
The bashful Package∗

Yossi Gil†

Department of Computer Science

The Technion—Israel Institute of Technology

Technion City, Haifa 32000, Israel

2011/02/28‡

Abstract

It is sometimes useful to “escape-to-shell” from within LATEX. The most
obvious application is when the document explains something about the
working of a computer program. Your text would be more robust to changes,
and easier to write, if all the examples it gives, are run directly from within
LATEX.

To facilitate this and other applications, package bashful provides a con-
venient interface to TEX’s primitive \write18—the execution of shell com-
mands from within your input files, also known as shell escape. Text between
\bash and \END is executed by the bash, a popular Unix command line in-
terpreter. Various flags control whether the executed commands and their
output show up in the printed document, and whether they are saved to
files.

Although provisions are made for using shells other than bash, this package
may not operate without modifications on Microsoft’s operating systems.

∗This work may be distributed and/or modified under the conditions of the GNU GENERAL
PUBLIC LICENSEhttp://www.gnu.org/licenses/gpl.html. The latest version of this license is
in http://www.latex-project.org/lppl.txt and version 1.3 or later is part of all distributions
of LATEX version 2005/12/01 or later. This work has the LPPL maintenance status ‘maintained’.
The Current Maintainer of this work is Yossi Gil. This work consists of the files bashful.tex

and bashful.sty and the derived file bashful.pdf
†mailto:yogi@cs.Technion.ac.IL
‡This document describes bashful V 0.91.

1

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://www.latex-project.org/lppl.txt
mailto:yogi@cs.Technion.ac.IL

Contents

1 Introduction 2

2 An Easy to Digest Example 4
2.1 A “Hello, World” Program . 4

2.1.1 Authoring . 4
2.1.2 Compiling . 5
2.1.3 Executing . 5

2.2 Behind the Scenes . 5
2.2.1 Authoring . 5
2.2.2 Compiling . 6
2.2.3 Executing . 6

3 Dealing with Shell Command Errors 6

4 Customization 10
4.1 Options . 10
4.2 Listings Styles . 10

4.2.1 Listings Style for Script File 10
4.2.2 Listings Style for Standard Output 11

5 Interaction with Other Packages 11

6 History 11

7 Future 11

8 Acknowledgments 12

A Source of bashful.sty 12

B Source of the Current Document 16

1 Introduction

At the time I run this document through LATEX, the temperature in Jerusalem,
Israel, was 14 ◦C, while the weather condition was cloudy .

You may not care so much about these bits of truly ephemeral information, but
you may be surprised that they were produced by the very process of LATEXing.

How did I do that? Well, the first step was to write a series of shell commands
that retrieve the current temperature, and another such series to obtain the current
weather conditions. This task required connection to Google’s weather service and
minimal dexterity with Unix pipes and filters to process the output. My command
series to obtain the current temperature was:

2

http://www.Google.com/support/forum/p/apps-apis/thread?tid=0c95e45bd80def1a&hl=en

location=Jerusalem ,Israel

server ="http :// www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep temp_c |\

sed ’s/[^0 -9]//g’

while the weather condition was obtained by

location=Jerusalem ,Israel

server ="http :// www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep "condition data" |\

head -n 1 |\

sed -e ’s/^.*="// ’ -e ’s/"\/*// ’ |\

tr ’A-Z’ ’a-z’

The second step was coercing LATEX to run these commands while processing
this file. To do that, I wrapped these two series within a \bash. . . \END pair. The
\bash command, offered by this package, takes all subsequent lines, stopping at
the closing \END, places these in a file, and then lets the bash shell interpreter
execute this file.

Allowing LATEX to run arbitrary shell commands can be dangerous—you never
know whether that nice looking tex file you received by email was prepared by
a friend or a foe. This is the reason that you have to tell LATEX explicitly that
shell escapes are allowed. The -shell-esc does that. Processing this file was thus
done by executing, at the command line,

% latex -shell-escape bashful.tex

What I actually wrote in my .tex file to produce the temperature in Jerusalem,
Israel was:

\bash[verbose,scriptFile=temperature.sh,stdoutFile=temperature.tex]

location=Jerusalem ,Israel

server ="http :// www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep temp_c |\

sed ’s/[^0 -9]//g’

\END

The flags passed to above to the bash control sequence instructed it:

3

1. to be verbose, typing out a detailed log of everything it did;

2. to save the shell commands in a script file named temperature.sh; and,

3. to store the standard output of the script in a file named temperature.tex.

To obtain the current weather condition in the capital I wrote:

\bash[verbose,scriptFile=condition.sh,stdoutFile=condition.tex]

location=Jerusalem ,Israel

server ="http :// www.Google.com/ig/api"

request =" $server?weather=$location"

wget -q -O - $request |\

tr "<>" "\012\012" |\

grep "condition data" |\

head -n 1 |\

sed -e ’s/^.*="// ’ -e ’s/"\/*// ’ |\

tr ’A-Z’ ’a-z’

\END

I wrote these two just after my \begin{document}. When LATEX encountered
these, it executed the bash commands and created two files temperature.tex and
condition.tex.

Subsequently, I could use the content of these files by writing:

At the time I run this document through \LaTeX{},

the temperature in Jerusalem, Israel,

was~\emph{\input{temperature.tex}\celsius},

while the weather condition was \emph{\input{condition}}\unskip.

2 An Easy to Digest Example

If you were intimidated by technicalities of the above description, let’s try another
example that might be easier to digest.

I will start by telling a simple story of writing, compiling and executing and
a simple program. Then, I will explain how I used the \bash command to not
only tell a story, but also to play it live: that is, authoring a simple C program,
compiling it and executing it, all from within LATEX.

2.1 A “Hello, World” Program

2.1.1 Authoring

Let’s first write a simple Hello, World! program in the C programming language:

4

http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikipedia.org/wiki/C_(programming_language)

% rm -f hello.c; cat << EOF > hello.c

/*

** hello.c: My first C program; it prints

** "Hello , World!", and dies.

*/

#include <stdio.h>

int main()

{

printf ("Hello , World!\n");

return 0;

}

EOF

2.1.2 Compiling

Now, let’s compile this program:

% cc hello.c

2.1.3 Executing

Finally, we can execute this program, and see that indeed, it prints the “Hello,
World!” string.

% ./a.out

Hello , World!

2.2 Behind the Scenes

2.2.1 Authoring

What I wrote in the input to produce the hello.c program was:

\bash[list]

rm -f hello.c; cat << EOF > hello.c

/*

** hello.c: My first C program; it prints

** "Hello, World!", and dies.

*/

#include <stdio.h>

5

int main()

{

printf("Hello, World!\n");

return 0;

}

EOF

\END

In doing so, all the text between the \bash and \END was sent to a temporary file,
which was then sent to the bash bash shell for execution. The list flag instructed
\bash to list this file in the main document. This listing was prefixed with % to
make it clear that it was input to bash.

2.2.2 Compiling

Next, I wrote

\bash[list]

cc hello.c

\END

As before, in doing that, I achieved two objectives: first, when LATEX processed
the input, it also invokes the C compiler to compile file hello.c, the file which
I just created. Second, thanks to the list flag, the command for compiling this
program was included in the printed version of this document. Thanks to the
stdout option, plain messages, i.e., not error messages, produced by the compiler
would show on the printed version of this document. In this case, no such messages
were produced.

2.2.3 Executing

Finally, I wrote

\bash[list,stdout]

./a.out

\END

to run the program I just wrote. The stdout adds to my listing the output
that this execution produces, i.e., the string Hello, World! that this execution
produces to the standard output.

3 Dealing with Shell Command Errors

Using bashful to demonstrate my Hello, World! program, made sure that the
story I told is accurate: I really did everything I said I did. More accurately, the

6

\bash command acted as my proxy, and did it for me.

Luckily, my hello.c program was correct. But, if it was not, the \bash com-
mand would have detected the error, and would have stopped the LATEX process,
indicating that the compilation did not succeed. More specifically, the \bash

command

1. collects all commands up to \END;

2. places these commands in a script file;

3. executes this script file, redirecting its standard output and its standard
error streams to distinct files;

4. checks whether the exit code of the execution indicates an error (i.e., exit
code which is different from 0), and if so, appends this exit code to the file
containing the standard error;

5. checks whether the file containing the standard error is empty, and if not,
pauses execution after displaying an error message;

6. lists, if requested to, the script file; and,

7. lists, if requested to, the file containing the standard output.

Let me demonstrate a situation in which the execution of the script generates an
error. To do that, I will write a short LATEX file, named minimal.tex which tries
to use \bash to compile an incorrect C program. Since minimal.tex contains
\END, I will have to author this file in three steps:

1. Creating the header of minimal.tex:

% cat << EOF > minimal.tex

\documentclass{minimal}

\usepackage{bashful}

\begin{document}

\bash

echo "main (){ return int ;}" > error.c

cc error.c

EOF

2. Adding \END to minimal.tex

% echo "\\END" >> minimal.tex

3. Finalizing minimal.tex

% echo "\\end{document }" >> minimal.tex

7

Let me now make sure minimal.tex was what I expect it to be:

% cat minimal.tex

\documentclass{minimal}

\usepackage{bashful}

\begin{document}

\bash

echo "main (){ return int ;}" > error.c

cc error.c

\END

\end{document}

I am now ready to run minimal.tex through LATEX, but since I will not run
the latex command myself, I will make sure a q character is sent to it when the
anticipated error occurs.

8

% yes x | latex -shell -esc minimal.tex

This is pdfTeX , Version 3.1415926 -1.40.11 (TeX Live 2010)

\write18 enabled.

entering extended mode

(./ minimal.tex

LaTeX2e <2009/09/24 >

Babel <v3.8l> and hyphenation patterns for english , dumylang , nohyphenation , ge

rman -x-2009-06-19, ngerman -x-2009-06-19, afrikaans , ancientgreek , ibycus , arabi

c, armenian , basque , bulgarian , catalan , pinyin , coptic , croatian , czech , danis

h, dutch , ukenglish , usenglishmax , esperanto , estonian , ethiopic , farsi , finnis

h, french , galician , german , ngerman , swissgerman , monogreek , greek , hungarian ,

icelandic , assamese , bengali , gujarati , hindi , kannada , malayalam , marathi , or

iya , panjabi , tamil , telugu , indonesian , interlingua , irish , italian , kurmanji ,

lao , latin , latvian , lithuanian , mongolian , mongolianlmc , bokmal , nynorsk , pol

ish , portuguese , romanian , russian , sanskrit , serbian , slovak , slovenian , spani

sh , swedish , turkish , turkmen , ukrainian , uppersorbian , welsh , loaded.

(/usr/local/texlive /2010/ texmf -dist/tex/latex/base/minimal.cls

Document Class: minimal 2001/05/25 Standard LaTeX minimal class

) (./ bashful.sty

(/usr/local/texlive /2010/ texmf -dist/tex/latex/listings/listings.sty

(/usr/local/texlive /2010/ texmf -dist/tex/latex/graphics/keyval.sty)

(/usr/local/texlive /2010/ texmf -dist/tex/latex/listings/lstmisc.sty)

(/usr/local/texlive /2010/ texmf -dist/tex/latex/listings/listings.cfg))

(/usr/local/texlive /2010/ texmf -dist/tex/latex/xkeyval/xkeyval.sty

(/usr/local/texlive /2010/ texmf -dist/tex/generic/xkeyval/xkeyval.tex)))

(./ minimal.aux)bash minimal.sh exit code was 0

!

Error(s) executing minimal.sh. Here is how

file minimal.stderr begins:

error.c: In function m a i n :

but , you really ought to examine this file yourself.

\checkStderr@BL ... to examine this file yourself}

\please \examine \stderr ...

l.7 \END

? No pages of output.

Transcript written on minimal.log.

You can see that when LATEX tried to process minimal.tex, it stopped execution
while indicating that file minimal.stderr was not empty after the compilation.
The first line of minimal.stderr was displayed, and I was advised to examine this
file myself. Inspecting minimal.stderr, we see the C compiler error messages:

9

% cat minimal.stderr

error.c: In function m a i n :

error.c:1: error: expected expression before i n t

4 Customization

4.1 Options

Options to \bash are passed using the xkeyval syntax:

scriptFile = 〈fileName〉 \jobname.sh
Name of file into which the script instructions are spilled prior to execution. The
default is \jobname.sh; this file will be reused by all \bash commands in your
documents. This is rarely a problem, since these scripts execute sequentially.

stdoutFile = 〈fileName〉 \jobname.stdout
Name of file into which the shell standard output stream is redirected.

stderrFile = 〈fileName〉 \jobname.stderr
Name of file into which the shell standard error stream is redirected.

list = 〈true/false〉 false

If true, the content of scriptFile is listed in the main document.

stdout = 〈true/false〉 false

If true, the content of stdoutFile is listed in the main document. If both list

and stdout are true, then scriptFile is listed first, and leaving no vertical space,
stdoutFile is listed next.

prefix = 〈tokens〉 %

String that prefixes the listing of scriptFile.

verbose = 〈true/false〉 false

If true, the package logs every step it takes.

4.2 Listings Styles

Package listing is used for all listing both the executed shell commands and their
output.

4.2.1 Listings Style for Script File

Style bashfulList is used for displaying the executed shell commands (when
option list is used). The current definition of this style is:

\lstdefinestyle{bashfulList}{

basicstyle=\ttfamily,

10

ftp://ftp.tex.ac.uk/tex-archive/macros/latex/contrib/listings/listings.pdf

showstringspaces=false}

Redefine this style to match your needs.

4.2.2 Listings Style for Standard Output

Style bashfulStdout is used for displaying the output of the executed shell com-
mands (when option stdout is used). The current definition is:

\lstdefinestyle{bashfulStdout}{

basicstyle=\sl\ttfamily,

showstringspaces=false

}

Redefine this style to match your needs.

5 Interaction with Other Packages

This packages tries to work around a bug in polyglossia by which \texttt is
garbled upon switching to languages which do not use the Latin alphabet. Also, in
case bidirectional TEXing is in effect, bashful forces the listing to be left-to-right.

6 History

Version 0.91 Initial release

7 Future

The following may get implemented some day.

1. Package options. Currently all options are passed to the command itself.

2. A clean option. This option will automatically erase files generated for
storing the script, and its standard output and standard error streams.

3. A noclobber option. This option will make this package safer, by reducing
the risk of accidentally erasing existing files.

4. A ignoreExitCode option. When true \bash will consider an execution
correct even if its exit code is not 0.

5. A ignoreStderr option. When true \bash will consider an execution cor-
rect even if produces output to the standard error stream.

11

8 Acknowledgments

The manner by which \bash collects its arguments is based on that of tobiShell.
Martin Scharrer tips on TEX internals were invaluable.

A Source of bashful.sty

% Copyright (C) 2011 by Yossi Gil yogi@cs.technion.ac.il
% ---
% This work may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3 of this license or
% (at your option) any later version. The latest version of this license is in
% http ://www.latex -project.org/lppl.txt and version 1.3 or later is part of all
% distributions of LaTeX version 2005/12/01 or later.

8 %
% This work has the LPPL maintenance status ‘maintained ’.
%
% The Current Maintainer of this work is Yossi Gil.
%
% This work consists of the files bashful.tex and bashful.sty and the derived
% bashful.pdf

\NeedsTeXFormat{LaTeX2e }%

18 % Auxiliary identification information
\newcommand\date@bashful {2011/02/28}%
\newcommand\version@bashful{V 0.91}%
\newcommand\author@bashful{Yossi Gil}%
\newcommand\mail@bashful{yogi@cs.technion.ac.il}%
\newcommand\signature@bashful {%

bashful \version@bashful {} by
\author@bashful {} \mail@bashful

}%

28 % Identify this package
\ProvidesPackage{bashful }[\ date@bashful {} \signature@bashful:

Write and execute a bash script within LaTeX , with , or
without displaying the script and/or its output.

]
\PackageInfo{bashful }{This is bashful , \signature@bashful }%

% Use listing to display bash scripts.
\RequirePackage{listings }%

% listings style for the script , can be redefined by client
38 \lstdefinestyle{bashfulList }{

basicstyle =\ttfamily ,
showstringspaces=false }%

% listings style for the stdoutFile , can be redefined by client
\lstdefinestyle{bashfulStdout }{

basicstyle =\sl\ttfamily ,
showstringspaces=false

}%

% Use xkeyval for retrieving parameters
48 \RequirePackage{xkeyval }%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Keys in alphabetical order:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% environment: String = \BL@environment: Which environment should we wrap the listings
\def\BL@environment{none@BL }%
\define@cmdkey{bashful }[BL@]{ environment }{}%

12

http://www.tn-home.de/Tobias/Soft/TeX/tobiShell.pdf

\newenvironment{none@BL }{}{} % Default , empty environment for wrapping the listings
58

% scriptFile: String = Where should the listed script be saved?
\def\BL@scriptFile {\ jobname.lsh}%
\define@cmdkey{bashful }[BL@]{ scriptFile }{}%

% list: Boolean = \ifBL@list: Should we list the script we generate?
\define@boolkey{bashful }[BL@]{list}[true]{}%

% prefix: String = \BL@prefix: What prefix should be printed before a listing.
\def\BL@prefix {\ @percentchar\space}%

68 \define@cmdkey{bashful }[BL@]{ prefix }{}%

% shell: String = \BL@shell: Which shell should be used for execution?
\def\BL@shell{bash}%
\define@cmdkey{bashful }[BL@]{ shell }{}%

% scriptFile: String = \BL@scriptFile: Where should the script be saved?
\def\BL@scriptFile {\ jobname.sh}%
\define@cmdkey{bashful }[BL@]{ scriptFile }{}%

78 % stderrFile: String = \BL@stderrFile: Where should the standard error be saved?
\def\BL@stderrFile {\ jobname.stderr }%
\define@cmdkey{bashful }[BL@]{ stderrFile }{}%

% stdout: Boolean = \ifBL@stdout: Should we list the standard output?
\define@boolkey{bashful }[BL@]{ stdout }[true]{}%

% stdoutFile: String = \BL@stdoutFile: Where should the standard output be saved?
\def\BL@stdoutFile {\ jobname.stdout }%
\define@cmdkey{bashful }[BL@]{ stdoutFile }{}%

88
% verbose: Boolean = \ifBL@verbose: Log every step we do
\define@boolkey{bashful }[BL@]{ verbose }[true]{}%

% \bash: the main command we define. It chains to \bashI which chains to
% \bashII , etc.
\begingroup

\catcode ‘\^^M\active%
\gdef\bash{%

\log@BL{Beginning a group so that all cat code changes are local }%
98 \begingroup%

\log@BL{Making \^\^M a true newline }%
\catcode ‘\^^M\active%
\def^^M{^^J}%

\log@BL{Checking for optional arguments }%
\@ifnextchar [\bashI{\bashI []}%

}%
\endgroup

% \bashI: Process the optional arguments and continue
108 \def\bashI [#1]{%

\setKeys@BL {#1}%
\bashII% And , continue processing.

}%

% \bashII: Set category codes of all to special , and proceed.
\begingroup

\catcode ‘\^^M\active%
\gdef\bashII {%

\log@BL{bashII: Making ^^M a true new line}%
118 \catcode ‘\^^M\active%

\def^^M{^^J}%
\log@BL{bashII: Making all characters other}%
\let\do\@makeother%
\dospecials%
\bashIII%

}%

13

\endgroup

% \bashIII: Consume all tokens until \END (but ignoring the preceding and
128 % terminating newline), and proceed.

\begingroup
\catcode ‘\@=0\ relax
\catcode ‘\^^M\active
@catcode ‘@\=12 @relax%
@gdef@bashIII ^^M#1^^M\END{@bashIV {#1}} @relax%

@endgroup

% \bashIV: Process the tokens by storing them in a script file , executing this
% file , listing it if required , and presenting the standard output if required.

138 \newcommand\bashIV [1]{%
\generateScriptFile@BL {#1}\ relax

\executeScriptFile@BL
\checkStderr@BL
\listScript@BL {#1}\ relax%
\listStdout@BL
\log@BL{Ending group so that all cat codes changes disappear }\relax%
\endgroup

}%

148 \def\setKeys@BL #1{%
\log@BL{Processing key=val pairs in options string [#1]}\ relax
\setkeys{bashful }{#1}%

}%

% Store the list of tokens in the first argument into our script file
\newcommand\generateScriptFile@BL [1]{%

\storeToFile@BL {#1}{\ BL@scriptFile }%
}%

158 \newwrite\writer@BL
% Store the list of tokens in the first argument into the file given
% in the second argument
\newcommand\storeToFile@BL [2]{%

\log@BL{Creating file #2 :=^^J#1^^J}%
\immediate\openout\writer@BL #2
\immediate\write\writer@BL {#1}%
\immediate\closeout\writer@BL

}%

168 % Execute the content of our script file.
\newcommand\executeScriptFile@BL {%

\def\command@BL {\ BL@shell\space\BL@scriptFile }%
\edef\command@BL {%

\BL@shell\space -c
"\ command@BL \space > \BL@stdoutFile \space2 > \BL@stderrFile \space

|| echo ’\command@BL ’ exit code was $? 2>>\BL@stderrFile "%
}%

\log@BL{Executing :^^J \command@BL }%
\immediate\write18 {\ command@BL }%

178 }%

\newread\reader@BL
% Issue an error if stderr is not empty
\newcommand\checkStderr@BL {%

\log@BL{Examining \BL@stderrFile }%
\begingroup
\newif\ifErrorsFound@\ErrorsFound@false
\log@BL{Opening \BL@stderrFile }%
\openin\reader@BL =\ BL@stderrFile\relax

188 \ifeof\reader@BL
\BL@verbosetrue
\log@BL{Strange ... \BL@stderrFile {} does not exist (probably bashful bug)}%
\log@BL{Switching to verbose mode}%

\else

14

\log@BL{Reading first line of \BL@stderrFile }%
\catcode ‘\^^M=5
\read\reader@BL to \firstErrorLine
\ifeof\reader@BL

\def\eoln{\par}
198 \ifx\firstErrorLine\eoln

\log@BL{File \BL@stderrFile\space is empty }%
\closein\reader@BL

\else
\log@BL{File \BL@stderrFile\space has one line [\ firstErrorLine]}%
\ErrorsFound@true
\closein\reader@BL

\fi
\else

\log@BL{File \BL@stderrFile\space has two lines or more}%
208 \ErrorsFound@true

\closein\reader@BL
\fi

\fi
\ifErrorsFound@

\log@BL{Issuing an error message since \BL@stderrFile\space was not empty}%
\let\please =\relax\let\examine =\relax\let\stderr =\relax
\errmessage {^^ JError(s) executing \BL@scriptFile. Here is how
^^Jfile \BL@stderrFile\space begins:
^^J\firstErrorLine

218 ^^Jbut , you really ought to examine this file yourself}
\please
\examine
\stderr

\else
\log@BL{Proceeding as usual since \BL@stderrFile {} is empty}%

\fi
\endgroup

}%

228 % List the content of the script file.
\newcommand\listScript@BL [1]{%

\ifBL@list {%
\log@BL{Prepending prefix [[\ BL@prefix]] to generate \BL@scriptFile }%
\storeToFile@BL {\ BL@prefix #1}{\ BL@scriptFile }%

\forceLTR@BL
\fixPolyglossiaBug@BL
\log@BL{Invoking \noexpand\lstinputlisting to list \BL@scriptFile }%
\ifBL@stdout

% trim bottom
238 \beginWrappingEnvironment@BL

\lstinputlisting[style=bashfulList ,belowskip =0pt]{\ BL@scriptFile }%
\else

\beginWrappingEnvironment@BL
\lstinputlisting[style=bashfulList]{\ BL@scriptFile }%
\endWrappingEnvironment@BL

\fi
}\else\relax\fi

}%

248 \def\beginWrappingEnvironment@BL {%
\expandafter\csname\BL@environment\endcsname

}%

\def\endWrappingEnvironment@BL {%
\expandafter\csname end\BL@environment\endcsname

}%

% Display the standard output of the execution
\newcommand\listStdout@BL {%

258 \ifBL@stdout {%
\log@BL{Listing stdout file \BL@stdoutFile }%

\forceLTR@BL

15

\fixPolyglossiaBug@BL
\log@BL{Invoking \noexpand\lstinputlisting to list \BL@stdoutFile }%

\ifBL@list % trim top
\lstinputlisting[style=bashfulStdout ,aboveskip =0pt]{\ BL@stdoutFile }%
\endWrappingEnvironment@BL

\else
\beginWrappingEnvironment@BL

268 \lstinputlisting[style=bashfulStdout]{\ BL@stdoutFile }%
\endWrappingEnvironment@BL

\fi
}\else\relax\fi

}%

\newcommand\fixPolyglossiaBug@BL {%
\log@BL{Trying to fix a Polyglossia package bug}%
\ifdefined\ttfamilylatin

\log@BL{Replacing \noexpand\ttfamily with \noexpand\ttfamilylatin }%
278 \let\ttfamily =\ ttfamilylatin

\log@BL{Replacing \noexpand\rmfamily with \noexpand\rmfamilylatin }%
\let\rmfamily =\ rmfamilylatin
\log@BL{Replacing \noexpand\sffamily with \noexpand\sffamilylatin }%
\let\sffamily =\ sffamilylatin
\log@BL{Replacing \noexpand\normalfont with \noexpand\normalfontlatin }%
\let\normalfont =\ normalfontlatin

\else
\log@BL{Polyglossia package probably not loaded }%
\relax

288 \fi
}%

\newcommand\forceLTR@BL {%
\log@BL{Making sure we are not in right -to-left mode}%
\ifdefined\setLTR

\log@BL{Command \noexpand\setLTR is defined , invoking it}%
\setLTR

\else
\log@BL{Command \noexpand\setLTR is not defined , we are probably LTR}%

298 \relax
\fi

}%

\newcommand\log@BL [1]{%
\ifBL@verbose

\typeout{L\the\inputlineno: #1}%
\else

\relax
\fi

308 }%

B Source of the Current Document
1 \documentclass{ltxdoc} % Process with xelatex -shell -escape

\usepackage{bashful}

\usepackage[colorlinks=true]{ hyperref}
\usepackage{gensymb}
\usepackage{graphicx}
\usepackage{metalogo}
\usepackage{xkvview}
\usepackage{xspace}
\usepackage{amsmath}

11

\newcommand\me{bashful}
\newcommand\bashful {\ textsf {\me}\ xspace}

\lstdefinestyle{input}{
basicstyle =\ttfamily ,

16

showstringspaces=false ,
aboveskip =0pt,
belowskip =0pt}%

21 \title{The \bashful Package\thanks{
This work may be distributed and/or modified under the conditions of the

\emph{GNU GENERAL PUBLIC LICENSE }{http ://www.gnu.org/licenses/gpl.html}.
The latest version of this license is in

\url{http ://www.latex -project.org/lppl.txt} and version 1.3 or later
is part of all distributions of \LaTeX{} version 2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained ’.
The Current Maintainer of this work is Yossi Gil.
This work consists of the files \texttt {\me.tex} and \texttt {\me.sty}

and the derived file
31 \texttt {\me.pdf}

}}

\author{Yossi Gil\thanks {\url{mailto:yogi@cs.Technion.ac.IL}}\\
\normalsize Department of Computer Science \\
\normalsize The Technion ---Israel Institute of Technology \\
\normalsize Technion City , Haifa 32000, Israel

}

\makeatletter
41 \date{\ date@bashful\thanks{

This document describes \bashful \version@bashful .}}
\makeatother

\begin{document}
\bash
cat << EOF > README
The bashful package , v 0.91

This package makes it possible to execute bash scripts from within LaTeX. The
51 main application is in writing computer -science texts , in which you want to

make sure the programs listed in the document are executed directly from the
input.

This package may be distributed and/or modified under the LaTeX Project Public
License , version 1.3 or higher (your choice). The latest version of this
license is at: http ://www.latex -project.org/lppl.txt

This work is author -maintained (as per LPPL maintenance status)
by Yossi Gil , <yogi@cs.Technion.ac.i>

61 EOF
\END

\maketitle

\begin{abstract}
\parindent 1.5ex
\parskip 0.5em

\sl
71 It is sometimes useful to ‘‘\emph{escape -to-shell}’’ from within

\LaTeX {}.
The most obvious application is when the document

explains something about the working of a computer program.
Your text would be more robust to changes , and easier to write ,

if all the examples it gives , are run directly from
within \LaTeX {}.

To facilitate this and other applications ,
package \bashful {} provides a convenient interface to \TeX ’s

81 primitive \verb+\ write18+---the execution of shell commands from within
your input files , also known as \emph{shell escape }.

Text between \verb+\bash+ and \verb+\END+ is executed by
the \href

17

{http ://en.wikipedia.org/wiki/Bash_ %28 Unix_shell %29}
{\ texttt{bash}},

a popular Unix command line interpreter.
Various flags control whether the executed commands and their output

show up in the printed document , and whether they are saved
to files.

91
Although provisions are made for using shells other

than \texttt{bash}, this package may \emph{not} operate without
modifications on Microsoft ’s operating systems.

\end{abstract}
\eject

\tableofcontents

\parindent 1.5ex
101 \parskip 0.5em

\section{Introduction}
\bash[verbose]
rm -f temperature.tex
rm -f condition.tex
\END

\bash[verbose ,scriptFile=temperature.sh ,stdoutFile=temperature.tex]
location=Jerusalem ,Israel

111 server ="http ://www.Google.com/ig/api"
request =" $server?weather=$location"
wget -q -O - $request |\
tr "<>" "\012\012" |\
grep temp_c |\
sed ’s/[^0 -9]//g’
\END

\bash[verbose ,scriptFile=condition.sh,stdoutFile=condition.tex]
location=Jerusalem ,Israel

121 server ="http ://www.Google.com/ig/api"
request =" $server?weather=$location"
wget -q -O - $request |\
tr "<>" "\012\012" |\
grep "condition data" |\
head -n 1 |\
sed -e ’s/^.*="// ’ -e ’s/"\/*// ’ |\
tr ’A-Z’ ’a-z’
\END

131 At the time I run this document through \LaTeX{},
the temperature in Jerusalem , Israel ,
was~\emph{\input{temperature.tex}\ celsius},
while the weather condition was \emph{\input{condition }}\ unskip.

You may not care so much about these bits of truly
ephemeral information ,

but you may be surprised that they were produced
by the very process of \LaTeX{}ing.

141 How did I do that? Well , the first step was to write
a series of shell commands that retrieve the current temperature ,
and another such series to obtain the current
weather conditions.

This task required connection to
\href{http ://www.Google.com/support/forum/p/apps -apis/thread?tid=0 c95e45bd80def1a&hl=en}%
{Google ’s weather service} and

minimal dexterity with Unix pipes and filters to process the output.
My command series to obtain the current temperature was:

151 \begin{minipage }{\ textwidth}
\begin{quote}

18

\lstinputlisting[style=input]{ temperature.sh}
\end{quote}
\end{minipage}

while the weather condition was obtained by

\begin{minipage }{\ textwidth}
\begin{quote}

161 \lstinputlisting[style=input]{ condition.sh}
\end{quote}
\end{minipage}

The second step was coercing \LaTeX{} to run these commands
while processing this file.

To do that , I wrapped these two series within
a \verb+\bash+\ldots\verb+\END+ pair.

The \verb+\bash+ command , offered by this package ,
takes all subsequent lines , stopping at the closing \verb+\END+,

171 places these in a file , and then
lets the \texttt{bash} shell interpreter execute this file.

Allowing \LaTeX{} to run arbitrary shell commands can be
dangerous ---you never know whether that nice looking \texttt{tex}
file you received by email was prepared by a friend or
a foe.

This is the reason that you have to tell \LaTeX{}
explicitly that shell escapes
are allowed.

181 The \texttt{-shell -esc} does that.
Processing this file was thus done by executing , at the command line ,
\begin{quote}

\tt
\% latex -shell -escape \jobname.tex

\end{quote}

What I actually wrote in my \texttt {.tex} file
to produce the temperature in

Jerusalem , Israel was:
191

\begin{minipage }{\ textwidth}
\begin{quote}
\noindent\verb+\bash[verbose ,scriptFile=temperature.sh,stdoutFile=temperature.tex]+
\lstinputlisting[style=input]{ temperature.sh}
\verb+\END +\\
\end{quote}
\end{minipage}

The flags passed to above to the \verb+bash+ control sequence instructed it:
201 \begin{enumerate}

\item to be verbose , typing out a detailed log of everything it did;
\item to save the shell commands in a script file named

\texttt{temperature.sh}; and ,
\item to store the standard output of the script in a file named

\texttt{temperature.tex}.
\end{enumerate}

To obtain the current weather condition in the capital I wrote:

211
\begin{minipage }{\ textwidth}
\begin{quote}
\noindent\verb+\bash[verbose ,scriptFile=condition.sh,stdoutFile=condition.tex]+
\lstinputlisting[style=input]{ condition.sh}
\verb+\END+
\end{quote}
\end{minipage}

I wrote these two just after my \verb+\begin{document }+.

19

221 When \LaTeX {} encountered these , it executed the bash commands and
created two files \texttt{temperature.tex} and \texttt{condition.tex}.

Subsequently , I could use the content of these files by writing:

\begin{quote}
\begin{verbatim}
At the time I run this document through \LaTeX{},

the temperature in Jerusalem , Israel ,
231 was~\emph{\input{temperature.tex}\ celsius},

while the weather condition was \emph{\input{condition }}\ unskip.
\end{verbatim}
\end{quote}

\section{An Easy to Digest Example}
If you were intimidated by technicalities of the

above description , let ’s try another example
that might be easier to digest.

241 I will start by telling a simple story
of writing , compiling and executing and

a simple program.
Then , I will explain how I used the \verb+\bash+

command to not only tell a story , but
also to play it live: that is, authoring
a simple~C program , compiling it and executing
it, all from within \LaTeX {}.

\subsection{A ‘‘Hello , World ’’ Program}
251

\subsubsection{Authoring}
Let ’s first write a simple

\href{http ://en.wikipedia.org/wiki/Hello_world_program}
{Hello , World !} program in the
\href{http ://en.wikipedia.org/wiki/C_(programming_language)}
{C programming language }:

\begin{quote}
\bash[verbose ,list]

261 rm -f hello.c; cat << EOF > hello.c
/*
** hello.c: My first C program; it prints
** "Hello , World!", and dies.
*/

#include <stdio.h>

int main()
{

271 printf ("Hello , World!\n");
return 0;

}
EOF
\END
\end{quote}

\subsubsection{Compiling}
Now , let ’s compile this program:
\begin{quote}

281 \bash[list ,stdout]
cc hello.c
\END
\end{quote}

\subsubsection{Executing}
Finally , we can execute this program ,

and see that indeed , it prints the ‘‘Hello , World!’’

20

string.
\begin{quote}

291 \bash[list ,stdout]
./a.out
\END
\end{quote}

\subsection{Behind the Scenes}
\subsubsection{Authoring}
What I wrote in the input to produce the

\texttt{hello.c} program was:
\begin{quote}

301 \begin{verbatim}
\bash[list]
rm -f hello.c; cat << EOF > hello.c
/*
** hello.c: My first C program; it prints
** "Hello , World!", and dies.
*/

#include <stdio.h>

311 int main()
{

printf ("Hello , World!\n");
return 0;

}
EOF
\END
\end{verbatim}
\end{quote}

321 In doing so, all the text between the \verb+\bash+
and \verb+\END+ was sent to a temporary file ,

which was then sent to the \texttt{bash}
bash shell for execution.

The \texttt{list} flag instructed \verb+\bash+
to list this file in the main document.

This listing was prefixed with \verb *+% +
to make it clear that it was input to \texttt{bash}.

\subsubsection{Compiling}
331 Next , I wrote

\begin{quote}
\begin{verbatim}
\bash[list]
cc hello.c
\END
\end{verbatim}
\end{quote}

As before , in doing that , I achieved two objectives:
341 first , when \LaTeX{} processed

the input , it also invokes the~C compiler to compile
file \texttt{hello.c}, the file which I just created.

Second , thanks to the \texttt{list} flag ,
the command for compiling this program
was included in the printed version of
this document.

Thanks to the \texttt{stdout} option ,
plain messages , i.e., not error messages ,
produced by the compiler would show on

351 the printed version of this document.
In this case , no such messages were produced.

\subsubsection{Executing}

21

Finally , I wrote
\begin{quote}
\begin{verbatim}
\bash[list ,stdout]

361 ./a.out
\END
\end{verbatim}
\end{quote}
to run the program I just wrote.
The \texttt{stdout} adds to my listing

the output that this execution produces , i.e.,
the string \texttt{Hello , World!} that this
execution produces to the standard output.

371 \section{Dealing with Shell Command Errors}
Using \bashful {} to demonstrate

my \emph{Hello , World!} program , made
sure that the story I told is accurate:

I really did everything I said I did.
More accurately , the \verb+\bash+ command

acted as my proxy , and did it for me.

Luckily , my \texttt{hello.c} program was
correct.

381 But , if it was not , the \verb+\bash+ command would have detected
the error , and would have stopped the \LaTeX{} process ,
indicating that the compilation did not succeed.

More specifically , the \verb+\bash+ command
\begin{enumerate}
\item collects all commands up to \verb+\END+;
\item places these commands in a script file;
\item executes this script file , redirecting its standard output

and its standard error streams to distinct files;
\item checks whether the exit code of the execution indicates an error

391 (i.e., exit code which is different from~0), and if so,
appends this exit code to the file containing the standard error;

\item checks whether the file containing the standard error is empty ,
and if not , pauses execution after displaying an error message;

\item lists , if requested to, the script file; and ,
\item lists , if requested to, the file containing the standard output.
\end{enumerate}

Let me demonstrate a situation in which the execution of
the script generates an error.

401 To do that , I will write a short \LaTeX{} file , named \texttt{minimal.tex}
which tries to use \verb+\bash+ to compile an incorrect~C program.

Since \texttt{minimal.tex} contains \verb+\END+,
I will have to author this file in three steps:

\begin{enumerate}
\item Creating the header of \texttt{minimal.tex}:
\bash[list]
cat << EOF > minimal.tex
\documentclass{minimal}
\usepackage{bashful}

411 \begin{document}
\bash
echo "main (){ return int;}" > error.c
cc error.c
EOF
\END
\item Adding \verb+\END+ to \texttt{minimal.tex}
\bash[list]
echo "\\ END" >> minimal.tex
\END

421 \item Finalizing \texttt{minimal.tex}
\bash[list]
echo "\\ end{document }" >> minimal.tex
\END

22

\end{enumerate}

Let me now make sure \texttt{minimal.tex} was what I expect it to be:

\begin{minipage }{\ textwidth}
\bash[list ,stdout]

431 cat minimal.tex
\END
\end{minipage}

I am now ready to run \texttt{minimal.tex} through \LaTeX{},
but since I will not run the \texttt{latex} command myself ,
I will make sure a \texttt{q} character is sent to it
when the anticipated error occurs.

\begin{minipage }{\ textwidth}
441 \lstdefinestyle{bashfulStdoutFile }{

showstringspaces=false ,
basicstyle =\ scriptsize\ttfamily ,

}%
\bash[list ,stdout]
yes x | latex -shell -esc minimal.tex
\END
\end{minipage}

You can see that when \LaTeX {} tried to process \texttt{minimal.tex},
451 it stopped execution while indicating that file

\texttt{minimal.stderr} was not
empty after the compilation. The first line of \texttt{minimal.stderr}
was displayed , and I was advised to examine this file myself.

Inspecting \texttt{minimal.stderr}, we see the C compiler error messages:

\begin{minipage }{\ textwidth}
\bash[list ,stdout]
cat minimal.stderr
\END

461 \end{minipage}

\section{Customization}

\subsection{Options}

Options to \verb+\bash+ are passed using the \textsf{xkeyval} syntax:

\newcommand\option [3]{%
\noindent \(

471 \text{\ bfseries\texttt {#1}}
=
\langle\text {{#2}}\ rangle

\)
\hfill\texttt {#3}\\}

\option{scriptFile }{\sl fileName }{\ textbackslash jobname.sh}
Name of file into which the script instructions are spilled prior

to execution.
481 The default is \verb+\ jobname.sh+; this file

will be reused by all \verb+\bash+ commands in your documents.
This is rarely a problem , since these scripts
execute sequentially.

\option{stdoutFile }{\sl fileName }{\ textbackslash jobname.stdout}
Name of file into which the shell standard output stream is

redirected.

491 \option{stderrFile }{\sl fileName }{\ textbackslash jobname.stderr}
Name of file into which the shell standard error stream is

23

redirected.

\option{list }{\ texttt{true }/\ texttt{false }}{\ texttt{false}}
If \texttt{true}, the content of \texttt{scriptFile}

is listed in the main document.

\option{stdout }{\ texttt{true }/\ texttt{false }}{\ texttt{false }}
If \texttt{true}, the content of \texttt{stdoutFile}

501 is listed in the main document.
If both \texttt{list} and \texttt{stdout} are

\texttt{true}, then \texttt{scriptFile} is listed
first , and leaving no vertical space ,
\texttt{stdoutFile} is listed next.

\option{prefix }{ tokens }{\ percentchar\textvisiblespace}
String that prefixes the listing of \texttt{scriptFile }.

\option{verbose }{\ texttt{true }/\ texttt{false }}{\ texttt{false}}
511 If \texttt{true}, the package logs every step it takes.

\subsection{Listings Styles}
Package

\href
{ftp://ftp.tex.ac.uk/tex -archive/macros/latex/contrib/listings/listings.pdf}
{\ textsf{listing }}

is used for all listing both the executed shell
commands and their output.

\subsubsection{Listings Style for Script File}
521

Style \verb+bashfulList+ is used for displaying the executed shell
commands (when option \texttt{list} is used).

The current definition of this style is:
\begin{verbatim}
\lstdefinestyle{bashfulList }{

basicstyle =\ttfamily ,
showstringspaces=false}

\end{verbatim}
Redefine this style to match your needs.

531
\subsubsection{Listings Style for Standard Output}

Style \verb+bashfulStdout+ is used for displaying the output of the
executed shell
commands (when option \texttt{stdout} is used).

The current definition is:
\begin{verbatim}

\lstdefinestyle{bashfulStdout }{
basicstyle =\sl\ttfamily ,

541 showstringspaces=false
}

\end{verbatim}
Redefine this style to match your needs.

\section{Interaction with Other Packages}
This packages tries to work around a bug in \texttt{polyglossia}

by which \verb+\ texttt+ is garbled upon
switching to languages which do not use the Latin alphabet.

Also , in case bidirectional \TeX{}ing is in effect ,
551 \bashful forces the listing to be left -to -right.

\section{History}
\begin{description}
\item[Version 0.91] Initial release
\end{description}

\section{Future}
The following may get implemented some day.

24

561
\begin{enumerate}
\item \emph{Package options .} Currently all options are

passed to the command itself.
\item \emph{A \texttt{clean} option .} This option

will automatically erase files
generated for storing the script , and its standard
output and standard error streams.

\item \emph{A \texttt{noclobber} option .} This option
571 will make this package safer , by reducing the risk

of accidentally erasing existing files.

\item \emph{A \texttt{ignoreExitCode} option .} When
\texttt{true} \verb+\bash+ will consider

an execution correct even if its exit code
is not 0.

\item \emph{A \texttt{ignoreStderr} option .} When
581 \texttt{true} \verb+\bash+ will consider

an execution correct even if produces
output to the standard error stream.

\end{enumerate}

\section{Acknowledgments}
The manner by which \verb+\bash+

collects its arguments is based on that of
\href
{http ://www.tn-home.de/Tobias/Soft/TeX/tobiShell.pdf}

591 {\ textsf{tobiShell }}.
Martin Scharrer tips on \TeX{} internals

were invaluable.

\appendix
\section{Source of \texttt {\ jobname.sty}}

\lstinputlisting
[style=input ,

basicstyle =\ scriptsize\ttfamily ,
numbers=left ,

601 stepnumber =10,
numberstyle =\ scriptsize\rmfamily\bfseries

]
{\ jobname.sty}

\section{Source of the Current Document}
\lstinputlisting

[style=input ,
basicstyle =\ scriptsize\ttfamily ,
numbers=left ,

611 stepnumber =10,
numberstyle =\ scriptsize\rmfamily\bfseries

]
{\ jobname.tex}

\end{document}

25

	Introduction
	An Easy to Digest Example
	A ``Hello, World'' Program
	Authoring
	Compiling
	Executing

	Behind the Scenes
	Authoring
	Compiling
	Executing

	Dealing with Shell Command Errors
	Customization
	Options
	Listings Styles
	Listings Style for Script File
	Listings Style for Standard Output

	Interaction with Other Packages
	History
	Future
	Acknowledgments
	Source of bashful.sty
	Source of the Current Document

