The IXTEX 2¢ Sources

Johannes Braams
David Carlisle
Alan Jeffrey
Leslie Lamport
Frank Mittelbach
Chris Rowley
Rainer Schopf

2020-10-01

This file is maintained by the BTEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

Contents

a ltdirchk.dtx
1 BTEX System Dependent Initialisations

2 Initialisation
2.1 INITEX e
2.2 Somebitsof 2e L.

3 texsys.cfg
3.1 texsys.cfg L
3.2 UNIX (Web2¢) « . v v vt e e e e e
3.3 UNIX (other) e
3.4 MSDOS (emtex) v v v i
3.5 MSDOS (other)
3.6 VMS (DECUS TgX, PD VMS 3.6)
3.7 VMS (777) oo
3.8 MACINTOSH (O2TeX 1.6) .« o o v oo oo
3.9 MACINTOSH (Other) . . o o o v e
3.10 FAKE EXAMPLE o

4 Setting \@currdir

5 Setting \input@path

N

[l iNe RN B BN N R =2l e

https://latex-project.org/bugs.html

Filename Parsing 11

TEX Versions 13
Itxcheck.tex 13
Itplain.dtx 14
Plain TEX 14
Itvers.dtx 34
Version Identification 34
Itluatex.dtx 38
Overview 38
Core TEX functionality 38
Plain TgX interface 39
Lua functionality 39
4.1 Allocatorsin Lua 39
4.2 Lua access to TEX register numbers 0oL 40
4.3 Module utilities 41
4.4 Callback management 41
Implementation 42
5.1 Minimum LuaTgEX version oL 42
5.2 Older BTEX/Plain TEX setup o oo 42
5.2.1 TFixes to etex.src/etex.sty o .o 43
5.2.2 luatex specific settings oL 43

5.3 Attributes 44
5.4 Category code tables L 44
5.5 Named Lua functions o 46
5.6 Custom whatsits 47
5.7 Lua bytecode registers 47
5.8 Lua chunk registers L oL o 47
5.9 Lualoader 47
5.10 Lua module preliminaries L oo 49
5.11 Lua module utilities oo oo 49
5.11.1 Module tracking L o 49
5.11.2 Module messages oL 50

5.12 Accessing register numbers from Lua 00000 51
5.13 Attribute allocation L oL o 52
5.14 Custom whatsit allocation 0oL 53
5.15 Bytecode register allocation oo L 53

ii

5.16 Lua chunk name allocation,
5.17 Lua function allocation oo
5.18 Lua callback management
5.18.1 Housekeeping L e
5.18.2 Handlers e
5.18.3 Public functions for callback management

Itexpl.dtx

expl3-dependent code
1.1 Loader e
1.2 Usingexpldcode e

ltdefns.dtx

Definitions

1.1 Initex initialisations Lo oo

1.2 Saved versions of TEX primitives

1.3 Command definitions

1.4 Robust commands and protect L.

1.5 Acting on robust commands
1.5.1 Copying robust commands
1.5.2 Showing robust commands,
1.5.3 Commands defined with \DeclareRobustCommand
1.5.4 Commands defined with \newcommand (with optional argument)

1.6 Internal defining commands

Discretionary Hyphenation

Ithooks.dtx
Introduction

Package writer interface
2.1 TEX 2 interfaces L
2.1.1 Declaring hooks and using them incode
2.1.2 Updating code for hooks
2.1.3 Hook names and default labels
2.1.4 Defining relations between hook code
2.1.5 Querying hooks L o
2.1.6 Displaying hook code
2.1.7 Debugging hook code L L.
2.2 L3 programming layer (expl3) interfaces
2.3 On the order of hook code execution
2.4 The use of “reversed” hooks
2.5 Difference between “normal” and “one-time” hooks
2.6 Private IEX kernel hooks o oo
2.7 Legacy INTEX 2¢ interfaces L oo

iii

65

65
65
67

69

69
69
69
70
79
85
87
88
89
91
92

96

[

2.8 ITEX 2z commands and environments augmented by hooks 112
2.8.1 Generic hooks for all environments 113
2.8.2 Hooks provided by \begin{document} 114
2.8.3 Hooks provided by \end{document} 114
2.8.4 Hooks provided \shipout operations 115
2.8.5 Hooks provided by file loading operations 115
2.8.6 Hooks provided in NFSS commands 116
The Implementation 116
3.1 Loading further extensions 116
3.2 Debugging 116
3.3 Borrowing from internals of other kernel modules 117
3.4 Declarations L 117
3.5 Providing new hooks Lo oo 119
3.6 Parsingalabel 121
3.7 Setting rules for hookscode oL oo 129
3.8 Specifying code for next invocation L. 142
3.9 Usingthehook L 143
3.10 Queryingahook L 145
311 Messagesl 147
3.12 HETEX 2¢ package interface commands Lo 147
3.13 Internal commands needed elsewhere 150
Italloc.dtx 152
Counters 152
ltcntrl.dtx 154
Program control structure 154
Iterror.dtx 158
Error handling and tracing 158
1.1 General commands 158
1.2 Specificerrors e 163
1.3 Tracing o . e e 167
Itpar.dtx 168
Paragraphs 168
1.1 Implementation 168

Itspace.dtx 170

iv

Spacing 170

1.1 User Commandsot v i vt i i 170
1.2 Chris’ comments 170
1.3 Some immediate actionso oL oL o 172
1.4 Thecode e e 173
1.5 Vertical spacing L e 180
1.6 Horizontal space (and breaks) 185
Itlogos.dtx 189
Logos 189
Itfiles.dtx 190
File Handling 190
1.1 Safe Input Macros 202
1.2 Listing files. o o 208
Itoutenc.dtx 210
Font encodings 210
1.1 Removing encoding-specific commands 212
1.2 The order of declarationso . 213
1.3 Docstripmodules 213
1.4 Definitions for the kernel 214
1.4.1 Declaration commands 214
1.4.2 Hyphenation 222
1.4.3 Miscellania oL L 222
1.4.4 Default encodings 222
1.4.5 Math material oo 225

1.5 Definitions for the OT1 encoding 226
1.6 Definitions for the T1 encoding 228
1.7 Definitions for the OMS encoding 234
1.8 Definitions for the OML encoding 234
1.9 Definitions for the OT4 encoding 235
1.10 Definitions for the TS1 encoding 237
1.11 Definitions for the TU encoding 241
Package files 252
2.1 The fontenc package 252
Itcounts.dtx 255
Counters and Lengths 255
1.1 Environment Counter Macros 255

Itlength.dtx

Lengths

Itfssbas.dtx
Preliminary macros
Macros for setting up the tables

Selecting a new font

3.1 Macros for theuser
3.2 Macros for loading fonts o oL oo

Assigning math fonts to versions

Itfssaxes.dtx

Changing the font series

1.1 The series lookup table

1.2 Mapping rules for series changes

1.3 Changing to a new Series o v v v v i vt

Changing the shape

2.1 Mapping rules for shape combinations

2.2 Changing toanew shape oo

Make sure we win ...

Itfsstrc.dtx
Introduction
A driver for this document
The Implementation

Handling Options

Macros common to fam.tex and tracefnt.sty
5.1 General font loading Lo o
5.2 Math fontssetup
5.2.1 Outline of algorithm for math font sizes

5.2.2 Code for math font size setting

5.2.3 Other code formath

Scaled font extraction

6.1 Sizefunctions e e e e

vi

263

263

265
265
266

273
273
277

284

291

291
291
292
300

303
304
305

306

309
309
309
310
310

312
312
317
317
318
319

321

u ltfsscmp.dtx

v ltfssdcl.dtx

1 Interface Commands

w ltfssini.dtx

1 NFSS Initialisation

1.1 Providing math versions

2 Custom series settings for main document families

3 Supporting nested emphasis

3.1 Legacy o e
3.2 Miscellaneous

x fontdef.dtx

1 Introduction

2 Customization

3 The docstrip modules

4 A driver for this document

5 The fonttext.ltx file

5.1 Encodings
5.2 Defaults e

6 The fontmath.1ltx file

6.1 The font encodings used L.
6.1.1 Symbolfont and Alphabet declarations
6.2 Math font sizes
6.3 The math symbol assignments
6.3.1 Theletters o
6.3.2 Thedigits.
6.3.3 Punctuation, brace, etc. keys
6.3.4 Delimitercodes for characters
6.4 Symbols accessed via control sequences
6.4.1 Greekletterso
6.4.2 Ordinary symbols
6.4.3 Large Operators
6.44 Binary symbols. o oo
6.4.5 Relations,
6.4.6 AITOWS e e e
6.4.7 Punctuation symbols 0L
6.4.8 Mathaccents L.

vii

332

337

337

364

364
364

365

379
382
383

388
388
388

389

389

395

...... 396

396

y

2
3

4

6.4.9 Radicals. e 404

6.4.10 Over and under something, etc 404
6.4.11 Delimiters 405

6.5 Math versions of text commands oL Lo 406
6.6 Other special functions and parameters 406
6.6.1 Bigggge L 406
6.6.2 The log-like functionso oL 407
6.6.3 Parameters L 407
Default cfg files 407
preload.dtx 409
Overview 409
Customization 409
Module switches for the DOCSTRIP program 409
A driver for this document 410
The code 410
Itfntcmd.dtx 412
Introduction 412
The implementation 414
Initialization 420
Ittextcomp.dtx 421
Sub-encodings 425
1.1 Sub-encoding 1 (drop symbols not working in Latin Modern) 427
1.2 Sub-encoding 2 (majority of new OTF fonts via autoinst) 427
1.3 Sub-encoding 3 e 429
1.4 Sub-encoding 4 429
1.5 Sub-encoding 5 (most older PS fonts) L. 429
1.6 Sub-encoding 6 430
1.7 Sub-encoding 7 430
1.8 Sub-encoding 8 L e 430
1.9 Sub-encoding 9 (most missing)o L 430
Unicode engine specials 430
Font family sub-encodings setup 431
Legacy symbol support for lists and footnote symbols 435

viii

5

B

1

C

1

D

1

G

The textcomp package

5.1 The old textcomp package code L.
5.1.1 Supporting oldstyle digits L.
5.1.2 Subset encoding defaults L.

Itpageno.dtx

Page Numbering

Itxref.dtx

Cross Referencing
1.1 Cross Referencing . . .

Itmiscen.dtx

Miscellaneous Environments

1.1 Environments

1.2 Center, Flushright, Flushleft

1.3 Verbatim

Itmath.dtx

Math setup

1.1 Math commands based on plain TEX
1.1.1 The log-like functions

1.1.2 Bigggge

1.1.3 The UNSORTED Rest

1.2 Math Environments . .

1.3 External options to the standard document classes
1.3.1 Left equation numbering
1.3.2 Flush left equations,

Itlists.dtx

List, and related environments

1.1 List and Trivlist
1.2 Vertical Spacing (skips)
1.3 Penalties

1.4 Horizontal Spacing (dimens) oL

1.5 Default Values
1.6 Itemize and Enumerate

Itboxes.dtx

ix

439
440
449
449

452

452

453

453
453

458

458
458
469
472

479

479
479
479
480
480
486
491
491
491

494

494
495
496
496
496
496
507

510

1

H

1

e

K

1

M

1

N

1

@)

ETEX Box commands
1.1 Some low-level constructs

Ittab.dtx

Tabbing, Tabular and Array Environments

1.1
1.2

tabbing
array and tabular environments

Itpictur.dtx

Picture Mode
1.1 Curves

Itthm.dtx

Theorem Environments

Itsect.dtx

Sectioning Commands
1.1 The Title
1.2 Sectioning

1.2.1 Initializations
1.3
1.3.1
1.3.2

Convention
Commands

Itfloat.dtx

Floats
1.1 Floating Environments
1.2 Footnotes

Itidxglo.dtx

Index and Glossary Generation

Itbibl.dtx

Bibliography Generation
1.1 Default definitions

Itpage.dtx

Table of Contents etc.

525

525
525
534

550

550
o577

582

582

586

586
586
o87
594
994
594
594

599

599
999
613

620
620
623
623

626

627

1

Page styles and related commands
1.1 Page Style Commands
1.2 How a page style makes running heads and feet
1.3 marking conventions Lo L Lo
ltclass.dtx
Introduction
User interface
2.1 Option processingo
Class and Package interface
3.1 Class name and Version vt
3.2 Package name and version L Lo
3.3 Requiring other packages Lo oL
3.4 Declaring new options Lo
3.5 Safe Input Macros
Implementation
4.1 Hooks e
4.2 Providing shipment oL

Package/class rollback mechanism

After Preamble

Itfilehook.dtx

Introduction
1.1 Provided hooks
1.2 General hooks for file reading L.
1.3 Hooks for package and class files
1.4 Hooks for \include files
1.5 High-level interfaces for IXTRX o L
1.6 Internal interfaces for BTEX
1.7 A sample package for structuring the log output

The Implementation
2.1 Document and package-level commands
2.2 expl3helpers
2.3 Declaring the file-related hooks
2.4 Patching BTEX’s \InputIfFileExists command
2.5 Declaring a file substitution 0000000
2.6 Selecting a file (\set@curr@file)
2.7 Replacing a file and detecting loops

2.7.1 The Tortoise and Hare algorithm

2.8 Preventing a package from loading 0oL
2.9 High-level interfaces for BTEX

xi

627
627
627
627

631
631

631
632

633
633
633
633
634
635

635
655
657

665

673

3

4

R

1

T

U

2.10

Internal commands needed elsewhere . . .

A sample package for structuring the log output

Package emulations

4.1 Package atveryend emulation
Itshipout.dtx
Introduction
1.1 Overloading the \shipout primitive
1.2 Provided hooks
1.3 Special commands for use inside the hooks
1.4 Information counters
1.5 Debugging shipout code

Emulating commands from other packages

2.1
2.2
2.3
2.4

Emulating atbegshi
Emulating everyshi
Emulating atenddvi
Emulating everypage

The Implementation

3.1
3.2

Debugging
Handling the end of job hook

Legacy ITEX 2¢ interfaces

Internal commands needed elsewhere

Package emulation for compatibility

6.1 Package atenddvi emulation
6.2 Package atbegshi emulation
6.3 Package everyshi emulation
Itoutput.dtx
Output Routine
1.1 Floats
1.1.1 Kludgeins
1.1.2 Float control
1.1.3 Float placement parameters
Ithyphen.dtx
Itfinal.dtx

xii

692

693
693

695

695
695
696
697
698
698

698
699
699
700
700

700
700
709

712
712

714
714
714
716

717

717
717
e
e
787

790

792

1 Final settings

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

Debugging
Typesetting parameters
Lccodes for hyphenation
Hyphenation
Font loading
Input encoding
Lccodes and uccodes L
Applying Patch files
Freeing Memory
Initialise file list

Do some temporary work for pre-release

Some last minute initializations
Dumping the format

Change History

Index

xiii

792
792
792
794
797
798
798
802
804
805
806
806
806
806

807

869

File a
Itdirchk.dtx

1 KETgX System Dependent Initialisations

This file implements the semi-automatic determination of various system dependent parts
of the initialisation. The actual definitions may be placed in a file texsys.cfg. Thus for
operating systems for which the tests here do not result in acceptable settings, a ‘hand
written’ texsys.cfg may be produced.

The macros that must be defined are:

\Qcurrdir \@currdir(filename)(space) should expand to a form of the filename that uniquely
refers to the ‘current directory’ if this is possible. (The expansion should also end with
a space.) on UNIX, this is \def\@currdir{./}. For more exotic operating systems you
may want to make \@currdir a macro with arguments delimited by . and/or (space). If
the operating system has no concept of directory structure, this macro should be defined
to be empty.

\input@path If the primitive \openin searches the same directories as the primitive \input, then
it is possible to tell (using \ifeof) whether a file exists before trying to input it. For
systems like this, \input@path should be left undefined.

If \openin does not ‘follow’ \input then \input@path must be defined to be a list
of directories to search for input files. The format for each directory is as for \@currdir,
normally just a prefix is required, but it may be a macro with space-delimited argument.
That is, if (dir) is an entry in the input path, TEX will try to load the expansion of
(dir){filename)(space)

So either (dir) should be defined as a macro with argument delimited by space, or it
should just expand to a directory name, including the final directory separator, so that
it may be concatenated with the (filename). This means that for UNIX-like syntax, each
(dir) should end with a slash, /.

\input@path should expand to a list of such directories, each in a {} group.

\filename@parse After a call of the form: \filename@parse{(filename)}, the three macros \filename@area,\filenan
should be defined to be the ‘area’ (or directory), basename and extension respectively. If
there was no extension specified in (filename), \filename@ext should be \let to \relax
(so this case may be tested with \@ifundefined{filename®@ext} and, perhaps a default
extension substituted).

Normally one would not need to define this macro in texsys.cfg as the automatic
tests can supply parsers that work with UNIX and VMS and Macintosh syntax, as well
as a basic parser that will cover many other cases. However some operating systems may
need a ‘hand produced’ parser in which case it should be defined in this file.

The UNIX parser also works for most MSDOS TgX versions. Currently if the UNIX,
VMS or Macintosh parser is not used, \filename@parse is defined to always return an
empty area, and to split the argument into basename and extension at the first ‘.’ that
occurs in the name. Parsers for other formats may be defined in texsys.cfg, in which
case they will be used in preference to the default definitions.

\@TeXversion \@TeXversion is now set automatically by the initialisation tests in this file. You
should not need to set it in texsys.cfg, however the following documentation is left for
information. IMTEX does not set this variable exactly, the automatic tests set it to:

2 for any version, v, v < 3.0
3 for any version, v, 3.0 < v < 3.14

File a: 1tdirchk.dtx 1

(undefined) otherwise.
However these values are accurate enough for ITEX to take appropriate action for these
old TEXs.

If your TEX is older than version 3.141, then you should define \@TeXversion (using
\def) to be the version number. If you do not do this' , WTEX will not work around a
bug in old TEX versions, and so error messages will appear in a very strange format, with
~~J appearing instead of line breaks:

LaTeX Error: \rubbish undefined.”~J " JSee the LaTeX manual or LaTeX=
Companion
for explanation.”"JType H <return> for immediate help.

.3 \renewcommand{\rubbish}

{3

However if you put \def\@TeXversion{3.14} in texsys.cfg the following format will
be used:

LaTeX Error: \rubbish undefined.

ee the LaTeX manual or LaTeX Companion for explanation.
ype H <return> for immediate help.

.3 \renewcommand{\rubbish}

{3

Note that this has an extra line ! . which does not appear in error messages that use the
default settings with a current version of TEX, but this should not cause any confusion
we hope.

2 Initialisation

As this file is read at a very early stage, some definitions that are normally considered to
be part of the format must be made here.

2.1 INITEX

1 (*dircheck)

*initex)

initex) \ifnum\catcode ‘\{=1

initex) \errmessage

initex) {LaTeX must be made using an initex with no format preloaded}
s (initex) \f1

7 \catcode ‘\{=1

2

3

o~~~ o~

5

L Actually if your TEX is really old, version 2, IATEX can detect this, and sets \@TeXversion to 2 if it
is not set in the cfg file.

File a: 1tdirchk.dtx 2

s \catcode ‘\}=2

If LuaTEX is in use the extensions and other new primitives have to be activated: this is
done as early as possible. Older versions of LuaTEX do not hide the primitives: a version
check is not needed as the version itself will be missing in the case where action is needed!

o \ifx\directlua\undefined

0 \else

11 \ifx\luatexversion\undefined

Enable e-TeX/pdfTeX/Umath primitives with their natural names
12 \directlua{tex.enableprimitives("",}
13 tex.extraprimitives(’etex’, ’pdftex’, ’umath’))}

In current formats enable primitives with unprefixed names. the latexrelease guards
allow the primitives to be defined with a \luatex prefix if older formats are specified.
14 (/initex)

(/dircheck)
(¥initex, latexrelease)
17 (latexrelease) \ifx\directlua\undefined\else

(latexrelease) \IncludeInRelease{2015/10/01}{\luatexluafunction}

(latexrelease) {LuaTeX (prefixed names)})
20 \directlua{tex.enableprimitives("",%
21 tex.extraprimitives("omega", "aleph", "luatex"))}
latexrelease) \EndIncludeInRelease
latexrelease) \IncludeInRelease{0000/00/00}{\luatexluafunction}
latexrelease {LuaTeX (prefixed names)}7,
latexrelease) \directlua{
latexrelease) tex.enableprimitives(
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease
latexrelease

"luatex",
tex.extraprimitives("core", "omega", "aleph", "luatex")

N

8

9)

local i

local t = { }

for _,i in pairs(tex.extraprimitives("luatex")) do
if not string.match(i,"”U") then

latexrelease if not string.match(i, "“luatex") then

latexrelease table.insert (t,i)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
latexrelease) end
)
)
)
)
)
)
)
)
)
)
)
)
)
)

30

@

1

>

34

5

@

6
latexrelease else

(
(
(
(
(
(
(
(
(
(
(
(
(
(
2
s (latexrelease if string.match(i, " Uchar$") then
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

@
N

30 {latexrelease table.insert(t,i)

20 (latexrelease end

41 (latexrelease end

12 (latexrelease) end

s (latexrelease) for _,i in pairs(t) do

4 (latexrelease tex.print(

4 (latexrelease "\noexpand\\let\noexpand\\" .. i
s (latexrelease "\noexpand\\undefined"

47 (latexrelease)

s (latexrelease) end

latexrelease) }

latexrelease) \EndIncludeInRelease
latexrelease) \fi

/initex, latexrelease)

*dircheck)

*initex)

File a: 1tdirchk.dtx 3

55 \fl
56 \fi
A test can now be made for eTEX.
(initex) \ifx\eTeXversion\undefined
(initex) \errmessage

s0 (initex) {LaTeX requires e-TeX}
(initex) \expandafter\endinput
(initex) \fi

That distraction over, back to the basics of a format.
& \catcode ‘\#=6
63 \catcode ‘\"=7
¢+ \chardef\active=13
s \catcode ‘\@=11
6 \countdef\count@=255
o7 \let\bgroup={ \let\egroup=}
6 \ifx\@@input\@undefined\let\@@input\input\fi
60 \ifx\@@end\Qundefined\let\@@end\end\fi
70 \chardef\@inputcheck0
71 \chardef\sixt@0n=16
7> \newlinechar‘\~"J
72 \def\typeout{\immediate\writel7}
72 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&’,
7 \do\#\do\~\do_\do\/\do\~}
7 \def\@makeother#1{\catcode ‘#1=12\relax}
77 \def\space{ }
7s \def\@tempswafalse{\let\if@tempswa\iffalse}
70 \def\@tempswatrue{\let\if@tempswa\iftrue}
s0 \let\if@tempswa\iffalse
s1 \def\loop#1\repeat{\def\iterate{#1\relax\expandafter\iterate\fi},
s> \iterate \let\iterate\relax}
s \let\repeat\fi
e (/initex)

2.2 Some bits of 2e

e (*2ekernel)

s6 \def\two@digits#1{\ifnum#1<10 O\fi\number#1}
s7 \long\def\@firstoftwo#1#2{#1}

ss \long\def\@secondoftwo#1#2{#2}

o

This is a special version of \ProvidesFile for initex use.
59 \def\ProvidesFile#1{},

o \begingroup

o1 \catcode‘\ 10 7%

02 \ifnum \endlinechar<256 },

93 \ifnum \endlinechar>\m@ne
94 \catcode\endlinechar 10 7},
95 \fi

96 \fi

o7 \@makeother\/,

o8 \@ifnextchar[{\@providesfile{#1}}{\@providesfile{#1}[]}}
o0 \def\@providesfile#1[#2]{},

100 \wlog{File: #1 #2}},
101 \@addtofilelist{ #2}),
102 \endgroup}

File a: 1tdirchk.dtx

103 \long\def\@addtofilelist#1{}

104 \def\@empty{}

s \catcode ‘\}=12

105 \def\@percentchar{}}

107 \catcode ‘\%=14

s \let\@currdir\@undefined

100 \let\input@path\Qundefined

110 \let\filename@parse\@undefined

\strip@prefix
11 \def\strip@prefix#1>{}
(/2ekernel)

112

(End definition for \strip@prefix. This function is documented on page 77.)

3 texsys.cfg

As mentioned above, any site specific definitions required to describe the filename han-
dling must be entered into a file texsys.cfg. If texsys.cfg can not be located by
\openin, we write a default version out. The default version only contains comments, so
we do not actually input the file in that case. The automatic tests later will, hopefully,
correctly define the required macros.

The tricky code below checks to see if texsys.cfg exists. If it does not, all the text
in this file between START and END is copied verbatim to a new file texsys,cfg. If
texsys.cfg is found, then it is simply input. This is only done when this file is being
used unstripped.

113 (*docstrip}

114 \openinlb=texsys.cfg

115 \ifeof15

116 \typeout{** Writing a default texsys.cfg}
117 \immediate\openout15=texsys.cfg

15 \begingroup

119 \catcode ‘\~"M\activey;

120 \letAﬂM\paI‘%

121 \def\reserved@a#1~"M{},

122 \def\reserved@b{#1}}

123 \ifx\reserved@b\reserved@c\endgroup\elsey),
124 \immediate\write15{#1}}

125 \expandafter\reserved@a\fi}}

126 \def\reserved@d#1START""M{\let\do\@makeother\dospecials\reserved@a}y,
127 \catcode ‘\}=12

12 \def\reserved@c{/,END}

120 \reserved@d

START

3.1 texsys.cfg

This file contains the site specific definitions of the four macros
\Qcurrdir, \input@path, \filename@parse and \@TeXversion.

As distributed it only contains comments, however this ‘empty’ file will work on
many systems because of the automatic tests built into 1tdirchk.dtx. You are allowed
to edit this file to add definitions of these macros appropriate to your system.

File a: 1tdirchk.dtx 5

The macros that must be defined are:

\@currdir \@currdir(filename){space) should expand to a form of the filename that uniquely
refers to the ‘current directory’ if this is possible. (The expansion should also end with
a space.) on UNIX, this is \def\@currdir{./}. For more exotic operating systems you
may want to make \@currdir a macro with arguments delimited by . and/or (space). If
the operating system has no concept of directory structure, this macro should be defined
to be empty.

\input@path If the primitive \openin searches the same directories as the primitive \input, then
it is possible to tell (using \ifeof) whether a file exists before trying to input it. For
systems like this, \input@path should be left undefined.

If \openin does not ‘follow’ \input then \input@path must be defined to be a list
of directories to search for input files. The format for each directory is as for \@currdir,
normally just a prefix is required, but it may be a macro with space-delimited argument.
That is, if (dir) is an entry in the input path, TEXwill try to load the expansion of

(dir)(filename) (space)

So either (dir) should be defined as a macro with argument delimited by space, or it
should just expand to a directory name, including the final directory separator, so that
it may be concatenated with the (filename). This means that for UNIX-like syntax, each
(dir) should end with a slash, /. One exception to this rule is that the input path should
always contain the empty directory {} as this will allow ‘full pathnames’ to be used, and
the ‘current directory’ to be searched.

\input@path should expand to a list of such directories, each in a {} group.

\filename@parse After a call of the form: \filename®@parse{(filename)}, the three macros \filename@area,\filenan
should be defined to be the ‘area’ (or directory), basename and extension respectively. If
there was no extension specified in (filename), \filename@ext should be \let to \relax
(so this case may be tested with \@ifundefined{filename@ext} and, perhaps a default
extension substituted).

Normally one would not need to define this macro in texsys.cfg as the automatic
tests can supply parsers that work with UNIX and VMS syntax, as well as a basic parser
that willcover many other cases. However some operating systems may need a ‘hand
produced’ parser in which case it should be defined in this file.

The UNIX parser also works for most MSDOS TgX versions. Currently if the UNIX
or VMS parser is not used, \filename@parse is defined to always return an empty area,
and to split the argument into basename and extension at the first .’ that occurs in the
name. Parsers for other formats may be defined in texsys.cfg, in which case they will
be used in preference to the default definitions.

\@TeXversion You should not need to set this macro in texsys.cfg. KITEX tests to set this
automatically. See the comments in the opening section of 1tdirchk.dtx.

The following sections give examples of definitions which might work on various
systems. These are currently mainly untested as I only have access to a few systems, all
of which do not need this file as the automatic tests work. All the code is commented
out.

3.2 UNIX (web2c)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

130 4\def\@currdir{./}
31 s\let\input@path\@undefined

File a: 1tdirchk.dtx 6

3.3 UNIX (other)

Apparently some commercial UNIX implementations have different paths for \openin
and \input. For these one could use definitions like the following (with whatever direc-
tories are used at your site): note that the directory names should end with /.

132 % \def\@currdir{./}

133 % \def\input@path{y

132 4 {/usr/local/lib/tex/inputs/distrib/}}
% {/usr/local/lib/tex/inputs/contrib/}},
136 /4 {/usr/local/lib/tex/inputs/local/}};
%}

135

137

3.4 MSDOS (emtex)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

135 7 \def\@currdir{./}
139 %4 \let\input@path\Qundefined

3.5 MSDOS (other)

Some PC implementations have different paths for \openin and \input. For these one
could use definitions like the following (with whatever directories are used at your site):
note that the directory names should end with /. This assumes the implementation uses
UNIX style / as the directory separator.

10 7% \def\@currdir{./}

11 %, \def\input@path{7,

12) {c:/tex/inputs/distrib/}}

1w % {c:/tex/inputs/contrib/}}

s) {c:/tex/inputs/local/}},

15 % F

3.6 VMS (DECUS TgX, PD VMS 3.6)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

16 % \def\@currdir{[]}
147 % \let\input@path\@undefined

3.7 VMS (?7?)

Some VMS implementations have different paths for \openin and \input. For these one
could use definitions like the following:

s % \def\@currdir{[]}

19 % \def\input@path{};

50 % {tex_inputs:}}

151 % {SOMEDISK: [SOME.TEX.DIRECTORY]},
152 % }

File a: 1tdirchk.dtx 7

3.8 MACINTOSH (OzTeX 1.6)

This implementation does make \openin and \input look in the same places. Acceptable
settings are made by 1tdirchk.dtx, and so this file may be empty. The definitions below
are therefore just for information.

153 1, \def\@currdir{:}

15 % \let\input@path\@undefined

3.9 MACINTOSH (other)

Some Macintosh implementations have different paths for \openin and \input. For
these one could use definitions like the following (with whatever folders are used on your
machine): note that the directory names should end with :, and they should contain no
spaces.

155) \def\@currdir{:}

156/ \def\input@path{y,

157y {Hard-Disk:Applications:TeX:TeX-inputs:}/

% {Hard-Disk:Applications:TeX:My-inputs:})
%}

3.10 FAKE EXAMPLE

This example is for an operating system that has filenames of the form <area>name For
maximum compatibility with macro sets, you want name . ext to be mapped to <ext>name.
and <area>name.ext to be mapped to <area.ext>name. \input does this mapping
automatically, but \openin does not, and does not look in the same places as \input.
<>name is the desired ‘current directory’ syntax.

the following code would possibly work:

w0 # \def\edir#1#2 {}

161 % \eder{#1}#2..\@nil}

162 % \def\@dOr#1#2.#3.#4\0nil{),

163 % <\ifx\@dir#i\e@dir\else#1\ifx\@dir#3\@dir\else.\fi\fi#3>#2 }
164 %

165 % \def\@currdir{\@dir{}}

166 7% \def\input@path{};

w7 % {\@edir{area.onel}})

ws % {\@edir{area.twol}})

w0 4}

END
170 \immediate\closeoutl15
If texsys.cfg did exist, then input it.

71 \else

172 \typeout{** Using the existing texsys.cfg}
173 \closein15

172 \input texsys.cfg

175 \fi

176 (/docstrip)

If the stripped version of this file is being used (in latex2e.ltx) then texsys.cfg should
be there, so just input it.
177 (dircheck) \input texsys.cfg

File a: 1tdirchk.dtx 8

\@currdir
\IfFileExists

\today

4 Setting \@currdir

This is a local definition of \IfFileExists. It tries to relocate texsxys.aux. If it
succeeds, then the \@currdir syntax has been determined. If all the tests fail then
\@currdir will be set to \@empty, and ltxcheck will warn of this when it checks the
format.

7z \begingroup

170 \count@\time

150 \divide\count@ 60

151 \count2=-\count®@

122 \multiply\count2 60

153 \advance\count2 \time

The current date and time stamp.

18« \edef\today{%

155 \the\year/\two@digits{\the\month}/\two@digits{\the\day}:7%
186 \two@digits{\the\count@}:\two@digits{\the\count2}}

Create a file texsys.aux (hopefully in the current directory), then try to locate it
again.
157 \immediate\openout1b=texsys.aux
15 \immediate\write15{\today~"J}
150 \immediate\closeoutl1b %

#1 is the file to try, #2 is what to do on success, #3 on failure. Note that this
definition is overwritten later on again!

100 \def\IfFileExists#1#2#3{/
101 \openin\@inputcheck#1

12 \ifeof\@inputcheck

103 #3\relax

s \else

105 \read\@inputcheck to \reserved®@a
196 \ifx\reserved@a\today

197 \typeout{#1 found}#2\relax

198 \else

199 \typeout{BAD: old file \reserved@a (should be \today)}/
200 #3\relax

201 \fi

202 \fi

203 \closein\@inputcheck}
20+ \endlinechar=-1

If \@currdir has not been pre-defined in texsys.cfg then test for UNIX, VMS and
Oz-TEX-Mac. syntax.
205 \ifx\@currdir\Q@undefined
206 \IfFileExists{./texsys.aux}{\gdef\@currdir{./}}/
207 {\IfFileExists{[]texsys.aux}{\gdef\@currdir{[]}}%
208 {\IfFileExists{:texsys.aux}{\gdef\@currdir{:}}{}}}
If it is still undefined at this point, all the above tests failed. Earlier versions interac-
tively prompted for a definition at this point, but it seems impossible to reliably obtain
information from users at this point in the installation. This version of the file produces

File a: 1tdirchk.dtx 9

\input@path

a format with no user-interaction. Later if the format is not suitable for the system,
texsys.cfg may be edited and the format re-made.

200 \ifx\@currdir\@undefined

210 \global\let\@currdir\Q@empty

o1 \typeout{~"~J""J%

212 !l No syntax for the current directory could be found™"J%

213 Yh

214 \fi

Otherwise \@currdir was defined in texsys.cfg. In this case check that the syntax
specified works on this system. (In case a complete INTEX system has been copied from
one system to another.) If the test fails, give up. The installer should remove or correct
the offending texsys.cfg and try again.

215 \else

216 \IfFileExists{\Qcurrdir texsys.aux}{}{/

217 \edef\reserved@a{\errhelp{’

218 texsys.cfg specifies the current directory syntax to be~"J}
219 \meaning\@currdir~"J%

220 but this does not work on this system.”"J}

221 Remove texsys.cfg and restart.}}\reserved@a

222 \errmessage{Bad texsys.cfg file: \noexpand\@currdir}\@@end}

The version of \@currdir in texsys.cfg looks OK.
23 \fi

222 \immediate\closeout15 7%

225 \endgroup

226 \typeout{~~J""J}

207 \noexpand\@currdir set to:

228 \expandafter\strip@prefix\meaning\@currdir. ~J%

229 }
(End definition for \@currdir, \IfFileExists, and \today. These functions are documented on page
7))
Stop here if the file is being used unstripped.
230 (*docstrip)

231 \relax\endinput
232 (/docstrip)

5 Setting \input@path

Earlier versions of this file attempted to automatically test whether \input@path was re-
quired, and interactively prompt for a path if necessary. This was not found to be very re-
liable The first-time installer of XTEX 2¢ can not be expected to have enough information
to supply the correct information to the prompts. Now the interaction is omitted. After
the format is made the installer can attempt to run the test document ltxcheck.tex
through BXTEX 2¢. This will check, amongst other things, whether texsys.cfg will need
to be edited and the format remade.

Now set up the \input@path.
\input@path should either be undefined, or a list of directories as described in the
introduction.

File a: 1tdirchk.dtx 10

\filename@parse

233

234

235

\typeout{~"J%

Assuming \noexpand\openin and \noexpand\input~~J%
\ifx\input@path\@undefined

\input@path has not been pre-defined.

236

237

have the same search path.”"~J}
\else

\input@path has been defined in texsys.cfg.

238

239

(End definition for \input@path. This function is documented on page ?7.)

6

have different search paths.”"J}

LaTeX will use the path specified by \noexpand\input@path:~~J%

\fi
}

Filename Parsing

Split a filename into its components.

222 \ifx\filename@parse\@undefined

243

\def\reserved@a{./}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \@currdir looks like UNIX. ..

244

256

\filename@parse was not specified in texsys.cfg, but \@currdir looks like VMS. ..

257

258

259

\typeout{~~JDefining UNIX/DOS style filename parser.”~J}

\def\filename@parse#1{%
\let\filename®@area\Qempty
\expandafter\filename@path#1/\\}

Search for the last /.

\def\filename@path#1/#2\\{%

\ifx\\#2\\7,
\def\reserved@a{\filename@simple#1.\\}/,

\else
\edef\filename@area{\filename®@area#1/}
\def\reserved@a{\filename@path#2\\1}%

\fi

\reserved@a}

\else\def\reserved@a{[]}\ifx\@currdir\reserved@a

\typeout{"~JDefining VMS style filename parser.”~J}
\def\filename@parse#1{/,
\let\filename@area\@empty
\expandafter\filename@path#1]\\}

Search for the last .

\def\filename@path#1]#2\\{%

\ifx\\#2\\7,
\def\reserved@a{\filename@simple#1.\\}/,

\else
\edef\filename@area{\filename@area#1] 1}/
\def\reserved@a{\filename@path#2\\1}%

\fi

\reserved@a}

File a: 1tdirchk.dtx

11

20 \else\def\reserved@aq{:}\ifx\@currdir\reserved@a

\filename@parse was not specified in texsys.cfg, but \@currdir looks like Macin-
tosh. ..

270 \typeout{~"JDefining Mac style filename parser.”~J}
271 \def\filename@parse#1{/,

272 \let\filename®@area\@empty

273 \expandafter\filename@path#1:\\}

Search for the last :.
274 \def\filename@path#1:#2\\{%

275 \ifx\\#2\\7

276 \def\reserved@a{\filename@simple#1.\\1}/,
277 \else

278 \edef\filename@area{\filename®@area#1:1}/,
279 \def\reserved@a{\filename@path#2\\}%

280 \fi

281 \reserved@a}

282 \else

\filename@parse was not specified in texsys.cfg. So just make a simple parser that
always sets \filename@area to empty.

283 \typeout{~~JDefining generic filename parser.” ~J}
284 \def\filename@parse#1{/,

285 \let\filename®@area\@empty

286 \expandafter\filename@simple#1.\\}

287 \fi\fi\fi
\filename®@simple is used by all three versions. Finally we can split off the exten-
sion.
288 (/dircheck)
250 (*dircheck, latexrelease)
200 (latexrelease) \IncludeInRelease{2019/10/01}{\filename@simple}
201 (latexrelease) {Final dot for extension}),
202 \def\filename@simple#1.#2\\{%
205 \ifx\\#2\\%

204 \let\filename@ext\relax

205 \edef\filename@base{#11}}
296 \else

207 \filename@dots{#1}#2\\/

298 \fi}

200 \def\filename@dots#1#2.#3\\{Y%
300 \ifx\\#3\\%

301 \def\filename@ext{#2}/

302 \edef\filename@base{#11}V,
303 \else

304 \filename@dots{#1.#2}#3\\}

305 \fi}

s (latexrelease) \EndIncludeInRelease

s07 (latexrelease) \IncludeInRelease{0000/00/00}{\filename@simple}

s (latexrelease) {Final dot for extension}/
s00 (latexrelease) \def\filename@simple#1.#2\\{

20 (latexrelease) \ifx\\#2\\%

s (latexrelease) \let\filename@ext\relax

File a: 1tdirchk.dtx 12

\@TeXversion

\else
\edef\filename@ext{\filename@dot#2\\}/,

(latexrelease)

(latexrelease)

(latexrelease) \fi

315 (latexrelease) \edef\filename@base{#1}}
(
(
(

3.

2

313

3.

4

latexrelease) \EndIncludeInRelease
7 (/dircheck, latexrelease)
*dircheck)

316

318
Remove a final dot, added earlier.
5.0 \def\filename@dot#1.\\{#1}

120 \else

Otherwise, \filename®@parse was specified in texsys.cfg.
21 \typeout{"~J""J%

322 \noexpand\filename@parse was defined in texsys.cfg:~"J%
323 \expandafter\strip@prefix\meaning\filename®@parse. " J}
324 ¥

35 \fi

(End definition for \filename@parse. This function is documented on page 77.)

7 'TEX Versions

TEX versions older than 3.141 require \@TeXversion to be set. This can be determined
automatically due to a trick suggested by Bernd Raichle. (Actually this will not always
get the correct version number, eg TEX3.14 would be detected as TEX3, but BTEX only
needs to take account of TEX’s older than 3, or between 3 and 3.14.

226 \1fx\@TeXversion\Qundefined

37 \ifx\@undefined\inputlineno

328 \def\@TeXversion{2}

329 \else

330 {\catcode‘\""J=\active

331 \def\reserved@a#1#2\00{\if#1\string~3\fi}

332 \edef\reserved@a{\expandafter\reserved@a\string~~J\Q@}
3 \ifx\reserved@a\Qempty\else\gdef\@TeXversion{3}\fi}

]

334 \fi
335 \fi

(End definition for \@TeXversion. This function is documented on page 77.)

336 (/dircheck)

8 ltxcheck.tex

After the format has been made, and article.cls moved with the other files to the ‘standard
input directory’ as specified in install.txt, the format may be checked by running the
file 1txcheck.tex.

File a: 1tdirchk.dtx 13

File b
Itplain.dtx

1 Plain TEX

ETEX includes almost all of the functionality of Knuth’s original ‘Basic Macros’ That
is, the plain TEX format described in Appendix B of the TpXBook. However, some of
the user commands are not much use so, in order to save memory, we may remove them
from the kernel into a package. Here is a list of the commands that may be removed
(PROBABLY NOT COMPLETE).

\magstep \magstephalf

\mathhexbox
\vglue \vgl@
\hglue \hgl@

This file is by now very small as most of it has been moved to more appropriate
kernel files: it may disappear completely one day.

TEX font definitions are done using NFSS2 so none of PLAIN’s font definitions are
in BTEX.

KTEX has its own tabbing environment, so PLAIN’s is disabled.

IXTEX uses its own output routine, so most of the plain one was removed.

1 (*2ekernel)

\catcode‘\{=1 7 left brace is begin-group character

s \catcode‘\}=2 ¥ right brace is end-group character
\catcode‘\$=3 ¥, dollar sign is math shift

5 \catcode‘\&=4 7, ampersand is alignment tab

\catcode‘\#=6 7, hash mark is macro parameter character

7 \catcode‘\"=7 J circumflex and uparrow are for superscripts
\catcode‘_=8 7, underline and downarrow are for subscripts
\catcode‘\""I=10 % ascii tab is a blank space
\chardef\active=13 \catcode‘\~=\active % tilde is active
\catcode‘\""L=\active \def~"L{\parl}) ascii form-feed is \par

3

1C

12 \message{catcodes,}

We had to define the \catcodes right away, before the message line, since \message

uses the { and } characters. When INITEX (the TgX initializer) starts up, it has defined
the following \catcode values:
\catcode‘\""@=9 ¥, ascii null is ignored
\catcode‘\""M=5 ¥ ascii return is end-line
\catcode‘\\=0 % backslash is TeX escape character
\catcode‘\%=14 % percent sign is comment character
\catcode‘\ =10 % ascii space is blank space
\catcode‘\""7=15 %, ascii delete is invalid
\catcode‘\A=11 ... \catcode‘\Z=11 % uppercase letters
\catcode‘\a=11 ... \catcode‘\z=11 % lowercase letters
all others are type 12 (other)

Here is a list of the characters that have been specially catcoded:

13 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&
11 \do\#\do\"\do_\do\%\do\~}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 14

\@ne
\twe@
\three
\sixt@@n
\@cclv

\@cclvi
\@m

\@M
\@MM

(not counting ascii null, tab, linefeed, formfeed, return, delete) Each symbol in the list is
preceded by , which can be defined if you want to do something to every item in the list.
We make @ signs act like letters, temporarily, to avoid conflict between user names
and internal control sequences of plain format.
15 \catcode‘@=11

To make the plain macros more efficient in time and space, several constant values
are declared here as control sequences. If they were changed, anything could happen; so
they are private symbols.

Small constants are defined using \chardef.

16 \chardef\@ne=1

17 \chardef\tw@=2

15 \chardef\thr@@=3

19 \chardef\sixt@@n=16
20 \chardef\@cclv=255

(End definition for \@ne and others. These functions are documented on page 77.)

Constants above 255 defined using \mathchardef.

1 \mathchardef\@cclvi=256
> \mathchardef\@m=1000

23 \mathchardef\@M=10000
22 \mathchardef\@MM=20000

NN

(End definition for \@cclvi and others. These functions are documented on page 77.)

Allocation of registers

Here are macros for the automatic allocation of \count, \box, \dimen, \skip,
\muskip, and \toks registers, as well as \read and \write stream numbers, \fam codes,
\language codes, and \insert numbers.

s \message{registers,}

When a register is used only temporarily, it need not be allocated; grouping can
be used, making the value previously in the register return after the close of the group.
The main use of these macros is for registers that are defined by one macro and used by
others, possibly at different nesting levels. All such registers should be defined through
these macros; otherwise conflicts may occur, especially when two or more macro packages
are being used at the same time.

Historical BTEX 2.09 comments (not necessarily accurate any more):
The following counters are reserved:
0 to 9 page numbering
10 count allocation
11 dimen allocation
12 skip allocation
13 muskip allocation
14 box allocation
15 toks allocation
16 read file allocation
17 write file allocation
18 math family allocation
19 language allocation
20 insert allocation
21 the most recently allocated number

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 15

\insc@unt
\allocationnumber

\m@ne

\wlog

\count@
\dimen®@
\dimen@i
\dimen@ii
\skip@
\toks@

22 constant -1
End of historical BTEX 2.09 comments.

New counters are allocated starting with 23, 24, etc. Other registers are allocated
starting with 10. This leaves 0 through 9 for the user to play with safely, except that
counts 0 to 9 are considered to be the page and subpage numbers (since they are displayed
during output). In this scheme, \count 10 always contains the number of the highest-
numbered counter that has been allocated, \count 14 the highest-numbered box, etc.
Inserts are given numbers 254, 253, etc., since they require a \count, \dimen, \skip,
and \box all with the same number; \count 20 contains the lowest-numbered insert that
has been allocated. Of course, \box255 is reserved for \output; \count255, \dimen255,
and \skip255 can be used freely.

It is recommended that macro designers always use \global assignments with re-
spect to registers numbered
1,3,5,7,9,
and always non-\global assignments with respect to registers
0, 2, 4, 6, 8, 255.

This will prevent “save stack buildup” that might otherwise occur.

26 \count10=22 % allocates \count registers 23, 24,
27 \count11=9 ¥, allocates \dimen registers 10, 11,
s \count12=9 % allocates \skip registers 10, 11,

20 \count13=9 ¥, allocates \muskip registers 10, 11,
0 \count14=9 ¥ allocates \box registers 10, 11,

51 \count15=9 % allocates \toks registers 10, 11,

2 \count16=-1 % allocates input streams O, 1,

33 \count17=-1 % allocates output streams 0, 1,

32 \count18=3 ¥ allocates math families 4, 5,

55 \count19=0 7% allocates \language codes 1, 2,

3 \count20=255 % allocates insertions 254, 253,

The insertion counter and most recent allocation.
37 \countdef\insc@unt=20

33 \countdef\allocationnumber=21

(End definition for \insc@unt and \allocationnumber. These functions are documented on page 77?.)

The constant —1.
39 \countdef\m@ne=22 \m@ne=-1

(End definition for \mene. This function is documented on page 77?.)

Write on log file (only)
20 \def\wlog{\immediate\write\m@ne}

(End definition for \wlog. This function is documented on page 77.)

Here are abbreviations for the names of scratch registers that don’t need to be allocated.

21 \countdef\count@=255

122 \dimendef\dimen@=0

23 \dimendef\dimen@i=1 7, global only
1 \dimendef\dimen@ii=2

ss \skipdef\skip@=0

1 \toksdef\toks@=0

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 16

\newcount
\newdimen
\newskip
\newmuskip
\newbox
\newtoks
\newread
\newwrite
\newfam
\newlanguage

(End definition for \count@ and others. These functions are documented on page 77.)

Now, we define \newcount, \newbox, etc. so that you can say \newcount\foo and \foo
will be defined (with \countdef) to be the next counter.

47

48

9

50

51

52

54

55

To find out which counter \foo is, you can look at \allocationnumber.

Since there’s no \boxdef command, \chardef is used to define a \newbox,
\newinsert, \newfam, and so on.
KTEX change: remove \outer from \newcount and \newdimen (FMi) This is nec-
essary to use \newcount inside \if... later on. Also remove from \newskip, \newbox
\newwrite and \newfam (DPC) to save later redefinition.

(/2ekernel)

(*2ekernel | latexrelease)
(latexrelease) \ IncludeInRelease{2015/01/01}}

(latexrelease) {\newcount }HExtended Allocation}},

\def\newcount {\e@alloc\count \countdef {\count10}\insc@unt\float@count}
\def\newdimen {\e@alloc\dimen \dimendef {\count11}\insc@unt\float@count}

; \def\newskip {\e@alloc\skip \skipdef {\counti2}\insc@unt\float@count}

\def\newmuskip
{\e@alloc\muskip\muskipdef{\count13}\m@ne\e@alloc@top}

For compatibility use \chardef in the classical range.

56

\def\newbox {\e@alloc\box
{\ifnum\allocationnumber<\@cclvi
\expandafter\chardef
\else
\expandafter\e@alloc@chardef
\fi}
{\count14}\insc@unt\float@count}

; \def\newtoks {\e@alloc\toks \toksdef{\counti15}\m@ne\e@alloc@top}

\def\newread {\e@alloc\read \chardef{\count16}\m@ne\sixt@@n}
Skip \write18 due to its traditional use as a shell-escape.

\ifx\directlua\@undefined
\def\newwrite {\e@alloc\write \chardef{\count17}\m@ne\sixt@e@n}
\else
\def\newwrite {\e@alloc\write
{\ifnum\allocationnumber=18
\advance\count17\@ne
\allocationnumber\counti7 %

\fi
\global\chardef},
{\count17}%
\m@ne
{128}}
\fi
; \def\new@mathgroup

{\e@alloc\mathgroup\chardef{\count18}\m@ne\e@mathgroup@top}

) \let\newfam\new@mathgroup

\ifx\directlua\@undefined
\def\newlanguage {\e@alloc\language \chardef{\count19}\m@ne\@cclvi}

; \else

\def\newlanguage {\e@alloc\language \chardef{\count19}\m@ne{16384}}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

17

\e@alloc@chardef
\e@alloc@top

g5 \fi
/2ekernel | latexrelease)

6

¢7 (latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%

latexrelease {\newcount}{Extended Allocation}},
latexrelease)\def\newcount{\alloc@0\count\countdef\insc@unt}
latexrelease)\def\newdimen{\alloc@l\dimen\dimendef\insc@unt}
latexrelease)\def \newskip{\alloc@2\skip\skipdef\insc@unt}

(
(
(
(
(
(
(
os (latexrelease)\def\newmuskip{\alloc@3\muskip\muskipdef\@cclvi}
(
(
(
(
(
(
(

88
89

90

91
92

4

)
)
)
)
)
)
latexrelease) \def\newbox{\alloc@4\box\chardef\insc@unt}
latexrelease)\def \newtoks{\alloc@5\toks\toksdef\@cclvi}
)
)
)
)
)
)

5
latexrelease)\def \newread{\alloc@6\read\chardef\sixt@0On}
latexrelease)\def\newwrite{\alloc@7\write\chardef\sixt@@n}
latexrelease)\def \new@mathgroup{\alloc@8\fam\chardef\sixt@@n}
latexrelease) \def\newlanguage{\alloc@9\language\chardef\@cclvi}
latexrelease)\let\newfam\new@mathgroup

w01 (latexrelease)\EndIncludeInRelease

96

7

99

100

(End definition for \newcount and others. These functions are documented on page 77.)

The upper limit of extended registers, which leaves this number (eg \dimen32767) always
unallocated by these macros. cf traditional \dimen255.

> (*2ekernel | latexrelease)

103 (latexrelease) \IncludeInRelease{2015/01/01}}

104 (latexrelease) {\eGalloc@chardef}{Extended Allocation}}

1

105 \ifx\directlua\@undefined
106 \ifx\widowpenalties\@undefined

classic tex has 2% registers.

107 \mathchardef\e@alloc@top=255
108 \let\e@alloc@chardef\chardef
0o \else

etex and xetex have 2% registers.

110 \mathchardef\e@alloc@top=32767
111 \let\e@alloc@chardef\mathchardef
112 \fi

13 \else

luatex has 216

+ \chardef\e@alloc@top=65535
115 \let\e@alloc@chardef\chardef
116 \fi

registers.

1

/2ekernel | latexrelease)

latexrelease)\EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}7

latexrelease) {\eGalloc@chardef}{Extended Allocation}/,

latexrelease)\let\e@alloc@top\@undefined
)
)

117

1

8

119

120

121

o~~~ o~~~

latexrelease)\let\e@alloc@chardef\@undefined
123 (latexrelease)\EndIncludeInRelease

22

(End definition for \e@alloc@chardef and \e@alloc@top. These functions are documented on page 77.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 18

\e@mathgroup@top

\e@alloc

\e@ch@ck

The upper limit of extended math groups (\fam) 16 in classic TEX and e-TEX, but 256
in Unicode TeX variants.
+ (*2ekernel | latexrelease)

s (latexrelease) \IncludeInRelease{2015/01/01}
126 (latexrelease) {\e@mathgroup@top}{Extended Allocation})

1

)

N

127 \ifx\Umathcode\@undefined

classic and e tex have 16 fam (0-15).

s \chardef\e@mathgroup@top=16
120 \else

xetex and luatex have 256 fam (0-255).

130 \chardef\e@mathgroup@top=256
131 \fi

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

\IncludeInRelease{0000/00/00}%
{\e@mathgroup@top}{Extended Allocation},

\let\e@mathgroup@top\Qundefined

\EndIncludeInRelease

132

(

133 <

+ (latexrelease
(
(

latexrelease
136 (latexrelease
137 (latexrelease

35

LA

(End definition for \e@mathgroup@top. This function is documented on page 77?.)

A modified version of \alloc@ that takes the count register rather than just the final
digit of its number (assuming \countlz). It also has an extra argument to give the top
of the extended range.
#1 #2 #3 #4 #5 #6
\e@alloc type defcmd current top extended-top newname
Note that if just a single allocation range is required (not omitting a range up to
255 for inserts) then —1 should be used for the first upper bound argument, #4.

138 (*2ekernel | latexrelease)
130 (latexrelease) \IncludeInRelease{2015/01/01}{\e@alloc}{Extended Allocation}

120 \def\e@alloc#1#2#3#4#5#6{/,

11 \globalladvance#3\@ne

12 \e@ch@ck{#3}{#4}{#5}#1Y

s \allocationnumber#3\relax

1z \global#2#6\allocationnumber

s \wlog{\string#6=\string#i\the\allocationnumber}}J,

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease

115 (latexrelease)\IncludeInRelease{0000/00/00}{\e@alloc}{Extended Allocation}%
(latexrelease)\1let\e@alloc\@undefined

150 (latexrelease)\EndIncludeInRelease

151 (*2ekernel)

(End definition for \e@alloc. This function is documented on page 77.)

Extended check command. If the first range is exceeded, bump to 256 (or 266 for counts)
and try again, testing the extended range.

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 19

Allocate matching registers from the top of the extended range and add to \@freelist.
\extrafloats ;, (/2ekernel)

153 (*2ekernel | latexrelease)
15« (latexrelease) \IncludeInRelease{2015/10/01}
155 (latexrelease) {\e@ch@ck}{Extended Allocation (checking)}}

156 \gdef\e@chQck#1#2#3#4{/,
157 \ifnum#1<#2\else

If we’ve reached the classical top limit, bump to 256 or 266 for counts (count 256-265
are reserved by the allocation system).

158 \ifnum#1=#2\relax

159 \global#l\@CClVi

160 \ifx\count#4\global\advance#1 10 \fi

161 \fi

Check we are below the extended limit.

162 \ifnum#1<#3\relax

163 \else

164 \errmessage{No room for a new \string#4}J,
165 \fi

166 \fil}%

latexrelease) \EndIncludeInRelease
latexrelease) \IncludeInRelease{2015/01/01}
latexrelease) {\e@ch@ck}{Extended Allocation (checking)}}
latexrelease) \gdef \e@chOck#1#2#3#4{),
latexrelease) \ifnum#i<#2\else
latexrelease) \ifnum#i=#2\relax
latexrelease) #1\@cclvi
latexrelease) \ifx\count#4\advance#1 10 \fi
latexrelease) \fi
latexrelease) \ifnum#1<#3\relax

)

)

)

)

)

)

)

)

)

)

(
(
(
(
(
(
(
(
(
(
177 (latexrelease \else
(
(
(
(
(
(
(
(
(
(

168
169
170
171

172

175 (latexrelease \errmessage{No room for a new #4}},

latexrelease \fi

latexrelease) \fi}/

latexrelease) \EndIncludeInRelease

latexrelease) \IncludeInRelease{0000/00/00})

{\e@ch@ck}{Extended Allocation (checking)}J
atexrelease) \1et\e@ch@ck\Q@undefined

atexrelease) \EndIncludeInRelease

179

180

latexrelease
|
|
latexrelease) \IncludeInRelease{2015/01/01}}

latexrelease) {\extrafloats}{Extra floats})

155 \let\float@count\e@alloc@top

\extrafloats \ifx\numexpr\Qundefined

In classic TeX use \newinsert to allocate float boxes.

100 \def\extrafloats#1{}

191 \count@#1\relax

102 \ifnum\count@>\z@

103 \newinsert\reserved@a

192 \global\expandafter\chardef

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 20

195 \csname bx@\the\allocationnumber\endcsname\allocationnumber
196 \@cons\@freelist{\csname bx@\the\allocationnumber\endcsnamely,

197 \advance\count@\m@ne

s \expandafter\extrafloats

199 \expandafter\count@

200 \fi

201 Y%

202 \else

In e-tex take float boxes from the top of the extended range.

203 \def\extrafloats#1{/,

200 \ifnum#1>\z@

205 \count@\numexpr\float@count-1\relax

206 \ch@ckO\count@\count

207 \ch@ckl\count@\dimen

206 \ch@ck2\count@\skip

200 \ch@ck4\count@\box

210 \globalle@alloc@chardef\float@count\count®

211 \global\expandafter\e@alloc@chardef

212 \csname bx@\the\float@count\endcsname\float@count
213 \@cons\@freelist{\csname bx@\the\float@count\endcsnamely,
212 \expandafter

215 \extrafloats\expandafter{\numexpr#1-1\relaxl}

o6 \fi}Y%

o7 \fi

N

(/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease

20 (latexrelease)\IncludeInRelease{0000/00/00}7

21 (latexrelease) {\extrafloats}{Extra floats}’%
(latexrelease)\let\float@count\@undefined

()

()

219

N

222
latexrelease)\let\extrafloats\@undefined
latexrelease) \EndIncludeInRelease

25 (*2ekernel)

223

224

(End definition for \e@ch@ck, \extrafloats, and \extrafloats. These functions are documented on
page 77.)

\alloc@ Since \e@alloc was added in 2015, \@alloc has not been used, but was left as some
legacy code calls it. However the original defnition gives spurious errors once the “classic”
registers run out, so it is now defined to call \e@alloc internally.

226 (/2ekerne|)

7 (*2ekernel | latexrelease)

s (latexrelease) \IncludeInRelease{2020/10/01}

220 (latexrelease) {\alloc@}{emulate alloc@})

230 \def\alloc@#1#2#3#4{\e@alloc#2#3{\count1#1}#4\float@count}

251 {/2ekernel | latexrelease)

2

5

N
IN]

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}%

(latexrelease {\alloc@}{emulate alloc@}},
(latexrelease)\def\alloc@#1#2#3#4#5{\global\advance\count1#1\@ne
(latexrelease) \ch@ck#1#4#2%

(latexrelease) \allocationnumber\counti1#1%

(latexrelease) \global#3#5\allocationnumber

236

237

AL SNSRI

2.

@

8

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 21

230 (latexrelease) \wlog{\string#5=\string#2\the\allocationnumber}}
210 (latexrelease)\EndIncludeInRelease
261 (*2ekernel)

(End definition for \alloc@. This function is documented on page 77.)

\newinsert

222 (/2ekernel)

(*2ekernel | latexrelease)

2 (latexrelease) \IncludeInRelease{2015/10/01}
(

latexrelease) {\newinsert}{Extended \newinsertl}),

243

45
26 \ifx\numexpr\Qundefined

If e-TEX is not available use the original plain TEX definition of \newinsert.

27 \def\newinsert#1{\global\advance\insc@unt \m@ne

25 \ch@ckO\insc@unt\count

220 \ch@ckl\insc@unt\dimen

250 \ch@ck2\insc@unt\skip

251 \ch@ck4\insc@unt\box

2 \allocationnumber\insc@unt

253 \global\chardef#1l\allocationnumber

0 \wlog{\string#i=\string\insert\the\allocationnumber}}

25 \else

The highest register allowed with \insert.

256 \ifx\directlua\@undefined

257 \chardef\e@insert@top255

s \else

250 \chardef\e@insert@top\e@alloc@top
60 \fi

If the classic registers are exausted, take an insert from the free float list and use
\extrafloats to add a new float to that list.

261 \def\newinsert#1{Y

6> \@tempswafalse

263 \global\advance\insc@unt\m@ne
260 \ifnum\count10<\insc@unt

265 \ifnum\count11<\insc@unt

266 \ifnum\count12<\insc@unt

267 \ifnum\count14<\insc@unt

s \Qtempswatrue

s60 \fi\fi\fi\fi

270 \if@tempswa

»71 \allocationnumber\insc@unt
> \else

273 \global\advance\inscQunt\@ne
2z \extrafloats\@ne

o5 \@next\@currbox\@freelist

276 {\ifnum\@currbox<\e@insert@top
277 \allocationnumber\@currbox
278 \else

279 \ch@ckO\m@ne\insert

280 \fil}%

281 {\ch@ck0\m@ne\insert}y,

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 22

\ch@ck

\newhelp

\maxdimen
\hideskip

\p@

\z@
\z@skip
\voidb@x

22 \fi

253 \global\chardef#1\allocationnumber

22 \wlog{\string#1=\string\insert\the\allocationnumberl}y,
285 F

a6 \fi
267 (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/003}%
(latexrelease) {\newinsert}{Extended \newinsertl}}
(latexrelease)\let\e@insert@top\Qundefined
(latexrelease)\def\newinsert#1{\global\advance\insc@unt \m@ne
(latexrelease) \ch@ckO\insc@unt\count

20s (latexrelease) \ch@ck1\insc@unt\dimen
(latexrelease) \ch@ck2\insc@unt\skip
()
()
()
()
()

289
290
291
292

293

205
\ch@ck4\insc@unt\box

\allocationnumber\insc@unt

latexrelease) \global\chardef#1\allocationnumber

latexrelease) \wlog{\string#1=\string\insert\the\allocationnumber}}
latexrelease) \EndIncludeInRelease

s (*2ekernel)

latexrelease
latexrelease

296
297
298
299

300

(End definition for \newinsert. This function is documented on page 77.)

502 \gdef\ch@ck#1#2#3{%
503 \ifnum\count1#1<#2\else
304 \errmessage{No room for a new #3}J,

305 \fi}

(End definition for \check. This function is documented on page 77.)

s00 \def\newhelp#1#2{\newtoks#1#1\expandafter{\csname#2\endcsname}}

(End definition for \newhelp. This function is documented on page 77.)

Here are some examples of allocation.

507 \newdimen\maxdimen \maxdimen=16383.99999pt % the largest legal <dimen>
300 \newskip\hideskip \hideskip=-1000pt plus 1fill % negative but can grow

(End definition for \maxdimen and \hideskip. These functions are documented on page 77.)

300 \newdimen\p@ \p@=1pt % this saves macro space and time
;510 \newdimen\z@ \z@=0pt % can be used both for Opt and O
1 \newskip\z@skip \z@skip=Opt plusOpt minusOpt

;52 \newbox\voidb@x Y, permanently void box register

3

(End definition for \p@ and others. These functions are documented on page ?77.)
Assign initial values to TEX’s parameters

;15 \message{parameters,}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

23

All of TEX’s numeric parameters are listed here, but the code is commented out if
no special value needs to be set. INITEX makes all parameters zero except where noted.
Historical BTEX 2.09 comments (not necessarily accurate any more):

;314 \pretolerance=100

315 \tolerance=200 % INITEX sets this to 10000
316 \hbadness=1000

317 \vbadness=1000

;3:z \linepenalty=10

;19 \hyphenpenalty=50

220 \exhyphenpenalty=50

21 \binoppenalty=700

322 \relpenalty=500

223 \clubpenalty=150

224 \widowpenalty=150

325 \displaywidowpenalty=50
226 \brokenpenalty=100

27 \predisplaypenalty=10000

\postdisplaypenalty=0

\interlinepenalty=0

\floatingpenalty=0, set during \insert
\outputpenalty=0, set before TeX enters \output

s \doublehyphendemerits=10000
20 \finalhyphendemerits=5000
530 \adjdemerits=10000

\looseness=0, cleared by TeX after each paragraph
\pausing=0

\holdinginserts=0

\tracingonline=0

\tracingmacros=0

\tracingstats=0

\tracingparagraphs=0

\tracingpages=0

\tracingoutput=0

;31 \tracinglostchars=1

\tracingcommands=0
\tracingrestores=0
\language=0

;32 \uchyph=1

\lefthyphenmin=2 \righthyphenmin=3 set below

\globaldefs=0

\maxdeadcycles=25 % INITEX does this

\hangafter=1 % INITEX does this, also TeX after each paragraph
\fam=0

\mag=1000 % INITEX does this

\escapechar="\\ 7 INITEX does this

333 \defaulthyphenchar=‘\-
331 \defaultskewchar=-1

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 24

\endlinechar=‘\""M Y% INITEX does this
\newlinechar=-1 \LaTeX\ sets this in ltdefns.dtx.

333 \delimiterfactor=901

\time=now % TeX does this at beginning of job
\day=now % TeX does this at beginning of job

\month=now % TeX does this at beginning of job
\year=now % TeX does this at beginning of job

End of historical BTEX 2.09 comments.
In BTEX we don’t want box information in the transcript unless we do a full tracing.

336 \showboxbreadth=-1
337 \showboxdepth=-1
333 \errorcontextlines=-1

330 \hfuzz=0.1pt

sa0 \vfuzz=0.1pt

31 \overfullrule=5pt

> \maxdepth=4pt

243 \splitmaxdepth=\maxdimen
324 \boxmaxdepth=\maxdimen

@

Historical BTEX 2.09 comments (not necessarily accurate any more):
\lineskiplimit=0pt, changed by \normalbaselines

s \delimitershortfall=5pt
a6 \nulldelimiterspace=1.2pt
27 \scriptspace=0.5pt

\mathsurround=0pt

\predisplaysize=0pt, set before TeX enters $$
\displaywidth=0pt, set before TeX enters $$
\displayindent=0pt, set before TeX enters $$

25 \parindent=20pt

\hangindent=0pt, zeroed by TeX after each paragraph
\hoffset=0pt
\voffset=0pt

\baselineskip=0pt, changed by \normalbaselines
\lineskip=0pt, changed by \normalbaselines

a0 \parskip=Opt plus 1pt

;50 \abovedisplayskip=12pt plus 3pt minus 9pt

351 \abovedisplayshortskip=0Opt plus 3pt

352 \belowdisplayskip=12pt plus 3pt minus 9pt

553 \belowdisplayshortskip=7pt plus 3pt minus 4pt

\leftskip=0pt
\rightskip=0pt

554 \topskip=10pt
355 \splittopskip=10pt

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 25

\tabskip=0pt
\spaceskip=0pt
\xspaceskip=0pt

356 \parfillskip=Opt plus 1fil

End of historical BTEX 2.09 comments.

\normalbaselineskip We also define special registers that function like parameters:

\normallineskip .;; \newskip\normalbaselineskip \normalbaselineskip=12pt
\normallineskiplimit 5 \newskip\normallineskip \normallineskip=1pt
550 \newdimen\normallineskiplimit \normallineskiplimit=0pt

(End definition for \normalbaselineskip, \normallineskip, and \normallineskiplimit. These func-
tions are documented on page ?77.)

\interfootlinepenalty

;0 \newcount\interfootnotelinepenalty \interfootnotelinepenalty=100

(End definition for \interfootlinepenalty. This function is documented on page 77.)
Definitions for preloaded fonts

\magstephalf

\magstep ., \def\magstephalf{1095 }
se2 \def\magstep#1{\ifcase#1 \@m\or 1200\or 1440\or 1728\or
363 2074\or 2488\fi\relax}

(End definition for \magstephalf and \magstep. These functions are documented on page ?7.)
Macros for setting ordinary text

\frenchspacing

\nonfrenchspacing ., \def\frenchspacing{\sfcode‘\.\@n \sfcode‘\?\0m \sfcode‘\!\Cm
s65 \sfcode‘\:\@m \sfcode‘\;\@m \sfcode‘\,\@m}
s66 \def\nonfrenchspacing{\sfcode ‘\.3000\sfcode ‘\73000\sfcode ‘\!3000%
367 \sfcode‘\:2000\sfcode‘\;1500\sfcode‘\,1250 }

(End definition for \frenchspacing and \nonfrenchspacing. These functions are documented on page
?7.)

\normalbaselines

s6s \def\normalbaselines{\lineskip\normallineskip
50 \baselineskip\normalbaselineskip \lineskiplimit\normallineskiplimit}

(End definition for \normalbaselines. This function is documented on page 77?.)

\M Save a bit of space by using \let here.

\I 5 \def\""M{\ } % control <return> = control <space>
571 \1et\""I\""M % same for <tab>

(End definition for \M and \I. These functions are documented on page 77.)

\1q
\rq s \def\lq{‘}
373 \def\rq{’}

(End definition for \1q and \rq. These functions are documented on page ?77.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 26

\lbrack
\rbrack

\aa
\AA

\endgraf
\endline

\space

\empty

\null

\bgroup
\egroup

\obeylines
\obeyspaces

s \def\lbrack{[}
375 \def\rbrack{]}

(End definition for \1brack and \rbrack. These functions are documented on page 77.)

These are not from plain.tex but they are similar to other commands found here and
nowhere else, being alternate input forms for characters.

;76 \def \aa {\r a}
377 \def \AA {\r A}

(End definition for \aa and \AA. These functions are documented on page 77.)

sz \let\endgraf=\par
379 \let\endline=\cr

(End definition for \endgraf and \endline. These functions are documented on page 77.)

;50 \def\space{ }

(End definition for \space. This function is documented on page 77.)

This probably ought to go altogether, but let it to the IXTEX version to save space.
;61 \let\empty\@empty

(End definition for \empty. This function is documented on page 77.)

32 \def\null{\hbox{}}

(End definition for \null. This function is documented on page 77.)

563 \let\bgroup={
;a0 \let\egroup=}

(End definition for \bgroup and \egroup. These functions are documented on page 77.)

In \obeylines, we say \let”"M=\par instead of \def~~M{\par} since this allows, for
example, \let\par=\cr \obeylines \halign{...

35 {\catcode‘\""M=\active 7, these lines must end with %

;6 \gdef\obeylines{\catcode‘\""M\active \let~~M\parl/

sz \global\let™"M\par} % this is in case ~"M appears in a \write

;s \def\obeyspaces{\catcode‘\ \active}

;0 {\obeyspaces\global\let =\space}

(End definition for \obeylines and \obeyspaces. These functions are documented on page 77.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 27

\loop
\iterate
\repeat

\nointerlineskip
\offinterlineskip

\vglue
\hglue

\slash

\break
\nobreak
\allowbreak

\filbreak
\goodbreak

We use Kabelschacht’s method of doing loops, see TUB 842 (1987). (unless that breaks
something :-). It turned out to need an extra \relax: see pr/642 (\loop could do one
iteration too much in certain cases).

;00 \long\def \loop #1\repeat{y

301 \def\iterate{#1\relax J, Extra \relax

392 \expandafter\iterate\fi

393 }%

39 \iterate

395 \let\iterate\relax

396 }

This setting of \repeat is needed to make \loop...\if...\repeat skippable within
another \if....

307 \let\repeat=\fi

(End definition for \loop, \iterate, and \repeat. These functions are documented on page ?7.)

MTEX defines \smallskip, etc. in 1tspace.dtx.

0¢ \def\nointerlineskip{\prevdepth-\@m\p@}
300 \def\offinterlineskip{\baselineskip-\@m\p@
200 \lineskip\z@ \lineskiplimit\maxdimen}

(End definition for \nointerlineskip and \offinterlineskip. These functions are documented on page
7))

201 \def\vglue{\afterassignment\vgl@\skip@=}

202 \def\vgl@{\par \dimen@\prevdepth \hrule \Gheight\z@

203 \nobreak\vskip\skip@ \prevdepth\dimen@}

204 \def\hglue{\afterassignment\hgl@\skip@=}

205 \def\hgl@{\leavevmode \count@\spacefactor \vrule \Q@width\z@
206 \nobreak\hskip\skip@ \spacefactor\count@}

(End definition for \vglue and \hglue. These functions are documented on page ?7.)

TEX defines ~ in 1tdefns.dtx.

This generates a / acting a bit like - but still allows hyphenation in the word part
preceding it (but not after).

207 \def\slash{/\penalty\exhyphenpenalty}

(End definition for \slash. This function is documented on page 77.)

208 \def\break{\penalty-\@M}
200 \def\nobreak{\penalty \@M}
210 \def\allowbreak{\penalty \z@}

(End definition for \break, \nobreak, and \allowbreak. These functions are documented on page 77.)

211 \def\filbreak{\par\vfil\penalty-200\vfilneg}
212 \def\goodbreak{\par\penalty-500 }

(End definition for \filbreak and \goodbreak. These functions are documented on page ?7.)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 28

\eject Define \eject as in plain TEX but define \supereject only in the compatibility file.
213 \def\eject{\par\break}

(End definition for \eject. This function is documented on page 77.)

\removelastskip
214 \def\removelastskip{\ifdim\lastskip=\z@\else\vskip-\lastskip\fi}

(End definition for \removelastskip. This function is documented on page 77.)

\smallbreak

\medbreak ,;; \def\smallbreak{\par\ifdim\lastskip<\smallskipamount
\bigbreak .; \removelastskip\penalty-50\smallskip\fi}

217 \def\medbreak{\par\ifdim\lastskip<\medskipamount

25 \removelastskip\penalty-100\medskip\fi}

210 \def\bigbreak{\par\ifdim\lastskip<\bigskipamount

20 \removelastskip\penalty-200\bigskip\fi}

(End definition for \smallbreak, \medbreak, and \bigbreak. These functions are documented on page
?7.)

\m@th
21 \def\m@th{\mathsurround\z@}

(End definition for \m@th. This function is documented on page 77.)

\underbar Due to KTEX’s redefinition of \underline plain TEX’s \underbar can be done in a
simpler fashion (but do we need it at all?).

22 \def\underbar#1{\underline{\sbox\tw@{#1}\dp\tw@\z@\box\tw@}}

(End definition for \underbar. This function is documented on page ?77.)

\strutbox I4TEX sets \strutbox in \set@fontsize.
\strut ., \newbox\strutbox
24 \def\strut{\relax\ifmmode\copy\strutbox\else\unhcopy\strutbox\fi}

(End definition for \strutbox and \strut. These functions are documented on page 77.)

\hidewidth For alignment entries that can stick out.
25 \def\hidewidth{\hskip\hideskip}

(End definition for \hidewidth. This function is documented on page ?7.)

\narrower

26 \def\narrower{),
27 \advance\leftskip\parindent
28 \advance\rightskip\parindent}

(End definition for \narrower. This function is documented on page 77.)
ITEX defines \ae and similar commands elsewhere.

20 \chardef\%=\%
10 \chardef\&=‘\&
231 \chardef\#=‘\#

Most text commands are actually encoding specific and therefore defined later, so
commented out or removed from this file.

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 29

\leavevmode

\mathhexbox

\ialign

\oalign
\o@lign
\ooalign

\sheft

\1tx@sheft

\hrulefill
\dotfill

begins a paragraph, if necessary
1322 \def\leavevmode{\unhbox\voidb@x}

(End definition for \leavevmode. This function is documented on page ?7.)

133 \def\mathhexbox#1#2#3{\mbox{$\m@th \mathchar"#1#2#3$}}

(End definition for \mathhexbox. This function is documented on page ?7.)

23 \def\ialign{\everycr{}\tabskip\z@skip\halign} 7 initialized \halign

(End definition for \ialign. This function is documented on page 77.)

235 \def\oalign#1{\leavevmode\vtop{\baselineskip\z@skip \lineskip.25ex
w6 \ialign{##\crcr#i\crcr}}}

237 \def\o@lign{\lineskiplimit\z@ \oalign}

235 \def\ooalign{\lineskiplimit-\maxdimen \oalign}

(End definition for \oalign, \o@lign, and \ooalign. These functions are documented on page 77.)

The definition of this macro in plain.tex was improved in about 1997; but as a result its
usage was changed and its new definition is not appropriate for KTEX.

Since the version given here has been in use by IXTEX for many years it does not
seem prudent to remove it now. As far as we can tell it has only been used to define \b
and \d but this cannot be certain.

230 \def\sh@ft#1{\dimen®@.00#1lex\multiply\dimen@\fontdimenl\font
20 \kern-.0156\dimen@} J, compensate for slant in lowered accents

(End definition for \sheft. This function is documented on page 77.)

This is the ITEX version of the second incarnation of the plain macro \sh@ft, which
takes a dimension as its argument. It shifts a pseudo-accent horizontally by an amount
proportional to the product of its argument and the slant-per-point (fontdimen 1).

1 \def\1ltx@sheft #1{%

442 \dimen@ #1%

23 \kern \strip@pt

a4 \fontdimeni\font \dimen@

25 } % kern by #1 times the current slant

(End definition for \1tx@sh@ft. This function is documented on page ?7.)

ETEX change: the text commands such as \d, \b, \c, \copyright, \TeX are now
defined elsewhere.

TEX change: Make \t work in a moving argument. Now defined elsewhere.

IXTEX change: \kern\z@ added to end of \hrulefill and \dotfill to make them work
in ‘tabular’ and ‘array’ environments. (Change made 24 July 1987). KTgX change:
\leavevmode added at beginning of \dotfill and \hrulefill so that they work as
expected in vertical mode.

16 \def\hrulefill{\leavevmode\leaders\hrule\hfill\kern\z@}

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 30

\showoverfull

\showoutput
\loggingoutput

\tracingall
\loggingall

The box in \dotfill originally contained (in plain.tex):

\mkern 1.5mu .\mkern 1.5mu;

the width of .44em differs from this by .04pt which is probably an acceptable difference
within leaders.

w7 \def\dot£ill{%

25 \leavevmode

29 \cleaders \hb@xt@ .44em{\hss.\hss}\hfill

w0 \kern\z@}

(End definition for \hrulefill and \dotfill. These functions are documented on page ?7.)
INITEX sets \sfcode x=1000 for all x, except that \sfcode‘X=999 for uppercase
letters. The following changes are needed:

151 \sfcode‘\)=0 \sfcode‘\’=0 \sfcode‘\]=0

The \nonfrenchspacing macro will make further changes to \sfcode values.
Definitions related to output
\magnification doesn’t work in IATEX.

def\magnification{\afterassignment\m@g\count@}
def\m@g{\mag\count®@
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

The following commands are used in debugging:

252 \def\showoverfull{\tracingonline\@ne}

(End definition for \showoverfull. This function is documented on page 77.)

.53 \gdef\loggingoutput{\tracingoutput\@ne

454 \showboxbreadth\maxdimen\showboxdepth\maxdimen\errorstopmode}
255 \gdef\showoutput{\loggingoutput\showoverfull}

6 {/2ekernel)

(End definition for \showoutput and \loggingoutput. These functions are documented on page 77.)

w57 (latexrelease)\IncludeInRelease{2015/01/01}{\loggingall}{etex tracingl}y,
s (*2ekernel | latexrelease)

250 \ifx\tracingscantokens\@undefined
«0 \gdef\loggingall{Y

1 \tracingstats\tw@

s> \tracingpages\@ne

23 \tracinglostchars\@ne

w64 \tracingparagraphs\@ne

25 \errorcontextlines\maxdimen

w6 \loggingoutput

27 \tracingmacros\tw@

25 \tracingcommands\tw@

w0 \tracingrestores\@ne

wwo Yh

a1 \else

a2 \gdef\loggingall{Y

w3 \tracingstats\tw@

s \tracingpages\@ne

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d 31

275 \tracinglostchars\tw@
w76 \tracingparagraphs\@ne
477 \tracinggroups\@ne

a5 \tracingifs\@ne

279 \tracingscantokens\@ne
20 \tracingnesting\@ne

151 \errorcontextlines\maxdimen
2 \loggingoutput
23 \tracingmacros\tw@

24 \tracingcommands\thr@@

25 \tracingrestores\G@ne

26 \tracingassigns\@ne

w57

458 \fi

20 \gdef\tracingall{\showoverfull\loggingall}

w0 (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}{\loggingall}{etex tracing}¥
(latexrelease)\gdef\loggingall{\tracingcommands\tw@\tracingstats\tw@

sw0s (latexrelease) \tracingpages\@ne\tracinglostchars\@ne
(latexrelease) \tracingmacros\tw@\tracingparagraphs\@ne\tracingrestores\@ne
(latexrelease) \errorcontextlines\maxdimen\loggingoutput}

(latexrelease) \gdef\tracingall{\loggingall\showoverfull}

s (latexrelease)\EndIncludeInRelease

496

497

(End definition for \tracingall and \loggingall. These functions are documented on page 77.)

\tracingnone

\hideoutput . (latexrelease)\IncludeInRelease{2015/01/01}{\tracingnone}’,
so0 {latexrelease) {turn off etex tracingl}’%
sor (*2ekernel | latexrelease)
soo \ifx\tracingscantokens\@undefined
s03 \def\tracingnone{J,

500 \tracingonline\z@

55 \tracingcommands\z@
506 \showboxdepth\m@ne

so7 \showboxbreadth\m@ne
ss \tracingoutput\z@

s0 \errorcontextlines\m@ne
s.0 \tracingrestores\z@
st \tracingparagraphs\z@
sz \tracingmacros\z@

513 \tracinglostchars\@ne
s \tracingpages\z@

si5 \tracingstats\z@

si6 1h

517 \else

si5 \def\tracingnone{

s.9 \tracingassigns\z@
s20 \tracingrestores\z@
521 \tracingonline\z@

52 \tracingcommands\z@
523 \showboxdepth\m@ne
s22 \showboxbreadth\m@ne

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

s \tracingoutput\z@

526 \errorcontextlines\m@ne
527 \tracingnesting\z@

s \tracingscantokens\z@
50 \tracingifs\z@

s \tracinggroups\z@

s31 \tracingparagraphs\z@
522 \tracingmacros\z@

533 \tracinglostchars\@ne
s \tracingpages\z@

535 \tracingstats\z@
A

s37 \fi

538 \def \hideoutput{%

s \tracingoutput\z@

ss0 \showboxbreadth\m@ne
ss0 - \showboxdepth\m@ne
se2 \tracingonline\m@ne

543 }%

/2ekernel | latexrelease)
latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}{\tracingnone}
latexrelease) {turn off etex tracingl¥
latexrelease)\let\tracingnone\@undefined
)
)

544

545

546

547

548

o~~~ o~~~

latexrelease)\let\hideoutput\@undefined
o (latexrelease)\EndIncludeInRelease

549

a

5!

(End definition for \tracingnone and \hideoutput. These functions are documented on page ?7.)
I¥TEX change: \showhyphens Defined later.
Punctuation affects the spacing.

551 (*2ekerne|)

ss2 \nonfrenchspacing
553 {/2ekernel)

File b: 1tplain.dtx Date: 2020/08/20 Version v2.3d

\fmtname

\fmtversion
\latexreleaseversion
\patch@level

\development@branch@name

File ¢
Itvers.dtx

1 Version Identification

First we identify the date and version number of this release of ITEX, and set \everyjob
so that it is printed at the start of every ITEX run.

A \patch@level of O or higher denotes an official public release. A negative value
indicates a candidate release that is not distributed.

If we put code updates into the kernel that are supposed to go into the next release
we set the \patch@level to -1 and the \fmtversion / \latexreleaseversion to the
dated of the next release (guessed, the real value is not so important and will get corrected
when we make the release official).

If the \patch@level is already at -1 we do nothing here and use the \fmtversion
date for any new\IncludeInRelease line when we add further code.

Finally, if we do make a public release we either just set the \patch@level to zero
(if our initial guess was good) or we also change the date and then have to additionally
change to that date on all the \IncludeInRelease statements that used the “guessed”
date.

1 (*2ekernel)

> \def\fmtname{LaTeX2e}

s \edef\fmtversion

4+ (/2ekernel)

5 (latexrelease)\edef\latexreleaseversion
s (*2ekernel | latexrelease)

7 {2020-10-01}

s (/2ekernel | latexrelease)

o (*2ekernel)

10 \def\patch@level{O}

For more fine grain control there is the possibility to name the current development
branch. This is only used when the \patch@level is negative (i.e., a pre-release for-
mat) and is intended to help us internally when we locally install a format out of some
development branch.

11 \edef\development@branch@name{}

(End definition for \fmtname and others. These functions are documented on page 77.)

Check that the format being made is not too old. The error message complains
about ‘more than 5 years’ but in fact the error is not triggered until 65 months.

This code is currently not activated as we don’t know if we already got to the last
official 2e version (due to staff shortage or due to a successor (think positive:-)).

12 \iffalse

13 \def\reserved@a#1/#2/#3\@nil{}

12 \count@\year

15 \advance\count@-#1\relax

16 \multiply\count@ by 12\relax

17 \advance\count@\month

12 \advance\count@-#2\relax}

10 \expandafter\reserved@a\fmtversion\@nil

File c: 1tvers.dtx Date: 2020/03/02 Version vl.le 34

\count@ is now the age of this file in months. Take a generous definition of ‘year’ so this
message is not generated too often.

20 \ifnum\count®@>65

2 \typeout{~"J%

e N N N N N N RN AN /A
23 ! You are attempting to make a LaTeX format from a source file™~J}

2 ! That is more than five years old.”"J%

s 177J%

2% ! If you enter <return> to scroll past this message then the format~"J%
o7 ! will be built, but please consider obtaining newer source files™"J}
26 | before continuing to build LaTeX. "J%

N N N N NN RN A
0

31 \errhelp{To avoid this error message, obtain new LaTeX sources.}

32 \errmessage{LaTeX source files more than 5 years old!'}

313 \fi

s \let\reserved@a\relax

35 \fi

36 \ifnumO\ifnum\patch@level=0 \ifx\development@branch@name\@empty 1\fi\fi>0 %
37 \everyjob\expandafter{\the\everyjob

38 \typeout{\fmtname \space<\fmtversion>}}

39 \immediate

40 \writel16{\fmtname \space<\fmtversion>}

21 \else\ifnum\patch@level>0

2 \everyjob\expandafter{\the\everyjob

a3 \typeout{\fmtname \space<\fmtversion> patch level \patch@levell}}
44 \immediate

45 \writel6{\fmtname \space<\fmtversion> patch level \patch@level}

% \else

47 \everyjob\expandafter{\the\everyjob

48 \typeout{\fmtname \space<\fmtversion> pre-release-\number-\patch@level\space
49 \ifx\development@branch@name\@undefined \else

50 \ifx\development@branch@name\@empty \else

51 \space (\development@branch@name\space branch)?

52 \fi

53 \fi

54 }}

55 \immediate

56 \writel6{\fmtname \space<\fmtversion> pre-release-\number-\patch@level\space
57 \ifx\development@branch@name\@undefined \else

58 \ifx\development@branch@name\@empty \else

59 \space (\development@branch@name\space branch)?

60 \fi

61 \fi

62 }

63 \fi

64 \fi

os {/2ekernel)

\IncludeInRelease

s (2ekernel)\let\@currname\Q@empty

57 (*2ekernel | latexrelease)

File c: 1tvers.dtx Date: 2020/03/02 Version v1.le 35

¢ (latexrelease) \newif\if@includeinrelease
oo (latexrelease) \@includeinreleasefalse

o

70 \def\IncludeInRelease#1{Y%

71 \if@includeinrelease

7 \PackageError{latexrelease}{mis-matched IncludeInReleasel/,

73 {There is an \string\EndIncludeRelease\space missing}}
74 \@includeinreleasefalse

75 \fi

7 \kernel@ifnextchar[

77 {\@IncludeInRelease{#1}}

7 {\@IncludeInRelease{#1} [#1]}}

If a specific date has not been specified in latexrelease use ‘#1°
79 \def\@IncludeInRelease#1 [#2]{\@IncludeInRele@se{#2}}

\def\@IncludeInRele@se#1#2#3{%
81 \toks@{ [#1] #31}/
&2 \expandafter\ifx\csname\string#2+\Q@currname+IIR\endcsname\relax

o
S

If we roll back and the first patch already match then applying that is actually reapplying
what is already in the format, i.e., it is useless and possibly allocating new registers.
However, it makes the logic simpler so this is the way it is for now. In theory we could
always jump overthe first patch because that is only really needed for rolling forward. So
maybe one day ...

83 \ifnum\expandafter\@parse@version#1//00\@nil

84 >\expandafter\@parse@version\fmtversion//00\@nil

8 \GenericInfo{}{Skipping: \the\toks@}%

86 \expandafter\expandafter\expandafter\@gobble@IncludeInRelease
87 \else

88 \GenericInfo{}{Applying: \the\toks@}’

89 \@includeinreleasetrue

9 \expandafter\let\csname\string#2+\@currname+IIR\endcsname\Q@empty
91 \fi

o2 \else

93 \GenericInfo{}{Already applied: \the\toks@}}

% \expandafter\@gobble@IncludeInRelease

95 \fi

o6

o7 \def\EndIncludeInRelease{’,

s \if@includeinrelease

99 \@includeinreleasefalse

w0 \else

01 \PackageError{latexrelease}{mis-matched EndIncludeInRelease}{}%
102 \fi}

103 \long\def\@gobble@IncludeInRelease#1\EndIncludeInRelease{,

104 \@includeinreleasefalse

105 \@check@IncludeInRelease#1\IncludeInRelease\@check@IncludeInRelease
106 \@end@check@IncludeInRelease}

107 \long\def\@check@IncludeInRelease#1\IncludeInRelease

108 #2#3\@end@check@IncludeInRelease{’,

109 \ifx\@check@IncludeInRelease#2\else

110 \PackageError{latexrelease}{skipped IncludeInRelease for tag \string#2}{}%
111 \fi}

File c: 1tvers.dtx Date: 2020/03/02 Version v1.le 36

112 (/2ekernel | latexrelease)

(End definition for \IncludeInRelease. This function is documented on page 77.)

File ¢: 1tvers.dtx Date: 2020/03/02 Version v1.le

37

File d
Itluatex.dtx

1 Overview

LuaTgX adds a number of engine-specific functions to TEX. Several of these require set
up that is best done in the kernel or need related support functions. This file provides
basic support for LuaTEX at the ITEX 2¢ kernel level plus as a loadable file which can
be used with plain TEX and IATEX.

This file contains code for both TEX (to be stored as part of the format) and Lua
(to be loaded at the start of each job). In the Lua code, the kernel uses the namespace
luatexbase.

The following \count registers are used here for register allocation:

\e@alloc@attribute@count Attributes (default 258)

\e@alloc@ccodetable@count Category code tables (default 259)

\e@alloc@luafunction@count Lua functions (default 260)

\e@alloc@whatsit@count User whatsits (default 261)

\e@alloc@bytecode@count Lua bytecodes (default 262)

\e@alloc@luachunk@count Lua chunks (default 263)

\newattribute

\newcatcodetable

\newluafunction

\newwhatsit

\newluabytecode

(\count 256 is wused for \newmarks allocation and \count 257 is used for
\newXeTeXintercharclass with XeTgX, with code defined in 1tfinal.dtx). With any
TEX 2¢ kernel from 2015 onward these registers are part of the block in the extended
area reserved by the kernel (prior to 2015 the IATEX 2¢ kernel did not provide any func-
tionality for the extended allocation area).

2 Core TEX functionality

The commands defined here are defined for possible inclusion in a future IXTEX format,
however also extracted to the file 1tluatex.tex which may be used with older ETEX
formats, and with plain TEX.

\newattribute{(attribute)}

Defines a named \attribute, indexed from 1 (i.e. \attributeO is never defined). At-
tributes initially have the marker value -"7FFFFFFF (‘unset’) set by the engine.
\newcatcodetable{(catcodetable)}

Defines a named \catcodetable, indexed from 1 (\catcodetable0 is never assigned).
A new catcode table will be populated with exactly those values assigned by IniTEX (as
described in the LuaTEX manual).

\newluafunction{(function)}

Defines a named \luafunction, indexed from 1. (Lua indexes tables from 1 so
\luafunctionO is not available).

\newwhatsit{(whatsit)}

Defines a custom \whatsit, indexed from 1.

\newluabytecode{(bytecode)}

File d: 1tluatex.dtx 38

Allocates a number for Lua bytecode register, indexed from 1.
\newluachunkname newluachunkname{(chunkname)}
Allocates a number for Lua chunk register, indexed from 1. Also enters the name of the
regiser (without backslash) into the lua.name table to be used in stack traces.
\catcodetable@initex Predefined category code tables with the obvious assignments. Note that the latex and
\catcodetable@string atletter tables set the full Unicode range to the codes predefined by the kernel.
\catcodetable@latex \setattribute{(attribute)}{(value)}
\catcodetable@atletter \unsetattribute{(attribute)}
\setattribute Set and unset attributes in a manner analogous to \setlength. Note that attributes
\unsetattribute take a marker value when unset so this operation is distinct from setting the value to
Zero.

3 Plain TEgX interface

The Itluatex interface may be used with plain TEX using \input{1ltluatex}. This inputs
ltluatex.tex which inputs etex.src (or etex.sty if used with BTEX) if it is not
already input, and then defines some internal commands to allow the Itluatex interface
to be defined.

The luatexbase package interface may also be used in plain TEX, as before, by in-
putting the package \input luatexbase.sty. The new version of luatexbase is based
on this Itluatex code but implements a compatibility layer providing the interface of the
original package.

4 Lua functionality

4.1 Allocators in Lua

new_attribute luatexbase.new_attribute ({attribute))
Returns an allocation number for the (attribute), indexed from 1. The attribute will
be initialised with the marker value -"7FFFFFFF (‘unset’). The attribute allocation se-
quence is shared with the TEX code but this function does not define a token using
\attributedef. The attribute name is recorded in the attributes table. A metatable
is provided so that the table syntax can be used consistently for attributes declared in
TEX or Lua.
new_whatsit luatexbase.new_whatsit ({whatsit))
Returns an allocation number for the custom (whatsit), indexed from 1.
new_bytecode luatexbase.new_bytecode ({bytecode))
Returns an allocation number for a bytecode register, indexed from 1. The optional
(name) argument is just used for logging.
new_chunkname luatexbase.new_chunkname ({chunkname))
Returns an allocation number for a Lua chunk name for use with \directlua and
\latelua, indexed from 1. The number is returned and also (name) argument is added
to the lua.name array at that index.
new_luafunction luatexbase.new_luafunction({functionname))

Returns an allocation number for a lua function for use with \luafunction, \lateluafunction,
and \luadef, indexed from 1. The optional (functionname) argument is just used for
logging.

These functions all require access to a named TEX count register to manage
their allocations. The standard names are those defined above for access from TgX,

File d: 1tluatex.dtx 39

registernumber

e.g. \e@Qalloc@attribute@count, but these can be adjusted by defining the variable
(type)_count_name before loading 1tluatex.lua, for example

local attribute_count_name = "attributetracker"
require("ltluatex")

would use a TEX \count (\countdef’d token) called attributetracker in place of
\e@alloc@attribute@count.

4.2 Lua access to TEX register numbers

luatexbase.registernumer ((name))
Sometimes (notably in the case of Lua attributes) it is necessary to access a regis-
ter by number that has been allocated by TEX. This package provides a function
to look up the relevant number using LuaTgX’s internal tables. After for example
\newattribute\myattrib, \myattrib would be defined by (say) \myattrib=\attributel15
luatexbase.registernumer ("myattrib") would then return the register number, 15 in
this case. If the string passed as argument does not correspond to a token defined by
\attributedef, \countdef or similar commands, the Lua value false is returned.

As an example, consider the input:

\newcommand\test [1]{%

\typeout{#1: \expandafter\meaning\csname#1\endcsname~"J
\space\space\space\space
\directlua{tex.write(luatexbase.registernumber ("#1") or "bad input")l}/
3

\test{undefinedrubbish}

\test{space}

\test{hbox}

\test{eMM}

\test{@tempdima}
\test{@tempdimb}

\test{strutbox}
\test{sixt@@n}
\attrbutedef\myattr=12

\myattr=200
\test{myattr}

If the demonstration code is processed with Lual&TEX then the following would be
produced in the log and terminal output.

undefinedrubbish: \relax
bad input

File d: 1tluatex.dtx 40

Space: macro: ->

bad input

hbox: \hbox
bad input

@MM: \mathchar"4E20
20000

Qtempdima: \dimenl4
14

Qtempdimb: \dimenl5
15

strutbox: \char"B
11

sixt@@n: \char"10
16

myattr: \attributel2
12

Notice how undefined commands, or commands unrelated to registers do not produce
an error, just return false and so print bad input here. Note also that commands
defined by \newbox work and return the number of the box register even though the
actual command holding this number is a \chardef defined token (there is no \boxdef).

4.3 Module utilities

provides_module luatexbase.provides_module ({info))

This function is used by modules to identify themselves; the info should be a table

containing information about the module. The required field name must contain the

name of the module. It is recommended to provide a field date in the usual ITEX

format yyyy/mm/dd. Optional fields version (a string) and description may be used if

present. This information will be recorded in the log. Other fields are ignored.

module_info luatexbase.module_info((module), (text))
module_warning luatexbase.module_warning({module), (text))
module_error luatexbase.module_error ({module), (text))

These functions are similar to XTEX’s \PackageError, \PackageWarning and \PackageInfo

in the way they format the output. No automatic line breaking is done, you may still use

\n as usual for that, and the name of the package will be prepended to each output line.
Note that luatexbase.module_error raises an actual Lua error with error(),

which currently means a call stack will be dumped. While this may not look pretty,

at least it provides useful information for tracking the error down.

4.4 Callback management

add_to_callback luatexbase.add_to_callback({callback), (function), (description)) Registers the (function)

into the (callback) with a textual (description) of the function. Functions are inserted
into the callback in the order loaded.

remove_from_callback luatexbase.remove_from_callback({callback), (description)) Removes the callback
function with (description) from the (callback). The removed function and its description
are returned as the results of this function.

in_callback luatexbase.in_callback({callback), (description)) Checks if the (description) matches

one of the functions added to the list for the (callback), returning a boolean value.

File d: 1tluatex.dtx 41

disable_callback

callback_descriptions

create_callback

call_callback

luatexbase.disable_callback({callback)) Sets the (callback) to false as described in
the LuaTEX manual for the underlying callback.register built-in. Callbacks will only
be set to false (and thus be skipped entirely) if there are no functions registered using
the callback.

A list of the descriptions of functions registered to the specified callback is returned. {}
is returned if there are no functions registered.

luatexbase.create_callback ({name),metatype,(default)) Defines a user defined call-
back. The last argument is a default function or false.
luatexbase.call_callback((name),...) Calls a user defined callback with the supplied
arguments.

5 Implementation

1 (*2ekernel | tex | latexrelease)
> (2ekernel | latexrelease) \ifx\directlua\Qundefined\else

5.1 Minimum LuaTgX version

LuaTgX has changed a lot over time. In the kernel support for ancient versions is not
provided: trying to build a format with a very old binary therefore gives some information
in the log and loading stops. The cut-off selected here relates to the tree-searching
behaviour of require(): from version 0.60, LuaTgX will correctly find Lua files in the
texmf tree without ‘help’.

s (latexrelease) \IncludeInRelease{2015/10/01}

1+ (latexrelease) {\newluafunction}{LuaTeX}}

5 \ifnum\luatexversion<60 Y
6 \WLog{sokskokokskeskskokokshokokske s skok ke sk ok ks sk ko ek ok ke e kok

7 \wlog{* LuaTeX version too old for ltluatex support *}
s \Wlog{rsrsrsrsrsrskorskokskskokskokokkokok ook kot koot kok ko skokkokkokokkokokokokokok 3

o \expandafter\endinput
0 \fi
Two simple BTEX macros from ltdefns.dtx have to be defined here because lt-
defns.dtx is not loaded yet when ltluatex.dtx is executed.

11 \long\def\@gobble#1{}
1> \long\def\@firstofone#1{#1}

5.2 Older BTEX /Plain TEX setup
13 (*tex)

Older BTEX formats don’t have the primitives with ‘native’ names: sort that out. If
they already exist this will still be safe.

12 \directlua{tex.enableprimitives("",tex.extraprimitives("luatex"))}
15 \ifx\e@alloc\@undefined
In pre-2014 KTEX, or plain TEX, load etex.{sty,src}.

16 \ifx\documentclass\@undefined
17 \ifx\loccount\@undefined

18 \input{etex.src}),
19 \fi
20 \catcode ‘\@=11 7,

21 \outer\expandafter\def\csname newfam\endcsname

File d: 1tluatex.dtx 42

\else
\RequirePackage{etex}
\expandafter\def\csname newfam\endcsname
{\alloc@8\fam\chardef\et@xmaxfam}
\expandafter\let\expandafter\new@mathgroup\csname newfam\endcsname

\fi

{\alloc@8\fam\chardef\et@xmaxfam}

5.2.1 Fixes to etex.src/etex.sty

These could and probably should be made directly in an update to etex.src which
already has some LuaTgX-specific code, but does not define the correct range for LuaTgX.
2015-07-13 higher range in luatex.

20 \edef \et@xmaxregs {\ifx\directlua\Qundefined 32768\else 65536\fi}

luatex /xetex also allow more math fam.
\edef \et@xmaxfam {\ifx\Umathcode\@undefined\sixt@@n\else\@cclvi\fi}

30

5.2.2

\count
\count
\count
\count
\count

; \count

\count

270=\et0xmaxregs
271=\et@xmaxregs
272=\et0@xmaxregs
273=\et@xmaxregs
274=\et@xmaxregs
275=\et0@xmaxregs
276=\et@xmaxregs

% locally allocates \count registers
ditto for \dimen registers

ditto for \skip registers

ditto for \muskip registers

ditto for \box registers

ditto for \toks registers

ditto for \marks classes

%
A
A
%
%
A

and 256 or 16 fam. (Done above due to plain/I¥TEX differences in ltluatex.)

; 7 \outer\def\newfam{\alloc@8\fam\chardef\et@xmaxfam}

End of proposed changes to etex.src

luatex specific settings

Switch to global cf luatex.sty to leave room for inserts not really needed for luatex but
possibly most compatible with existing use.

39

40

41

42

43

N

5

N

7

48

\expandafter\let\csname

\csname

\expandafter\let\csname

\csname

\expandafter\let\csname

\csname

\expandafter\let\csname

\csname

newcount \expandafter\expandafter\endcsname
globcount\endcsname
newdimen\expandafter\expandafter\endcsname
globdimen\endcsname
newskip\expandafter\expandafter\endcsname
globskip\endcsname
newbox\expandafter\expandafter\endcsname
globbox\endcsname

Define\e@alloc as in latex (the existing macros in etex.src hard to extend to
further register types as they assume specific 26x and 27x count range. For compatibility
the existing register allocation is not changed.

\chardef\e@alloc@top=65535
\let\e@alloc@chardef\chardef

\def\e@alloc#1#2#3#4#5#6{},
\global\advance#3\@ne
\e@ch@ck{#3}H{#4}{#5}#17,

\allocationnumber#3\relax
\global#2#6\allocationnumber
\wlog{\string#6=\string#1\the\allocationnumber}}},

File d: 1tluatex.dtx

43

\newattribute

\setattribute
\unsetattribute

\newcatcodetable

55 \gdef\e@ch@ck#1#2#3#4{,

56 \ifnum#i<#2\else

57 \ifnum#1=#2\relax

58 #1\@cclvi

59 \ifx\count#4\advance#1 10 \fi
60 \fi

61 \ifnum#1<#3\relax

62 \else

63 \errmessage{No room for a new \string#4}),
64 \fi

65 \fi}y)

Fix up allocations not to clash with etex.src.

¢ \expandafter\csname newcount\endcsname\e@alloc@attribute@count
o7 \expandafter\csname newcount\endcsname\e@alloc@ccodetable@count
s \expandafter\csname newcount\endcsname\e@alloc@luafunction@count
60 \expandafter\csname newcount\endcsname\e@alloc@whatsit@count

70 \expandafter\csname newcount\endcsname\e@alloc@bytecode@count

71 \expandafter\csname newcount\endcsname\e@alloc@luachunk@count

End of conditional setup for plain TEX / old TEX.
72 \fi

- (/tex)

5.3 Attributes

As is generally the case for the LuaTEX registers we start here from 1. Notably, some
code assumes that \attributeO is never used so this is important in this case.

72 \ifx\e@alloc@attribute@count\@undefined

75 \countdef\e@alloc@attribute@count=258

76 \e@alloc@attribute@count=\z@

77 \fi

7 \def\newattribute#1{}

79 \e@alloc\attribute\attributedef

80 \e@alloc@attribute@count\m@ne\e@alloc@top#1y

51 F

(End definition for \newattribute. This function is documented on page 77.)

Handy utilities.

e \def\setattribute#1#2{#1=\numexpr#2\relax}
s \def\unsetattribute#1{#1=-"7FFFFFFF\relax}

(End definition for \setattribute and \unsetattribute. These functions are documented on page 77.)

5.4 Category code tables

Category code tables are allocated with a limit half of that used by LuaTgX for everything
else. At the end of allocation there needs to be an initialisation step. Table 0 is already
taken (it’s the global one for current use) so the allocation starts at 1.

e \ifx\e@alloc@ccodetable@count\Qundefined

&5 \countdef\e@alloc@ccodetable@count=259

s \e@alloc@ccodetable@count=\z@

a7 \fi

File d: 1tluatex.dtx 44

\catcodetable@initex
\catcodetable@string
\catcodetable@latex
\catcodetable®@atletter

(End definition for \newcatcodetable. This function is documented on page 77.)

\def\newcatcodetable#1{}

}

\e@alloc\catcodetable\chardef
\e@alloc@ccodetable@count\m@ne{"8000}#1%
\initcatcodetable\allocationnumber

Save a small set of standard tables. The Unicode data is read here in using a parser sim-
plified from that in load-unicode-data: only the nature of letters needs to be detected.

96

97

98

99

100

102

103

105

106

107

109

110

3 \newcatcodetable\catcodetable@initex

\newcatcodetable\catcodetable@string
\begingroup

\def\setrangecatcode#1#2#3{%
\ifnum#1>#2 %
\expandafter\@gobble
\else
\expandafter\@firstofone
\fi
{4k
\catcode#1=#3 Y,
\expandafter\setrangecatcode\expandafter
{\number\numexpr#1 + 1\relax}{#2}{#3}
Y
}
\efirstofone{’
\catcodetable\catcodetable@initex
\catcode0=12 ¥
\catcodel3=12 Y
\catcode37=12 ¥
\setrangecatcode{65}{90}{12}},
\setrangecatcode{97}{122}{12}%
\catcode92=12 ¥
\catcodel27=12 7,
\savecatcodetable\catcodetable@string
\endgroup
Yh

\newcatcodetable\catcodetable@latex
\newcatcodetable\catcodetable@atletter
\begingroup

\def\parseunicodedatal#l;#2;#3;#4\relax{/,
\parseunicodedatall#1;#3;#2 First>\relax
o
\def\parseunicodedatalIl#1;#2;#3 First>#4\relax{%
\ifx\relax#4\relax
\expandafter\parseunicodedataIIl
\else
\expandafter\parseunicodedataIV
\fi
{#1}#2\relax/,
1A
\def\parseunicodedatalII#1#2#3\relax{’
\ifnum 0%
\if L#21\fi

File d: 1tluatex.dtx

45

\newluafunction

137 \if M#21\fi

138 >0 %

139 \catcode"#1=11 ¥

140 \fi

o Y

12 \def\parseunicodedataIV#1#2#3\relax{%

143 \read\unicoderead to \unicodedataline

144 \if L#2%

145 \countO="#1 7%

146 \expandafter\parseunicodedataV\unicodedataline\relax
147 \fi

148 YA

1o \def\parseunicodedataV#1;#2\relax{/

150 \loop

151 \unless\ifnum\count0>"#1 %

152 \catcode\count0=11 %

153 \advance\countO by 1 %

154 \repeat

155 Y%

156 \def\storedpar{\parl}’

157 \chardef\unicoderead=\numexpr\count16 + 1\relax

155 \openin\unicoderead=UnicodeData.txt %

159 \loop\unless\ifeof\unicoderead %

160 \read\unicoderead to \unicodedataline

161 \unless\ifx\unicodedataline\storedpar

162 \expandafter\parseunicodedataI\unicodedataline\relax
163 \fi

16« \repeat

165 \closein\unicoderead

166 \@firstofone{}

167 \catcode64=12 Y,

168 \savecatcodetable\catcodetable@latex

169 \catcode64=11 Y

170 \savecatcodetable\catcodetable@atletter
171 3

172 \endgroup

(End definition for \catcodetable@initex and others. These functions are documented on page 77.)

5.5 Named Lua functions

Much the same story for allocating LuaTEX functions except here they are just numbers
so they are allocated in the same way as boxes. Lua indexes from 1 so once again slot 0
is skipped.

73 \ifx\e@alloc@luafunction@count\@undefined

174 \countdef\e@alloc@luafunction@count=260

175 \e@alloc@luafunction@count=\z@

176 \fi

177 \def\newluafunction{%

172 \e@alloc\luafunction\e@alloc@chardef

179 \e@alloc@luafunction@count\m@ne\e@alloc@top
180 F

(End definition for \newluafunction. This function is documented on page 77.)

File d: 1tluatex.dtx 46

5.6 Custom whatsits

\newwhatsit These are only settable from Lua but for consistency are definable here.

181 \ifx\e@alloc@whatsit@count\@undefined

122 \countdef\e@alloc@whatsit@count=261

183 \e@alloc@whatsit@count=\z@

182 \fi

155 \def\newwhatsit#1{%

136 \e@alloc\whatsit\e@alloc@chardef

187 \e@alloc@whatsit@count\m@ne\e@alloc@top#17
188

(End definition for \newwhatsit. This function is documented on page 77?.)

5.7 Lua bytecode registers

\newluabytecode These are only settable from Lua but for consistency are definable here.

1.0 \ifx\e@alloc@bytecode@count\@undefined

1o \countdef\e@alloc@bytecode@count=262

191 \e@alloc@bytecode@count=\z@

10 \fi

103 \def\newluabytecode#1{J

192 \e@alloc\luabytecode\e@alloc@chardef

105 \e@alloc@bytecode@count\m@ne\e@alloc@top#17
196

(End definition for \newluabytecode. This function is documented on page 77.)

5.8 Lua chunk registers

\newluachunkname As for bytecode registers, but in addition we need to add a string to the lua.name table
to use in stack tracing. We use the name of the command passed to the allocator, with
no backslash.

107 \ifx\e@alloc@luachunk@count\@undefined
198 \countdef\e@alloc@luachunk@count=263
199 \e@alloc@luachunk@count=\z@

200 \fi

201 \def\newluachunkname#1{

200 \e@alloc\luachunk\e@alloc@chardef

203 \e@alloc@luachunk@count\m@ne\e@alloc@top#1y,

204 {\escapechar\m@ne

205 \directlua{lua.name[\the\allocationnumber]="\string#1"}}%
206 F

(End definition for \newluachunkname. This function is documented on page 77?.)

5.9 Lua loader

Lua code loaded in the format often has to to be loaded again at the beginning of every
job, so we define a helper whch allows us to avoid duplicated code:

207 \def\now@and@everyjob#1{/,
208 \everyjob\expandafter{\the\everyjob
209 #1Y%

File d: 1tluatex.dtx 47

20 Y
211 #1Y%

Load the Lua code at the start of every job. For the conversion of TEX into numbers
at the Lua side we need some known registers: for convenience we use a set of systematic
names, which means using a group around the Lua loader.

213 (2ekernel) \now@and@everyjob{),

22 \begingroup

215 \attributedef\attributezero=0 %
216 \chardef \charzero =0 %
Note name change required on older luatex, for hash table access.
217 \countdef \CountZero =0 %
218 \dimendef \dimenzero =0 %
219 \mathchardef \mathcharzero =0
220 \muskipdef \muskipzero =0 %
221 \skipdef \skipzero =0 %
22 \toksdef \tokszero =0 %
223 \directlua{require("ltluatex")}
224 \endgroup

2ekernel) }
latexrelease) \EndIncludeInRelease

latexrelease) \IncludeInRelease{0000/00/00}

latexrelease {\newluafunction}{LuaTeX}}
latexrelease) \1let\e@alloc@attribute@count\@undefined
latexrelease) \1let \newattribute\Q@undefined

latexrelease) \let \setattribute\@undefined

latexrelease) \1let \unsetattribute\@undefined

latexrelease) \1et \e@alloc@ccodetable@count \@undefined
latexrelease) \1let \newcatcodetable\@undefined

latexrelease) \1let \catcodetable@initex\Qundefined
latexrelease) \let\catcodetable@string\@undefined

(

()
()
()
()
()
()
()
()
()
()
()

;7 (latexrelease) \let\catcodetable@latex\@undefined

()
()
()
()
()
()
()
()
()
()
()
(

230

232
233

234

o]

235

236

latexrelease) \1et \catcodetable@atletter\@undefined
latexrelease) \1let\e@alloc@luafunction@count\@undefined
latexrelease) \1et \newluafunction\@undefined

latexrelease) \1et\e@alloc@luafunction@count\@undefined
latexrelease) \let \newwhatsit\@undefined

latexrelease) \1et\e@alloc@whatsit@count \@undefined
latexrelease) \1et \newluabytecode\Qundefined

latexrelease) \let\e@alloc@bytecode@count\@undefined
latexrelease) \1et \newluachunkname\Q@undefined
latexrelease) \1et \e@alloc@luachunk@count \@undefined
latexrelease) \directlua{luatexbase.uninstall ()}
latexrelease) \EndIncludeInRelease

238

239

240

241

242
243
244

245

246

247

248

249

In \everyjob, if luaotfload is available, load it and switch to TU.

latexrelease) \IncludeInRelease{2017/01/01}

latexrelease) {\fontencoding}{TU in everyjobl}}
latexrelease) \fontencoding{TU}\1let\encodingdefault\f@encoding
latexrelease) \ifx\directlua\@undefined\else

2ekernel) \everyjob\expandafter{},

2ekernel) \the\everyjob

b
o~~~ o~~~

File d: 1tluatex.dtx 48

luatexbase

modules

256 (*2ekernel, latexrelease)
257 \directlua{}
25 if xpcall(function ()7

259 require (’luaotfload-main’)},
260 end,texio.write_nl) then
%1 local _void = luaotfload.main ()}

%2 else }

%3 texio.write_nl(’Error in luaotfload: reverting to 0T1’)}
26s tex.print(’\string\\def\string\\encodingdefault{0T1}’)}
265 end %
266 M
267 \let\f@encoding\encodingdefault
265 \expandafter\let\csname ver@luaotfload.sty\endcsname\fmtversion
200 (/2ekernel, latexrelease)
(latexrelease) \f1
(2ekernel) }
(latexrelease) \EndIncludeInRelease
273 (latexrelease) \IncludeInRelease{0000/00/00}%
(latexrelease) {\fontencoding}{TU in everyjob}/
(latexrelease) \fontencoding{0T1}\let\encodingdefault\f@encoding
(latexrelease) \EndIncludeInRelease
(2ekernel | latexrelease) \fi
(/2ekernel | tex | latexrelease)

5.10 Lua module preliminaries
279 (*Iua)

Some set up for the Lua module which is needed for all of the Lua functionality
added here.
Set up the table for the returned functions. This is used to expose all of the public
functions.

230 luatexbase luatexbase or { }
51 local luatexbase = luatexbase

(End definition for luatexbase. This function is documented on page ?7.)
Some Lua best practice: use local versions of functions where possible.

282 local string_gsub = string.gsub

253 local tex_count = tex.count

54 local tex_setattribute = tex.setattribute
2s5 local tex_setcount = tex.setcount

256 local texio_write_nl = texio.write_nl

287 local luatexbase_warning
2ss local luatexbase_error

5.11 Lua module utilities

5.11.1 Module tracking

To allow tracking of module usage, a structure is provided to store information and to
return it.

230 local modules = modules or { }

File d: 1tluatex.dtx 49

provides_module

(End definition for modules. This function is documented on page 77.)

Local function to write to the log.

20 local function luatexbase_log(text)
201 texio_write_nl("log", text)

202 end

Modelled on \ProvidesPackage, we store much the same information but with a

little more structure.

203 local function provides_module(info)
204 if not (info and info.name) then

205 luatexbase_error("Missing module name for provides_module")
296 end

207 local function spaced(text)

208 return text and (" " .. text) or ""

209 end

s0 luatexbase_log(

301 "Lua module: " .. info.name

302 .. spaced(info.date)

303 .. spaced(info.version)
304 .. spaced(info.description)

305)
306 modules[info.name] = info
307 end

308 luatexbase.provides_module = provides_module

(End definition for provides_module. This function is documented on page 77.)

5.11.2 Module messages

There are various warnings and errors that need to be given. For warnings we can get
exactly the same formatting as from TEX. For errors we have to make some changes.
Here we give the text of the error in the IXTEX format then force an error from Lua
to halt the run. Splitting the message text is done using \n which takes the place of

\MessageBreak.

First an auxiliary for the formatting: this measures up the message leader so we

always get the correct indent.

300 local function msg_format(mod, msg_type, text)
3.0 local leader = ""

311 local cont

312 local first_head

313 if mod == "LaTeX" then

314 cont = string_gsub(leader, ".", " ")

315 first_head = leader .. "LaTeX: "

316 else

317 first_head = leader .. "Module " .. msg_type
318 cont = "(" .. mod .. ")"

319 .. string_gsub(first_head, ".", " ")

320 first_head = 1leader .. "Module " .. mod ..
321 end

322 if msg_type == "Error" then

323 first_head = "\n" .. first_head

324 end

25 if string.sub(text,-1) ~= "\n" then

File d: 1tluatex.dtx

. msg_type

50

326 text = text .. " "

327 end

328 return first_head .. " "

320 .. string_gsub(

330 text

331 .. "on input line "

332 .. tex.inputlineno, "\n", "\n" .. cont .. " "
333)

334 .. "\n"

335 end

module_info Write messages.

module_warning i3 local function module_info(mod, text)
module_error 33 texio_write_nl("log", msg_format(mod, "Info", text))
335 end

330 luatexbase.module_info = module_info

30 local function module_warning(mod, text)

341 texio_write_nl("term and log",msg_format(mod, "Warning", text))
322 end

13 luatexbase.module_warning = module_warning

322 local function module_error(mod, text)

25 error (msg_format(mod, "Error", text))

326 end

327 luatexbase.module_error = module_error

(End definition for module_info, module_warning, and module_error. These functions are documented
on page 77.)
Dedicated versions for the rest of the code here.

a5 function luatexbase_warning(text)

;0 module_warning("luatexbase", text)
350 end

351 function luatexbase_error(text)

352 module_error("luatexbase", text)
353 end

5.12 Accessing register numbers from Lua

Collect up the data from the TEX level into a Lua table: from version 0.80, LuaTgX
makes that easy.

35 local luaregisterbasetable = { }
555 local registermap = {

356 attributezero = "assign_attr" s
357 charzero = "char_given" s
358 CountZero = "assign_int" s
350 dimenzero = "assign_dimen" s
360 mathcharzero = "math_given" s
31 muskipzero = "assign_mu_skip" ,
362 skipzero = "assign_skip" s
363 tokszero = "assign_toks" s
364 }

365 local createtoken

366 if tex.luatexversion > 81 then

367 createtoken = token.create

365 elseif tex.luatexversion > 79 then

File d: 1tluatex.dtx 51

registernumber

new_attribute

360 createtoken = newtoken.create

570 end

371 local hashtokens = tex.hashtokens()
372 local luatexversion = tex.luatexversion
373 for i,j in pairs (registermap) do

374 if luatexversion < 80 then

375 luaregisterbasetable [hashtokens[i] [1]] =

376 hashtokens[i] [2]

377 else

378 luaregisterbasetable[j] = createtoken(i).mode
379 end

380 end

Working out the correct return value can be done in two ways. For older LuaTEX releases
it has to be extracted from the hashtokens. On the other hand, newer LuaTgX’s have
newtoken, and whilst .mode isn’t currently documented, Hans Hagen pointed to this
approach so we should be OK.

331 local registernumber

322 1f luatexversion < 80 then

53 function registernumber (name)

384 local nt = hashtokens[name]

385 if (nt and luaregisterbasetable[nt[1]]) then
386 return nt[2] - luaregisterbasetable[nt[1]]

387 else

388 return false

389 end

390 end

301 else

52 function registernumber (name)

303 local nt = createtoken(name)

394 if (luaregisterbasetable[nt.cmdname]) then
395 return nt.mode - luaregisterbasetable[nt.cmdname]
396 else

307 return false

398 end

399 end

200 end

201 luatexbase.registernumber = registernumber

(End definition for registernumber. This function is documented on page 77.)

5.13 Attribute allocation

As attributes are used for Lua manipulations its useful to be able to assign from this end.

102 local attributes=setmetatable(

203 {3},

404 {

205 __index = function(t,key)

206 return registernumber(key) or nil
407 end}

408)

400 luatexbase.attributes = attributes

File d: 1tluatex.dtx 52

210 local attribute_count_name =

411 attribute_count_name or "e@alloc@attribute@count"
412 local function new_attribute(name)

413 tex_setcount("global", attribute_count_name,

414 tex_count [attribute_count_name] + 1)
415 if tex_count[attribute_count_name] > 65534 then

416 luatexbase_error("No room for a new \\attribute")

417 end

1218 attributes[name]= tex_count[attribute_count_name]

210 luatexbase_log("Lua-only attribute " .. name .. " ="

420 tex_count [attribute_count_name])

21 return tex_count[attribute_count_name]

122 end

1223 luatexbase.new_attribute = new_attribute

(End definition for new_attribute. This function is documented on page 77.)

5.14 Custom whatsit allocation

new_whatsit Much the same as for attribute allocation in Lua.

24 local whatsit_count_name = whatsit_count_name or "e@alloc@whatsit@count"
125 local function new_whatsit(name)

426 tex_setcount("global", whatsit_count_name,

427 tex_count [whatsit_count_name] + 1)

428 if tex_count[whatsit_count_name] > 65534 then

429 luatexbase_error("No room for a new custom whatsit")

430 end

21 luatexbase_log("Custom whatsit " .. (name or "") .. " ="
432 tex_count [whatsit_count_name])

133 return tex_count[whatsit_count_name]

132 end

135 luatexbase.new_whatsit = new_whatsit

(End definition for new_whatsit. This function is documented on page ?7.)

5.15 Bytecode register allocation

new_bytecode Much the same as for attribute allocation in Lua. The optional (name) argument is used
in the log if given.

136 local bytecode_count_name =

437 bytecode_count_name or "e@alloc@bytecode@count"

233 local function new_bytecode(name)

439 tex_setcount("global", bytecode_count_name,

440 tex_count [bytecode_count_name] + 1)
441 if tex_count[bytecode_count_name] > 65534 then

442 luatexbase_error("No room for a new bytecode register")
443 end

24 luatexbase_log("Lua bytecode " .. (name or "") .. " ="

445 tex_count [bytecode_count_name])

26 return tex_count [bytecode_count_name]

147 end

s luatexbase.new_bytecode = new_bytecode

(End definition for new_bytecode. This function is documented on page 77.)

File d: 1tluatex.dtx 53

new_chunkname

new_luafunction

5.16 Lua chunk name allocation

As for bytecode registers but also store the name in the lua.name table.

1229 local chunkname_count_name =

450 chunkname_count_name or "e@alloc@luachunk@count"
151 local function new_chunkname (name)

452 tex_setcount("global", chunkname_count_name,

453 tex_count [chunkname_count_name] + 1)
454 local chunkname_count = tex_count [chunkname_count_name]
455 chunkname_count = chunkname_count + 1

456 if chunkname_count > 65534 then

457 luatexbase_error("No room for a new chunkname")

458 end

10 lua.name[chunkname_count]=name

20 luatexbase_log("Lua chunkname " .. (name or "") .. " ="
461 chunkname_count .. "\n")

462 return chunkname_count

163 end

162 luatexbase.new_chunkname = new_chunkname

(End definition for new_chunkname. This function is documented on page 77.)

5.17 Lua function allocation

Much the same as for attribute allocation in Lua. The optional (name) argument is used
in the log if given.

465 local luafunction_count_name =

466 luafunction_count_name or "e@alloc@luafunction@count"
1467 local function new_luafunction(name)

468 tex_setcount("global", luafunction_count_name,

469 tex_count [luafunction_count_name] + 1)

470 if tex_count[luafunction_count_name] > 65534 then

471 luatexbase_error("No room for a new luafunction register")

472 end

473 luatexbase_log("Lua function " .. (name or "") .. " ="

474 tex_count [luafunction_count_name])

475 return tex_count[luafunction_count_name]

476 end

477 luatexbase.new_luafunction = new_luafunction

(End definition for new_luafunction. This function is documented on page 77.)

5.18 Lua callback management

The native mechanism for callbacks in LuaTgEX allows only one per function. That is
extremely restrictive and so a mechanism is needed to add and remove callbacks from
the appropriate hooks.

5.18.1 Housekeeping

The main table: keys are callback names, and values are the associated lists of functions.
More precisely, the entries in the list are tables holding the actual function as func and

File d: 1tluatex.dtx 54

the identifying description as description. Only callbacks with a non-empty list of
functions have an entry in this list.

173 local callbacklist = callbacklist or { }

Numerical codes for callback types, and name-to-value association (the table keys
are strings, the values are numbers).

470 local list, data, exclusive, simple, reverselist =1, 2, 3, 4, 5

20 local types = {

481 list = list,

482 data = data,

483 exclusive = exclusive,
484 simple = simple,

485 reverselist = reverselist,

486 }

Now, list all predefined callbacks with their current type, based on the LuaTgX
manual version 1.01. A full list of the currently-available callbacks can be obtained using

\directlua{
for i,_ in pairs(callback.list()) do
texio.write_nl("- " .. i)
end
}
\bye

in plain LuaTEX. (Some undocumented callbacks are omitted as they are to be removed.)

.7 local callbacktypes = callbacktypes or {
Section 8.2: file discovery callbacks.

488 find_read_file = exclusive,
489 find_write_file = exclusive,
490 find_font_file = data,
491 find_output_file = data,
492 find_format_file = data,
493 find_vf_file = data,
494 find_map_file = data,
495 find_enc_file = data,
496 find_pk_file = data,
497 find_data_file = data,

18 find_opentype_file = data,
499 find_truetype_file = data,

500 find_typel_file = data,

501 find_image_file = data,

502 open_read_file = exclusive,
503 read_font_file = exclusive,
504 read_vf_file = exclusive,
505 read_map_file = exclusive,
506 read_enc_file = exclusive,
507 read_pk_file = exclusive,
508 read_data_file = exclusive,
509 read_truetype_file = exclusive,
5.0 read_typel_file = exclusive,
511 read_opentype_file = exclusive,

File d: 1tluatex.dtx 55

Not currently used by luatex but included for completeness.
handler.

512 find_cidmap_file = data,

513 read_cidmap_file = exclusive,
Section 8.3: data processing callbacks.

s.4 process_input_buffer = data,

515 process_output_buffer = data,

516 process_jobname = data,

Section 8.4: node list processing callbacks.

517 contribute_filter = simple,

518 buildpage_filter = simple,

519 build_page_insert = exclusive,
520 pre_linebreak_filter = list,

521 linebreak_filter = exclusive,
522 append_to_vlist_filter = exclusive,
523 post_linebreak_filter = reverselist,
524 hpack_filter = list,

525 vpack_filter = list,

526 hpack_quality = list,

527 vpack_quality = list,

526 pre_output_filter = list,

529 process_rule = exclusive,
53 hyphenate = simple,

531 ligaturing = simple,

532 kerning = simple,

533 insert_local_par = simple,

534 pre_mlist_to_hlist_filter = list,

535 mlist_to_hlist = exclusive,
53 ~ post_mlist_to_hlist_filter = reverselist,
537 new_graf = exclusive,

Section 8.5: information reporting callbacks.

53 pre_dump = simple,
539 start_run = simple,
540 stop_run = simple,
sa1 start_page_number = simple,
542 stop_page_number = simple,
543 show_error_hook = simple,
524 show_warning_message = simple,
545 show_error_message = simple,
546 show_lua_error_hook = simple,
sa7 start_file = simple,
548 stop_file = simple,
549 call_edit = simple,
ss0o. finish_synctex = simple,
551 Wrapup_run = simple,

Section 8.6: PDF-related callbacks.

552 finish_pdffile = data,
553 finish_pdfpage = data,
554 page_objnum_provider = data,
555 page_order_index = data,
556 process_pdf_image_content = data,

File d: 1tluatex.dtx

may be used by a font

56

callback.register

Section 8.7: font-related callbacks.

557 define_font = exclusive,
ss6 glyph_info = exclusive,
550 glyph_not_found = exclusive,
s60 glyph_stream_provider = exclusive,
561 make_extensible = exclusive,

se2 font_descriptor_objnum_provider = exclusive,

563 }
se« luatexbase.callbacktypes=callbacktypes

Save the original function for registering callbacks and prevent the original being used.
The original is saved in a place that remains available so other more sophisticated code
can override the approach taken by the kernel if desired.

ses local callback_register = callback_register or callback.register

se6 function callback.register()

se7 luatexbase_error("Attempt to use callback.register() directly\n")

565 end

(End definition for callback.register. This function is documented on page 77?.)

5.18.2 Handlers

The handler function is registered into the callback when the first function is added to
this callback’s list. Then, when the callback is called, the handler takes care of running
all functions in the list. When the last function is removed from the callback’s list, the
handler is unregistered.

More precisely, the functions below are used to generate a specialized function (clo-
sure) for a given callback, which is the actual handler.

The way the functions are combined together depends on the type of the callback.
There are currently 4 types of callback, depending on the calling convention of the func-
tions the callback can hold:

simple is for functions that don’t return anything: they are called in order, all with the
same argument;

data is for functions receiving a piece of data of any type except node list head (and
possibly other arguments) and returning it (possibly modified): the functions are
called in order, and each is passed the return value of the previous (and the other
arguments untouched, if any). The return value is that of the last function;

list is a specialized variant of data for functions filtering node lists. Such functions may
return either the head of a modified node list, or the boolean values true or false.
The functions are chained the same way as for data except that for the following. If
one function returns false, then false is immediately returned and the following
functions are not called. If one function returns true, then the same head is passed
to the next function. If all functions return true, then true is returned, otherwise
the return value of the last function not returning true is used.

reverselist is a specialized variant of list which executes functions in inverse order.

exclusive is for functions with more complex signatures; functions in this type of call-
back are not combined: An error is raised if a second callback is registered..

File d: 1tluatex.dtx 57

Handler for data callbacks.

se0 local function data_handler (name)

570 return function(data, ...)

571 for _,i in ipairs(callbacklist[name]) do
572 data = i.func(data,...)

573 end

574 return data

575 end

576 end

Default for user-defined data callbacks without explicit default.

577 local function data_handler_default(value)

sz return value

570 end

Handler for exclusive callbacks. We can assume callbacklist[name] is not empty:
otherwise, the function wouldn’t be registered in the callback any more.

ss0 local function exclusive_handler (name)

581 return function(...)

582 return callbacklist[name] [1].func(...)
583 end

582 end

Handler for 1ist callbacks.

535 local function list_handler (name)

sss return function(head, ...)

587 local ret

588 local alltrue = true

589 for _,i in ipairs(callbacklist[name]) do
500 ret = i.func(head, ...)

501 if ret == false then

592 luatexbase_warning(

593 "Function ‘" .. i.description .. "’ returned false\n"
504 .. "in callback ‘" .. name .."’"
505)

506 return false

597 end

508 if ret ~= true then

599 alltrue = false

600 head = ret

601 end

602 end

603 return alltrue and true or head

604 end

605 end

Default for user-defined 1ist and reverselist callbacks without explicit default.

606 local function list_handler_default()
607 return true
605 end

Handler for reverselist callbacks.

600 local function reverselist_handler (name)

610 return function(head, ...)
611 local ret
612 local alltrue = true

File d: 1tluatex.dtx 58

613 local callbacks = callbacklist[name]

614 for i = #callbacks, 1, -1 do

615 local cb = callbacks[i]

616 ret = cb.func(head, ...)

617 if ret == false then

618 luatexbase_warning(

619 "Function ‘" .. cb.description .. "’ returned false\n"
620 .. "in callback ‘" .. name .."’"
621)

622 return false

623 end

624 if ret ~= true then

625 alltrue = false

626 head = ret

627 end

628 end

629 return alltrue and true or head

630 end

631 end

Handler for simple callbacks.

622 local function simple_handler (name)

633 return function(...)

634 for _,i in ipairs(callbacklist[name]) do

635 i.func(...)

636 end

637 end

638 end

Default for user-defined simple callbacks without explicit default.

639 local function simple_handler_default()
620 end

Keep a handlers table for indexed access and a table with the corresponding default
functions.

611 local handlers = {

642 [data] = data_handler,

643 [exclusive] = exclusive_handler,

644 [1ist] = list_handler,

645 [reverselist] = reverselist_handler,
646 [simple] = simple_handler,

647 }

s1s local defaults = {

649 [data] = data_handler_default,
650 [exclusive] = nil,

651 [1ist] = list_handler_default,
652 [reverselist] = list_handler_default,
653 [simple] = simple_handler_default,
654

5.18.3 Public functions for callback management

Defining user callbacks perhaps should be in package code, but impacts on add_to_callback.
If a default function is not required, it may be declared as false. First we need a list of
user callbacks.

File d: 1tluatex.dtx 59

local user_callbacks_defaults = {

656 pre_mlist_to_hlist_filter = list_handler_default,
657 mlist_to_hlist = node.mlist_to_hlist,

658 post_mlist_to_hlist_filter = list_handler_default,
659 }

o
&
&

create_callback The allocator itself.

o0 local function create_callback(name, ctype, default)
661 local ctype_id = types[ctypel

62 if not name or name == ""

663 or not ctype_id

664 then

665 luatexbase_error("Unable to create callback:\n"

666 "valid callback name and type required")
667 end

es if callbacktypes[name] then

669 luatexbase_error("Unable to create callback ‘" .. name

670 "?:\ncallback is already defined")

671 end

o> default = default or defaults[ctype_id]

673 if not default then

674 luatexbase_error("Unable to create callback ‘" .. name
675 "> :\ndefault is required for ‘" .. ctype
676 "> callbacks")

o7 elseif type (default) ~= "function" then

678 luatexbase_error("Unable to create callback ‘" .. name
679 "> :\ndefault is not a function")

680 end

651 user_callbacks_defaults[name] = default

62 callbacktypes[name] = ctype_id

633 end

654 luatexbase.create_callback = create_callback

(End definition for create_callback. This function is documented on page 77.)

call_callback Call a user defined callback. First check arguments.

65 local function call_callback(name,...)

686 if not name or name == "" then

687 luatexbase_error("Unable to create callback:\n"
688 "valid callback name required")
689 end

600 if user_callbacks_defaults[name] == nil then

691 luatexbase_error("Unable to call callback ‘" .. name
692 .. "?:\nunknown or empty")

693 end

602 local 1 = callbacklist[name]

695 local £

696 if not 1 then

607 f = user_callbacks_defaults[name]

698 else

699 f = handlers[callbacktypes[name]] (name)

700 end

01 return £(...)

702 end

703 luatexbase.call_callback=call_callback

File d: 1tluatex.dtx

(End definition for call_callback. This function is documented on page 77.)

add_to_callback Add a function to a callback. First check arguments.

704 local function add_to_callback(name, func, description)

705 if not name or name == "" then

706 luatexbase_error("Unable to register callback:\n"
707 "valid callback name required")
708 end

700 if not callbacktypes[name] or

710 type(func) ~= "function" or

711 not description or

712 description == "" then

713 luatexbase_error(

714 "Unable to register callback.\n\n"

715 .. "Correct usage:\n"

716 .. "add_to_callback(<callback>, <function>, <description>)"
717)

718 end

Then test if this callback is already in use. If not, initialise its list and register the proper
handler.

719 local 1 = callbacklist[name]

720 if 1 == nil then

721 1=4{1}

722 callbacklist[name] =1

If it is not a user defined callback use the primitive callback register.

723 if user_callbacks_defaults[name] == nil then

724 callback_register(name, handlers[callbacktypes[name]] (name))
725 end

726 end

Actually register the function and give an error if more than one exclusive one is

registered.

727 local f = {

728 func = func,

729 description = description,

730 }

731 local priority = #1 + 1

722 if callbacktypes[name] == exclusive then
733 if #1 == 1 then

734 luatexbase_error(

735 "Cannot add second callback to exclusive function\n‘"
736 name .. "’")

737 end

738 end

730 table.insert(l, priority, f)
Keep user informed.

70 luatexbase_log(

741 "Inserting ‘" .. description .. "’ at position "
742 .. priority .. " in ‘" .. name .. "’."

743)

744 end

725 luatexbase.add_to_callback = add_to_callback

File d: 1tluatex.dtx 61

remove_from_callback

(End definition for add_to_callback. This function is documented on page 77.)

Remove a function from a callback. First check arguments.

76 local function remove_from_callback(name, description)

747 if not name or name == "" then

748 luatexbase_error("Unable to remove function from callback:\n"
749 "valid callback name required")

750 end

751 if not callbacktypes[name] or

752 not description or

753 description == "" then

754 luatexbase_error(

755 "Unable to remove function from callback.\n\n"

756 .. "Correct usage:\n"

757 .. "remove_from_callback(<callback>, <description>)"
758)

759 end

760 local 1 = callbacklist[name]

761 if not 1 then

762 luatexbase_error(

763 "No callback list for ‘" .. name .. "’\n")
764 end

Loop over the callback’s function list until we find a matching entry.

check if the list is empty: if so, unregister the callback handler.

765 local index = false
6 for i,j in ipairs(l) do

767 if j.description == description then
768 index = i

769 break

770 end

77 end

772 if not index then
773 luatexbase_error(

774 "No callback ‘" .. description .. "’ registered for ‘"
775 name .. "’\n")
776 end

777 local cb = 1l[index]

778 table.remove(l, index)

779 luatexbase_log(

780 "Removing ‘" .. description .. "’ from ‘" .. name .. "
781)

782 if #1 == 0 then

783 callbacklist[name] = nil

784 if user_callbacks_defaults[name] == nil then
785 callback_register(name, nil)

786 end

787 end

78 return cb.func,cb.description

750 end

700 luatexbase.remove_from_callback = remove_from_callback

Remove it and

(End definition for remove_from_callback. This function is documented on page ?7.)

File d: 1tluatex.dtx

62

in_callback Look for a function description in a callback.

791 local function in_callback(name, description)
792 if not name

703 or name == ""

794 or not callbacklist[name]

795 or not callbacktypes [name]

796 or not description then

797 return false

798 end

799 for _, i in pairs(callbacklist[name]) do
800 if i.description == description then
801 return true

802 end

803 end

804 return false

505 end

s06 luatexbase.in_callback = in_callback

(End definition for in_callback. This function is documented on page ?7.)

disable_callback As we subvert the engine interface we need to provide a way to access this functionality.

s07 local function disable_callback(name)

gos if(callbacklist[name] == nil) then

809 callback_register(name, false)

810 else

811 luatexbase_error("Callback list for " .. name .. " not empty")
812 end

513 end

s14 luatexbase.disable_callback = disable_callback

(End definition for disable_callback. This function is documented on page 77.)

callback_descriptions List the descriptions of functions registered for the given callback.

s15 local function callback_descriptions (name)
si6 local d = {}
817 if not name

818 or name == ""

819 or not callbacklist[name]
820 or not callbacktypes[name]
821 then

822 return d

823 else

g4 for k, i in pairs(callbacklist[name]) do
825 d[k]= i.description

826 end

827 end

828 return d

520 end

330 luatexbase.callback_descriptions =callback_descriptions

(End definition for callback_descriptions. This function is documented on page 77.)

uninstall Unlike at the TEX level, we have to provide a back-out mechanism here at the same time
as the rest of the code. This is not meant for use by anything other than latexrelease: as
such this is deliberately not documented for users!

File d: 1tluatex.dtx 63

831 local function uninstall()
g2 module_info(
833 "luatexbase",

834 "Uninstalling kernel luatexbase code"
835)

g3 callback.register = callback_register
837 luatexbase = nil

s3s end

530 luatexbase.uninstall = uninstall

(End definition for uninstall. This function is documented on page 77.)

mlist_to_hlist To emulate these callbacks, the “real” mlist_to_hlist is replaced by a wrapper calling
the wrappers before and after.

220 callback_register("mlist_to_hlist", function(head, display_type, need_penalties)
841 local current = call_callback("pre_mlist_to_hlist_filter", head, display_type, need_penalti

842 if current == false then

843 flush_list (head)

844 return nil

845 elseif current == true then

846 current = head

847 end

848 current = call_callback("mlist_to_hlist", current, display_type, need_penalties)

g0 local post = call_callback("post_mlist_to_hlist_filter", current, display_type, need_penalt

850 if post == true then

851 return current

g2 elseif post == false then
853 flush_list(current)

854 return nil

855 end

856 return post
gs7 end)

(End definition for mlist_to_hlist. This function is documented on page 77.)
858 (/Iua)

Reset the catcode of @.
ss0 (tex)\catcode ‘\@=\etatcatcode\relax

File d: 1tluatex.dtx 64

File e
ltexpl.dtx

1 expl3-dependent code

1.1 Loader

First define some blank commands, so that in case something goes wrong while loading
expl3, we won’t get strange Undefined control sequence errors.

1 (*2ekernel)

> \def\@expl@sys@load@backend@@{}
5 \def\@expl@push@filename@@{}

4 \def\@expl@push@filename@aux@e{}
s \def\@expl@pop@filename@@{}

s (/2ekernel)

Create a hook for last-minute expl3 material.

7 (*2ekernel)
s \def\@expl@finalise@setup@@{}
o (/2ekernel)

Now define some basics to support loading expl3. These macros can be defined here
safely, because they are redefined later on by the kernel, so we define simpler versions
just to suit our needs.

10 (*2ekernel)
1 \long\def\@gobble#1{}

1> \long\def\@firstofone#1{#1}

13 \long\def\@firstoftwo#1#2{#1}

12 \long\def\@secondoftwo#1#2{#2}
15 \long\def\IfFileExists#1{}

16 \openin\@inputcheck"#1" %

17 \ifeof\@inputcheck

18 \expandafter\@secondoftwo

v \else

20 \closein\@inputcheck

21 \expandafter\@firstoftwo

22 \fi}

3 \long\def\@ifnextchar#1#2#3{%

2 \let\reserved@d=#1

s \def\reserved@a{#2}/,

6 \def\reserved@b{#3}%

27 \futurelet\@let@token\@ifnch}
s \def\@ifnch{%

20 \ifx\@let@token\reserved@d

30 \expandafter\reserved@a

51 \else

32 \expandafter\reserved@b

\fi}
51 (/2ekernel)
If we are doing a rollback with a format containing expl3 we aren’t reloading it as

that creates havoc. This may need a refined version!

55 (*2ekernel | latexrelease)

File e: 1texpl.dtx Date: 2020/09/06 Version v1.2f 65

s (latexrelease) \IncludeInRelease{2020/10/01}}

57 (latexrelease) {expl3}{Pre-load expl3}),

55 \expandafter\ifx\csname tex\string _let:D\endcsname\relax

50 \expandafter\@firstofone

20 \else

21 \GenericInfo{}{Skipping: expl3 code already part of the format}’
1 (2ekernel) \expandafter\endinput

s (latexrelease) \expandafter\@gobble

w

2 \fi
Check for the required primitive/engine support and the existence of a loader.
s {h
a6 \IfFileExists{expl3.1ltx}
a7 {h
48 \ifnum0Y%
49 \ifdefined\pdffilesize 1\fi
50 \ifdefined\filesize 1\fi
51 \ifdefined\luatexversion\ifnum\luatexversion>94 1\fi\fi
52 \ifdefined\kanjiskip 1\fi
53 >0 %
54 \expandafter\@firstofone
55 \else

In 2ekernel mode, an error is fatal and building the format is aborted. Use
\batchmode \read -1 to \tokenlist, which errors with ! Emergency stop. (cannot \read from 1
and aborts the TEX run. In latexrelease mode, raise an error and do nothing. Both
ways, the error message shows the minimum expl3 engine requirements.

5o {2ekernel) \def~{ }\def\MessageBreak{ ~J~~~~~~~wmmmmm~x i
57 (2ekernel) \errmessage{LaTeX Error:

ss (latexrelease) \@latex@error{}

59 LaTeX requires the e-TeX primitives and additional\MessageBreak
60 functionality available in the engines:\MessageBreak
61 - pdfTeX v1.40\MessageBreak

62 - XeTeX v0.99992\MessageBreak

63 - LuaTeX v0.95\MessageBreak

64 - e-(u)pTeX mid-2012\MessageBreak

65 or later

o (latexrelease) }\@ehd \expandafter\@gobble

o7 (2ekernel) F\batchmode \read -1 to \reserved@a

68 \fi

69 }

70 {%

1 (*2ekernel)

72 \errmessage{LaTeX requires expl3}],

73 \batchmode \read -1 to \reserved@a

7 (/2ekernel)
75 (*latexrelease)

76 \@latex@error{LaTeX requires expl3}\@ehd
77 \@gobble

76 (/latexrelease)

79 Y

80 {4

81 \input expl3.ltx

82 \ifdefined\NewDocumentCommand

83 \else

File e: 1texpl.dtx Date: 2020/09/06 Version v1.2f 66

84 \IfFileExists{xparse.ltx}
85 {\input xparse.ltx }

86 {}%

87 \fi

88 Yh

89 }

o (latexrelease) \EndIncludeInRelease

o1 (latexrelease)

o> (latexrelease) \IncludeInRelease{2020/02/02})

o5 (latexrelease) {expl3}Pre-load expl3})

s (latexrelease) \IfFileExists{expl3.1ltx}

o5 (latexrelease) {%

o (latexrelease) \ifnum0y%

o7 (latexrelease) \ifdefined\pdffilesize 1\fi

s (latexrelease) \ifdefined\filesize 1\fi

o0 (latexrelease) \ifdefined\luatexversion\ifnum\luatexversion>94 1\fi\fi
100 (latexrelease) >0 %

101 (latexrelease) \else

102 (latexrelease) \message{Skipping expl3-dependent extensions}
10 (latexrelease) \expandafter\@gobbletwo

104 (latexrelease) \fi

05 (latexrelease) }

s (latexrelease) {%

107 (latexrelease) \message{Skipping expl3-dependent extensions}
0s (latexrelease) \@gobbletwo

00 (latexrelease) }%

10 (latexrelease) \input{expl3.1tx}

i1 (latexrelease) \EndIncludeInRelease

1.2 Using expl3 code

In order to ease the implemantation of some new features in WTEX 22 we may (temporar-
ily) use some coding based on the expl3-code. Such macros will eventually vanish and
may be changed unannounced. They are there for internal use in the ITEX 2¢ kernel and
are not meant to be used in third-party packages. These macros will always have the

@expl@ prefix in their name.
The rest of the name matches the expl3 name but with all underscores replaced by
@s and the : replaced by @@, e.g.,

\cs_new_eq:NN \@expl@tl@trim@spaces@apply@0nN \tl_trim_spaces_apply:nN
if that expl3 command is needed in places that are others coded in IXTEX 2¢ conventions.
112 \ExplSyntaxOn
In this file, each release of LaTeX adds an \IncludeInRelease block, in which the

macros copied for that release were defined. In case a rollback is requested, the entire

block is changed.
Each macro copied has a \changes entry to explain when and why it was copied, so

that further to that may spot it easily.

Here \cs_gset_eq:NN is used, instead of the new variant because if different releases
use that same name for different purposes, each can copy the macro without worrying
about redefinitions.

13 (latexrelease) \IncludeInRelease{2020/10/01}{expl3~2020-10-01}}
14 (latexrelease) {expl3~macros~added~for~the~2020-10-01~release}}

File e: 1texpl.dtx Date: 2020/09/06 Version v1.2f 67

115 \cs_gset_eq:NN \Q@expl@cs@to@str@ON \cs_to_str:N
116 \cs_gset_eq:NN \Qexpl@str@if@eq@@nnTF \str_if_eq:nnTF

117 \cs_gset_eq:NN \@expl@cs@prefix@spec@@N \cs_prefix_spec:N
115 \cs_gset_eq:NN \QexplQ@cs@argument@spec@ON \cs_argument_spec:N
119 \cs_gset_eq:NN \@expl@cs@replacement@spec@ON \cs_replacement_spec:N

120 \cs_gset_eq:NN \@expl@str@map@function@@NN \str_map_function:NN
121 \cs_gset_eq:NN \@expl@char@generate@@nn \char_generate:nn

8]

2> (latexrelease) \EndIncludeInRelease

(latexrelease) \IncludeInRelease{0000/00/00}{expl3~2020-10-01}}

(latexrelease {expl3~macros~added~for~the~2020-10-01~releasel}},

(latexrelease) \cs_undefine:N \@expl@cs@to@str@ON
(latexrelease) \cs_undefine:N \@expl@str@if@eq@@nnTF

127 (latexrelease) \cs_undefine:N \@expl@cs@prefix@spec@@N
(N
(N
(
(

1

N

3

1

5

1

126

126 (latexrelease) \cs_undefine:N \@expl@cs@argument@spec@@N
latexrelease) \cs_undefine:N \@expl@cs@replacement@spec@@N
latexrelease) \cs_undefine:N \@expl@str@map@function@ONN
latexrelease) \EndIncludeInRelease

2> (/2ekernel | latexrelease)

129

e~ — e i~~~ ~—r

130

131

1

133 \ExplSyntax0ff

File e: 1texpl.dtx Date: 2020/09/06 Version v1.2f

File f
Itdefns.dtx

1 Definitions

This section contains commands used in defining other macros.

1 (*2ekernel)

1.1 Initex initialisations

\two@digits Prefix a number less than 10 with ‘0’
> \def\two@digits#1{\ifnum#1<10 O\fi\number#1}

(End definition for \two@digits. This function is documented on page 77?.)

\typeout Display something on the terminal.

s (/2ekernel)
4 (*2ekernel | latexrelease)
s (latexrelease) \IncludeInRelease{2020/10/01}%

s (latexrelease) {\typeout}{Allow "par" in \typeoutl}),
7 \protected\long\def\typeout#1{\begingroup
¢ \set@display@protect

o \def\par{~"J""J}%

10 \immediate\write\@unused{#1}\endgroup}

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{0000/00/00}7

latexrelease) {\typeout}{Allow "par" in \typeoutl}

latexrelease)
)
)
)

1

5

13

14

5
latexrelease)\def\typeout#1{\begingroup\set@display@protect
latexrelease \immediate\write\@unused{#1}\endgroup}

15 (latexrelease)\EndIncludeInRelease

19 (*2ekernel)

6

17

o~ o~~~ o~~~

(End definition for \typeout. This function is documented on page 77.)

\newlinechar A char to be used as new-line in output to files.

20 \newlinechar‘\~"J

(End definition for \newlinechar. This function is documented on page 77.)

1.2 Saved versions of TEX primitives

The TeX primitive \foo is saved as \@@foo. The following primitives are handled in this

way:
\@@par
21 \let\@@par=\par
22 %\let\@@input=\input %% moved earlier
2 %\let\@Q@end=\end %Y

(End definition for \@epar. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 69

\@Chyph

\@@italiccorr

\@height
\@depth
\@width
\@minus

\@plus

\hboxt@

\@namedef
\@nameuse

\@ifnextchar

\@ifstar

\@dblarg

\@ifundefined

\@ifdefinable

\newcommand

\renewcommand

Save original primitive definition.
22 \1let\@@hyph=\-

(End definition for \@ohyph. This function is documented on page 77?.)

Save the original italic correction.
»s \let\@@italiccorr=\/

(End definition for \@eitaliccorr. This function is documented on page 77.)

The following definitions save token space. E.g., using \@height instead of height saves
5 tokens at the cost in time of one macro expansion.

2 \def\@height{height} \def\@depth{depth} \def\@width{width}

7 \def\@minus{minus}

s \def\@plus{plus}

The next one is another 100 tokens worth.
20 \def\hb@xt@{\hbox to}

(End definition for \@height and others. These functions are documented on page 77.)

s \message{hacks,}

1.3 Command definitions

This section defines the following commands:

{(NAME)}

Expands to \def\{(NAME)}, except name can contain any characters.

{(NAME)}

Expands to \{(NAME)}.

X{(YES)XH(NO)?}

Expands to (YES) if next character is an ‘X’, and to (NO) otherwise.
\reserved@a—\reserved@c.) NOTE: GOBBLES ANY SPACE FOLLOWING IT.

{(YES)}H(NO)}

Gobbles following spaces and then tests if next the character is a "*. If it is, then it
gobbles the “*” and expands to (YES), otherwise it expands to (NO).

{{CMD)}{(ARG)?}

Expands to \{{CMD)} [(ARG)1{(ARG)}. Use \@dblarg\CS when \CS takes arguments
[ARG1]{ARG2}, where default is ARG1 = ARG2.

{(NAME)X{(YES)X{(NO)}

: If \NAME is undefined then it executes (YES), otherwise it executes (NO). More pre-
cisely, true if \NAME either undefined or = \relax.

\NAME{(YES)} Executes (YES) if the user is allowed to define \NAME, otherwise it
gives an error. The user can define \NAME if \@ifundefined{NAME} is true, 'NAME' #
‘'relax’ and the first three letters of 'NAME’ are not ’end’, and if \endNAME is not defined.

*{(\FO0)} [(i)]{(TEXT)}

User command to define \FOO0 to be a macro with i arguments (i = 0 if missing) having
the definition (TEXT). Produces an error if \FOO already defined.

Normally the command is defined to be \long (ie it may take multiple paragraphs
in its argument). In the star-form, the command is not defined as \long and a blank line
in any argument to the command would generate an error.

*{(\FOO)} [{{)J{(TEXT)?}

(Uses

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 70

Same as \newcommand, except it checks if \FOO already defined.
\newenvironment *{(FOO)}Y[(:)1{(DEF1)}X{(DEF2)}

equivalent to:

\newcommand{\F00} [i]{DEF1} \def{\endFOO}{DEF2}

(or the appropriate star forms).

\renewenvironment
Obvious companion to \newenvironment.
\@cons : See description of \output routine.
\@car \@car T1 T2 ... Tn\@nil == T1 (unexpanded)
\@cdr \@cdr T1 T2 ... Tn\@nil ==T2 ... Tn (unexpanded)
\typeout {(message)}
Produces a warning message on the terminal.
\typein {(message)}
Types message, asks the user to type in a command, then executes it
\typein [(\CS)I{(MSG)}

Same as above, except defines \CS to be the input instead of executing it.

\typein
;1 \def\typein{%
2 \let\@typein\relax
13 \@testopt\@xtypein\@typein}

3 \ifx\directlua\@undefined

s \def\@xtypein [#1]#2{}

% \typeout{#2}%

37 \advance\endlinechar\@M

35 \read\@inputcheck to#1

30 \advance\endlinechar-\@M
\@typeinl}y,

F3

21 \else

2 \def\@xtypein [#1]#2{%

s \typeout{#2}J

2 \begingroup \endlinechar\m@ne

s \read\@inputcheck to#1J

s \expandafter\endgroup

27 \expandafter\def\expandafter#l\expandafter{#1}}
48 \@typeinl}%

20 \fi

(End definition for \typein. This function is documented on page 77.)

\@namedef
50 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

(End definition for \@namedef. This function is documented on page ?77.)

\@nameuse

51 \def\@nameuse#1{\csname #1\endcsname}

(End definition for \@nameuse. This function is documented on page ?77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n

\@cons

\@car
\@cdr

\@carcube

\@onlypreamble
\@preamblecmds

\@star@or@long

\1l@ngrel@x

\newcommand

\new@command

\@newcommand
\Q@argdef
\@xargdef

s2 \def\Qcons#1#2{\begingroup\let\@elt\relax\xdef#1{#1\Q@elt #2}\endgroup}

(End definition for \@cons. This function is documented on page 77.)

53 \def\@car#1#2\@nil{#1}
52 \def\@cdr#1#2\0nil{#2}

(End definition for \@car and \@cdr. These functions are documented on page ?7.)

\@carcube T1 Tn\@nil =T1 T2T3,n >3
ss \long\def\@carcube#1#2#3#4\0nil{#1#2#3}

(End definition for \@carcube. This function is documented on page 77.)

This macro adds its argument to the list of commands stored in \@preamblecmds
to be disabled after \begin{document}. These commands are redefined to generate
\@notprerr at this point.

6 \def\@preamblecmds{}

s7 \def\@onlypreamble#1{}

55 \expandafter\gdef\expandafter\@preamblecmds\expandafter{y,

59 \@preamblecmds\do#1}}

e \@onlypreamble\@onlypreamble

61 \@onlypreamble\@preamblecmds

@

(End definition for \@onlypreamble and \@preamblecmds. These functions are documented on page 77.)

Look ahead for a *. If present reset \1@ngrel®@x so that the next definition, #1, will be
non-long.

> \def\@star@or@long#1{/

s \@ifstar

64 {\let\l@ngrel@x\relax#1}}

65 {\let\l@ngrel@x\long#1}}

(End definition for \@star@or@long. This function is documented on page 77.)

This is either \relax or \long depending on whether the *-form of a definition command
is being executed.
6 \let\l@ngrel@x\relax

(End definition for \lengrel@x. This function is documented on page 77.)

User level \newcommand.

o7 \def\newcommand{\@star@or@long\new@command}

6s \def\new@command#1{%
e \@testopt{\@newcommand#1}0}

(End definition for \newcommand and \new@command. These functions are documented on page 77.)

Handling arguments for \newcommand.

70 \def\@newcommand#1 [#2]{Y
71 \kernel@ifnextchar [{\@xargdef#1[#2]})
72 {\@argdef#1 [#2]}}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 72

\@testopt

\@protected@testopt

Define #1 if it is definable.
Both here and in \@xargdef the replacement text is absorbed as an argument because
if we are not allowed to make the definition we have to get rid of it completely.
5 \long\def\@argdef#1 [#2]#3{/,
74 \@ifdefinable #1{\@yargdef#1\@ne{#2}{#3}}}
Handle the second optional argument.

s \long\def\@xargdef#1 [#2] [#3]1#4{%
s \@ifdefinable#1{%

~

~

Define the actual command to be:
\def\foo{\@protected@testopt\foo\\foo{default}}

where \\foo is a csname generated from applying \csname and \string to \foo, ie the
actual name contains a backslash and therefore can’t clash easily with existing command
names. “Default” is the contents of the second optional argument of (re)newcommand.

7 \expandafter\def\expandafter#l\expandafter{y,

N~

\expandafter
79 \@protected@testopt
80 \expandafter
81 #1%
82 \csname\string#1\endcsname
83 {#3}}%

Now we define the internal macro ie \\foo which is supposed to pick up all arguments
(optional and mandatory).

84 \expandafter\Q@yargdef

85 \csname\string#1\endcsname
86 \tw@

87 {#2}%

{#4}33

(End definition for \@newcommand, \@argdef, and \@xargdef. These functions are documented on page
7))

This macro encapsulates the most common call to \@ifnextchar, saving several tokens
each time it is used in the definition of a command with an optional argument. #1 The
code to execute in the case that there is a [need not be a single token but can be any
sequence of commands that ‘expects’ to be followed by [. If this command were only
used in \newcommand definitions then #1 would be a single token and the braces could
be omitted from {#1} in the definition below, saving a bit of memory.

s \long\def\@testopt#1#2{J,

o0 \kernel@ifnextchar [{#1}{#1[{#2}]1}}

(End definition for \@testopt. This function is documented on page ?77.)

Robust version of \@testopt. The extra argument (#1) must be a single token. If
protection is needed the call expands to \protect applied to this token, and the 2nd and
3rd arguments are discarded (by \@x@protect). Otherwise \@testopt is called on the
2nd and 3rd arguments.
This method of making commands robust avoids the need for using up two csnames
per command, the price is the extra expansion time for the \ifx test.
o1 \def\@protected@testopt#1{}
o> \ifx\protect\@typeset@protect
93 \expandafter\Qtestopt

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 73

\@yargdef
\@yargdef

\@reargdef

\renewcommand

04 \else
5 \@x@protect#1}
%6 \fi}

(End definition for \@protected@testopt. This function is documented on page 77.)

These generate a primitive argument specification, from a WTEX [(digit)] form; in fact
(digit) can be anything such that \number (digit) is single digit.

Reorganised slightly so that \renewcommand{\reserved@a}[1]{foo} works. I am
not sure this is worth it, as a following \newcommand would over-write the definition of
\reserved@a.

Recall that IATEX2.09 goes into an infinite loop with
\renewcommand [1] {\@tempa}{foo}

(DPC 6 October 93).

Reorganised again (DPC 1999). Rather than make a loop to construct the argument
spec by counting, just extract the required argument spec by using a delimited argument
(delimited by the digit). This is faster and uses less tokens. The coding is slightly odd
to preserve the old interface (using #2 = \tw@ as the flag to surround the first argument
with []. But the new method did not allow for the number of arguments #3 not being
given as an explicit digit; hence (further expansion of this argument and use of) \number
was added later in 1999.

It is not clear why these are still \long.

o7 \long \def \@yargdef #1#2#3{%
98 \ifx#2\tw@
99 \def\reserved@b##11{ [####1]}Y,

100 \else

101 \let\reserved@b\@gobble

102 \fi

103 \expandafter

104 \@yargd@f \expandafter{\number #3}#1,
105 }

106 \long \def \@yargd@f#1#2{%
107 \def \reservedQa ##1#1##2##{,

108 \expandafter\def\expandafter#2\reserved@b ##1#1,

100 Y

110 \1@ngrel@x \reserved@a O##1##2##3I##AHH#OHHCHHTHASHHIHH#HLY,
1}

(End definition for \@yargdef and \@yargd@f. These functions are documented on page ?77.)

112 \long\def\@reargdef#1 [#2]{/,
13 \Q@yargdef#1\@ne{#2}}

(End definition for \@reargdef. This function is documented on page ?7.)

Check the command name is already used. If not give an error message. Then temporarily
disable \@ifdefinable then call \newcommand. (Previous version \let#1=\relax but
this does not work too well if #1 is \@tempa—e.)

114 \def\renewcommand{\@star@or@long\renew@command}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 74

\renew@command

\@ifdefinable
\@@ifdefinable
\@rc@ifdefinable

\newenvironment

\new@environment

\@newenva

\@newenvb

115 \def\renew@command#1{/
116 \begingroup \escapechar\m@ne\xdef\@gtempa{{\string#1}}\endgroup
17 \expandafter\@ifundefined\Qgtempa

118 {\@latex@error{Command \string#1l undefined}\@ehcl}/
119 \relax

120 \let\@ifdefinable\@rc@ifdefinable

121 \new@command#1}

(End definition for \renewcommand and \renew@command. These functions are documented on page 77.)

Test if user is allowed to define a command.
122 \long\def\@ifdefinable #1#2{J

123 \edef\reserved@a{\expandafter\Q@gobble\string #1}/,

124 \@ifundefined\reserved@a

125 {\edef\reserved@{\expandafter\@carcube \reserved@a xxx\@nill}J,
126 \ifx \reserved@b\@gend \@notdefinable\else

127 \ifx \reserved@a\@grelax \@notdefinable\else

128 #2%

129 \fi

130 \fi}%

131 \@notdefinable}

Saved definition of \@ifdefinable.
132 \let\@@ifdefinable\@ifdefinable

Version of \@ifdefinable for use with \renewcommand. Does not do the check this time,
but restores the normal definition.

133 \long\def\@rc@ifdefinable#1#2{%

132 \let\@ifdefinable\@@ifdefinable

135 #23}

(End definition for \@ifdefinable, \@@ifdefinable, and \@rc@ifdefinable. These functions are doc-
umented on page 77.)

Define a new user environment. #1 is the environment name. #2# Grabs all the tokens up
to the first {. These will be any optional arguments. They are not parsed at this point,
but are just passed to \@newenv which will eventually call \newcommand. Any optional
arguments will then be parsed by \newcommand as it defines the command that executes
the ‘begin code’ of the environment.

This #2# trick removed with version 1.2i as it fails if a { occurs in the optional
argument. Now use \@ifnextchar directly.

136 \def\newenvironment{\@star@or@long\new@environment}

137 \def\new@environment#1{%
138 \@testopt{\@newenva#1}0}

130 \def\@newenva#1 [#2]{%
140 \kernel@ifnextchar [{\@newenvb#1[#2]}{\@newenv{#1}{[#2]}}}

111 \def\@newenvb#1 [#2] [#3]{\Cnewenv{#1}{ [#2] [{#3}]1}}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 75

\renewenvironment

\renew@environment

\@newenv

\newif

\@if

(End definition for \newenvironment and others. These functions are documented on page ?7.)

Redefine an environment. For \renewenvironment disable \@ifdefinable and then call
\newenvironment. It is OK to \let the argument to \relax here as there should not
be a @temp. .. environment.

12 \def\renewenvironment{\@star@or@long\renew@environment}

123 \def\renew@environment#1{%

11 \@ifundefined{#1}Y

145 {\@latex@error{Environment #1 undefined}\@ehc
146 Hrelax

w7 \expandafter\let\csname#1\endcsname\relax

s \expandafter\let\csname end#1\endcsname\relax
120 \new@environment{#1}}

(End definition for \renewenvironment and \renew@environment. These functions are documented on
page 77.)

The internal version of \newenvironment.
Call \newcommand to define the (begin-code) for the environment. \def is used for
the (end-code) as it does not take arguments. (but may contain \pars)
Make sure that an attempt to define a ‘graf’ or ‘group’ environment fails.
150 \long\def\@newenv#1#2#3#4{J,
151 \@ifundefined{#1}%

152 {\expandafter\let\csname#1\expandafter\endcsname

153 \csname end#1\endcsnamel},

154 \relax

155 \expandafter\new@command

156 \csname #1\endcsname#2{#3}/,

157 \1l@ngrel@x\expandafter\def\csname end#1\endcsname{#41}}

(End definition for \@newenv. This function is documented on page ?77.)

And here’s a different sort of allocation: For example, \newif\iffoo creates \footrue,
\foofalse to go with \iffoo.

15e \def\newif#1{/

159 \count@\escapechar \escapechar\m@ne
160 \let#1\iffalse

161 \@if#1\iftrue

162 \@if#1\iffalse

16 \escapechar\count@}

160 \def\@if#1#2{%

165 \expandafter\def\csname\expandafter\@gobbletwo\string#1/,

166 \expandafter\Q@gobbletwo\string#2\endcsname
167 {\let#1#2}}

(End definition for \newif and \@if. These functions are documented on page 77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 76

\providecommand

\provide@command

\CheckCommand

\check@command

\@check@c

\providecommand takes the same arguments as \newcommand, but discards them if #1 is
already defined, Otherwise it just acts like \newcommand. This implementation currently
leaves any discarded definition in \reserved®a (and possibly \\reserved@a) this wastes
a bit of space, but it will be reclaimed as soon as these scratch macros are redefined.

16s \def\providecommand{\@star@or@long\provide@command}

160 \def\provide@command#1{%

170 \begingroup

171 \escapechar\m@ne\xdef\Q@gtempa{{\string#1}}/
12 \endgroup

173 \expandafter\@ifundefined\@gtempa

174 {\def\reserved@a{\new@command#1}1}/
175 {\def\reserved@a{\renew@command\reserved@al}}Y
176 \reserved@al},

(End definition for \providecommand and \provide@command. These functions are documented on page
?7.)

\CheckCommand takes the same arguments as \newcommand. If the command already
exists, with the same definition, then nothing happens, otherwise a warning is is-
sued. Useful for checking the current state befor a macro package starts redefin-
ing things. Currently two macros are considered to have the same definition if they
are the same except for different default arguments. That is, if the old definition
was: \newcommand\xxx [2] [a]l{(#1) (#2)} then \CheckCommand\xxx [2] [b]{(#1) (#2)}
would not generate a warning, but, for instance \CheckCommand\xxx [2]{(#1) (#2)}
would.

177 \def\CheckCommand{\@star@or@long\check@command}
\CheckCommand is only available in the preamble part of the document.

175 \@Qonlypreamble\CheckCommand

179 \def\check@command#1#2#{\@check@c#1{#2}}
150 \@onlypreamble\check@command

(End definition for \CheckCommand and \check@command. These functions are documented on page 77.)

\CheckCommand itself just grabs all the arguments we need, without actually looking for
[optional argument forms. Now define \reserved@a. If \\reserved@a is then defined,
compare it with the “\#1’ otherwise compare \reserved@a with #1.

151 \long\def\@check@c#1#2#3{%

122 \expandafter\let\csname\string\reserved@a\endcsname\relax
153 \renew@command\reserved@a#2{#3},

14 \@ifundefined{\string\reserved@aly,

185 {\@check@eqg#1\reserved@aly

186 {\expandafter\@check@eq

187 \csname\string#1\expandafter\endcsname

188 \csname\string\reserved@a\endcsname}}

159 \@onlypreamble\@check@c

(End definition for \@check@c. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 7

\@check@eq

\@gobble
\@gobbletwo
\@gobblethree
\@gobblefour

\@firstofone
\efirstoftwo
\@secondoftwo

\@iden

\@thirdofthree

\@expandtwoargs

\@backslashchar

Complain if #1 and #2 are not \ifx equal.
100 \def\@check@eq#1#2{/

w1 \ifx#1#2\else

192 \@latex@warning@no@line

103 {Command \noexpand#1 has

194 changed.\MessageBreak

195 Check if current package is validl}¥%
196 \fi}

107 \@onlypreamble\@check@eq

(End definition for \@check@eq. This function is documented on page ?7.)

The \@gobble macro is used to get rid of its argument.

s \long\def \@gobble #1{}

199 \long\def \@gobbletwo #1#2{}

200 \long\def \@gobblethree #1#2#3{}
201 \long\def \Qgobblefour #1#2#3#4{}

(End definition for \@gobble and others. These functions are documented on page 77.)

Some argument-grabbers.

202 \long\def\@firstofone#1{#1}
203 \long\def\@firstoftwo#1#2{#1}
4 \long\def\@secondoftwo#1#2{#2}

2

\@iden is another name for \@firstofone for compatibility reasons.
205 \let\@iden\@firstofone

(End definition for \@firstofone and others. These functions are documented on page ?77?.)

Another grabber now used in the encoding specific section.
206 \long\def\@thirdofthree#1#2#3{#3}

(End definition for \@thirdofthree. This function is documented on page 77.)

A macro to totally expand two arguments to another macro

207 \def\@expandtwoargs#1#2#3{/,
208 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@alt

(End definition for \@expandtwoargs. This function is documented on page 77.)

A category code 12 backslash.
200 \edef\@backslashchar{\expandafter\@gobble\string\\}

(End definition for \@backslashchar. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n

78

1.4 Robust commands and protect

Fragile and robust commands are one of the thornier issues in BTEX’s commands. Whilst
typesetting documents, IXTEX makes use of many of TEX’s features, such as arithmetic,
defining macros, and setting variables. However, there are (at least) three different
occasions when these commands are not safe. These are called ‘moving arguments’ by
ITEX, and consist of:

o writing information to a file, such as indexes or tables of contents.
e writing information to the screen.

 inside an \edef, \message, \mark, or other command which evaluates its argument
fully.

The method ITEX uses for making fragile commands robust is to precede them with
\protect. This can have one of four possible values:

e \relax, for normal typesetting. So \protect\foo will execute \foo.
e \string, for writing to the screen. So \protect\foo will write \foo.

e \noexpand, for writing to a file. So \protect\foo will write \foo followed by a
space.

¢ \Qunexpandable@protect, for writing a moving argument to a file. So \protect\foo
will write \protect\foo followed by a space. This value is also used inside \edefs,
\marks and other commands which evaluate their arguments fully. More precisely,
whenever the content of an \edef or \xdef etc. can contain arbitrary user input
not under the direct control of the programmer, one should use \proetected@edef
instead of \edef, etc., so that \protect has a suitable definition and the user input
will not break if it contains fragile commands.

\@unexpandable@protect
210 \def\@unexpandable@protect{\noexpand\protect\noexpand}

(End definition for \@unexpandable@protect. This function is documented on page ?7.)

\DeclareRobustCommand This is a package-writers command, which has the same syntax as \newcommand, but
\declare@robustcommand which declares a protected command. It does this by having
\DeclareRobustCommand\foo
define \foo to be \protect\foo<space>,
and then use \newcommand\foo<space>.
Since the internal command is \foo<space>, when it is written to an auxiliary file, it
will appear as \foo.
We have to be a bit cleverer if we're defining a short command, such as _, in order

to make sure that the auxiliary file does not include a space after the command, since
_ a and _a aren’t the same. In this case we define _ to be:

\x@protect_\protect_<space>

which expands to:

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 79

\@x@protect
\x@protect

\@typeset@protect

\ifx\protect\@typeset@protect\else
\@x@protect@_

\fi

\protect_<space>

Then if \protect is \@typeset@protect (normally \relax) then we just perform
_<space>, and otherwise \@x@protect® gobbles everything up and expands to \protect\ _
Note: setting \protect to any value other than \relax whilst in ‘typesetting’ mode
will cause commands to go into an infinite loop! In particular, setting \protect to
\@empty will cause _ to loop forever. It will also break lots of other things, such as
protected \ifmmodes inside \haligns. If you really have to do such a thing, then please
set \@typeset@protect to be \@empty as well. (This is what the code for \patterns
does, for example.)
More fun with \expandafter and \csname.
211 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

»12 \def\declare@robustcommand#1{%
213 \ifx#1\@undefined\else\ifx#1\relax\else

214 \@latex@info{Redefining \string#1}/,
215 \fi\fi

216 \edef\reserved@a{\string#1}J,

217 \def\reserved@b{#1}/,

218 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@bl}
219 \edef#1{J,

220 \ifx\reserved@a\reserved@b

21 \noexpand\x@protect

222 \noexpand#1,

223 \fi

224 \noexpand\protect

225 \expandafter\noexpand\csname

226 \expandafter\@gobble\string#1 \endcsname
227 Y%

228 \let\@ifdefinable\@rc@ifdefinable

229 \expandafter\new@command\csname

230 \expandafter\@gobble\string#1l \endcsname
231 }

(End definition for \DeclareRobustCommand and \declare@robustcommand. These functions are docu-
mented on page 77.)

232 \def\x@protect#1{},

233 \ifx\protect\@typeset@protect\else
234 \@xQ@protect#1,

235 \fi

236 }

237 \def\@x@protect#1\fi#2#3{%
238 \fi\protect#1%

239 }

(End definition for \@x@protect and \x@protect. These functions are documented on page 77.)

We set \@typeset@protect to \relax rather than \Q@empty to make sure that the pro-
tection mechanism stops the look-ahead and expansion performed at the start of \halign
cells.

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 80

\set@display@protect
\set@typeset@protect

\protected@edef
\protected@xdef
\unrestored@protected@xdef
\restore@protect

\protect

\MakeRobust

20 \let\@typeset@protect\relax

(End definition for \@typeset@protect. This function is documented on page 77.)

These macros set \protect appropriately for typesetting or displaying.

221 \def\set@display@protect{\let\protect\string}
2> \def\set@typeset@protect{\let\protect\@typeset@protect}

(End definition for \set@display@protect and \set@typeset@rotect. These functions are documented
on page 77.)

The commands \protected@edef and \protected@xdef perform ‘safe’ \edefs and
\xdefs, saving and restoring \protect appropriately. For cases where restoring \protect
doesn’t matter, there’s an ‘unsafe’ \unrestored@protected@xdef, useful if you know
what you’re doing!

23 \def\protected@edef{%

244 \let\@@protect\protect

245 \let\protect\Qunexpandable@protect

246 \afterassignment\restore@protect
247 \edef

248 }

20 \def\protected@xdef{%

250 \let\@@protect\protect

251 \let\protect\Qunexpandable@protect
252 \afterassignment\restore@protect
253 \xdef

254 }

255 \def\unrestored@protected@xdef{y,

256 \let\protect\@unexpandable@protect
257 \xdef

258 }

20 \def\restore@protect{\let\protect\@@protect}

(End definition for \protected@edef and others. These functions are documented on page 77.)

The normal meaning of \protect

20 \set@typeset@protect

(End definition for \protect. This function is documented on page 77.)

This macro makes an existing fragile macro robust, but only if it hasn’t been robust
in the past, i.e., it checks for the existence of the macro \<name>_, and if that exists it
assumes that \<name> is already robust. In that case either undefine the inner macro first
or use \DeclareRobustCommand to define it in a robust way directly. We could probably
test the top-level definition to have the right kind of structure, but this is somewhat
problematical as we then have to distinguish between \long macros and others and also
take into account that sometimes the top-level is deliberately dones manually (like with
\begin).

The macro firstly checks if the control sequence in question exists at all.

(/2ekernel)

22 (latexrelease)\IncludeInRelease{2020/10/01}{\MakeRobust}{\MakeRobust}%

(*2ekernel | latexrelease)

26 \def\MakeRobust#1{%

265 \count@=\escapechar

261

263

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 81

\@kernel@rename@newcommand

266 \escapechar=‘\\

267 \@ifundefined{\expandafter\@gobble\string#1}{%

268 \@latex@error{The control sequence ‘\string#1’ is undefined!%

269 \MessageBreak There is nothing here to make robust}/,

270 \@eha

271 IvA

Then we check if the macro is already robust. We do this by testing if the internal
name for a robust macro is defined, namely \foo.,. If it is already defined do nothing,
otherwise set \fooy, equal to \foo and redefine \foo so that it acts like a macro defined
with \DeclareRobustCommand. We use \@kernel@rename®@newcommand to copy \foo
over to \foo,, including a possible default optional argument.

a2 A%

273 \@ifundefined{\expandafter\@gobble\string#1l\spacel’

274 {%

275 \expandafter\@kernel@rename@newcommand

276 \csname\expandafter\Q@gobble\string#1\space\endcsname

277 #19%

278 \edef\reserved@a{\string#1}J,

279 \def\reserved@b{#1}/

280 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@bl}y
281 \xdef#1{J,

282 \ifx\reserved@a\reserved@b

283 \noexpand\x@protect\noexpand#1/,

284 \fi

285 \noexpand\protect\expandafter\noexpand

286 \csname\expandafter\@gobble\string#1\space\endcsnamel}y,

287 iy

288 {\@latex@info{The control sequence ‘\string#l’ is already robust}l}}
289 Y%

200 \escapechar=\count@

201 }h

This macro renames a command, possibly with an optional argument (defined with
\newcommand) from #2 to #1, by renaming the internal macro \\#2 to \\#1 and defining
\#1 appropriately, then undefining \#2 and \\#2. The \afterassignment trick is to
make both definitions in \@copy@newcommand global (which are local by default).

In case the macro was defined with \newcommand and an optional argument,
to replicate exactly the behaviour of \DeclareRobustCommand we have to move also
the internal \\foo to \\foo,. In that case, #1 will be a parameterless macro
(\robust@command@chk@safe checks that), and \@if@newcommand will return true (both
defined below in this file). If so, we can use \@copy@newcommand rather than plain \let
to copy the command over. \@kernel@rename@newcommand does this test and carries out
the renaming.

202 \def\@kernel@rename@newcommand#1#2{%
203 \robust@command@chk@safe#2Y

204 {\@if@newcommand#2

295 {\afterassignment\global

296 \global\@copy@newcommand#1#27

207 \global\let#2\@undefined

298 \global\expandafter\let\csname\string#2\endcsname\@undefined}y,
299 {\global\let#1=#2}1}/

300 {\global\let#1=#2}}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 82

/2ekernel | latexrelease)
latexrelease)\EndIncludeInRelease

(
(
303 %

°

latexrelease)\IncludeInRelease{2019/10/01}{\MakeRobust}{\MakeRobust}%
latexrelease)\def \MakeRobust#1{%

latexrelease) \@ifundefined{\expandafter\@gobble\string#1}{%

latexrelease \@latex@error{The control sequence ‘\string#1’ is undefined!%
latexrelease \MessageBreak There is nothing here to make robustl}V
latexrelease \@eha

latexrelease) 1}
latexrelease) {%
latexrelease
latexrelease
latexrelease

()
()
()
()
()
()
()
()
() \@ifundefined{\expandafter\@gobble\string#l\spacel}’
() 1k
() \global\expandafter\let\csname
(latexrelease) \expandafter\@gobble\string#1\space\endcsname=#1
(latexrelease) \edef\reserved@a{\string#1}/
517 (latexrelease) \def\reserved@b{#1}
(latexrelease) \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}y
(latexrelease) \xdef#1{/,
(latexrelease) \ifx\reserved@a\reserved@
(latexrelease) \noexpand\x@protect\noexpand#1%
(latexrelease) \fi
(latexrelease) \noexpand\protect\expandafter\noexpand
(latexrelease) \csname\expandafter\@gobble\string#1i\space\endcsname}y,
(latexrelease)
(latexrelease)
(latexrelease)
(latexrelease)}%
(latexrelease)\1let\@kernel@rename@newcommand\Qundefined
(latexrelease)\EndIncludeInRelease

Yh
{\@latex@info{The control sequence ‘\string#l’ is already robust}}
Y
328
329

330

331 %

s22 (latexrelease)\IncludeInRelease{2015/01/01}{\MakeRobust}{\MakeRobust}%

533 (latexrelease)\def \MakeRobust#1{/,

s:4 (latexrelease) \@ifundefined{\expandafter\@gobble\string#1}{}

335 (latexrelease) \@latex@error{The control sequence ‘\string#1’ is undefined!’
336 (latexrelease) \MessageBreak There is nothing here to make robustl}/

337 (latexrelease) \@eha

s (latexrelease) }%

s30 (latexrelease) {%

320 (latexrelease) \@ifundefined{\expandafter\@gobble\string#1\space}%

sa (latexrelease) {4

2 (latexrelease) \expandafter\let\csname

33 (latexrelease) \expandafter\@gobble\string#1\space\endcsname=#17

sua (latexrelease) \edef\reserved@a{\string#11}/,

25 (latexrelease) \def\reserved@b{#1}%

36 (latexrelease) \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}j,
w7 (latexrelease) \edef#1{%

s (latexrelease) \ifx\reserved@a\reserved@b

30 (latexrelease) \noexpand\x@protect\noexpand#1%

50 (latexrelease) \fi

51 (latexrelease) \noexpand\protect\expandafter\noexpand

352 (latexrelease) \csname\expandafter\Q@gobble\string#1\space\endcsnamel}y,

353 (latexrelease) Y

0 (latexrelease) {\@latex@info{The control sequence ‘\string#1l’ is already robustl}}/

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 83

\kernel@make@fragile

(latexrelease) 1}

(latexrelease)}%

s57 (latexrelease)\let\@kernel@rename@newcommand\Qundefined
(latexrelease)\EndIncludeInRelease

359 %
latexrelease
latexrelease
latexrelease
latexrelease

s (*2ekernel)

\IncludeInRelease{0000/00/00}{\MakeRobust}{\MakeRobust}/,
\let\MakeRobust\@undefined
\let\@kernel@rename@newcommand\@undefined
\EndIncludeInRelease

363

(
(
(
(

~— o~ ~—

(End definition for \MakeRobust and \@kernel@rename@newcommand. These functions are documented on
page ?7.)

The opposite of \MakeRobust execpt that it doesn’t do many checks as it is internal to the
kernel. Why does one want such a thing? Only for compatibility reasons if latexrelease
requests a rollback of the kernel. For this reason we pretend that this command existed
in all earler versions of XTEX i.e., we are not rolling it back since we need it precisely
then. But we have to get it into the latexrelease file so that a roll forward is possible
too.

365 (/2ekerne|)
(

56 (*2ekernel | latexrelease)

se7 (latexrelease) \IncludeInRelease{2020/10/01}%

s (latexrelease) {\kernel@make@fragile}{Undo robustness}}
360 \def\kernel@make@fragile#1{}

s70 \@ifundefined{\expandafter\@gobble\string#1\spacel}’,

If not robust do nothing.

371 {34

Otherwise copy \foo., back to \foo. Then use \@kernel@rename@newcommand to check

and copy \\fooy, back to \\foo in case the command has an optional argument. If so,
also undefine \\foo,,, and at the end undefine \foo,,.

372 {%

373 \global\expandafter\let\expandafter #1\csname

374 \expandafter\Qgobble\string#1\space\endcsname

375 \expandafter\@kernel@rename@newcommand

376 \csname\expandafter\@gobble\string#1\expandafter\endcsname

377 \csname\expandafter\Q@gobble\string#1\space\endcsname

378 \global\expandafter\let\csname

379 \expandafter\@gobble\string#1\space\endcsname\@undefined
380 o

381 F

(latexrelease) \EndIncludeInRelease
383 /,
(latexrelease) \IncludeInRelease{0000/00/00}%
(latexrelease {\kernel@make@fragile}{Undo robustness}},
(latexrelease) \def \kernel@make@fragile#1{},
37 (latexrelease) \@ifundefined{\expandafter\@gobble\string#1\space}),

(

(

(

(

(

)
)
)
)
latexrelease) {}
)
)
)
)

384
385

386

388
latexrelease
latexrelease
latexrelease
latexrelease

389 {%
\global\expandafter\let\expandafter #1\csname
\expandafter\@gobble\string#1\space\endcsname

\global\expandafter\let\csname

390
391

392

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 84

latexrelease
latexrelease

()

()
05 (latexrelease) }

(

(

393

\expandafter\@gobble\string#1\space\endcsname\@undefined
394 M
306 (latexrelease) \EndIncludeInRelease
so7 (/2ekernel | latexrelease)

s0s (*2ekernel)

(End definition for \kernel@make@fragile. This function is documented on page 77.)

1.5 Acting on robust commands

300 (/2ekernel)

wo (latexrelease)\IncludeInRelease{2020-10-01}{\robust@command@act}

w1 (latexrelease) {Add \robust@command@actl}’
(

w02 (*2ekernel | latexrelease)

With most document level commands being robust now there is more of a require-
ment to have a standard way of aliasing (or copying) a command to a new name, for ex-
ample to save an original definition before changing a command. \DeclareCommandCopy
is analogous to TEX’s \let, except that it copes with the different types of robust com-
mands defined by ETEX’s mechanisms.

A couple of “types of robustness” are defined by the INTEX 2¢ kernel, namely robust
commands defined with \DeclareRobustCommand and commands with optional argu-
ments defined with \newcommand. However there are other types of robust commands
that are frequently used, which are not defined in the KTEX 2¢ kernel, like commands
defined with xparse’s \NewDocumentCommand and etoolbox’s \newrobustcmd.

In this section we will define a generic extensible machinery to act on robust com-
mands. This code will then be used to test if a command is robust, considered the different
types of robustness, and then either copy that definition, if \DeclareCommandCopy (or
similar) is used, or show the definition of the command, if \ShowCommmand is used.

\robust@command@act The looping machinery is generic and knows nothing about what is to be done for each
case. The syntax of the main macro \robust@command®@act is:

\robust@command@act{action-list)({robust-cmd)
(fallback-action){act-arg)

(action-list) is a token list of the form:

{(if-type-1) {act-type-1)}
{(if-type-2) (act-type-2)}

\robust@command@act will iterate over the (action-list), evaluating each (if-type-n){robust-cmd){{true)H
If the (if-type-n) conditional returns (true), then (act-type-n){act-arg) is executed, and

the loop ends. If the conditional returns (false), then (if-type-n 4+ 1) is executed in

the same way, until either one of the conditionals return (true), or the end of the

(action-list) is reached. If the end is reached, then (fallback-action)(act-arg) is executed

before \robust@command@act exits.

\robust@command@act will start by using \robust@command@act@chk®@args to check
if the (robust-cmd) (#2) is a parameterless (possibly \protected) macro. If it is not, the
command is not a robust command: these always start with a parameterless user-level
macro; in that case, \robust@command@act®@end is used to short-circuit the process and
do the (fallback-action) (#3). This first test is necessary because later on we need to be

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 85

\robust@command@act@loop
\robust@command@act@loop@aux
\robust@command@act@do

\robust@command@act@end

\robust@command@chk@safe
\robust@command@act@chk@args

able to expand the (robust-cmd) without the risk of it Breaking Badly, and as a bonus,
this speeds up the process in case we used \NewCommandCopy in a “normal” macro.

203 \long\def\robust@command@act#1#2#3#4{},
204 \robust@command@chk@safe#2

405 {\expandafter\robust@command@act@loop
406 \expandafter#2/,

407 #1{\Onnil\@nnill}y,

408 \robust@command@act@end}%

400 {\robust@command®@act@end}’,

410 {#3H{#43}7%

If \robust@command@act@chk@args branched to false, then \robust@command@act@loop
will loop over the list of items in the (action-list) (#1), and process each item as described
earlier. If the (if-type-n) command expands to (true) then \robust@command@act@do is
used to execute (act-type-n) on the (act-arg), otherwise the loop resumes with the next
item.

211 \long\def\robust@command@act@loop#1#2{\robust@command@act@loop@aux#1#2}
212 \long\def\robust@command@act@loopQaux#1#2#3{%
413 \ifx\Onnil#2%

414 \else

415 #2{#1},

416 {\robust@command@act@do{#3}}/

417 {\expandafter\robust@command@act@loop\expandafter#1}y,
418 \fi}

219 \long\def\robust@command@act@do#1%

420 \fi#2Y%

21 \robust@command@act@end#3#4{7

422 \fi

423 #1#4}

If the end is reached and no action was taken, then do (fallback-action){act-arg).
24 \long\def\robust@command@act@end#1#2{#1#2}

25 \long\def\robust@command@chk@safe#1{}

26 \begingroup

427 \escapechar="‘\\

s \expandafter\endgroup\expandafter

20 \robust@command@act@chk@args\meaning#1:->\0nil}
230 \def\robust@command@act@chk@args#1:->#2\0nil{}

231 \Qexpl@str@if@eq@@nnTF{#1}{macro}y,

432 {\@firstoftwol}¥

433 {\@expl@str@if@eq@@nnTF{#1}{\protected macrol}
434 {\efirstoftwol}’

435 {\@secondoftwo}}}

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\robust@command@act}

130 (latexrelease) {Add \robust@command@act}Y,
(latexrelease)\let\robust@command@act\Qundefined
()
()

438

440
21 (latexrelease)\let\robust@command@act@loop\@undefined

latexrelease)\1let\robust@command@act@loop@aux\Q@undefined

4

42

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 86

\NewCommandCopy
\RenewCommandCopy
\DeclareCommandCopy

\declare@commandcopy

(latexrelease)\let\robust@command@act@do\@undefined
uas (latexrelease)\let\robust@command@act@end\@undefined
s (latexrelease)\let\robust@command@chk@safe\Qundefined
()
()

443

latexrelease)\1let\robust@command@act@chk@args\@undefined
latexrelease)\EndIncludeInRelease
ws (*2ekernel)

46

447

(End definition for \robust@command@act and others. These functions are documented on page 77.)

1.5.1 Copying robust commands

(/2ekernel)

10 (latexrelease)\IncludeInRelease{2020-10-01}{\DeclareCommandCopy}

i1 (latexrelease) {Add \NewCommandCopy, \RenewCommandCopy, and \DeclareCommandCopy}%
2 (*2ekernel | latexrelease)

449

\NewCommandCopy starts by checking if #1 is already defined, and raises an error if so,
otherwise the definition is carried out. \RenewCommandCopy does (almost) the opposite.
If the command is not defined, then an error is raised. But the definition is carried out
anyhow, so the behaviour is consistent with \renewcommand.

A \ProvideCommandCopy isn’t defined because it’s not reasonably useful. \provide. ..
commands mean “define this if there’s no other definition”, but copying a command (usu-
ally) implies that the command being copied is defined, so \ProvideCommandCopy doesn’t
make a lot of sense. But more importantly, the most common use case of copying a com-
mand is to redefine it later, while preserving the old definition, as in:

\ProvideComandCopy \A \B
\renewcommand \B { ... \A ... }

then, if \A is already defined the first line is skipped, an in this case \B won’t work as
expected.

The three versions call the internal \declare@commandcopy with the proper action.
\@firstofone will carry out the copy. The only case when the copy is not made is the
(false) case for \NewCommandCopy, in which the command already exists and the definition
is aborted.

253 \def\NewCommandCopy{%

454 \declare@commandcopy
455 {\efirstofonel})
456 {\efirstoftwo\@notdefinable}}

.57 \def \RenewCommandCopy{%
255 \declare@commandcopy

459 {\@latex@error{Command \@backslashchar\reserved@a\space undefined}\@ehc
460 \e@firstofonely,
461 {\efirstofone}}

22 \def\DeclareCommandCopy{/
23 \declare@commandcopy

464 {\@firstofonel},

465 {\@firstofone}}

Start by checking if the command is already defined. The proper action is taken by
each specific command above. If all’s good, then \robust@command@act is called with
the proper arguments as described earlier, with \@declarecommandcopylisthook as the
(action-listy and \declare@commandcopy@let as the (fallback-action).

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 87

w6 \long\def\declare@commandcopy#1#2#3#4{J,

267 \edef\reserved@a{\@expl@csO@to@str@@N#31}}
w5 \@ifundefined\reserved@a{#1}{#2}/

469 {\robust@command®@act

470 \@declarecommandcopylisthook#47

471 \declare@commandcopy@let{#3#4}}}

The initial definition of \@declarecommandcopylisthook contains the tests for the two
types of robust command in the kernel.

272 \def\@declarecommandcopylisthook{’
\@declarecommandcopylisthook .;; {\@if@DeclareRobustCommand \@copy@DeclareRobustCommand}
a2 {\@if@newcommand \@copy@newcommand}}

The initial definition of \@declarecommandcopylisthook contains the tests for the two
types of robust command in the kernel.
275 \long\def\declare@commandcopy@let#1#2{\let#1=#2\relax}

\declare@commandcopy@let
Now the rollback code.

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\DeclareCommandCopy}
(latexrelease) {Undefine \NewCommandCopy, \RenewCommandCopy, and \DeclareCommandCopy}%
(latexrelease)\1let \NewCommandCopy\@undefined

w1 (latexrelease)\1let\RenewCommandCopy\@undefined
(latexrelease)\let\DeclareCommandCopy\@undefined
()
()
()
()

476

477

478

&

479

480

482
253 (latexrelease)\let\declare@commandcopy\@undefined
latexrelease)\let\@declarecommandcopylisthook\@undefined
latexrelease)\let\declare@commandcopy@let\@undefined

s (latexrelease)\EndIncludeInRelease

487 (*2ekerne|)

484

85

(End definition for \NewCommandCopy and others. These functions are documented on page ?77.)

1.5.2 Showing robust commands

\ShowCommand Most of the machinery defined for \NewCommandCopy can be used to show the definition
of a robust command, in a similar fashion to texdef. The difference is that after the
command’s is detected to has a given type of robustness, rather than making a copy, we
use a separate routine to show its definition.

With all the machinery in place, \ShowCommand itself is quite simple: use \robust@command®@act
to iterate through the \@showcommandlisthook list, and if nothing is found, fallback to
\show.

s (/2ekernel)

0 (latexrelease)\IncludeInRelease{2020-10-01}{\ShowCommand}
o (latexrelease) {Add \ShowCommand},

w1 (*2ekernel | latexrelease)

22 \long\def\ShowCommand#1{/

103 \robust@command@act
492 \@showcommandlisthook#1
495 \show#1}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 88

The initial definition of \@showcommandlisthook contains the same tests as used for copy-
\@showcommandlisthook ing, but \@show@. .. commands instead of \@copy@. ... Same as before, it is initialised
to cope with \DeclareRobustCommand and \newcommand with optional arguments.

106 \def\@showcommandlisthook{%
107 {\@if@DeclareRobustCommand \@show@DeclareRobustCommand}/,
108 {\@if@newcommand \@show@newcommand}}

Now the rollback code.

(/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\ShowCommand}
s> (latexrelease) {Undefine \ShowCommand}Y,
(latexrelease)\let\ShowCommand\@undefined
(latexrelease)\1let\@showcommandlisthook\@undefined
(latexrelease) \EndIncludeInRelease

so0 (*2ekernel)

(End definition for \ShowCommand and \@showcommandlisthook. These functions are documented on page

27.)

sor {/2ekernel)

s0s (latexrelease)\IncludeInRelease{2020-10-01}{\@if@DeclareRobustCommand}
so0 (latexrelease) {Add \@if@DeclareRobustCommand, \@if@newcommand,

si0 (latexrelease) \@copy@DeclareRobustCommand, \@copy@newcommand,
su (latexrelease) \@show@DeclareRobustCommand, \@show@newcommand}’
s12 (*2ekernel | latexrelease)

1.5.3 Commands defined with \DeclareRobustCommand

\@if@DeclareRobustCommand Now that we provided a generic way to copy one macro to another, we need to define
a way to check if a command is one of INTEX 2¢’s robust types. These tests are heavily
based on Heiko’s \LetLtxMacro, but chopped into separate macros.
\@if@DeclareRobustCommand checks if a command \cmd was defined by \DeclareRobustCommand.
The test returns true if the expansion of \cmd is exactly \protect\cmd,,.

513 \long\def\@if@DeclareRobustCommand#1{%
5.2 \begingroup

515 \escapechar="°\\

516 \edef\reserved@a{\string#1}/,

517 \edef\reserved@b{\detokenize{#1}1}/,

518 \xdef\Q@gtempa{’%

519 \ifx\reserved®@a\reserved@b

520 \noexpand\x@protect

521 \noexpand#1,

522 \fi

523 \noexpand\protect

524 \expandafter\noexpand\csname\@expl@cs@to@str@A@N#1 \endcsname},

s \endgroup
56 \ifx\Q@gtempa#1\relax

527 \expandafter\@firstoftwo
528 \else

529 \expandafter\@secondoftwo
530 \fi}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 89

If a command was defined by \DeclareRobustCommand (that is, \@if@DeclareRobustCommand
\@copy@eclareRobustCommand returns true), then to make a copy of \cmd into \foo we define the latter such that it
\copy@kernel@robust@command expands to \protect\foo,, then make \foo, equal to \cmd,.

There is one detail we need to take care of: if a command was defined with

\DeclareRobustCommand it may still have an optional argument, in which case there

is one more macro layer before the actual definition of the command. We use

\@if@newcommand to check that and \@copy@newcommand to do the copying.

531 \long\def\@copy@DeclareRobustCommand#1#2{/

522 \begingroup

533 \escapechar="‘\\

534 \edef\reserved@a{\string#1}/

535 \edef\reserved@b{\detokenize{#1}}%

536 \edef\reserved@a{,

537 \endgroup

s \def\noexpand#1{/,

539 \ifx\reserved®@a\reserved@b

540 \noexpand\x@protect

541 \noexpand#1%

542 \fi

543 \noexpand\protect

544 \expandafter\noexpand\csname\@expl@cs@to@str@@N#1 \endcsnamel,
55 \noexpand\copy@kernel@robust@command

546 \expandafter\noexpand\csname\Q@expl@cs@to@str@ON#1 \endcsname
547 \expandafter\noexpand\csname\@expl@cs@to@str@@N#2 \endcsnamel,

sis \reserved®@a}
520 \long\def\copy@kernel@robust@command#1#2{/,
550 \robust@command@chk@safe#2,

551 {\@if@newcommand#2

552 {\@copy@newcommand}

553 {\declare@commandcopy@let}}
554 {\declare@commandcopy@letl}’,

555 #1#23}

Showing the command is pretty simple. This command prints the top-level expan-
\@show@DeclareRobustCommand sion as TEX’s \show would, but with robust macro: rather than just macro:, then
\show@kernel@robust@command a blank line and then \show the inner command. For a macro defined with, say

\DeclareRobustCommand\foo [1]{bar}, it will print:

> \foo=robust macro:
->\protect \foo

> \foo =\long macro:
#1->bar.

If the inner command is defined with an optional argument, then \@show@newcommand is
also used.
The value of \escapechar is deliberately not enforced, so \ShowCommand behaves
more like \show.
ss6 \long\def\@show@DeclareRobustCommand#1{%
ss7 \typeout{> \string#l=robust macro:}%
555 \typeout{->\@expl@cs@replacement@spec@CON#1."~J}/,
sso \expandafter\show@kernel@robust@command
560 \csname\@expl@csQto@str@@N#1 \endcsname}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 90

se1 \long\def\show@kernel@robust@command#1{%
s \robust@command@chk@safe#17

563 {\@if@newcommand#1Y,

564 {\@show@newcommand}¥
565 {\show}}/

566 {\ShOW}%

567 #1}

(End definition for \@if@DeclareRobustCommand and others. These functions are documented on page
77.)

1.5.4 Commands defined with \newcommand (with optional argument)

\@if@newcommand A command \cmd (or \cmd,, if it was defined with \DeclareRobustCommand) with an
optional argument will expand to \@protected@testopt\cmd\\cmd{<opt>}. To check
that we look at the first three tokens in the expansion of \cmd, and return true or false
accordingly.

This test requires that the command be a parameterless macro, otherwise it will not
work (and probably break). This is ensured with \robust@command@chk@safe before
calling \@if@newcommand.

s6s \long\def\@if@newcommand#1{%
seo \edef\reserved@a{y,

570 \noexpand\@protected@testopt

571 \noexpand#17,

572 \expandafter\noexpand\csname\@backslashchar\@expl@cs@to@str@@N#1\endcsname}y,
s3 \edef\reserved@b{,

574 \unexpanded\expandafter\expandafter\expandafter

575 {\expandafter\@carcube#1{}{}{}\e@nil}}Y

s \ifx\reserved@a\reserved@b
577 \expandafter\@firstoftwo

578 \else
579 \expandafter\@secondoftwo
580 \fi}

Then, if a command \cmd takes an optional argument, we copy it to \foo by defining
\@copy@newcommand the latter to expand to \@protected@testopt\foo\\foo{<opt>}.

531 \long\def\@copy@newcommand#1#2{/,
s22 \edef#1{\noexpand\@protected@testopt

583 \noexpand#17,

584 \expandafter\noexpand\csname\@backslashchar\Q@expl@cs@to@str@@N#1\endcsname
585 \unexpanded\expandafter\expandafter\expandafter

586 {\expandafter\@gobblethree#2}1}/,

ss7 \expandafter

s33 \let\csname\@backslashchar\Q@expl@cs@to@str@@N#1\expandafter\endcsname

589 \csname\@backslashchar\Q@expl@cs@to@str@@N#2\endcsname}

A command being \shown here is guaranteed to have an optional argument. Start by
\@show@newcommand showing the top-level expansion of the command (using \typeout to avoid TeX asking for
\@show@newcommand@aux interaction and extra context lines), then call \@show@newcommand®@aux with the internal
command, which contains the actual definition, and with the expansion of the command

to extract the default value of the optional argument.

50 \long\def\@show@newcommand#1{%
so0 \typeout{> \string#l=robust macro:}%

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 91

\@ifundefined

50 \typeout{->\@expl@cs@replacement@spec@CON#1."~J}/,

503 \expandafter\@show@newcommandQaux

594 \csname\@backslashchar\Q@expl@cs@to@str@@N#1\expandafter\endcsname
595 \expandafter{#1}}

For a macro defined with, say, \newcommand\foo[1] [opt]{bar}, it will print:

> \foo=robust macro:
->\@protected@testopt \foo \\foo {opt}.

> \\foo=\long macro:
> default #l1=opt.
[#1]->bar.

If the command was defined with \DeclareRobustCommand, then another pair of lines
show the top-level expansion \protect, \foo y,.

The extra gymnastics with \showtokens ensures that \showtokens itself, and the
internals of this macro aren’t showed in the context lines.

so0 \long\def\@show@newcommandQaux#1#2{%

57 \typeout{> \string#1=\0Qexpl@cs@prefix@spec@CN#1imacro:l}/

s \edef\reserved@a{J,

599 default \string##l=\expandafter\detokenize\@gobblethree#2.~~J},

600 \@expl@cs@argument@spec@ON#1->\Qexpl@cs@replacement@spec@CON#1}%

c01 \showtokens\expandafter\expandafter\expandafter{\expandafter\reserved@a}}

Now the rollback code.

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000-00-00}{\@if@DeclareRobustCommand}
latexrelease) {Undefine \@if@DeclareRobustCommand, \@if@newcommand,
latexrelease \@copy@DeclareRobustCommand, \@copy@newcommand,
latexrelease \@show@DeclareRobustCommand, \@show@newcommandl}’,
latexrelease)\1let\@if@DeclareRobustCommand\Qundefined
latexrelease)\1let\@copy@DeclareRobustCommand\@undefined
latexrelease)\1let\@show@DeclareRobustCommand\Qundefined
latexrelease)\let\@if@newcommand\@undefined
latexrelease)\let\@copy@newcommand\@undefined
latexrelease)\1let\@show@newcommand\Q@undefined

614 Jh

latexrelease)\let\copy@kernel@robust@command\@undefined
latexrelease)\let\show@kernel@robust@command\@undefined
latexrelease)\let\@show@newcommand@aux\Qundefined

o1 (latexrelease)\EndIncludeInRelease

o0 (*2ekernel)

602

603

604

605

609

610

611

o

S
o~~~ o~~~ o~~~ o~ o~
LN SN LR SN L SRS L

615
616

617

(
(
(
(

(End definition for \@if@newcommand and others. These functions are documented on page ?7.)

1.6 Internal defining commands
These commands are used internally to define other BTEX commands.

Check if first arg is undefined or \relax and execute second or third arg depending,

620 (/2ekerne|)
o1 (latexrelease)\IncludeInRelease{2018-04-01}{\@ifundefined}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 92

o2 (latexrelease){Leave commands undefined in \@ifundefined}Y
03 (*2ekernel | latexrelease)

Version using \ifcsname to avoid defining undefined tokens to \relax. Defined here to
simplify using unmatched \fi.

624 \def\@ifundefined#1{’,

65 \ifcsname#1\endcsname\Q@ifundefin@d@i\else\Q@ifundefin@d@ii\fi{#1}}

026 \long\def\@ifundefin@d@i#1\fi#2{\fi

627 \expandafter\ifx\csname #2\endcsname\relax
628 \Q@ifundefin@d@ii
629 \fi

630 \@secondoftwo}
031 \long\def\@ifundefin@d@ii\fi#1#2#3{\fi #2}

Now test of engine.
6322 \ifx\numexpr\Qundefined
Classic version (should not be needed as etex is assumed).

633 \def\@ifundefined#1{},
63« \expandafter\ifx\csname#1\endcsname\relax

635 \expandafter\@firstoftwo
636 \else

637 \expandafter\@secondoftwo
638 \fi}

630 \else\ifx\directlua\@undefined

Use the \ifcsname defined above.

si0 \else

Optimised version for LuaTEX, using \lastnamedcs

61 \def\@ifundefined#1{},

o2 \ifcsname#1\endcsname

643 \expandafter\ifx\lastnamedcs\relax\else\@ifundefin@d@i\fi
644 \fi

o5 \@firstoftwol}

616 \long\def\@ifundefin@dQi#1#2#3#4#5{#1#2#5}

6a7 \fi

65 \fi

oo (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000-00-00}{\@ifundefined}
(latexrelease){Leave commands undefined in \@ifundefinedl}},
(latexrelease)\def\@ifundefined#1{%

s+ (latexrelease) \expandafter\ifx\csname#1\endcsname\relax
(latexrelease) \expandafter\@firstoftwo

()

()

()

()

650

651

652

653

o
a

5

o
o

latexrelease) \else

latexrelease \expandafter\@secondoftwo
latexrelease) \fi}

ss0 {latexrelease)\EndIncludeInRelease

oo (*2ekernel)

656

o
a

7

658

(End definition for \@ifundefined. This function is documented on page 77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 93

\@gend
\@grelax

\@ifnextchar

\kernel@ifnextchar

\@ifnch

\@sptoken

The following define \@gend and \@qrelax to be the strings ‘end’ and ‘relax’ with the
characters \catcoded 12.

et \edef\@gend{\expandafter\@cdr\string\end\@nil}
62 \edef\@qrelax{\expandafter\Qcdr\string\relax\@nil}

(End definition for \@gend and \@grelax. These functions are documented on page 77.)

\@ifnextchar peeks at the following character and compares it with its first argument.
If both are the same it executes its second argument, otherwise its third.

663 \long\def\@ifnextchar#1#2#3{%

66 \let\reserved@d=#1

65 \def\reserved@a{#21}

o6 \def\reserved@b{#31}

67 \futurelet\@let@token\@ifnch}

(End definition for \@ifnextchar. This function is documented on page 77.)

This macro is the kernel version of \@ifnextchar which is used in a couple of places
to prevent the AMS variant from being used since in some places this produced chaos
(for example if an fd file is loaded in a random place then the optional argument to
\ProvidesFile could get printed there instead of being written only in the log file. This
happened when there was a space or a newline between the mandatory and optional
arguments! It should really be fixed in the amsmath package one day, but. ..

Note that there may be other places in the kernel where this version should be used
rather than the original, but variable, version.

68 \let\kernel@ifnextchar\@ifnextchar

(End definition for \kernel@ifnextchar. This function is documented on page ?77.)

\@ifnch is a tricky macro to skip any space tokens that may appear before the character
in question. If it encounters a space token, it calls xifnch.

sc0 \def\@ifnch{%
670 \ifx\@let@token\@sptoken

671 \let\reserved@c\@xifnch

62 \else

673 \ifx\@let@token\reserved@d
674 \let\reserved@c\reserved@a
675 \else

676 \let\reserved@c\reserved@b
677 \fi

678 \fi

670 \reserved@c}

(End definition for \@ifnch. This function is documented on page 77?.)

The following code makes \@sptoken a space token. It is important here that the control
sequence \: consists of a non-letter only, so that the following whitespace is significant.
Together with the fact that the equal sign in a \1let may be followed by only one optional
space the desired effect is achieved. NOTE: the following hacking must precede the
definition of \: as math medium space.

60 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token

(End definition for \@sptoken. This function is documented on page ?77.)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 94

\@xifnch

\@ifstar

\@dblarg
\@xdblarg

\@sanitize

\@onelevel@sanitize

\string@makeletter
\@string@makeletter
\char@if@alph

In the following definition of \@xifnch, \: is again used to get a space token as delimiter
into the definition.

es1 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

(End definition for \@xifnch. This function is documented on page 77.)

The new implementation below avoids passing the (true code) Through one more \def
than the (false code), which previously meant that # had to be written as #### in one
argument, but ## in the other. The * is gobbled by \@firstoftwo.

62 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

(End definition for \@ifstar. This function is documented on page ?77.)

63 \long\def\@dblarg#1i{\kernel@ifnextchar [{#1}{\@xdblarg{#1}}}
o2 \long\def\@xdblarg#i#2{#1 [{#2}]{#2}}

(End definition for \@dblarg and \@xdblarg. These functions are documented on page 77.)

The command \@sanitize changes the catcode of all special characters except for braces
to ‘other’. It can be used for commands like \index that want to write their arguments
verbatim. Needless to say, this command should only be executed within a group, or
chaos will ensue.

65 \def\@sanitize{\@makeother\ \@makeother\\\@makeother\$\@makeother\&J
66 \@makeother\#\@makeother\~\@makeother_\@makeother\)\@makeother\~}

(End definition for \@sanitize. This function is documented on page ?7.)

This makes the whole “meaning” of #1 (its one-level expansion) into catcode 12 tokens:
it could be used in \DeclareRobustCommand.

If it is to be used on default float specifiers, this should be done when they are
defined.

637 \def \Qonelevel@sanitize #1{%

ess \edef #1{\expandafter\strip@prefix
689 \meaning #1}J

600 }

(End definition for \@onelevel@sanitize. This function is documented on page 77.)

Iterates through a string, turning each alphabetic character into a catcode-11 to-
ken (partly undoes a \detokenize). Useful for \ifx-based string comparisons where
\detokenize-ing the other string would break too much code.

The macro uses expl3’s \Q@expl@strOmap@function@ONN to iterate on the string
(without losing spaces) and applies \@string@makeletter on each character. The lat-
ter checks if character is between a—z or A—Z, and uses \@alph or \@Alph to get the
corresponding catcode-11 token. Other tokens are passed through unchanged.

o1 (/2ekernel)

e (latexrelease)\IncludeInRelease{2020/10/01}{\string@makeletter}
003 (latexrelease) {Add \string@makeletterl}/,

wos (*2ekernel | latexrelease)

eos \def\string@makeletter#1{J

606 \Qexpl@str@map@function@@NN#1\@stringOmakeletter}

eo7 \def\@string@makeletter#i{%

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 95

\makeatletter
\makeatother

\-
\@dischyph

e0s \char@if@alph{#11}7

699 {\@expl@char@generate@@nn{ ‘#1}{11}}%

700 {#1}}

700 \def\char@if@alph#1{/,

02 \ifnumO\ifnum‘#1<‘A 1\filifnum‘#1>‘z 1\fi

703 \if\ifnum‘#1>‘Z @\fi\ifnum‘#1<‘a @\fi01\fi>0

704 \expandafter\@secondoftwo
05 \else

706 \expandafter\@firstoftwo
07 \fi}

08 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease

10 %

\IncludeInRelease{0000/00/00}{\string@makeletter}
{Undefine \string@makeletter}’

\let\string@makeletter\Qundefined

\let\@string@makeletter\Qundefined

\let\char@if@alph\@undefined

\EndIncludeInRelease

(latexrelease
(latexrelease
715 (latexrelease
(latexrelease
(latexrelease
(latexrelease
77 (*2ekernel)

ML LSRR]

(End definition for \string@makeletter, \@string@makeletter, and \char@if@alph. These functions
are documented on page ?7.)

Make internal control sequences accessible or inaccessible.

7138 \DeclareRobustCommand\makeatletter{\catcode‘\@11\relax}
710 \DeclareRobustCommand\makeatother{\catcode‘\@12\relax}

(End definition for \makeatletter and \makeatother. These functions are documented on page 77.)
2 Discretionary Hyphenation

Moved here to be after the definition of \DeclareRobustCommand.
The primitive \- command adds a discretionary hyphen using the current font’s
\hyphenchar. Monospace fonts are usually declared with \hyphenchar set to —1 to

suppress hyhenation.
ETEX, from ETEX2.09 in 1986 defined \- by

\def\-{\discretionary{-}{}{}}
The following comment was added when these commands were first set up, 19 April 1986:

the \- command is redefined to allow it to work in the \ttfamily type style,
where automatic hyphenation is suppressed by setting \hyphenchar to —1.
The original primitive TEX definition is saved as \@@hyph just in case anyone
needs it.

IXTEX 2¢, between 1993 and 2017, had a comment at this point saying that the
definition “would probably change” because the definition always uses —. The definition
used below was given in comments at this point during time.

In 2017 we finally enabled this definition by default, with the older KTEX definition
accessible via latexrelease as usual.

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 96

In Lual#TEX the primitive definition of \- is used directly because it’s use of extended
hyphenation parameters means that \- works correctly even with \hyphenchar set to —1.
This change makes \- under Lual&TgX compatible with language specific hyphenation
characters.

Temporary definition of \@latex@info, final definition is later.

720 \def\Q@latex@info#1{}

21 (/2ekernel)

722 (latexrelease)\IncludeInRelease{2020/10/01}{\-}{Use primitive \- in Lua\LaTeX}},
23 (*2ekernel | latexrelease)

74 \ifx\directlua\@undefined

75 \DeclareRobustCommand{\-}{%

726 \discretionary{%

727 \char \ifnum\hyphenchar\font<\z@
728 \defaulthyphenchar
729 \else

730 \hyphenchar\font

731 \fi

732 H3

733 }

732 \else

735 \let\—\@@hyph

736 \fi

/2ekernel | latexrelease)

latexrelease)\EndIncludeInRelease
latexrelease)\IncludeInRelease{2017/04/15}{\-}{Use \hyphenchar in \-1}%
latexrelease) \DeclareRobustCommand{\-}{/

latexrelease) \discretionary{%

latexrelease \char \ifnum\hyphenchar\font<\z@

latexrelease \defaulthyphenchar

latexrelease \else

(

(

()
()
()
()
()
()

75 (latexrelease) \hyphenchar\font

()
()
()
()
()
()
(

(

738
739
740
741

2

N

7

7

latexrelease \fi
latexrelease

latexrelease)}

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}{\-}{Use \hyphenchar in \-1}%
latexrelease)\def\-{\discretionary{-}{}{}}

latexrelease) \EndIncludeInRelease

HIY

*2ekernel | latexrelease)
751 \let\@dischyph=\-
755 (/2ekernel | latexrelease)
6 (*2ekernel)

(End definition for \- and \@dischyph. These functions are documented on page 77.)
Delayed from ltvers.dtx

7 \newif\if@includeinrelease
758 \@includeinreleasefalse

~
a

Delayed from 1tplain.dtx

79 (/2ekernel)

w0 (*2ekernel | latexrelease)

1 (latexrelease) \IncludeInRelease{2019/10/01}},

762 (latexrelease) {\allowbreak}{Make various commands robust}}

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 97

\g@addto®@macro

763 \MakeRobust\allowbreak

762 \MakeRobust\bigbreak

765 \MakeRobust\break

766 \MakeRobust\dotfill

e7 \MakeRobust\frenchspacing

765 \MakeRobust\goodbreak

760 \MakeRobust\hrulefill

770 \MakeRobust\medbreak

771 \MakeRobust\nobreak

772 \MakeRobust\nonfrenchspacing

773 \MakeRobust\obeylines

772 \MakeRobust\obeyspaces

775 \MakeRobust\slash

776 \MakeRobust\smallbreak

777 \MakeRobust\strut

775 \MakeRobust\underbar

770 (/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/00}%
latexrelease {\allowbreak}{Make various commands robust}’
latexrelease
latexrelease)\kernel@make@fragile\allowbreak
latexrelease)\kernel@make@fragile\bigbreak
latexrelease) \kernel@make@fragile\break
latexrelease)\kernel@make@fragile\dotfill
latexrelease)\kernel@make@fragile\frenchspacing
latexrelease) \kernel@make@fragile\goodbreak
latexrelease)\kernel@make@fragile\hrulefill

(

()
()
{)
()
()
()
()
()
()
()

701 (latexrelease)\kernel@make@fragile\medbreak

()
()
()
()
()
()
()
()
()
()
(

83

784

785

786

787

788

789

790

792

latexrelease) \kernel@make@fragile\nobreak
latexrelease)\kernel@make@fragile\nonfrenchspacing
latexrelease)\kernel@make@fragile\obeylines
latexrelease) \kernel@make@fragile\obeyspaces
latexrelease)\kernel@make@fragile\slash
latexrelease)\kernel@make@fragile\smallbreak
latexrelease) \kernel@make@fragile\strut
latexrelease)\kernel@make@fragile\underbar
latexrelease

latexrelease) \EndIncludeInRelease

*2ekernel)

793
794
795
796
797
798
799
800
801

802

Globally add to the end of a macro.

203 \long\def\g@addto®macro#1#2{/
g4 \begingroup

805 \toks@\expandafter{#1#2}/,
806 \xdef#1{\the\toks@}/,

g7 \endgroup}

(End definition for \g@addto@macro. This function is documented on page 77.)

s0s {/2ekernel)

File f: 1tdefns.dtx Date: 2020/09/25 Version v1.5n 98

\NewHook

File g
Ithooks.dtx

Contents

1 Introduction

Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface

The hook management system is offered as a set of CamelCase commands for traditional
IWTEX 2¢ packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of IXTEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

2.1 KETEX 2¢ interfaces
2.1.1 Declaring hooks and using them in code

With two exceptions, hooks have to be declared before they can be used. The exceptions
are hooks in environments (i.e., executed at \begin and \end) and hooks run when
loading files, e.g. before and after a package is loaded, etc. Their hook names depend on
the environment or the file name and so declaring them beforehand is difficult.

\NewHook {(hook)}

Creates a new (hook). If this is a hook provided as part of a package it is suggested
that the (hook) name is always structured as follows: (package-name)/{hook-name). If
necessary you can further subdivide the name by adding more / parts. If a hook name
is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

File g: 1thooks.dtx 99

\NewReversedHook

\NewMirroredHookPair

\UseHook

\UseOneTimeHook

\NewReversedHook {(hook)}

Like \NewHook declares a new (hook). the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewMirroredHookPair {(hook-1)} {(hook-2)}

A shorthand for \NewHook{(hook-1)}\NewReversedHook{(hook-2)}.
The (hooks) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\UseHook {(hook)}

Execute the hook code inside a command or environment.

Before \begin{document} the fast execution code for a hook is not set up, so in
order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\UseOneTimeHook {(hook)}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. Once we have passed that point adding to the
hook through a defined \(addto-cmd) command (e.g., \AddToHook or \AtBeginDocument,
etc.) would have no effect (as would the use of such a command inside the hook code it-
self). It is therefore customary to redefine \(addto-cmd) to simply process its argument,
i.e., essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

FMi: Maybe add an error version as well?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

File g: 1thooks.dtx 100

\AddToHook

\RemoveFromHook

2.1.2 Updating code for hooks

\AddToHook {(hook)}[{(label)]l{({code)}

Adds (code) to the (hook) labeled by (label). If the optional argument (label) is not
provided, if \AddToHook is used in a package/class, then the current package/class name
is used, otherwise top-level is used (see section 2.1.3).

If there already exists code under the (label) then the new (code) is appended to the
existing one (even if this is a reversed hook). If you want to replace existing code under
the (label), first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared later then obviously the added (code) will never be executed. This allows for
hooks to work regardless of package loading order and enables packages to add to hook of
other packages without worrying whether they are actually used in the current document.
See section 2.1.5.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\RemoveFromHook {(hook)}[(label)]

Removes any code labeled by (label) from the (hook). If the optional argument (label) is
not provided, if \AddToHook is used in a package/class, then the current package/class
name is used, otherwise top-level is used.

If the optional argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

In contrast to the voids relationship between two labels in a \DeclareHookrule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/before}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}

\RemoveFromHook{env/quote/before}
. now back to normal for further quotes

Note that you can’t cancel the setting with
\AddToHook{env/quote/before}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means to font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

File g: 1thooks.dtx 101

\AddToHookNext

\AddToHookNext {(hook)}{(code)}

Adds (code) to the next invocation of the (hook). The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.
Using the declaration is a global operation, i.e., the code is not lost, even if the
declaration is used inside a group and the next invocation happens after the group. If
the declaration is used several times before the hook is executed then all code is executed
in the order in which it was declared.?
It is possible to nest declarations using the same hook (or different hooks), e.g.,

\AddToHookNext{(hook)}{{code-1)\AddToHookNext{(hook)}{(code-2)}}

will execute (code-1) next time the (hook) is used and at that point puts (code-2) into
the (hook) so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.5.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.3 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a (label)
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the (label).

Using an explicit (label) is only necessary in very specific situations, e.g., if you want
to add several chunks of code into a single hook and have them placed in different parts
of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same (label) throughout the sub-packages in order to
avoid that the labels change if you internally reorganize your code.

Except for \UseHook, \UseOneTimeHook, \IfHookEmptyTF, and \IfHookExistsTF
(and their expl3 interfaces \hook_use:n, \hook_use_once:n, \hook_if_empty:nTF, and
\hook_if_exist:nTF), all (hook) and (label) arguments are processed in the same way:
first, spaces are trimmed around the argument, then it is fully expanded until only
character tokens remain. If the full expansion of the (hook) or (label) contains a non-
expandable non-character token, a low-level TEX error is raised (namely, the (hook) is
expanded using TEX’s \csname. .. \endcsname, as such, Unicode characters are allowed
in (hook) and (label) arguments). The arguments of \UseHook and \UseOneTimeHook
are processed much in the same way except that spaces are not trimmed around the
argument, for better performance.

It is not enforced, but highly recommended that the hooks defined by a package, and
the (labels) used to add code to other hooks contain the package name to easily identify
the source of the code chunk and to prevent clashes. This should be the standard practice,
so this hook management code provides a shortcut to refer to the current package in the
name of a (hook) and in a (label). If (hook) name or (label) consist just of a single dot
(.), or starts with a dot followed by a slash (./) then the dot denotes the (default label)
(usually the current package or class name—see \DeclareDefaultHookLabel). A “.” or
“./” anywhere else in a (hook) or in (label) is treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

2There is no mechanism to reorder such code chunks (or delete them).

File g: 1thooks.dtx 102

\DeclareDefaultHookLabel

\NewHook {./hook}

\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./subl{code}
\DeclareHookRule{begindocument}{.}{before}{babel}

\AddToHook {file/after/foo.tex}{code}

are equivalent to:

\NewHook {mypackage/hook}

\AddToHook {mypackage/hook}[mypackage]{code}

\AddToHook {mypackage/hook} [mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/after/foo.tex}{code} % unchanged

The (default label) is automatically set to the name of the current package or class
(using \@currname). If \@currname is not set (because the hook command is used outside
of a package, or the current file wasn’t loaded with \usepackage or \documentclass),
then the top-level is used as the (default label).

This syntax is available in all (label) arguments and most (hook), both in the BTEX 22
interface, and the KTEX3 interface described in section 2.2.

Note, however, that the replacement of . by the (default label) takes place when the
hook command is executed, so actions that are somehow executed after the package ends
will have the wrong (default label) if the dot-syntax is used. For that reason, this syntax is
not available in \UseHook (and \hook_use:n) because the hook is most of the time used
outside of the package file in which it was defined. This syntax is also not available in the
hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF) and \IfHookExistsTF
(and \hook_if_exist:nTF) because these conditionals are used in some performance-
critical parts of the hook management code, and because they are usually used to refer
to other package’s hooks, so the dot-syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate it in logical
parts, but still use the main package name as (label), then the (default label) can be set
using \DeclareDefaultHookLabel:

\DeclareDefaultHookLabel {(default label)}

Sets the (default label) to be used in (label) arguments. If \DeclareDefaultHookLabel
is not used in the current package, \@currname is used instead. If \@currname is not set,
the code is assumed to be in the main document, in which case top-level is used.

The effect of \DeclareDefaultHookLabel holds for the current file, and is reset to
the previous value when the file is closed.

2.1.4 Defining relations between hook code

The default assumption is that code added to hooks by different packages is independent
and the order in which it is executed is irrelevant. While this is true in many case it is
obviously false in many others.

Before the hook management system was introduced packages had to take elaborate
precaution to determine of some other package got loaded as well (before or after) and
find some ways to alter its behavior accordingly. In addition is was often the user’s
responsibility to load packages in the right order so that code added to hooks got added
in the right order and some cases even altering the loading order wouldn’t resolve the
conflicts.

File g: 1thooks.dtx 103

\DeclareHookRule

With the new hook management system it is now possible to define rules (i.e., re-
lationships) between code chunks added by different packages and explicitly describe in
which order they should be processed.

\DeclareHookRule {(hook)}{(labell)}{(relation)}{(label2)}

Defines a relation between (labell) and (label2) for a given (hook). If (hook) is 7?7 this
defines a default relation for all hooks that use the two labels, i.e., that have chunks of
code labeled with (labell) and (label2). Rules specific to a given hook take precedence
over default rules that use 7?7 as the (hook).

Currently, the supported relations are the following:

before or < Code for (labell) comes before code for (label2).

after or > Code for (labell) comes after code for (label2).

incompatible-warning Ounly code for either (labell) or (label2) can appear for that hook (a way to say

that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a KTEX error is raised, and

the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for (labell) overwrites code for (label2). More precisely, code for (label2) is

dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for (labell) and (label2) is irrelevant. This rule is there to undo

\ClearHookRule

\DeclareDefaultHookRule

an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookrule overwrites any previous delcaration.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\ClearHookRule{(hook)}{(labell)}{(label2)}

Syntactic sugar for saying that (labell) and (label2) are unrelated for the given (hook).

\DeclareDefaultHookRule{(labell)}{(relation)}{(label2)}

This sets up a relation between (labell) and (label2) for all hooks unless overwritten by
a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

Declaring default rules is only supported in the document preamble.?

The (label) can be specified using the dot-syntax to denote the current package name.
See section 2.1.3.

3Trying to do so, e.g., via \DeclareHookRule with ?? has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

File g: 1thooks.dtx 104

\IfHookEmptyTF *

\IfHookExistsTF x

2.1.5 Querying hooks
Simpler data types, like token lists, have three possible states; they can:

e exist and be empty;
e exist and be non-empty; and
e mnot exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: they have four possible states. A hook may exist or
not, and either way it may or may not be empty. This means that even a hook that
doesn’t exist may be non-empty.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool. A hook is said to exist when it was declared with \NewHook or
some variant thereof.

\IfHookEmptyTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookExistsTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

Generic hooks are declared at the time code is added to them, so the result of
\hook_if_exist:n will change once code is added to said hook (unless the hook was
previously declared).

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

FMi: Would be helpful if we provide some use cases

2.1.6 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

File g: 1thooks.dtx 105

\ShowHook
\LogHook

\DebugHooks0On
\DebugHooks0ff

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

\hook_use:n

\ShowHook {(hook)}

Displays information about the (hook) such as
« the code chunks (and their labels) added to it,
e any rules set up to order them,
e the computed order in which the chunks are executed,
« any code executed on the next invocation only.

\LogHook prints the information to the .log file, and \ShowHook prints them to the
terminal /command window and starts TEX’s prompt (only if \errorstopmode) to wait
for user action.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.7 Debugging hook code

\DebugHooks0On

Turn the debugging of hook code on or off. This displays changes made to the hook data
structures. The output is rather coarse and not really intended for normal use.

2.2 L3 programming layer (expl3) interfaces

This is a quick summary of the KTEX3 programming interfaces for use with packages
written in expl3. In contrast to the TEX 2¢ interfaces they always use mandatory
arguments only, e.g., you always have to specify the (label) for a code chunk. We therefore
suggest to use the declarations discussed in the previous section even in expl3 packages,
but the choice is yours.

\hook_new:n{(hook)}
\hook_new_pair:nn{(hook-1)}{(hook-2)}
Creates a new (hook) with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {(hook-2)} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_use:n {(hook)}

Executes the {(hook)} code followed (if set up) by the code for next invocation only, then
empties that next invocation code.
The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

File g: 1thooks.dtx 106

\hook_use_once:n

\hook_gput_code:nnn

\hook_gput_next_code:nn

\hook_gremove_code:nn

\hook_gset_rule:nnnn

\hook_use_once:n {(hook)}

Changes the {(hook)} status so that from now on any addition to the hook code is
executed immediately. Then execute any {(hook)} code already set up.

FMi: better L3 name?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_gput_code:nnn {(hook)} {(label)} {(code)}

Adds a chunk of (code) to the (hook) labeled (label). If the label already exists the (code)
is appended to the already existing code.

If code is added to an external (hook) (of the kernel or another package) then the
convention is to use the package name as the (label) not some internal module name or
some other arbitrary string.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gput_next_code:nn {(hook)} {(code)}

Adds a chunk of (code) for use only in the next invocation of the (hook). Once used it is
gone.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed.

Thus if one needs to undo what the standard does one has to do that as part of
(code).

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_gremove_code:nn {(hook)} {(label)}

Removes any code for (hook) labeled (label).

If the code for that (label) wasn’t yet added to the (hook), an order is set so that
when some code attempts to add that label, the removal order takes action and the code
is not added.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gset_rule:nnnn {(hook)} {(labell)} {(relation)} {(label2)}

Relate (labell) with (label2) when used in (hook). See \DeclareHookRule for the allowed
(relation)s. If (hook) is 7?7 a default rule is specified.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3. The dot-syntax is parsed in both (label) arguments,
but it usually makes sense to be used in only one of them.

File g: 1thooks.dtx 107

*

\hook_if_empty_p:n
\hook_if_empty:nTF x

*

\hook_if_exist_p:n
\hook_if_exist:nTF x

\hook_show:n
\hook_log:n

\hook_debug_on:
\hook_debug_off:

\hook_if_empty:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_if_exist:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

Generic hooks are declared at the time code is added to them, so the result of
\hook_if_exist:n will change once code is added to said hook (unless the hook was
previously declared).

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_show:n {(hook)}

Displays information about the (hook) such as
o the code chunks (and their labels) added to it,
e any rules set up to order them,
o the computed order in which the chunks are executed,
e any code executed on the next invocation only.

\hook_log:n prints the information to the .log file, and \hook_show:n prints them
to the terminal /command window and starts TEX’s prompt (only if \errorstopmode) to
wait for user action.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_debug_on:
Turns the debugging of hook code on or off. This displays changes to the hook data.

2.3 On the order of hook code execution

Chunks of code for a (hook) under different labels are supposed to be independent if there
are no special rules set up that define a relation between the chunks. This means that
you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}

\AddToHook{myhook} [packageA] {\typeout{A}}
\AddToHook{myhook} [packageB] {\typeout{B}}
\AddToHook{myhook} [packageC] {\typeout{C}}

File g: 1thooks.dtx 108

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

The hook ’myhook’:

Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}

Extra code next invocation:

Rules:
Execution order:
packageA, packageB, packageC

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, or example, you want to replace the code chunk for packagel, e.g.,

\RemoveFromHook{myhook} [packageA]
\AddToHook{myhook} [packageA] {\typeout{A alt}}

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}
instead of the previous lines we get

The hook ’myhook’:
Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}
Extra code next invocation:
Rules:
packageA|packageB with relation before
Execution order (after applying rules):
packageA, packageC, packageB

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{label-3}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules
that partially or fully define the order (in which you can rely on them being fulfilled).

File g: 1thooks.dtx 109

2.4 The use of “reversed” hooks

You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example*, suppose there is a package
adding the following:

\AddToHook{env/quote/beforel} [package-1]{\begin{itshape}}
\AddToHook{env/quote/after} [package-1]{\end{itshapel}}

As a result, all quotes will be in italics. Now suppose further that the user wants the
quotes also in blue and therefore adds:

\usepackage{color}
\AddToHook{env/quote/before}{\begin{color}{blue}}
\AddToHook{env/quote/after} {\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, top-level
(or vice versa) and as a result, would get:

\begin{itshape}\begin{color}{blue} ...
\end{itshape}\end{color}

and an error message that \begin{color} ended by \end{itshape}. With env/quote/after
declared as a reversed hook the execution order is reversed and so all environments are
closed in the correct sequence and \ShowHook would give us the following output:

The hook ’env/quote/after’:
Code chunks:
package-1 -> \end {itshape}
top-level -> \end {color}
Extra code next invocation:

Rules:
Execution order (after reversal):
top-level, package-1

The reversal of the execution order happens before applying any rules, so if you
alter the order you will probably have to alter it in both hooks, not just in one, but that
depends on the use case.

4there are simpler ways to achieve the same effect.

File g: 1thooks.dtx 110

2.5 Difference between “normal” and “one-time” hooks

When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the (code) immediately.

This has some consequences one needs to be aware of:

o If {code) is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new (code) will never be
executed.

o In contrast if that happens with a one-time hook the (code) is executed immediately.
In particular this means that construct such as

\AddToHook{myhook}
{ (code-1) \AddToHook{myhook}{{code-2)} (code-3) }

works for one-time hooks® (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook} is executed it would

o execute (code-1),

o then execute \AddToHook{myhook}{code-2} which adds the code chunk (code-2)
to the hook for use on the next invocation,

o and finally execute (code-3).

The second time \UseHook is called it would execute the above and in addition (code-2)
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of (code-2) is added and so that code chunk is executed
(# of invocations) — 1 times.

2.6 Private ETEX kernel hooks

There are a few places where it is absolutely essential for IATEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document un-
necessary slow, because there has to be sorting even through the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break KTEX).

For that reason such code is not using the hook management, but instead private
kernel commands directly before or after a public hook with the following naming con-
vention: \@kernel@before@(hookname) or \@kernel@after@(hookname). For example,
in \enddocument you find

5This is sometimes used with \AtBeginDocument which is why it is supported.

File g: 1thooks.dtx 111

\UseHook{enddocument}/,
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.”

2.7 Legacy ETEX 2¢ interfaces

TEX 2¢ offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management several additional hooks have been added to ETEX
and more will follow. See the next section for what is already available.

\AtBeginDocument \AtBeginDocument [(label)] {(code)}

If used without the optional argument (label), it works essentially like before, i.e., it is
adding (code) to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level if done outside of
a package or class or with the package/class name if called inside such a file.

This way one can add further code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after the top-level code. When using the optional argument the call is
equivalent to running \AddToHook {begindocument} [{label)] {(code)}.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtEndDocument \AtEndDocument [(label)] {{code)}

Like \AtBeginDocument but for the enddocument hook.

\AtBeginDvi \AtBeginDvi [(Iabel)] {(code)}

This hook is discussed in conjunction with the shipout hooks.

The few hooks that existed previously in ITEX 2¢ used internally commands such as
\@begindocumenthook and packages sometimes augemented them directly rather than
working through \AtBeginDocumement. For that reason there is currently support for
this, that is, if the system detects that such an internal legacy hook command contains
code it adds it to the new hook system under the label legacy so that it doesn’t get lost.

However, over time the remaining cases of direct usage need updating because in one
of the future release of KTEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

2.8 FKETEX 2 commands and environments augmented by hooks

intro to be written

6As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

File g: 1thooks.dtx 112

\BeforeBeginEnvironment

\AtBeginEnvironment

\AtEndEnvironment

\AfterEndEnvironment

2.8.1 Generic hooks for all environments
Every environment (env) has now four associated hooks coming with it:

env/(env)/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/(env)/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the second argument of \newenvironment).
Its scope is the environment body.

env/(env)/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the third argument of \newenvironment).

env/(env)/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.

The hook is implemented as a reversed hook so if two packages add code to
env/{env)/before and to env/(env)/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Generic environment hooks are never one-time hooks even with environments that are
supposed to appear only once in a document.” In contrast to other hooks there is also
no need to declare them using \NewHook.

The hooks are only executed if \begin{(env)} and \end{(env)} is used. If the
environment code is executed via low-level calls to \(env) and \end(env) (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.

\BeforeBeginEnvironment [(label)] {(code)}

This declaration adds to the env/(env)/before hook using by default the current package
or class name as a label or top-level if used in the document directly.

\AtBeginEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/begin hook.

\AtEndEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/end hook.

\AfterEndEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/after hook.

"Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

File g: 1thooks.dtx 113

2.8.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.

begindocument This hook is added to when using \AtBeginDocument and it is executed
after the .aux file as be read in and most initialization are done, so they can be
altered and inspected by the hook code. It is followed by a small number of further
initializations that shouldn’t be altered and are therefore coming later.

The hook should not be used to add material for typesetting as we are still in
ETEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

2.8.3 Hooks provided by \end{document}

TEX 2¢ always provided \AtEndDocument to add code to the execution of \end{document}
just in front of the code that is normally executed there. While this was a big improve-
ment over the situation in I¥TEX 2.09 it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.

When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.

File g: 1thooks.dtx 114

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data). It is also the correct place to set up any
testing code to be run when the .aux file is re-read in the next step.

After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \1listfiles.

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.

This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,
IXTEX needs to be run several times, so initially it might get executed on the wrong page.
See section 2.8.4 for where to find the details.

It is in also possible to use the generic env/document/end hook which is execuded
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time IXTEX has finished the document processing.

2.8.4 Hooks provided \shipout operations
There are several hooks and mechanisms added to IXTEX’s process of generating pages.
These are documented in 1tshipout-doc.pdf or with code in 1tshipout-code.pdf.

2.8.5 Hooks provided by file loading operations

There are several hooks added to KTEX’s process of loading file via its high-level
interfaces such as \input, \include, \usepackage, etc. These are documented in
1tfilehook-doc.pdf or with code in 1tfilehook-code.pdf.

File g: 1thooks.dtx 115

\g__hook_debug_bool

2.8.6 Hooks provided in NFSS commands

In languages that need to support for more than one script in parallel (and thus several
sets of fonts), e.g., Latin and Japanese fonts, NFSS font commands, such as \sffamily,
need to switch both the Latin family to “Sans Serif” and in addition alter a second set
of fonts.

To support this several NFSS have hooks in which such support can be added.

rmfamily After \rmfamily has done its initial checks and prepared a any font series
update this hook is executed and only afterwards \selectfont.

sffamily Like the rmfamily hook but for the \sffamily command.
ttfamily Like the rmfamily hook but for the \ttfamily command.

normalfont The \normalfont command resets font encoding family series and shape to
their document defaults. It then executes this hook and finally calls \selectfont.

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the meta families (rm/sf/tt) and the meta series
(bf/md). If the NFSS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user its
new value is used to set the bf series defaults for the meta families (rm/sf/tt) when
\bfseries is called. In the bfseries/defaults hook further adjustments can be
made in this case. This hook is only executed if such a change is detected. In
contrast the bfseries hook is always executed just before \selectfont is called
to change to the new series.

mdseries/defaults, mdseries These two hooks are like the previous ones but used in
\mdseries command.

3 The Implementation

3.1 Loading further extensions
1 (@@=hook)

At the moment the whole module rolls back in one go, but if we make any modifi-
cations in later releases this will then need splitting.
> (*2ekernel | latexrelease)
s (latexrelease) \IncludeInRelease{2020/10/01}}
4+ (latexrelease) {\NewHook}{The hook management}}

s \ExplSyntaxOn
3.2 Debugging

Holds the current debugging state.
6 \bool_new:N \g__hook_debug_bool

(End definition for \g__hook_debug_bool.)

File g: 1thooks.dtx 116

\hook_debug_on: Turns debugging on and off by redefining __hook_debug:n.

\hook_debug_off: 7 \cs_new_eq:NN __hook_debug:n \use_none:n
__hook_debug:n ¢ \cs_new_protected:Npn \hook_debug_on:
__hook_debug_gset: s A

10 \bool_gset_true:N \g__hook_debug_bool
11 __hook_debug_gset:

12 }

13 \cs_new_protected:Npn \hook_debug_off:

14 {

15 \bool_gset_false:N \g__hook_debug_bool

16 __hook_debug_gset:

7}

12 \cs_new_protected:Npn __hook_debug_gset:

19 {

20 \cs_gset_protected:Npx __hook_debug:n ##1
21 { \bool_if:NT \g__hook_debug_bool {##1} }
22 }

(End definition for \hook_debug_on: and others. These functions are documented on page 108.)

3.3 Borrowing from internals of other kernel modules

__hook_str_compare:nn Private copy of __str_if_eq:nn

>3 \cs_new_eq:NN __hook_str_compare:nn __str_if_eq:nn

(End definition for __hook_str_compare:nn.)

3.4 Declarations

\1__hook_tmpa_bool Scratch boolean used throughout the package.
22 \bool_new:N \1__hook_tmpa_bool

(End definition for \1__hook_tmpa_bool.)

\1__hook_return_tl Scratch variables used throughout the package.

\1__hook_tmpa_tl ,; \tl new:N \1__hook_return tl
\1__hook_tmpb_tl 5 \tl_new:N \1__hook_tmpa_tl
>7 \tl_new:N \1__hook_tmpb_tl

(End definition for \1__hook_return_t1, \1__hook_tmpa_tl, and \1__hook_tmpb_t1.)

\g__hook_all_seq In a few places we need a list of all hook names ever defined so we keep track if them in
this sequence.
s \seq_new:N \g__hook_all_seq

(End definition for \g__hook_all_seq.)

\g__hook_removal list_prop A token list to hold delayed removals.
20 \tl_new:N \g__hook_removal_list_tl

(End definition for \g__hook_removal_list_prop.)

\1__hook_cur_hook_t1l Stores the name of the hook currently being sorted.
30 \tl_new:N \1__hook_cur_hook_t1l

File g: 1thooks.dtx 117

(End definition for \1__hook_cur_hook_t1.)

\1__hook_work_prop A property list holding a copy of the \g__hook_(hook)_code_prop of the hook being
sorted to work on, so that changes don’t act destructively on the hook data structure.

s1 \prop_new:N \1__hook_work_prop
(End definition for \1__hook_work_prop.)
\g hook execute immediately prop List of hooks that from no on should not longer receive code.
s> \prop_new:N \g__hook_execute_immediately_prop
(End definition for \g__hook_execute_immediately_prop.)
\g__hook_used_prop All hooks that receive code (for use in debugging display).
53 \prop_new:N \g__hook_used_prop

(End definition for \g__hook_used_prop.)

\g__hook_hook_curr_name_t1 Default label used for hook commands, and a stack to keep track of packages within
\g__hook_name_stack_seq packages.

s \tl_new:N \g__hook_hook_curr_name_tl
35 \seq_new:N \g__hook_name_stack_seq

(End definition for \g__hook_hook_curr_name_t1 and \g__hook_name_stack_seq.)
__hook_tmp:w Temporary macro for generic usage.
36 \cs_new_eq:NN __hook_tmp:w ?

(End definition for __hook_tmp:w.)

\tl_gremove_once:Nx Some variants of expl3 functions.
\tl_show:x

\t1_log:x FMi: should be moved to expl3

;7 \cs_generate_variant:Nn \tl_gremove_once:Nn { Nx }
55 \cs_generate_variant:Nn \tl_show:n { x }
50 \cs_generate_variant:Nn \tl_log:n { x }

(End definition for \t1_gremove_once:Nx, \t1l_show:x, and \t1_log:x. These functions are documented
on page ?77.)

\s__hook_mark Scan mark used for delimited arguments.

20 \scan_new:N \s__hook_mark

(End definition for \s__hook_mark.)

File g: 1thooks.dtx 118

\g__hook_..._code_prop
__hook~...
__hook_next~...

\hook_new:n

3.5 Providing new hooks

Hooks have a (name) and for each hook we have to provide a number of data structures.
These are

\g__hook_(name)_code_prop A property list holding the code for the hook in separate
chunks. The keys are by default the package names that add code to the hook, but
it is possible for packages to define other keys.

\g__hook_(name)_rule_(labell)|(label2)_t1l A token list holding the relation be-
tween (labell) and (label2) in the (name). The (labels) are lexically (reverse) sorted
to ensure that two labels always point to the same token list. For global rules, the
(name) is 77.

__hook (name) The code that is actually executed when the hook is called in the doc-
ument is stored in this token list. It is constructed from the code chunks applying
the information. This token list is named like that so that in case of an error inside
the hook, the reported token list in the error is shorter, and to make it simpler to
normalize hook names in __hook_make_name:n.

\g__hook_(name)_reversed_t1l Some hooks are “reversed”. This token list stores a - for
such hook so that it can be identified. The - character is used because (reversed)1l
is +1 for normal hooks and —1 for reversed ones.

__hook_next (name) Finally there is extra code (normally empty) that is used on the
next invocation of the hook (and then deleted). This can be used to define some
special behavior for a single occasion from within the document. This token list
follows the same naming scheme than the main __hook (name) token list. It is
called __hook_next (name) rather than __hook next_(name) because otherwise
a hook whose name is next_(name) would clash with the next code-token list of
the hook called (name).

(End definition for \g__hook_..._code_prop, __hook~..., and __hook_next~....)

The \hook_new:n declaration declare a new hook and expects the hook (name) as its
argument, e.g., begindocument.

21 \cs_new_protected:Npn \hook_new:n #1

22 { __hook_normalize_hook_args:Nn __hook_new:n {#1} }

23 \cs_new_protected:Npn __hook_new:n #1

44 {

We check for one of the internal data structures and if it already exists we complain.
45 \hook_if_exist:nTF {#1}
46 { \msg_error:nnn { hooks } { exists } {#1} }

Otherwise we add the hook name to the list of all hooks and allocate the necessary data
structures for the new hook.

47 {
48 \seq_gput_right:Nn \g__hook_all_seq {#1}

This is only used by the actual code of the current hook, so declare it normally:
49 \tl_new:c { __hook~#1 }

Now ensure that the base data structure for the hook exists:
50 __hook_declare:n {#1}

File g: 1thooks.dtx 119

__hook_declare:n

\hook_new_reversed:n
__hook_new_reversed:n

\hook_new_pair:nn

The \g__hook_(hook)_labels_clist holds the sorted list of labels (once it got sorted).
This is used only for debugging.

51 \clist_new:c {g__hook_#1_labels_clist}

Some hooks should reverse the default order of code chunks. To signal this we have a
token list which is empty for normal hooks and contains a - for reversed hooks.

52 \tl_new:c { g__hook_#1_reversed_tl }

The above is all in L3 convention, but we also provide an interface to legacy ITEX 2¢
hooks of the form \@...hook, e.g., \@begindocumenthook. there have been a few of
them and they have been added to using \g@addto@macro. If there exists such a macro
matching the name of the new hook, i.e., \@(hook-name)hook and it is not empty then
we add its contents as a code chunk under the label legacy.

Warning: this support will vanish in future releases!

53 __hook_include_legacy_code_chunk:n {#1}

5

4
55 F
(End definition for \hook_new:n. This function is documented on page 106.)

This function declares the basic data structures for a hook without actually declaring the
hook itself. This is needed to allow adding to undeclared hooks. Here it is unnecessary
to check whether both variables exist, since both are declared at the same time (either
both exist, or neither).

s \cs_new_protected:Npn __hook_declare:n #1

st {

58 __hook_if_exist:nF {#1}

59 {

60 \prop_new:c { g__hook_#1_code_prop }
61 \tl_new:c { __hook_next~#1 }

62 }

63 }

(End definition for __hook_declare:n.)

Declare a new hook. The default ordering of code chunks is reversed, signaled by setting
the token list to a minus sign.

62 \cs_new_protected:Npn \hook_new_reversed:n #1

s { __hook_normalize_hook_args:Nn __hook_new_reversed:n {#1} }

66 \cs_new_protected:Npn __hook_new_reversed:n #1

67 {

68 __hook_new:n {#1}
If the hook already exists the above will generate an error message, so the next line should
be executed (but it is — too bad).

69 \tl_gset:cn { g__hook_#1_reversed_tl } { - }

0}

(End definition for \hook_new_reversed:n and __hook_new_reversed:n. This function is documented
on page 106.)

A shorthand for declaring a normal and a (matching) reversed hook in one go.

71 \cs_new_protected:Npn \hook_new_pair:nn #1#2
7 { \hook_new:n {#1} \hook_new_reversed:n {#2} }

File g: 1thooks.dtx 120

\

\

_hook_include_legacy code_chunk:n

__hook parse label default:n

(End definition for \hook_new_pair:nn. This function is documented on page 106.)

The KTEX legacy concept for hooks uses with hooks the following naming scheme in the
code: \@. . .hook.

If this macro is not empty we add it under the label legacy to the current hook and
then empty it globally. This way packages or classes directly manipulating commands
such as \@begindocumenthook still get their hook data added.

Warning: this support will vanish in future releases!

73 \cs_new_protected:Npn __hook_include_legacy_code_chunk:n #1

74 {
If the expl3 code is run with checking on then assigning or using non L3 names such as
\@enddocumenthook with expl3 functions will trigger warnings so we run this code with
debugging explicitly suspended.

75 \debug_suspend:
If the macro doesn’t exist (which is the usual case) then nothing needs to be done.

76 \tl_if_exist:cT { @#1ihook }
Of course if the legacy hook exists but is empty, there is no need to add anything under
legacy the legacy label.

77 {
78 \tl_if_empty:cF { @#1lhook }
79 {

80 \exp_args:Nnnv __hook_hook_gput_code_do:nnn {#1}

81 { legacy } { @#1hook }

Once added to the hook, we need to clear it otherwise it might get added again later if
the hook data gets updated.

82 \tl_gclear:c { @#lhook }

83 }

84 }
85 \debug_resume:

86 ¥

(End definition for __hook_include_legacy_code_chunk:n.)

3.6 Parsing a label

This macro checks if a label was given (not \c_novalue_t1), and if so, tries to parse the
label looking for a leading . to replace for \@currname. Otherwise __hook_currname_-
or_default:n is used to pick \@currname or the fallback value.

The default top-level is hard-coded here. It once was an argument, but it’s no
longer needed.

PhO: can’t remember why

¢7 \cs_new:Npn __hook_parse_label_default:n #1

88 {

89 \tl_if_novalue:nTF {#1}

90 { __hook_currname_or_default:n { top-level } }
91 {

92 \tl_trim_spaces_apply:nN {#1}

93 __hook_parse_dot_label:nn { top-level }

94 }

o5}

File g: 1thooks.dtx 121

(End definition for __hook_parse_label_default:n.)

__hook_parse_dot_label:nn Start by checking if the label is empty, which raises an error, and uses the fallback value.

__hook_parse_dot_label:nw If not, split the label at a ./, if any, and check if no tokens are before the ./, or if the

_ hook parse dot label cleanup:w only character is a .. If these requirements are fulfilled, the leading . is replaced with
_hook parse dot label amx:nw __hook_currname_or_default:n. Otherwise the label is returned unchanged.

9 \cs_new:Npn __hook_parse_dot_label:nn #1 #2

97 {

08 \tl_if_empty:nTF {#1}

99 {

100 \msg_expandable_error:nnn { hooks } { empty-label } {#2}
101 #2

102 T

103 {

104 \str_if_eq:nnTF {#1} { . }

105 { __hook_currname_or_default:n {#2} }

106 { __hook_parse_dot_label:nw {#2} #1 ./ \s__hook_mark }
107 }

108 }

100 \cs_new:Npn __hook_parse_dot_label:nw #1 #2 ./ #3 \s__hook_mark
110 {

111 \tl_if_empty:nTF {#2}

112 { __hook_parse_dot_label_aux:nw {#1} #3 \s__hook_mark }
113 {

114 \tl_if_empty:nTF {#3}

115 { __hook_make_name:n {#2} }

116 { __hook_parse_dot_label_cleanup:w #2 ./ #3 \s__hook_mark }
117 }

118 }

119 \cs_new:Npn __hook_parse_dot_label_cleanup:w #1 ./ \s__hook_mark {#1}
120 \cs_new:Npn __hook_parse_dot_label_aux:nw #1 #2 ./ \s__hook_mark
121 { __hook_currname_or_default:n {#1} / __hook_make_name:n {#2} }

(End definition for __hook_parse_dot_label:nn and others.)

_hook_currnane or default:n Uses \g__hook_hook_curr_name_t1 if it is set, otherwise tries \@currname. If neither is
set, uses the fallback value #1 (usually top-level).

122 \cs_new:Npn __hook_currname_or_default:n #1

123 {

124 \tl_if_empty:NTF \g__hook_hook_curr_name_tl
125 {

126 \tl_if_empty:NTF \@currname

127 { __hook_make_name:n {#1} }

128 { \@currname }

129 }

130 { \g__hook_hook_curr_name_tl }

131 }

(End definition for __hook_currname_or_default:n.)

__hook_make name:n Provides a standard sanitisation of a hook’s name. It uses \cs:w to build a control
__hook_make_name:w sequence out of the hook name, then uses \cs_to_str:N to get the string representation
of that, without the escape character. \cs:w-based expansion is used instead of e-based
because Unicode characters don’t behave well inside \expanded. The macro adds the

File g: 1thooks.dtx 122

__hook normalize hook args:ln
__hook normalize hook args:Nmn
__hook normalize hook rule args:Nnnnn

__hook normalize hook args aux:ln

\hook_gput_code:nnn
__hook_gput_code:nnn
__hook_gput_code:nxv

__hook_hook_gput_code_do:nnn

__hook~ prefix to the hook name to reuse the hook’s code token list to build the csname
and avoid leaving “public” control sequences defined (as \relax) in TeX’s memory.

132 \cs_new:Npn __hook_make_name:n #1

133 {

134 \exp_after:wN \exp_after:wN \exp_after:wN __hook_make_name:w
135 \exp_after:wN \token_to_str:N \cs:w __hook~ #1 \cs_end:

136 }

137 \exp_last_unbraced:NNNNo
132 \cs_new:Npn __hook_make_name:w #1 \tl_to_str:n { __hook~ } { }

(End definition for __hook_make_name:n and __hook_make_name:w.)

Standard route for normalising hook and label arguments. The main macro does the
entire operation within a group so that csnames made by __hook_make_name:n are
wiped off before continuing. This means that this function cannot be used for \hook_-
use:n!

130 \cs_new_protected:Npn __hook_normalize_hook_args_aux:Nn #1 #2

140 {

141 \group_begin:

142 \use:e

143 {

144 \group_end:

145 \exp_not:N #1 #2

146 }

147 }

1s \cs_new_protected:Npn __hook_normalize_hook_args:Nn #1 #2
149 {

150 __hook_normalize_hook_args_aux:Nn #1

151 { { __hook_parse_label_default:n {#2} } }
152 }

153 \cs_new_protected:Npn __hook_normalize_hook_args:Nnn #1 #2 #3

154 {

155 __hook_normalize_hook_args_aux:Nn #1

156 {

157 { __hook_parse_label_default:n {#2} }
158 { __hook_parse_label_default:n {#3} }
159 }

160 }

161 \cs_new_protected:Npn __hook_normalize_hook_rule_args:Nnnnn #1 #2 #3 #4 #5
162 {

163 __hook_normalize_hook_args_aux:Nn #1

164 {

165 { __hook_parse_label_default:n {#2} }
166 { __hook_parse_label_default:n {#3} }
167 { \tl_trim_spaces:n {#4} }

168 { __hook_parse_label_default:n {#5} }
169 }

170 }

(End definition for __hook_normalize_hook_args:Nn and others.)

With \hook_gput_code:nnn{(hook)}{(label)}{(code)} a chunk of {code) is added to an
existing (hook) labeled with (label).

171 \cs_new_protected:Npn \hook_gput_code:nnn #1 #2

File g: 1thooks.dtx 123

172 { __hook_normalize_hook_args:Nnn __hook_gput_code:nnn {#1} {#2} }

173 \cs_new_protected:Npn __hook_gput_code:nnn #1 #2 #3

174 {

First check if the hook was used as a one-time hook:

175 \prop_if_in:NnTF \g__hook_execute_immediately_prop {#1}

176 {#3}

177 {

Then check if the current (hook)/(label) pair was marked for removal, in which case __-
hook_unmark_removal:nn is used to remove that mark (once). This may happen when
a package removes code from another package which was not yet loaded: the removal
order is stored, and at this stage it is executed by not adding to the hook.

178 __hook_if_marked_removal:nnTF {#1} {#2}

179 { __hook_unmark_removal:nn {#1} {#2} }

180 {

If no removal is queued, we are free to add. Start by checking if the hook exists.
181 \hook_if_exist:nTF {#1}

If so we simply add (or append) the new code to the property list holding different chunks
for the hook. At \begin{document} this is then sorted into a token list for fast execution.
182 {
183 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}
However, if there is an update within the document we need to alter this execution code
which is done by __hook_update_hook_code:n. In the preamble this does nothing.
184 __hook_update_hook_code:n {#1}
185 }
If the hook does not exist, however, before giving up try to declare it as a generic
hook, if its name matches one of the valid patterns.
186 { __hook_try_declaring_generic_hook:nnn {#1} {#2} {#3} }
187 }
188 }
189 }
100 \cs_generate_variant:Nn __hook_gput_code:nnn { nxv }
This macro will unconditionally add a chunk of code to the given hook.
101 \cs_new_protected:Npn __hook_hook_gput_code_do:nnn #1 #2 #3
192 {
However, first some debugging info if debugging is enabled:

193 __hook_debug:n{\iow_term:x{***x~ Add~ to~

194 \hook_if_exist:nF {#1} { undeclared~ }
105 hook~ #1~ (#2)

196 \on@line\space <-~ \tl_to_str:n{#3}} }

Then try to get the code chunk labeled #2 from the hook. If there’s code already there,
then append #3 to that, otherwise just put #3.

197 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl

198

199 \prop_gput:cno { g__hook_#1_code_prop } {#2}

200 { \1__hook_return_tl #3 }

201 ¥

202 { \prop_gput:cnn { g__hook_#1_code_prop } {#2} {#3} }
20 }

File g: 1thooks.dtx 124

__hook_gput undeclared_hook:nnn

__hook try declaring generic next hook:mn

- 50

__hook_try_declaring generic_hook:nNNnn
hook_try declaring generic hook split:nllinn
__hook try declaring generic hook:wnIF

(End definition for \hook_gput_code:nnn, __hook_gput_code:nnn, and __hook_hook_gput_code_-
do:nnn. This function is documented on page 107.)

Often it may happen that a package A defines a hook foo, but package B, that adds
code to that hook, is loaded before A. In such case we need to add code to the hook
before its declared.

200 \cs_new_protected:Npn __hook_gput_undeclared_hook:nnn #1 #2 #3
205 {

206 __hook_declare:n {#1}
207 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}
208 }

(End definition for __hook_gput_undeclared_hook:nnn.)

These entry-level macros just pass the arguments along to the common __hook_try_-
declaring_generic_hook:nNNnn with the right functions to execute when some action
is to be taken.

The wrapper __hook_try_declaring_generic_hook:nnn then defers \hook_-
gput_code:nnn if the generic hook was declared, or to __hook_gput_undeclared_-
hook:nnn otherwise (the hook was tested for existence before, so at this point if it isn’t
generic, it doesn’t exist).

The wrapper __hook_try_declaring_generic_next_hook:nn for next-execution
hooks does the same: it defers the code to \hook_gput_next_code:nn if the generic hook
was declared, or to __hook_gput_next_do:nn otherwise.

200 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nnn #1

210 {

211 __hook_try_declaring_generic_hook:nNNnn {#1}

212 \hook_gput_code:nnn __hook_gput_undeclared_hook:nnn

213 }

214 \cs_new_protected:Npn __hook_try_declaring_generic_next_hook:nn #1
215 {

216 __hook_try_declaring_generic_hook:nNNnn {#1}

217 \hook_gput_next_code:nn __hook_gput_next_do:nn
218 }

__hook_try_declaring_generic_hook:nNNnn now splits the hook name at the first /
(if any) and first checks if it is a file-specific hook (they require some normalization) using
__hook_if_file_hook:wTF. If not then check it is one of a predefined set for generic
names. We also split off the second component to see if we have to make a reversed hook.
In either case the function returns (true) for a generic hook and (false) in other cases.

210 \cs_new_protected:Npn __hook_try_declaring_ generic_hook:nNNnn #1

220 {

21 __hook_if_file_hook:wTF #1 / / \s__hook_mark

222 {

223 \exp_args:Ne __hook_try_declaring_generic_hook_split:nNNnn
224 { \exp_args:Ne __hook_file_hook_normalize:n {#1} }

225 }

226 { __hook_try_declaring_generic_hook_split:nNNnn {#1} }

227 }

25 \cs_new_protected:Npn __hook_try_declaring generic_hook_split:nNNnn #1 #2 #3
229 {

230 __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}

231 { #2 }

File g: 1thooks.dtx 125

__hook_if_file_hook_p:w
__hook_if_file_hook:wTF

232 { #3 } {#1}

233 }

23 \prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
235 #1 / #2 / #3 / #4 \scan_stop: #5 { TF }

236 {

237 \tl_if_empty:nTF {#2}

238 { \prg_return_false: }

239 {

240 \prop_if_in:NnTF \c__hook_generics_prop {#1}

241 {

242 \hook_if_exist:nF {#5} { \hook_new:n {#5} }

After having declared the hook we check the second component (for file hooks) or the
third component for environment hooks) and if it is on the list of components for which
we should have declared a reversed hook we alter the hook data structure accordingly.

243 \prop_if_in:NnTF \c__hook_generics_reversed_ii_prop {#2}
204 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

245 {

246 \prop_if_in:NnT \c__hook_generics_reversed_iii_prop {#3}
247 { \tl_gset:cn { g__hook_#5_reversed_tl1 } { - } }
248 }

Now that we know that the hook is declared we can add the code to it.

249 \prg_return_true:

250 }

251 { \prg_return_false: }

252 }

253 }

(End definition for __hook_try_declaring_generic_hook:nnn and others.)

__hook_if_file_hook:wTF checks if the argument is a valid file-specific hook (not, for
example, file/before, but file/before/foo.tex). If it is a file-specific hook, then it
executes the (true) branch, otherwise (false).

A file-specific hook is file/(position)/(name). If any of these parts don’t exist,
it is a general file hook or not a file hook at all, so the conditional evaluates to (false).
Otherwise, it checks that the first part is file and that the (position) is in the \c__-
hook_generics_file_prop.

A property list is used here to avoid having to worry with catcodes, because expl3’s
file name parsing turns all characters into catcode-12 tokens, which might differ from
hand-input letters.

s \prg_new_conditional:Npnn __hook_if_file_hook:w

255 #1 / #2 / #3 \s__hook_mark { TF }

256 {

257 \str_if_eq:nnTF {#1} { file }

258 {

250 \bool_lazy_or:nnTF

260 { \tl_if_empty_p:n {#3} }

261 { \str_if _eq_ p:nn {#3} { / } }
262 { \prg_return_false: }

263 {

264 \prop_if_in:NnTF \c__hook_generics_file_prop {#2}
265 { \prg_return_true: }

266 { \prg_return_false: }

File g: 1thooks.dtx 126

__hook file hook normalize:n
__hook_strip_double_slash:n
__hook_strip_double_slash:w

\c__hook_generics_prop

\c__hook_generics reversed ii_prop

\c__hook_generics _reversed iii prop

\c__hook_generics_file_prop

\hook_gremove_code:nn
__hook_gremove_code:nn

267 }

268 }
269 { \prg_return_false: }
270 }

(End definition for __hook_if_file_hook:wTF.)

When a file-specific hook is found, before being declared it is lightly normalized by
__hook_file_hook_normalize:n. The current implementation just replaces two con-
secutive slashes (//) by a single one, to cope with simple cases where the user did some-
thing like \def\input@path{{./mypath/}}, in which case a hook would have to be
\AddToHook{file/after/./mypath//file.tex}.

o1 \cs_new:Npn __hook_file_hook_normalize:n #1

o2 { __hook_strip_double_slash:n {#1} }

273 \cs_new:Npn __hook_strip_double_slash:n #1

272 { __hook_strip_double_slash:w #1 // \s__hook_mark }

275 \cs_new:Npn __hook_strip_double_slash:w #1 // #2 \s__hook_mark

276 {

217 \tl_if_empty:nTF {#2}

278 {# 1}

279 { __hook_strip_double_slash:w #1 / #2 \s__hook_mark }
280 }

(End definition for __hook_file_hook_normalize:n, __hook_strip_double_slash:n, and __hook_-
strip_double_slash:w.)

Property list holding the generic names. We don’t provide any user interface to this as
this is meant to be static.

env The generic hooks used in \begin and \end.
file The generic hooks used when loading a file

251 \prop_const_from_keyval:Nn \c__hook_generics_prop
282 {env=,file=,package=,class=,include=}

(End definition for \c__hook_generics_prop.)

Some of the generic hooks are supposed to use reverse ordering, these are the following
(only the second or third sub-component is checked):

253 \prop_const_from_keyval:Nn \c__hook_generics_reversed_ii_prop {after=,end=}

2ss \prop_const_from_keyval:Nn \c__hook_generics_reversed_iii_prop {after=}

255 \prop_const_from_keyval:Nn \c__hook_generics_file_prop {before=,after=}

(End definition for \c__hook_generics_reversed_ii_prop, \c__hook_generics_reversed_iii_prop,
and \c__hook_generics_file_prop.)

With \hook_gremove_code :nn{(hook)}{(label)} any code for (hook) stored under (label)
is removed.

256 \cs_new_protected:Npn \hook_gremove_code:nn #1 #2

27 { __hook_normalize_hook_args:Nnn __hook_gremove_code:nn {#1} {#2} }

s \cs_new_protected:Npn __hook_gremove_code:nn #1 #2

289 {

First check that the hook code pool exists. \hook_if_exist:nTF isn’t used here because
it should be possible to remove code from a hook before its defined (see section 2.1.5).

200 __hook_if_exist:nTF {#1}

File g: 1thooks.dtx 127

__hook_gremove_code_do:nn

__hook_mark_removal:nn

__hook_unmark_removal :nn

Then remove the chunk and run __hook_update_hook_code:n so that the execution
token list reflects the change if we are after \begin{document}.

291 {

202 \str_if_eq:nnTF {#2} {x}

203 { \prop_gclear:c { g__hook_#1_code_prop } }
294 {

Check if the label being removed exists in the code pool. If it does, just call __hook_-
gremove_code_do:nn to do the removal, otherwise mark it to be removed.

205 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl
206 { __hook_gremove_code_do:nn }

207 { __hook_mark_removal:nn }

208 {#1> {#2}

299 ¥

Finally update the code, if the hook exists.
300 \hook_if_ exist:nT {#1}
301 { __hook_update_hook_code:n {#1} }
302 T
If the code pool for this hook doesn’t exist it means that nothing tried to add to it
before, so we just queue this removal order for later.
303 { __hook_mark_removal:nn {#1} {#2} }
304 }

305 \cs_new_protected:Npn __hook_gremove_code_do:nn #1 #2
56 { \prop_gremove:cn { g__hook_#1_code_prop } {#2} }

(End definition for \hook_gremove_code:nn, __hook_gremove_code:nn, and __hook_gremove_code_-
do:nn. This function is documented on page 107.)

Marks (label) (#2) to be removed from (hook) (#1). The number of removals should be
fairly small, and \t1l_gremove_once:Nx is fairly efficient even for longer token lists, so
we use a single global token list, rather than one for each hook.

A hand-crafted token list is used here because property lists don’t hold repeated
items, so multiple usages of __hook_mark_removal:nn would be cancelled by a single
__hook_unmark_removal:nn.

307 \cs_new_protected:Npn __hook_mark_removal:nn #1 #2
308 {

309 \tl_gput_right:Nx \g__hook_removal_list_tl

310 { __hook_removal_tl:nn {#1} {#2} }

311 }

(End definition for __hook_mark_removal:nn.)

Unmarks (label) (#2) to be removed from (hook) (#1). \tl_gremove_once:Nx is used
rather than \t1l_gremove_all:Nx so that two additions are needed to cancel two marked
removals, rather than only one.

si2 \cs_new_protected:Npn __hook_unmark_removal:nn #1 #2

313 {

314 \tl_gremove_once:Nx \g__hook_removal_list_tl
315 { __hook_removal_tl:nn {#1} {#2} }

316 }

File g: 1thooks.dtx 128

__hook_if_marked_removal:nnTF

__hook_removal_tl:nn

\g__hook_77_code_prop
__hook~?7?

\g__hook_77_reversed_tl

\hook_gset_rule:nnnn
__hook_gset_rule:nnnn

(End definition for __hook_unmark_removal:nn.)

Checks if the \g__hook_removal_list_tl contains the current (label) (#2) and (hook)
(#1).

s17 \prg_new_protected_conditional:Npnn __hook_if_marked_removal:nn #1 #2 { TF }
318 {

319 \exp_args:NNx \tl_if_in:NnTF \g__hook_removal_list_tl

320 { __hook_removal_tl:nn {#1} {#2} }

321 { \prg_return_true: } { \prg_return_false: }
322 }

(End definition for __hook_if_marked_removal:nnTF.)

Builds a token list with #1 and #2 which can only be matched by #1 and #2. The &4
anchors a removal, so that #1 can’t be mistaken by #2 and vice versa, and the two $3
delimit the two arguments

323 \cs_new:Npn __hook_removal_tl:nn #1 #2
20 { & \tl_to_str:n {#2} $ \tl_to_str:n {#1} $ }

(End definition for __hook_removal_tl:nn.)

Initially these variables simply used an empty “label” name (not two question marks).
This was a bit unfortunate, because then 13doc complains about __ in the middle of a
command name when trying to typeset the documentation. However using a “normal”
name such as default has the disadvantage of that being not really distinguishable from
a real hook name. I now have settled for ?? which needs some gymnastics to get it into
the csname, but since this is used a lot things should be fast, so this is not done with ¢
expansion in the code later on.

__hook~?7 isn’t used, but it has to be defined to trick the code into thinking that
77 is actually a hook.
225 \prop_new:c {g__hook_?77_code_prop}
36 \prop_new:c {__hook~77}

Default rules are always given in normal ordering (never in reversed ordering). If
such a rule is applied to a reversed hook it behaves as if the rule is reversed (e.g., after
becomes before) because those rules are applied first and then the order is reversed.

27 \tl_new:c {g__hook_77_reversed_tl}

(End definition for \g__hook_??_code_prop, __hook~??, and \g__hook_??_reversed_tl.)

3.7 Setting rules for hooks code

FMi: needs docu correction given new implementation
With \hook_gset_rule:nnnn{({hook)}{(labell)}{(relation)}{(label2)} a relation is
defined between the two code labels for the given (hook). The special hook 7?7 stands for
any hook describing a default rule.

2s \cs_new_protected:Npn \hook_gset_rule:nnnn #1#2#3#4

329 {

330 __hook_normalize_hook_rule_args:Nnnnn __hook_gset_rule:nnnn
331 {#1} {#2} {#3} {#4}

332 }

333 \cs_new_protected:Npn __hook_gset_rule:nnnn #1#2#3#4

334 {

File g: 1thooks.dtx 129

__hook_rule_before_gset:nnn
__hook_rule_after_gset:nnn
__hook_rule_<_gset:nnn
__hook_rule_>_gset:nnn

__hook_rule_voids_gset:nnn

First we ensure the basic data structure of the hook exists:
335 __hook_declare:n {#1}

Then we clear any previous relationship between both labels.
336 __hook_rule_gclear:nnn {#1} {#2} {#4}

Then we call the function to handle the given rule. Throw an error if the rule is invalid.

337 \debug_suspend:

338 \cs_if_exist_use:cTF { __hook_rule_#3_gset:nnn }
339 {

340 {#1} {#2} {#4}

341 __hook_update_hook_code:n {#1}

342 }

343 { \msg_error:nnnnnn { hooks } { unknown-rule }
344 {#1} {#2} {#3} {#4} }
345 \debug_resume:

346 }

(End definition for \hook_gset_rule:nnnn and __hook_gset_rule:nnnn. This function is documented
on page 107.)

Then we add the new rule. We need to normalize the rules here to allow for faster pro-
cessing later. Given a pair of labels [4 and Iz, the rule 4 > [is the same as [g < [4 only
presented differently. But by normalizing the forms of the rule to a single representation,
say, lp < la, reduces the time spent looking for the rules later considerably.

Here we do that normalization by using \ (pdf)strcmp to lexically sort labels /4 and
lp to a fixed order. This order is then enforced every time these two labels are used
together.

Here we use __hook_label_pair:nn {(hook)} {{l4)} {(l5)} to build a string i |14
with a fixed order, and use __hook_label_ordered:nnTF to apply the correct rule to
the pair of labels, depending if it was sorted or not.

327 \cs_new_protected:Npn __hook_rule_before_gset:nnn #1#2#3

348 {

349 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
350 { __hook_label_ordered:nnTF {#2} {#3} { <} { >} }

351 }

52 \cs_new_eq:cN { __hook_rule_<_gset:nnn } __hook_rule_before_gset:nnn

553 \cs_new_protected:Npn __hook_rule_after_gset:nnn #1#2#3

354 {

355 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#3} {#2} _tl1 }
356 { __hook_label_ordered:nnTF {#3} {#2} { <} { > 1} }

357 }

;52 \cs_new_eq:cN { __hook_rule_>_gset:nnn } __hook_rule_after_gset:nnn

(End definition for __hook_rule_before_gset:nnn and others.)

This rule removes (clears, actually) the code from label #3 if label #2 is in the hook #1.

350 \cs_new_protected:Npn __hook_rule_voids_gset:nnn #1#2#3

360 {

361 \tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
362 { __hook_label_ordered:nnTF {#2} {#3} { -> } { <- } }

363 }

(End definition for __hook_rule_voids_gset:nnn.)

File g: 1thooks.dtx 130

\

__hook rule incompatible-error gset:nnn
__hook rule_incompatible-warning gset:nmn

S ©_0"

__hook rule unrelated gset:nmn

__hook_rule_gclear:nnn

__hook_label_pair:nn

__hook_label_ordered_p:nn
__hook_label_ordered:nnTF

__hook_if_label_case:nnnnn

These relations make an error/warning if labels #2 and #3 appear together in hook #1.

364 \cs_new_protected:cpn { __hook_rule_incompatible-error_gset:n