Providing some UTF-8 support via inputenc

David Carlisle Frank Mittelbach Chris Rowley*
v1.2f 2018/10/05 printed December 10, 2018

This file is maintained by the KTEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Contents

1 Introduction 2
1.1 Background and general stuff 000, 2
1.2 More specificstuff oo 2
1.3 Notes o e 3
1.4 Basic operation of thecode, 3

2 Coding 4
2.1 Housekeeping 4
2.2 Parsing UTF-8input 4
2.3 Mapping Unicode codes to ITEX internal forms 7
2.4 Loading Unicode mappings at begin document 12

3 Mapping characters —
based on font (glyph) encodings 13
3.1 About the table itself 0oL 13
3.2 The mapping table oo oo 14
3.3 Notes o e 25
3.4 Mappings for OT1 glyphs 26
3.5 Mappings for OMS glyphs 26
3.6 Mappings for TS1 glyphs L. 26
3.7 Mappings for latex.ltx glyphs 26

4 A test document 27

*Borrowing heavily from tables by Sebastian Rahtz; some table and code cleanup by Javier
Bezos

https://latex-project.org/bugs.html

1 Introduction

1.1 Background and general stuff

For many reasons what this package provides is a long way from any type of
‘Unicode compliance’.

In stark contrast to 8-bit character sets, with 16 or more bits it can easily be
very inefficient to support the full range.! Moreover, useful support of character
input by a typesetting system overwhelmingly means finding an acceptable vi-
sual representation of a sequence of characters and this, for IATEX, means having
available a suitably encoded 8-bit font.

Unfortunately it is not possible to predict exactly what valid UTF-8 octet
sequences will appear in a particular file so it is best to make all the unsupported
but valid sequences produce a reasonably clear and noticeable error message.

There are two directions from which to approach the question of what to load.
One is to specify the ranges of Unicode characters that will result in some sensible
typesetting; this requires the provider to ensure that suitable fonts are loaded and
that these input characters generate the correct typesetting via the encodings of
those fonts. The other is to inspect the font encodings to be used and use these
to define which input Unicode characters should be supported.

For Western European languages, at least, going in either direction leads to
many straightforward decisions and a few that are more subjective. In both cases
some of the specifications are TEX specific whilst most are independent of the
particular typesetting software in use.

As we have argued elsewhere, I¥TEX needs to refer to characters via ‘seven-bit-
text’ names and, so far, these have been chosen by reference to historical sources
such as Plain TEX or Adobe encoding descriptions. It is unclear whether this ad
hoc naming structure should simply be extended or whether it would be useful to
supplement it with standardised internal Unicode character names such as one or
more of the following:?

\1ltxutwochar <4 hex digits>

\1ltxuchar {<hex digits>}
BHURRR

\ltxueightchartwo <2 utf8 octets as 8-bit char tokens>
\1ltxueightcharthree <3 utf8 octets ...>
\1ltxueightcharfour <4 utf8 octets ...>

1.2 More specific stuff

In addition to setting up the mechanism for reading UTF-8 characters and spec-
ifying the I#TEX-level support available, this package contains support for some
default historically expected TEX-related characters and some example ‘Unicode
definition files’ for standard font encodings.

Mn fact, IATEX’s current 8-bit support does not go so far as to make all 8-bit characters into
valid input.
2Burkhard und Holger Mittelbach spielen mit mir! Sie haben etwas hier geschrieben.

1.3 Notes

This package does not support Unicode combining characters as TEX is not really
equipped to make this possible.

No attempt is made to be useful beyond Latin, and maybe Cyrillic, for Euro-
pean languages (as of now).

1.4 Basic operation of the code

The inputenc package makes the upper 8-bit characters active and assigns to all
of them an error message. It then waits for the input encoding files to change this
set-up. Similarly, whenever \inputencoding is encountered in a document, first
the upper 8-bit characters are set back to produce an error and then the definitions
for the new input encoding are loaded, changing some of the previous settings.

The 8-bit input encodings currently supported by inputenc all use declarations
such as \DeclareInputText and the like to map an 8-bit number to some IXTEX
internal form, e.g. to \"a.

The situation when supporting UTF-8 as the input encoding is different, how-
ever. Here we only have to set up the actions of those 8-bit numbers that can be
the first octet in a UTF-8 representation of a Unicode character. But we cannot
simply set this to some internal IATEX form since the Unicode character consists
of more than one octet; instead we have to define this starting octet to parse the
right number of further octets that together form the UTF-8 representation of
some Unicode character.

Therefore when switching to utf8 within the inputenc framework the charac-
ters with numbers (hex) from "C2 to "DF are defined to parse for a second octet
following, the characters from "EO to "EF are defined to parse for two more octets
and finally the characters from "FO to "F3 are defined to parse for three additional
octets. These additional octets are always in the range "80 to "B9.

Thus, when such a character is encountered in the document (so long as expan-
sion is not prohibited) a defined number of additional octets (8-bit characters) are
read and from them a unique control sequence name is immediately constructed.

This control sequence is either defined (good) or undefined (likely); in the latter
case the user gets an error message saying that this UTF-8 sequence (or, better,
Unicode character) is not supported.

If the control sequence is set up to do something useful then it will expand to
a IWTEX internal form: e.g. for the utf8 sequence of two octets "C3 "A4 we get
\"a as the internal form which then, depending on the font encoding, eventually
resolves to the single glyph ‘latin-a-umlaut’ or to the composite glyph ‘latin-a with
an umlaut accent’.

These mappings from (UTF-8 encoded) Unicode characters to IBTEX in-
ternal forms are made indirectly. —The code below provides a declaration
\DeclareUnicodeCharacter which maps Unicode numbers (as hexadecimal) to
TEX internal forms.

This mapping needs to be set up only once so it is done at \begin{document}
by looking at the list of font encodings that are loaded by the document and
providing mappings related to those font encodings whenever these are available.
Thus at most only those Unicode characters that can be represented by the glyphs
available in these encodings will be defined.

\UTFviii@two@octets
\UTFviii@three@octets
\UTFviii@four@octets

Technically this is done by loading one file per encoding, if available, that is
supposed to provide the necessary mapping information.

2 Coding

2.1 Housekeeping

The usual introductory bits and pieces:

1 (utf8)\ProvidesFile{ut£8.def}
2 (test)\ProvidesFile{utf8-test.tex}
3 (+lcy) \ProvidesFile{lcyenc.dfu}
4 (+lyl) \ProvidesFile{lylenc.dfu}
(+oms) \ProvidesFile{omsenc.dfu}
(4otl) \ProvidesFile{otlenc.dfu}
(4+ot2) \ProvidesFile{ot2enc.dfu}
(+t1) \ProvidesFile{tlenc.dfu}
(4+t2a) \ProvidesFile{t2aenc.dfu}
(+t2b) \ProvidesFile{t2benc.dfu}
(+t2c) \ProvidesFile{t2cenc.dfu}
12 (+tsl) \ProvidesFile{tslenc.dfu}
13 (+x2) \ProvidesFile{x2enc.dfu}
14 (+all) \ProvidesFile{utf8enc.dfu}
15 [2018/10/05 v1.2f UTF-8 support for inputenc]
16 (*utf8)
17 \makeatletter

We restore the \catcode of space (which is set to ignore in inputenc) while
reading .def files. Otherwise we would need to explicitly use \space all over the
place in error and log messages.

18 \catcode ‘\ \saved@space@catcode

2.2 Parsing UTF-8 input

A UTF-8 char (that is not actually a 7-bit char, i.e. a single octet) is parsed as fol-
lows: each starting octet is an active TEX character token; each of these is defined
below to be a macro with one to three arguments nominally (depending on the
starting octet). It calls one of \UTFviii@two@octets, \UTFviii@three@octets,
or \UTFviii@four@octets which then actually picks up the argument(s).

From the arguments a control sequence with a name of the form u8:#1#2. ..
is constructed where the #i (i > 1) are the arguments and #1 is the starting octet
(as a TEX character token). Since some or even all of these characters are active
(when inputenc is loaded) we need to use \string when building the csname.

The csname thus constructed can of course be undefined but to avoid producing
an unhelpful low-level undefined command error we pass it to \UTFviii@defined
which is responsible for producing a more sensible error message (not yet donel!).
If, however, it is defined we simply execute the thing (which should then expand
to an encoding specific internal IXTEX form).

19 \long\def\UTFviii@twoQoctets#1#2{\expandafter
20 \UTFviii@defined\csname u8:#1\string#2\endcsname}

21 \long\def\UTFviii@three@octets#1#2#3{\expandafter
22 \UTFviii@defined\csname u8:#1\string#2\string#3\endcsname}

23 \long\def\UTFviii@four@octets#1#2#3#4{\expandafter
24 \UTFviii@defined\csname u8:#1\string#2\string#3\string#4\endcsname}

\UTFviii@defined This tests whether its argument is different from \relax: it either calls for a
sensible error message (not done), or it gets the \fi out of the way (in case the
command has arguments) and executes it.

25 \def\UTFviii@defined#1{/,

26 \ifx#1\relax

Test if the sequence is invalid UTF-8 or valid UTF-8 but without a I TEX defini-
tion.

27 \if\relax\expandafter\UTFviii@checkseq\string#l\relax\relax

The endline character has a special definition within the inputenc package (it is
gobbling spaces). For this reason we can’t produce multiline strings without some

precaution.

28 \UTFviii@undefined@err{#1}/,

29 \else

30 \PackageError{inputenc}{Invalid UTF-8 byte sequencel}
31 \UTFviii@invalid®@help

32 \fi

33 \else\expandafter

34 #1%

35 \fi

36 }

\UTFviii@invalid@err
\UTFviii@invalidGhelp 37 \def\UTFviii@invalid@err#1{%

38 \PackageError{inputenc}{Invalid UTF-8 byte "\UTFviii@hexnumber{‘#1}}/,
39 \UTFviii@invalid@help}

40 \def\UTFviii@invalid@help{’,
41 The document does not appear to be in UTF-8 encoding.\MessageBreak
42 Try adding \noexpand\UseRawInputEncoding as the first line of the file\MessageBreak

43 or specify an encoding such as \noexpand\usepackage[latinl]{inputenc}\MessageBreak
44 in the document preamble.\MessageBreak
45 Alternatively, save the file in UTF-8 using your editor or another tool}

\UTFviii@undefined@err

46 \def\UTFviii@undefined@err#1{}
47 \PackageError{inputenc}{Unicode character \expandafter

48 \UTFviii@splitcsname\string#1\relax

49 \MessageBreak

50 not set up for use with LaTeX1}/

51 {You may provide a definition with\MessageBreak
52 \noexpand\DeclareUnicodeCharacter}’

53}

\UTFviii@checkseq Check that the csname consists of a valid UTF-8 sequence.

\UTFviiiQcheckQ@continue 54 \def\UTFviii@checkseq#1l:#2#3{%
55 \ifnum‘#2<"80 %
56 \ifx\relax#3\elsel\fi
57 \else
58 \ifnum‘#2<"CO %

\UTFviii@loop

59 1%

60 \else

61 \expandafter\expandafter\expandafter\UTFviii@check@continue
62 \expandafter\expandafter\expandafter#3},

63 \fi

64 \fi}

65 \def\UTFviii@check@continue#1{Y

66 \ifx\relax#1Y

67 \else

68 \ifnum‘#1<"80 1\else\ifnum‘#1>"BF 1\fi\fi
69 \expandafter\UTFviii@check@continue

70 \fi

71}

This bit of code derived from xmltex defines the active character correspnding
to starting octets to call \UTFviii@two@octets etc as appropriate. The starting
octet itself is passed directly as the first argument, the others are picked up later
en route.
The \UTFviii@loop loops through the numbers starting at \count@ and end-
ing at \@tempcnta — 1, each time executing the code in \UTFviii@tmp.
All this is done in a group so that temporary catcode changes etc. vanish after
everything is set up.
72 \begingroup
73 \catcode‘\~13
74 \catcode ‘\"12

75 \def \UTFviii@loop{’

76 \uccode ‘\~\count®@

77 \uppercase\expandafter{\UTFviii@tmp}/
78 \advance\count@\@ne

79 \ifnum\count@<\@tempcnta

80 \expandafter\UTFviii@loop

81 \fi}

Handle the single byte control characters. CO controls are valid UTF-8 but
defined to give the “Character not defined error” They may be defined with
\DeclareUnicodeCharacter.

82 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@undefined@err{:\string~}}}
83% 0 ~7@ null

84 \count@"1

85 \@tempcnta9

86 % 9 ~"I tab
87 % 10 ~~J nl
88 \UTFviii@loop

89 \count@11

90 \@tempcntal2
91 \UTFviii@loop
92% 12 ~°L

93% 13 ~°M

94 \count@14

95 \@tempcnta32

96 \UTFviii@loop
Bytes with leading bits 10 are not valid UTF-8 starting bytes

\DeclareUnicodeCharacter

97 \count@"80

98 \@tempcnta"C2

99 \def\UTFviii@tmp{\xdef ~“{\noexpand\UTFviii@invalid@err\string~}}
100 \UTFviii@loop

Setting up 2-byte UTF-8:

101 \count@"C2
102 \@tempcnta"EO
103 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@two@octets\string~}}

104 \UTFviii@loop

Setting up 3-byte UTF-8:
105 \count@"EO
106 \@tempcnta"F0

107 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@three@octets\string~}}
108 \UTFviii@loop

Setting up 4-byte UTF-8:

109 \count@"FO
110 \@tempcnta"F5
111 \def\UTFviii@tmp{\xdef ~“{\noexpand\UTFviii@four@octets\string~}}

112 \UTFviii@loop

Bytes above F4 are not valid UTF-8 starting bytes as they would encode num-
bers beyond the Unicode range

113 \count@"F5
114 \@tempcnta"100
115 \def\UTFviii@tmp{\xdef~{\noexpand\UTFviii@invalid@err\string~}}

116 \UTFviii@loop

117 \endgroup

For this case we must disable the warning generated by inputenc if it doesn’t
see any new \DeclareInputText commands.

118 \@inpenc@test

If this file (utf8.def) is not being read while setting up inputenc, i.e. in the
preamble, but when \inputencoding is called somewhere within the document,
we do not need to input the specific Unicode mappings again. We therefore stop
reading the file at this point.
119 \ifx\@begindocumenthook\@undefined
120 \makeatother
The \fi must be on the same line as \endinput or else it will never be seen!
121 \endinput \fi

2.3 Mapping Unicode codes to B'TEX internal forms

The \DeclareUnicodeCharacter declaration defines a mapping from a Unicode

character code point to a IXIEX internal form. The first argument is the Unicode

number as hexadecimal digits and the second is the actual BTEX internal form.
We start by making sure that some characters have the right \catcode when

they are used in the definitions below.

122 \begingroup

123 \catcode ‘\"=12

\parse@XML@charref

124 \catcode ‘\<=12

125 \catcode‘\.=12

126 \catcode‘\,=12

127 \catcode‘\ ;=12

128 \catcode‘\!=12

129 \catcode ‘\"=13

130 \gdef\DeclareUnicodeCharacter#1#2{/,

131 \count@"#1\relax

132 \wlog{ \space\space defining Unicode char U+#1 (decimal \the\count®)}J
133 \begingroup

Next we do the parsing of the number stored in \count@ and assign the re-
sult to \UTFviii@tmp. Actually all this could be done in-line, the macro
\parse@XML@charref is only there to extend this code to parsing Unicode numbers
in other contexts one day (perhaps).

134 \parse@XMLQ@charref

Here is an example of what is happening, for the pair "C2 "A3 (which is the utf8
represenation for the character £). After \parse@XML@charref we have, stored in
\UTFviii@tmp, a single command with two character tokens as arguments:

[to2 and t43 are the characters corresponding to these two octets]
\UTFviii@two@octets tcatas

what we actually need to produce is a definition of the form
\def\u8:tcatas {ETEX internal forml .

So here we temporarily redefine the prefix commands \UTFviii@two@octets,
etc. to generate the csname that we wish to define; the \strings are added in
case these tokens are still active.

135 \def\UTFviii@two@octets##1##2{\csname u8:##1\string##2\endcsnamelj,
136 \def\UTFviii@three@octets##1##2##3{\csname u8:##1,

137 \string##2\string##3\endcsname}y,
138 \def\UTFviii@fourQoctets##1##2##3##4{\csname u8:##1%

139 \string##2\string##3\string##4\endcsnamel/,

Now we simply:-) need to use the right number of \expandafters to finally con-
struct the definition: expanding \UTFviii@tmp once to get its contents, a second
time to replace the prefix command by its \csname expansion, and a third time
to turn the expansion into a csname after which the \gdef finally gets applied.
We add an irrelevant \IeC and braces around the definition, in order to avoid any
space after the command being gobbled up when the text is written out to an
auxiliary file (see inputenc for further details

140 \expandafter\expandafter\expandafter
141 \expandafter\expandafter\expandafter
142 \expandafter

143 \gdef\UTFviii@tmp{\IeC{#2}}/,

144 \endgroup

145 }

This macro parses a Unicode number (decimal) and returns its UTF-8 represen-
tation as a sequence of non-active TEX character tokens. In the original code it
had two arguments delimited by ; here, however, we supply the Unicode number
implicitly.

146 \gdef\parse@XML@charref{},

We need to keep a few things local, mainly the \uccode’s that are set up below.
However, the group originally used here is actually unnecessary since we call this
macro only within another group; but it will be important to restore the group if
this macro gets used for other purposes.

147 % \begingroup

The original code from xmltex supported the convention that a Unicode slot
number could be given either as a decimal or as a hexadecimal (by starting with
x). We do not do this so this code is also removed. This could be reactivated
if one wants to support document commands that accept Unicode numbers (but
then the first case needs to be changed from an error message back to something
more useful again).

148 % \uppercase{\count@\if x\noexpand#1"\else#1\fi#2}\relax

As \count@ already contains the right value we make \parse@XML@charref
work without arguments. In the case single byte UTF-8 sequences, only allow
definition if the character os already active. The definition of \UTFviii@tmp
looks slightly strange but is designed for the sequence of \expandafter in
\DeclareUnicodeCharacter.

149 \ifnum\count@<"AO\relax

150 \ifnum\catcode\count@=13

151 \uccode ‘\"=\count@\uppercase{\def\UTFviii@tmp{\Q@empty\C@empty~}3}%
152 \else

153 \PackageError{inputenc}/,

154 {Cannot define non-active Unicode char value < 00AO}Y
155 \@eha

156 \def\UTFviii@tmp{\UTFviii@tmp}%

157 \fi

The code below is derived from xmltex and generates the UTF-8 byte sequence
for the number in \count@.

The reverse operation (just used in error messages) has now been added as
\decode@UTFviii.

158 \else\ifnum\count@<"800\relax

159 \parse@UTFviii@a,%

160 \parse@UTFviii@b C\UTFviii@twoQoctets.,%

161 \else\ifnum\count@<"10000\relax

162 \parse@UTFviii@a;%

163 \parseQUTFviii@a,?%

164 \parse@UTFviii@b E\UTFviii@three@octets.{,;}%

165 \else

Test added here for out of range values, the 4-octet definitions are still set up
so that \DeclareUnicodeCharacter does something sensible if the user scrolls
past this error.

166 \ifnum\count@>"10FFFF\relax

167 \PackageError{inputenc}}

168 {\UTFviii@hexnumber\count@\space too large for Unicodel}/
169 {Values between O and 10FFFF are permittedl},

170 \fi

171 \parse@UTFviii@a;%

172 \parse@UTFviii@a,¥

173 \parse@UTFviii@a!Y,

\parseQUTFviii®@a

\parse@UTFviii@b

\decode@UTFviii

174 \parse@UTFviii@b F\UTFviii@four@octets.{!,;}%

175 \fi

176 \fi

177 \fi

178 % \endgroup
179 }

...s0 somebody else can document this part :-)
180 \gdef\parseQUTFviiiQa#1{},

181 \@tempcnta\count@

182 \divide\count@ 64

183 \@tempcntb\count@

184 \multiply\count@ 64

185 \advance\@tempcnta-\count®@
186 \advance\@tempcnta 128

187 \uccode ‘#1\@tempcnta

188 \count@\@tempcntb}
...same here

189 \gdef\parseQUTFviii@b#1#2#3#4{%
190 \advance\count@ "#10\relax
191 \uccode ‘#3\count@

192 \uppercase{\gdef\UTFviii@tmp{#2#3#4}}}

In the reverse direction, take a sequence of octects(bytes) representing a character
in UTF-8 and construct the Unicode number. The sequence is terminated by
\relax.

In this version, if the sequence is not valid UTF-8 you probably get a low level
arithmetic error from \numexpr or stray characters at the end. Getting a better
error message would be somewhat expensive. As the main use is for reporting
characters in messages, this is done just using expansion, so \numexpr is used, A
stub returning 0 is defined if \numexpr is not available.

193 \ifx\numexpr\Qundefined
194 \gdef\decode@UTFviii#1{0}
195 \else

If the input is malformed UTF-8 there may not be enough closing) so add 5
so there are always some remaining then cleanup and remove any remaining ones
at the end. This avoids \numexpr parse errors while outputting a package error.
196 \gdef\decode@UTFviii#l\relax{%

197 \expandafter\UTFviii@cleanup
198 \the\numexpr\dec@de@UTFviii#i\relax)))))\@empty}

199 \gdef\UTFviii@cleanup#1) #2\Qempty{#1}

200 \gdef\dec@deQUTFviii#1{%
201 \ifx\relax#1,

202 \else

203 \ifnum‘#1>"EF
204 (CCC#1-"FO) %
205 \else

206 \ifnum‘#1>"DF
207 (CC‘#1-"E0) %

10

\UTFviii@hexnumber

\UTFviii@splitcsname
\UTFviii@hexcodepoint

208 \else

209 \ifnum‘#1>"BF

210 ((“#1-"C0)%

211 \else

212 \ifnum‘#1>"7F
213)*x64+(‘#1-"80)%
214 \else

215 +#1 Y,

216 \fi

217 \fi

218 \fi

219 \fi

220 \expandafter\dec@deQUTFviii
221 \fi}

222 \fi

Convert a number to a sequence of uppercase hex digits. If \numexpr is not
available, it returns its argument unchanged.

223 \ifx\numexpr\Qundefined

224 \global\let\UTFviii@hexnumber\@firstofone
225 \global\UTFviii@hexdigit\hexnumber@

226 \else

227 \gdef \UTFviii@hexnumber#1{%

228 \ifnum#1>15 %

229 \expandafter\UTFviii@hexnumber\expandafter{\the\numexpr (#1-8)/16\relax}’
230 \fi

231 \UTFviii@hexdigit{\numexpr#1\ifnum#1>0- ((#1-8)/16)*16\fi\relax}’,

232 }

Almost but not quite \hexnumber@.
233 \gdef\UTFviii@hexdigit#1{\ifcase\numexpr#i\relax
234 O\ori\or2\or3\or4\or5\or6\or7\or8\or9\or
235 A\or B\or C\or D\or E\or F\fi}

236 \fi

Split a csname representing a unicode character and return the character and the
unicode number in hex.

237 \gdef\UTFviii@hexcodepoint#1{U+},

238 \ifnum#1<16 O\fi

239 \ifnum#1<256 O\fi

240 \ifnum#1<4096 O\fi

241 \UTFviii@hexnumber{#13}7

242 }

243 \gdef\UTFviii@splitcsname#1:#2\relax{/,

Need to pre-expand the argument to ensure cleanup in case of mal-formed UTF-8.

244 #2 (\expandafter\UTFviiiGhexcodepoint\expandafter{’,
245 \the\numexpr\decode@UTFviii#2\relax})’
246 }

247 \endgroup

248 \Q@onlypreamble\DeclareUnicodeCharacter

11

These are preamble only as long as we don’t support Unicode charrefs in docu-
ments.
249 \Qonlypreamble\parse@XML@charref

250 \@onlypreamble\parse@UTFviiiQa
251 \@onlypreamble\parse@UTFviii@b

2.4 Loading Unicode mappings at begin document

The original plan was to set up the UTF-8 support at \begin{document}; but

then any text characters used in the preamble (as people do even though advised

against it) would fail in one way or the other. So the implementation was changed

and the Unicode definition files for already defined encodings are loaded here.
We loop through all defined font encodings (stored in \cdp@list) and for

each load a file nameenc.dfu if it exist. That file is then supposed to contain

\DeclareUnicodeCharacter declarations.

252 \begingroup

253 \def\cdp@elt#1#2#3#4{},

254 \wlog{Now handling font encoding #1 ...}%

255 \lowercase{’

256 \InputIfFileExists{#lenc.dfu}}’

257 {\wlog{... processing UTF-8 mapping file for font %
258 encoding #1}%

The previous line is written to the log with the newline char being ignored (thus
not producing a space). Therefore either everything has to be on a single input
line or some special care must be taken. From this point on we ignore spaces
again, i.e., while we are reading the .dfu file. The \endgroup below will restore
it again.

259 \catcode‘\ 9\relaxl}}
260 {\wlog{... no UTF-8 mapping file for font encoding #11}}/
261}

262 \cdp@list
263 \endgroup

However, we don’t know if there are font encodings still to be loaded (either with
fontenc or directly with \input by some some package). Font encoding files
are loaded only if the corresponding encoding has not been loaded yet, and they
always begin with \DeclareFontEncoding. We now redefine the internal kernel
version of the latter to load the Unicode file if available.

264 \def\DeclareFontEncoding@#1#2#3{J

265 \expandafter

266 \ifx\csname T@#1\endcsname\relax

267 \def\cdp@elt{\noexpand\cdp@elt}y,

268 \xdef\cdp@list{\cdp@list\cdpCelt{#1}},

269 {\default@family}{\default@seriesl}y,

270 {\default@shape}}%

271 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd

272 \begingroup

273 \wlog{Now handling font encoding #1 ...}%

274 \lowercase{%

275 \InputIfFileExists{#lenc.dfu}}’

276 {\wlog{... processing UTF-8 mapping file for font %
277 encoding #1}1}7

12

278 {\wlog{... no UTF-8 mapping file for font encoding #1}1}/

279 \endgroup

280 \else

281 \@font@info{Redeclaring font encoding #11}/,
282 \fi

283 \global\@namedef{T@#1}{#2}%

284 \global\@namedef{M@#1}{\default@M#3}/,
285 \xdef\LastDeclaredEncoding{#1}}
286}

287 (/utf8)

3 Mapping characters —
based on font (glyph) encodings

This section is a first attempt to provide Unicode definitions for characters whose
standard glyphs are currently provided by the standard IXTEX font-encodings T1,
0T1, etc. They are by no means completed and need checking.

For example, one should check the already existing input encodings for glyphs
that may in fact be available and required, e.g. latin4 has a number of glyphs
with the \= accent. Since the T1 encoding does not provide such glyphs, these
characters are not listed below (yet).

The list below was generated by looking at the current KTEX font en-
coding files, e.g., tlenc.def and using the work by Sebastian Rahtz (in
ucharacters.sty) with a few modifications. In combinations such as \~\i the
preferred form is that and not \~1i.

This list has been built from several sources, obviously including the Uni-
code Standard itself. These sources include Passive TEX by Sebastian Rahtz, the
unicode package by Dominique P. G. Unruh (mainly for Latin encodings) and
text4ht by Eitan Gurari (for Cyrillic ones).

Note that it strictly follows the Mittelbach principles for input character en-
codings: thus it offers no support for using utf8 representations of math symbols
such as x or + (in math mode).

3.1 About the table itself

In addition to generating individual files, the table below is, at present, a one-
one (we think) partial relationship between the (ill-defined) set of LICRs and the
Unicode slots 70080 to "FFFF. At present these entries are used only to define a
collection of partial mappings from Unicode slots to LICRs; each of these mappings
becomes full if we add an exception value (‘not defined’) to the set of LICRs.

It is probably not essential for the relationship in the full table to be one-one;
this raises questions such as: the exact role of LICRs; the formal relationships
on the set of LICRs; the (non-mathematical) relationship between LICRs and
Unicode (which has its own somewhat fuzzy equivalences); and ultimately what a
character is and what a character representation and/or name is.

It is unclear the extent to which entries in this table should resemble the closely
related ones in the 8-bit inputenc files. The Unicode standard claims that the
first 256 slots ‘are’ ASCII and Latin-1.

13

Of course, TEX itself typically does not treat even many perfectly ‘normal text’
7-bit slots as text characters, so it is unclear whether ITEX should even attempt
to deal in any consistent way with those Unicode slots that are not definitive text
characters.

3.2 The mapping table

Note that the first argument must be a hex-digit number greater than 00BF and
at most 10FFFF.
There are few notes about inconsistencies etc at the end of the table.

288 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00A0}{\nobreakspace}

289 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00A1}{\textexclamdown}

290 (all, ts1, lyl)\DeclareUnicodeCharacter{00A2}{\textcent}

291 (all, ts1,t1, otl, lyl)\DeclareUnicodeCharacter{00A3}{\textsterling}

202 (all, x2, ts1, t2c, t2b, t2a, lyl, Icy)\DeclareUnicodeCharacter{00A4}{\textcurrency}

293 (all, ts1, lyl)\DeclareUnicodeCharacter{00A5}{\textyen}

204 (all, ts1, lyl)\DeclareUnicodeCharacter{00A6}{\textbrokenbar}
(
(
(
(

205 (all, x2, ts1, t2c, t2b, t2a, oms, lyl)\DeclareUnicodeCharacter{00A7}{\textsection}
296 (all, ts1)\DeclareUnicodeCharacter{00A8}{\textasciidieresis}
297 (all, ts1, utf8)\DeclareUnicodeCharacter{00A9}{\textcopyright}

208 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{00AA}{\textordfeminine}
299 (*all, x2, t2¢, t2b, t2a, t1, ot2, ly1, lcy)
300 \DeclareUnicodeCharacter{00AB}{\guillemotleft}
301 (/all,x2,t2c, t2b, t2a, t1, ot2, Iy1, Icy)
302 (all, ts1)\DeclareUnicodeCharacter{00AC}{\textlnot}
303 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00AD}{\-}
304 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{00AE}{\textregistered}
305 (all, ts1)\DeclareUnicodeCharacter{00AF}{\textasciimacron}
306 (all, ts1, lyl)\DeclareUnicodeCharacter{00BO}{\textdegree}
307 (all, ts1)\DeclareUnicodeCharacter{00B1}{\textpm}
308 (all, ts1)\DeclareUnicodeCharacter{00B2}{\texttwosuperior}
309 (all, ts1)\DeclareUnicodeCharacter{00B3}{\textthreesuperior}
310 (all, ts1)\DeclareUnicodeCharacter{00B4}{\textasciiacute}
311 (all, ts1, lyl)\DeclareUnicodeCharacter{00B5}{\textmu} % micro sign
312 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{00B6}{\textparagraph}
313 (all, oms, ts1, lyl)\DeclareUnicodeCharacter{00B7}{\textperiodcentered}
314 (all, ot1)\DeclareUnicodeCharacter{00B8}{\c\ 2}
315 (all, ts1)\DeclareUnicodeCharacter{00B9}{\textonesuperior}
316 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{00BA}{\textordmasculine}
317 (*all, x2, t2¢, t2b, t2a, t1, ot2, Iyl Icy)
318 \DeclareUnicodeCharacter{00BB}{\guillemotright}
319 (/all,x2, t2¢c, t2b, t2a, t1, ot2, Iy1, Icy)
320 (all, ts1, lyl)\DeclareUnicodeCharacter{00BC}{\textonequarter}
321 (all, ts1, lyl)\DeclareUnicodeCharacter{00BD}{\textonehalf}
322 (all, ts1, lyl)\DeclareUnicodeCharacter{00BE}{\textthreequarters}
323 (all, t1, otl,lyl)\DeclareUnicodeCharacter{00BF}{\textquestiondown}
324 (all, t1,lyl)\DeclareUnicodeCharacter{00CO}{\@tabacckludge ‘A}
325 (all, t1, lyl)\DeclareUnicodeCharacter{00C1}{\@tabacckludge’A}
(
(
(
(
(

327 (all, t1,lyl)\DeclareUnicodeCharacter{00C3}{\~A}

328 (all, t1, lyl)\DeclareUnicodeCharacter{00C4}{\"A}

329 (all, t1, otl,lyl)\DeclareUnicodeCharacter{00C5}{\r A}
330 (all, t1, otl,lyl, lcy)\DeclareUnicodeCharacter{00C6}{\AE}

)
)
326 (all, t1,lyl)\DeclareUnicodeCharacter{00C2}{\"A}
)
)

14

331 (all, t1, lyl)\DeclareUnicodeCharacter{00C7}{\c C}
332 (all, t1,lyl)\DeclareUnicodeCharacter{00C8}{\@tabacckludge ‘E}
333 (all, t1,lyl)\DeclareUnicodeCharacter{00C9}{\@tabacckludge ’E}
334 (all, t1, lyl)\DeclareUnicodeCharacter{00CA}{\"E}
335 (all, t1,lyl)\DeclareUnicodeCharacter{00CB}{\"E}
336 (all, t1,lyl)\DeclareUnicodeCharacter{00CC}{\@tabacckludge ‘ I}
337 (all, t1, lyl)\DeclareUnicodeCharacter{00CD}{\@tabacckludge’ I}
338 (all, t1,lyl)\DeclareUnicodeCharacter{00CE}{\ "I}
339 (all, t1,lyl)\DeclareUnicodeCharacter{00CF}{\"I}
340 (all, t1, lyl)\DeclareUnicodeCharacter{00DO}{\DH}
341 (all, t1,lyl)\DeclareUnicodeCharacter{00D1}{\~N}
342 (all, t1,lyl)\DeclareUnicodeCharacter{00D2}{\@tabacckludge ‘ 0}
343 (all, t1, lyl)\DeclareUnicodeCharacter{00D3}{\@tabacckludge’0}
344 (all, t1,lyl)\DeclareUnicodeCharacter{00D4}{\ "0}
345 (all, t1,lyl)\DeclareUnicodeCharacter{00D5}{\~0}
346 (all, t1, lyl)\DeclareUnicodeCharacter{00D6}{\"0}
347 (all, ts1)\DeclareUnicodeCharacter{00D7}{\texttimes}
348 (all, t1, otl, lyl, lcy)\DeclareUnicodeCharacter{00D8}{\0}
349 (all, t1, lyl)\DeclareUnicodeCharacter{00D9}{\@tabacckludge ‘U}
350 (all, t1,lyl)\DeclareUnicodeCharacter{00DA}{\@tabacckludge’U}
351 (all, t1,lyl)\DeclareUnicodeCharacter{00DB}{\ U}
352 (all, t1, lyl)\DeclareUnicodeCharacter{00DC}{\"U}
353 (all, t1, lyl)\DeclareUnicodeCharacter{00DD}{\@tabacckludge’Y}
354 (all, t1,lyl)\DeclareUnicodeCharacter{00DE}{\TH}
355 (all, t1, otl, lyl, lcy)\DeclareUnicodeCharacter{00ODF}{\ss}
356 (all, t1,lyl)\DeclareUnicodeCharacter{00EO}{\@tabacckludge ‘a}
357 (all, t1,lyl)\DeclareUnicodeCharacter{00E1}{\@tabacckludge’a}
358 (all, t1, lyl)\DeclareUnicodeCharacter{00E2}{\ a}
359 (all, t1,lyl)\DeclareUnicodeCharacter{00E3}{\~a}
360 (all, t1,lyl)\DeclareUnicodeCharacter{00E4}{\"a}
361 (all, t1,lyl)\DeclareUnicodeCharacter{00E5}{\r a}
362 (all, t1,otl,lyl, lcy)\DeclareUnicodeCharacter{00E6}{\ae}
363 (all, t1,lyl)\DeclareUnicodeCharacter{00E7}{\c c}
364 (all, t1,lyl)\DeclareUnicodeCharacter{00E8}{\@tabacckludge ‘e}
365 (all, t1,lyl)\DeclareUnicodeCharacter{00E9}{\@tabacckludge’e}
366 (all,t1,lyl)\DeclareUnicodeCharacter{00EA}{\ e}
367 (all, t1,lyl)\DeclareUnicodeCharacter{00EB}{\"e}
368 (all, t1,otl,lyl)\DeclareUnicodeCharacter{00EC}{\@tabacckludge ‘\i}
369 (all, t1, otl,lyl)\DeclareUnicodeCharacter{00ED}{\@tabacckludge’\i}
370 (all, t1, otl, lyl)\DeclareUnicodeCharacter{00EE}{\"\i}
371 (all, t1, otl,lyl)\DeclareUnicodeCharacter{00EF}{\"\i}
(\DeclareUnicodeCharacter{00F0}{\dh}
(\DeclareUnicodeCharacter{00F1}{\"n}
(\DeclareUnicodeCharacter{00F2}{\@tabacckludge ‘o}
(\DeclareUnicodeCharacter{00F3}{\@tabacckludge’o}
376 (all, t1,lyl)\DeclareUnicodeCharacter{00F4}{\ "o}
377 (all, t1,lyl)\DeclareUnicodeCharacter{00F5}{\~o}
378 (all, t1,lyl)\DeclareUnicodeCharacter{00F6}{\"o}
379 (all, ts1)\DeclareUnicodeCharacter{00F7}{\textdiv}
380 (all, t1, otl,lyl, lcy)\DeclareUnicodeCharacter{00F8}{\o}
(
(
(
(

372 (all, t1,lyl
373 (all, t1, Iyl
374 (all, t1,lyl
375 (all, t1,lyl

~— — ~— ~— ~— ~—

381 (all, t1, lyl)\DeclareUnicodeCharacter{00F9}{\@tabacckludge ‘u}
382 (all, t1, lyl)\DeclareUnicodeCharacter{00FA}{\@tabacckludge’u}
383 (all, t1, lyl)\DeclareUnicodeCharacter{00FB}{\ "u}
384 (all, t1, lyl)\DeclareUnicodeCharacter{00FC}{\"u}

15

385 (all, t1, lyl)\DeclareUnicodeCharacter{00FD}{\@tabacckludge’y}
386 (all, t1,lyl)\DeclareUnicodeCharacter{00FE}{\th}
387 (all, t1,lyl)\DeclareUnicodeCharacter{O0FF}{\"y}
388 (all, t1)\DeclareUnicodeCharacter{0100}{\@tabacckludge=A}
389 (all, t1)\DeclareUnicodeCharacter{0101}{\@tabacckludge=a}
390 (all, t1)\DeclareUnicodeCharacter{0102}{\u A}
391 (all, t1)\DeclareUnicodeCharacter{0103}{\u a}
392 (all, t1)\DeclareUnicodeCharacter{0104}{\k A}
393 (all, t1)\DeclareUnicodeCharacter{0105}{\k a}
394 (all, t1)\DeclareUnicodeCharacter{0106}{\@tabacckludge’C}
395 (all, t1)\DeclareUnicodeCharacter{0107}{\@tabacckludge’c}
396 (all, t1)\DeclareUnicodeCharacter{0108}{\"C}
397 (all, t1)\DeclareUnicodeCharacter{0109}{\"c}
398 (all, t1)\DeclareUnicodeCharacter{010A}{\.C}
399 (all, t1)\DeclareUnicodeCharacter{010B}{\.c}
400 (all, t1)\DeclareUnicodeCharacter{010C}H{\v C}
401 (all, t1)\DeclareUnicodeCharacter{010D}{\v c}
402 (all, t1)\DeclareUnicodeCharacter{010E}{\v D}
403 (all, t1)\DeclareUnicodeCharacter{010F}{\v d}
404 (all, t1)\DeclareUnicodeCharacter{0110}{\DJ}
405 (all, t1)\DeclareUnicodeCharacter{0111}{\dj}
406 (all, t1)\DeclareUnicodeCharacter{0112}{\@tabacckludge=E}
407 (all, t1)\DeclareUnicodeCharacter{0113}{\@tabacckludge=e}
408 (all, t1)\DeclareUnicodeCharacter{0114}{\u E}
409 (all, t1)\DeclareUnicodeCharacter{0115}{\u e}
410 (all, t1)\DeclareUnicodeCharacter{0116}{\.E}
411 (all, t1)\DeclareUnicodeCharacter{0117}{\.e}
412 (all, t1)\DeclareUnicodeCharacter{0118}{\k E}

413 (all, t1)\DeclareUnicodeCharacter{0119}{\k e}

414 (all; t1)\DeclareUnicodeCharacter{011A}{\v E}

415 (all, t1)\DeclareUnicodeCharacter{011B}{\v e}

416 (all, t1)\DeclareUnicodeCharacter{011C}{\ "G}

417 (all, t1)\DeclareUnicodeCharacter{011D}{\ g}

418 (all, t1)\DeclareUnicodeCharacter{011E}\u G}

419 (all, t1)\DeclareUnicodeCharacter{011F}{\u g}

420 (all, t1)\DeclareUnicodeCharacter{0120}{\.G}

421 (all, t1)\DeclareUnicodeCharacter{0121}{\.g}

422 (all; t1)\DeclareUnicodeCharacter{0122}{\c G}

423 (all, t1)\DeclareUnicodeCharacter{0123}{\c g}

424 (all, t1)\DeclareUnicodeCharacter{0124}{\"H}

425 (all, t1)\DeclareUnicodeCharacter{0125}{\"h}

426 (all, t1)\DeclareUnicodeCharacter{0128}{\ "I}

427 (all, t1)\DeclareUnicodeCharacter{0129}{\"\i}

428 (all, t1)\DeclareUnicodeCharacter{012A}{\@tabacckludge=I}

429 (all, t1)\DeclareUnicodeCharacter{012B}{\@tabacckludge=\i}

430 (all, t1)\DeclareUnicodeCharacter{012CH\u I}

431 (all, t1)\DeclareUnicodeCharacter{012D}{\u\i}

432 (all, t1)\DeclareUnicodeCharacter{012E}{\k I}

433 (all, t1)\DeclareUnicodeCharacter{012F}{\k\i}

434 (all, t1)\DeclareUnicodeCharacter{0130}{\.I}

435 (all, t2¢, t2b, t2a, t1, ot2, otl, lyl, Icy)\DeclareUnicodeCharacter{0131}{\i}
436 (all, t1)\DeclareUnicodeCharacter{0132}{\I1J}

437 (all, t1)\DeclareUnicodeCharacter{0133}{\1j}

438 (all, t1)\DeclareUnicodeCharacter{0134}{\"~J}

16

439 (all, t1)\DeclareUnicodeCharacter{0135}{\"\j}
440 (all, t1)\DeclareUnicodeCharacter{0136}{\c K}
441 (all; t1)\DeclareUnicodeCharacter{0137}{\c k}
442 (all, t1)\DeclareUnicodeCharacter{0139}{\@tabacckludge’L}
443 (all, t1)\DeclareUnicodeCharacter{013A}{\@tabacckludge’1}
444 (all; t1)\DeclareUnicodeCharacter{013B}{\c L}

)

)

445 (all, t1)\DeclareUnicodeCharacter{013C}{\c 1}
446 (all, t1)\DeclareUnicodeCharacter{013D}{\v L}
447 (all, t1)\DeclareUnicodeCharacter{013E}{\v 1}

(

(

(

(

(

(

(

(

(

448 (all, t1, 0tl, lyl)\DeclareUnicodeCharacter{0141}{\L}

449 (all,; t1, 0tl, lyl)\DeclareUnicodeCharacter{0142}{\1}

450 (all, t1)\DeclareUnicodeCharacter{0143}{\@tabacckludge’N}

451 (all, t1)\DeclareUnicodeCharacter{0144}{\@tabacckludge’n}

452 (all, t1)\DeclareUnicodeCharacter{0145}{\c N}

453 (all, t1)\DeclareUnicodeCharacter{0146}{\c n}

454 (all, t1)\DeclareUnicodeCharacter{0147}{\v N}

455 (all, t1)\DeclareUnicodeCharacter{0148}{\v n}

456 (all, t1)\DeclareUnicodeCharacter{014A}{\NG}

457 (all, t1)\DeclareUnicodeCharacter{014B}{\ng}

458 (all, t1)\DeclareUnicodeCharacter{014C}{\@tabacckludge=0}

459 (all, t1)\DeclareUnicodeCharacter{014D}{\@tabacckludge=o}

460 (all, t1)\DeclareUnicodeCharacter{014E}{\u 0}

461 (all, t1)\DeclareUnicodeCharacter{014F}{\u o}

462 (all, t1)\DeclareUnicodeCharacter{0150}{\H 0}

463 (all, t1)\DeclareUnicodeCharacter{0151}{\H o}

464 (all, t1,0tl, lyl, lcy)\DeclareUnicodeCharacter{0152}{\0E}

465 (all, t1,0tl, lyl, lcy)\DeclareUnicodeCharacter{0153}{\oe}

466 (all, t1)\DeclareUnicodeCharacter{0154}{\@tabacckludge’R}
(\DeclareUnicodeCharacter{0155}{\@tabacckludge’r}
(\DeclareUnicodeCharacter{0156}{\c R}
(\DeclareUnicodeCharacter{0157}{\c r}
(\DeclareUnicodeCharacter{0158}{\v R}
(\DeclareUnicodeCharacter{0159}{\v r}
(\DeclareUnicodeCharacter{015A}{\@tabacckludge’S}
(\DeclareUnicodeCharacter{016B}{\@tabacckludge’s}
(\DeclareUnicodeCharacter{015C}H{\"S}

475 (all, t1)\DeclareUnicodeCharacter{015D}{\ s}

476 (all, t1)\DeclareUnicodeCharacter{015E}{\c S}

477 (all, t1)\DeclareUnicodeCharacter{015F}{\c s}

478 (all, t1,lyl)\DeclareUnicodeCharacter{0160}{\v S}

479 (all, t1,lyl)\DeclareUnicodeCharacter{0161}{\v s}

480 (all, t1)\DeclareUnicodeCharacter{0162}{\c T}

481 (all, t1)\DeclareUnicodeCharacter{0163}{\c t}
(
(
(
(
(
(
(
(
(
(
(

467 (all, t1
468 (all, t1
469 (all, t1
470 (all, t1
471 (all, t1
472 {(all, t1
473 (all, t1
474 (all, t1

e e e e e o

)
482 (all, t1)\DeclareUnicodeCharacter{0164}{\v T}
483 (all, t1)\DeclareUnicodeCharacter{0165}{\v t}
484 (all, t1)\DeclareUnicodeCharacter{0168}{\~U}
485 (all, t1)\DeclareUnicodeCharacter{0169}{\~u}
486 (all, t1)\DeclareUnicodeCharacter{016A}{\@tabacckludge=U}
487 (all, t1)\DeclareUnicodeCharacter{016B}{\@tabacckludge=u}
488 (all, t1)\DeclareUnicodeCharacter{016C}H{\u U}
489 (all, t1)\DeclareUnicodeCharacter{016D}{\u u}
490 (all, t1)\DeclareUnicodeCharacter{016E}{\r U}
491 (all, t1)\DeclareUnicodeCharacter{016F}{\r u}
492 (all, t1)\DeclareUnicodeCharacter{0170}{\H U}

17

493 (all, t1)\DeclareUnicodeCharacter{0171}{\H u}
494 (all, t1)\DeclareUnicodeCharacter{0172}{\k U}
495 (all, t1)\DeclareUnicodeCharacter{0173}{\k u}

496 (all, t1,0tl, lyl)\DeclareUnicodeCharacter{0174}{\ W}

497 (all, t1, otl, lyl)\DeclareUnicodeCharacter{0175}{\"w}

498 (all, t1, 0tl, lyl)\DeclareUnicodeCharacter{0176}{\ Y}

499 (all, t1,0tl, lyl)\DeclareUnicodeCharacter{0177}{\"y}

500 (all, t1,lyl)\DeclareUnicodeCharacter{0178}{\"Y}

501 (all, t1)\DeclareUnicodeCharacter{0179}{\@tabacckludge’Z}
502 (all, t1)\DeclareUnicodeCharacter{017A}{\@tabacckludge’z}
503 (all, t1)\DeclareUnicodeCharacter{017B}{\.Z}

504 (all, t1)\DeclareUnicodeCharacter{017C}{\.z}

505 (all, t1,lyl)\DeclareUnicodeCharacter{017D}{\v Z}

506 (all, t1,lyl)\DeclareUnicodeCharacter{017E}{\v z}

507 (all, ts1, lyl)\DeclareUnicodeCharacter{0192}{\textflorin}

(

(

(

(

(

(

(

(

(

(

(

(

(

(

{

508 (all, t1)\DeclareUnicodeCharacter{01CD}{\v A}

509 (all, t1)\DeclareUnicodeCharacter{01CE}{\v a}

510 (all, t1)\DeclareUnicodeCharacter{01CF}{\v I}

511 (all, t1)\DeclareUnicodeCharacter{01DO}{\v \i}

512 (all, t1)\DeclareUnicodeCharacter{01D1}{\v 0}

513 (all, t1)\DeclareUnicodeCharacter{01D2}{\v o}

514 (all, t1)\DeclareUnicodeCharacter{01D3}{\v U}

515 (all, t1)\DeclareUnicodeCharacter{01D4}{\v u}

516 (all, t1)\DeclareUnicodeCharacter{01E2}{\@tabacckludge=\AE}

517 (all, t1)\DeclareUnicodeCharacter{01E3}{\@tabacckludge=\ae}

518 (all, t1)\DeclareUnicodeCharacter{01E6}{\v G}

519 (all, t1)\DeclareUnicodeCharacter{01E7}{\v g}

520 (all, t1)\DeclareUnicodeCharacter{01E8}{\v K}

521 (all, t1)\DeclareUnicodeCharacter{01E9}{\v k}

522 (all, t1)\DeclareUnicodeCharacter{01EA}{\k 0}

523 (all, t1)\DeclareUnicodeCharacter{01EB}{\k o}

524 (all, t1)\DeclareUnicodeCharacter{01FO}{\v\j}

525 (all, t1)\DeclareUnicodeCharacter{01F4}{\@tabacckludge’G}

526 (all, t1)\DeclareUnicodeCharacter{01F5}{\@tabacckludge’g}
(
(
(
(
(
(
(
(
(
(
(
(
(

527 (all, t1, otl, lyl)\DeclareUnicodeCharacter{0218}{\textcommabelow S}
528 (all, t1,0tl, lyl)\DeclareUnicodeCharacter{0219}{\textcommabelow s}
529 (all, t1, otl,lyl)\DeclareUnicodeCharacter{021A}{\textcommabelow T}
530 (all, t1, otl, lyl)\DeclareUnicodeCharacter{021B}{\textcommabelow t}

531 (all, t1)\DeclareUnicodeCharacter{0232}{\@tabacckludge=Y}

532 (all, t1)\DeclareUnicodeCharacter{0233}{\@tabacckludge=y}

533 (all, t2¢, t2b, t2a,t1, ot2, otl, lyl, Icy)\DeclareUnicodeCharacter{0237}{\j}
534 (all, lyl, utf8)\DeclareUnicodeCharacter{02C6}{\textasciicircum}

535 (all, ts1)\DeclareUnicodeCharacter{02C7}{\textasciicaron}

536 (all, lyl, utf8)\DeclareUnicodeCharacter{02DC}{\textasciitilde}

537 (all, ts1)\DeclareUnicodeCharacter{02D8}{\textasciibreve}

538 (all, t1)\DeclareUnicodeCharacter{02D9}{\.{}}

539 (all, t1)\DeclareUnicodeCharacter{02DB}{\k{}}

540 (all, ts1)\DeclareUnicodeCharacter{02DD}{\textacutedbl}

The Cyrillic code points have been recently checked (2007) and extended and
corrected by Matthias Noe (2a9931078@unet.univie.ac.at) — thanks.

541 (*all,x2, t2c, t2b, t2a, ot2, lcy)

542 \DeclareUnicodeCharacter{0400}{\@tabacckludge ‘\CYRE}

18

543 (/all,x2, t2c, t2b, t2a, ot2, lcy)

544 (all, x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{0401}{\CYRY0}
545 (all,x2, t2a, ot2)\DeclareUnicodeCharacter{0402}{\CYRDJE}

546 (*all,x2, t2c, t2b, t2a, ot2, lcy)

547 \DeclareUnicodeCharacter{0403}{\@tabacckludge’\CYRG}

548 (/all,x2, t2c, t2b, t2a, ot2, lcy)

549 (all,x2, t2a, ot2, Icy)\DeclareUnicodeCharacter{0404}{\CYRIE}
550 (all, x2, t2¢, t2b, t2a, ot2)\DeclareUnicodeCharacter{0405}{\CYRDZE}
551 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{0406}{\CYRII}
552 (all,x2, t2a, lcy)\DeclareUnicodeCharacter{0407}{\CYRYI}

553 (all, x2, t2¢, t2b, t2a, ot2)\DeclareUnicodeCharacter{0408}{\CYRJE}
554 (all,x2, t2b, t2a, ot2)\DeclareUnicodeCharacter{0409}{\CYRLJE}
555 (all,x2, t2b, t2a, ot2)\DeclareUnicodeCharacter{040A}{\CYRNJE}
556 (all, x2, t2a, ot2)\DeclareUnicodeCharacter{040B}{\CYRTSHE}
557 (*all, x2, t2c, t2b, t2a, ot2, lcy)

558 \DeclareUnicodeCharacter{040C}{\@tabacckludge’\CYRK}

559 \DeclareUnicodeCharacter{040D}{\@tabacckludge ‘\CYRI}

560 (/all,x2,t2c, t2b, t2a, ot2, lcy)

561 (all,x2, t2b, t2a, Icy)\DeclareUnicodeCharacter{040E}{\CYRUSHRT}
562 (all, x2, t2¢, t2a, ot2)\DeclareUnicodeCharacter{040F}{\CYRDZHE}
563 (*all, x2, t2c, t2b, t2a, ot2, Icy)

564 \DeclareUnicodeCharacter{0410}{\CYRA}

565 \DeclareUnicodeCharacter{0411}{\CYRB}

566 \DeclareUnicodeCharacter{0412}{\CYRV}

567 \DeclareUnicodeCharacter{0413}{\CYRG}

568 \DeclareUnicodeCharacter{0414}{\CYRD}

569 \DeclareUnicodeCharacter{0415}{\CYRE}

570 \DeclareUnicodeCharacter{0416}{\CYRZH}

571 \DeclareUnicodeCharacter{0417}{\CYRZ}

572 \DeclareUnicodeCharacter{0418}{\CYRI}

573 \DeclareUnicodeCharacter{0419}{\CYRISHRT}

574 \DeclareUnicodeCharacter{041A}{\CYRK}

575 \DeclareUnicodeCharacter{041B}{\CYRL}

576 \DeclareUnicodeCharacter{041C}{\CYRM}

577 \DeclareUnicodeCharacter{041D}{\CYRN}

578 \DeclareUnicodeCharacter{041E}{\CYRO}

579 \DeclareUnicodeCharacter{041F}{\CYRP}

580 \DeclareUnicodeCharacter{0420}{\CYRR}

581 \DeclareUnicodeCharacter{0421}{\CYRS}

582 \DeclareUnicodeCharacter{0422}{\CYRT}

583 \DeclareUnicodeCharacter{0423}{\CYRU}

584 \DeclareUnicodeCharacter{0424}{\CYRF}

585 \DeclareUnicodeCharacter{0425}{\CYRH}

586 \DeclareUnicodeCharacter{0426}{\CYRC}

587 \DeclareUnicodeCharacter{0427}{\CYRCH}

588 \DeclareUnicodeCharacter{0428}{\CYRSH}

589 \DeclareUnicodeCharacter{0429}{\CYRSHCH}

590 \DeclareUnicodeCharacter{042A}{\CYRHRDSN}

591 \DeclareUnicodeCharacter{042B}{\CYRERY}

592 \DeclareUnicodeCharacter{042C}{\CYRSFTSN}

593 \DeclareUnicodeCharacter{042D}{\CYREREV}

594 \DeclareUnicodeCharacter{042E}{\CYRYU}

595 \DeclareUnicodeCharacter{042F}{\CYRYA}

596 \DeclareUnicodeCharacter{0430}{\cyra}

o~~~ o~ o~~~

19

597 \DeclareUnicodeCharacter{0431}{\cyrb}

598 \DeclareUnicodeCharacter{0432}{\cyrv}

599 \DeclareUnicodeCharacter{0433}{\cyrg}

600 \DeclareUnicodeCharacter{0434}{\cyrd}

601 \DeclareUnicodeCharacter{0435}{\cyre}

602 \DeclareUnicodeCharacter{0436}{\cyrzh}

603 \DeclareUnicodeCharacter{0437}{\cyrz}

604 \DeclareUnicodeCharacter{0438}{\cyri}

605 \DeclareUnicodeCharacter{0439}{\cyrishrt}

606 \DeclareUnicodeCharacter{043A}{\cyrk}

607 \DeclareUnicodeCharacter{043B}{\cyrl}

608 \DeclareUnicodeCharacter{043C}{\cyrm}

609 \DeclareUnicodeCharacter{043D}{\cyrn}

610 \DeclareUnicodeCharacter{043E}{\cyro}

611 \DeclareUnicodeCharacter{043F}{\cyrp}

612 \DeclareUnicodeCharacter{0440}{\cyrr}

613 \DeclareUnicodeCharacter{0441}{\cyrs}

614 \DeclareUnicodeCharacter{0442}{\cyrt}

615 \DeclareUnicodeCharacter{0443}{\cyru}

616 \DeclareUnicodeCharacter{0444}{\cyrf}

617 \DeclareUnicodeCharacter{0445}{\cyrh}

618 \DeclareUnicodeCharacter{0446}{\cyrc}

619 \DeclareUnicodeCharacter{0447}{\cyrch}

620 \DeclareUnicodeCharacter{0448}{\cyrsh}

621 \DeclareUnicodeCharacter{0449}{\cyrshch}

622 \DeclareUnicodeCharacter{044A}{\cyrhrdsn}

623 \DeclareUnicodeCharacter{044B}{\cyrery}

624 \DeclareUnicodeCharacter{044C}{ \cyrsftsn}

625 \DeclareUnicodeCharacter{044D}{\cyrerev}

626 \DeclareUnicodeCharacter{044E}{\cyryu}

627 \DeclareUnicodeCharacter{044F}{\cyrya}

628 \DeclareUnicodeCharacter{0450}{\@tabacckludge ‘\cyre}

629 \DeclareUnicodeCharacter{0451}{\cyryo}

630 (/all,x2,t2c, t2b, t2a, ot2, lcy)

631 (all,x2, t2a, ot2)\DeclareUnicodeCharacter{0452}{\cyrdje}

632 (*all,x2, t2c, t2b, t2a, ot2, Icy)

633 \DeclareUnicodeCharacter{0453}{\@tabacckludge’\cyrg}

634 (/all,x2,t2c, t2b, t2a, ot2, lcy)

635 (all,x2, t2a, ot2, Icy)\DeclareUnicodeCharacter{0454}{\cyrie}
636 (all,x2, t2c, t2b, t2a, ot2)\DeclareUnicodeCharacter{0455}{\cyrdze}
637 (all, x2,t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{0456}{\cyrii}
638 (all,x2, t2a, lcy)\DeclareUnicodeCharacter{0457}{\cyryi}

639 (all, x2, t2¢c, t2b, t2a, ot2)\DeclareUnicodeCharacter{0458}{\cyrje}
640 (all,x2, t2b, t2a, ot2) \DeclareUnicodeCharacter{0459}{\cyrlje}
641 (all,x2,t2b, t2a, ot2)\DeclareUnicodeCharacter{045A}{\cyrnje}
642 (all,x2, t2a, ot2)\DeclareUnicodeCharacter{045B}{\cyrtshe}
643 (*all, x2, t2c, t2b, t2a, ot2, lcy)

644 \DeclareUnicodeCharacter{045C}{\@tabacckludge’\cyrk}

645 \DeclareUnicodeCharacter{045D}{\@tabacckludge ‘\cyri}

646 (/all,x2,t2c, t2b, t2a, ot2, lcy)

647 (all,x2, t2b, t2a, Icy)\DeclareUnicodeCharacter{045E}{\cyrushrt}
648 (all, x2, t2¢, t2a, ot2)\DeclareUnicodeCharacter{045F}{\cyrdzhe}
649 (all,x2, ot2)\DeclareUnicodeCharacter{0462}{\CYRYAT}

650 (all,x2, ot2)\DeclareUnicodeCharacter{0463}{\cyryat}

o~ o~~~ o~~~

o~ o~~~

20

651 (all,x2)\DeclareUnicodeCharacter{046A}{\CYRBYUS}
652 (all, x2)\DeclareUnicodeCharacter{046B}{\cyrbyus}

The next two declarations are questionable, the encoding definition should proba-
bly contain \CYROTLD and \cyrotld. Or alternatively, if the characters in the X2
encodings are really meant to represent the historical characters in Ux0472 and
Ux0473 (they look like them) then they would need to change instead.

However, their looks are probably a font designers decision and the next two
mappings are wrong or rather the names in OT2 should change for consistency.

On the other hand the names \CYROTLD are somewhat questionabled as the
Unicode standard only describes “Cyrillic barred O” while TLD refers to a tilde
(which is more less what the “Cyrillic FITA looks according to the Unicode book).

653 (all, ot2)\DeclareUnicodeCharacter{0472}{\CYRFITA}
654 (all, ot2)\DeclareUnicodeCharacter{0473}{\cyrfita}

655 (all, x2, ot2)\DeclareUnicodeCharacter{0474}{\CYRIZH}
656 (all,x2, ot2)\DeclareUnicodeCharacter{0475}{\cyrizh}

While the double grave accent seems to exist in X2, T2A, T2B and T2C encoding,
the letter izhitsa exists only in X2 and OT2. Therefore, izhitsa with double grave
seems to be possible only using X2.

657 (all,x2)\DeclareUnicodeCharacter{0476}{\C\CYRIZH}

658 (all, x2)\DeclareUnicodeCharacter{0477}{\C\cyrizh}

(

659 (all, t2c)\DeclareUnicodeCharacter{048C}{\CYRSEMISFTSN}

660 (all, t2c)\DeclareUnicodeCharacter{048D}{\cyrsemisftsn}

661 (all, t2c)\DeclareUnicodeCharacter{048E}{\CYRRTICK}

662 (all, t2c)\DeclareUnicodeCharacter{048F}{\cyrrtick}

663 (all,x2, t2a, Icy)\DeclareUnicodeCharacter{0490}{\CYRGUP}

664 (all,x2, t2a, lcy)\DeclareUnicodeCharacter{0491}{\cyrgup}

665 (all, x2,t2b, t2a)\DeclareUnicodeCharacter{0492}{\CYRGHCRS}
666 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{0493}{\cyrghcrs}
667 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{0494}{\CYRGHK}

668 (all, x2, t2¢c, t2b)\DeclareUnicodeCharacter{0495}{\cyrghk}

669 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{0496}{\CYRZHDSC}
670 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{0497}{\cyrzhdsc}
671 (all, x2, t2a)\DeclareUnicodeCharacter{0498}{\CYRZDSC}

672 (all,x2, t2a)\DeclareUnicodeCharacter{0499}{\cyrzdsc}

673 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{049A}{\CYRKDSC}
674 (all, x2,t2c, t2b, t2a)\DeclareUnicodeCharacter{049B}{\cyrkdsc}
675 (all,x2, t2a)\DeclareUnicodeCharacter{049C}{\CYRKVCRS}

676 (all,x2, t2a)\DeclareUnicodeCharacter{049D}{\cyrkvcrs}

677 (all, x2, t2c)\DeclareUnicodeCharacter{049E}{\CYRKHCRS}

678 (all,x2, t2c)\DeclareUnicodeCharacter{049F}{\cyrkhcrs}

679 (all,x2, t2a)\DeclareUnicodeCharacter{04A0}{\CYRKBEAK}

680 (all, x2,t2a)\DeclareUnicodeCharacter{04A1}{\cyrkbeak}

681 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04A2}{\CYRNDSC}
682 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04A3}{\cyrndsc}
683 (all, x2,t2b, t2a)\DeclareUnicodeCharacter{04A4}{\CYRNG}

684 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{04A5}{\cyrng}

685 (all,x2, t2c)\DeclareUnicodeCharacter{04A6}{\CYRPHK}

686 (all, x2,t2c)\DeclareUnicodeCharacter{04A7}{\cyrphk}

687 (all,x2, t2c)\DeclareUnicodeCharacter{04A8}{\CYRABHHA}

688 (all,x2, t2c)\DeclareUnicodeCharacter{04A9}{\cyrabhha}

689 (all, x2, t2a)\DeclareUnicodeCharacter{04AA}{\CYRSDSC}

21

690 (all,x2, t2a)\DeclareUnicodeCharacter{04AB}{\cyrsdsc}

691 (all, x2, t2c)\DeclareUnicodeCharacter{04AC}{\CYRTDSC}

692 (all,x2, t2c)\DeclareUnicodeCharacter{04AD}{\cyrtdsc}

693 (all,x2, t2b, t2a)\DeclareUnicodeCharacter{04AE}{\CYRY}

694 (all, x2,t2b, t2a)\DeclareUnicodeCharacter{04AF}{\cyry}

695 (all,x2, t2a)\DeclareUnicodeCharacter{04B0}{\CYRYHCRS}

696 (all,x2, t2a)\DeclareUnicodeCharacter{04B1}{\cyryhcrs}

697 (all, x2,t2c, t2b, t2a)\DeclareUnicodeCharacter{04B2}{\CYRHDSC}

698 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04B3}{\cyrhdsc}

699 (all,x2, t2c)\DeclareUnicodeCharacter{04B4}{\CYRTETSE}

700 (all, x2, t2c)\DeclareUnicodeCharacter{04B5}{\cyrtetse}

701 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04B6}{\CYRCHRDSC}

702 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04B7}{\cyrchrdsc}

703 (all, x2, t2a)\DeclareUnicodeCharacter{04B8}{\CYRCHVCRS}

704 (all, x2, t2a)\DeclareUnicodeCharacter{04B9}{\cyrchvcrs}
(
(
(
(
(

705 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04BA}{\CYRSHHA}
706 (all,x2,t2c, t2b, t2a)\DeclareUnicodeCharacter{04BB}{\cyrshha}
707 (all,x2, t2c)\DeclareUnicodeCharacter{04BC}{\CYRABHCH}

708 (all,x2, t2c)\DeclareUnicodeCharacter{04BD}{\cyrabhch}
709 (all, x2, t2c)\DeclareUnicodeCharacter{04BE}{\CYRABHCHDSC}
710 (all,x2, t2c)\DeclareUnicodeCharacter{04BF}{\cyrabhchdsc}

The character \CYRpalochka is not defined by OT2 and LCY. However it is looking
identical to \CYRII and the Unicode standard explicitly refers to that (and to Latin
I). So perhaps those encodings could get an alias? On the other hand, why are
there two distinct slots in the T2 encodings even though they are so pressed for
space? Perhaps they don’t always look alike.

711 (all, x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04C0}{\CYRpalochka}

712 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04C1}{\U\CYRZH}
713 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04C2}{\U\cyrzh}
714 (all, x2, t2b) \DeclareUnicodeCharacter{04C3}{\CYRKHK}
715 (all,x2, t2b)\DeclareUnicodeCharacter{04C4}{\cyrkhk}

According to the Unicode standard Ux04C5 should be an L with “tail” not with
descender (which also exists as Ux04A2) but it looks as if the char names do not
make this distinction). Should they?

716 (all, x2, t2¢, t2b)\DeclareUnicodeCharacter{04C5}{\CYRLDSC}
717 (all, x2, t2c, t2b)\DeclareUnicodeCharacter{04C6}{\cyrldsc}

718 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{04C7}{\CYRNHK}
719 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{04C8}{\cyrnhk}
720 (all, x2, t2b)\DeclareUnicodeCharacter{04CB}{\CYRCHLDSC}

721 (all,x2, t2b)\DeclareUnicodeCharacter{04CC}{\cyrchldsc}

According to the Unicode standard Ux04CD should be an M with “tail” not
with descender. However this time there is no M with descender in the Unicode
standard.

722 (all, x2, t2c)\DeclareUnicodeCharacter{04CD}{\CYRMDSC}
723 (all,x2, t2c)\DeclareUnicodeCharacter{04CE}{\cyrmdsc}

o~ o~~~

724
725
726
727
728

all,; x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D0}{\U\CYRA}
all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04D1}{\U\cyra}
all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D2}{\"\CYRA}
all,; x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D3}{\"\cyra}
all,x2, t2a)\DeclareUnicodeCharacter{04D4}{\CYRAE}

o~~~ o~~~

22

729 (all,x2, t2a)\DeclareUnicodeCharacter{04D5}{\cyrae}

730 (all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04D6}{\U\CYRE}
731 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04D7}{\U\cyre}
732 (all, x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04D8}{\CYRSCHWA}

733 (all, x2, t2¢, t2b, t2a)\DeclareUnicodeCharacter{04D9}{\cyrschwa}

734 (all, x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04DA}{\"\CYRSCHWA}

735 (all, x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04DB}{\"\cyrschwa}
736 (all,x2, t2¢, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DC}{\"\CYRZH}
737 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04DD}{\"\cyrzh}

(

(

(

(

(

(

(

(

(

738 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04DE}{\"\CYRZ}

739 (all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04DF}{\"\cyrz}

740 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{04E0}{\CYRABHDZE}

741 (all,x2, t2c, t2b)\DeclareUnicodeCharacter{04E1}{\cyrabhdze}

742 (all, x2,t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04E2}{\@tabacckludge=\CYRI}

743 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E3}{\@tabacckludge=\cyri}

744 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E4}{\"\CYRI}

745 (all, x2,t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04E5}{\"\cyri}

746 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04E6}{\"\CYRO}

747 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04E7}{\"\cyro}

748 (all, x2,t2c, t2b, t2a)\DeclareUnicodeCharacter{04E8}{\CYROTLD}

749 (all,x2, t2c, t2b, t2a)\DeclareUnicodeCharacter{04E9}{\cyrotld}

750 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04EC}{\"\CYREREV}

751 (all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04ED}{\"\cyrerev}

752 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04EE}{\@tabacckludge=\CYRU}

753 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04EF}{\@tabacckludge=\cyru}

754 (all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04F0}{\"\CYRU}

755 (all,x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F1}{\"\cyru}

756 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F2}{\H\CYRU}

757 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F3}{\H\cyru}

758 (all,x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04F4}{\"\CYRCH}

759 (all, x2, t2c, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{04F5}{\"\cyrch}

760 (all, x2, t2b)\DeclareUnicodeCharacter{04F6}{\CYRGDSC}

761 (all,x2, t2b)\DeclareUnicodeCharacter{04F7}{\cyrgdsc}

762 (all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04F8}{\"\CYRERY}

763 (all, x2, t2c, t2b, t2a, ot2, Icy)\DeclareUnicodeCharacter{04F9}{\"\cyrery}

764 (all, t2b)\DeclareUnicodeCharacter{04FA}{\CYRGDSCHCRS}

765 (all, t2b)\DeclareUnicodeCharacter{04FB}{\cyrgdschcrs}

766 (all, x2, t2b)\DeclareUnicodeCharacter{04FC}{\CYRHHK}

767 (all,x2, t2b)\DeclareUnicodeCharacter{04FD}{\cyrhhk}

768 (all, t2b)\DeclareUnicodeCharacter{04FE}{\CYRHHCRS}

769 (all, t2b)\DeclareUnicodeCharacter{04FF}{\cyrhhcrs}

770 (all, ts1)\DeclareUnicodeCharacter{OE3F}{\textbaht}

771 (all, t1)\DeclareUnicodeCharacter{1E02}{\.B}

772 (all, t1)\DeclareUnicodeCharacter{1E03}{\.b}

773 (all, t1)\DeclareUnicodeCharacter{1E9E}{\SS}

774 (all, x2, t2c, t2b, t2a, t1, utf8) \DeclareUnicodeCharacter{200C}{\textcompwordmark}
(

S ——_— —— —_— — —~

775 (all, t1)\DeclareUnicodeCharacter{2010}{-}
776 (all, t1)\DeclareUnicodeCharacter{2011}{\mbox{-}}

U+2012 should be the width of a digit, endash is OK in many fonts including cm.

777 (all, t1)\DeclareUnicodeCharacter{2012}{\textendash}
778 (*all, x2, t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

779 \DeclareUnicodeCharacter{2013}{\textendash}

780 \DeclareUnicodeCharacter{2014}{\textemdash}

23

U+2015 is Horizontal bar

781 (all, t1) \DeclareUnicodeCharacter{2015}{\textemdash}

782 (/all,x2, t2c, t2b, t2a, t1, ot2, otl, ly1, lcy)

783 (all, ts1)\DeclareUnicodeCharacter{2016}{\textbardbl}

784 (*all, x2, t2c, t2b, t2a, t1, ot2, otl, lcy)

785 \DeclareUnicodeCharacter{2018}{\textquoteleft}

786 \DeclareUnicodeCharacter{2019}{\textquoteright}

787 (/all,x2, t2c, t2b, t2a, t1, ot2, otl, lcy)

788 (all, t1)\DeclareUnicodeCharacter{201A}{\quotesinglbase}

789 (*all, x2, t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

790 \DeclareUnicodeCharacter{201C}{\textquotedblleft}

791 \DeclareUnicodeCharacter{201D}{\textquotedblright}

792 (/all, x2,t2¢, t2b, t2a, t1, ot2, otl, lyl, lcy)

793 (all,x2, t2c, t2b, t2a, t1, Icy)\DeclareUnicodeCharacter{201E}{\quotedblbase}
794 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{2020}{\textdagger}

795 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{2021}{\textdaggerdbl}

796 (all, ts1, oms, lyl)\DeclareUnicodeCharacter{2022}{\textbullet}

797 (all, lyl, utf8)\DeclareUnicodeCharacter{2026}{\textellipsis}

798 (*all, x2, ts1,t2c, t2b, t2a, t1, lyl)

799 \DeclareUnicodeCharacter{2030}{\textperthousand}

800 (/all,x2, ts1, t2¢, t2b, t2a, t1, ly1)

801 (*all,x2, ts1,t2¢, t2b, t2a, t1)

802 \DeclareUnicodeCharacter{2031}{\textpertenthousand}

803 (/all,x2, ts1, t2¢, t2b, t2a, t1)

804 (all, t1,lyl)\DeclareUnicodeCharacter{2039}{\guilsinglleft}
805 (all, t1,lyl)\DeclareUnicodeCharacter{203A}{\guilsinglright}
806 (all, ts1)\DeclareUnicodeCharacter{203B}{\textreferencemark}
807 (all, ts1)\DeclareUnicodeCharacter{203D}{\textinterrobang}
808 (all, ts1)\DeclareUnicodeCharacter{2044}{\textfractionsolidus}
809 (all, ts1)\DeclareUnicodeCharacter{204E}{\textasteriskcentered}
810 (all, ts1)\DeclareUnicodeCharacter{2052}{\textdiscount}
811 (all, ts1)\DeclareUnicodeCharacter{20A1}{\textcolonmonetary}
812 (all, ts1)\DeclareUnicodeCharacter{20A4}{\textlira}
813 (all, ts1)\DeclareUnicodeCharacter{20A6}{\textnaira}
814 (all, ts1)\DeclareUnicodeCharacter{20A9}{\textwon}

815 (all, ts1)\DeclareUnicodeCharacter{20AB}{\textdong}
816 (all, ts1)\DeclareUnicodeCharacter{20AC}{\texteuro}
817 (all, ts1)\DeclareUnicodeCharacter{20B1}{\textpeso}
818 (all, ts1)\DeclareUnicodeCharacter{2103}{\textcelsius}
819 (all,x2, ts1, t2¢, t2b, t2a, ot2, Icy) \DeclareUnicodeCharacter{2116}{\textnumero}
820 (all, ts1)\DeclareUnicodeCharacter{2117}{\textcircledP}

821 (all, ts1)\DeclareUnicodeCharacter{211E}{\textrecipe}

822 (all, ts1)\DeclareUnicodeCharacter{2120}{\textservicemark}

823 (all, ts1, lyl, utf8)\DeclareUnicodeCharacter{2122}{\texttrademark}

824 (all, ts1)\DeclareUnicodeCharacter{2126}{\textohm}

825 (all, ts1)\DeclareUnicodeCharacter{2127}{\textmho}

826 (all, ts1)\DeclareUnicodeCharacter{212E}{\textestimated}

827 (all, ts1)\DeclareUnicodeCharacter{2190}{\textleftarrow}

828 (all, ts1)\DeclareUnicodeCharacter{2191}{\textuparrow}

829 (all, ts1)\DeclareUnicodeCharacter{2192}{\textrightarrow}

830 (all, ts1)\DeclareUnicodeCharacter{2193}{\textdownarrow}

831 (all,x2, ts1, t2c, t2b, t2a) \DeclareUnicodeCharacter{2329}{\textlangle}

832 (all,x2, ts1, t2c, t2b, t2a) \DeclareUnicodeCharacter{232A}{\textrangle}

833 (all, ts1)\DeclareUnicodeCharacter{2422}{\textblank}

24

834 (all,x2, t2c, t2b, t2a, t1, utf8) \DeclareUnicodeCharacter{2423}{\textvisiblespace}
835 (all, ts1)\DeclareUnicodeCharacter{25E6}{\textopenbullet}

836 (all, ts1)\DeclareUnicodeCharacter{25EF}{\textbigcircle}

837 (all, ts1)\DeclareUnicodeCharacter{266A}{\textmusicalnote}

838 (all, t1)\DeclareUnicodeCharacter{1E20}{\@tabacckludge=G}

839 (all, t1)\DeclareUnicodeCharacter{1E21}{\@tabacckludge=g}

840 (all, ts1, utf8)\DeclareUnicodeCharacter{FEFF}{\ifhmode\nobreak\fi}

3.3 Notes

The following inputs are inconsistent with the 8-bit inputenc files since they will
always only produce the ‘text character’. This is an area where inputenc is noto-
riously confused.

%<all,tsl,tl,otl,lyl>\DeclareUnicodeCharacter{00A3}{\textsterling}
%<*all,x2,tsl,t2c,t2b,t2a,oms,lyl>
\DeclareUnicodeCharacter{00A7}{\textsection}
%</all,x2,tsl,t2c,t2b,t2a,oms,lyl>
%<all,tsl,utf8>\DeclareUnicodeCharacter{00A9}{\textcopyright}
%<all,ts1>\DeclareUnicodeCharacter{00B1}{\textpm}
%<all,tsl,oms,lyl>\DeclareUnicodeCharacter{00B6}{\textparagraph}
%<all,tsl,oms,lyl>\DeclareUnicodeCharacter{2020}{\textdagger}
%<all,tsl,oms,lyl>\DeclareUnicodeCharacter{2021}{\textdaggerdbl}
%<all,lyl,utf8>\DeclareUnicodeCharacter{2026}{\textellipsis}

The following definitions are in an encoding file but have no direct equivalent
in Unicode, or they simply do not make sense in that context (or we have not
yet found anything or ...:-). For example, the non-combining accent characters
are certainly available somewhere but these are not equivalent to a TEX accent
command.

\DeclareTextSymbol{\j}{0T1}{17}
\DeclareTextSymbol{\SS}{T1}{223}
\DeclareTextSymbol{\textcompwordmark}{T1}{23}

\DeclareTextAccent{\"}{0T1}{127}
\DeclareTextAccent{\’}{0T1}{19}
\DeclareTextAccent{\.}{0T1}{95}
\DeclareTextAccent{\=}{0T1}{22}
\DeclareTextAccent{\H}{0T1}{125}
\DeclareTextAccent{\"}{0T1}{94}
\DeclareTextAccent{\‘}{0T1}{18}
\DeclareTextAccent{\r}{0T1}{23}
\DeclareTextAccent{\u}{0T1}{21}
\DeclareTextAccent{\v}{0T1}{20}
\DeclareTextAccent{\~“}{0T1}{126}
\DeclareTextCommand{\b}{0T1}[1]
\DeclareTextCommand{\c}{0T1}[1]
\DeclareTextCommand{\d}{0T1}[1]
\DeclareTextCommand{\k}{T1}[1]

25

3.4 Mappings for OT1 glyphs

This is even more incomplete as again it covers only the single glyphs from 0T1
plus some that have been explicitly defined for this encoding. Everything that is
provided in T1, and that could be provided as composite glyphs via 0T1, could
and probably should be set up as well. Which leaves the many things that are not
provided in T1 but can be provided in 0T1 (and in T1) by composite glyphs.
Stuff not mapped (note that \j () is not equivalent to any Unicode character):

\DeclareTextSymbol{\j}{0T1}{173}
\DeclareTextAccent{\"}{0T1}{127}
\DeclareTextAccent{\’}{0T1}{19}
\DeclareTextAccent{\.}{0T1}{95}
\DeclareTextAccent{\=}{0T1}{22}
\DeclareTextAccent{\"}{0T1}{94}
\DeclareTextAccent{\‘}{0T1}{18}
\DeclareTextAccent{\~"}{0T1}{126}
\DeclareTextAccent{\H}{0T1}{125}
\DeclareTextAccent{\u}{0T1}{21}
\DeclareTextAccent{\v}{0T1}{20}
\DeclareTextAccent{\r}{0T1}{23}
\DeclareTextCommand{\b}{0T1}[1]
\DeclareTextCommand{\c}{0T1}[1]
\DeclareTextCommand{\d}{0T1}[1]

3.5 Mappings for OMS glyphs

Characters like \textbackslash are not mapped as they are (primarily) only in
the lower 127 and the code here only sets up mappings for UTF-8 characters that
are at least 2 octets long.

\DeclareTextSymbol{\textbackslash}{0MS}{110} % "6E
\DeclareTextSymbol{\textbar}{0MS}{106} % "6A
\DeclareTextSymbol{\textbraceleft}{0MS}{102} % "66
\DeclareTextSymbol{\textbraceright}{0MS}{103} % "67

But the following (and some others) might actually lurk in Unicode some-
where. . .

\DeclareTextSymbol{\textasteriskcentered}{0MS}{3} % "03
\DeclareTextCommand{\textcircled}{0OMS}

3.6 Mappings for TS1 glyphs

Exercise for somebody else.

3.7 Mappings for latex.ltx glyphs

There is also a collection of characters already set up in the kernel, one way or the
other. Since these do not clearly relate to any particular font encoding they are
mapped when the utf8 support is first set up.

Also there are a number of \providecommands in the various input encoding
files which may or may not go into this part.

841 (*utf8)

26

842 %, This space is intentionally empty ...
843 (/utf8)

4 A test document

Here is a very small test document which may or may not survive if the current
document is transferred from one place to the other.

844 (*test)

845 \documentclass{article}

846

847 \usepackage [latinl,utf8]{inputenc}
848 \usepackage [T1]{fontenc}

849 \usepackage{trace}

850

851 \scrollmode % to run past the error below
852

853 \begin{document}

854

855 German umlauts in UTF-8: "~c37"a4""c3""b6""c3""bc %k &0l
856

857 \inputencoding{latinl} 7% switch to latinl

858

859 German umlauts in UTF-8 but read by latinl (and will produce one
860 error since \verb=\textcurrency= is not provided):

861 ~~c37"a4""c37"b6""c3""bc

862

863 \inputencoding{utf8} % switch back to utf8

864

865 German umlauts in UTF-8: ""c37"a4""c37"b6""c3""bc

866

867

868 Some codes that should produce errors as nothing is set up
869 for them: ""c3F ""el”"a4”"b6

870

871 And some that are not legal utf8 sequences: “~“c3X ~“elXY
872

873 \showoutput

874 \tracingstats=2

875 \stop

876 (/test)

27

	Contents
	1 Introduction
	1.1 Background and general stuff
	1.2 More specific stuff
	1.3 Notes
	1.4 Basic operation of the code

	2 Coding
	2.1 Housekeeping
	2.2 Parsing UTF-8 input
	2.3 Mapping Unicode codes to LaTeX internal forms
	2.4 Loading Unicode mappings at begin document

	3 Mapping characters —based on font (glyph) encodings
	3.1 About the table itself
	3.2 The mapping table
	3.3 Notes
	3.4 Mappings for OT1 glyphs
	3.5 Mappings for OMS glyphs
	3.6 Mappings for TS1 glyphs
	3.7 Mappings for latex.ltx glyphs

	4 A test document

