibliography with a fixed string, this string is
available in the prefixnumber field of all affected entries. If no prefix has
been set, the prefixnumber field of the respective entry is undefined. See
the prefixnumbers option of \printbibliography in § 3.6.2 for details.
If the shorthand field is defined, Biblatex does not assign the prefix to the
prefixnumber field of the respective entry. In this case, the prefixnumber
field is undefined.

labeltitle field (literal)

The printable title of a work. In some circumstances, a style might need to choose a
title from a list of a possible title fields. For example, citation styles printing short
titles may want to print the shorttitle field if it exists but otherwise print the
title field. The list of fields to be considered when constructing labeltitle Biber only
may be customized. See § 4.5.9 for details. Note that the extratitle field needs to
be requested with the package option labeltitle, see § 3.1.2.3 for details. See also
extratitle. Note also that the extratitleyear field needs to be requested
with the package option labeltitleyear. See also extratitleyear.

extratitle field (integer)

It is sometimes useful, for example in author-title citation schemes, to be able to
disambiguate works with the same title. For works by the same labelname with
the same labeltitle, the extratitle field holds an integer which may be
converted to a letter with \mknumalph or formatted in some other way (or it can
be merely used as a flag to say that some other field such as a date should be used in
conjunction with the labeltitle field). This field is undefined if there is only one
work with the same labeltitle by the same labelname in the bibliography.
Note that the extratitle field needs to be requested with the package option
labeltitle, see § 3.1.2.3 for details. See also labeltitle. Table 5 summarises
the various extra* disambiguation counters and what they track.

133

extratitleyear field (integer)

It is sometimes useful, for example in author-title citation schemes, to be able to disam-
biguate works with the same title in the same year but with no author. For works with
the same labeltitle and with the same labelyear, the extratitleyear
field holds an integer which may be converted to a letter with \mknumalph or
formatted in some other way (or it can be merely used as a flag to say that some other
field such as a publisher should be used in conjunction with the labelyear field).
This field is undefined if there is only one work with the same labeltitle and
labelyear in the bibliography. Note that theextratitleyear field needs to be
requested with the package option labeltitleyear, see § 3.1.2.3 for details. See
also labeltitleyear. Table 5 summarises the various extra* disambiguation
counters and what they track.

labelyear field (literal)

The publication year, as specified in the date or the year field, for use in author-
year labels. A complete author-year label consists of the fields labelyear plus
extrayear. Note that the labelyear and extrayear fields need to be re-
quested with the package option labeldate, see § 3.1.2.3 for details. See also
extrayear. With Biber, the source date field for this may be customized. See Biber only
§ 4.5.9 for details.

labelmonth field (datepart)

The publication month, as specified in the date or the month field, for use in
author-year labels. Note that the labelmonth field needs to be requested with the
package option labeldate, see § 3.1.2.3 for details. With Biber, the source date Biber only
field for this may be customized. See § 4.5.9 for details.

labelday field (datepart)

The publication day, as specified in the date, for use in author-year labels. Note that
the labelday field needs to be requested with the package option labeldate,
see § 3.1.2.3 for details. With Biber, the source date field for this may be customized. Biber only
See § 4.5.9 for details.

extrayear field (integer)

The author-year citation scheme usually requires a letter to be appended to the
year if the bibliography contains two or more works by the same author which
were all published in the same year. In this case, the extrayear field holds an
integer which may be converted to a letter with \mknumalph or formatted in
some other way. This field is undefined if there is only one work by the author in
the bibliography or if all works by the author have different publication years. A
complete author-year label consists of the fields labelyear plus extrayear.
Note that the labelyear and extrayear fields need to be requested with the
package option labeldate, see § 3.1.2.3 for details. See also labelyear. Table
5 summarises the various extra* disambiguation counters and what they track.

4.2.4.3 Date Component Fields See table 8 for an overview of how the date
fields in bib files are related to the date fields provided by the style interface. When
testing for a field like origdate in a style, use code like:

\iffieldundef{origyear}{...}{...}

134

bib File Data Interface

Field Value (Example) Field Value (Example)

date 1988 day undefined
month undefined
year 1988
endday undefined
endmonth undefined
endyear undefined

date 1997/ day undefined
month undefined
year 1997
endday undefined
endmonth undefined
endyear empty

urldate 2009-01-31 urlday 31
urlmonth 01
urlyear 2009
urlendday undefined
urlendmonth undefined
urlendyear undefined

origdate 2002-01/2002-02 origday undefined
origmonth 01
origyear 2002
origendday undefined
origendmonth 02
origendyear 2002

eventdate 1995-01-31/1995-02-05 eventday 31
eventmonth 01
eventyear 1995
eventendday 05
eventendmonth 02
eventendyear 1995

Table 8: Date Interface

This will tell you if the corresponding date is defined at all. This test:

\iffieldundef{origendyear}{...}{...}

will tell you if the corresponding date is defined and a (fully specified) range. This
test:

\iffieldequalstr{origendyear}{}{...}{...}

will tell you if the corresponding date is defined and an open-ended range. Open-
ended ranges are indicated by an empty endyear component (as opposed to an
undefined endyear component). See § 2.3.8 and table 3 on page 35 for further
examples.

day field (datepart)

This field holds the day component of the date field. If the date is a range, it holds
the day component of the start date.

month field (datepart)

This field is the month as given in the database file or it holds the month component
of the date field. If the date is a range, it holds the month component of the start
date.

135

year field (datepart)

This field is the year as given in the database file or it holds the year component of
the date field. If the date is a range, it holds the year component of the start date.

endday field (datepart)

If the date specification in thedate field is a range, this field holds the day component
of the end date.

endmonth field (datepart)

If the date specification in the date field is a range, this field holds the month
component of the end date.

endyear field (datepart)

If the date specification in the date field is a range, this field holds the year compo-
nent of the end date. A blank (but defined) endyear component indicates an open
ended date range.

origday field (datepart)

This field holds the day component of the origdate field. If the date is a range, it
holds the day component of the start date.

origmonth field (datepart)

This field holds the month component of the origdate field. If the date is a range,
it holds the month component of the start date.

origyear field (datepart)

This field holds the year component of the origdate field. If the date is a range, it
holds the year component of the start date.

origendday field (datepart)

If the date specification in the origdate field is a range, this field holds the day
component of the end date.

origendmonth field (datepart)

If the date specification in the origdate field is a range, this field holds the month
component of the end date.

origendyear field (datepart)

If the date specification in the origdate field is a range, this field holds the year
component of the end date. A blank (but defined) origendyear component
indicates an open ended origdate range.

eventday field (datepart)

This field holds the day component of the eventdate field. If the date is a range,
it holds the day component of the start date.

136

eventmonth field (datepart)

This field holds the month component of the eventdate field. If the date is a range,
it holds the month component of the start date.

eventyear field (datepart)

This field holds the year component of the eventdate field. If the date is a range,
it holds the year component of the start date.

eventendday field (datepart)

If the date specification in the eventdate field is a range, this field holds the day
component of the end date.

eventendmonth field (datepart)

If the date specification in the eventdate field is a range, this field holds the month
component of the end date.

eventendyear field (datepart)

If the date specification in the eventdate field is a range, this field holds the year
component of the end date. A blank (but defined) eventendyear component
indicates an open ended eventdate range.

urlday field (datepart)

This field holds the day component of the urldate field.

urlmonth field (datepart)

This field holds the month component of the urldate field.

urlyear field (datepart)

This field holds the year component of the urldate field.

urlendday field (datepart)

If the date specification in the urldate field is a range, this field holds the day
component of the end date.

urlendmonth field (datepart)

If the date specification in the urldate field is a range, this field holds the month
component of the end date.

urlendyear field (datepart)

If the date specification in the urldate field is a range, this field holds the year
component of the end date. A blank (but defined)urlendyear component indicates
an open ended urldate range.

137

4.3 Citation Styles

A citation style is a set of commands such as \cite which print different types of
citations. Such styles are defined in files with the suffix cbx. The Biblatex package
loads the selected citation style file at the end of the package. Note that a small
repertory of frequently used macros shared by several of the standard citation styles
is also included in biblatex.def. This file is loaded at the end of the package
as well, prior to the selected citation style. It also contains the definitions of the
commands from § 3.7.5.

4.3.1 Citation Style Files

Before we go over the individual commands available in citation style files, consider
this example of the overall structure of a typical cbx file:

\ProvidesFile{example.cbx}[2006/03/15 v1.0 biblatex citation style]

\DeclareCiteCommand{\cite}{...}{...}{...}{...}

\DeclareCiteCommand{\parencite}[\mkbibparens]{...}{...}{...}{...}

\DeclareCiteCommand{\footcite}[\mkbibfootnote]{...}{...}{...}{...}

\DeclareCiteCommand{\textcite}{...}{...}{...}{...}

\endinput

\RequireCitationStyle{〈style〉}

This command is optional and intended for specialized citation styles built on top of
a more generic style. It loads the citation style style.cbx.

\InitializeCitationStyle{〈code〉}

Specifies arbitrary 〈code〉 required to initialize or reset the citation style. This
hook will be executed once at package load-time and every time the \citereset
command from § 3.7.8 is used. The \citereset command also resets the in-
ternal citation trackers of this package. The reset will affect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2.
When used in a refsection environment, the reset of the citation tracker is local
to the current refsection environment.

\OnManualCitation{〈code〉}

Specifies arbitrary 〈code〉 required for a partial reset of the citation style. This
hook will be executed every time the \mancite command from § 3.7.8 is used. It is
particularly useful in citation styles which replace repeated citations by abbreviations
like ‘ibidem’ or ‘op. cit.’ which may get ambiguous if automatically generated and
manual citations are mixed. The \mancite command also resets the internal
‘ibidem’ and ‘idem’ trackers of this package. The reset will affect the \ifciteibid
and \ifciteidem tests discussed in § 4.6.2.

\DeclareCiteCommand{〈command〉}[〈wrapper〉]{〈precode〉}{〈loopcode〉}{〈sepcode〉}{〈postcode〉}
\DeclareCiteCommand*{〈command〉}[〈wrapper〉]{〈precode〉}{〈loopcode〉}{〈sepcode〉}{〈postcode〉}

This is the core command used to define all citation commands. It takes one optional
and five mandatory arguments. The 〈command〉 is the command to be defined, for

138

example \cite. If the optional 〈wrapper〉 argument is given, the entire citation will
be passed to the 〈wrapper〉 as an argument, i. e., the wrapper command must take
one mandatory argument.29 The 〈precode〉 is arbitrary code to be executed at the
beginning of the citation. It will typically handle the 〈prenote〉 argument which is
available in the prenote field. It may also be used to initialize macros required by
the 〈loopcode〉. The 〈loopcode〉 is arbitrary code to be executed for each entry key
passed to the 〈command〉. This is the core code which prints the citation labels or any
other data. The 〈sepcode〉 is arbitrary code to be executed after each iteration of the
〈loopcode〉. It will only be executed if a list of entry keys is passed to the 〈command〉.
The 〈sepcode〉 will usually insert some kind of separator, such as a comma or a
semicolon. The 〈postcode〉 is arbitrary code to be executed at the end of the citation.
The 〈postcode〉 will typically handle the 〈postnote〉 argument which is available in
the postnote field.30 The starred variant of \DeclareCiteCommand defines
a starred 〈command〉. For example, \DeclareCiteCommand*{cite} would
define \cite*.31

\DeclareMultiCiteCommand{〈command〉}[〈wrapper〉]{〈cite〉}{〈delimiter〉}

This command defines ‘multicite’ commands (§ 3.7.3). The 〈command〉 is the mul-
ticite command to be defined, for example \cites. It is automatically made ro-
bust. Multicite commands are built on top of backend commands defined with
\DeclareCiteCommand and the 〈cite〉 argument specifies the name of the back-
end command to be used. Note that the wrapper of the backend command (i. e.,
the 〈wrapper〉 argument passed to \DeclareCiteCommand) is ignored. Use the
optional 〈wrapper〉 argument to specify an alternative wrapper. The 〈delimiter〉 is
the string to be printed as a separator between the individual citations in the list. This
will typically be \multicitedelim. The following examples are real definitions
taken from biblatex.def:

\DeclareMultiCiteCommand{\cites}%

{\cite}{\multicitedelim}

\DeclareMultiCiteCommand{\parencites}[\mkbibparens]%

{\parencite}{\multicitedelim}

\DeclareMultiCiteCommand{\footcites}[\mkbibfootnote]%

{\footcite}{\multicitedelim}

\DeclareAutoCiteCommand{〈name〉}[〈position〉]{〈cite〉}{〈multicite〉}

This command provides definitions for the \autocite and \autocites com-
mands from § 3.7.4. The definitions are enabled with the autocite package option
from § 3.1.2.1. The 〈name〉 is an identifier which serves as the value passed to the
package option. The autocite commands are built on top of backend commands
like \parencite and \parencites. The arguments 〈cite〉 and 〈multicite〉 spec-
ify the backend commands to use. The 〈cite〉 argument refers to \autocite and

29Typical examples of wrapper commands are \mkbibparens and \mkbibfootnote.
30The bibliographic data available to the 〈loopcode〉 is the data of the entry currently being processed.

In addition to that, the data of the first entry is available to the 〈precode〉 and the data of the last one
is available to the 〈postcode〉. ‘First’ and ‘last’ refer to the order in which the citations are printed.
If the sortcites package option is active, this is the order of the list after sorting. Note that no
bibliographic data is available to the 〈sepcode〉.

31Note that the regular variant of \DeclareCiteCommand defines a starred version of the
〈command〉 implicitly, unless the starred version has been defined before. This is intended as
a fallback. The implicit definition is an alias for the regular variant.

139

〈multicite〉 refers to \autocites. The 〈position〉 argument controls the handling
of any punctuation marks after the citation. Possible values are l, r, f. r means
that the punctuation is placed to the right of the citation, i. e., it will not be moved
around. l means that any punctuation after the citation is moved to the left of
the citation. f is like r in a footnote and like l otherwise. This argument is op-
tional and defaults to r. See also \DeclareAutoPunctuation in § 4.7.5 and the
autopunct package option in § 3.1.2.1. The following examples are real definitions
taken from biblatex.def:

\DeclareAutoCiteCommand{plain}{\cite}{\cites}

\DeclareAutoCiteCommand{inline}{\parencite}{\parencites}

\DeclareAutoCiteCommand{footnote}[l]{\footcite}{\footcites}

\DeclareAutoCiteCommand{footnote}[f]{\smartcite}{\smartcites}

A definition provided in the document preamble can be subsequently adopted with
the following: (see § 3.2.2).

\ExecuteBibliographyOptions{autocite=name}

4.3.2 Special Fields

The following fields are used by Biblatex to pass data to citation commands. They are
not used in bib files but defined automatically by the package. From the perspective
of a citation style, they are not different from the fields in a bib file. See also § 4.2.4.

prenote field (literal)

The 〈prenote〉 argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the 〈prenote〉 argument is missing
or empty, this field is undefined.

postnote field (literal)

The 〈postnote〉 argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the 〈postnote〉 argument is missing
or empty, this field is undefined.

multiprenote field (literal)

The 〈multiprenote〉 argument passed to a multicite command. This field is specific
to citations and not available in the bibliography. If the 〈multiprenote〉 argument is
missing or empty, this field is undefined.

multipostnote field (literal)

The 〈multipostnote〉 argument passed to a multicite command. This field is specific
to citations and not available in the bibliography. If the 〈multipostnote〉 argument is
missing or empty, this field is undefined.

postpunct field (punctuation command)

The trailing punctuation argument implicitly passed to a citation command. This field
is specific to citations and not available in the bibliography. If the character follow-
ing a given citation command is not specified in \DeclareAutoPunctuation
(§ 4.7.5), this field is undefined.

140

4.4 Data Interface

The data interface are the facilities used to format and print all bibliographic data.
These facilities are available in both bibliography and citation styles.

4.4.1 Data Commands

This section introduces the main data interface of the Biblatex package. These are
the commands doing most of the work, i. e., they actually print the data provided in
lists and fields.

\printfield[〈format〉]{〈field〉}

This command prints a 〈field〉 using the formatting directive 〈format〉, as defined
with \DeclareFieldFormat. If a type-specific 〈format〉 has been declared, the
type-specific formatting directive takes precedence over the generic one. If the 〈field〉
is undefined, nothing is printed. If the 〈format〉 is omitted, \printfield tries
using the name of the field as a format name. For example, if the title field is to be
printed and the 〈format〉 is not specified, it will try to use the field format title.32
In this case, any type-specific formatting directive will also take precedence over
the generic one. If all of these formats are undefined, it falls back to default as a
last resort. Note that \printfield provides the name of the field currently being
processed in \currentfield for use in field formatting directives.

\printlist[〈format〉][〈start〉–〈stop〉]{〈literal list〉}

This command loops over all items in a 〈literal list〉, starting at item number 〈start〉
and stopping at item number 〈stop〉, including 〈start〉 and 〈stop〉 (all lists are num-
bered starting at 1). Each item is printed using the formatting directive 〈format〉,
as defined with \DeclareListFormat. If a type-specific 〈format〉 has been
declared, the type-specific formatting directive takes precedence over the generic
one. If the 〈literal list〉 is undefined, nothing is printed. If the 〈format〉 is omitted,
\printlist tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one.
If all of these formats are undefined, it falls back to default as a last resort. The
〈start〉 argument defaults to 1; 〈stop〉 defaults to the total number of items in the list.
If the total number is greater than 〈maxitems〉, 〈stop〉 defaults to 〈minitems〉 (see
§ 3.1.2.1). See \printnames for further details. Note that \printlist provides
the name of the literal list currently being processed in \currentlist for use in
list formatting directives.

\printnames[〈format〉][〈start〉–〈stop〉]{〈name list〉}

This command loops over all items in a 〈name list〉, starting at item number 〈start〉
and stopping at item number 〈stop〉, including 〈start〉 and 〈stop〉 (all lists are num-
bered starting at 1). Each item is printed using the formatting directive 〈format〉,
as defined with \DeclareNameFormat. If a type-specific 〈format〉 has been
declared, the type-specific formatting directive takes precedence over the generic
one. If the 〈name list〉 is undefined, nothing is printed. If the 〈format〉 is omitted,
\printnames tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one.
If all of these formats are undefined, it falls back to default as a last resort. The
〈start〉 argument defaults to 1; 〈stop〉 defaults to the total number of items in the
32In other words, \printfield{title} is equivalent to \printfield[title]{title}.

141

list. If the total number is greater than 〈maxnames〉, 〈stop〉 defaults to 〈minnames〉
(see § 3.1.2.1). If you want to select a range but use the default list format, the first
optional argument must still be given, but is left empty:

\printnames[][1-3]{...}

One of 〈start〉 and 〈stop〉 may be omitted, hence the following arguments are all
valid:

\printnames[...][-1]{...}

\printnames[...][2-]{...}

\printnames[...][1-3]{...}

If you want to override 〈maxnames〉 and 〈minnames〉 and force printing of the entire
list, you may refer to the listtotal counter in the second optional argument:

\printnames[...][-\value{listtotal}]{...}

Whenever \printnames and \printlist process a list, information concerning
the current state is accessible by way of four counters: the listtotal counter
holds the total number of items in the current list, listcount holds the number
of the item currently being processed, liststart is the 〈start〉 argument passed
to \printnames or \printlist, liststop is the 〈stop〉 argument. These
counters are intended for use in list formatting directives. listtotal may also be
used in the second optional argument to \printnames and \printlist. Note
that these counters are local to list formatting directives and do not hold meaningful
values when used anywhere else. For every list, there is also a counter by the same
name which holds the total number of items in the corresponding list. For example,
the author counter holds the total number of items in the author list. These
counters are similar to listtotal except that they may also be used independently
of list formatting directives. There are also maxnames and minnames as well as
maxitems and minitems counters which hold the values of the corresponding
package options. See § 4.10.5 for a complete list of such internal counters. Note that
\printnames provides the name of the name list currently being processed in
\currentname for use in name formatting directives.

\printtext[〈format〉]{〈text〉}

This command prints 〈text〉, which may be printable text or arbitrary code gen-
erating printable text. It clears the punctuation buffer before inserting 〈text〉 and
informs Biblatex that printable text has been inserted. This ensures that all preced-
ing and following \newblock and \newunit commands have the desired effect.
\printfield and \printnames as well as \bibstring and its companion
commands (see § 4.8) do that automatically. Using this command is required if a
bibliography styles inserts literal text (including the commands from §§ 4.7.3 and
4.7.4) to ensure that block and unit punctuation works as advertised in § 4.7.1. The
optional 〈format〉 argument specifies a field formatting directive to be used to format
〈text〉. This may also be useful when several fields are to be printed as one chunk,
for example, by enclosing the entire chunk in parentheses or quotation marks. If a
type-specific 〈format〉 has been declared, the type-specific formatting directive takes
precedence over the generic one. If the 〈format〉 is omitted, the 〈text〉 is printed as
is. See also § 4.11.7 for some practical hints.

142

\printfile[〈format〉]{〈file〉}

This command is similar to \printtext except that the second argument is a file
name rather than literal text. The 〈file〉 argument must be the name of a valid LaTeX
file found in TeX’s search path. \printfile will use \input to load this 〈file〉.
If there is no such file, \printfile does nothing. The optional 〈format〉 argument
specifies a field formatting directive to be applied to the 〈file〉. If a type-specific
〈format〉 has been declared, the type-specific formatting directive takes precedence
over the generic one. If the 〈format〉 is omitted, the 〈file〉 is printed as is. Note that
this feature needs to be enabled explicitly by setting the package option loadfiles
from § 3.1.2.1. By default, \printfile will not input any files.

\printdate This command prints the date of the entry, as specified in the fields date or month/
year. The date format is controlled by the package option date from § 3.1.2.1.
Additional formatting (fonts etc.) may be applied by adjusting the field format date
(§ 4.10.4). Note that this command interfaces with the punctuation tracker. There is
no need to wrap it in a \printtext command.

\printdateextra Similar to \printdate but incorporates the extrayear field in the date spec-
ification. This is useful for bibliography styles designed for author-year citations.

\printdatelabel Similar to \printdate but prints the date field determined by
\DeclareLabeldate. The date format is controlled by the package op-
tion datelabel from § 3.1.2.1. Additional formatting may be applied by adjusting
the field format datelabel (§ 4.10.4).

\printdateextralabel Similar to \printdatelabel but incorporates the extrayear field in
the date specification. This is useful for bibliography styles designed for author-year
citations.

\printurldate Similar to \printdate but prints the urldate of the entry. The date format is
controlled by the package option urldate from § 3.1.2.1. Additional formatting
may be applied by adjusting the field format urldate (§ 4.10.4).

\printorigdate Similar to \printdate but prints the origdate of the entry. The date format is
controlled by the package option origdate from § 3.1.2.1. Additional formatting
may be applied by adjusting the field format origdate (§ 4.10.4).

\printeventdate Similar to \printdate but prints the eventdate of the entry. The date format
is controlled by the package optioneventdate from § 3.1.2.1. Additional formatting
may be applied by adjusting the field format eventdate (§ 4.10.4).

\indexfield[〈format〉]{〈field〉}

This command is similar to \printfield except that the 〈field〉 is not printed
but added to the index using the formatting directive 〈format〉, as defined with
\DeclareIndexFieldFormat. If a type-specific 〈format〉 has been declared, it
takes precedence over the generic one. If the 〈field〉 is undefined, this command does
nothing. If the 〈format〉 is omitted, \indexfield tries using the name of the field
as a format name. In this case, any type-specific formatting directive will also take
precedence over the generic one. If all of these formats are undefined, it falls back to
default as a last resort.

143

\indexlist[〈format〉][〈start〉–〈stop〉]{〈literal list〉}

This command is similar to \printlist except that the items in the list are not
printed but added to the index using the formatting directive 〈format〉, as defined
with\DeclareIndexListFormat. If a type-specific 〈format〉 has been declared,
the type-specific formatting directive takes precedence over the generic one. If the
〈literal list〉 is undefined, this command does nothing. If the 〈format〉 is omitted,
\indexlist tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one. If
all of these formats are undefined, it falls back to default as a last resort.

\indexnames[〈format〉][〈start〉–〈stop〉]{〈name list〉}

This command is similar to \printnames except that the items in the list are not
printed but added to the index using the formatting directive 〈format〉, as defined
with\DeclareIndexNameFormat. If a type-specific 〈format〉 has been declared,
the type-specific formatting directive takes precedence over the generic one. If the
〈name list〉 is undefined, this command does nothing. If the 〈format〉 is omitted,
\indexnames tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one. If
all of these formats are undefined, it falls back to default as a last resort.

\entrydata{〈key〉}{〈code〉}
\entrydata*{〈key〉}{〈code〉}

Data commands like \printfield normally use the data of the entry currently
being processed. You may use \entrydata to switch contexts locally. The 〈key〉 is
the entry key of the entry to use locally. The 〈code〉 is arbitrary code to be executed in
this context. This code will be executed in a group. See § 4.11.6 for an example. Note
that this command will automatically switch languages if the autolang package
option is enabled. The starred version \entrydata* will clone all fields of the
enclosing entry, using field, counter, and other resource names prefixed with the
string ‘saved’. This is useful when comparing two data sets. For example, inside the
〈code〉 argument, the author field holds the author of entry 〈key〉 and the author of
the enclosing entry is available as savedauthor. The author counter holds the
number of names in the author field of 〈key〉; the savedauthor counter refers
to the author count of the enclosing entry.

\entryset{〈precode〉}{〈postcode〉}

This command is intended for use in bibliography drivers handling @set entries. It
will loop over all members of the set, as indicated by theentryset field, and execute
the appropriate driver for the respective set member. This is similar to executing the
\usedriver command from § 4.6.4 for each set member. The 〈precode〉 is arbitrary
code to be executed prior to processing each item in the set. The 〈postcode〉 is arbitrary
code to be executed immediately after processing each item. Both arguments are
mandatory in terms of the syntax but may be left empty. See § 4.11.1 for usage
examples.

\DeclareFieldInputHandler{〈field〉}{〈code〉}

This command can be used to define a data input handler for 〈field〉 when it is read
from the .bbl. Within the 〈code〉, the macro \NewValue contains the value of the
field. For example, to ignore the volumes field when it appears, you could do

144

\DeclareFieldInputHandler{volumes}{\def\NewValue{}}

Generally, you would want to use \DeclareSourcemap (see § 4.5.2) to remove
and modify fields but this alternative method may be useful in some circumstances
when the emphasis is on appearance rather than data since the 〈code〉 can be arbitraty
TeX.

\DeclareListInputHandler{〈list〉}{〈code〉}

As \DeclareFieldInputHandler but for lists. Within the 〈code〉, the macro
\NewValue contains the value of the list and \NewCount contains the number of
items in the list.

\DeclareNameInputHandler{〈name〉}{〈code〉}

As \DeclareFieldInputHandler but for names. Within the 〈code〉, the macro
\NewValue contains the value of the name, \NewCount contains the number of
individual names in the name and \NewOption contains any per-name options
passed in the .bbl.

4.4.2 Formatting Directives

This section introduces the commands used to define the formatting directives re-
quired by the data commands from § 4.4.1. Note that all standard formats are defined
in biblatex.def.

\DeclareFieldFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareFieldFormat*{〈format〉}{〈code〉}

Defines the field format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed by \printfield. The value of the field will be passed to the 〈code〉
as its first and only argument. The name of the field currently being processed
is available to the 〈code〉 as \currentfield. If an 〈entrytype〉 is specified, the
format is specific to that type. The 〈entrytype〉 argument may be a comma-separated
list of values. The starred variant of this command is similar to the regular version,
except that all type-specific formats are cleared.

\DeclareListFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareListFormat*{〈format〉}{〈code〉}

Defines the literal list format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed for every item in a list processed by \printlist. The current item
will be passed to the 〈code〉 as its first and only argument. The name of the literal
list currently being processed is available to the 〈code〉 as \currentlist. If an
〈entrytype〉 is specified, the format is specific to that type. The 〈entrytype〉 argument
may be a comma-separated list of values. Note that the formatting directive also
handles the punctuation to be inserted between the individual items in the list. You
need to check whether you are in the middle of or at the end of the list, i. e., whether
listcount is smaller than or equal to liststop. The starred variant of this
command is similar to the regular version, except that all type-specific formats are
cleared.

145

\DeclareNameFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareNameFormat*{〈format〉}{〈code〉}

Defines the name list format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed for every name in a list processed by \printnames. If an 〈entrytype〉
is specified, the format is specific to that type. The 〈entrytype〉 argument may be a
comma-separated list of values. The individual parts of a name will be passed to the
〈code〉 as separate arguments. These arguments are as follows:

#1 The last names. If a name consists of a single part only (for example, ‘Aristotle’),
this part will be treated as the last name.

#2 The last names, given as initials.

#3 The first names. This argument also includes all middle names.

#4 The first names, given as initials.

#5 The name prefixes, for example von, van, of, da, de, del, della, etc. Note that
name prefixes are referred to as the ‘von part’ of the name in the BibTeX file
format documentation.

#6 The name prefixes, given as initials.

#7 The name affixes, for example ‘junior’, ‘senior’, ‘der Jüngere’, ‘der Ältere’, etc.
Note that name affixes are referred to as the ‘junior part’ of the name in the
BibTeX file format documentation.

#8 The name affixes, given as initials.

If a certain part of a name is not available, the corresponding argument will be empty,
hence you may use \ifblank tests to check for the individual parts of a name.
The name of the name list currently being processed is available to the 〈code〉 as
\currentname. Note that the formatting directive also handles the punctuation to
be inserted between separate names and between the individual parts of a name. You
need to check whether you are in the middle of or at the end of the list, i. e., whether
listcount is smaller than or equal to liststop. See also § 3.12.4. The starred
variant of this command is similar to the regular version, except that all type-specific
formats are cleared.

\DeclareIndexFieldFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareIndexFieldFormat*{〈format〉}{〈code〉}

Defines the field format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed by \indexfield. The value of the field will be passed to the 〈code〉
as its first and only argument. The name of the field currently being processed
is available to the 〈code〉 as \currentfield. If an 〈entrytype〉 is specified, the
format is specific to that type. The 〈entrytype〉 argument may be a comma-separated
list of values. This command is similar to \DeclareFieldFormat except that
the data handled by the 〈code〉 is not intended to be printed but written to the index.
Note that \indexfield will execute the 〈code〉 as is, i. e., the 〈code〉 must include
\index or a similar command. The starred variant of this command is similar to
the regular version, except that all type-specific formats are cleared.

\DeclareIndexListFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareIndexListFormat*{〈format〉}{〈code〉}

Defines the literal list format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed for every item in a list processed by \indexlist. The current itemwill

146

be passed to the 〈code〉 as its only argument. The name of the literal list currently be-
ing processed is available to the 〈code〉 as \currentlist. If an 〈entrytype〉 is spec-
ified, the format is specific to that type. The 〈entrytype〉 argument may be a comma-
separated list of values. This command is similar to \DeclareListFormat ex-
cept that the data handled by the 〈code〉 is not intended to be printed but written
to the index. Note that \indexlist will execute the 〈code〉 as is, i. e., the 〈code〉
must include \index or a similar command. The starred variant of this command
is similar to the regular version, except that all type-specific formats are cleared.

\DeclareIndexNameFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareIndexNameFormat*{〈format〉}{〈code〉}

Defines the name list format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed for every name in a list processed by \indexnames. The name of the
name list currently being processed is available to the 〈code〉 as \currentname.
If an 〈entrytype〉 is specified, the format is specific to that type. The 〈entrytype〉
argument may be a comma-separated list of values. The parts of the name will
be passed to the 〈code〉 as separate arguments. This command is very similar to
\DeclareNameFormat except that the data handled by the 〈code〉 is not intended
to be printed but written to the index. Note that \indexnames will execute the
〈code〉 as is, i. e., the 〈code〉 must include \index or a similar command. The starred
variant of this command is similar to the regular version, except that all type-specific
formats are cleared.

\DeclareFieldAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the field format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareListAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the literal list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareNameAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareIndexFieldAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the field format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

147

\DeclareIndexListAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the literal list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareIndexNameAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

4.5 Customization

4.5.1 Related Entries

The related entries feature comprises the following components:

• Special fields in an entry to set up and describe relationships

• Optionally, localization strings to prefix the related data

• Macros to extract and print the related data

• Formats to format the localization string and related data

The special fields are related, relatedtype, relatedstring and
relatedoptions:

related A separated list of keys of entries which are related to this entry in some way. Note
the the order of the keys is important. The data from multiple related entries is
printed in the order of the keys listed in this field.

relatedtype The type of relationship. This serves three purposes. If the value of this field
resolves to a localization string identifier, then the resulting localized string is
printed before the data from the related entries. Secondly, if there is a macro called
related:〈relatedtype〉, this is used to format the data from the related entries. If
no such macro exists, then the macro related:default is used. Lastly, if there
is a format named related:〈relatedtype〉, then it is used to format both the
localized string and related entry data. If there is no related type specific format, the
related format is used.

relatedstring If an entry contains this field, then if value of the field resolves to a localization
string identifier, the localization key value specified is printed before data from the
related entries. If the field does not specify a localization key, its value is printed
literally. If both relatedtype and relatedstring are present in an entry,
relatedstring is used for the pre-data string (but relatedtype is still used
to determine the macro and format to use when printing the data).

relatedoptions A list of per-entry options to set on the related entry (actually on the clone of the
related entry which is used as a data source—the actual related entry is not modified
because it might be cited directly itself).

The related entry feature is enabled by default by the package option related
from § 3.1.2.1. The related information entry data from the related entries is included
via a \usebibmacro{related} call. Standard styles call this macro towards

148

the end of each driver. Style authors should ensure the existence of (or take note of
existing) localization strings which are useful as values for the relatedtype field,
such as translationof or perhaps translatedas. A plural variant can be
identified with the localization key 〈relatedtype〉s. This key’s corresponding string is
printedwhenevermore than one entry is specified inrelated. Bibliographymacros
and formatting directives for printing entries related by 〈relatedtype〉 should be
defined using the name related:〈relatedtype〉. The file biblatex.def contains
macros and formats for some common relation types which can be used as templates.
In particular, the \entrydata* command is essential in such macros in order to
make the data of the related entries available. Examples of entries using this feature
can be found in the Biblatex distribution examples file biblatex-examples.
bib. There are some specific formatting macros for this feature which control
delimiters and separators in related entry information, see § 4.10.1.

4.5.2 Dynamic Modification of Data

Bibliographic data sources which are automatically generated or which you have no
control over can be a problem if you need to edit them in some way. For this reason,
Biber has the ability to modify data as it is read so that you can apply modifications
to the source data stream without actually changing it. The modification can be
defined in Biber’s config file (see Biber docs), or via Biblatex macros in which case
you can apply the modification only for specific documents, styles or globally.

Source mappings can be defined at different “levels” which are applied in a defined
order. See the Biblatex manual regarding these macros:

user-level maps defined with \DeclareSourcemap→
user-level maps defined in the Biber config file (see Biber docs)→
style-level maps defined with \DeclareStyleSourcemap→
driver-level maps defined with \DeclareDriverSourcemap

\DeclareSourcemap{〈specification〉}
Biber only

Defines source data modification (mapping) rules which can be used to perform any
combination of the following tasks:

•Map data source entrytypes to different entrytypes
•Map datasource fields to different fields
•Add new fields to an entry
•Remove fields from an entry
•Modify the contents of a field using standard Perl regular expression match
and replace
•Restrict any of the above operations to entries coming from particular data-
sources which you defined in \addresource macros
•Restrict any of the above operations to entries only of a certain entrytype

The 〈specification〉 is an undelimited list of \maps directives which specify contain-
ers for mappings rules applying to a particular data source type (§ 3.6.1). Spaces, tabs,
and line endings may be used freely to visually arrange the 〈specification〉. Blank
lines are not permissible. This command may only be used in the preamble and may
only be used once—subsequent uses will overwrite earlier definitions.

149

\maps{〈elements〉}

Contains an ordered set of \map elements each of which is a logically related set of
mapping steps to apply to the data source.

datatype=bibtex, biblatexml, ris,
zoterordfxml, endnotexml

default: bibtex

Data source type to which the contained \map directives apply (§ 3.6.1).

overwrite=true, false default: false

Specify whether a mapping rule is allowed to overwrite already existing data in
an entry. If this option is not specified, the default is false. The short form
overwrite is equivalent to overwrite=true.

\map{〈restrictions,steps〉}

A container for an ordered set of map \steps, optionally restricted to particular
entrytypes or data sources. This is a grouping element to allow a set of mapping steps
to apply only to specific entrytypes or data sources. Mapping steps must always be
contained within a \map element.

overwrite=true, false

As the same option on the parent \maps element. This option allows an override on
a per-map group basis. If this option is not specified, the default is the parent \maps
element option value. The short form overwrite is equivalent to overwrite=
true.

\perdatasource{〈datasource〉}

Restricts all \steps in this \map element to entries from the named 〈datasource〉.
The 〈datasource〉 name should be exactly as given in a \addresource macro
defining a data source for the document. Multiple \perdatasource restrictions
are allowed within a \map element.

\pertype{〈entrytype〉}

Restricts all \steps in this \map element to entries of the named 〈entrytype〉.
Multiple \pertype restrictions are allowed within a \map element.

\pernottype{〈entrytype〉}

Restricts all \steps in this \map element to entries not of the named 〈entrytype〉.
Multiple \pernottype restrictions are allowed within a \map element.

\step

A mapping step. Each step is applied sequentially to every relevant entry where
‘relevant’ means those entries which correspond to the data source type, entrytype
and data source name restrictions mentioned above. Each step is applied to the entry
as it appears after the application of all previous steps. The mapping performed by
the step is determined by the following options:

typesource=〈entrytype〉
typetarget=〈entrytype〉
fieldsource=〈entryfield〉

150

fieldtarget=〈entryfield〉
match=〈regexp〉
notmatch=〈regexp〉
replace=〈regexp〉
fieldset=〈entryfield〉
fieldvalue=〈string〉
entryclone=〈string〉
entrynull=true, false default: false

append=true, false default: false

final=true, false default: false

null=true, false default: false

origfield=true, false default: false

origfieldval=true, false default: false

origentrytype=true, false default: false

For all boolean \step options, the short form option is equivalent to option=
true. The following rules for a mapping step apply:

•If entrynull is set, processing of the \map immediately terminates and
the current entry is not created. It is as if it did not exist in the datasource.
Obviously, you should select the entries which you want to apply this to using
prior mapping steps.

•If entryclone is set, a clone of the entry is created with an entry key prefixed
by prefix. Obviously this may cause labelling problems in author/year styles
etc. and should be used with care. It is mainly intended for numbering issues
with numeric styles and multiple bibliographies where the same entries occur
in more than one bibliography.

•Change the typesource 〈entrytype〉 to the typetarget 〈entrytype〉, if
defined. If final is true then if the 〈entrytype〉 of the entry is not
typesource, processing of the parent \map immediately terminates.

•Change the fieldsource 〈entryfield〉 to fieldtarget, if defined. If
final is true then if there is no fieldsource 〈entryfield〉 in the entry,
processing of the parent \map immediately terminates.

•If match is defined but replace is not, only apply the step if the
fieldsource 〈entryfield〉 matches the match regular expression (logic is
reversed if you use notmatch instead)33. You may use capture parenthesis
as usual and refer to these ($1…$9) in later fieldvalue specifications. This
allows you to pull out parts of some fields and put these parts in other fields.

•Perform a regular expression match and replace on the value of the
fieldsource 〈entryfield〉 if match and replace are defined.

•If fieldset is defined, then its value is 〈entryfield〉 which will be set to a
value specified by further options. If overwrite is false for this step and the
field to set already exists then the map step is ignored. If final is also true
for this step, then processing of the parent map stops at this point. If append

33Regular expressions are full Perl 5.16 regular expressions. This means you may need to deal with
special characters, see examples.

151

is true, then the value to set is appended to the current value of 〈entryfield〉.
The value to set is specified by a mandatory one and only one of the following
options:

◦ fieldvalue — The fieldset 〈entryfield〉 is set to the fieldvalue
〈string〉

◦ null — The fieldset 〈entryfield〉 is ignored, as if it did not exist in the
datasource

◦ origentrytype — The fieldset 〈entryfield〉 is set to the most re-
cently mentioned typesource 〈entrytype〉 name

◦ origfield — The fieldset 〈entryfield〉 is set to the most recently
mentioned fieldsource 〈entryfield〉 name

◦ origfieldval—The fieldset 〈entryfield〉 is set to the most recently
mentioned fieldsource value

With BibTeX and RIS datasources, you may specify the pseudo-field entrykey for
fieldsource which is the citation key of the entry. Naturally, this ‘field’ cannot
be changed (used as fieldset, fieldtarget or changed using replace).

\DeclareStyleSourcemap{〈specification〉}
Biber only

This command sets the source mappings used by a style. Such mappings are concep-
tually separate from user mappings defined with \DeclareSourcemap and are
applied directly after user maps. The syntax is identical to \DeclareSourcemap.
This command is provided for style authors so that any maps defined for the
style do not interfere with user maps or the default driver maps defined with
\DeclareDriverSourcemap. This command is for use in style files and can
only be used once—subsequent uses will overwrite earlier definitions.

\DeclareDriverSourcemap[〈datatype=driver〉]{〈specification〉}
Biber only

This command sets the driver default source mappings for the specified
〈driver〉. Such mappings are conceptually separate from user mappings
defined with \DeclareSourcemap and style mapping defined with
\DeclareStyleSourcemap. They consist of mappings which are part
of the driver setup. Users should not normally need to change these. Driver
default mapping are applied after user mappings (\DeclareSourcemap) and
style mappings (\DeclareStyleSourcemap). These defaults are described in
Appendix § A. The 〈specification〉 is identical to that for \DeclareSourcemap
but without the \maps elements: the 〈specification〉 is just a list of \map elements
since each \DeclareDriverSourcemap only applies to one datatype driver.
See the default definitions in Appendix § A for examples.

Here are some data source mapping examples:

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\perdatasource{example1.bib}

\perdatasource{example2.bib}

\step[fieldset=keywords, fieldvalue={keyw1, keyw2}]

\step[fieldsource=entrykey]

152

\step[fieldset=note, origfieldval]

}

}

}

This would add a keywords field with value ‘keyw1, keyw2’ and set the note field
to the entry key to all entries which are found in either the examples1.bib or
examples2.bib files.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=title]

\step[fieldset=note, origfieldval]

}

}

}

Copy the title field to the note field unless the note field already exists.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[typesource=chat, typetarget=customa, final]

\step[fieldset=type, origentrytype]

}

}

}

Any chat entrytypes would become customa entrytypes and would automatically
have a type field set to ‘chat’ unless the type field already exists in the entry
(because overwrite is false by default). This mapping applies only to entries of
type @chat since the first step has final set and so if the typesource does not
match the entry entrytype, processing of this \map immediately terminates.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\perdatasource{examples.bib}

\pertype{article}

\pertype{book}

\step[fieldset=abstract, null]

\step[fieldset=note, fieldvalue={Auto-created this field}]

}

}

}

Any entries of entrytype @article or @book from the examples.bib data-
source would have their abstract fields removed and a note field added with
value ‘Auto-created this field’.

\DeclareSourcemap{

\maps[datatype=bibtex]{

153

\map{

\step[fieldset=abstract, null]

\step[fieldsource=conductor, fieldtarget=namea]

\step[fieldsource=gps, fieldtarget=usera]

}

}

}

This removes abstract fields from any entry, changes conductor fields to
namea fields and changes gps fields to usera fields.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=pubmedid, fieldtarget=eprint, final]

\step[fieldset=eprinttype, origfield]

\step[fieldset=userd, fieldvalue={Some string of things}]

}

}

}

Applies only to entries with pubmed fields and maps pubmedid fields to eprint
fields, sets the eprinttype field to ‘pubmedid’ and also sets the userd field to
the string ‘Some string of things’.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=series,

match=\regexp{\A\d*(.+)},

replace=\regexp{\L$1}]

}

}

}

Here, the contents of the series field have leading numbers stripped and the
remainder of the contents lowercased. Since regular expressions usually contain all
sort of special characters, it is best to enclose them in the provided \regexp macro
as shown—this will pass the expression through to Biber correctly.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=maintitle,

match=\regexp{Collected\s+Works.+Freud},

final]

\step[fieldset=keywords, fieldvalue=freud]

}

}

}

Here, if for an entry, the maintitle field matches a particular regular expression,
we set a special keyword so we can, for example, make a references section just for
certain items.

154

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=lista, match=\regexp{regexp}, final]

\step[fieldset=lista, null]

}

}

}

If an entry has a lista field which matches regular expression ‘regexp’, then it is
removed.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite=false]{

\step[fieldsource=author]

\step[fieldset=editor, origfieldval, final]

\step[fieldsource=editor, match=\regexp{\A(.+?)\s+and.*}, replace={$1}]

}

}

}

For any entry with an author field, try to set editor to the same as author. If
this fails because editor already exists, stop, otherwise truncate editor to just
the first name in the name list.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=author,

match={Smith, Bill},

replace={Smith, William}]

\step[fieldsource=author,

match={Jones, Baz},

replace={Jones, Barry}]

}

}

}

Here, we use multiple match/replace for the same field to regularise some inconstant
name variants. Bear in mind that \step processing within a map element is se-
quential and so the changes from a previous \steps are already committed. Note
that we don’t need the \regexp macro to protect the regular expressions in this
example as they contain no characters which need special escaping. Please note that
due to the difficulty of protecting regular expressions in LATEX, there should be no
literal spaces in the argument to \regexp. Please use escape code equivalents if
spaces are needed. For example, this example, if using \regexp, should be:

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=author,

match=\regexp{Smith,\s+Bill},

155

replace=\regexp{Smith,\x20William}]

\step[fieldsource=author,

match=\regexp{Jones,\s+Baz},

replace=\regexp{Jones,\x20Barry}]

}

}

}

Here, we have used the hexadecimal escape sequence ‘\x20’ in place of literal spaces
in the replacement strings.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite]{

\step[fieldsource=author, match={Doe,}, final]

\step[fieldset=shortauthor, origfieldval]

\step[fieldset=sortname, origfieldval]

\step[fieldsource=shortauthor,

match=\regexp{Doe,\s*(?:\.|ohn)(?:[-]*)(?:P\.|Paul)*},

replace={Doe, John Paul}]

\step[fieldsource=sortname,

match=\regexp{Doe,\s*(?:\.|ohn)(?:[-]*)(?:P\.|Paul)*},

replace={Doe, John Paul}]

}

}

}

Only applies to entries with an author field matching ‘Doe,’. First the author
field is copied to both the shortauthor and sortname fields, overwriting them
if they already exist. Then, these two new fields are modified to canonicalise a
particular name, which presumably has some variants in the data source.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite]{

\step[fieldsource=verba, final]

\step[fieldset=verbb, fieldvalue=/, append]

\step[fieldset=verbb, origfieldval, append]

\step[fieldsource=verbb, final]

\step[fieldset=verbc, fieldvalue=/, append]

\step[fieldset=verbc, origfieldval, append]

}

}

}

This example demonstrates the sequential nature of the step processing and the
append option. If an entry has a verba field then first, a forward slash is appended
to the verbb field. Then, the contents of verba are appended to the verbb field. A
slash is then appended to the verbc field and the contents of verbb are appended
to the verbc field.

\DeclareSourcemap{

\maps[datatype=bibtex]{

156

\map[overwrite]{

\step[fieldset=autourl, fieldvalue={http://scholar.google.com/scholar?q=”}]

\step[fieldsource=title]

\step[fieldset=autourl, origfieldval, append]

\step[fieldset=autourl, fieldvalue={”+author:}, append]

\step[fieldsource=author, match=\regexp{\A([^,]+)\s*,}]

\step[fieldset=autourl, fieldvalue={$1}, append]

\step[fieldset=autourl, fieldvalue={&as_ylo=}, append]

\step[fieldsource=year]

\step[fieldset=autourl, origfieldval, append]

\step[fieldset=autourl, fieldvalue={&as_yhi=}, append]

\step[fieldset=autourl, origfieldval, append]

}

}

}

This example assumes you have created a field called autourl using the datamodel
macros from § 4.5.3 in order to hold, for example, a Google Scholar query URL auto-
created from elements of the entry. The example progressively extracts information
from the entry, constructing the URL as it goes. It demonstrates that it is possible
to refer to parenthetical matches from the most recent match in any following
fieldvalue which allows extracting the lastname from the author, assuming
a ‘last, first’ format. The resulting field could then be used as a hyperlink from, for
example, the title of the work in the bibliography.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=title, match={A Title}, final]

\step[entrynull]

}

}

}

Any entry with a title field matching ‘A Title’ will be completely ignored.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\pernottype{book}

\pernottype{article}

\step[entrynull]

}

}

}

Any entry which is not a @book or @article will be ignored.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\perdatasource{biblatex-examples.bib}

\step[entryclone={rel-}]

157

}

}

}

Here, a clone of an entry from the specified data source will be created. The entry
key of the clone will be the same as the original but prefixed by the value of the
entryclone parameter. The cloned entry would still need to be cited in the docu-
ment using its new entry key. This type of mapping step should be used with care
as it may produce labelling problems in authoryear styles which use, for example,
extrayear. One use case is for numeric styles which contain multiple bibliogra-
phies containing the same entry. In this case, you may need different bibliography
number labeld for the same entry and this is very tricky when there is only one entry
which needs different labels. Creating clones with different entry keys solves this
problem.

4.5.3 Data Model Specification

Biber only
The data model which Biblatex uses consists of four main elements:

• Specification of valid Entrytypes

• Specification of valid Fields along with their type, datatype and any special
flags

• Specification of which Fields are valid in which Entrytypes

• Specification of constraints which can be used to validate data against the data
model

The default data model is defined in the core Biblatex file blx-dm.def using
the macros described in this section. The default data model is described in detail
in § 2. The data model is used internally by Biblatex and also by the backends. The
data model for the BibTeX backend is hard-coded and cannot be changed. Changing
the data model is only supported for the Biber backend. In practice, changing the
data model means that you can define the entrytypes and fields for your datasources
and validate your data against the data model. Naturally, this is not much use unless
your style supports any new entrytypes or fields and it raises issues of portability
between styles (although this can bemitigated by using the dynamic datamodification
functionality described in § 4.5.2).

Validation against the data model means that after mapping your data sources into
the data model, Biber (using its --validate_datamodel option) can check:

• Whether all entrytypes are valid entrytypes

• Whether all fields are valid fields for their entrytype

• Whether the fields obey various constraints on their format which you specify

Redefining the data model can be done in several places. Style authors can create a
.dbx file which contains the data model macros required and this will be loaded
automatically when using the Biblatex package style option by looking for a file
named after the style with a .dbx extension (just like the .cbx and .bbx files for a
style). If the style option is not used but rather the citestyle and bibstyle

158

options, then the package will try to load .dbx files called ‘citestyle’.dbx
and ‘bibstyle’.dbx. Alternatively, the name of the data model file can be
different from any of the style option names by specifying the name (without
.dbx extension) to the package datamodel option. After loading the style data
model file, Biblatex then loads, if present, a users biblatex-dm.cfg which
should be put somewhere Biblatex can find it, just like the main configuration file
biblatex.cfg. To summarise, the data model is determined by adding to the
data model from each of these locations, in order:

blx-dm.def→
‘datamodel option’.dbx →
‘style option’.dbx →
‘citestyle option’.dbx and ‘bibstyle option’.dbx →
biblatex-dm.cfg

It is not possible to add to a loaded data model by using the macros below in your
preamble as the preamble is read after Biblatex has defined critical internal macros
based on the data model. If any data model macro is used in a document, it will
be ignored and a warning will be generated. The data model is defined using the
following macros:

\DeclareDatamodelEntrytypes[〈options〉]{〈entrytypes〉}
Biber only

Declares the comma-separated list of 〈entrytypes〉 to be valid entrytypes in the data
model. As usual in TeX csv lists, make sure each element is immediately followed by
a comma or the closing brace—no extraneous whitespace.

skipout=true, false default: false

This entrytype is not output to the .bbl. Typically used for special entrytypes
which are processed and consumed by the backend such as @xdata.

\DeclareDatamodelFields[〈options〉]{〈fields〉}
Biber only

Declares the comma-separated list of 〈fields〉 to be valid fields in the data model
with associated comma-separated 〈options〉. The 〈type〉 and 〈datatype〉 options are
mandatory. All valid 〈options〉 are:

type=〈field type〉
Set the type of the field as described in § 2.2.1. Is typically ‘field’ or ‘list’.

format=〈field format〉
Any special format of the field. Normally unspecified but can take the value ‘xsv’
which tells Biber that this field has a separated values format. The exact separator
can be controlled with the Biber option xsvsep and defaults to the expected comma
surrounded by optional whitespace.

datatype=〈field datatype〉
Set the datatype of the field as described in § 2.2.1. For example, ‘name’ or ‘literal’.

nullok=true, false default: false

The field is allowed to be defined but empty.

159

skipout=true, false default: false

The field is not output to the .bbl and is therefore not present during Biblatex
style processing. As usual in TeX csv lists, make sure each element is immediately
followed by a comma or the closing brace—no extraneous whitespace.

label=true, false default: false

The field can be used as a label in a bibliography or bibliography list. Specifying this
causes Biblatex to create several helper macros for the field so that there are some
internal lengths and headings etc. defined.

\DeclareDatamodelEntryfields[〈entrytypes〉]{〈fields〉}
Biber only

Declares that the comma-separated list of 〈fields〉 is valid for the comma-separated
list of 〈entrytypes〉. If 〈entrytypes〉 is not given, the fields are valid for all entrytypes.
As usual in TeX csv lists, make sure each element is immediately followed by a
comma or the closing brace—no extraneous whitespace.

\DeclareDatamodelConstraints[〈entrytypes〉]{〈specification〉}
Biber only

If a comma-separated list of 〈entrytypes〉 is given, the constraints apply only to those
entrytypes. The 〈specification〉 is an undelimited list of \constraint directives
which specify a constraint. Spaces, tabs, and line endings may be used freely to
visually arrange the 〈specification〉. Blank lines are not permissible.

\constraint[〈type=constrainttype〉]{〈elements〉}

Specifies a constraint of type 〈constrainttype〉. Valid constraint types are:

type=data, mandatory, conditional

Constraints of type ‘data’ put restrictions on the value of a field. Constraints of type
‘mandatory’ specify which fields or combinations of fields an entrytype should have.
Constraints of type ‘conditional’ allow more sophisticated conditional and quantified
field constraints.

datatype=integer, isbn, issn, ismn, date, pattern

For constraints of type 〈data〉, constrain field values to be the given datatype.

rangemin=〈num〉
For constraints of 〈type〉 ‘data’ and 〈datatype〉 ‘integer’, constrain field values to be
at least 〈num〉.
rangemax=〈num〉
For constraints of 〈type〉 ‘data’ and 〈datatype〉 ‘integer’, constrain field values to be
at most 〈num〉.
pattern=〈patt〉
For constraints of 〈type〉 ‘data’ and 〈datatype〉 ‘pattern’, constrain field values to
match regular expression pattern 〈patt〉. It is best to wrap any regular expression in
the macro \regexp, see § 4.5.2.

A \constraint macro may contain any of the following:

\constraintfieldsor{〈fields〉}

For constraints of 〈type〉 ‘mandatory’, specifies that an entry must contain a boolean
OR of the \constraintfields.

160

\constraintfieldsxor{〈fields〉}

For constraints of 〈type〉 ‘mandatory’, specifies that an entry must contain a boolean
XOR of the \constraintfields.

\antecedent[〈quantifier=quantspec〉]{〈fields〉}

For constraints of 〈type〉 ‘conditional’, specifies a quantified set of
\constraintfields which must be satisfied before the \consequent

of the constraint is checked. 〈quantspec〉 should have one of the following values:

quantifier=all, one, none

Specifies how many of the \constrainfield’s inside the \antecedent have
to be present to satisfy the antecedent of the conditional constraint.

\consequent[〈quantifier=quantspec〉]{〈fields〉}

For constraints of 〈type〉 ‘conditional’, specifies a quantified set of
\constraintfields which must be satisfied if the preceding \antecedent
of the constraint was satisfied. 〈quantspec〉 should have one of the following values:

quantifier=all, one, none

Specifies howmany of the \constraintfield’s inside the \consequent have
to be present to satisfy the consequent of the conditional constraint.

\constraintfield{〈field〉}

For constraints of 〈type〉 ‘data’, the constraint applies to this 〈field〉. For constraints
of 〈type〉 ‘mandatory’, the entry must contain this 〈field〉.
The data model declaration macros may be used multiple times as they append to
the previous definitions. In order to replace, change or remove existing definitions
(such as the default model which is loaded with Biblatex), you should reset (clear) the
current definition and then set what you want using the following macros. Typically,
these macros will be the first things in any biblatex-dm.cfg file:

\ResetDatamodelEntrytypes

Clear all data model entrytype information.

\ResetDatamodelFields

Clear all data model field information.

\ResetDatamodelEntryfields

Clear all data model fields for entrytypes information.

\ResetDatamodelConstraints

Clear all data model fields Constraints information.

Here is an example of a simple data model. Refer to the core Biblatex file
blx-dm.def for the default data model specification.

161

\ResetDatamodelEntrytypes

\ResetDatamodelFields

\ResetDatamodelEntryfields

\ResetDatamodelConstraints

\DeclareDatamodelEntrytypes{entrytype1, entrytype2}

\DeclareDatamodelFields[type=field, datatype=literal]{field1,field2,field3,field4}

\DeclareDatamodelEntryfields{field1}

\DeclareDatamodelEntryfields[entrytype1]{field2,field3}

\DeclareDatamodelEntryfields[entrytype2]{field2,field3,field4}

\DeclareDatamodelConstraints[entrytype1]{

\constraint[type=data, datatype=integer, rangemin=3, rangemax=10]{

\constraintfield{field1}

}

\constraint[type=mandatory]{

\constraintfield{field1}

\constraintfieldsxor{

\constraintfield{field2}

\constraintfield{field3}

}

}

}

\DeclareDatamodelConstraints{

\constraint[type=conditional]{

\antecedent[quantifier=none]{

\constraintfield{field2}

}

\consequent[quantifier=all]{

\constraintfield{field3}

\constraintfield{field4}

}

}

}

This model specifies:

• Clear the default data model completely

• Two valid entry types @entrytype1 and @entrytype2

• Four valid literal field fields

• field1 is valid for all entrytypes

• field2 and field3 are valid for entrytype1

• field2, field3 and field4 are valid for @entrytype2

• For @entrytype1:

– field1 must be an integer between 3 and 10

162

– field1 must be present

– One and only one of field2 or field3 must be present

• For any entrytype, if field2 is not present, field3 and field4 must be
present

4.5.4 Labels

Alphabetic styles use a label to identify bibliography entries. This label is constructed
from components of the entry using a template which describes how to build the label.
The template can be customised on a global or per-type basis. Label customisation
requires Biber and will not work with any other backend.

\DeclareLabelalphaTemplate[〈entrytype, …〉]{〈specification〉}
Biber only

Defines the alphabetic label template for the given entrytypes. If no entrytypes
are specified in the first argument, then the global label template is defined. The
〈specification〉 is an undelimited list of \labelelement directives which specify
the elements used to build the label. Spaces, tabs, and line endings may be used
freely to visually arrange the 〈specification〉. Blank lines are not permissible. This
command may only be used in the preamble.

\labelelement{〈elements〉}

Specifies the elements used to build the label. The 〈elements〉 are an undelimited
list of \field or \literal commands which are evaluated in the order in which
they are given. The first \field or \literal which expands to a non-empty
string is used as the \labelelement expansion and the next \labelelement,
if any, is then processed.

\field[〈options〉]{〈field〉}

If 〈field〉 is non-empty, use it as the current label \labelelement, subject to the
options below. Useful values for 〈field〉 are typically the name list type fields, date
fields, and title fields. You may also use the ‘citekey’ pseudo-field to specify the
citation key as part of the label. Name list fields are treated specially and the options
which take substrings of the 〈field〉 to use in the \labelelement are applied to
the lastname of every name in a name list (see below).

final=true, false default: false

This option marks a \field directive as the final one in the 〈specification〉. If the
〈field〉 is non-empty, then this field is used for the label and the remainder of the
〈specification〉 will be ignored. The short form final is equivalent to final=
true.

lowercase=true, false default: false

Forces the label part derived from the field to lowercase. By default, the case is taken
from the field source and not modified.

strwidth=〈integer〉 default: 1

The number of characters of the 〈field〉 to use. For name list fields, if useprefix=
true, the first character of the name prefix is prepended to the substring.

strside=left, right default: left

The side of the string from which to take the strwidth number of characters.

163

padside=left, right default: right

Side to pad the label part when using the padchar option. Only for use with
fixed-width label strings (strwidth).

padchar=〈character〉
If present, pads the label part on the padside side with the specified character to
the length of strwidth. Only for use with fixed-width label strings (strwidth).

uppercase=true, false default: false

Forces the label part derived from the field to uppercase. By default, the case is taken
from the field source and not modified.

varwidth=true, false default: false

Use a variable width, left-side substring of characters from the 〈field〉 (each lastname
in name list fields). The length of the string is determined by the minimum length
needed to disambiguate the substring from all other 〈field〉 elements in the same
position in the label. For name list fields, this means that each name substring is
disambiguated from all other name substrings which occur in the same position in
the name list (see examples below). This option overrides strwidth if both are
used. The short form varwidth is equivalent to varwidth=true. For name list
fields, if useprefix=true, the first character of the name prefix is prepended to
the substring.

varwidthnorm=true, false default: false

As varwidth but will force the disambiguated substrings for the 〈field〉 to be the
same length as the longest disambiguated substring. This can be used to regularise
the format of the labels if desired. This option overrides strwidth if both are used.
The short form varwidthnorm is equivalent to varwidthnorm=true.

varwidthlist=true, false default: false

Alternative method of automatic label disambiguation where the field as a whole
is disambiguated from all other fields in the same label position. For non-name list
fields, this is equivalent to varwidth. For name list fields, names in a name list are
not disambiguated from other names in the same position in their name lists but
instead the entire name list is disambiguated as a whole from other name lists (see
examples below). This option overrides strwidth if both are used. The short form
varwidthlist is equivalent to varwidthlist=true. For name list fields,
if useprefix=true, the first character of the name prefix is prepended to the
substring.

strwidthmax=〈integer〉
When using varwidth, this option sets a limit (in number of characters) on the
length of variable width substrings. This option can be used to regularise the label.

strfixedcount=〈integer〉 default: 1

When using varwidthnorm, there must be at least strfixedcount disam-
biguated substrings with the same, maximal length to trigger the forcing of all
disambiguated substrings to this same maximal length.

compound=true, false default: false

For static (non-varwidth) disambiguation, treat lastname name components sepa-
rated by whitespace or hyphens (compound last names) as separate names for label
generation. This means that when forming a label out of, for example the surname
‘Ballam Forsyth’ with a 1 character, left-side substring, this name would give ‘BF’ with

164

compound=true and ‘B’ with compound=false. The short form compound

is equivalent to compound=true.
ifnames=〈integer〉
Only use this \field specification if it is a name list field with ifnames names
in it. This allows a \labelelement to be conditionalised on name length (see
below).
names=〈integer〉
By default, for name list fields, the number of names considered when building the
label obeys the maxalphanames/minalphanames truncation. This option can
be used to override this with an explicit upper limit of how many names to consider.
This is useful if you have some very long name lists which might result in a very
long label.
form=original, translated, romanised,

uniform

default: original

Specifies the script variant of a field, if the datasource you are using supports this.
lang=‘language specifier’ default: none
Specifies the babel/polyglossia language variant of a field if the datasource
you are using supports this. The default, if no 〈lang〉 option is set, this means to use
the field variant in the datasource which has no explicit language defined.

\literal{〈characters〉}

Insert the literal 〈characters〉 into the label at this point.

Note that the template for labels can be defined per-type and you should be aware of
this when using the automatically disambiguated label functionality. Disambiguation
is not per-type as this might lead to ambiguity due to different label formats for
different types being isolated from each others disambiguation process. Normally,
you will want to use very different label formats for different types to make the type
obvious by the label.

Here are some examples. The default global Biblatex alphabetic label template is de-
fined below. Firstly, shorthand hasfinal=true and so if there is ashorthand
field, it is used as the label and nothing more of the template is considered. Next,
the label field is used as the first label element if it exists. Otherwise, if there is
only one name (ifnames=1) in the labelname list, then three characters from
the left side of the lastname in the labelname are used as the first label element.
If the labelname has more than one name in it, one character from the left side of
each lastname is used as the first label element. The second label element consists of
2 characters from the right side of the year field.

\DeclareLabelalphaTemplate{

\labelelement{

\field[final]{shorthand}

\field{label}

\field[strwidth=3,strside=left,ifnames=1]{labelname}

\field[strwidth=1,strside=left]{labelname}

}

\labelelement{

\field[strwidth=2,strside=right]{year}

}

}

165

To get an idea of how the label automatic disambiguation works, consider the fol-
lowing author lists:

Agassi, Chang, Laver (2000)

Agassi, Connors, Lendl (2001)

Agassi, Courier, Laver (2002)

Borg, Connors, Edberg (2003)

Borg, Connors, Emerson (2004)

Assuming a template declaration such as:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidth]{labelname}

}

}

Then the labels would be:

Agassi, Chang, Laver [AChLa]

Agassi, Connors, Lendl [AConLe]

Agassi, Courier, Laver [ACouLa]

Borg, Connors, Edberg [BConEd]

Borg, Connors, Emerson [BConEm]

With normalised variable width labels defined:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthnorm]{labelname}

}

}

You would get the following as the substrings of names in each position are extended
to the length of the longest substring in that same position:

Agassi, Chang, Laver [AChaLa]

Agassi, Connors, Lendl [AConLe]

Agassi, Courier, Laver [ACouLa]

Borg, Connors, Edberg [BConEd]

Borg, Connors, Emerson [BConEm]

With a restriction to two characters for the name components of the label element
defined like this:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthnorm,strwidthmax=2]{labelname}

}

}

This would be the result (note that the individual lastname label parts are no longer
unambiguous):

166

Agassi, Chang, Laver [AChLa]

Agassi, Connors, Lendl [ACoLe]

Agassi, Courier, Laver [ACoLa]

Borg, Connors, Edberg [BCoEd]

Borg, Connors, Emerson [BCoEm]

Alternatively, you could choose to disambiguate the name lists as a whole with:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthlist]{labelname}

}

}

Which would result in:

Agassi, Chang, Laver [AChL]

Agassi, Connors, Lendl [ACoL]

Agassi, Courier, Laver [ACL]

Borg, Connors, Edberg [BCEd]

Borg, Connors, Emerson [BCE]

Perhaps you only want to consider at most two names for label generation but
disambiguate at the whole name list level:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthlist,names=2]{labelname}

}

}

Which would result in:

Agassi, Chang, Laver [ACh+]

Agassi, Connors, Lendl [ACo+]

Agassi, Courier, Laver [AC+]

Borg, Connors, Edberg [BC+a]

Borg, Connors, Emerson [BC+b]

In this last example, you can see \labelalphaothers has been appended to
show that there are more names. The last two labels now require disambiguating
with \extraalpha as there is no way of disambiguating this label name list with
only two names.

Finally, here is an example using multiple label elements:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthlist]{labelname}

}

\labelelement{

\literal{-}

}

\labelelement{

\field[strwidth=3,strside=right]{labelyear}

}

}

167

Which would result in:

Agassi, Chang, Laver [AChL-000]

Agassi, Connors, Lendl [AConL-001]

Agassi, Courier, Laver [ACouL-002]

Borg, Connors, Edberg [BCEd-003]

Borg, Connors, Emerson [BCEm-004]

Here is another rather contrived example showing that you don’t need to specially
quote LaTeX special characters (apart from ‘%’, obviously) when specifying padding
characters and literals:

\DeclareLabelalphaTemplate{

\labelelement{

\literal{>}

}

\labelelement{

\literal{\%}

}

\labelelement{

\field[strwidth=4, padchar=_]{labelname}

}

\labelelement{

\field[strwidth=3, padchar=&, padside=left]{title}

}

\labelelement{

\field[strwidth=2,strside=right]{year}

}

}

which given:

@Book{test,

author = {XXX YY},

title = {T},

year = {2007},

}

would resulting a label looking like this:

[>%YY__&&T07]

Generating labels from fields may involve some difficulties when you have fields
containing diacritics, hyphens, spaces etc. Often, you want to ignore things like
separator characters or spaces when generating labels. An option is provided to
customise the regular expression(s) to strip from a field before it is passed to the
label generation system.

\DeclareNolabel{〈specification〉}
Biber only

Defines regular expressions to strip from any field before generating a label part
for the field. The 〈specification〉 is an undelimited list of \nolabel directives
which specify the regular expressions to remove from fields. Spaces, tabs and line
endings may be used freely to visually arrange the 〈specification〉. Blank lines are
not permissible. This command may only be used in the preamble.

168

\nolabel{〈regexp〉}

Any number of\nolabel commands can be given each of which specifies to remove
the 〈regexp〉 from the copy of the field which the label generation system sees. Since
regular expressions usually contain special characters, it is best to enclose them in
the provided \regexp macro as shown—this will pass the expression through to
Biber correctly.

If there is no \DeclareNolabel specification, Biber will default to:

\DeclareNolabel{

% strip punctuation, symbols, separator and control characters

\nolabel{\regexp{[\p{P}\p{S}\p{C}]+}}

}

This Biber default strips punctuation, symbol, separator and control characters from
fields before passing the field string to the label generation system.

\DeclareNolabelwidthcount{〈specification〉}
Biber only

Defines regular expressions to ignore from any field when counting charac-
ters in fixed-width substrings. The 〈specification〉 is an undelimited list of
\nolabelwidthcount directives which specify the regular expressions to ig-
nore when counting characters for fixed-width substrings. Spaces, tabs and line
endings may be used freely to visually arrange the 〈specification〉. Blank lines are
not permissible. This command may only be used in the preamble.

\nolabelwidthcount{〈regexp〉}

Any number of \nolabelwidthcount commands can be given each of which
specifies to ignore the 〈regexp〉 when generating fixed-width substrings during
label generation. Since regular expressions usually contain special characters, it is
best to enclose them in the provided \regexp macro as shown—this will pass the
expression through to Biber correctly.

There is no default \DeclareNolabelwidthcount specification. Note that
this setting is only taken into account when using fixed-width substrings (non-
varwidth) during label part generation. See § 4.5.4.

4.5.5 Sorting

In addition to the predefined sorting schemes discussed in § 3.5, it is possible to
define new ones or modify the default definitions. The sorting process may be
customized further by excluding certain fields from sorting on a per-type basis
and by automatically populating the presort field on a per-type basis. Note that
custom sorting schemes require Biber. They will not work with any other backend.

\DeclareSortingScheme[〈options〉]{〈name〉}{〈specification〉}
Biber only

Defines the sorting scheme 〈name〉. The 〈name〉 is the identifier passed to
the sorting option (§ 3.1.2.1) when selecting the sorting scheme. The
\DeclareSortingScheme command supports the following optional argu-
ments:

169

locale=〈locale〉
The locale for the sorting scheme which then overrides the global sorting locale in
the sortlocale option discussed in § 3.1.2.1.

The 〈specification〉 is an undelimited list of \sort directives which specify the
elements to be considered in the sorting process. Spaces, tabs, and line endings may
be used freely to visually arrange the 〈specification〉. Blank lines are not permissible.
This command may only be used in the preamble.

\sort{〈elements〉}

Specifies the elements considered in the sorting process. The 〈elements〉 are an
undelimited list of \field, \literal, and \citeorder commands which are
evaluated in the order in which they are given. If an element is defined, it is added
to the sort key and the sorting routine skips to the next \sort directive. If it is
undefined, the next element is evaluated. Since literal strings are always defined, any
\literal commands should be the sole or the last element in a \sort directive.
The \sort command supports the following optional arguments:

locale=〈locale〉
Override the locale used for sorting at the level of a particular set of sort-
ing elements. If specified, the locale overrides the locale set at the level of
\DeclareSortingScheme and also the global setting. See also the discussion
of the global sorting locale option sortlocale in § 3.1.2.1.
direction=ascending, descending default: ascending
The sort direction, which may be either ascending or descending. The default
is ascending order.
final=true, false default: false
This option marks a \sort directive as the final one in the 〈specification〉. If one of
the 〈elements〉 is available, the remainder of the 〈specification〉 will be ignored. The
short form final is equivalent to final=true.
sortcase=true, false
Whether or not to sort case-sensitively. The default setting depends on the global
sortcase option.
sortupper=true, false
Whether or not to sort in ‘uppercase before lowercase’ (true) or ‘lowercase before
uppercase’ order (false). The default setting depends on the global sortupper
option.

\field[〈key=value, …〉]{〈field〉}

The \field element adds a 〈field〉 to the sorting specification. If the 〈field〉 is
undefined, the element is skipped. The \field command supports the following
optional arguments:

padside=left, right default: left
Pads a field on the left or right side using padchar so that its width is
padwidth. If no padding option is set, no padding is done at all. If any padding
option is specified, then padding is performed and the missing options are assigned
built-in default values. If padding and substring matching are both specified, the
substring match is performed first. Padding is particularly useful with numeric fields.
For example, the command

170

\field[padside=left,padwidth=2,padchar=0]{volume}

will pad the volume field with leading zeros to a width of two characters. This way,
volumes are sorted by numeric value (01/02/11/12) rather than in alphabetic
order (1/11/12/2).

padwidth=〈integer〉 default: 4

The target width in characters.

padchar=〈character〉 default: 0

The character to be used when padding the field.

strside=left, right default: left

Performs a substring match on the left or right side of the field. The number
of characters to match is specified by the corresponding strwidth option. If no
substring option is set, no substring matching is performed at all. If any substring
option is specified, then substring matching is performed and the missing options
are assigned built-in default values. If padding and substring matching are both
specified, the substring match is performed first.

strwidth=〈integer〉 default: 4

The number of characters to match.

\literal{〈string〉}

The \literal element adds a literal 〈string〉 to the sorting specification. This is
useful as a fallback if some fields are not available.

\citeorder The \citeorder element has a special meaning. It requests a sort based on
the lexical order of the actual citations. For entries cited within the same citation
command like:

\cite{one,two}

there is a distinction between the lexical order and the semantic order. Here “one”
and “two” have the same semantic order but a unique lexical order. The semantic
order only matters if you specify further sorting to disambiguate entries with the
same semantic order. For example, this is the definition of the none sorting scheme:

\DeclareSortingScheme{none}{

\sort{\citeorder}

}

This sorts the bibliography purely lexically by the order of the keys in the citation
commands. In the example above, it sorts “one” before “two”. However, suppose that
you consider “one” and “two” to have the same order (semantic order) since they are
cited at the same time and want to further sort these by year. Suppose “two” has an
earlier year than “one”:

\DeclareSortingScheme{noneyear}{

\sort{\citeorder}

\sort{year}

}

171

This sorts “two” before “one”, even though lexically, “one” would sort before “two”.
This is possible because the semantic order can be disambiguated by the further
sorting on year. With the standard none sorting scheme, the lexical order and
semantic order are identical because there is nothing further to disambiguate them.
This means that you can use \citeorder just like any other sorting specification
element, choosing how to further sort entries cited at the same time (in the same
citation command).

Here are some examples of sorting schemes. In the first example, we define a
simple name/title/year scheme. The name element may be either the author, the
editor, or the translator. Given this specification, the sorting routine will
use the first element which is available and continue with the title. Note that the
options use<name> options are considered automatically in the sorting process:

\DeclareSortingScheme{sample}{

\sort{

\field{author}

\field{editor}

\field{translator}

}

\sort{

\field{title}

}

\sort{

\field{year}

}

}

In the next example, we define the same scheme in a more elaborate way, considering
special fields such as presort, sortkey, sortname, etc. Since the sortkey
field specifies the master sort key, it needs to override all other elements except for
presort. This is indicated by the final option. If the sortkey field is available,
processing will stop at this point. If not, the sorting routine continues with the next
\sort directive. This setup corresponds to the default definition of the nty scheme:

\DeclareSortingScheme{nty}{

\sort{

\field{presort}

}

\sort[final]{

\field{sortkey}

}

\sort{

\field{sortname}

\field{author}

\field{editor}

\field{translator}

\field{sorttitle}

\field{title}

}

\sort{

\field{sorttitle}

172

\field{title}

}

\sort{

\field{sortyear}

\field{year}

}

}

Finally, here is an example of a sorting scheme which overrides the global sorting
locale and additionally overrides again when sorting by the origtitle field. Note
the use in the scheme-level override of a babel/polyglossia language name instead of
a real locale identifier. Biber will map this to a suitable, real locale identifier (in this
case, sv_SE):

\DeclareSortingScheme[locale=swedish]{custom}{

\sort{

\field{sortname}

\field{author}

\field{editor}

\field{translator}

\field{sorttitle}

\field{title}

}

\sort[locale=de_DE_phonebook]{

\field{origtitle}

}

}

\DeclareSortExclusion{〈entrytype, …〉}{〈field, …〉}
Biber only

Specifies fields to be excluded from sorting on a per-type basis. The 〈entrytype〉
argument and the 〈field〉 argument may be a comma-separated list of values. A blank
〈field〉 argument will clear all exclusions for this 〈entrytype〉. This command may
only be used in the preamble.

\DeclarePresort[〈entrytype, …〉]{〈string〉}
Biber only

Specifies a string to be used to automatically populate the presort field of entries
without a presort field. The presort may be defined globally or on a per-type
basis. If the optional 〈entrytype〉 argument is given, the 〈string〉 applies to the
respective entry type. If not, it serves as the global default value. Specifying an
〈entrytype〉 in conjunction with a blank 〈string〉 will clear the type-specific setting.
The 〈entrytype〉 argument may be a comma-separated list of values. This command
may only be used in the preamble.

4.5.6 Bibliography List Filters Biber only

When using customisable bibliography lists (See § 3.6.4), usually one wants to return
in the .bbl only those entries which have the particular fields which the bibliogra-
phy list is summarising. For example, when printing a normal list of shorthands, you
want the list returned by Biber in the .bbl to contain only those entries which have
a shorthand field. This is accomplished by defining a bibliography list filter using
the \DeclareBiblistFilter command. This differs from the filters defined

173

using \defbibfilter (see § 3.6.10) since the filters defined by \defbibfilter
run inside Biblatex after the .bbl has been generated. In addition, bibliography lists
in the .bbl do not contain entry data, only the citation keys for the entries and so
no filtering by Biblatex using \defbibfilter is possible for bibliography lists.

\DeclareBiblistFilter{〈name〉}{〈specification〉}
Biber only

Defines a bibliography list filter with 〈name〉. The 〈specification〉 consists of one or
more \filter or \filteror macros, all of which must be satisfied for the entry
to pass the filter:

\filter[〈filterspec〉]{〈filter〉}

Filter entries according to the 〈filterspec〉 and 〈filter〉. 〈filterspec〉 can be one of:

type/nottype Entry is/is not of entrytype 〈filter〉

subtype/notsubtype Entry is/is not of subtype 〈filter〉

keyword/notkeyword Entry has/does not have keyword 〈filter〉

field/notfield Entry has/does not have a field called 〈filter〉

\filteror{〈type〉}{〈filters〉}

A wrapper around one or more \filter commands specifying that they form a
disjunctive set, i.e. any one of the 〈filters〉 must be satisfied.

Fields in the datamodel which aremarked as ‘Label fields’ (see § 4.5.3) automatically
have a filter defined for them with the same name and which filters out any entries
which do no contain the field. For example, Biblatex automatically generates a filter
for the shorthand field:

\DeclareBiblistFilter{shorthand}{

\filter[type=field,filter=shorthand]

}

4.5.7 Controlling Name Initials Generation

Generating initials for name parts from a given name involves some difficulties when
you have names with prefixes, diacritics, hyphens etc. Often, you want to ignore
things like prefixes when generating initials so that the initials for “al-Hasan” is just
“H” instead of “a-H”. This is tricky when you also have names like “Ho-Pun” where
you want the initials to be “H-P”, for example.

\DeclareNoinit{〈specification〉}
Biber only

Defines regular expressions to strip from names before generating initials. The
〈specification〉 is an undelimited list of \noinit directives which specify the regular
expressions to remove from the name. Spaces, tabs and line endings may be used
freely to visually arrange the 〈specification〉. Blank lines are not permissible. This
command may only be used in the preamble.

174

\noinit{〈regexp〉}

Any number of \noinit commands can be given each of which specifies to remove
the 〈regexp〉 from the copy of the name which the initials generation system sees.
Since regular expressions usually contain special characters, it is best to enclose them
in the provided \regexp macro as shown—this will pass the expression through to
Biber correctly.

If there is no \DeclareNoinit specification, Biber will default to:

\DeclareNoinit{

% strip lowercase prefixes like ’al-’ when generating initials from names

\noinit{\regexp{\b\p{Ll}{2}\p{Pd}}}

% strip some common diacritics when generating initials from names

\noinit{\regexp{[\x{2bf}\x{2018}]}}

}

This Biber default strips a couple of diacritics and also strips lowercase prefixes from
names before generating initials.

4.5.8 Fine Tuning Sorting

It can be useful to fine tune sorting so that it ignores certain parts of particular fields.

\DeclareNosort{〈specification〉}
Biber only

Defines regular expressions to strip from particular fields or types of fields when
sorting. The 〈specification〉 is an undelimited list of \nosort directives which
specify the regular expressions to remove from particular fields or type of field.
Spaces, tabs and line endingsmay be used freely to visually arrange the 〈specification〉.
Blank lines are not permissible. This command may only be used in the preamble.

\nosort{〈field or field type〉}{〈regexp〉}

Any number of \nosort commands can be given each of which specifies to remove
the 〈regexp〉 from the 〈field〉 or 〈field type〉. A 〈field type〉 is simple a convenience
grouping of semantically similar fields from which you might want to remove a
regexp. Table 9 shows the available field types. Since regular expressions usually
contain special characters, it is best to enclose them in the provided \regexpmacro
as shown—this will pass the expression through to Biber correctly.

If there is no \DeclareNosort specification, Biber will default to:

\DeclareNosort{

% strip prefixes like ’al-’ when sorting names

\nosort{type_names}{\regexp{\A\p{L}{2}\p{Pd}}}

% strip some diacritics when sorting names

\nosort{type_names}{\regexp{[\x{2bf}\x{2018}]}}

}

This Biber default strips a couple of diacritics and also strips prefixes from names
when sorting. Suppose you wanted to ignore “The” at the beginning of a title
field when sorting:

175

\DeclareNosort{

\nosort{title}{\regexp{\AThe\s+}}

}

Or if you wanted to ignore “The” at the beginning of any title field:

\DeclareNosort{

\nosort{type_title}{\regexp{\AThe\s+}}

}

Field Type Fields

type_name author

afterword

annotator

bookauthor

commentator

editor

editora

editorb

editorc

foreword

holder

introduction

namea

nameb

namec

shortauthor

shorteditor

translator

type_title booktitle

eventtitle

issuetitle

journaltitle

maintitle

origtitle

title

Table 9: Field types for \nosort

4.5.9 Special Fields

Some of the automatically generated fields from § 4.2.4.2 may be customized. Note
that this requires Biber.

\DeclareLabelname[〈entrytype, …〉]{〈specification〉}
Biber only

Defines the fields to consider when generating the labelname field (see § 4.2.4.2).
The 〈specification〉 is an ordered list of \field commands. The fields are checked
in the order listed and the first field which is available will be used as labelname.
This is the default definition:

\DeclareLabelname{%

\field{shortauthor}

\field{author}

\field{shorteditor}

\field{editor}

176

\field{translator}

}

The labelname field may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective
entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble.

\DeclareLabeldate[〈entrytype, …〉]{〈specification〉}
Biber only

Defines the date components to consider when generating labelyear,
labelmonth and labelday fields (see § 4.2.4.2). The 〈specification〉 is an or-
dered list of \field or \literal commands. The items are checked in the order
listed and the first item which is available will be used to popluate the labelyear,
labelmonth and labelday fields. Note that the \field items do not have
to be datetype ‘date’ in the data model so that you can create pseudo-year labels
by, for example, using a pubstate field contents, if available, as the year label by
defining \DeclareLabeldate suitably. Note also that a \literal command
will always be used when found and so this should always be the last thing in the list.
If the value of a \literal command is a valid localization string, then this will be
resolved in the current language, otherwise the value is used as a literal string as-is.
This is the default definition:

\DeclareLabeldate{%

\field{date}

\field{eventdate}

\field{origdate}

\field{urldate}

\literal{nodate}

}

Note that the date field is split by the backend into year, month which are also
valid fields in the default data model. In order to support legacy data which directly
sets year and/or month, the specification ‘date’ in \DeclareLabeldate will
also match year and month fields, if present. The labelyear, labelmonth
and labelday fields may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective
entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble. See also
§ 4.2.4.3.

\DeclareLabeltitle[〈entrytype, …〉]{〈specification〉}
Biber only

Defines the fields to consider when generating the labeltitle field (see § 4.2.4.2).
The 〈specification〉 is an ordered list of \field commands. The fields are checked
in the order listed and the first field which is available will be used as labeltitle.
This is the default definition:

\DeclareLabeltitle{%

\field{shorttitle}

\field{title}

}

177

The labeltitle field may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective
entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble.

4.5.10 Data Inheritance (crossref)

Biber features a highly customizable cross-referencing mechanism with flexible data
inheritance rules. This sections deals with the configuration interface. See appendix B
for the default configuration. Note that customized data inheritance requires Biber. It
will not work with any other backend. A note on terminology: the child or target is
the entry with the crossref field, the parent or source is the entry the crossref
field points to. The child inherits data from the parent.

\DefaultInheritance[〈exceptions〉]{〈options〉}
Biber only

Configures the default inheritance behavior. This command may only be used in
the preamble. The default behavior may be customized be setting the following
〈options〉:

all=true, false default: true

Whether or not to inherit all fields from the parent by default. all=truemeans that
the child entry inherits all fields from the parent, unless a more specific inheritance
rule has been set up with \DeclareDataInheritance. If an inheritance rule
is defined for a field, data inheritance is controlled by that rule. all=false means
that no data is inherited from the parent by default. Each field to be inherited
requires an explicit inheritance rule set up with \DeclareDataInheritance.
The package default is all=true.

override=true, false default: false

Whether or not to overwrite target fields with source fields if both are defined.
This applies both to automatic inheritance and to explicit inheritance rules. The
package default is override=false, i. e., existing fields of the child entry are not
overwritten.

The optional 〈exceptions〉 are an undelimited list of \except directives. Spaces,
tabs, and line endings may be used freely to visually arrange the 〈exceptions〉. Blank
lines are not permissible.

\except{〈source〉}{〈target〉}{〈options〉}

Sets the 〈options〉 for a specific 〈source〉 and 〈target〉 combination. The 〈source〉 and
〈target〉 arguments specify the parent and the child entry type. The asterisk matches
all types and is permissible in either argument.

\DeclareDataInheritance{〈source, …〉}{〈target, …〉}{〈rules〉}
Biber only

Declares inheritance rules. The 〈source〉 and 〈target〉 arguments specify the parent
and the child entry type. Either argument may be a single entry type, a comma-
separated list of types, or an asterisk. The asterisk matches all entry types. The 〈rules〉
are an undelimited list of \inherit and/or \noinherit directives. Spaces, tabs,
and line endings may be used freely to visually arrange the 〈rules〉. Blank lines are
not permissible. This command may only be used in the preamble.

178

\inherit[〈option〉]{〈source〉}{〈target〉}

Defines an inheritance rule bymapping a 〈source〉 field to a 〈target〉 field. The 〈option〉
is the override option explained above. When set locally, it takes precedence over
any global options set with \DefaultInheritance.

\noinherit{〈source〉}

Unconditionally prevents inheritance of the 〈source〉 field.

\ResetDataInheritance Biber only

Clears all inheritance rules defined with \DeclareDataInheritance. This
command may only be used in the preamble.

Here are some practical examples:

\DefaultInheritance{all=true,override=false}

This example shows how to configure the default inheritance behavior. The above
settings are the package defaults.

\DefaultInheritance[

\except{*}{online}{all=false}

]{all=true,override=false}

This example is similar to the one above but adds one exception: entries of type
@online will, by default, not inherit any data from any parent.

\DeclareDataInheritance{collection}{incollection}{

\inherit{title}{booktitle}

\inherit{subtitle}{booksubtitle}

\inherit{titleaddon}{booktitleaddon}

}

So far we have looked at setting up the defaults. For example, all=true means
that the publisher field of a source entry is copied to the publisher field of the
target entry. In some cases, however, asymmetric mappings are required. They are
defined with \DeclareDataInheritance. The above example sets up three
typical rules for @incollection entries referencing a @collection. We map
the title and related fields of the source to the corresponding booktitle fields
of the target.

\DeclareDataInheritance{mvbook,book}{inbook,bookinbook}{

\inherit{author}{author}

\inherit{author}{bookauthor}

}

This rule is an example of one-to-many mapping: it maps the author field of
the source to both the author and the bookauthor fields of the target in order
to allow for compact inbook/bookinbook entries. The source may be either a
@mvbook or a @book entry, the target either an @inbook or a @bookinbook
entry.

179

\DeclareDataInheritance{*}{inbook,incollection}{

\noinherit{introduction}

}

This rule prevents inheritance of the introduction field. It applies to all targets
of type @inbook or @incollection, regardless of the source entry type.

\DeclareDataInheritance{*}{*}{

\noinherit{abstract}

}

This rule, which applies to all entries, regardless of the source and target entry types,
prevents inheritance of the abstract field.

\DefaultInheritance{all=true,override=false}

\ResetDataInheritance

This example demonstrates how to emulate traditional BibTeX’s cross-referencing
mechanism. It enables inheritance by default, disables overwriting, and clears all
other inheritance rules and mappings.

4.6 Auxiliary Commands

The facilities in this section are intended for analyzing and saving bibliographic data
rather than formatting and printing it.

4.6.1 Data Commands

The commands in this section grant low-level access to the unformatted bibliographic
data. They are not intended for typesetting but rather for things like saving data to a
temporary macro so that it may be used in a comparison later.

\thefield{〈field〉}

Expands to the unformatted 〈field〉. If the 〈field〉 is undefined, this command expands
to an empty string.

\strfield{〈field〉}

Similar to \thefield, except that the field is automatically sanitized such that its
value may safely be used in the formation of a control sequence name.

\csfield{〈field〉}

Similar to \thefield, but prevents expansion.

\usefield{〈command〉}{〈field〉}

Executes 〈command〉 using the unformatted 〈field〉 as its argument.

\thelist{〈literal list〉}

Expands to the unformatted 〈literal list〉. If the list is undefined, this command
expands to an empty string. Note that this command will dump the 〈literal list〉 in
the internal format used by this package. This format is not suitable for printing.

180

\thename{〈name list〉}

Expands to the unformatted 〈name list〉. If the list is undefined, this command
expands to an empty string. Note that this command will dump the 〈name list〉 in
the internal format used by this package. This format is not suitable for printing.

\savefield{〈field〉}{〈macro〉}
\savefield*{〈field〉}{〈macro〉}

Copies an unformatted 〈field〉 to a 〈macro〉. The regular variant of this command
defines the 〈macro〉 globally, the starred one works locally.

\savelist{〈literal list〉}{〈macro〉}
\savelist*{〈literal list〉}{〈macro〉}

Copies an unformatted 〈literal list〉 to a 〈macro〉. The regular variant of this command
defines the 〈macro〉 globally, the starred one works locally.

\savename{〈name list〉}{〈macro〉}
\savename*{〈name list〉}{〈macro〉}

Copies an unformatted 〈name list〉 to a 〈macro〉. The regular variant of this command
defines the 〈macro〉 globally, the starred one works locally.

\savefieldcs{〈field〉}{〈csname〉}
\savefieldcs*{〈field〉}{〈csname〉}

Similar to \savefield, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\savelistcs{〈literal list〉}{〈csname〉}
\savelistcs*{〈literal list〉}{〈csname〉}

Similar to \savelist, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\savenamecs{〈name list〉}{〈csname〉}
\savenamecs*{〈name list〉}{〈csname〉}

Similar to \savename, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\restorefield{〈field〉}{〈macro〉}

Restores a 〈field〉 from a 〈macro〉 defined with \savefield before. The field is
restored within a local scope.

\restorelist{〈literal list〉}{〈macro〉}

Restores a 〈literal list〉 from a 〈macro〉 defined with \savelist before. The list is
restored within a local scope.

\restorename{〈name list〉}{〈macro〉}

Restores a 〈name list〉 from a 〈macro〉 defined with \savename before. The list is
restored within a local scope.

181

\clearfield{〈field〉}

Clears the 〈field〉 within a local scope. A field cleared this way is treated as undefined
by subsequent data commands.

\clearlist{〈literal list〉}

Clears the 〈literal list〉 within a local scope. A list cleared this way is treated as
undefined by subsequent data commands.

\clearname{〈name list〉}

Clears the 〈name list〉 within a local scope. A list cleared this way is treated as
undefined by subsequent data commands.

4.6.2 Stand-alone Tests

The commands in this section are various kinds of stand-alone tests for use in
bibliography and citation styles.

\iffieldundef{〈field〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈field〉 is undefined, and to 〈false〉 otherwise.

\iflistundef{〈literal list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈literal list〉 is undefined, and to 〈false〉 otherwise.

\ifnameundef{〈name list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈name list〉 is undefined, and to 〈false〉 otherwise.

\iffieldsequal{〈field 1〉}{〈field 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈field 1〉 and 〈field 2〉 are equal, and to 〈false〉
otherwise.

\iflistsequal{〈literal list 1〉}{〈literal list 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈literal list 1〉 and 〈literal list 2〉 are equal, and to
〈false〉 otherwise.

\ifnamesequal{〈name list 1〉}{〈name list 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈name list 1〉 and 〈name list 2〉 are equal, and to
〈false〉 otherwise.

\iffieldequals{〈field〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈field〉 is equal to the definition of 〈macro〉, and
to 〈false〉 otherwise.

\iflistequals{〈literal list〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈literal list〉 is equal to the definition of 〈macro〉,
and to 〈false〉 otherwise.

\ifnameequals{〈name list〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈name list〉 is equal to the definition of 〈macro〉,
and to 〈false〉 otherwise.

182

\iffieldequalcs{〈field〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to \iffieldequals but takes the control sequence name 〈csname〉 (with-
out a leading backslash) as an argument, rather than a macro name.

\iflistequalcs{〈literal list〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to\iflistequals but takes the control sequence name 〈csname〉 (without
a leading backslash) as an argument, rather than a macro name.

\ifnameequalcs{〈name list〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to\ifnameequals but takes the control sequence name 〈csname〉 (without
a leading backslash) as an argument, rather than a macro name.

\iffieldequalstr{〈field〉}{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the value of the 〈field〉 is equal to 〈string〉, and 〈false〉 otherwise.
This command is robust.

\iffieldxref{〈field〉}{〈true〉}{〈false〉}

If the crossref/xref field of an entry is defined, this command checks if the
〈field〉 is related to the cross-referenced parent entry. It executes 〈true〉 if the 〈field〉
of the child entry is equal to the corresponding 〈field〉 of the parent entry, and 〈false〉
otherwise. If the crossref/xref field is undefined, it always executes 〈false〉.
This command is robust. See the description of the crossref and xref fields in
§ 2.2.3 as well as § 2.4.1 for further information concerning cross-referencing.

\iflistxref{〈literal list〉}{〈true〉}{〈false〉}

Similar to \iffieldxref but checks if a 〈literal list〉 is related to the cross-refer-
enced parent entry. See the description of the crossref and xref fields in § 2.2.3
as well as § 2.4.1 for further information concerning cross-referencing.

\ifnamexref{〈name list〉}{〈true〉}{〈false〉}

Similar to \iffieldxref but checks if a 〈name list〉 is related to the cross-refer-
enced parent entry. See the description of the crossref and xref fields in § 2.2.3
as well as § 2.4.1 for further information concerning cross-referencing.

\ifcurrentfield{〈field〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current field is 〈field〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in field formatting directives and always executes
〈false〉 when used in any other context.

\ifcurrentlist{〈literal list〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current list is 〈literal list〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in list formatting directives and always executes
〈false〉 when used in any other context.

\ifcurrentname{〈name list〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current list is 〈name list〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in list formatting directives and always executes
〈false〉 when used in any other context.

183

\ifuseprefix{〈true〉}{〈false〉}

Expands to 〈true〉 if the useprefix option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifuseauthor{〈true〉}{〈false〉}

This is just a particular case of the \ifuse<name> macro below but is men-
tioned here as author is part of the default data model. Expands to 〈true〉 if the
useauthor option is enabled (either globally or for the current entry), and 〈false〉
otherwise. See § 3.1.3 for details on this option.

\ifuseeditor{〈true〉}{〈false〉}

This is just a particular case of the \ifuse<name> macro below but is men-
tioned here as editor is part of the default data model. Expands to 〈true〉 if the
useeditor option is enabled (either globally or for the current entry), and 〈false〉
otherwise. See § 3.1.3 for details on this option.

\ifusetranslator{〈true〉}{〈false〉}

This is just a particular case of the \ifuse<name> macro below but is mentioned
here as translator is part of the default data model. Expands to 〈true〉 if the
usetranslator option is enabled (either globally or for the current entry), and
〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifuse<name>{〈true〉}{〈false〉}

Expands to 〈true〉 if the use<name> option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifsingletitle{〈true〉}{〈false〉}

Expands to 〈true〉 if there is only one work by the labelname name in the biblio-
graphy, and to 〈false〉 otherwise. If there is no labelname name at all for the entry,
then this expands to 〈true〉 if there is only one work with the labeltitle title in
the bibliography and 〈false〉 otherwise. If neither labelname nor labeltitle
are set for an entry, this will always expand to 〈false〉. Note that this feature needs
to be enabled explicitly with the package option singletitle.

\ifandothers{〈list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈list〉 is defined and has been truncated in the bib file with
the keyword ‘and others’, and to 〈false〉 otherwise. The 〈list〉 may be a literal
list or a name list.

\ifmorenames{〈true〉}{〈false〉}

Expands to 〈true〉 if the current name list has been or will be truncated, and to 〈false〉
otherwise. This command is intended for use in formatting directives for name lists.
It will always expand to 〈false〉 when used elsewhere. This command performs the
equivalent of an \ifandothers test for the current list. If this test is negative, it
also checks if the listtotal counter is larger than liststop. This command
may be used in a formatting directive to decide if a note such as “and others” or “et
al.” is to be printed at the end of the list. Note that you still need to check whether
you are in the middle or at the end of the list, i. e., whether listcount is smaller
than or equal to liststop, see § 4.4.1 for details.

184

\ifmoreitems{〈true〉}{〈false〉}

This command is similar to \ifmorenames but checks the current literal list. It
is intended for use in formatting directives for literal lists. It will always expand to
〈false〉 when used elsewhere.

\iffirstinits{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on the state of the firstinits package
option (see § 3.1.2.3). This command is intended for use in formatting directives for
name lists.

\ifterseinits{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on the state of the terseinits package
option (see § 3.1.2.3). This command is intended for use in formatting directives for
name lists.

\ifentrytype{〈type〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry type of the entry currently being processed is 〈type〉,
and 〈false〉 otherwise.

\ifkeyword{〈keyword〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈keyword〉 is found in the keywords field of the entry cur-
rently being processed, and 〈false〉 otherwise.

\ifentrykeyword{〈entrykey〉}{〈keyword〉}{〈true〉}{〈false〉}

A variant of \ifkeyword which takes an entry key as its first argument. This is
useful for testing an entry other than the one currently processed.

\ifcategory{〈category〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed has been assigned to a
〈category〉 with \addtocategory, and 〈false〉 otherwise.

\ifentrycategory{〈entrykey〉}{〈category〉}{〈true〉}{〈false〉}

A variant of \ifcategory which takes an entry key as its first argument. This is
useful for testing an entry other than the one currently processed.

\ifciteseen{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed has been cited before, and
〈false〉 otherwise. This command is robust and intended for use in citation styles. If
there are any refsection environments in the document, the citation tracking
is local to these environments. Note that the citation tracker needs to be enabled
explicitly with the package option citetracker. The behavior of this test depends
on the mode the citation tracker is operating in, see § 3.1.2.3 for details. If the citation
tracker is disabled, the test always yields 〈false〉. Also see the \citetrackertrue
and \citetrackerfalse switches in § 4.6.4.

185

\ifentryseen{〈entrykey〉}{〈true〉}{〈false〉}

A variant of \ifciteseen which takes an entry key as its first argument. Since
the 〈entrykey〉 is expanded prior to performing the test, it is possible to test for entry
keys in a field such as xref:

\ifentryseen{\thefield{xref}}{true}{false}

Apart from the additional argument, \ifentryseen behaves like \ifciteseen.

\ifentryinbib{〈entrykey〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry 〈entrykey〉 appears in the current bibliography, and
〈false〉 otherwise. This command is intended for use in bibliography styles.

\iffirstcitekey{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed is the first one in the
citation list, and 〈false〉 otherwise. This command relies on the citecount,
citetotal, multicitecount and multicitetotal counters (§ 4.10.5) and
thus is intended for use only in the 〈loopcode〉 of a citation command defined with
\DeclareCiteCommand.

\iflastcitekey{〈true〉}{〈false〉}

Similar \iffirstcitekey, but executes 〈true〉 if the entry currently being pro-
cessed is the last one in the citation list, and 〈false〉 otherwise.

\ifciteibid{〈true〉}{〈false〉}

Expands to 〈true〉 if the entry currently being processed is the same as the last one,
and to 〈false〉 otherwise. This command is intended for use in citation styles. If there
are any refsection environments in the document, the tracking is local to these
environments. Note that the ‘ibidem’ tracker needs to be enabled explicitly with the
package option ibidtracker. The behavior of this test depends on the mode the
tracker is operating in, see § 3.1.2.3 for details. If the tracker is disabled, the test always
yields 〈false〉. Also see the \citetrackertrue and \citetrackerfalse
switches in § 4.6.4.

\ifciteidem{〈true〉}{〈false〉}

Expands to 〈true〉 if the primary name (i. e., the author or editor) in the entry currently
being processed is the same as the last one, and to 〈false〉 otherwise. This command is
intended for use in citation styles. If there are anyrefsection environments in the
document, the tracking is local to these environments. Note that the ‘idem’ tracker
needs to be enabled explicitly with the package option idemtracker. The behavior
of this test depends on the mode the tracker is operating in, see § 3.1.2.3 for details. If
the tracker is disabled, the test always yields 〈false〉. Also see \citetrackertrue
and \citetrackerfalse in § 4.6.4.

186

\ifopcit{〈true〉}{〈false〉}

This command is similar to \ifciteibid except that it expands to 〈true〉 if the
entry currently being processed is the same as the last one by this author or editor.
Note that the ‘opcit’ tracker needs to be enabled explicitly with the package option
opcittracker. The behavior of this test depends on the mode the tracker is
operating in, see § 3.1.2.3 for details. If the tracker is disabled, the test always yields
〈false〉. Also see the \citetrackertrue and \citetrackerfalse switches
in § 4.6.4.

\ifloccit{〈true〉}{〈false〉}

This command is similar to \ifopcit except that it also compares the 〈postnote〉
arguments and expands to 〈true〉 only if they match and are numerical (in the sense
of \ifnumerals from § 4.6.2), i. e., \ifloccit will yield true if the citation
refers to the same page cited before. Note that the ‘loccit’ tracker needs to be enabled
explicitly with the package option loccittracker. The behavior of this test
depends on the mode the tracker is operating in, see § 3.1.2.3 for details. If the tracker
is disabled, the test always yields 〈false〉. Also see the \citetrackertrue and
\citetrackerfalse switches in § 4.6.4.

\iffirstonpage{〈true〉}{〈false〉}

The behavior of this command is responsive to the package option pagetracker.
If the option is set to page, it expands to 〈true〉 if the current item is the first one on
the page, and to 〈false〉 otherwise. If the option is set to spread, it expands to 〈true〉
if the current item is the first one on the double-page spread, and to 〈false〉 otherwise.
If the page tracker is disabled, this test always yields 〈false〉. Depending on the
context, the ‘item’ may be a citation or an entry in the bibliography or a bibliography
list. Note that this test distinguishes between body text and footnotes. For example,
if used in the first footnote on a page, it will expand to 〈true〉 even if there is a
citation in the body text prior to the footnote. Also see the \pagetrackertrue
and \pagetrackerfalse switches in § 4.6.4.

\ifsamepage{〈instance 1〉}{〈instance 2〉}{〈true〉}{〈false〉}

This command expands to 〈true〉 if two instances of a reference are located on the
same page or double-page spread, and to 〈false〉 otherwise. An instance of a reference
may be a citation or an entry in the bibliography or a bibliography list. These instances
are identified by the value of the instcount counter, see § 4.10.5. The behavior of
this command is responsive to the package option pagetracker. If this option
is set to spread, \ifsamepage is in fact an ‘if same spread’ test. If the page
tracker is disabled, this test always yields 〈false〉. The arguments 〈instance 1〉 and
〈instance 2〉 are treated as integer expressions in the sense of e-TeX’s \numexpr.
This implies that it is possible to make calculations within these arguments, for
example:

\ifsamepage{\value{instcount}}{\value{instcount}-1}{true}{false}

Note that \value is not prefixed by \the and that the subtraction is included
in the second argument in the above example. If 〈instance 1〉 or 〈instance 2〉 is an
invalid number (for example, a negative one), the test yields 〈false〉. Also note
that this test does not distinguish between body text and footnotes. Also see the
\pagetrackertrue and \pagetrackerfalse switches in § 4.6.4.

187

\ifinteger{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is a positive integer, and 〈false〉 otherwise. This
command is robust.

\ifnumeral{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is an Arabic or Roman numeral, and 〈false〉 otherwise.
This command is robust. See also \DeclareNumChars and \NumCheckSetup
in § 4.6.4.

\ifnumerals{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is a range or a list of Arabic or Roman nu-
merals, and 〈false〉 otherwise. This command is robust. In contrast to
\ifnumeral, it will also execute 〈true〉 with arguments like “52–58”, “14/15”,
“1, 3, 5”, and so on. See also \DeclareNumChars, \DeclareRangeChars,
\DeclareRangeCommands, and \NumCheckSetup in § 4.6.4.

\ifpages{〈string〉}{〈true〉}{〈false〉}

Similar to \ifnumerals, but also considers \DeclarePageCommands from
§ 4.6.4.

\iffieldint{〈field〉}{〈true〉}{〈false〉}

Similar to \ifinteger, but uses the value of a 〈field〉 rather than a literal string
in the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldnum{〈field〉}{〈true〉}{〈false〉}

Similar to \ifnumeral, but uses the value of a 〈field〉 rather than a literal string
in the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldnums{〈field〉}{〈true〉}{〈false〉}

Similar to \ifnumerals, but uses the value of a 〈field〉 rather than a literal string
in the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldpages{〈field〉}{〈true〉}{〈false〉}

Similar to \ifpages, but uses the value of a 〈field〉 rather than a literal string in
the test. If the 〈field〉 is undefined, it executes 〈false〉.

\ifbibstring{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is a known localization key, and to 〈false〉 otherwise.
The localization keys defined by default are listed in § 4.9.2. New ones may be defined
with \NewBibliographyString.

\ifbibxstring{〈string〉}{〈true〉}{〈false〉}

Similar to \ifbibstring, but the 〈string〉 is expanded.

\iffieldbibstring{〈field〉}{〈true〉}{〈false〉}

Similar to \ifbibstring, but uses the value of a 〈field〉 rather than a literal string
in the test. If the 〈field〉 is undefined, it expands to 〈false〉.

188

\ifdriver{〈entrytype〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if a driver for the 〈entrytype〉 is available, and to 〈false〉 otherwise.

\ifcapital{〈true〉}{〈false〉}

Executes 〈true〉 if Biblatex’s punctuation tracker would capitalize a localization
string at the current location, and 〈false〉 otherwise. This command is robust. It may
be useful for conditional capitalization of certain parts of a name in a formatting
directive.

\ifcitation{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a citation, and to 〈false〉 otherwise. Note that this
command is responsive to the outermost context in which it is used. For example,
if a citation command defined with \DeclareCiteCommand executes a driver
defined with \DeclareBibliographyDriver, any \ifcitation tests in
the driver code will yield 〈true〉. See § 4.11.6 for a practical example.

\ifbibliography{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a bibliography, and to 〈false〉 otherwise. Note that
this command is responsive to the outermost context in which it is used. For example,
if a driver defined with \DeclareBibliographyDriver executes a citation
command defined with \DeclareCiteCommand, any \ifbibliography tests
in the citation code will yield 〈true〉. See § 4.11.6 for a practical example.

\ifnatbibmode{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the natbib option from § 3.1.1.

\ifciteindex{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the indexing option from § 3.1.2.1.

\ifbibindex{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the indexing option from § 3.1.2.1.

\iffootnote{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a footnote, and to 〈false〉 otherwise. Note that
footnotes in minipage environments are considered to be part of the body text.
This command will only expand to 〈true〉 in footnotes a the bottom of the page and
in endnotes as provided by the endnotes package.

citecounter This counter indicates how many times the entry currently being processed is cited
in the current reference section. Note that this feature needs to be enabled explicitly
with the package option citecounter. If the option is set to context, citations
in the body text and in footnotes are counted separately. In this case, citecounter
will hold the value of the context it is used in.

189

uniquename This counter refers to the labelname list. It is set on a per-name basis. Its value Biber only
is 0 if the last name is unique, 1 if adding the other parts of the name (first name,
prefix, suffix) as initials will make it unique, and 2 if the full name is required to
disambiguate the name. This information is required by author-year and author-
title citation schemes which add additional parts of the name when citing different
authors with the same last name. For example, if there is one ‘John Doe’ and one
‘Edward Doe’ in the list of references, this counter will be set to 1. If there is one
‘John Doe’ and one ‘Jane Doe’, the value of the counter will be 2. If the option is
set to init/allinit/mininit, the counter will be limited to 1. This is useful
for citations styles which use initials to disambiguate names but never print the full
name in citations. If adding the initials is not sufficient to disambiguate the name,
uniquename will also be set to 0 for that name. This feature needs to be enabled
explicitly with the package option uniquename. Note that the uniquename
counter is local to \printnames and that it is only set for the labelname list
and to the name list labelname has been derived from (typically author or
editor). Its value is zero in any other context, i.e., it must be evaluated in the
name formatting directives handling name lists. See § 4.11.4 for further details and
practical examples.

uniquelist This counter refers to the labelname list. It is set on a per-field basis. Its value Biber only
indicates the number of names required to disambiguate the name list if automatic
maxnames/minnames truncation would lead to ambiguous citations. For example,
if there is one work by ‘Doe/Smith/Johnson’ and another one by ‘Doe/Edwards/
Williams’, setting maxnames=1 would lead to ‘Doe et al.’ in both cases. In this
case, uniquelist would be set to 2 on the labelname lists of both entries be-
cause at least the first two names are required to disambiguate them. Note that
the uniquelist counter is local to \printnames and that it is only set for the
labelname list and to the name list labelname has been derived from (typi-
cally author or editor). Its value is zero in any other context. If available, the
uniquelist value will be used automatically by \printnames when process-
ing the name list, i. e., it will automatically override maxnames/minnames. This
feature needs to be enabled explicitly with the package option uniquelist. See
§ 4.11.4 for further details and practical examples.

parenlevel The current nesting level of parentheses and/or brackets. This information is only
available if the parentracker from § 3.1.2.3 is enabled.

4.6.3 Tests with \ifboolexpr and \ifthenelse

The tests introduced in § 4.6.2 may also be used with the \ifboolexpr command
provided by the etoolbox package and the \ifthenelse command provided
by the ifthen package. The syntax of the tests is slightly different in this case:
the 〈true〉 and 〈false〉 arguments are omitted from the test itself and passed to the
\ifboolexpr or \ifthenelse command instead. Note that the use of these
commands implies some processing overhead. If you do not need any boolean
operators, it is more efficient to use the stand-alone tests from § 4.6.2.

\ifboolexpr{〈expression〉}{〈true〉}{〈false〉}

etoolbox command which allows for complex tests with boolean operators and
grouping:

\ifboolexpr{ (

190

test {\ifnameundef{editor}}

and

not test {\iflistundef{location}}

)

or test {\iffieldundef{year}}

}

{...}

{...}

\ifthenelse{〈tests〉}{〈true〉}{〈false〉}

ifthen command which allows for complex tests with boolean operators and
grouping:

\ifthenelse{ \(

\ifnameundef{editor}

\and

\not \iflistundef{location}

\)

\or \iffieldundef{year}

}

{...}

{...}

The additional tests provided by Biblatex are only available when \ifboolexpr
or \ifthenelse are used in citation commands and in the bibliography.

4.6.4 Miscellaneous Commands

The section introduced miscellaneous commands and little helpers for use in biblio-
graphy and citation styles.

\newbibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\newbibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Defines a macro to be executed via \usebibmacro later. The syntax of this com-
mand is very similar to \newcommand except that 〈name〉 may contain characters
such as numbers and punctuation marks and does not start with a backslash. The
optional argument 〈arguments〉 is an integer specifying the number of arguments
taken by the macro. If 〈optional〉 is given, it specifies a default value for the first
argument of the macro, which automatically becomes an optional argument. In con-
trast to \newcommand, \newbibmacro issues a warning message if the macro
is already defined, and automatically falls back to \renewbibmacro. As with
\newcommand, the regular variant of this command uses the \long prefix in
the definition while the starred one does not. If a macro has been declared to
be long, it may take arguments containing \par tokens. \newbibmacro and
\renewbibmacro are provided for convenience. Style authors are free to use
\newcommand or \def instead. However, note that most shared definitions found
in biblatex.def are defined with \newbibmacro, hence they must be used
and modified accordingly.

191

\renewbibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\renewbibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Similar to \newbibmacro but redefines 〈name〉. In contrast to \renewcommand,
\renewbibmacro issues a warning message if the macro is undefined, and auto-
matically falls back to \newbibmacro.

\providebibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\providebibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Similar to \newbibmacro but only defines 〈name〉 if it is undefined. This command
is similar in concept to \providecommand.

\usebibmacro{〈name〉}
\usebibmacro*{〈name〉}

This command executes the macro 〈name〉, as defined with \newbibmacro. If the
macro takes any arguments, they are simply appended after 〈name〉. The regular
variant of this command sanitizes 〈name〉 while the starred variant does not.

\savecommand{〈command〉}
\restorecommand{〈command〉}

These commands save and restore any 〈command〉, which must be a command name
starting with a backslash. Both commands work within a local scope. They are
mainly provided for use in localization files.

\savebibmacro{〈name〉}
\restorebibmacro{〈name〉}

These commands save and restore the macro 〈name〉, where 〈name〉 is the identifier
of a macro defined with \newbibmacro. Both commands work within a local
scope. They are mainly provided for use in localization files.

\savefieldformat[〈entry type〉]{〈format〉}
\restorefieldformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareFieldFormat. Both commands work within a local scope. They are
mainly provided for use in localization files.

\savelistformat[〈entry type〉]{〈format〉}
\restorelistformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareListFormat. Both commands work within a local scope. They are
mainly provided for use in localization files.

\savenameformat[〈entry type〉]{〈format〉}
\restorenameformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareNameFormat. Both commands work within a local scope. They are
mainly provided for use in localization files.

192

\ifbibmacroundef{〈name〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the bibliography macro 〈name〉 is undefined, and to 〈false〉
otherwise.

\iffieldformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}
\iflistformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}
\ifnameformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the formatting directive 〈format〉 is undefined, and to 〈false〉
otherwise.

\usedriver{〈code〉}{〈entrytype〉}

Executes the bibliography driver for an 〈entrytype〉. Calling this command in the
〈loopcode〉 of a citation command defined with \DeclareCiteCommand is a sim-
ple way to print full citations similar to a bibliography entry. Commands such as
\newblock, which are not applicable in a citation, are disabled automatically. Addi-
tional initialization commands may be passed as the 〈code〉 argument. This argument
is executed inside the group in which \usedriver runs the respective driver. Note
that it is mandatory in terms of the syntax but may be left empty. Also note that this
command will automatically switch languages if the autolang package option is
enabled.

\bibhypertarget{〈name〉}{〈text〉}

A wrapper for hyperref’s \hypertarget command. The 〈name〉 is the name
of the anchor, the 〈text〉 is arbitrary printable text or code which serves as an anchor.
If there are any refsection environments in the document, the 〈name〉 is local
to the current environment. If the hyperref package option is disabled or the
hyperref package has not been loaded, this command will simply pass on its 〈text〉
argument. See also the formatting directive bibhypertarget in § 4.10.4.

\bibhyperlink{〈name〉}{〈text〉}

A wrapper for hyperref’s \hyperlink command. The 〈name〉 is the name of
an anchor defined with \bibhypertarget, the 〈text〉 is arbitrary printable text
or code to be transformed into a link. If there are any refsection environments
in the document, the 〈name〉 is local to the current environment. If the hyperref
package option is disabled or the hyperref package has not been loaded, this
command will simply pass on its 〈text〉 argument. See also the formatting directive
bibhyperlink in § 4.10.4.

\bibhyperref[〈entrykey〉]{〈text〉}

Transforms 〈text〉 into an internal link pointing to 〈entrykey〉 in the bibliography.
If 〈entrykey〉 is omitted, this command uses the key of the entry currently being
processed. This command is employed to transform citations into clickable links
pointing to the corresponding entry in the bibliography. The link target is marked
automatically by Biblatex. If there are multiple bibliographies in a document, the
target will be the first occurence of 〈entrykey〉 in one of the bibliographies. If there
are refsection environments, the links are local to the environment. See also
the formatting directive bibhyperref in § 4.10.4.

193

\ifhyperref{〈true〉}{〈false〉}

Expands to 〈true〉 if the hyperref package option is enabled (which implies that
the hyperref package has been loaded), and to 〈false〉 otherwise.

\docsvfield{〈field〉}

Similar to the \docsvlist command from the etoolbox package, except that
it takes a field name as its argument. The value of this field is parsed as a comma-
separated list. If the 〈field〉 is undefined, this command expands to an empty string.

\forcsvfield{〈handler〉}{〈field〉}

Similar to the \forcsvlist command from the etoolbox package, except that
it takes a field name as its argument. The value of this field is parsed as a comma-
separated list. If the 〈field〉 is undefined, this command expands to an empty string.

\MakeCapital{〈text〉}

Similar to \MakeUppercase but only coverts the first printable character in 〈text〉
to uppercase. Note that the restrictions that apply to \MakeUppercase also apply
to this command. Namely, all commands in 〈text〉 must either be robust or prefixed
with \protect since the 〈text〉 is expanded during capitalization. Apart from
Ascii characters and the standard accent commands, this command also handles the
active characters of the inputenc package as well as the shorthands of the babel
package. If the 〈text〉 starts with a control sequence, nothing is capitalized. This
command is robust.

\MakeSentenceCase{〈text〉}
\MakeSentenceCase*{〈text〉}

Converts its 〈text〉 argument to sentence case, i. e., the first word is capitalized and
the remainder of the string is converted to lowercase. This command is robust. The
starred variant differs from the regular version in that it considers the language
of the entry, as specified in the langid field. It only converts the 〈text〉 to sen-
tence case if the langid field is undefined or if it holds a language declared with
\DeclareCaseLangs (see below).34 Otherwise, the 〈text〉 is not altered in any
way. It is recommended to use \MakeSentenceCase* rather than the regular
variant in formatting directives. Both variants support the traditional BibTeX con-
vention for bib files that anything wrapped in a pair of curly braces is not modified
when changing the case. For example:

\MakeSentenceCase{an Introduction to LaTeX}

\MakeSentenceCase{an Introduction to {LaTeX}}

would yield:

An introduction to latex

An introduction to LaTeX

In bib files designed with traditional BibTeX in mind, it has been fairly common to
only wrap single letters in braces to prevent case-changing:
34By default, converting to sentence case is enabled for the following language identifiers: amer-
ican, british, canadian, english, australian, newzealand as well as the aliases
USenglish and UKenglish. Use \DeclareCaseLangs to extend or change this list.

194

title = {An Introduction to {L}a{T}e{X}}

The problem with this convention is that the braces will suppress the kerning on
both sides of the enclosed letter. It is preferable to wrap the entire word in braces as
shown in the first example.

\mkpageprefix[〈pagination〉][〈postpro〉]{〈text〉}

This command is intended for use in field formatting directives which format
the page numbers in the 〈postnote〉 argument of citation commands and the
pages field of bibliography entries. It will parse its 〈text〉 argument and
prefix it with ‘p.’ or ‘pp.’ by default. The optional 〈pagination〉 argument
holds the name of a field indicating the pagination type. This may be ei-
ther pagination or bookpagination, with pagination being the default.
The spacing between the prefix and the 〈text〉 may be modified by redefining
\ppspace. The default is an unbreakable interword space. See §§ 2.3.10 and 3.12.3
for further details. See also \DeclareNumChars, \DeclareRangeChars,
\DeclareRangeCommands, and \NumCheckSetup. The optional 〈postpro〉
argument specifies a macro to be used for post-processing the 〈text〉. If only one
optional argument is given, it is taken as 〈pagination〉. Here are two typical examples:

\DeclareFieldFormat{postnote}{\mkpageprefix[pagination]{#1}}

\DeclareFieldFormat{pages}{\mkpageprefix[bookpagination]{#1}}

The optional argument pagination in the first example is omissible.

\mkpagetotal[〈pagination〉][〈postpro〉]{〈text〉}

This command is similar to \mkpageprefix except that it is intended for the
pagetotal field of bibliography entries, i. e., it will print “123 pages” rather than
“page 123”. The optional 〈pagination〉 argument defaults to bookpagination.
The spacing inserted between the pagination suffix and the 〈text〉 may be modified
by redefining the macro \ppspace. The optional 〈postpro〉 argument specifies a
macro to be used for post-processing the 〈text〉. If only one optional argument is
given, it is taken as 〈pagination〉. Here is a typical example:

\DeclareFieldFormat{pagetotal}{\mkpagetotal[bookpagination]{#1}}

The optional argument bookpagination is omissible in this case.

\mkcomprange[〈postpro〉]{〈text〉}
\mkcomprange*[〈postpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse its
〈text〉 argument for page ranges and compress them. For example, “125–129” may be
formatted as “125–9”. You may configure the behavior of \mkcomprange by adjust-
ing the LaTeX counters mincomprange, maxcomprange, and mincompwidth,
as illustrated in table 10. The default settings are 10, 100000, and 1, respec-
tively. This means that the command tries to compress as much as possible by
default. Use \setcounter to adjust the parameters. The scanner recognizes
\bibrangedash and hyphens as range dashes. It will normalize the dash by re-
placing any number of consecutive hyphens with \bibrangedash. Lists of ranges

195

Input Output

mincomprange=10 mincomprange=100 mincomprange=1000

11–15 11–5 11–15 11–15
111–115 111–5 111–5 111–115
1111–1115 1111–5 1111–5 1111–5

maxcomprange=1000 maxcomprange=100 maxcomprange=10

1111–1115 1111–5 1111–5 1111–5
1111–1155 1111–55 1111–55 1111–1155
1111–1555 1111–555 1111–1555 1111–1555

mincompwidth=1 mincompwidth=10 mincompwidth=100

1111–1115 1111–5 1111–15 1111–115
1111–1155 1111–55 1111–55 1111–155
1111–1555 1111–555 1111–555 1111–555

Table 10: \mkcomprange setup

delimited with \bibrangessep (Biber35) or commas/semicolons (BibTeX) are also
supported. With Biber, the scanner will normalise any comma or semi-colons sur-
rounded by optional space by replacing them with \bibrangessep. If you want
to hide a character from the list/range scanner for some reason, wrap the character
or the entire string in curly braces. The optional 〈postpro〉 argument specifies a
macro to be used for post-processing the 〈text〉. This is important if you want to
combine \mkcomprange with other formatting macros which also need to parse
their 〈text〉 argument, such as \mkpageprefix. Simply nesting these commands
will not work as expected. Use the 〈postpro〉 argument to set up the processing chain
as follows:

\DeclareFieldFormat{postnote}{\mkcomprange[{\mkpageprefix[pagination]}]{#1}}

Note that \mkcomprange is executed first, using \mkpageprefix as post-
processor. Also note that the 〈postpro〉 argument is wrapped in an additional pair
of braces. This is only required in this particular case to prevent LaTeX’s optional
argument scanner from getting confused by the nested brackets. The starred version
of this command differs from the regular one in the way the 〈postpro〉 argument is
applied to a list of values. For example:

\mkcomprange[\mkpageprefix]{5, 123-129, 423-439}

\mkcomprange*[\mkpageprefix]{5, 123-129, 423-439}

will output:

pp. 5, 123-9, 423-39

p. 5, pp. 123-9, pp. 423-39

\mkfirstpage[〈postpro〉]{〈text〉}
\mkfirstpage*[〈postpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse
its 〈text〉 argument for page ranges and print the start page of the range only. The
35Biber will always convert commas/semicolon multi-range separators into \bibrangessep so that

it can be controlled in the style.

196

scanner recognizes \bibrangedash and hyphens as range dashes. Lists of ranges
delimited with \bibrangessep (Biber36) or commas/semicolons (BibTeX) are
also supported. If you want to hide a character from the list/range scanner for
some reason, wrap the character or the entire string in curly braces. The optional
〈postpro〉 argument specifies a macro to be used for post-processing the 〈text〉. See
\mkcomprange on how to use this argument. The starred version of this command
differs from the regular one in the way the 〈postpro〉 argument is applied to a list of
values. For example:

\mkfirstpage[\mkpageprefix]{5, 123-129, 423-439}

\mkfirstpage*[\mkpageprefix]{5, 123-129, 423-439}

will output:

pp. 5, 123, 423

p. 5, p. 123, p. 423

\rangelen{〈text〉}

This command will parse its argument as a range and return the length of the range.
It will return -1 for open-ended ranges.

\rangelen{5-10} returns ’5’

\rangelen{-10} returns ’0’

\rangelen{5-} returns ’0’

\rangelen{5} returns ’1’

This can be used as part of tests in styles which require, for example, ‘f’ as a suffix
for ranges of only two pages as when a page range ‘36-37’ should be printed as ‘36f’.
This could be done using \ifnumcomp:

\ifnumcomp{\rangelen{\thefield{pages}}}{=}{1}{add ’f’}{do nothing}

\frangelen{〈rangefield〉}
Biber only

Takes the name of a bibfield declared as a range field in the data model and returns
the length of the range. This is calculated by Biber, can handle many special cases
and is generally more robust than \rangelen. It will return -1 for open ended
ranges. Specifically \frangelen can:

•Calculate the total of multiple ranges in the same field such as ‘1-10, 20-30’

•Handle implicit ranges such as ‘22-4’ and ‘130-33’

•Handle roman numeral ranges in upper and lower case and consisting of both
ASCII and Unicode roman numeral representations.

Here are some examples:

36Biber will always convert commas/semicolon multi-range separators into \bibrangessep so that
it can be controlled in the style.

197

pages = ‘10’ \frangelen{pages} returns ’1’
pages = ‘10-15’ \frangelen{pages} returns ’6’
pages = ‘10-15,47-53’ \frangelen{pages} returns ’13’
pages = ‘10-’ \frangelen{pages} returns ’-1’
pages = ‘-10’ \frangelen{pages} returns ’-1’
pages = ‘48-9’ \frangelen{pages} returns ’2’
pages = ‘172-77’ \frangelen{pages} returns ’6’
pages = ‘i-vi’ \frangelen{pages} returns ’6’
pages = ‘X-XX’ \frangelen{pages} returns ’11’
pages = ‘ⅥⅠ-ⅻ’ \frangelen{pages} returns ’6’
pages = ‘ⅥⅠ-ⅻ, 145-7, 135-39’ \frangelen{pages} returns ’14’

As with \rangelen, \frangelen can be used in tests:

\ifnumcomp{\frangelen{pages}}{=}{1}{add ’f’}{do nothing}

\DeclareNumChars{〈characters〉}
\DeclareNumChars*{〈characters〉}

This command configures the \ifnumeral, \ifnumerals, and \ifpages

tests from § 4.6.2. The setup will also affect \iffieldnum, \iffieldnums,
\iffieldpages as well as \mkpageprefix and \mkpagetotal. The
〈characters〉 argument is an undelimited list of characters which are to be considered
as being part of a number. The regular version of this command replaces the current
setting, the starred version appends its argument to the current list. The default
setting is:

\DeclareNumChars{.}

This means that a (section or other) number like ‘3.4.5’ will be considered as a number.
Note that Arabic and Roman numerals are detected by default, there is no need to
declare them explicitly.

\DeclareRangeChars{〈characters〉}
\DeclareRangeChars*{〈characters〉}

This command configures the \ifnumerals and \ifpages tests from § 4.6.2.
The setup will also affect \iffieldnums and \iffieldpages as well as
\mkpageprefix and \mkpagetotal. The 〈characters〉 argument is an unde-
limited list of characters which are to be considered as range indicators. The regular
version of this command replaces the current setting, the starred version appends its
argument to the current list. The default setting is:

\DeclareRangeChars{~,;-+/}

This means that strings like ‘3–5’, ‘35+’, ‘8/9’ and so on will be considered as a
range by \ifnumerals and \ifpages. Non-range characters in such strings
are recognized as numbers. So strings like ‘3a–5a’ and ‘35b+’ are not deemed to be
ranges by default. See also §§ 2.3.10 and 3.12.3 for further details.

198

\DeclareRangeCommands{〈commands〉}
\DeclareRangeCommands*{〈commands〉}

This command is similar to \DeclareRangeChars, except that the 〈commands〉
argument is an undelimited list of commands which are to be considered as range
indicators. The regular version of this command replaces the current setting, the
starred version appends its argument to the current list. The default list is rather
long and should cover all common cases; here is a shorter example:

\DeclareRangeCommands{\&\bibrangedash\textendash\textemdash\psq\psqq}

See also §§ 2.3.10 and 3.12.3 for further details.

\DeclarePageCommands{〈commands〉}
\DeclarePageCommands*{〈commands〉}

This command is similar to \DeclareRangeCommands, except that it only
affects the \ifpages and \iffieldpages tests but not \ifnumerals and
\iffieldnums. The default setting is:

\DeclarePageCommands{\pno\ppno}

\NumCheckSetup{〈code〉}

Use this command to temporarily redefine any commands which interfere with the
tests performed by \ifnumeral, \ifnumerals, and \ifpages from § 4.6.2.
The setup will also affect \iffieldnum, \iffieldnums, \iffieldpages as
well as \mkpageprefix and \mkpagetotal. The 〈code〉 will be executed in a
group by these commands. Since the above mentioned commands will expand the
string to be analyzed, it is possible to remove commands to be ignored by the tests
by making them expand to an empty string. See also §§ 2.3.10 and 3.12.3 for further
details.

\DeclareCaseLangs{〈languages〉}
\DeclareCaseLangs*{〈languages〉}

Defines the list of languages which are considered by the \MakeSentenceCase*
command as it converts a string to sentence case. The 〈languages〉 argument is a
comma-separated list of babel/polyglossia languages identifiers. The regular
version of this command replaces the current setting, the starred version appends its
argument to the current list. The default setting is:

\DeclareCaseLangs{%

american,british,canadian,english,australian,newzealand,

USenglish,UKenglish}

See the babel/polyglossiamanuals and table 2 for a list of languages identifiers.

\BibliographyWarning{〈message〉}

This command is similar to \PackageWarning but prints the entry key of the
entry currently being processed in addition to the input line number. It may
be used in the bibliography as well as in citation commands. If the 〈message〉
is fairly long, use \MessageBreak to include line breaks. Note that the stan-
dard \PackageWarning command does not provide a meaningful clue when
used in the bibliography since the input line number is the line on which the
\printbibliography command was given.

199

\RequireBiber[〈severity〉]

This command is intended for use in cbx/bbx files and in the @preamble of bib
files. It checks the selected backend andwarns if it is not Biber. The optional 〈severity〉
argument is an integer specifying the severity. The value 1 triggers an informational
message stating that Biber is recommended; 2 triggers a warning stating that Biber
is required and the style/bib file may not work properly; 3 triggers an error stating
that Biber is strictly required and the style/bib file will not work at all with any
other backend. If \RequireBiber is used multiple times, the highest 〈severity〉
takes precedence. cbx/bbx files on the one hand and the @preamble snippets of
all bib files on the other are tracked separately. If the optional 〈severity〉 argument
is omitted, the default severity is 2 (warning).

\pagetrackertrue

\pagetrackerfalse
These commands activate or deactivate the citation tracker locally (this will affect the
\iffirstonpage and \ifsamepage test from § 4.6.2). They are intended for
use in the definition of citation commands or anywhere in the document body. If a
citation command is to be excluded from page tracking, use \pagetrackerfalse
in the 〈precode〉 argument of \DeclareCiteCommand. See § 4.3.1 for details.
Note that these commands have no effect if page tracking has been disabled globally.

\citetrackertrue

\citetrackerfalse
These commands activate or deactivate all citation trackers locally (this will
affect the \ifciteseen, \ifentryseen, \ifciteibid, and \ifciteidem
tests from § 4.6.2). They are intended for use in the definition of citation com-
mands or anywhere in the document body. If a citation command is to be ex-
cluded from tracking, use \citetrackerfalse in the 〈precode〉 argument of
\DeclareCiteCommand. See § 4.3.1 for details. Note that these commands have
no effect if tracking has been disabled globally.

\backtrackertrue

\backtrackerfalse
These commands activate or deactivate the backref tracker locally. They are
intended for use in the definition of citation commands or anywhere in the doc-
ument body. If a citation command is to be excluded from backtracking, use
\backtrackerfalse in the 〈precode〉 argument of \DeclareCiteCommand.
Note that these commands have no effect if the backref option has been not been
set globally.

4.7 Punctuation and Spacing

The Biblatex package provides elaborate facilities designed to manage and track
punctuation and spacing in the bibliography and in citations. These facilities work
on two levels. The high-level commands discussed in § 4.7.1 deal with punctuation
and whitespace inserted by the bibliography style between the individual segments
of a bibliography entry. The commands in §§ 4.7.2, 4.7.3, 4.7.4 work at a lower level.
They use TeX’s space factor and modified space factor codes to track punctuation
in a robust and efficient way. This way it is possible to detect trailing punctua-
tion marks within fields, not only those explicitly inserted between fields. The
same technique is also used for automatic capitalization of localization strings, see
\DeclareCapitalPunctuation in § 4.7.5 as well as § 4.8 for details. Note that
these facilities are only made available locally in citations and bibliographies. They
will not affect any other part of a document.

200

4.7.1 Block and Unit Punctuation

The major segments of a bibliography entry are ‘blocks’ and ‘units’. A block is the
larger segment of the two, a unit is shorter or at most equal in length. For example,
the values of fields such as title or note usually form a unit which is separated
from subsequent data by a period or a comma. A block may comprise several fields
which are treated as separate units, for example publisher, location, and
year. The segmentation of an entry into blocks and units is at the discretion of the
bibliography style. An entry is segmented by inserting \newblock and \newunit
commands at suitable places and \finentry at the very end (see § 4.2.3 for an
example). See also § 4.11.7 for some practical hints.

\newblock Records the end of a block. This command does not print anything, it merely marks
the end of the block. The block delimiter \newblockpunct will be inserted by
a subsequent \printtext, \printfield, \printlist, \printnames, or
\bibstring command. You may use \newblock at suitable places without
having to worry about spurious blocks. A new block will only be started by the next
\printfield (or similar) command if this command prints anything. See § 4.11.7
for further details.

\newunit Records the end of a unit and puts the default delimiter \newunitpunct in the
punctuation buffer. This command does not print anything, it merely marks the
end of the unit. The punctuation buffer will be inserted by the next \printtext,
\printfield, \printlist, \printnames, or \bibstring command. You
may use \newunit after commands like \printfield without having to worry
about spurious punctuation and whitespace. The buffer will only be inserted by the
next \printfield or similar command if both fields are non-empty. This also
applies to \printtext, \printlist, \printnames, and \bibstring. See
§ 4.11.7 for further details.

\finentry Inserts \finentrypunct. This command should be used at the very end of every
bibliography entry.

\setunit{〈punctuation〉}
\setunit*{〈punctuation〉}

The \setunit command is similar to \newunit except that it uses 〈punctuation〉
instead of \newunitpunct. The starred variant differs from the regular ver-
sion in that it checks if the last \printtext, \printfield, \printlist,
\printnames, or \bibstring command did actually print anything. If not, it
does nothing.

\printunit{〈punctuation〉}
\printunit*{〈punctuation〉}

The \printunit command is similar to \setunit except that 〈punctuation〉
persists in the buffer until the next \printtext, \printfield, \printlist,
\printnames, or \bibstring command.

\setpunctfont{〈command〉}

This command, which is intended for use in field formatting directives, provides an
alternative way of dealing with unit punctuation after a field printed in a different font
(for example, a title printed in italics). The standard LaTeX way of dealing with this is
adding a small amount of space, the so-called italic correction. This command allows

201

adapting the punctuation to the font of the preceding field. The 〈command〉 should
be a text font command which takes one argument, such as \emph or \textbf.
This command will only affect punctuation marks inserted by one of the commands
from § 4.7.3. The font adaption is applied to the next punctuation mark only and
will be reset automatically thereafter. If you want to reset it manually before it takes
effect, issue \resetpunctfont. If the punctfont package option is disabled,
this command does nothing. Note that the \mkbibemph, \mkbibitalic and
\mkbibbold wrappers from § 4.10.4 incorporate this feature by default.

\resetpunctfont This command resets the unit punctuation font defined with \setpunctfont
before it takes effect. If the punctfont package option is disabled, this command
does nothing.

4.7.2 Punctuation Tests

The following commands may be used to test for preceding punctuation marks at
any point in citations and the bibliography.

\ifpunct{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by any punctuation mark except for an abbreviation dot,
and 〈false〉 otherwise.

\ifterm{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by a terminal punctuation mark, and 〈false〉 otherwise.
A terminal punctuation mark is any punctuation mark which has been registered
for automatic capitalization, either with \DeclareCapitalPunctuation or
by default, see § 4.7.5 for details. By default, this applies to periods, exclamation
marks, and question marks.

\ifpunctmark{〈character〉}{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by the punctuation mark 〈character〉, and 〈false〉 other-
wise. The 〈character〉 may be a comma, a semicolon, a colon, a period, an exclama-
tion mark, a question mark, or an asterisk. Note that a period denotes an end-of-
sentence period. Use the asterisk to test for the dot after an abbreviation. If this
command is used in a formatting directive for name lists, i. e., in the argument to
\DeclareNameFormat, the 〈character〉 may also be an apostrophe.

4.7.3 Adding Punctuation

The following commands are designed to prevent double punctuation marks. Bib-
liography and citation styles should always use these commands instead of lit-
eral punctuation marks. All \add... commands in this section automatically
remove preceding whitespace with \unspace (see § 4.7.4). Note that the behav-
ior of all \add... commands discussed below is the package default, which is
restored whenever Biblatex switches languages. This behavior may be adjusted with
\DeclarePunctuationPairs from § 4.7.5.

\adddot Adds a period unless it is preceded by any punctuation mark. The purpose of this
command is inserting the dot after an abbreviation. Any dot inserted this way is
recognized as such by the other punctuation commands. This command may also be
used to turn a previously inserted literal period into an abbreviation dot.

202

\addcomma Adds a comma unless it is preceded by another comma, a semicolon, a colon, or a
period.

\addsemicolon Adds a semicolon unless it is preceded by a comma, another semicolon, a colon, or a
period.

\addcolon Adds a colon unless it is preceded by a comma, a semicolon, another colon, or a
period.

\addperiod Adds a period unless it is preceded by an abbreviation dot or any other punctuation
mark. This command may also be used to turn a previously inserted abbreviation
dot into a period, for example at the end of a sentence.

\addexclam Adds an exclamation mark unless it is preceded by any punctuation mark except for
an abbreviation dot.

\addquestion Adds a question mark unless it is preceded by any punctuation mark except for an
abbreviation dot.

\isdot Turns a previously inserted literal period into an abbreviation dot. In contrast to
\adddot, nothing is inserted if this command is not preceded by a period.

\nopunct Adds an internal marker which will cause the next punctuation command to print
nothing.

4.7.4 Adding Whitespace

The following commands are designed to prevent spurious whitespace. Bibliography
and citation styles should always use these commands instead of literal whitespace.
In contrast to the commands in §§ 4.7.2 and 4.7.3, they are not restricted to citations
and the bibliography but available globally.

\unspace Removes preceding whitespace, i. e., removes all skips and penalties from the end
of the current horizontal list. This command is implicitly executed by all of the
following commands.

\addspace Adds a breakable interword space.

\addnbspace Adds a non-breakable interword space.

\addthinspace Adds a breakable thin space.

\addnbthinspace Adds a non-breakable thin space. This is similar to \, and \thinspace.

\addlowpenspace Adds a space penalized by the value of the lownamepenalty counter, see
§§ 3.9.3 and 4.10.3 for details.

\addhighpenspace Adds a space penalized by the value of the highnamepenalty counter, see
§§ 3.9.3 and 4.10.3 for details.

\addlpthinspace Similar to \addlowpenspace but adds a breakable thin space.

\addhpthinspace Similar to \addhighpenspace but adds a breakable thin space.

\addabbrvspace Adds a space penalized by the value of the abbrvpenalty counter, see §§ 3.9.3
and 4.10.3 for details.

\addabthinspace Similar to \addabbrvspace but using a thin space.

203

\adddotspace Executes \adddot and adds a space penalized by the value of the abbrvpenalty
counter, see §§ 3.9.3 and 4.10.3 for details.

\addslash Adds a breakable slash. This command differs from the \slash command in the
LaTeX kernel in that a linebreak after the slash is not penalized at all.

Note that the commands in this section implicitly execute \unspace to remove
spurious whitespace, hence they may be used to override each other. For example,
you may use \addnbspace to transform a previously inserted interword space
into a non-breakable one and \addspace to turn a non-breakable space into a
breakable one.

4.7.5 Configuring Punctuation and Capitalization

The following commands configure various features related to punctuation and
automatic capitalization.

\DeclareAutoPunctuation{〈characters〉}

This command defines the punctuation marks to be considered by the citation com-
mands as they scan ahead for punctuation. Note that 〈characters〉 is an undelimited
list of characters. Valid 〈characters〉 are period, comma, semicolon, colon, exclama-
tion and question mark. The default setting is:

\DeclareAutoPunctuation{.,;:!?}

This definition is restored automatically whenever theautopunct package option is
set to true. Executing \DeclareAutoPunctuation{} is equivalent to setting
autopunct=false, i. e., it disables this feature.

\DeclareCapitalPunctuation{〈characters〉}

When Biblatex inserts localization strings, i. e., key terms such as ‘edition’ or ‘volume’,
it automatically capitalizes them after terminal punctuation marks. This command
defines the punctuation marks which will cause localization strings to be capitalized
if one of them precedes a string. Note that 〈characters〉 is an undelimited list of
characters. Valid 〈characters〉 are period, comma, semicolon, colon, exclamation and
question mark. The package default is:

\DeclareCapitalPunctuation{.!?}

Using \DeclareCapitalPunctuation with an empty argument is equivalent
to disabling automatic capitalization. Since this feature is language specific, this
command must be used in the argument to \DefineBibliographyExtras
(when used in the preamble) or \DeclareBibliographyExtras (when used
in a localization module). See §§ 3.8 and 4.9 for details. By default, strings are
capitalized after periods, exclamation marks, and question marks. All strings are
generally capitalized at the beginning of a paragraph (in fact whenever TeX is in
vertical mode).

204

\DeclarePunctuationPairs{〈identifier〉}{〈characters〉}

Use this command to declare valid pairs of punctuation marks. This will affect
the punctuation commands discussed in § 4.7.3. For example, the description of
\addcomma states that this command adds a comma unless it is preceded by another
comma, a semicolon, a colon, or a period. In other words, commas after abbreviation
dots, exclamation marks, and question marks are permitted. These valid pairs are
declared as follows:

\DeclarePunctuationPairs{comma}{*!?}

The 〈identifier〉 selects the command to be configured. The identifiers correspond to
the names of the punctuation commands from § 4.7.3 without the \add prefix, i. e.,
valid 〈identifier〉 strings are dot, comma, semicolon, colon, period, exclam,
question. The 〈characters〉 argument is an undelimited list of punctuation marks.
Valid 〈characters〉 are comma, semicolon, colon, period, exclamation mark, question
mark, and asterisk. A period in the 〈characters〉 argument denotes an end-of-sentence
period, an asterisk the dot after an abbreviation. This is the default setup, which is
automatically restored whenever Biblatex switches languages and corresponds to
the behavior described in § 4.7.3:

\DeclarePunctuationPairs{dot}{}

\DeclarePunctuationPairs{comma}{*!?}

\DeclarePunctuationPairs{semicolon}{*!?}

\DeclarePunctuationPairs{colon}{*!?}

\DeclarePunctuationPairs{period}{}

\DeclarePunctuationPairs{exclam}{*}

\DeclarePunctuationPairs{question}{*}

Since this feature is language specific, \DeclarePunctuationPairs must be
used in the argument to \DefineBibliographyExtras (when used in the
preamble) or \DeclareBibliographyExtras (when used in a localization
module). See §§ 3.8 and 4.9 for details. Note that some localization modules may use
a setup which is different from the package default.37

\DeclareQuotePunctuation{〈characters〉}

This command controls ‘American-style’ punctuation. The \mkbibquote wrapper
from § 4.10.4 can interact with the punctuation facilities discussed in §§ 4.7.1, 4.7.3,
4.7.4. Punctuation marks after \mkbibquote will be moved inside the quotes
if they have been registered with \DeclareQuotePunctuation. Note that
〈characters〉 is an undelimited list of characters. Valid 〈characters〉 are period, comma,
semicolon, colon, exclamation and question mark. Here is an example:

\DeclareQuotePunctuation{.,}

Executing \DeclareQuotePunctuation{} is equivalent to disabling this fea-
ture. This is the package default. Since this feature is language specific, this command
must be used in the argument to \DefineBibliographyExtras (when used in
the preamble) or \DeclareBibliographyExtras (when used in a localization
module). See §§ 3.8 and 4.9 for details. See also § 3.10.1.
37As of this writing, the american module uses different settings for ‘American-style’ punctuation.

205

\uspunctuation A shorthand using the lower-level commands \DeclareQuotePunctuation
and \DeclarePunctuationPairs to activate ‘American-style’ punctuation.
See § 3.10.1 for details. This shorthand is provided for convenience only. The
effective settings are applied by the lower-level commands.

\stdpunctuation Undoes the settings applied by \uspunctuation, restoring standard punctua-
tion. As standard punctuation is the default setting, you only need this command
to override a previously executed \uspunctuation command. See § 3.10.1 for
details.

4.7.6 Correcting Punctuation Tracking

The facilities for punctuation tracking and automatic capitalization are very reli-
able under normal circumstances, but there are always marginal cases which may
require manual intervention. Typical cases are localization strings printed as the
first word in a footnote (which is usually treated as the beginning of a paragraph as
far as capitalization is concerned, but TeX is not in vertical mode at this point) or
punctuation after periods which are not really end-of-sentence periods (for example,
after an ellipsis like “[…]” a command such as \addperiod would do nothing
since parentheses and brackets are transparent to the punctuation tracker). In such
cases, use the following commands in bibliography and citation styles to mark the
beginning or middle of a sentence if and where required:

\bibsentence This command marks the beginning of a sentence. A localization string immediately
after this command will be capitalized and the punctuation tracker is reset, i. e., this
command hides all preceding punctuation marks from the punctuation tracker and
enforces capitalization.

\midsentence This command marks the middle of a sentence. A localization string immediately
after this command will not be capitalized and the punctuation tracker is reset, i. e.,
this command hides all preceding punctuation marks from the punctuation tracker
and suppresses capitalization.

\midsentence* The starred variant of \midsentence differs from the regular one in that a preced-
ing abbreviation dot is not hidden from the the punctuation tracker, i. e., any code
after \midsentence*will see a preceding abbreviation dot. All other punctuation
marks are hidden from the punctuation tracker and capitalization is suppressed.

4.8 Localization Strings

Localization strings are key terms such as ‘edition’ or ‘volume’ which are automati-
cally translated by Biblatex’s localization modules. See § 4.9 for an overview and
§ 4.9.2 for a list of all strings supported by default. The commands in this section are
used to print the localized term.

\bibstring[〈wrapper〉]{〈key〉}

Prints the localization string 〈key〉, where 〈key〉 is an identifier in lowercase letters
(see § 4.9.2). The string will be capitalized as required, see § 4.7.5 for details. De-
pending on the abbreviate package option from § 3.1.2.1, \bibstring prints
the short or the long version of the string. If localization strings are nested, i. e., if
\bibstring is used in another string, it will behave like \bibxstring. If the
〈wrapper〉 argument is given, the string is passed to the 〈wrapper〉 for formatting.
This is intended for font commands such as \emph.

206

\biblstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but always prints the long string, ignoring the
abbreviate option.

\bibsstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but always prints the short string, ignoring the
abbreviate option.

\bibcpstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the term is always capitalized.

\bibcplstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the term is always capitalized.

\bibcpsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the term is always capitalized.

\bibucstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the whole term is uppercased.

\bibuclstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the whole term is uppercased.

\bibucsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the whole term is uppercased.

\biblcstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the whole term is lowercased.

\biblclstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the whole term is lowercased.

\biblcsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the whole term is lowercased.

\bibxstring{〈key〉}

A simplified but expandable version of \bibstring. Note that this variant does
not capitalize automatically, nor does it hook into the punctuation tracker. It is
intended for special cases in which strings are nested or an expanded localization
string is required in a test.

\bibxlstring[〈wrapper〉]{〈key〉}

Similar to \bibxstring but always uses the long string, ignoring the
abbreviate option.

\bibxsstring[〈wrapper〉]{〈key〉}

Similar to \bibxstring but always uses the short string, ignoring the
abbreviate option.

207

\mainlang

Switches from the current language to the main document language. This can be
used the 〈wrapper〉 argument in the localization string commands above.

4.9 Localization Modules

A localizationmodule provides translations for key terms such as ‘edition’ or ‘volume’
as well as definitions for language specific features such as the date format and
ordinals. These definitions are provided in files with the suffix lbx. The base name
of the file must be a language name known to the babel/polyglossia packages.
The lbx files may also be used to map babel/polyglossia language names to
the backend modules of the Biblatex package. All localization modules are loaded on
demand in the document body. Note that the contents of the file are processed in a
group and that the category code of the character @ is temporarily set to ‘letter’.

4.9.1 Localization Commands

The user-level versions of the localization commands were already introduced in
§ 3.8. When used in lbx files, however, the syntax of localization commands is
different from the user syntax in the preamble and the configuration file. When used
in localization files, there is no need to specify the 〈language〉 because the mapping
of strings to a language is already provided by the name of the lbx file.

\DeclareBibliographyStrings{〈definitions〉}

This command is only available in lbx files. It is used to define localization strings.
The 〈definitions〉 consist of 〈key〉=〈value〉 pairs which assign an expression to an
identifier. A complete list of all keys supported by default is given is § 4.9.2. Note that
the syntax of the value is different in lbx files. The value assigned to a key consists
of two expressions, each of which is wrapped in an additional pair of brackets. This
is best shown by example:

\DeclareBibliographyStrings{%

bibliography = {{Bibliography}{Bibliography}},

shorthands = {{List of Abbreviations}{Abbreviations}},

editor = {{editor}{ed.}},

editors = {{editors}{eds.}},

}

The first value is the long, written out expression, the second one is an abbreviated
or short form. Both strings must always be given even though they may be identical
if an expression is always (or never) abbreviated. Depending on the setting of the
abbreviate package option (see § 3.1.2.1), Biblatex selects one expression when
loading the lbx file. There is also a special key named inherit which copies the
strings from a different language. This is intended for languages which only differ in
a few expressions, such as German and Austrian or American and British English.
For example, here are the complete definitions for Austrian:

\DeclareBibliographyStrings{%

inherit = {german},

january = {{J\”anner}{J\”an.}},

}

208

The above examples are slightly simplified. Real localization files should use the
punctuation and formatting commands discussed in §§ 4.7.3 and 3.9 instead of literal
punctuation. Here is an excerpt from a real localization file:

bibliography = {{Bibliography}{Bibliography}},

shorthands = {{List of Abbreviations}{Abbreviations}},

editor = {{editor}{ed\adddot}},

editors = {{editors}{eds\adddot}},

byeditor = {{edited by}{ed\adddotspace by}},

mathesis = {{Master’s thesis}{MA\addabbrvspace thesis}},

Note the handling of abbreviation dots, the spacing in abbreviated expressions, and
the capitalization in the example above. All expressions should be capitalized as
they usually are when used in the middle of a sentence. The Biblatex package will
automatically capitalize the first word when required at the beginning of a sentence,
see \DeclareCapitalPunctuation in § 4.7.5 for details. Expressions intended
for use in headings are special. They should be capitalized in a way that is suitable
for titling and should not be abbreviated (but they may have a short form).

\InheritBibliographyStrings{〈language〉}

This command is only available in lbx files. It copies the localization strings for
〈language〉 to the current language, as specified by the name of the lbx file.

\DeclareBibliographyExtras{〈code〉}

This command is only available in lbx files. It is used to adapt language specific
features such as the date format and ordinals. The 〈code〉, which may be arbitrary
LaTeX code, will usually consist of redefinitions of the formatting commands from
§ 4.10.2.

\UndeclareBibliographyExtras{〈code〉}

This command is only available in lbx files. It is used to restore any formatting
commands modified with \DeclareBibliographyExtras. If a redefined com-
mand is included in § 4.10.2, there is no need to restore its previous definition since
these commands are localized by all language modules anyway.

\InheritBibliographyExtras{〈language〉}

This command is only available in lbx files. It copies the bibliography extras for
〈language〉 to the current language, as specified by the name of the lbx file.

\DeclareHyphenationExceptions{〈text〉}

This command corresponds to \DefineHyphenationExceptions from § 3.8.
The difference is that it is only available inlbx files and that the 〈language〉 argument
is omitted. The hyphenation exceptions will affect the language of the lbx file
currently being processed.

209

\DeclareRedundantLanguages{〈language, language, …〉}{〈langid, langid, …〉}

This command provides the language mappings required by the clearlang option
from § 3.1.2.1. The 〈language〉 is the string given in the language field (without
the optional lang prefix); 〈langid〉 is babel/polyglossia’s language identi-
fier, as given in the optional argument of \usepackage when loading babel
or the argument of \setdefaultlanguage or \setotherlanguages when
using polyglossia. This command may be used in lbx files or in the document
preamble. Here are some examples:

\DeclareRedundantLanguages{french}{french}

\DeclareRedundantLanguages{german}{german,ngerman,austrian,naustrian}

\DeclareRedundantLanguages{english,american}{english,american,british,

canadian,australian,newzealand,USenglish,UKenglish}

Note that this feature needs to be enabled globally with the clearlang option
from § 3.1.2.1. If it is disabled, all mappings will be ignored. If the 〈langid〉 parameter
is blank, Biblatex will clear the mappings for the corresponding 〈language〉, i. e., the
feature will be disabled for this 〈language〉 only.

\DeclareLanguageMapping{〈language〉}{〈file〉}

This command maps a babel/polyglossia language identifier to an lbx file.
The 〈language〉 must be a language name known to the babel/polyglossia
package, i. e., one of the identifiers listed in table 2. The 〈file〉 argument is the name
of an alternative lbx file without the .lbx suffix. Declaring the samemapping more
than once is possible. Subsequent declarations will simply overwrite any previous
ones. This command may only be used in the preamble. See § 4.11.8 for further
details.

\NewBibliographyString{〈key〉}

This command, which may be used in the preamble (including cbx and bbx files)
as well as in lbx files, declares new localization strings, i. e., it initializes a new
〈key〉 to be used in the 〈definitions〉 of \DefineBibliographyStrings or
\DeclareBibliographyStrings. The 〈key〉 argument may also be a comma-
separated list of key names. When used in an lbx, the 〈key〉 is initialized only for
the language specified by the name of the lbx file. The keys listed in § 4.9.2 are
defined by default.

4.9.2 Localization Keys

The localization keys in this section are defined by default and covered by the
localization files which come with Biblatex. Note that these strings are only available
in citations, the bibliography and bibliography lists. All expressions should be
capitalized as they usually are when used in the middle of a sentence. Biblatex will
capitalize them automatically at the beginning of a sentence. The only exceptions to
these rules are the three strings intended for use in headings.

4.9.2.1 Headings The following strings are special because they are intended for
use in headings and made available globally via macros. For this reason, they should
be capitalized for use in headings and they must not include any local commands
which are part of Biblatex’s author interface.

210

bibliography The term ‘bibliography’, also available as \bibname.

references The term ‘references’, also available as \refname.

shorthands The term ‘list of shorthands’ or ‘list of abbreviations’, also available as
\biblistname.

4.9.2.2 Roles, Expressed as Functions The following keys refer to roles which
are expressed as a function (‘editor’, ‘translator’) rather than as an action (‘edited by’,
‘translated by’).

editor The term ‘editor’, referring to the main editor. This is the most generic editorial role.

editors The plural form of editor.

compiler The term ‘compiler’, referring to an editor whose task is to compile a work.

compilers The plural form of compiler.

founder The term ‘founder’, referring to a founding editor.

founders The plural form of founder.

continuator An expression like ‘continuator’, ‘continuation’, or ‘continued’, referring to a past
editor who continued the work of the founding editor but was subsequently
replaced by the current editor.

continuators The plural form of continuator.

redactor The term ‘redactor’, referring to a secondary editor.

redactors The plural form of redactor.

reviser The term ‘reviser’, referring to a secondary editor.

revisers The plural form of reviser.

collaborator A term like ‘collaborator’, ‘collaboration’, ‘cooperator’, or ‘cooperation’, referring to
a secondary editor.

collaborators The plural form of collaborator.

translator The term ‘translator’.

translators The plural form of translator.

commentator The term ‘commentator’, referring to the author of a commentary to a work.

commentators The plural form of commentators.

annotator The term ‘annotator’, referring to the author of annotations to a work.

annotators The plural form of annotators.

4.9.2.3 Concatenated Editor Roles, Expressed as Functions The following
keys are similar in function to editor, translator, etc. They are used to indicate
additional roles of the editor, e. g., ‘editor and translator’, ‘editor and foreword’.

editortr Used if editor/translator are identical.

editorstr The plural form of editortr.

editorco Used if editor/commentator are identical.

editorsco The plural form of editorco.

editoran Used if editor/annotator are identical.

editorsan The plural form of editoran.

211

editorin Used if editor/introduction are identical.

editorsin The plural form of editorin.

editorfo Used if editor/foreword are identical.

editorsfo The plural form of editorfo.

editoraf Used if editor/aftword are identical.

editorsaf The plural form of editoraf.

Keys for editor/translator/〈role〉 combinations:

editortrco Used if editor/translator/commentator are identical.

editorstrco The plural form of editortrco.

editortran Used if editor/translator/annotator are identical.

editorstran The plural form of editortran.

editortrin Used if editor/translator/introduction are identical.

editorstrin The plural form of editortrin.

editortrfo Used if editor/translator/foreword are identical.

editorstrfo The plural form of editortrfo.

editortraf Used if editor/translator/aftword are identical.

editorstraf The plural form of editortraf.

Keys for editor/commentator/〈role〉 combinations:

editorcoin Used if editor/commentator/introduction are identical.

editorscoin The plural form of editorcoin.

editorcofo Used if editor/commentator/foreword are identical.

editorscofo The plural form of editorcofo.

editorcoaf Used if editor/commentator/aftword are identical.

editorscoaf The plural form of editorcoaf.

Keys for editor/annotator/〈role〉 combinations:

editoranin Used if editor/annotator/introduction are identical.

editorsanin The plural form of editoranin.

editoranfo Used if editor/annotator/foreword are identical.

editorsanfo The plural form of editoranfo.

editoranaf Used if editor/annotator/aftword are identical.

editorsanaf The plural form of editoranaf.

Keys for editor/translator/commentator/〈role〉 combinations:

editortrcoin Used if editor/translator/commentator/introduction are identical.

editorstrcoin The plural form of editortrcoin.

editortrcofo Used if editor/translator/commentator/foreword are identical.

editorstrcofo The plural form of editortrcofo.

212

editortrcoaf Used if editor/translator/commentator/aftword are identical.

editorstrcoaf The plural form of editortrcoaf.

Keys for editor/annotator/commentator/〈role〉 combinations:

editortranin Used if editor/annotator/commentator/introduction are identical.

editorstranin The plural form of editortranin.

editortranfo Used if editor/annotator/commentator/foreword are identical.

editorstranfo The plural form of editortranfo.

editortranaf Used if editor/annotator/commentator/aftword are identical.

editorstranaf The plural form of editortranaf.

4.9.2.4 Concatenated Translator Roles, Expressed as Functions The follow-
ing keys are similar in function totranslator. They are used to indicate additional
roles of the translator, e. g., ‘translator and commentator’, ‘translator and introduc-
tion’.

translatorco Used if translator/commentator are identical.

translatorsco The plural form of translatorco.

translatoran Used if translator/annotator are identical.

translatorsan The plural form of translatoran.

translatorin Used if translator/introduction are identical.

translatorsin The plural form of translatorin.

translatorfo Used if translator/foreword are identical.

translatorsfo The plural form of translatorfo.

translatoraf Used if translator/aftword are identical.

translatorsaf The plural form of translatoraf.

Keys for translator/commentator/〈role〉 combinations:

translatorcoin Used if translator/commentator/introduction are identical.

translatorscoin The plural form of translatorcoin.

translatorcofo Used if translator/commentator/foreword are identical.

translatorscofo The plural form of translatorcofo.

translatorcoaf Used if translator/commentator/aftword are identical.

translatorscoaf The plural form of translatorcoaf.

Keys for translator/annotator/〈role〉 combinations:

translatoranin Used if translator/annotator/introduction are identical.

translatorsanin The plural form of translatoranin.

translatoranfo Used if translator/annotator/foreword are identical.

translatorsanfo The plural form of translatoranfo.

translatoranaf Used if translator/annotator/aftword are identical.

translatorsanaf The plural form of translatoranaf.

213

4.9.2.5 Roles, Expressed as Actions The following keys refer to roles which are
expressed as an action (‘edited by’, ‘translated by’) rather than as a function (‘editor’,
‘translator’).

byauthor The expression ‘[created] by 〈name〉’.
byeditor The expression ‘edited by 〈name〉’.

bycompiler The expression ‘compiled by 〈name〉’.
byfounder The expression ‘founded by 〈name〉’.

bycontinuator The expression ‘continued by 〈name〉’.
byredactor The expression ‘redacted by 〈name〉’.
byreviser The expression ‘revised by 〈name〉’.

byreviewer The expression ‘reviewed by 〈name〉’.
bycollaborator An expression like ‘in collaboration with 〈name〉’ or ‘in cooperation with 〈name〉’.
bytranslator The expression ‘translated by 〈name〉’ or ‘translated from 〈language〉 by 〈name〉’.

bycommentator The expression ‘commented by 〈name〉’.
byannotator The expression ‘annotated by 〈name〉’.

4.9.2.6 Concatenated Editor Roles, Expressed as Actions The following keys
are similar in function to byeditor, bytranslator, etc. They are used to
indicate additional roles of the editor, e. g., ‘edited and translated by’, ‘edited and
furnished with an introduction by’, ‘edited, with a foreword, by’.

byeditortr Used if editor/translator are identical.

byeditorco Used if editor/commentator are identical.

byeditoran Used if editor/annotator are identical.

byeditorin Used if editor/introduction are identical.

byeditorfo Used if editor/foreword are identical.

byeditoraf Used if editor/aftword are identical.

Keys for editor/translator/〈role〉 combinations:

byeditortrco Used if editor/translator/commentator are identical.

byeditortran Used if editor/translator/annotator are identical.

byeditortrin Used if editor/translator/introduction are identical.

byeditortrfo Used if editor/translator/foreword are identical.

byeditortraf Used if editor/translator/aftword are identical.

Keys for editor/commentator/〈role〉 combinations:

byeditorcoin Used if editor/commentator/introduction are identical.

byeditorcofo Used if editor/commentator/foreword are identical.

byeditorcoaf Used if editor/commentator/aftword are identical.

Keys for editor/annotator/〈role〉 combinations:

byeditoranin Used if editor/annotator/introduction are identical.

214

byeditoranfo Used if editor/annotator/foreword are identical.

byeditoranaf Used if editor/annotator/aftword are identical.

Keys for editor/translator/commentator/〈role〉 combinations:

byeditortrcoin Used if editor/translator/commentator/introduction are identical.

byeditortrcofo Used if editor/translator/commentator/foreword are identical.

byeditortrcoaf Used if editor/translator/commentator/aftword are identical.

Keys for editor/translator/annotator/〈role〉 combinations:

byeditortranin Used if editor/annotator/commentator/introduction are identical.

byeditortranfo Used if editor/annotator/commentator/foreword are identical.

byeditortranaf Used if editor/annotator/commentator/aftword are identical.

4.9.2.7 Concatenated Translator Roles, Expressed as Actions The following
keys are similar in function to bytranslator. They are used to indicate additional
roles of the translator, e. g., ‘translated and commented by’, ‘translated and furnished
with an introduction by’, ‘translated, with a foreword, by’.

bytranslatorco Used if translator/commentator are identical.

bytranslatoran Used if translator/annotator are identical.

bytranslatorin Used if translator/introduction are identical.

bytranslatorfo Used if translator/foreword are identical.

bytranslatoraf Used if translator/aftword are identical.

Keys for translator/commentator/〈role〉 combinations:

bytranslatorcoin Used if translator/commentator/introduction are identical.

bytranslatorcofo Used if translator/commentator/foreword are identical.

bytranslatorcoaf Used if translator/commentator/aftword are identical.

Keys for translator/annotator/〈role〉 combinations:

bytranslatoranin Used if translator/annotator/introduction are identical.

bytranslatoranfo Used if translator/annotator/foreword are identical.

bytranslatoranaf Used if translator/annotator/aftword are identical.

4.9.2.8 Roles, Expressed as Objects Roles which are related to supplementary
material may also be expressed as objects (‘with a commentary by’) rather than as
functions (‘commentator’) or as actions (‘commented by’).

withcommentator The expression ‘with a commentary by 〈name〉’.
withannotator The expression ‘with annotations by 〈name〉’.

withintroduction The expression ‘with an introduction by 〈name〉’.
withforeword The expression ‘with a foreword by 〈name〉’.
withafterword The expression ‘with an afterword by 〈name〉’.

215

4.9.2.9 Supplementary Material

commentary The term ‘commentary’.

annotations The term ‘annotations’.

introduction The term ‘introduction’.

foreword The term ‘foreword’.

afterword The term ‘afterword’.

4.9.2.10 Publication Details

volume The term ‘volume’, referring to a book.

volumes The plural form of volume.

involumes The term ‘in’, as used in expressions like ‘in 〈number of volumes〉 volumes’.

jourvol The term ‘volume’, referring to a journal.

jourser The term ‘series’, referring to a journal.

book The term ‘book’, referring to a document division.

part The term ‘part’, referring to a part of a book or a periodical.

issue The term ‘issue’, referring to a periodical.

newseries The expression ‘new series’, referring to a journal.

oldseries The expression ‘old series’, referring to a journal.

edition The term ‘edition’.

in The term ‘in’, referring to the title of a work published as part of another one, e. g.,
‘〈title of article〉 in 〈title of journal〉’.

inseries The term ‘in’, as used in expressions like ‘volume 〈number〉 in 〈name of series〉’.
ofseries The term ‘of’, as used in expressions like ‘volume 〈number〉 of 〈name of series〉’.
number The term ‘number’, referring to an issue of a journal.

chapter The term ‘chapter’, referring to a chapter in a book.

version The term ‘version’, referring to a revision number.

reprint The term ‘reprint’.

reprintof The expression ‘reprint of 〈title〉’.
reprintas The expression ‘reprinted as 〈title〉’.

reprintfrom The expression ‘reprinted from 〈title〉’.
translationof The expression ‘translation of 〈title〉’.
translationas The expression ‘translated as 〈title〉’.

translationfrom The expression ‘translated from [the] 〈language〉’.
reviewof The expression ‘review of 〈title〉’.

origpubas The expression ‘originally published as 〈title〉’.
origpubin The expression ‘originally published in 〈year〉’.

astitle The term ‘as’, as used in expressions like ‘published by 〈publisher〉 as 〈title〉’.
bypublisher The term ‘by’, as used in expressions like ‘published by 〈publisher〉’.

216

4.9.2.11 Publication State

inpreparation The expression ‘in preparation’ (the manuscript is being prepared for publication).
submitted The expression ‘submitted’ (the manuscript has been submitted to a journal or

conference).
forthcoming The expression ‘forthcoming’ (the manuscript has been accepted by a press or

journal).
inpress The expression ‘in press’ (the manuscript is fully copyedited and out of the author’s

hands; it is in the final stages of the production process).
prepublished The expression ‘pre-published’ (the manuscript is published in a preliminary form or

location, such as online version in advance of print publication).

4.9.2.12 Pagination

page The term ‘page’.
pages The plural form of page.

column The term ‘column’, referring to a column on a page.
columns The plural form of column.
section The term ‘section’, referring to a document division (usually abbreviated as §).
sections The plural form of section (usually abbreviated as §§).

paragraph The term ‘paragraph’ (i. e., a block of text, not to be confused with section).
paragraphs The plural form of paragraph.

verse The term ‘verse’ as used when referring to a work which is cited by verse numbers.
verses The plural form of verse.

line The term ‘line’ as used when referring to a work which is cited by line numbers.
lines The plural form of line.

4.9.2.13 Types The following keys are typically used in the type field of
@thesis, @report, @misc, and other entries:

mathesis An expression equivalent to the term ‘Master’s thesis’.
phdthesis The term ‘PhD thesis’, ‘PhD dissertation’, ‘doctoral thesis’, etc.
candthesis An expression equivalent to the term ‘Candidate thesis’. Used for ‘Candidate’

degrees that have no clear equivalent to the Master’s or doctoral level.
techreport The term ‘technical report’.
resreport The term ‘research report’.
software The term ‘computer software’.
datacd The term ‘data cd’ or ‘cd-rom’.
audiocd The term ‘audio cd’.

4.9.2.14 Miscellaneous

nodate The term to use in place of a date when there is no date for an entry e. g., ‘n.d.’
and The term ‘and’, as used in a list of authors or editors, for example.

andothers The expression ‘and others’ or ‘et alii’, used to mark the truncation of a name list.
andmore Like andothers but used to mark the truncation of a literal list.

217

4.9.2.15 Labels The following strings are intended for use as labels, e. g., ‘Address:
〈url〉’ or ‘Abstract: 〈abstract〉’.

url The term ‘address’ in the sense of an internet address.

urlfrom An expression like ‘available from 〈url〉’ or ‘available at 〈url〉’.
urlseen An expression like ‘accessed on 〈date〉’, ‘retrieved on 〈date〉’, ‘visited on 〈date〉’,

referring to the access date of an online resource.

file The term ‘file’.

library The term ‘library’.

abstract The term ‘abstract’.

annotation The term ‘annotations’.

4.9.2.16 Citations Traditional scholarly expressions used in citations:

idem The term equivalent to the Latin ‘idem’ (‘the same [person]’).

idemsf The feminine singular form of idem.

idemsm The masculine singular form of idem.

idemsn The neuter singular form of idem.

idempf The feminine plural form of idem.

idempm The masculine plural form of idem.

idempn The neuter plural form of idem.

idempp The plural form of idem suitable for a mixed gender list of names.

ibidem The term equivalent to the Latin ‘ibidem’ (‘in the same place’).

opcit The term equivalent to the Latin term ‘opere citato’ (‘[in] the work [already] cited’).

loccit The term equivalent to the Latin term ‘loco citato’ (‘[at] the place [already] cited’).

confer The term equivalent to the Latin ‘confer’ (‘compare’).

sequens The term equivalent to the Latin ‘sequens’ (‘[and] the following [page]’), as used to
indicate a range of two pages when only the starting page is provided (e. g., ‘25 sq.’
or ‘25 f.’ instead of ‘25–26’).

sequentes The term equivalent to the Latin ‘sequentes’ (‘[and] the following [pages]’), as used
to indicate an open-ended range of pages when only the starting page is provided
(e. g., ‘25 sqq.’ or ‘25 ff.’).

passim The term equivalent to the Latin ‘passim’ (‘throughout’, ‘here and there’,
‘scatteredly’).

Other expressions frequently used in citations:

see The term ‘see’.

seealso The expression ‘see also’.

seenote An expression like ‘see note 〈footnote〉’ or ‘as in 〈footnote〉’, used to refer to a
previous footnote in a citation.

backrefpage An expression like ‘see page 〈page〉’ or ‘cited on page 〈page〉’, used to introduce
back references in the bibliography.

backrefpages The plural form of backrefpage, e. g., ‘see pages 〈pages〉’ or ‘cited on pages
〈pages〉’.

218

quotedin An expression like ‘quoted in 〈citation〉’, used when quoting a passage which was
already a quotation in the cited work.

citedas An expression like ‘henceforth cited as 〈shorthand〉’, used to introduce a shorthand
in a citation.

thiscite The expression used in some verbose citation styles to differentiate between the
page range of the cited item (typically an article in a journal, collection, or
conference proceedings) and the page number the citation refers to. For example:
“Author, Title, in: Book, pp. 45–61, thiscite p. 52.”

4.9.2.17 Month Names

january The name ‘January’.

february The name ‘February’.

march The name ‘March’.

april The name ‘April’.

may The name ‘May’.

june The name ‘June’.

july The name ‘July’.

august The name ‘August’.

september The name ‘September’.

october The name ‘October’.

november The name ‘November’.

december The name ‘December’.

4.9.2.18 Language Names

langamerican The language ‘American’ or ‘American English’.

langbrazilian The language ‘Brazilian’ or ‘Brazilian Portuguese’.

langcatalan The language ‘Catalan’.

langcroatian The language ‘Croatian’.

langczech The language ‘Czech’.

langdanish The language ‘Danish’.

langdutch The language ‘Dutch’.

langenglish The language ‘English’.

langfinnish The language ‘Finnish’.

langfrench The language ‘French’.

langgerman The language ‘German’.

langgreek The language ‘Greek’.

langitalian The language ‘Italian’.

langlatin The language ‘Latin’.

langnorwegian The language ‘Norwegian’.

langpolish The language ‘Polish’.

langportuguese The language ‘Portuguese’.

219

langrussian The language ‘Russian’.

langslovene The language ‘Slovene’.

langspanish The language ‘Spanish’.

langswedish The language ‘Swedish’.

The following strings are intended for use in phrases like ‘translated from [the]
English by 〈translator〉’:

fromamerican The expression ‘from [the] American’ or ‘from [the] American English’.

frombrazilian The expression ‘from [the] Brazilian’ or ‘from [the] Brazilian Portuguese’.

fromcatalan The expression ‘from [the] Catalan’.

fromczech The expression ‘from [the] Czech’.

fromcroatian The expression ‘from [the] Croatian’.

fromdanish The expression ‘from [the] Danish’.

fromdutch The expression ‘from [the] Dutch’.

fromenglish The expression ‘from [the] English’.

fromfinnish The expression ‘from [the] Finnish’.

fromfrench The expression ‘from [the] French’.

fromgerman The expression ‘from [the] German’.

fromgreek The expression ‘from [the] Greek’.

fromitalian The expression ‘from [the] Italian’.

fromlatin The expression ‘from [the] Latin’.

fromnorwegian The expression ‘from [the] Norwegian’.

frompolish The expression ‘from [the] Polish’.

fromportuguese The expression ‘from [the] Portuguese’.

fromrussian The expression ‘from [the] Russian’.

fromslovene The expression ‘from [the] Slovene’.

fromspanish The expression ‘from [the] Spanish’.

fromswedish The expression ‘from [the] Swedish’.

4.9.2.19 Country Names Country names are localized by using the string
country plus the iso-3166 country code as the key. The short version of the
translation should be the iso-3166 country code. Note that only a small number of
country names is defined by default, mainly to illustrate this scheme. These keys are
used in the location list of @patent entries but they may be useful for other
purposes as well.

countryde The name ‘Germany’, abbreviated as DE.

countryeu The name ‘European Union’, abbreviated as EU.

countryep Similar to countryeu but abbreviated as EP. This is intended for patent entries.

countryfr The name ‘France’, abbreviated as FR.

countryuk The name ‘United Kingdom’, abbreviated (according to iso-3166) as GB.

countryus The name ‘United States of America’, abbreviated as US.

220

4.9.2.20 Patents and Patent Requests Strings related to patents are localized
by using the term patent plus the iso-3166 country code as the key. Note that only
a small number of patent keys is defined by default, mainly to illustrate this scheme.
These keys are used in the type field of @patent entries.

patent The generic term ‘patent’.

patentde The expression ‘German patent’.

patenteu The expression ‘European patent’.

patentfr The expression ‘French patent’.

patentuk The expression ‘British patent’.

patentus The expression ‘U.S. patent’.

Patent requests are handled in a similar way, using the string patreq as the base
name of the key:

patreq The generic term ‘patent request’.

patreqde The expression ‘German patent request’.

patreqeu The expression ‘European patent request’.

patreqfr The expression ‘French patent request’.

patrequk The expression ‘British patent request’.

patrequs The expression ‘U.S. patent request’.

4.10 Formatting Commands

This section corresponds to § 3.9 in the user part of this manual. Bibliography
and citation styles should incorporate the commands and facilities discussed in this
section in order to provide a certain degree of high-level configurability. Users should
not be forced to write new styles if all they want to do is modify the spacing in the
bibliography or the punctuation used in citations.

4.10.1 User-definable Commands and Hooks

This section corresponds to § 3.9.1 in the user part of the manual. The commands
and hooks discussed here are meant to be redefined by users, but bibliography and
citation styles may provide a default definition which is different from the package
default. These commands are defined in biblatex.def. Note that all commands
starting with \mk… take one mandatory argument.

\bibnamedelima This delimiter controls the spacing between the elements which make up a name Biber only
part. It is inserted automatically by the backend after the first name element if
the element is less than three characters long and before the last element. The
default definition is \addhighpenspace, i. e., a space penalized by the value of
the highnamepenalty counter (§ 3.9.3). Please refer to § 3.12.4 for further details.

\bibnamedelimb This delimiter controls the spacing between the elements which make up a name Biber only
part. It is inserted automatically by the backend between all name elements where
\bibnamedelima does not apply. The default definition is \addlowpenspace,
i. e., a space penalized by the value of the lownamepenalty counter (§ 3.9.3).
Please refer to § 3.12.4 for further details.

221

\bibnamedelimc This delimiter controls the spacing between name parts. The default name formats
use it between the name prefix and the last name if useprefix=true. The
default definition is \addhighpenspace, i. e., a space penalized by the value of
the highnamepenalty counter (§ 3.9.3). Please refer to § 3.12.4 for further details.

\bibnamedelimd This delimiter controls the spacing between name parts. The default name formats
use it between all name parts where \bibnamedelimc does not apply. The de-
fault definition is \addlowpenspace, i. e., a space penalized by the value of the
lownamepenalty counter (§ 3.9.3). Please refer to § 3.12.4 for further details.

\bibnamedelimi This delimiter replaces \bibnamedelima/b after initials. Note that this only Biber only
applies to initials given as such in the bib file, not to the initials automatically
generated by Biblatex which use their own set of delimiters.

\bibinitperiod The punctuation inserted automatically by the backend after all initials unless Biber only
\bibinithyphendelim applies. The default definition is a period (\adddot).
Please refer to § 3.12.4 for further details.

\bibinitdelim The spacing inserted automatically by the backend between multiple initials un- Biber only
less \bibinithyphendelim applies. The default definition is an unbreakable
interword space. Please refer to § 3.12.4 for further details.

\bibinithyphendelim The punctuation inserted automatically by the backend between the initials Biber only
of hyphenated name parts, replacing \bibinitperiod and \bibinitdelim.
The default definition is a period followed by an unbreakable hyphen. Please refer to
§ 3.12.4 for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\revsdnamepunct The punctuation to be printed between the first and last name parts when a name
is reversed. The default is a comma. This command should be incorporated in
formatting directives for name lists. Please refer to § 3.12.4 for further details.

\bibnamedash The dash to be used as a replacement for recurrent authors or editors in the biblio-
graphy. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of the
list of references.

\labelnamepunct The separator to be printed after the name used for alphabetizing in the biblio-
graphy (author or editor, if the author field is undefined). Use this separator
instead of \newunitpunct at this location. The default is \newunitpunct, i. e.,
it is not handled differently from regular unit punctuation but permits convenient
reconfiguration.

222

\subtitlepunct The separator to be printed between the fields title and subtitle,
booktitle and booksubtitle, as well as maintitle and mainsubtitle.
Use this separator instead of \newunitpunct at this location. The default is
\newunitpunct, i. e., it is not handled differently from regular unit punctuation
but permits convenient reconfiguration.

\intitlepunct The separator to be printed between the word “in” and the following title in entry
types such as @article, @inbook, @incollection, etc. Use this separator
instead of \newunitpunct at this location. The default definition is a colon plus
an interword space.

\bibpagespunct The separator to be printed before the pages field. Use this separator instead of
\newunitpunct at this location. The default is a comma plus an interword space.

\bibpagerefpunct The separator to be printed before the pageref field. Use this separator instead
of \newunitpunct at this location. The default is an interword space.

\multinamedelim The delimiter to be printed between multiple items in a name list like author or
editor if there are more than two names in the list. If there are only two names in
the list, use the \finalnamedelim instead. This command should be incorporated
in all formatting directives for name lists.

\finalnamedelim Use this command instead of \multinamedelim before the final name in a
name list.

\revsdnamedelim The extra delimiter to be printed after the first name in a name list (in addition
to \finalnamedelim) if the first name is reversed. This command should be
incorporated in all formatting directives for name lists.

\andothersdelim The delimiter to be printed before the localization string ‘andothers’ if a name
list like author or editor is truncated. This command should be incorporated in
all formatting directives for name lists.

\multilistdelim The delimiter to be printed betweenmultiple items in a literal list like publisher
or location if there are more than two names in the list. If there are only two
items in the list, use the \finallistdelim instead. This command should be
incorporated in all formatting directives for literal lists.

\finallistdelim Use this command instead of \multilistdelim before the final item in a
literal list.

\andmoredelim The delimiter to be printed before the localization string ‘andmore’ if a literal list
like publisher or location is truncated. This command should be incorporated
in all formatting directives for literal lists.

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to
a single citation command. This command should be incorporated in the defini-
tion of all citation commands, for example in the 〈sepcode〉 argument passed to
\DeclareCiteCommand. See § 4.3.1 for details.

\supercitedelim Similar to \multinamedelim, but intended for the \supercite command
only.

\compcitedelim Similar to \multicitedelim, but intended for citation styles that ‘compress’
multiple citations, i. e., print the author only once if subsequent citations share the
same author etc.

223

\textcitedelim Similar to \multicitedelim, but intended for \textcite and related com-
mands (§ 3.7.2).

\nametitledelim The delimiter to be printed between the author/editor and the title. This command
should be incorporated in the definition of all citation commands of author-title and
some verbose citation styles.

\nameyeardelim The delimiter to be printed between the author/editor and the year. This command
should be incorporated in the definition of all citation commands of author-year
citation styles.

\volcitedelim The delimiter to be printed between the volume portion and the page/text portion of
\volcite and related commands (§ 3.7.6).

\prenotedelim The delimiter to be printed after the 〈prenote〉 argument of a citation command.

\postnotedelim The delimiter to be printed after the 〈postnote〉 argument of a citation command.

\mkbibnamelast{〈text〉}Formatting hook for the last name, to be used in all formatting directives

for name lists.

\mkbibnamefirst{〈text〉}Similar to \mkbibnamelast, but intended for the first name.

\mkbibnameprefix{〈text〉}Similar to \mkbibnamelast, but intended for the name prefix.

\mkbibnameaffix{〈text〉}Similar to \mkbibnamelast, but intended for the name affix.

\relatedpunct The separator between the relatedtype bibliography localization string and the data
from the first related entry.

\relateddelim The separator between the data of multiple related entries. The default definition is a
linebreak.

4.10.2 Language-specific Commands

This section corresponds to § 3.9.2 in the user part of the manual. The commands
discussed here are usually handled by the localization modules, but may also be
redefined by users on a per-language basis. Note that all commands starting with
\mk… take one or more mandatory arguments.

\bibrangedash The language specific range dash.

\bibdatedash The language specific date range dash.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in the
language specific long date format.

\mkbibdateshort Similar to \mkbibdatelong but using the language specific short date format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in an enumeration, if applicable
in the respective language.

\finalandsemicolon Prints the semicolon to be inserted before the final ‘and’ in an enumeration,
if applicable in the respective language.

224

\mkbibordinal{〈integer〉}

Takes an integer argument and prints it as an ordinal number.

\mkbibmascord{〈integer〉}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the
respective language.

\mkbibfemord{〈integer〉}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the
respective language.

\mkbibneutord{〈integer〉}

Similar to \mkbibordinal, but prints a neuter ordinal, if applicable in the respec-
tive language.

\mkbibordedition{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

\mkbibordseries{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘series’.

4.10.3 User-definable Lengths and Counters

This section corresponds to § 3.9.3 in the user part of the manual. The length registers
and counters discussed here are meant to be altered by users. Bibliography and
citation styles should incorporate them where applicable and may also provide a
default setting which is different from the package default.

\bibhang The hanging indentation of the bibliography, if applicable. This length is initialized
to \parindent at load-time. If \parindent is zero length for some reason,
\bibhang will default to 1em.

\biblabelsep The horizontal space between entries and their corresponding labels. Bibliography
styles which use list environments and print a label should set \labelsep to
\biblabelsep in the definition of the respective environment.

\bibitemsep The vertical space between the individual entries in the bibliography. Bibliography
styles using list environments should set \itemsep to \bibitemsep in the
definition of the respective environment.

\bibparsep The vertical space between paragraphs within an entry in the bibliography. Biblio-
graphy styles using list environments should set \parsep to \bibparsep in
the definition of the respective environment.

abbrvpenalty The penalty used by \addabbrvspace, \addabthinspace, and
\adddotspace, see § 4.7.4 for details.

lownamepenalty The penalty used by \addlowpenspace and \addlpthinspace, see § 4.7.4
for details.

highnamepenalty Thepenalty used by\addhighpenspace and\addhpthinspace, see § 4.7.4
for details.

225

biburlnumpenalty If this counter is set to a value greater than zero, Biblatex will permit linebreaks
after numbers in all strings formattedwith the\url command from theurl package.
This will affect urls and dois in the bibliography. The breakpoints will be penalized
by the value of this counter. If urls and/or dois in the bibliography run into the
margin, try setting this counter to a value greater than zero but less than 10000 (you
normally want to use a high value like 9000). Setting the counter to zero disables
this feature. This is the default setting.

biburlucpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all
uppercase letters.

biburllcpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all
lowercase letters.

4.10.4 Auxiliary Commands and Hooks

The auxiliary commands and facilities in this section serve a special purpose. Some
of them are used by Biblatex to communicate with bibliography and citation styles
in some way or other.

\mkbibemph{〈text〉}

A generic command which prints its argument as emphasized text. This is a
simple wrapper around the standard \emph command. Apart from that, it uses
\setpunctfont from § 4.7.1 to adapt the font of the next punctuation mark fol-
lowing the text set in italics. If the punctfont package option is disabled, this
command behaves like \emph.

\mkbibitalic{〈text〉}

Similar in concept to\mkbibemph but prints italicized text. This is a simple wrapper
around the standard \textit command which incorporates \setpunctfont. If
the punctfont package option is disabled, this command behaves like \textit.

\mkbibbold{〈text〉}

Similar in concept to \mkbibemph but prints bold text. This is a simple wrapper
around the standard \textbf command which incorporates \setpunctfont. If
the punctfont package option is disabled, this command behaves like \textbf.

\mkbibquote{〈text〉}

A generic command which wraps its argument in quotation marks. If the csquotes
package is loaded, this command uses the language sensitive quotation marks pro-
vided by that package. \mkbibquote also supports ‘American-style’ punctuation,
see \DeclareQuotePunctuation in § 4.7.5 for details.

\mkbibparens{〈text〉}

A generic command which wraps its argument in parentheses. This command is
nestable. When nested, it will alternate between parentheses and brackets, depending
on the nesting level.

\mkbibbrackets{〈text〉}

A generic command which wraps its argument in square brackets. This command is
nestable. When nested, it will alternate between brackets and parentheses, depending
on the nesting level.

226

\bibopenparen〈text〉\bibcloseparen

Alternative syntax for \mkbibparens. This will also work across groups. Note
that \bibopenparen and \bibcloseparen must always be balanced.

\bibopenbracket〈text〉\bibclosebracket

Alternative syntax for \mkbibbrackets. This will also work across groups. Note
that \bibopenbracket and \bibclosebracket must always be balanced.

\mkbibfootnote{〈text〉}

A generic command which prints its argument as a footnote. This is a wrapper
around the standard LaTeX \footnote command which removes spurious white-
space preceding the footnote mark and prevents nested footnotes. By default,
\mkbibfootnote requests capitalization at the beginning of the note and au-
tomatically adds a period at the end. You may change this behavior by redefining
the \bibfootnotewrapper macro introduced below.

\mkbibfootnotetext{〈text〉}

Similar to \mkbibfootnote but uses the \footnotetext command.

\mkbibendnote{〈text〉}

Similar in concept to \mkbibfootnote except that it prints its argument as an
endnote. \mkbibendnote removes spurious whitespace preceding the endnote
mark and prevents nested notes. It supports the \endnote command provided
by the endnotes package as well as the \pagenote command provided by
the pagenote package and the memoir class. If both commands are available,
\endnote takes precedence. If no endnote support is available, \mkbibendnote
issues an error and falls back to \footnote. By default, \mkbibendnote re-
quests capitalization at the beginning of the note and automatically adds a period at
the end. You may change this behavior by redefining the \bibendnotewrapper
macro introduced below.

\mkbibendnotetext{〈text〉}

Similar to \mkbibendnote but uses the \endnotetext command. Please note
that as of this writing, neither the pagenote package nor the memoir class provide
a corresponding \pagenotetext command. In this case, \mkbibendnote will
issue an error and fall back to \footnotetext.

\bibfootnotewrapper{〈text〉}

An inner wrapper which encloses the 〈text〉 argument of \mkbibfootnote and
\mkbibfootnotetext. For example, \mkbibfootnote eventually boils down
to this:

\footnote{\bibfootnotewrapper{text}}

The wrapper ensures capitalization at the beginning of the note and adds a period at
the end. The default definition is:

\newcommand{\bibfootnotewrapper}[1]{\bibsentence #1\addperiod}

If you don’t want capitalization at the beginning or a period at the end of the note, do
not modify \mkbibfootnote but redefine \bibfootnotewrapper instead.

227

\bibendnotewrapper{〈text〉}

Similar in concept to \bibfootnotewrapper but related to the
\mkbibendnote and \mkbibendnotetext commands.

\mkbibsuperscript{〈text〉}

A generic command which prints its argument as superscripted text. This is a
simple wrapper around the standard LaTeX \textsuperscript command which
removes spurious whitespace and allows hyphenation of the preceding word.

\mkbibmonth{〈integer〉}

This command takes an integer argument and prints it as a month name. Even
though the output of this command is language specific, its definition is not, hence it
is normally not redefined in localization modules.

\mkdatezeros{〈integer〉}

This command strips leading zeros from a number or preserves them, depending on
the datezeros package option (§ 3.1.2.1). It is intended for use in the definition of
date formatting macros.

\stripzeros{〈integer〉}

This command strips leading zeros from a number. It is intended for date formatting
and ordinals.

shorthandwidth BibTeX only

A special field formatting directive which is used internally by Biblatex. When the
bibliographic data is read from the bbl file, Biblatex measures the values of all
shorthand fields and sets the length register \shorthandwidth to the width
of the widest shorthand (see § 4.10.5). In order to determine the correct width, the
package considers two factors: the definition of \bibfont and this formatting
directive. All styles should adjust this directive such that it corresponds to the format
used in the list of shorthands.

‘labelfield’width Biber only

With Biber, for every field marked as a ‘Label field’ in the data model, a formatting
directive is created as per shorthandwidth above. Since shorthand is so
marked in the default data model, this functionality is a superset of that described
for shorthandwidth.

labelnumberwidth Similar toshorthandwidth, but referring to thelabelnumber field and the
length register \labelnumberwidth. Numeric styles should adjust this directive
such that it corresponds to the format used in the bibliography.

labelalphawidth Similar to shorthandwidth, but referring to the labelalpha field and the
length register \labelalphawidth. Alphabetic styles should adjust this directive
such that it corresponds to the format used in the bibliography.

bibhyperref A special formatting directive for use with \printfield and \printtext. This
directive wraps its argument in a \bibhyperref command, see § 4.6.4 for details.

bibhyperlink A special formatting directive for use with \printfield and \printtext. It
wraps its argument in a \bibhyperlink command, see § 4.6.4 for details. The
〈name〉 argument passed to \bibhyperlink is the value of the entrykey field.

228

bibhypertarget A special formatting directive for use with \printfield and \printtext. It
wraps its argument in a \bibhypertarget command, see § 4.6.4 for details. The
〈name〉 argument passed to \bibhypertarget is the value of the entrykey
field.

volcitepages A special formatting directive which controls the format of the page/text portion in
the argument of citation commands like \volcite.

volcitevolume A special formatting directive which controls the format of the volume portion in
the argument of citation commands like \volcite.

date A special formatting directive which controls the format of \printdate (§ 4.4.1).
Note that the date format (long/short etc.) is controlled by the package option date
from § 3.1.2.1. This formatting directive only controls additional formatting such as
fonts etc.

datelabel Similar to date but controls the format of \printdatelabel.

urldate Similar to date but controls the format of \printurldate.

origdate Similar to date but controls the format of \printorigdate.

eventdate Similar to date but controls the format of \printeventdate.

4.10.5 Auxiliary Lengths, Counters, and Other Features

The length registers and counters discussed here are used by Biblatex to pass in-
formation to bibliography and citation styles. Think of them as read-only registers.
Note that all counters are LaTeX counters. Use \value{counter} to read out
the current value.

\shorthandwidth BibTeX only

This length register indicates the width of the widest shorthand. Bibliography
styles should incorporate this length in the definition of the list of shorthands, if
applicable.

\‘labelfield’width Biber only

With Biber, for every field marked as a ‘Label field’ in the data model, a length reg-
ister is created as per shorthandwidth above. Since shorthand is so marked
in the default data model, this functionality is a superset of that described for
shorthandwidth.

\labelnumberwidth This length register indicates the width of the widest labelnumber. Numeric
bibliography styles should incorporate this length in the definition of the bibliography
environment.

\labelalphawidth This length register indicates the width of the widest labelalpha. Alphabetic
bibliography styles should incorporate this length in the definition of the bibliography
environment.

maxextraalpha This counter holds the highest number found in any extraalpha field.

maxextrayear This counter holds the highest number found in any extrayear field.

refsection This counter indicates the current refsection environment. When queried in
a bibliography heading, the counter returns the value of the refsection option
passed to \printbibliography.

229

refsegment This counter indicates the current refsegment environment. When queried in a
bibliography heading, this counter returns the value of the refsegment option
passed to \printbibliography.

maxnames This counter holds the setting of the maxnames package option.

minnames This counter holds the setting of the minnames package option.

maxitems This counter holds the setting of the maxitems package option.

minitems This counter holds the setting of the minitems package option.

instcount This counter is incremented by Biblatex for every citation as well as for every entry in
the bibliography and bibliography lists. The value of this counter uniquely identifies
a single instance of a reference in the document.

citetotal This counter, which is only available in the 〈loopcode〉 of a citation command defined
with \DeclareCiteCommand, holds the total number of valid entry keys passed
to the citation command.

citecount This counter, which is only available in the 〈loopcode〉 of a citation command defined
with \DeclareCiteCommand, holds the number of the entry key currently being
processed by the 〈loopcode〉.

multicitetotal This counter is similar to citetotal but only available in multicite commands.
It holds the total number of citations passed to the multicite command. Note that
each of these citations may consist of more than one entry key. This information is
provided by the citetotal counter.

multicitecount This counter is similar to citecount but only available in multicite commands.
It holds the number of the citation currently being processed. Note that this cita-
tion may consist of more than one entry key. This information is provided by the
citetotal and citecount counters.

listtotal This counter holds the total number of items in the current list. It is intended for
use in list formatting directives and does not hold a meaningful value when used
anywhere else. As an exception, it may also be used in the second optional argument
to \printnames and \printlist, see § 4.4.1 for details. For every list, there
is also a counter by the same name which holds the total number of items in the
corresponding list. For example, the author counter holds the total number of items
in the author list. This applies to both name lists and literal lists. These counters
are similar to listtotal except that they may also be used independently of list
formatting directives. For example, a bibliography style might check the editor
counter to decide Whether or not to print the term “editor” or rather its plural form
“editors” after the list of editors.

listcount This counter holds the number of the list item currently being processed. It is
intended for use in list formatting directives and does not hold a meaningful value
when used anywhere else.

liststart This counter holds the 〈start〉 argument passed to \printnames or \printlist.
It is intended for use in list formatting directives and does not hold a meaningful
value when used anywhere else.

liststop This counter holds the 〈stop〉 argument passed to \printnames or \printlist.
It is intended for use in list formatting directives and does not hold a meaningful
value when used anywhere else.

230

\currentfield Thename of the field currently being processed by \printfield. This information
is only available locally in field formatting directives.

\currentlist The name of the literal list currently being processed by \printlist. This infor-
mation is only available locally in list formatting directives.

\currentname The name of the name list currently being processed by \printnames. This
information is only available locally in name formatting directives.

4.10.6 General Purpose Hooks

\AtBeginBibliography{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the bibliography.
The 〈code〉 is executed at the beginning of the list of references, immediately after
the 〈begin code〉 of \defbibenvironment. This command may only be used in
the preamble.

\AtBeginShorthands{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the list of short-
hands. The 〈code〉 is executed at the beginning of the list of shorthands, immediately
after the 〈begin code〉 of \defbibenvironment. This command may only be
used in the preamble.

When using Biber, this is just an alias for:

\AtBeginBiblist{shorthand}{code}

\AtBeginBiblist{〈biblistname〉}{〈code〉}
Biber only

Appends the 〈code〉 to an internal hook executed at the beginning of the bibliography
list 〈biblistname〉. The 〈code〉 is executed at the beginning of the bibliography list,
immediately after the 〈begin code〉 of \defbibenvironment. This command
may only be used in the preamble.

\AtEveryBibitem{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item
in the bibliography. The 〈code〉 is executed immediately after the 〈item code〉 of
\defbibenvironment. The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

\AtEveryLositem{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item in
the list of shorthands. The 〈code〉 is executed immediately after the 〈item code〉 of
\defbibenvironment. The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

When using Biber, this is just an alias for:

\AtEveryBiblistitem{shorthand}{code}

231

\AtEveryBiblistitem{〈biblistname〉}{〈code〉}
Biber only

Appends the 〈code〉 to an internal hook executed at the beginning of every item in the
bibliography list named 〈biblistname〉. The 〈code〉 is executed immediately after the
〈item code〉 of \defbibenvironment. The bibliographic data of the respective
entry is available at this point. This command may only be used in the preamble.

\AtNextBibliography{〈code〉}

Similar to \AtBeginBibliography but only affecting the next
\printbibliography. The internal hook is cleared after being executed
once. This command may be used in the document body.

\AtEveryCite{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every citation
command. The 〈code〉 is executed immediately before the 〈precode〉 of the command
(see § 4.3.1). No bibliographic data is available at this point. This command may only
be used in the preamble.

\AtEveryCitekey{〈code〉}

Appends the 〈code〉 to an internal hook executed once for every entry key passed
to a citation command. The 〈code〉 is executed immediately before the 〈loopcode〉 of
the command (see § 4.3.1). The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

\AtEveryMultiCite{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every multicite
command. The 〈code〉 is executed immediately before the multiprenote field
(§ 4.3.2) is printed. No bibliographic data is available at this point. This command
may only be used in the preamble.

\AtNextCite{〈code〉}

Similar to \AtEveryCite but only affecting the next citation command. The
internal hook is cleared after being executed once. This command may be used in
the document body.

\AtNextCitekey{〈code〉}

Similar to \AtEveryCitekey but only affecting the next entry key. The inter-
nal hook is cleared after being executed once. This command may be used in the
document body.

\AtNextMultiCite{〈code〉}

Similar to \AtEveryMultiCite but only affecting the next multicite command.
The internal hook is cleared after being executed once. This command may be used
in the document body.

232

\AtDataInput[〈entrytype〉]{〈code〉}

Appends the 〈code〉 to an internal hook executed once for every entry as the bibli-
ographic data is imported from the bbl file. The 〈entrytype〉 is the entry type the
〈code〉 applies to. If it applies to all entry types, omit the optional argument. The
〈code〉 is executed immediately after the entry has been imported. This command
may only be used in the preamble. Note that 〈code〉 may be executed multiple times
for an entry. This occurs when the same entry is cited in different refsection
environments or the sorting option settings incorporate more than one sorting
scheme. The refsection counter holds the number of the respective reference
section while the data is imported.

\UseBibitemHook

Executes the internal hook corresponding to \AtEveryBibitem.

\UseEveryCiteHook

Executes the internal hook corresponding to \AtEveryCite.

\UseEveryCitekeyHook

Executes the internal hook corresponding to \AtEveryCitekey.

\UseEveryMultiCiteHook

Executes the internal hook corresponding to \AtMultiEveryCite.

\UseNextCiteHook

Executes and clears the internal hook corresponding to \AtNextCite.

\UseNextCitekeyHook

Executes and clears the internal hook corresponding to \AtNextCitekey.

\UseNextMultiCiteHook

Executes and clears the internal hook corresponding to \AtNextMultiCite.

\DeferNextCitekeyHook

Locally un-defines the internal hook specified by \AtNextCitekey. This essen-
tially defers the hook to the next entry key in the citation list, when executed in the
〈precode〉 argument of \DeclareCiteCommand (§ 4.3.1).

4.11 Hints and Caveats

This section provides some additional hints concerning the author interface of this
package. It also addresses common problems and potential misconceptions.

233

4.11.1 Entry Sets

Entry sets have already been introduced in § 3.11.5. This section discusses how to
process entry sets in a bibliography style. From the perspective of the driver, there is
no difference between static and dynamic entry sets. Both types are handled in the
same way. You will normally use the \entryset command from § 4.4.1 to loop
over all set members (in the order in which they are listed in the entryset field of
the @set entry, or in the order in which they were passed to \defbibentryset,
respectively) and append\finentry at the end. That’s it. The formatting is handled
by the drivers for the entry types of the individual set members:

\DeclareBibliographyDriver{set}{%

\entryset{}{}%

\finentry}

You may have noticed that the numeric styles which ship with this package support
subdivided entry sets, i. e., the members of the set are marked with a letter or some
other marker such that citations may either refer to the entire set or to a specific set
member. The markers are generated as follows by the bibliography style:

\DeclareBibliographyDriver{set}{%

\entryset

{\printfield{entrysetcount}%

\setunit*{\addnbspace}}

{}%

\finentry}

The entrysetcount field holds an integer indicating the position of a set member
in the entry set. The conversion of this number to a letter or some other marker is
handled by the formatting directive of the entrysetcount field. All the driver
needs to do is print the field and add some white space (or start a new line). Printing
the markers in citations works in a similar way. Where a numeric style normally
says \printfield{labelnumber}, you simply append the entrysetcount
field:

\printfield{labelnumber}\printfield{entrysetcount}

Since this field is only defined when processing citations referring to a set member,
there is no need to add any additional tests.

4.11.2 Electronic Publishing Information

The standard styles feature dedicated support for arXiv references. Support for other
resources is easily added. The standard styles handle the eprint field as follows:

\iffieldundef{eprinttype}

{\printfield{eprint}}

{\printfield[eprint:\strfield{eprinttype}]{eprint}}

If an eprinttype field is available, the above code tries to use the field format
eprint:〈eprinttype〉. If this format is undefined, \printfield automatically
falls back to the field format eprint. There are two predefined field formats, the
type-specific format eprint:arxiv and the fallback format eprint:

234

\DeclareFieldFormat{eprint}{...}

\DeclareFieldFormat{eprint:arxiv}{...}

In other words, adding support for additional resources is as easy as defining a field
format named eprint:〈resource〉 where 〈resource〉 is an identifier to be used in the
eprinttype field.

4.11.3 External Abstracts and Annotations

External abstracts and annotations have been discussed in § 3.11.8. This section
provides some more background for style authors. The standard styles use the
following macros (from biblatex.def) to handle abstracts and annotations:

\newbibmacro*{annotation}{%

\iffieldundef{annotation}

{\printfile[annotation]{\bibannotationprefix\thefield{entrykey}.tex}}%

{\printfield{annotation}}}

\newcommand*{\bibannotationprefix}{bibannotation-}

\newbibmacro*{abstract}{%

\iffieldundef{abstract}

{\printfile[abstract]{\bibabstractprefix\thefield{entrykey}.tex}}%

{\printfield{abstract}}}

\newcommand*{\bibabstractprefix}{bibabstract-}

If the abstract/annotation field is undefined, the above code tries to load
the abstracts/annotations from an external file. The \printfile commands also
incorporate file name prefixes which may be redefined by users. Note that you must
enable \printfile explicitly by setting the loadfiles package option from
§ 3.1.2.1. This feature is disabled by default for performance reasons.

4.11.4 Name Disambiguation Biber only

Theuniquename anduniquelist options introduced in § 3.1.2.3 support various
modes of operation. This section explains the differences between these modes by
way of example. The uniquename option disambiguates individual names in the
labelname list. The uniquelist option disambiguates the labelname list
if it has become ambiguous after maxnames/minnames truncation. You can use
either option stand-alone or combine both.

4.11.4.1 Individual Names (uniquename) Let’s start off with some
uniquename examples. Consider the following data:

John Doe 2008

Edward Doe 2008

John Smith 2008

Jane Smith 2008

Let’s assume we’re using an author-year style and set uniquename=false. In
this case, we would get the following citations:

Doe 2008a

Doe 2008b

Smith 2008a

Smith 2008b

235

Since the last names are ambiguous and all works have been published in the same
year, an extra letter is appended to the year to disambiguate the citations. Many
style guides, however, mandate that the extra letter be used to disambiguate works
by the same authors only, not works by different authors with the same last name.
In order to disambiguate the author’s last name, you are expected to add additional
parts of the name, either as initials or in full. This requirement is addressed by the
uniquename option. Here are the same citations with uniquename=init:

J. Doe 2008

E. Doe 2008

Smith 2008a

Smith 2008b

uniquename=init restricts name disambiguation to initials. Since ‘J. Smith’
would still be ambiguous, no additional name parts are added for the ‘Smiths’. With
uniquename=full, names are printed in full where required:

J. Doe 2008

E. Doe 2008

John Smith 2008

Jane Smith 2008

In order to illustrate the difference between uniquename = init/full and
allinit/allfull, we need to introduce the notion of a ‘visible’ name. In the fol-
lowing, ‘visible’ names are all names at a position before themaxnames/minnames/
uniquelist truncation point. For example, given this data:

William Jones/Edward Doe/Jane Smith

John Doe

John Smith

and maxnames=1, minnames=1, uniquename=init/full, we would get the
following names in citations:

Jones et al.

Doe

Smith

When disambiguating names, uniquename=init/full only consider the visible
names. Since all visible last names are distinct in this example, no further name parts
are added. Let’s compare that to the output of uniquename=allinit:

Jones et al.

J. Doe

Smith

allinit considers all names in all labelname lists, including those which are
hidden and replaced by ‘et al.’ as the list is truncated. In this example, ‘John Doe’ is
disambiguated from ‘Edward Doe’. Since the ambiguity of the two ‘Smiths’ can’t be
resolved by adding initials, no initials are added in this case. Now let’s compare that
to the output of uniquename=allfull which also disambiguates ‘John Smith’
from ‘Jane Smith’:

236

Jones et al.

J. Doe

John Smith

The options uniquename=mininit/minfull are similar to init/full in
that they only consider visible names, but they perform minimal disambiguation.
That is, they will disambiguate individual names only if they occur in identical lists
of last names. Consider the following data:

John Doe/William Jones

Edward Doe/William Jones

John Smith/William Edwards

Edward Smith/Allan Johnson

With uniquename=init/full, we would get:

J. Doe and Jones

E. Doe and Jones

J. Smith and Edwards

E. Smith and Johnson

With uniquename=mininit/minfull:

J. Doe and Jones

E. Doe and Jones

Smith and Edwards

Smith and Johnson

The ‘Smiths’ are not disambiguated because the visible name lists are not ambiguous
and the mininit/minfull options serve to disambiguate names occurring in
identical last name lists only. Another way of looking at this is that they globally
disambiguate last name lists. When it comes to ambiguous lists, note that a truncated
list is considered to be distinct from an untruncated one even if the visible names
are identical. For example, consider the following data:

John Doe/William Jones

Edward Doe

With maxnames=1, uniquename=init/full, we would get:

J. Doe et al.

E. Doe

With uniquename=mininit/minfull:

Doe et al.

Doe

Because the lists differ in the ‘et al.’, the names are not disambiguated.

237

4.11.4.2 Lists of Names (uniquelist) Ambiguity is also an issue with name
lists. If the labelname list is truncated by the maxnames/minnames options, it
may become ambiguous. This type of ambiguity is addressed by the uniquelist
option. Consider the following data:

Doe/Jones/Smith 2005

Smith/Johnson/Doe 2005

Smith/Doe/Edwards 2005

Smith/Doe/Jones 2005

Many author-year styles truncate long author/editor lists in citations. For example,
with maxnames=1 we would get:

Doe et al. 2005

Smith et al. 2005a

Smith et al. 2005b

Smith et al. 2005c

Since the authors are ambiguous after truncation, the extra letter is added to the
year to ensure unique citations. Here again, many style guides mandate that the
extra letter be used to disambiguate works by the same authors only. In order to
disambiguate author lists, you are usually required to add more names, exceeding
the maxnames/minnames truncation point. The uniquelist feature addresses
this requirement. With uniquelist=true, we would get:

Doe et al. 2005

Smith, Johnson et al. 2005

Smith, Doe and Edwards 2005

Smith, Doe and Jones 2005

The uniquelist option overrides maxnames/minnames on a per-entry basis.
Essentially, what happens is that the ‘et al.’ part of the citation is expanded to
the point of no ambiguity – but no further than that. uniquelist may also be
combined with uniquename. Consider the following data:

John Doe/Allan Johnson/William Jones 2009

John Doe/Edward Johnson/William Jones 2009

John Doe/Jane Smith/William Jones 2009

John Doe/John Smith/William Jones 2009

John Doe/John Edwards/William Jones 2009

John Doe/John Edwards/Jack Johnson 2009

With maxnames=1:

Doe et al. 2009a

Doe et al. 2009b

Doe et al. 2009c

Doe et al. 2009d

Doe et al. 2009e

Doe et al. 2009f

With maxnames=1, uniquename=full, uniquelist=true:

238

Doe, A. Johnson et al. 2009

Doe, E. Johnson et al. 2009

Doe, Jane Smith et al. 2009

Doe, John Smith et al. 2009

Doe, Edwards and Jones 2009

Doe, Edwards and Johnson 2009

With uniquelist=minyear, list disambiguation only happens if the visible list
is identical to another visible list with the same labelyear. This is useful for
author-year styles which only require that the citation as a whole be unique, but do
not guarantee unambiguous authorship information in citations. This mode is con-
ceptually related to uniquename=mininit/minfull. Consider this example:

Smith/Jones 2000

Smith/Johnson 2001

With maxnames=1 and uniquelist=true, we would get:

Smith and Jones 2000

Smith and Johnson 2001

With uniquelist=minyear:

Smith et al. 2000

Smith et al. 2001

With uniquelist=minyear, it is not clear that the authors are different for the
twoworks but the citations as a whole are still unambiguous since the year is different.
In contrast to that, uniquelist=true disambiguates the authorship even if this
information is not required to uniquely locate the works in the bibliography. Let’s
consider another example:

Vogel/Beast/Garble/Rook 2000

Vogel/Beast/Tremble/Bite 2000

Vogel/Beast/Acid/Squeeze 2001

With maxnames=3, minnames=1, uniquelist=true, we would get:

Vogel, Beast, Garble et al. 2000

Vogel, Beast, Tremble et al. 2000

Vogel, Beast, Acid et al. 2001

With uniquelist=minyear:

Vogel, Beast, Garble et al. 2000

Vogel, Beast, Tremble et al. 2000

Vogel et al. 2001

In the last citation, uniquelist = minyear does not override maxnames/
minnames as the citation does not need disambiguating from the other two because
the year is different.

239

4.11.5 Trackers in Floats and TOC/LOT/LOF

If a citation is given in a float (typically in the caption of a figure or table), scholarly
back references like ‘ibidem’ or back references based on the page tracker get am-
biguous because floats are objects which are (physically and logically) placed outside
the flow of text, hence the logic of such references applies poorly to them. To avoid
any such ambiguities, the citation and page trackers are temporarily disabled in all
floats. In addition to that, these trackers plus the back reference tracker (backref)
are temporarily disabled in the table of contents, the list of figures, and the list of
tables.

4.11.6 Mixing Programming Interfaces

The Biblatex package provides two main programming interfaces for style authors.
The \DeclareBibliographyDriver command, which defines a handler for an
entry type, is typically used in bbx files. \DeclareCiteCommand, which defines
a new citation command, is typically used in cbx files. However, in some cases it is
convenient to mix these two interfaces. For example, the \fullcite command
prints a verbose citation similar to the full bibliography entry. It is essentially defined
as follows:

\DeclareCiteCommand{\fullcite}

{...}

{\usedriver{...}{\thefield{entrytype}}}

{...}

{...}

As you can see, the core code which prints the citations simply executes the bib-
liography driver defined with \DeclareBibliographyDriver for the type of
the current entry. When writing a citation style for a verbose citation scheme, it is
often convenient to use the following structure:

\ProvidesFile{example.cbx}[2007/06/09 v1.0 biblatex citation style]

\DeclareCiteCommand{\cite}

{...}

{\usedriver{...}{cite:\thefield{entrytype}}}

{...}

{...}

\DeclareBibliographyDriver{cite:article}{...}

\DeclareBibliographyDriver{cite:book}{...}

\DeclareBibliographyDriver{cite:inbook}{...}

...

Another case in which mixing interfaces is helpful are styles using cross-references
within the bibliography. For example, when printing an @incollection entry,
the data inherited from the @collection parent entry would be replaced by a
short pointer to the respective parent entry:

[1] Audrey Author: Title of article. In: [2], pp. 134–165.

[2] Edward Editor, ed.: Title of collection. Publisher: Location, 1995.

240

One way to implement such cross-references within the bibliography is to think of
them as citations which use the value of the xref or crossref field as the entry
key. Here is an example:

\ProvidesFile{example.bbx}[2007/06/09 v1.0 biblatex bibliography style]

\DeclareCiteCommand{\bbx@xref}

{}

{...}% code for cross-references

{}

{}

\DeclareBibliographyDriver{incollection}{%

...

\iffieldundef{xref}

{...}% code if no cross-reference

{\bbx@xref{\thefield{xref}}}%

...

}

When defining \bbx@xref, the 〈precode〉, 〈postcode〉, and 〈sepcode〉 arguments of
\DeclareCiteCommand are left empty in the above example because they will
not be used anyway. The cross-reference is printed by the 〈loopcode〉 of \bbx@xref.
For further details on the xref field, refer to § 2.2.3 and to the hints in § 2.4.1. Also
see the \iffieldxref, \iflistxref, and \ifnamexref tests in § 4.6.2. The
above could also be implemented using the \entrydata command from § 4.4.1:

\ProvidesFile{example.bbx}[2007/06/09 v1.0 biblatex bibliography style]

\DeclareBibliographyDriver{incollection}{%

...

\iffieldundef{xref}

{...}% code if no cross-reference

{\entrydata{\thefield{xref}}{%

% code for cross-references

...

}}%

...

}

4.11.7 Using the Punctuation Tracker

4.11.7.1 The Basics There is one fundamental principle style authors should keep
in mind when designing a bibliography driver: block and unit punctuation is handled
asynchronously. This is best explained by way of example. Consider the following
code snippet:

\printfield{title}%

\newunit

\printfield{edition}%

241

\newunit

\printfield{note}%

If there is no edition field, this piece of code will not print:

Title. . Note

but rather:

Title. Note

because the unit punctuation tracker works asynchronously. \newunit will not
print the unit punctuation immediately. It merely records a unit boundary and
puts \newunitpunct on the punctuation buffer. This buffer will be handled by
subsequent \printfield, \printlist, or similar commands but only if the
respective field or list is defined. Commands like \printfield will consider three
factors prior to inserting any block or unit punctuation:

• Has a new unit/block been requested at all?

= Is there any preceding \newunit or \newblock command?

• Did the preceding commands print anything?

= Is there any preceding \printfield or similar command?

= Did this command actually print anything?

• Are we about to print anything now?

= Is the field/list to be processed now defined?

Block and unit punctuation will only be inserted if all of these conditions apply. Let’s
reconsider the above example:

\printfield{title}%

\newunit

\printfield{edition}%

\newunit

\printfield{note}%

Here’s what happens if the edition field is undefined. The first \printfield
command prints the title and sets an internal ‘new text’ flag. The first \newunit sets
an internal ‘new unit’ flag. No punctuation has been printed at this point. The second
\printfield does nothing because the edition field is undefined. The next
\newunit command sets the internal flag ‘new unit’ again. Still no punctuation
has been printed. The third \printfield checks if the note field is defined.
If so, it looks at the ‘new text’ and ‘new unit’ flags. If both are set, it inserts the
punctuation buffer before printing the note. It then clears the ‘new unit’ flag and
sets the ‘new text’ flag again.

This may all sound more complicated than it is. In practice, it means that it is
possible to write large parts of a bibliography driver in a sequential way. The advan-
tage of this approach becomes obvious when trying to write the above code without
using the punctuation tracker. Such an attempt will lead to a rather convoluted set of
\iffieldundef tests required to check for all possible field combinations (note
that the code below handles three fields; a typical driver may need to cater for some
two dozen fields):

242

\iffieldundef{title}%

{\iffieldundef{edition}

{\printfield{note}}

{\printfield{edition}%

\iffieldundef{note}%

{}

{. \printfield{note}}}}

{\printfield{title}%

\iffieldundef{edition}

{}

{. \printfield{edition}}%

\iffieldundef{note}

{}

{. \printfield{note}}}%

4.11.7.2 Common Mistakes It is a fairly common misconception to think of the
unit punctuation as something that is handled synchronously. This typically causes
problems if the driver includes any literal text. Consider this erroneous code snippet
which will generate misplaced unit punctuation:

\printfield{title}%

\newunit

(\printfield{series} \printfield{number})%

This code will yield the following result:

Title (. Series Number)

Here’s what happens. The first \printfield prints the title. Then \newunit
marks a unit boundary but does not print anything. The unit punctuation is printed
by the next \printfield command. That’s the asynchronous part mentioned
before. However, the opening parenthesis is printed immediately before the next
\printfield inserts the unit punctuation, leading to a misplaced period. When
inserting any literal text such as parentheses (including those printed by com-
mands such as \bibopenparen and \mkbibparens), always wrap the text
in a \printtext command. For the punctuation tracker to work as expected, it
needs to know about all literal text inserted by a driver. This is what \printtext
is all about. \printtext interfaces with the punctuation tracker and ensures that
the punctuation buffer is inserted before the literal text gets printed. It also sets
the internal ‘new text’ flag. Note there is in fact a third piece of literal text in this
example: the space after \printfield{series}. In the corrected example, we
will use the punctuation tracker to handle that space.

\printfield{title}%

\newunit

\printtext{(}%

\printfield{series}%

\setunit*{\addspace}%

\printfield{number}%

\printtext{)}%

243

While the above code will work as expected, the recommended way to handle
parentheses, quotes, and other things which enclose more than one field, is to define
a field format:

\DeclareFieldFormat{parens}{\mkbibparens{#1}}

Field formats may be used with both \printfield and \printtext, hence we
can use them to enclose several fields in a single pair of parentheses:

\printtext[parens]{%

\printfield{series}%

\setunit*{\addspace}%

\printfield{number}%

}%

We still need to handle cases in which there is no series information at all, so let’s
improve the code some more:

\iffieldundef{series}

{}

{\printtext[parens]{%

\printfield{series}%

\setunit*{\addspace}%

\printfield{number}}}%

One final hint: localization strings are not literal text as far as the punctuation
tracker is concerned. Since \bibstring and similar commands interface with the
punctuation tracker, there is no need to wrap them in a \printtext command.

4.11.7.3 Advanced Usage The punctuation tracker may also be used to handle
more complex scenarios. For example, suppose that we want the fields location,
publisher, and year to be rendered in one of the following formats, depending
on the available data:

...text. Location: Publisher, Year. Text...

...text. Location: Publisher. Text...

...text. Location: Year. Text...

...text. Publisher, Year. Text...

...text. Location. Text...

...text. Publisher. Text...

...text. Year. Text...

This problem can be solved with a rather convoluted set of \iflistundef and
\iffieldundef tests which check for all possible field combinations:

\iflistundef{location}

{\iflistundef{publisher}

{\printfield{year}}

{\printlist{publisher}%

\iffieldundef{year}

{}

{, \printfield{year}}}}

{\printlist{location}%

244

\iflistundef{publisher}%

{\iffieldundef{year}

{}

{: \printfield{year}}}

{: \printlist{publisher}%

\iffieldundef{year}

{}

{, \printfield{year}}}}%

The above could be written in a somewhat more readable way by employing
\ifthenelse and the boolean operators discussed in § 4.6.3. The approach would
still be essentially the same. However, it may also be written sequentially:

\newunit

\printlist{location}%

\setunit*{\addcolon\space}%

\printlist{publisher}%

\setunit*{\addcomma\space}%

\printfield{year}%

\newunit

In practice, you will often use a combination of explicit tests and the implicit tests
performed by the punctuation tracker. For example, consider the following format
(note the punctuation after the location if there is no publisher):

...text. Location: Publisher, Year. Text...

...text. Location: Publisher. Text...

...text. Location, Year. Text...

...text. Publisher, Year. Text...

...text. Location. Text...

...text. Publisher. Text...

...text. Year. Text...

This can be handled by the following code:

\newunit

\printlist{location}%

\iflistundef{publisher}

{\setunit*{\addcomma\space}}

{\setunit*{\addcolon\space}}%

\printlist{publisher}%

\setunit*{\addcomma\space}%

\printfield{year}%

\newunit

Since the punctuation after the location is special if there is no publisher, we need
one \iflistundef test to catch this case. Everything else is handled by the
punctuation tracker.

4.11.8 Custom Localization Modules

Style guides may include provisions as to how strings like ‘edition’ should be abbre-
viated or they may mandate certain fixed expressions. For example, the mla style

245

guide requires authors to use the term ‘Works Cited’ rather than ‘Bibliography’ or
‘References’ in the heading of the bibliography. Localization commands such as
\DefineBibliographyStrings from § 3.8 may indeed be used in cbx and
bbx files to handle such cases. However, overloading style files with translations
is rather inconvenient. This is where \DeclareLanguageMapping from § 4.9.1
comes into play. This command maps an lbx file with alternative translations to
a babel/polyglossia language. For example, you could create a file named
french-humanities.lbx which provides French translations adapted for use
in the humanities and map it to the babel/polyglossia language french in
the preamble or in the configuration file:

\DeclareLanguageMapping{french}{french-humanities}

If the document language is set to french, french-humanities.lbx will
replace french.lbx. Coming back to the mla example mentioned above, an mla
style may come with an american-mla.lbx file to provide strings which comply
with the mla style guide. It would declare the following mapping in the cbx and/or
bbx file:

\DeclareLanguageMapping{american}{american-mla}

Since the alternative lbx file can inherit strings from the standard american.lbx
module, american-mla.lbx may be as short as this:

\ProvidesFile{american-mla.lbx}[2008/10/01 v1.0 biblatex localization]

\InheritBibliographyExtras{american}

\DeclareBibliographyStrings{%

inherit = {american},

bibliography = {{Works Cited}{Works Cited}},

references = {{Works Cited}{Works Cited}},

}

\endinput

Alternative lbx files must ensure that the localization module is complete. They will
typically do so by inheriting data from the corresponding standard module. If the
language american is mapped to american-mla.lbx, Biblatex will not load
american.lbx unless this module is requested explicitly. In the above example,
inheriting ‘strings’ and ‘extras’ will cause Biblatex to load american.lbx before
applying the modifications in american-mla.lbx.

Note that \DeclareLanguageMapping is not intended to handle language
variants (e. g., American English vs. British English) or babel/polyglossia
language aliases (e. g., USenglish vs. american). For example,
babel/polyglossia offers the USenglish option which is similar to
american. Therefore, Biblatex ships with an USenglish.lbx file which
simply inherits all data from american.lbx (which in turn gets the ‘strings’
from english.lbx). In other words, the mapping of language variants and
babel/polyglossia language aliases happens on the file level, the point being
that Biblatex’s language support can be extended simply by adding additional lbx
files. There is no need for centralized mapping. If you need support for, say, Por-
tuguese (babel/polyglossia: portuges), you create a file named portuges.lbx.
If babel/polyglossia offered an alias named brasil, you would create
brasil.lbx and inherit the data from portuges.lbx. In contrast to that,

246

the point of \DeclareLanguageMapping is handling stylistic variants like
‘humanities vs. natural sciences’ or ‘mla vs. apa’ etc. which will typically be built
on top of existing lbx files.

4.11.9 Grouping

In a citation or bibliography style, you may need to set flags or store certain values
for later use. In this case, it is crucial to understand the basic grouping structure
imposed by this package. As a rule of thumb, you are working in a large group
whenever author commands such as those discussed in § 4.6 are available because
the author interface of this package is only enabled locally. If any bibliographic data
is available, there is at least one additional group. Here are some general rules:

• The entire list of references printed by \printbibliography and similar
commands is processed in a group. Each entry in the list is processed in an
additional group which encloses the 〈item code〉 of \defbibenvironment
as well as all driver code.

• The entire bibliography list printed by \printbiblist is processed in a
group. Each entry in the list is processed in an additional group which encloses
the 〈item code〉 of \defbibenvironment as well as all driver code.

• All citation commands defined with \DeclareCiteCommand are processed
in a group holding the complete citation code consisting of the 〈precode〉,
〈sepcode〉, 〈loopcode〉, and 〈postcode〉 arguments. The 〈loopcode〉 is enclosed
in an additional group every time it is executed. If any 〈wrapper〉 code has
been specified, the entire unit consisting of the wrapper code and the citation
code is wrapped in an additional group.

• In addition to the grouping imposed by all backend commands defined with
\DeclareCiteCommand, all ‘autocite’ and ‘multicite’ definitions imply an
additional group.

• \printfile, \printtext, \printfield, \printlist, and
\printnames form groups. This implies that all formatting directives will
be processed within a group of their own.

• All lbx files are loaded and processed in a group. If an lbx file contains any
code which is not part of \DeclareBibliographyExtras, the defini-
tions must be global.

Note that using \aftergroup in citation and bibliography styles is unreliable
because the precise number of groups employed in a certain context may change in
future versions of this package. If the above list states that something is processed in
a group, this means that there is at least one group. There may also be several nested
ones.

4.11.10 Namespaces

In order to minimize the risk of name clashes, LaTeX packages typically prefix the
names of internal macros with a short string specific to the package. For example, if
the foobar package requires a macro for internal use, it would typically be called
\FB@macro or \foo@macro rather than \macro or \@macro. Here is a list of
the prefixes used or recommended by Biblatex:

247

blx All macros with names like \blx@name are strictly reserved for internal use. This
also applies to counter names, length registers, boolean switches, and so on. These
macros may be altered in backwards-incompatible ways, they may be renamed or
even removed at any time without further notice. Such changes will not even be
mentioned in the revision history or the release notes. In short: never use any macros
with the string blx in their name in any styles.

abx Macros prefixed with abx are also internal macros but they are fairly stable. It is
always preferable to use the facilities provided by the official author interface, but
there may be cases in which using an abx macro is convenient.

bbx This is the recommended prefix for internal macros defined in bibliography styles.

cbx This is the recommended prefix for internal macros defined in citation styles.

lbx This is the recommended base prefix for internal macros defined in localization
modules. The localization module should add a second prefix to specify the language.
For example, an internal macro defined by the Spanish localization module would be
named \lbx@es@macro.

Appendix

A Default Driver Source Mappings

These are the driver default source mappings. For drivers other than bibtex and
ris, they are highly experimental and subject to change (because the driver datatype
itself is unstable or not well suited to bibliographic data).

A.1 bibtex

The bibtex driver is of course the most comprehensive and mature of the Bibla-
tex/Biber supported data formats. These source mapping defaults are how the aliases
from sections § 2.1.2 and § 2.2.5 are implemented.

\DeclareDriverSourcemap[datatype=bibtex]{

\map{

\step[typesource=conference, typetarget=inproceedings]

\step[typesource=electronic, typetarget=online]

\step[typesource=www, typetarget=online]

}

\map{

\step[typesource=mastersthesis, typetarget=thesis, final]

\step[fieldset=type, fieldvalue=mathesis]

}

\map{

\step[typesource=phdthesis, typetarget=thesis, final]

\step[fieldset=type, fieldvalue=phdthesis]

}

\map{

\step[typesource=techreport, typetarget=report, final]

\step[fieldset=type, fieldvalue=techreport]

}

\map{

248

\step[fieldsource=address, fieldtarget=location]

\step[fieldsource=school, fieldtarget=institution]

\step[fieldsource=annote, fieldtarget=annotation]

\step[fieldsource=archiveprefix, fieldtarget=eprinttype]

\step[fieldsource=journal, fieldtarget=journaltitle]

\step[fieldsource=primaryclass, fieldtarget=eprintclass]

\step[fieldsource=key, fieldtarget=sortkey]

\step[fieldsource=pdf, fieldtarget=file]

}

}

A.2 endnotexml

The endnotexml driver for Biber uses the following mappings. This format is quite
messy and not well suited to robust typesetting of bibliographic data. It is presented
largely as an example of Biber’s modular datasource abilities and also of how to map
foreign data models into the Biblatex data model. Mappings from such messy and
relatively simple data models are inevitably fragile and are of limited use.

\DeclareDriverSourcemap[datatype=endnotexml]{

\map{

\step[typesource={Aggregated Database}, typetarget=misc]

\step[typesource={Ancient Text}, typetarget=misc]

\step[typesource=Artwork, typetarget=artwork]

\step[typesource={Audiovisual Material}, typetarget=misc]

\step[typesource=Bill, typetarget=jurisdiction]

\step[typesource=Blog, typetarget=online]

\step[typesource=Book, typetarget=book]

\step[typesource={Book Section}, typetarget=inbook]

\step[typesource=Case, typetarget=jurisdiction]

\step[typesource=Catalog, typetarget=misc]

\step[typesource={Chart or Table}, typetarget=misc]

\step[typesource={Classical Work}, typetarget=misc]

\step[typesource={Computer Program}, typetarget=software]

\step[typesource={Conference Paper}, typetarget=inproceedings]

\step[typesource={Conference Proceedings}, typetarget=proceedings]

\step[typesource=Dictionary, typetarget=inreference]

\step[typesource={Edited Book}, typetarget=collection]

\step[typesource={Electronic Article}, typetarget=article]

\step[typesource={Electronic Book}, typetarget=book]

\step[typesource={Encyclopedia}, typetarget=reference]

\step[typesource=Equation, typetarget=misc]

\step[typesource=Figure, typetarget=misc]

\step[typesource={Film or Broadcast}, typetarget=movie]

\step[typesource={Government Document}, typetarget=report]

\step[typesource=Grant, typetarget=misc]

\step[typesource=Hearing, typetarget=jurisdiction]

\step[typesource={Journal Article}, typetarget=article]

\step[typesource={Legal Rule or Regulation}, typetarget=legislation]

\step[typesource={Magazine Article}, typetarget=article]

\step[typesource=Manuscript, typetarget=unpublished]

249

\step[typesource=Map, typetarget=misc]

\step[typesource={Newspaper Article}, typetarget=article]

\step[typesource={Online Database}, typetarget=online]

\step[typesource={Online Multimedia}, typetarget=online]

\step[typesource=Pamphlet, typetarget=booklet]

\step[typesource=Patent, typetarget=patent]

\step[typesource={Personal Communication}, typetarget=letter]

\step[typesource=Report, typetarget=report]

\step[typesource=Serial, typetarget=periodical]

\step[typesource=Standard, typetarget=standard]

\step[typesource=Statute, typetarget=legislation]

\step[typesource=Thesis, typetarget=thesis]

\step[typesource={Unpublished Work}, typetarget=unpublished]

\step[typesource={Web Page}, typetarget=online]

}

\map{

\step[fieldsource={electronic-resource-num}, fieldtarget=eprint]

\step[fieldsource={alt-title}, fieldtarget=shorttitle]

\step[fieldsource={meeting-place}, fieldtarget=venue]

\step[fieldsource={pub-location}, fieldtarget=location]

\step[fieldsource={orig-pub}, fieldtarget=origpublisher]

\step[fieldsource={authors}, fieldtarget=author]

\step[fieldsource={secondary-authors}, fieldtarget=editor]

\step[fieldsource={tertiary-authors}, fieldtarget=commentator]

\step[fieldsource={subsidiary-authors}, fieldtarget=translator]

\step[fieldsource={year}, fieldtarget=date]

\step[fieldsource={pub-dates}, fieldtarget=date]

\step[fieldsource={num-vols}, fieldtarget=volumes]

\step[fieldsource={call-num}, fieldtarget=library]

\step[fieldsource={notes}, fieldtarget=note]

\step[fieldsource={secondary-title}, fieldtarget=subtitle]

\step[fieldsource={work-type}, fieldtarget=type]

}

\map{

\pertype{Edited Book}

\step[fieldsource=contributors/authors, fieldtarget=contributors/editor]

}

\map{

\pertype{Electronic Article}

\pertype{Journal Article}

\pertype{Magazine Article}

\pertype{Newspaper Article}

\step[fieldsource=isbn, fieldtarget=issn]

}

\map{

\pertype{Patent}

\pertype{Report}

\pertype{Government Document}

\pertype{Legal Rule or Regulation}

\step[fieldsource=isbn, fieldtarget=number]

}

250

\map{

\pertype{Blog}

\pertype{Online Database}

\pertype{Online Multimedia}

\pertype{Web Page}

\step[fieldsource={titles/secondary-title}, fieldtarget={titles/title}]

}

\map{

\pertype{Book Section}

\step[fieldsource={titles/secondary-title}, fieldtarget={titles/booktitle}]

}

\map{

\pertype{Book}

\pertype{Electronic Book}

\pertype{Manuscript}

\pertype{Unpublished Work}

\step[fieldsource={titles/secondary-title}, fieldtarget={titles/series}]

}

\map{

\pertype{Conference Paper}

\pertype{Conference Proceedings}

\step[fieldsource={titles/secondary-title}, fieldtarget={titles/eventtitle}]

}

\map{

\pertype{Electronic Article}

\pertype{Journal Article}

\pertype{Magazine Article}

\pertype{Newspaper Article}

\step[fieldsource={titles/secondary-title}, fieldtarget={titles/journaltitle}]

}

\map{

\pertype{Book Section}

\step[fieldsource={titles/tertiary-title}, fieldtarget={titles/booktitle}]

}

\map{

\pertype{Conference Proceedings}

\pertype{periodical}

\step[fieldsource={titles/tertiary-title}, fieldtarget={titles/series}]

}

}

A.3 ris

The ris driver reflects the fact that ris itself is a very simple and stable format. It
is in fact so simple, it’s hardly of any use for most Biblatex users. Again, here more
as a proof of concept example.

\DeclareDriverSourcemap[datatype=ris]{

\map{

\step[typesource=ART, typetarget=artwork]

\step[typesource=BILL, typetarget=jurisdiction]

251

\step[typesource=BOOK, typetarget=book]

\step[typesource=CHAP, typetarget=inbook]

\step[typesource=COMP, typetarget=software]

\step[typesource=CONF, typetarget=proceedings]

\step[typesource=GEN, typetarget=misc]

\step[typesource=JFULL, typetarget=article]

\step[typesource=JOUR, typetarget=article]

\step[typesource=MGZN, typetarget=misc]

\step[typesource=MPCT, typetarget=movie]

\step[typesource=NEWS, typetarget=misc]

\step[typesource=PAMP, typetarget=misc]

\step[typesource=PAT, typetarget=patent]

\step[typesource=PCOMM, typetarget=misc]

\step[typesource=RPRT, typetarget=report]

\step[typesource=SER, typetarget=misc]

\step[typesource=SLIDE, typetarget=misc]

\step[typesource=SOUND, typetarget=audio]

\step[typesource=STAT, typetarget=legal]

\step[typesource=THES, typetarget=thesis]

\step[typesource=UNBILL, typetarget=jurisdiction]

\step[typesource=UNPB, typetarget=unpublished]

}

\map{

\step[fieldsource=Y1, fieldtarget=date]

\step[fieldsource=PY, fieldtarget=date]

\step[fieldsource=Y2, fieldtarget=eventdate]

\step[fieldsource=A1, fieldtarget=author]

\step[fieldsource=AU, fieldtarget=author]

\step[fieldsource=A2, fieldtarget=editor]

\step[fieldsource=A3, fieldtarget=editor]

\step[fieldsource=ED, fieldtarget=editor]

\step[fieldsource=SPEP, fieldtarget=pages]

\step[fieldsource=N1, fieldtarget=note]

\step[fieldsource=N2, fieldtarget=abstract]

\step[fieldsource=AB, fieldtarget=abstract]

\step[fieldsource=JO, fieldtarget=journaltitle]

\step[fieldsource=JF, fieldtarget=journaltitle]

\step[fieldsource=JA, fieldtarget=shortjournal]

\step[fieldsource=VL, fieldtarget=volume]

\step[fieldsource=IS, fieldtarget=issue]

\step[fieldsource=CP, fieldtarget=issue]

\step[fieldsource=CY, fieldtarget=location]

\step[fieldsource=SN, fieldtarget=isbn]

\step[fieldsource=PB, fieldtarget=publisher]

\step[fieldsource=KW, fieldtarget=keywords]

\step[fieldsource=TI, fieldtarget=title]

\step[fieldsource=U1, fieldtarget=usera]

\step[fieldsource=U2, fieldtarget=userb]

\step[fieldsource=U3, fieldtarget=userc]

\step[fieldsource=U4, fieldtarget=userd]

\step[fieldsource=U5, fieldtarget=usere]

252

\step[fieldsource=UR, fieldtarget=url]

\step[fieldsource=L1, fieldtarget=file]

}

}

A.4 zoterordfxml

Thezoterordfxml driver reads the Zotero38 XML representation of its RDF format.
From the Biblatex point of view, it suffers from a lack of the notion of a citation
key and so is of limited use. The format may include a citation key in the future at
which point the Biber driver and these default mappings will be updated. As with
endnotexml, the format is somewhat messy with, in particular, a very limited way
of dealing with related entries which makes the driver setup rather ugly. As can be
seen below, it is possible to map into a field prefixed with “BIBERCUSTOM” which
is not a real field in the data model but can be detected in the Biber driver itself and
used to process a source field which does not map naturally to any Biblatex data
model field as it needs special treatment. This is messy but is due largely due to
messy source data models.

\DeclareDriverSourcemap[datatype=zoterordfxml]{

\map{

\step[typesource=conferencePaper, typetarget=inproceedings]

\step[typesource=bookSection, typetarget=inbook]

\step[typesource=journalArticle, typetarget=article]

\step[typesource=magazineArticle, typetarget=article]

\step[typesource=newspaperArticle, typetarget=article]

\step[typesource=encyclopediaArticle, typetarget=inreference]

\step[typesource=manuscript, typetarget=unpublished]

\step[typesource=document, typetarget=misc]

\step[typesource=dictionaryEntry, typetarget=inreference]

\step[typesource=interview, typetarget=misc]

\step[typesource=film, typetarget=movie]

\step[typesource=webpage, typetarget=online]

\step[typesource=note, typetarget=misc]

\step[typesource=attachment, typetarget=misc]

\step[typesource=bill, typetarget=legislation]

\step[typesource=case, typetarget=jurisdiction]

\step[typesource=hearing, typetarget=jurisdiction]

\step[typesource=statute, typetarget=legislation]

\step[typesource=email, typetarget=letter]

\step[typesource=map, typetarget=image]

\step[typesource=blogPost, typetarget=online]

\step[typesource=instantMessage, typetarget=letter]

\step[typesource=forumPost, typetarget=online]

\step[typesource=audioRecording, typetarget=audio]

\step[typesource=presentation, typetarget=inproceedings]

\step[typesource=videoRecording, typetarget=video]

\step[typesource=tvBroadcast, typetarget=misc]

\step[typesource=radioBroadcast, typetarget=misc]

\step[typesource=podcast, typetarget=online]

38
www.zotero.org

253

www.zotero.org

\step[typesource=computerProgram, typetarget=software]

}

\map{

\step[fieldsource=bib:contributors, fieldtarget=author]

\step[fieldsource=bib:authors, fieldtarget=author]

\step[fieldsource=z:interviewers, fieldtarget=author]

\step[fieldsource=z:directors, fieldtarget=author]

\step[fieldsource=z:scriptwriters, fieldtarget=author]

\step[fieldsource=z:bookAuthor, fieldtarget=author]

\step[fieldsource=z:inventors, fieldtarget=author]

\step[fieldsource=z:recipients, fieldtarget=author]

\step[fieldsource=z:counsels, fieldtarget=author]

\step[fieldsource=z:artists, fieldtarget=author]

\step[fieldsource=z:podcasters, fieldtarget=author]

\step[fieldsource=z:presenters, fieldtarget=author]

\step[fieldsource=z:commenters, fieldtarget=author]

\step[fieldsource=z:programers, fieldtarget=author]

\step[fieldsource=z:composers, fieldtarget=author]

\step[fieldsource=z:producers, fieldtarget=author]

\step[fieldsource=z:performers, fieldtarget=author]

\step[fieldsource=bib:editors, fieldtarget=editor]

\step[fieldsource=z:translators, fieldtarget=translator]

\step[fieldsource=z:seriesEditors, fieldtarget=editor]

\step[fieldsource=dc:date, fieldtarget=date]

\step[fieldsource=bib:pages, fieldtarget=pages]

\step[fieldsource=dc:title, fieldtarget=title]

\step[fieldsource=z:proceedingsTitle, fieldtarget=title]

\step[fieldsource=z:encyclopediaTitle, fieldtarget=title]

\step[fieldsource=z:dictionaryTitle, fieldtarget=title]

\step[fieldsource=z:websiteTitle, fieldtarget=title]

\step[fieldsource=z:forumTitle, fieldtarget=title]

\step[fieldsource=z:blogTitle, fieldtarget=title]

\step[fieldsource=z:nameOfAct, fieldtarget=title]

\step[fieldsource=z:caseName, fieldtarget=title]

\step[fieldsource=z:meetingName, fieldtarget=eventtitle]

\step[fieldsource=prism:volume, fieldtarget=volume]

\step[fieldsource=numberOfVolumes, fieldtarget=volumes]

\step[fieldsource=z:numPages, fieldtarget=pagetotal]

\step[fieldsource=prism:edition, fieldtarget=edition]

\step[fieldsource=dc:description, fieldtarget=note]

\step[fieldsource=dc:alternative, fieldtarget=shortjournal]

\step[fieldsource=dcterms:abstract, fieldtarget=abstract]

\step[fieldsource=dc:type, fieldtarget=type]

\step[fieldsource=z:shortTitle, fieldtarget=shorttitle]

\step[fieldsource=z:bookTitle, fieldtarget=booktitle]

\step[fieldsource=prism:number, fieldtarget=number]

\step[fieldsource=z:patentNumber, fieldtarget=number]

\step[fieldsource=z:codeNumber, fieldtarget=number]

\step[fieldsource=z:reportNumber, fieldtarget=number]

\step[fieldsource=z:billNumber, fieldtarget=number]

\step[fieldsource=z:documentNumber, fieldtarget=number]

254

\step[fieldsource=z:publicLawNumber, fieldtarget=number]

\step[fieldsource=z:applicationNumber, fieldtarget=number]

\step[fieldsource=z:episodeNumber, fieldtarget=number]

\step[fieldsource=dc:coverage, fieldtarget=location]

\step[fieldsource=z:university, fieldtarget=institution]

\step[fieldsource=z:language, fieldtarget=language]

\step[fieldsource=z:version, fieldtarget=version]

\step[fieldsource=z:libraryCatalog, fieldtarget=library]

\step[fieldsource=dcterms:isPartOf, fieldtarget=BIBERCUSTOMpartof]

\step[fieldsource=dc:identifier, fieldtarget=BIBERCUSTOMidentifier]

\step[fieldsource=dc:publisher, fieldtarget=BIBERCUSTOMpublisher]

\step[fieldsource=dc:presentedAt, fieldtarget=BIBERCUSTOMpresentedat]

\step[fieldsource=dc:subject, fieldtarget=BIBERCUSTOMsubject]

\step[fieldsource={dcterms:BIBERCUSTOMpartof/bib:Journal},

fieldtarget={dcterms:BIBERCUSTOMpartof/periodical}]

\step[fieldsource={dcterms:BIBERCUSTOMpartof/bib:Book},

fieldtarget={dcterms:BIBERCUSTOMpartof/book}]

\step[fieldsource={dcterms:BIBERCUSTOMpartof/bib:ConferenceProceedings},

fieldtarget={dcterms:BIBERCUSTOMpartof/proceedings}]

}

}

B Default Inheritance Setup

The following table shows the Biber cross-referencing rules defined by default. Please
refer to §§ 2.4.1 and 4.5.10 for explanation.

Types Fields

Source Target Source Target

* * ids

crossref

xref

entryset

entrysubtype

execute

label

options

presort

related

relatedoptions

relatedstring

relatedtype

shorthand

shorthandintro

sortkey

–
–
–
–
–
–
–
–
–
–
–
–
–
–

mvbook, book inbook, bookinbook, suppbook author

author

author

bookauthor

mvbook book, inbook, bookinbook,
suppbook

title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

maintitle

mainsubtitle

maintitleaddon

–
–
–
–

255

Types Fields

Source Target Source Target

mvcollection,
mvreference

collection, reference,
incollection, inreference,
suppcollection

title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

maintitle

mainsubtitle

maintitleaddon

–
–
–
–

mvproceedings proceedings, inproceedings title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

maintitle

mainsubtitle

maintitleaddon

–
–
–
–

book inbook, bookinbook, suppbook title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

booktitle

booksubtitle

booktitleaddon

–
–
–
–

collection,
reference

incollection, inreference,
suppcollection

title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

booktitle

booksubtitle

booktitleaddon

–
–
–
–

proceedings inproceedings title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

booktitle

booksubtitle

booktitleaddon

–
–
–
–

periodical article, suppperiodical title

subtitle

shorttitle

sorttitle

indextitle

indexsorttitle

journaltitle

journalsubtitle

–
–
–
–

C Default Sorting Schemes

C.1 Alphabetic Schemes 1

The following table shows the standard alphabetic sorting schemes defined by default.
Please refer to § 3.5 for explanation.

Option Sorting scheme

nty pre-

sort

↪→mm

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sorttitle

↪→title

→sortyear

↪→year

→volume

↪→0000

256

Option Sorting scheme

nyt pre-

sort

↪→mm

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sortyear

↪→year

→sortti-

tle

↪→title

→volume

↪→0000

nyvt pre-

sort

↪→mm

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sortyear

↪→year

→volume

↪→0000

→sorttitle

↪→title

all pre-

sort

↪→mm

→sortkey

C.2 Alphabetic Schemes 2

The following table shows the alphabetic sorting schemes for alphabetic styles
defined by default. Please refer to § 3.5 for explanation.

Option Sorting scheme

anyt pre-

sort

↪→mm

→labelal-

pha

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sortyear

↪→year

→sortti-

tle

↪→title

→volume

↪→0000

anyvt pre-

sort

↪→mm

→labelal-

pha

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sortyear

↪→year

→volume

↪→0000

→sortti-

tle

↪→title

all pre-

sort

↪→mm

→labelal-

pha

→sortkey

C.3 Chronological Schemes

The following table shows the chronological sorting schemes defined by default.
Please refer to § 3.5 for explanation.

Option Sorting scheme

ynt pre-

sort

↪→mm

→sortyear

↪→year

↪→9999

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sorttitle

↪→title

257

Option Sorting scheme

ydnt pre-

sort

↪→mm

→sortyear (desc.)
↪→year (desc.)
↪→9999

→sortname

↪→author

↪→editor

↪→transla-

tor

↪→sorttitle

↪→title

→sorttitle

↪→title

all pre-

sort

↪→mm

→sortkey

D Option Scope

The following table provides an overview of the scope (global/per-type/per-entry) of
various package options.

Option Scope

Load-time Global Per-type Per-entry

abbreviate • • – –
alldates • • – –
arxiv • • – –
autocite • • – –
autopunct • • – –
autolang • • – –
backend • – – –
backref • • – –
backrefsetstyle • • – –
backrefstyle • • – –
bibencoding • • – –
bibstyle • – – –
bibwarn • • – –
block • • – –
citecounter • • – –
citereset • • – –
citestyle • – – –
citetracker • • – –
clearlang • • – –
datamodel • – – –
dataonly – – • •

date • • – –
dateabbrev • • – –
datezeros • • – –
defernumbers • • – –
doi • • – –
eprint • • – –
eventdate • • – –
firstinits • • – –
hyperref • • – –
ibidtracker • • – –
idemtracker • • – –
indexing • • • •

isbn • • – –
labelalpha • • • –
labelnamefield – – – •

labelnumber • • • –
labeltitle • • • –
labeltitlefield – – – •

labeltitleyear • • • –

258

Option Scope

Load-time Global Per-type Per-entry

labeldate • • • –
language • • – –
loadfiles • • – –
loccittracker • • – –
maxalphanames • • • •

maxbibnames • • • •

maxcitenames • • • •

maxitems • • • •

maxnames • • • •

maxparens • • – –
mcite • – – –
minalphanames • • • •

minbibnames • • • •

mincitenames • • • •

mincrossrefs • • – –
minitems • • • •

minnames • • • •

natbib • – – –
notetype • • – –
opcittracker • • – –
openbib • • – –
origdate • • – –
pagetracker • • – –
parentracker • • – –
punctfont • • – –
refsection • • – –
refsegment • • – –
safeinputenc • • – –
singletitle • • • –
skipbib – – • •

skipbiblist – – • •

skiplab – – • •

skiplos – – • •

sortcase • • – –
sortcites • • – –
sortfirstinits • • – –
sorting • • – –
sortlocale • • – –
sortlos • • – –
sortupper • • – –
style • – – –
terseinits • • – –
texencoding • • – –
uniquelist • • • •

uniquename • • • •

urldate • • – –
url • • – –
useprefix • • • •

use<name> • • • •

E Revision History

This revision history is a list of changes relevant to users of this package. Changes
of a more technical nature which do not affect the user interface or the behavior of
the package are not included in the list. If an entry in the revision history states
that a feature has been improved or extended, this indicates a modification which
either does not affect the syntax and behavior of the package or is syntactically

259

backwards compatible (such as the addition of an optional argument to an existing
command). Entries stating that a feature has been modified, renamed, or removed
demand attention. They indicate a modification which may require changes to
existing styles or documents in some, hopefully rare, cases. The numbers on the
right indicate the relevant section of this manual.

3.1 2015-09

Added \DeclareNolabel . 4.5.4 Biber only

Added \DeclareNolabelwidthcount 4.5.4 Biber only

3.0 2015-04-20

Improved Danish (Jonas Nyrup) and Spanish (ludenticus) translations

labelname and labeltitle are now resolved by Biblatex instead of Biber for
more flexibility and future extensibility

New \entryclone sourcemap verb for cloning entries during sourcemapping
4.5.2

New \pernottype negated per-type sourcemap verb 4.5.2

New range calculation command \frangelen 4.6.4

New bibliography context functionality 3.6.11

Name lists in the data model now automatically create internals for
\ifuse<name> tests and booleans 3.1.3.1 and 4.6.2

2.9a 2014-06-25

resetnumbers now allows passing a number to reset to 3.6.2

2.9 2014-02-25

Generalised shorthands facility . 3.6.4 Biber only

Sorting locales can now be defined as part of a sorting scheme 4.5.5 Biber only

Added sortinithash . 4.2.4.1 Biber only

Added Slovene localisation (Tea Tušar and Bogdan Filipič)

Added \mkbibitalic . 4.10.4

Recommend begentry and finentry bibliography macros 4.2.3

2.8a 2013-11-25

Split option language=auto into language=autocite and
language=autobib . 3.1.2.1 Biber only

2.8 2013-10-21

New langidopts . 2.2.3 Biber only

hyphenation field renamed to langid 2.2.3

polyglossia support

Renamed babel option to autolang 3.1.2.1

Corrected Dutch localisation

Added datelabel=year option . 3.1.2.1

Added datelabelsource field . 4.2.4.1

260

2.7a 2013-07-14

Bugfix - respect maxnames and uniquelist in \finalandsemicolon

Corrected French localisation

2.7 2013-07-07

Added field eventtitleaddon to default datamodel and styles 2.2.2

Added \ifentryinbib, \iffirstcitekey and \iflastcitekey 4.6.2

Added postpunct special field, documented multiprenote and
multipostnote special fields . 4.3.2

Added \UseBibitemHook, \AtEveryMultiCite, \AtNextMultiCite,
\UseEveryCiteHook, \UseEveryCitekeyHook,
\UseEveryMultiCiteHook, \UseNextCiteHook,
\UseNextCitekeyHook, \UseNextMultiCiteHook,
\DeferNextCitekeyHook . 4.10.6

Fixed \textcite and related commands in the numeric and verbose styles3.7.2

Added multicite variants of \volcite and related commands 3.7.6

Added \finalandsemicolon . 3.9.2

Added citation delimiter \textcitedelim for \textcite and related
commands to styles . 4.10.1

Updated Russian localization (Oleg Domanov)

Fixed Brazilian and Finnish localization

2.6 2013-04-30

Added \printunit . 4.7.1

Added field clonesourcekey . 4.2.4.1 Biber only

New options for \DeclareLabelalphaTemplate 4.5.4 Biber only

Added \DeclareLabeldate and retired \DeclareLabelyear . . 4.5.9 Biber only

Added nodate localization string . 4.9.2.14

Added \rangelen . 4.6.4

Added starred variants of \citeauthor and \Citeauthor 3.7.5

Restored original url format. Added urlfrom localization key 4.9.2.15

Added \AtNextBibliography . 4.10.6

Fixed related entry processing to allow nested and cyclic related entries

Added Croatian localization (Ivo Pletikosić)

Added Polish localization (Anastasia Kandulina, Yuriy Chernyshov)

Fixed Catalan localization

Added smart “of” for titles to Catalan and French localization

Misc bug fixes

2.5 2013-01-10

Made url work as a localization string, defaulting to previously hard-coded value
‘URL’.

Changed some Biber option names to cohere with Biber 1.5.

261

New sourcemap step for conditionally removing entire entries 4.5.2 Biber only

Updated Catalan localization (Sebastià Vila-Marta)

2.4 2012-11-28

Added relatedoptions field . 4.5.1 Biber only

Added \DeclareStyleSourcemap 4.5.2 Biber only

Renamed \DeclareDefaultSourcemap to \DeclareDriverSourcemap
4.5.2 Biber only

Documented \DeclareFieldInputHandler,
\DeclareListInputHandler and \DeclareNameInputHandler.

Added Czech localization (Michal Hoftich)

Updated Catalan localization (Sebastià Vila-Marta)

2.3 2012-11-01

Better detection of situations which require a Biber or LATEX re-run

New append mode for \DeclareSourcemap so that fields can be combined
4.5.2 Biber only

Extended auxiliary indexing macros

Added support for plural localization strings with relatedtype 4.5.1 Biber only

Added \csfield and \usefield . 4.6.1

Added starred variant of \usebibmacro 4.6.4

Added \ifbibmacroundef, \iffieldformatundef,
\iflistformatundef and \ifnameformatundef 4.6.4

Added Catalan localization (Sebastià Vila-Marta)

Misc bug fixes

2.2 2012-08-17

Misc bug fixes

Added \revsdnamepunct . 3.9.1

Added \ifterseinits . 4.6.2

2.1 2012-08-01

Misc bug fixes

Updated Norwegian localization (Håkon Malmedal)

Increased data model auto-loading possibilities 4.5.3 Biber only

2.0 2012-07-01

Misc bug fixes

Generalised singletitle test a little 4.6.2 Biber only

Added new special field extratitleyear 4.2.4 Biber only

Customisable data model . 4.5.3 Biber only

Added \DeclareDefaultSourcemap 4.5.2 Biber only

Added labeltitle option . 3.1.2.3 Biber only

262

Added new special field extratitle 4.2.4 Biber only

Made special field labeltitle customisable 4.2.4 Biber only

Removed field reprinttitle . 3.4 Biber only

Added related entry feature . 3.4 Biber only

Added \DeclareNoinit . 4.5.7 Biber only

Added \DeclareNosort . 4.5.8 Biber only

Added sorting option for \printbibliography and
\printshorthands . 3.6.2 Biber only

Added ids field for citekey aliasing . 2.2 Biber only

Added sortfirstinits option . 3.1.2.3 Biber only

Added data stream modification feature 4.5.2 Biber only

Added customisable labels feature . 4.5.4 Biber only

Added \citeyear* and \citedate* 3.7.5

263

	List of Tables
	Introduction
	About
	License
	Feedback
	Acknowledgments
	Prerequisites
	Requirements
	Recommended Packages
	Compatible Classes and Packages
	Incompatible Packages
	Compatibility Matrix for Biber

	Database Guide
	Entry Types
	Regular Types
	article
	book
	mvbook
	inbook
	bookinbook
	suppbook
	booklet
	collection
	mvcollection
	incollection
	suppcollection
	manual
	misc
	online
	patent
	periodical
	suppperiodical
	proceedings
	mvproceedings
	inproceedings
	reference
	mvreference
	inreference
	report
	set
	thesis
	unpublished
	xdata
	custom[a–f]

	Type Aliases
	conference
	electronic
	mastersthesis
	phdthesis
	techreport
	www

	Unsupported Types
	artwork
	audio
	bibnote
	commentary
	image
	jurisdiction
	legislation
	legal
	letter
	movie
	music
	performance
	review
	software
	standard
	video

	Entry Fields
	Data Types
	Data Fields
	abstract
	addendum
	afterword
	annotation
	annotator
	author
	authortype
	bookauthor
	bookpagination
	booksubtitle
	booktitle
	booktitleaddon
	chapter
	commentator
	date
	doi
	edition
	editor
	editora
	editorb
	editorc
	editortype
	editoratype
	editorbtype
	editorctype
	eid
	entrysubtype
	eprint
	eprintclass
	eprinttype
	eventdate
	eventtitle
	eventtitleaddon
	file
	foreword
	holder
	howpublished
	indextitle
	institution
	introduction
	isan
	isbn
	ismn
	isrn
	issn
	issue
	issuesubtitle
	issuetitle
	iswc
	journalsubtitle
	journaltitle
	label
	language
	library
	location
	mainsubtitle
	maintitle
	maintitleaddon
	month
	nameaddon
	note
	number
	organization
	origdate
	origlanguage
	origlocation
	origpublisher
	origtitle
	pages
	pagetotal
	pagination
	part
	publisher
	pubstate
	reprinttitle
	series
	shortauthor
	shorteditor
	shorthand
	shorthandintro
	shortjournal
	shortseries
	shorttitle
	subtitle
	title
	titleaddon
	translator
	type
	url
	urldate
	venue
	version
	volume
	volumes
	year

	Special Fields
	crossref
	entryset
	execute
	gender
	langid
	langidopts
	ids
	indexsorttitle
	keywords
	options
	presort
	related
	relatedoptions
	relatedtype
	relatedstring
	sortkey
	sortname
	sortshorthand
	sorttitle
	sortyear
	xdata
	xref

	Custom Fields
	name[a–c]
	name[a–c]type
	list[a–f]
	user[a–f]
	verb[a–c]

	Field Aliases
	address
	annote
	archiveprefix
	journal
	key
	pdf
	primaryclass
	school

	Usage Notes
	The Entry Type @inbook
	Missing and Omissible Data
	Corporate Authors and Editors
	Literal Lists
	Titles
	Editorial Roles
	Publication and Journal Series
	Date Specifications
	Months and Journal Issues
	Pagination

	Hints and Caveats
	Cross-referencing
	The 'crossref' field (BibTeX)
	The 'crossref' field (Biber)
	The 'xref' field

	Capacity Issues
	BibTeX
	bibtex8
	Biber

	Sorting and Encoding Issues
	BibTeX
	bibtex8
	Biber
	Specifying Encodings

	Editors and Compiler Scripts

	User Guide
	Package Options
	Load-time Options
	backend
	style
	bibstyle
	citestyle
	natbib
	mcite

	Preamble Options
	General
	sorting
	sortcase
	sortupper
	sortlocale
	sortlos
	related
	sortcites
	maxnames
	minnames
	maxbibnames
	minbibnames
	maxcitenames
	mincitenames
	maxitems
	minitems
	autocite
	autopunct
	language
	clearlang
	autolang
	block
	notetype
	hyperref
	backref
	backrefstyle
	backrefsetstyle
	indexing
	loadfiles
	refsection
	refsegment
	citereset
	abbreviate
	date
	datelabel
	origdate
	eventdate
	urldate
	alldates
	datezeros
	dateabbrev
	defernumbers
	punctfont
	arxiv
	texencoding
	bibencoding
	safeinputenc
	bibwarn
	mincrossrefs

	Style-specific
	isbn
	url
	doi
	eprint

	Internal
	pagetracker
	citecounter
	citetracker
	ibidtracker
	opcittracker
	loccittracker
	idemtracker
	parentracker
	maxparens
	firstinits
	sortfirstinits
	terseinits
	labelalpha
	maxalphanames
	minalphanames
	labelnumber
	labeltitle
	labeltitleyear
	labeldate
	singletitle
	uniquename
	uniquelist

	Entry Options
	Preamble/Type/Entry Options
	useauthor
	useeditor
	usetranslator
	use"name"
	useprefix
	indexing

	Type/Entry Options
	skipbib
	skiplos
	skipbiblist
	skiplab
	dataonly

	Entry Only Options
	labelnamefield
	labeltitlefield

	Legacy Options
	openbib

	Global Customization
	Configuration File
	Setting Package Options
	\ExecuteBibliographyOptions

	Standard Styles
	Citation Styles
	Bibliography Styles

	Related Entries
	Sorting Options
	Bibliography Commands
	Resources
	\addbibresource
	\addglobalbib
	\addsectionbib
	\bibliography

	The Bibliography
	\printbibliography
	\bibbysection
	\bibbysegment
	\bibbycategory
	\printbibheading

	The List of Shorthands
	\printshorthands

	Bibliography Lists
	\printbiblist

	Bibliography Sections
	refsection
	\newrefsection

	Bibliography Segments
	refsegment
	\newrefsegment

	Bibliography Categories
	\DeclareBibliographyCategory
	\addtocategory

	Bibliography Headings and Environments
	\defbibenvironment
	\defbibheading

	Bibliography Notes
	\defbibnote

	Bibliography Filters and Checks
	\defbibfilter
	\defbibcheck

	Bibliography Contexts
	refcontext
	\newrefcontext

	Dynamic Entry Sets
	\defbibentryset

	Citation Commands
	Standard Commands
	\cite
	\Cite
	\parencite
	\Parencite
	\footcite
	\footcitetext

	Style-specific Commands
	\textcite
	\Textcite
	\smartcite
	\Smartcite
	\cite*
	\parencite*
	\supercite

	Qualified Citation Lists
	\cites
	\Cites
	\parencites
	\Parencites
	\footcites
	\footcitetexts
	\smartcites
	\Smartcites
	\textcites
	\Textcites
	\supercites

	Style-independent Commands
	\autocite
	\Autocite
	\autocites
	\Autocites

	Text Commands
	\citeauthor
	\Citeauthor
	\citetitle
	\citeyear
	\citedate
	\citeurl
	\parentext
	\brackettext

	Special Commands
	\nocite
	\fullcite
	\footfullcite
	\volcite
	\Volcite
	\volcites
	\Volcites
	\pvolcite
	\Pvolcite
	\pvolcites
	\Pvolcites
	\fvolcite
	\ftvolcite
	\fvolcites
	\Fvolcites
	\svolcite
	\Svolcite
	\svolcites
	\Svolcites
	\tvolcite
	\Tvolcite
	\tvolcites
	\Tvolcites
	\avolcite
	\Avolcite
	\avolcites
	\Avolcites
	\notecite
	\Notecite
	\pnotecite
	\Pnotecite
	\fnotecite

	Low-level Commands
	\citename
	\citelist
	\citefield

	Miscellaneous Commands
	\citereset
	\citereset*
	\mancite
	\pno
	\ppno
	\nopp
	\psq
	\psqq
	\RN
	\Rn

	natbib Compatibility Commands
	mcite-like Citation Commands

	Localization Commands
	\DefineBibliographyStrings
	\DefineBibliographyExtras
	\UndefineBibliographyExtras
	\DefineHyphenationExceptions
	\NewBibliographyString

	Formatting Commands
	Generic Commands and Hooks
	\bibsetup
	\bibfont
	\citesetup
	\newblockpunct
	\newunitpunct
	\finentrypunct
	\entrysetpunct
	\bibnamedelima
	\bibnamedelimb
	\bibnamedelimc
	\bibnamedelimd
	\bibnamedelimi
	\bibinitperiod
	\bibinitdelim
	\bibinithyphendelim
	\bibindexnamedelima
	\bibindexnamedelimb
	\bibindexnamedelimc
	\bibindexnamedelimd
	\bibindexnamedelimi
	\bibindexinitperiod
	\bibindexinitdelim
	\bibindexinithyphendelim
	\revsdnamepunct
	\bibnamedash
	\labelnamepunct
	\subtitlepunct
	\intitlepunct
	\bibpagespunct
	\bibpagerefpunct
	\multinamedelim
	\finalnamedelim
	\revsdnamedelim
	\andothersdelim
	\multilistdelim
	\finallistdelim
	\andmoredelim
	\multicitedelim
	\supercitedelim
	\compcitedelim
	\textcitedelim
	\nametitledelim
	\nameyeardelim
	\labelalphaothers
	\sortalphaothers
	\prenotedelim
	\postnotedelim
	\mkbibnamelast
	\mkbibnamefirst
	\mkbibnameprefix
	\mkbibnameaffix
	\relatedpunct
	\relateddelim

	Language-specific Commands
	\bibrangedash
	\bibrangessep
	\bibdatedash
	\mkbibdatelong
	\mkbibdateshort
	\finalandcomma
	\finalandsemicolon
	\mkbibordinal
	\mkbibmascord
	\mkbibfemord
	\mkbibneutord
	\mkbibordedition
	\mkbibordseries

	Lengths and Counters
	\bibhang
	\biblabelsep
	\bibitemsep
	\bibnamesep
	\bibinitsep
	\bibparsep
	abbrvpenalty
	highnamepenalty
	lownamepenalty

	All-purpose Commands
	\bibellipsis
	\noligature
	\hyphenate
	\hyphen
	\nbhyphen
	\nohyphenation
	\textnohyphenation
	\mknumalph
	\mkbibacro
	\autocap

	Language notes
	American
	Spanish
	smartand
	\forceE
	\forceY

	Greek
	Russian

	Usage Notes
	Overview
	Biber
	BibTeX

	Auxiliary Files
	Biber
	BibTeX

	Multiple Bibliographies
	Subdivided Bibliographies
	Entry Sets
	Static entry sets
	Dynamic entry sets

	Data Containers
	Electronic Publishing Information
	External Abstracts and Annotations

	Hints and Caveats
	Usage with KOMA-Script Classes
	\ifkomabibtotoc
	\ifkomabibtotocnumbered

	Usage with the Memoir Class
	\ifmemoirbibintoc

	Page Numbers in Citations
	Name Parts and Name Spacing
	Bibliography Filters and Citation Labels
	Active Characters in Bibliography Headings
	Grouping in Reference Sections and Segments

	Author Guide
	Overview
	Bibliography Styles
	Bibliography Style Files
	\RequireBibliographyStyle
	\InitializeBibliographyStyle
	\DeclareBibliographyDriver
	\DeclareBibliographyAlias
	\DeclareBibliographyOption
	\DeclareEntryOption

	Bibliography Environments
	Bibliography Drivers
	Special Fields
	Generic Fields
	entrykey
	childentrykey
	datelabelsource
	entrytype
	childentrytype
	entrysetcount
	hash
	namehash
	fullhash
	pageref
	sortinit
	sortinithash
	clonesourcekey

	Fields for Use in Citation Labels
	labelalpha
	extraalpha
	labelname
	labelnumber
	prefixnumber
	labeltitle
	extratitle
	extratitleyear
	labelyear
	labelmonth
	labelday
	extrayear

	Date Component Fields
	day
	month
	year
	endday
	endmonth
	endyear
	origday
	origmonth
	origyear
	origendday
	origendmonth
	origendyear
	eventday
	eventmonth
	eventyear
	eventendday
	eventendmonth
	eventendyear
	urlday
	urlmonth
	urlyear
	urlendday
	urlendmonth
	urlendyear

	Citation Styles
	Citation Style Files
	\RequireCitationStyle
	\InitializeCitationStyle
	\OnManualCitation
	\DeclareCiteCommand
	\DeclareMultiCiteCommand
	\DeclareAutoCiteCommand

	Special Fields
	prenote
	postnote
	multiprenote
	multipostnote
	postpunct

	Data Interface
	Data Commands
	\printfield
	\printlist
	\printnames
	\printtext
	\printfile
	\printdate
	\printdateextra
	\printdatelabel
	\printdateextralabel
	\printurldate
	\printorigdate
	\printeventdate
	\indexfield
	\indexlist
	\indexnames
	\entrydata
	\entryset
	\DeclareFieldInputHandler
	\DeclareListInputHandler
	\DeclareNameInputHandler

	Formatting Directives
	\DeclareFieldFormat
	\DeclareListFormat
	\DeclareNameFormat
	\DeclareIndexFieldFormat
	\DeclareIndexListFormat
	\DeclareIndexNameFormat
	\DeclareFieldAlias
	\DeclareListAlias
	\DeclareNameAlias
	\DeclareIndexFieldAlias
	\DeclareIndexListAlias
	\DeclareIndexNameAlias

	Customization
	Related Entries
	Dynamic Modification of Data
	\DeclareSourcemap
	\maps
	\map
	\perdatasource
	\pertype
	\pernottype
	\step
	\DeclareStyleSourcemap
	\DeclareDriverSourcemap

	Data Model Specification
	\DeclareDatamodelEntrytypes
	\DeclareDatamodelFields
	\DeclareDatamodelEntryfields
	\DeclareDatamodelConstraints
	\constraint
	\constraintfieldsor
	\constraintfieldsxor
	\antecedent
	\consequent
	\constraintfield
	\ResetDatamodelEntrytypes
	\ResetDatamodelFields
	\ResetDatamodelEntryfields
	\ResetDatamodelConstraints

	Labels
	\DeclareLabelalphaTemplate
	\labelelement
	\field
	\literal
	\DeclareNolabel
	\nolabel
	\DeclareNolabelwidthcount
	\nolabelwidthcount

	Sorting
	\DeclareSortingScheme
	\sort
	\field
	\literal
	\citeorder
	\DeclareSortExclusion
	\DeclarePresort

	Bibliography List Filters
	\DeclareBiblistFilter
	\filter
	\filteror

	Controlling Name Initials Generation
	\DeclareNoinit
	\noinit

	Fine Tuning Sorting
	\DeclareNosort
	\nosort

	Special Fields
	\DeclareLabelname
	\DeclareLabeldate
	\DeclareLabeltitle

	Data Inheritance ('crossref')
	\DefaultInheritance
	\except
	\DeclareDataInheritance
	\inherit
	\noinherit
	\ResetDataInheritance

	Auxiliary Commands
	Data Commands
	\thefield
	\strfield
	\csfield
	\usefield
	\thelist
	\thename
	\savefield
	\savelist
	\savename
	\savefieldcs
	\savelistcs
	\savenamecs
	\restorefield
	\restorelist
	\restorename
	\clearfield
	\clearlist
	\clearname

	Stand-alone Tests
	\iffieldundef
	\iflistundef
	\ifnameundef
	\iffieldsequal
	\iflistsequal
	\ifnamesequal
	\iffieldequals
	\iflistequals
	\ifnameequals
	\iffieldequalcs
	\iflistequalcs
	\ifnameequalcs
	\iffieldequalstr
	\iffieldxref
	\iflistxref
	\ifnamexref
	\ifcurrentfield
	\ifcurrentlist
	\ifcurrentname
	\ifuseprefix
	\ifuseauthor
	\ifuseeditor
	\ifusetranslator
	\ifuse"name"
	\ifsingletitle
	\ifandothers
	\ifmorenames
	\ifmoreitems
	\iffirstinits
	\ifterseinits
	\ifentrytype
	\ifkeyword
	\ifentrykeyword
	\ifcategory
	\ifentrycategory
	\ifciteseen
	\ifentryseen
	\ifentryinbib
	\iffirstcitekey
	\iflastcitekey
	\ifciteibid
	\ifciteidem
	\ifopcit
	\ifloccit
	\iffirstonpage
	\ifsamepage
	\ifinteger
	\ifnumeral
	\ifnumerals
	\ifpages
	\iffieldint
	\iffieldnum
	\iffieldnums
	\iffieldpages
	\ifbibstring
	\ifbibxstring
	\iffieldbibstring
	\ifdriver
	\ifcapital
	\ifcitation
	\ifbibliography
	\ifnatbibmode
	\ifciteindex
	\ifbibindex
	\iffootnote
	citecounter
	uniquename
	uniquelist
	parenlevel

	Tests with \ifboolexpr and \ifthenelse
	\ifboolexpr
	\ifthenelse

	Miscellaneous Commands
	\newbibmacro
	\renewbibmacro
	\providebibmacro
	\usebibmacro
	\savecommand
	\restorecommand
	\savebibmacro
	\restorebibmacro
	\savefieldformat
	\restorefieldformat
	\savelistformat
	\restorelistformat
	\savenameformat
	\restorenameformat
	\ifbibmacroundef
	\iffieldformatundef
	\iflistformatundef
	\ifnameformatundef
	\usedriver
	\bibhypertarget
	\bibhyperlink
	\bibhyperref
	\ifhyperref
	\docsvfield
	\forcsvfield
	\MakeCapital
	\MakeSentenceCase
	\mkpageprefix
	\mkpagetotal
	\mkcomprange
	\mkfirstpage
	\rangelen
	\frangelen
	\DeclareNumChars
	\DeclareRangeChars
	\DeclareRangeCommands
	\DeclarePageCommands
	\NumCheckSetup
	\DeclareCaseLangs
	\BibliographyWarning
	\RequireBiber

	Punctuation
	Block and Unit Punctuation
	\newblock
	\newunit
	\finentry
	\setunit
	\printunit
	\setpunctfont
	\resetpunctfont

	Punctuation Tests
	\ifpunct
	\ifterm
	\ifpunctmark

	Adding Punctuation
	\adddot
	\addcomma
	\addsemicolon
	\addcolon
	\addperiod
	\addexclam
	\addquestion
	\isdot
	\nopunct

	Adding Whitespace
	\unspace
	\addspace
	\addnbspace
	\addthinspace
	\addnbthinspace
	\addlowpenspace
	\addhighpenspace
	\addlpthinspace
	\addhpthinspace
	\addabbrvspace
	\addabthinspace
	\adddotspace
	\addslash

	Configuring Punctuation and Capitalization
	\DeclareAutoPunctuation
	\DeclareCapitalPunctuation
	\DeclarePunctuationPairs
	\DeclareQuotePunctuation
	\uspunctuation
	\stdpunctuation

	Correcting Punctuation Tracking
	\bibsentence
	\midsentence

	Localization Strings
	\bibstring
	\biblstring
	\bibsstring
	\bibcpstring
	\bibcplstring
	\bibcpsstring
	\bibucstring
	\bibuclstring
	\bibucsstring
	\biblcstring
	\biblclstring
	\biblcsstring
	\bibxstring
	\bibxlstring
	\bibxsstring
	\mainlang

	Localization Modules
	Localization Commands
	\DeclareBibliographyStrings
	\InheritBibliographyStrings
	\DeclareBibliographyExtras
	\UndeclareBibliographyExtras
	\InheritBibliographyExtras
	\DeclareHyphenationExceptions
	\DeclareRedundantLanguages
	\DeclareLanguageMapping
	\NewBibliographyString

	Localization Keys
	Headings
	Roles, Expressed as Functions
	Concatenated Editor Roles, Expressed as Functions
	Concatenated Translator Roles, Expressed as Functions
	Roles, Expressed as Actions
	Concatenated Editor Roles, Expressed as Actions
	Concatenated Translator Roles, Expressed as Actions
	Roles, Expressed as Objects
	Supplementary Material
	Publication Details
	Publication State
	Pagination
	Types
	Miscellaneous
	Labels
	Citations
	Month Names
	Language Names
	Country Names
	Patents and Patent Requests

	Formatting Commands
	User-definable Commands and Hooks
	\bibnamedelima
	\bibnamedelimb
	\bibnamedelimc
	\bibnamedelimd
	\bibnamedelimi
	\bibinitperiod
	\bibinitdelim
	\bibinithyphendelim
	\bibindexnamedelima
	\bibindexnamedelimb
	\bibindexnamedelimc
	\bibindexnamedelimd
	\bibindexnamedelimi
	\bibindexinitperiod
	\bibindexinitdelim
	\bibindexinithyphendelim
	\revsdnamepunct
	\bibnamedash
	\labelnamepunct
	\subtitlepunct
	\intitlepunct
	\bibpagespunct
	\bibpagerefpunct
	\multinamedelim
	\finalnamedelim
	\revsdnamedelim
	\andothersdelim
	\multilistdelim
	\finallistdelim
	\andmoredelim
	\multicitedelim
	\supercitedelim
	\compcitedelim
	\textcitedelim
	\nametitledelim
	\nameyeardelim
	\volcitedelim
	\prenotedelim
	\postnotedelim
	\mkbibnamelast
	\mkbibnamefirst
	\mkbibnameprefix
	\mkbibnameaffix
	\relatedpunct
	\relateddelim

	Language-specific Commands
	\bibrangedash
	\bibdatedash
	\mkbibdatelong
	\mkbibdateshort
	\finalandcomma
	\finalandsemicolon
	\mkbibordinal
	\mkbibmascord
	\mkbibfemord
	\mkbibneutord
	\mkbibordedition
	\mkbibordseries

	User-definable Lengths and Counters
	\bibhang
	\biblabelsep
	\bibitemsep
	\bibparsep
	abbrvpenalty
	lownamepenalty
	highnamepenalty
	biburlnumpenalty
	biburlucpenalty
	biburllcpenalty

	Auxiliary Commands and Hooks
	\mkbibemph
	\mkbibitalic
	\mkbibbold
	\mkbibquote
	\mkbibparens
	\mkbibbrackets
	\bibopenparen
	\bibopenbracket
	\mkbibfootnote
	\mkbibfootnotetext
	\mkbibendnote
	\mkbibendnotetext
	\bibfootnotewrapper
	\bibendnotewrapper
	\mkbibsuperscript
	\mkbibmonth
	\mkdatezeros
	\stripzeros
	shorthandwidth
	"labelfield"width
	labelnumberwidth
	labelalphawidth
	bibhyperref
	bibhyperlink
	bibhypertarget
	volcitepages
	volcitevolume
	date
	datelabel
	urldate
	origdate
	eventdate

	Auxiliary Lengths, Counters, and Other Features
	\shorthandwidth
	\"labelfield"width
	\labelnumberwidth
	\labelalphawidth
	maxextraalpha
	maxextrayear
	refsection
	refsegment
	maxnames
	minnames
	maxitems
	minitems
	instcount
	citetotal
	citecount
	multicitetotal
	multicitecount
	listtotal
	listcount
	liststart
	liststop
	\currentfield
	\currentlist
	\currentname

	General Purpose Hooks
	\AtBeginBibliography
	\AtBeginShorthands
	\AtBeginBiblist
	\AtEveryBibitem
	\AtEveryLositem
	\AtEveryBiblistitem
	\AtNextBibliography
	\AtEveryCite
	\AtEveryCitekey
	\AtEveryMultiCite
	\AtNextCite
	\AtNextCitekey
	\AtNextMultiCite
	\AtDataInput
	\UseBibitemHook
	\UseEveryCiteHook
	\UseEveryCitekeyHook
	\UseEveryMultiCiteHook
	\UseNextCiteHook
	\UseNextCitekeyHook
	\UseNextMultiCiteHook
	\DeferNextCitekeyHook

	Hints and Caveats
	Entry Sets
	Electronic Publishing Information
	External Abstracts and Annotations
	Name Disambiguation
	Individual Names ('uniquename')
	Lists of Names ('uniquelist')

	Trackers in Floats and TOC/LOT/LOF
	Mixing Programming Interfaces
	Using the Punctuation Tracker
	The Basics
	Common Mistakes
	Advanced Usage

	Custom Localization Modules
	Grouping
	Namespaces

	Appendix
	Default Driver Source Mappings
	'bibtex'
	'endnotexml'
	'ris'
	'zoterordfxml'

	Default Inheritance Setup
	Default Sorting Schemes
	Alphabetic 1
	Alphabetic 2
	Chronological

	Option Scope
	Revision History
	3.1 (2015-09)
	3.0 (2015-04-20)
	2.9a (2014-06-25)
	2.9 (2014-02-25)
	2.8a (2013-11-25)
	2.8 (2013-10-21)
	2.7a (2013-07-14)
	2.7 (2013-07-07)
	2.6 (2013-04-30)
	2.5 (2013-01-10)
	2.4 (2012-11-28)
	2.3 (2012-11-01)
	2.2 (2012-08-17)
	2.1 (2012-08-01)
	2.0 (2012-07-01)

