
LATEX’s hook management∗

Frank Mittelbach†

October 31, 2022

Contents
1 Introduction 2

2 Package writer interface 2
2.1 LATEX 2ε interfaces . 3

2.1.1 Declaring hooks . 3
2.1.2 Special declarations for generic hooks 3
2.1.3 Using hooks in code . 4
2.1.4 Updating code for hooks . 4
2.1.5 Hook names and default labels . 6
2.1.6 The top-level label . 8
2.1.7 Defining relations between hook code 9
2.1.8 Querying hooks . 10
2.1.9 Displaying hook code . 11
2.1.10 Debugging hook code . 12

2.2 L3 programming layer (expl3) interfaces 12
2.3 On the order of hook code execution . 14
2.4 The use of “reversed” hooks . 16
2.5 Difference between “normal” and “one-time” hooks 17
2.6 Generic hooks provided by packages . 18
2.7 Private LATEX kernel hooks . 18
2.8 Legacy LATEX 2ε interfaces . 19

3 LATEX 2ε commands and environments augmented by hooks 20
3.1 Generic hooks . 20

3.1.1 Generic hooks for all environments 20
3.1.2 Generic hooks for commands . 21
3.1.3 Generic hooks provided by file loading operations 22

3.2 Hooks provided by \begin{document} 22
3.3 Hooks provided by \end{document} . 22
3.4 Hooks provided by \shipout operations 24
3.5 Hooks provided for paragraphs . 24
3.6 Hooks provided in NFSS commands . 24
3.7 Hook provided by the mark mechanism 25

∗This module has version v1.0v dated 2022/06/15, © LATEX Project.
†Code improvements for speed and other goodies by Phelype Oleinik

1

4 The Implementation 25
4.1 Debugging . 25
4.2 Borrowing from internals of other kernel modules 26
4.3 Declarations . 26
4.4 Providing new hooks . 28

4.4.1 The data structures of a hook . 28
4.4.2 On the existence of hooks . 29
4.4.3 Setting hooks up . 30
4.4.4 Disabling and providing hooks . 33

4.5 Parsing a label . 34
4.6 Adding or removing hook code . 38
4.7 Setting rules for hooks code . 47
4.8 Specifying code for next invocation . 62
4.9 Using the hook . 63
4.10 Querying a hook . 66
4.11 Messages . 68
4.12 LATEX 2ε package interface commands 70
4.13 Deprecated that needs cleanup at some point 73
4.14 Internal commands needed elsewhere . 75

Index 76

1 Introduction
Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface
The hook management system is offered as a set of CamelCase commands for traditional
LATEX 2ε packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of LATEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

2

2.1 LATEX 2ε interfaces
2.1.1 Declaring hooks

With a few exceptions, hooks have to be declared before they can be used. The exceptions
are the generic hooks for commands and environments (executed at \begin and \end),
and the hooks run when loading files (see section 3.1).

\NewHook {⟨hook⟩}

Creates a new ⟨hook⟩. If this hook is declared within a package it is suggested that its
name is always structured as follows: ⟨package-name⟩/⟨hook-name⟩. If necessary you can
further subdivide the name by adding more / parts. If a hook name is already taken, an
error is raised and the hook is not created.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\NewHook

\NewReversedHook {⟨hook⟩}

Like \NewHook declares a new ⟨hook⟩. the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\NewReversedHook

\NewMirroredHookPair {⟨hook-1⟩} {⟨hook-2⟩}

A shorthand for \NewHook{⟨hook-1 ⟩}\NewReversedHook{⟨hook-2 ⟩}.
The ⟨hooks⟩ can be specified using the dot-syntax to denote the current package

name. See section 2.1.5.

\NewMirroredHookPair

2.1.2 Special declarations for generic hooks

The declarations here should normally not be used. They are available to provide support
for special use cases mainly involving generic command hooks.

\DisableGenericHook {⟨hook⟩}

After this declaration1 the ⟨hook⟩ is no longer usable: Any attempt to add further code
to it will result in an error and any use, e.g., via \UseHook, will simply do nothing.

This is intended to be used with generic command hooks (see ltcmdhooks-doc) as
depending on the definition of the command such generic hooks may be unusable. If that
is known, a package developer can disable such hooks up front.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\DisableGenericHook

\ActivateGenericHook {⟨hook⟩}

This declaration activates a generic hook provided by a package/class (e.g., one used
in code with \UseHook or \UseOneTimeHook) without it being explicitly declared with
\NewHook). This command undoes the effect of \DisableGenericHook. If the hook is
already activated, this command does nothing.

See section 2.6 for a discussion of when this declaration is appropriate.

\ActivateGenericHook

1In the 2020/06 release this command was called \DisableHook, but that name was misleading as it
shouldn’t be used to disable non-generic hooks.

3

2.1.3 Using hooks in code

\UseHook {⟨hook⟩}

Execute the hook code inside a command or environment.
Before \begin{document} the fast execution code for a hook is not set up, so in

order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\UseHook

\UseOneTimeHook {⟨hook⟩}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. Once we have passed that point adding to the
hook through a defined \⟨addto-cmd⟩ command (e.g., \AddToHook or \AtBeginDocument,
etc.) would have no effect (as would the use of such a command inside the hook code it-
self). It is therefore customary to redefine \⟨addto-cmd⟩ to simply process its argument,
i.e., essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.
See section 2.1.5 for details.

Using \UseOneTimeHook several times with the same {⟨hook⟩} means that it only
executes the first time it is used. For example, if it is used in a command that can
be called several times then the hook executes during only the first invocation of that
command; this allows its use as an “initialization hook”.

Mixing \UseHook and \UseOneTimeHook for the same {⟨hook⟩} should be avoided,
but if this is done then neither will execute after the first \UseOneTimeHook.

\UseOneTimeHook

2.1.4 Updating code for hooks

\AddToHook {⟨hook⟩}[⟨label⟩]{⟨code⟩}

Adds ⟨code⟩ to the ⟨hook⟩ labeled by ⟨label⟩. When the optional argument ⟨label⟩ is
not provided, the ⟨default label⟩ is used (see section 2.1.5). If \AddToHook is used in a
package/class, the ⟨default label⟩ is the package/class name, otherwise it is top-level
(the top-level label is treated differently: see section 2.1.6).

If there already exists code under the ⟨label⟩ then the new ⟨code⟩ is appended to the
existing one (even if this is a reversed hook). If you want to replace existing code under
the ⟨label⟩, first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared, then obviously the added ⟨code⟩ will never be executed. This allows for hooks
to work regardless of package loading order and enables packages to add to hooks from
other packages without worrying whether they are actually used in the current document.
See section 2.1.8.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\AddToHook

4

\RemoveFromHook {⟨hook⟩}[⟨label⟩]

Removes any code labeled by ⟨label⟩ from the ⟨hook⟩. When the optional argument ⟨label⟩
is not provided, the ⟨default label⟩ is used (see section 2.1.5).

If there is no code under the ⟨label⟩ in the ⟨hook⟩, or if the ⟨hook⟩ does not exist, a
warning is issued when you attempt to \RemoveFromHook, and the command is ignored.
\RemoveFromHook should be used only when you know exactly what labels are in a hook.
Typically this will be when some code gets added to a hook by a package, then later this
code is removed by that same package. If you want to prevent the execution of code from
another package, use the voids rule instead (see section 2.1.7).

If the optional ⟨label⟩ argument is *, then all code chunks are removed. This is rather
dangerous as it may well drop code from other packages (that one may not know about);
it should therefore not be used in packages but only in document preambles!

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\RemoveFromHook

In contrast to the voids relationship between two labels in a \DeclareHookRule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/before}{\small}
\begin{quote}
A quote set in a smaller typeface

\end{quote}
...
\RemoveFromHook{env/quote/before}
... now back to normal for further quotes

Note that you can’t cancel the setting with

\AddToHook{env/quote/before}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means two font size changes for no good reason.

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

5

\AddToHookNext {⟨hook⟩}{⟨code⟩}

Adds ⟨code⟩ to the next invocation of the ⟨hook⟩. The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.

Using this declaration is a global operation, i.e., the code is not lost even if the
declaration is used inside a group and the next invocation of the hook happens after the
end of that group. If the declaration is used several times before the hook is executed
then all code is executed in the order in which it was declared.2

If this declaration is used with a one-time hook then the code is only ever used
if the declaration comes before the hook’s invocation. This is because, in contrast to
\AddToHook, the code in this declaration is not executed immediately in the case when
the invocation of the hook has already happened—in other words, this code will truly
execute only on the next invocation of the hook (and in the case of a one-time hook there
is no such “next invocation”). This gives you a choice: should my code execute always,
or should it execute only at the point where the one-time hook is used (and not at all if
this is impossible)? For both of these possibilities there are use cases.

It is possible to nest this declaration using the same hook (or different hooks): e.g.,

\AddToHookNext{⟨hook⟩}{⟨code-1 ⟩\AddToHookNext{⟨hook⟩}{⟨code-2 ⟩}}

will execute ⟨code-1 ⟩ next time the ⟨hook⟩ is used and at that point puts ⟨code-2 ⟩ into
the ⟨hook⟩ so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.8.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\AddToHookNext

\ClearHookNext{⟨hook⟩}

Normally \AddToHookNext is only used when you know precisely where it will apply and
why you want some extra code at that point. However, there are a few use cases in
which such a declaration needs to be canceled, for example, when discarding a page with
\DiscardShipoutBox (but even then not always), and in such situations \ClearHookNext
can be used.

\ClearHookNext

2.1.5 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a ⟨label⟩
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the ⟨label⟩.

Using an explicit ⟨label⟩ is only necessary in very specific situations, e.g., if you want
to add several chunks of code into a single hook and have them placed in different parts
of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same ⟨label⟩ throughout the sub-packages in order to
avoid that the labels change if you internally reorganize your code.

Except for \UseHook, \UseOneTimeHook and \IfHookEmptyTF (and their expl3 inter-
faces \hook_use:n, \hook_use_once:n and \hook_if_empty:nTF), all ⟨hook⟩ and ⟨label⟩
arguments are processed in the same way: first, spaces are trimmed around the argu-
ment, then it is fully expanded until only character tokens remain. If the full expansion

2There is no mechanism to reorder such code chunks (or delete them).

6

of the ⟨hook⟩ or ⟨label⟩ contains a non-expandable non-character token, a low-level TEX
error is raised (namely, the ⟨hook⟩ is expanded using TEX’s \csname. . . \endcsname, as
such, Unicode characters are allowed in ⟨hook⟩ and ⟨label⟩ arguments). The arguments
of \UseHook, \UseOneTimeHook, and \IfHookEmptyTF are processed much in the same
way except that spaces are not trimmed around the argument, for better performance.

It is not enforced, but highly recommended that the hooks defined by a package, and
the ⟨labels⟩ used to add code to other hooks contain the package name to easily identify
the source of the code chunk and to prevent clashes. This should be the standard practice,
so this hook management code provides a shortcut to refer to the current package in the
name of a ⟨hook⟩ and in a ⟨label⟩. If the ⟨hook⟩ name or the ⟨label⟩ consist just of a single
dot (.), or starts with a dot followed by a slash (./) then the dot denotes the ⟨default
label⟩ (usually the current package or class name—see \SetDefaultHookLabel). A “.”
or “./” anywhere else in a ⟨hook⟩ or in ⟨label⟩ is treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}
\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./sub]{code}
\DeclareHookRule{begindocument}{.}{before}{babel}
\AddToHook {file/foo.tex/after}{code}

are equivalent to:

\NewHook {mypackage/hook}
\AddToHook {mypackage/hook}[mypackage]{code}
\AddToHook {mypackage/hook}[mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/foo.tex/after}{code} % unchanged

The ⟨default label⟩ is automatically set equal to the name of the current package
or class at the time the package is loaded. If the hook command is used outside of
a package, or the current file wasn’t loaded with \usepackage or \documentclass,
then the top-level is used as the ⟨default label⟩. This may have exceptions—see
\PushDefaultHookLabel.

This syntax is available in all ⟨label⟩ arguments and most ⟨hook⟩ arguments, both in
the LATEX 2ε interface, and the LATEX3 interface described in section 2.2.

Note, however, that the replacement of . by the ⟨default label⟩ takes place when the
hook command is executed, so actions that are somehow executed after the package ends
will have the wrong ⟨default label⟩ if the dot-syntax is used. For that reason, this syntax
is not available in \UseHook (and \hook_use:n) because the hook is most of the time
used outside of the package file in which it was defined. This syntax is also not available
in the hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF), because these
conditionals are used in some performance-critical parts of the hook management code,
and because they are usually used to refer to other package’s hooks, so the dot-syntax
doesn’t make much sense.

In some cases, for example in large packages, one may want to separate it in logical
parts, but still use the main package name as ⟨label⟩, then the ⟨default label⟩ can be set us-
ing \SetDefaultHookLabel or \PushDefaultHookLabel{..} . . . \PopDefaultHookLabel.

7

\PushDefaultHookLabel {⟨default label⟩}
⟨code⟩

\PopDefaultHookLabel

\PushDefaultHookLabel sets the current ⟨default label⟩ to be used in ⟨label⟩ arguments,
or when replacing a leading “.” (see above). \PopDefaultHookLabel reverts the ⟨default
label⟩ to its previous value.

Inside a package or class, the ⟨default label⟩ is equal to the package or class name,
unless explicitly changed. Everywhere else, the ⟨default label⟩ is top-level (see sec-
tion 2.1.6) unless explicitly changed.

The effect of \PushDefaultHookLabel holds until the next \PopDefaultHookLabel.
\usepackage (and \RequirePackage and \documentclass) internally use

\PushDefaultHookLabel{⟨package name⟩}
⟨package code⟩

\PopDefaultHookLabel

to set the ⟨default label⟩ for the package or class file. Inside the ⟨package code⟩ the
⟨default label⟩ can also be changed with \SetDefaultHookLabel. \input and other file
input-related commands from the LATEX kernel do not use \PushDefaultHookLabel, so
code within files loaded by these commands does not get a dedicated ⟨label⟩! (that is,
the ⟨default label⟩ is the current active one when the file was loaded.)

Packages that provide their own package-like interfaces (TikZ’s \usetikzlibrary,
for example) can use \PushDefaultHookLabel and \PopDefaultHookLabel to set dedi-
cated labels and to emulate \usepackage-like hook behavior within those contexts.

The top-level label is treated differently, and is reserved to the user document, so
it is not allowed to change the ⟨default label⟩ to top-level.

\PushDefaultHookLabel
\PopDefaultHookLabel

\SetDefaultHookLabel {⟨default label⟩}

Similarly to \PushDefaultHookLabel, sets the current ⟨default label⟩ to be used in
⟨label⟩ arguments, or when replacing a leading “.”. The effect holds until the label
is changed again or until the next \PopDefaultHookLabel. The difference between
\PushDefaultHookLabel and \SetDefaultHookLabel is that the latter does not save
the current ⟨default label⟩.

This command is useful when a large package is composed of several smaller pack-
ages, but all should have the same ⟨label⟩, so \SetDefaultHookLabel can be used at the
beginning of each package file to set the correct label.

\SetDefaultHookLabel is not allowed in the main document, where the ⟨default
label⟩ is top-level and there is no \PopDefaultHookLabel to end its effect. It is also
not allowed to change the ⟨default label⟩ to top-level.

\SetDefaultHookLabel

2.1.6 The top-level label

The top-level label, assigned to code added from the main document, is different from
other labels. Code added to hooks (usually \AtBeginDocument) in the preamble is almost
always to change something defined by a package, so it should go at the very end of the
hook.

Therefore, code added in the top-level is always executed at the end of the hook,
regardless of where it was declared. If the hook is reversed (see \NewReversedHook), the
top-level chunk is executed at the very beginning instead.

8

Rules regarding top-level have no effect: if a user wants to have a specific set of
rules for a code chunk, they should use a different label to said code chunk, and provide
a rule for that label instead.

The top-level label is exclusive for the user, so trying to add code with that label
from a package results in an error.

2.1.7 Defining relations between hook code

The default assumption is that code added to hooks by different packages are independent
and the order in which they are executed is irrelevant. While this is true in many cases
it is obviously false in others.

Before the hook management system was introduced packages had to take elaborate
precaution to determine of some other package got loaded as well (before or after) and
find some ways to alter its behavior accordingly. In addition is was often the user’s
responsibility to load packages in the right order so that code added to hooks got added
in the right order and some cases even altering the loading order wouldn’t resolve the
conflicts.

With the new hook management system it is now possible to define rules (i.e., re-
lationships) between code chunks added by different packages and explicitly describe in
which order they should be processed.

\DeclareHookRule {⟨hook⟩}{⟨label1⟩}{⟨relation⟩}{⟨label2⟩}

Defines a relation between ⟨label1 ⟩ and ⟨label2 ⟩ for a given ⟨hook⟩. If ⟨hook⟩ is ?? this
defines a default relation for all hooks that use the two labels, i.e., that have chunks of
code labeled with ⟨label1 ⟩ and ⟨label2 ⟩. Rules specific to a given hook take precedence
over default rules that use ?? as the ⟨hook⟩.

Currently, the supported relations are the following:

before or < Code for ⟨label1 ⟩ comes before code for ⟨label2 ⟩.

after or > Code for ⟨label1 ⟩ comes after code for ⟨label2 ⟩.

incompatible-warning Only code for either ⟨label1 ⟩ or ⟨label2 ⟩ can appear for that hook (a way to say
that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a LATEX error is raised, and
the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for ⟨label1 ⟩ overwrites code for ⟨label2 ⟩. More precisely, code for ⟨label2 ⟩ is
dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for ⟨label1 ⟩ and ⟨label2 ⟩ is irrelevant. This rule is there to undo
an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookrule overwrites any previous declaration.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\DeclareHookRule

9

\ClearHookRule{⟨hook⟩}{⟨label1⟩}{⟨label2⟩}

Syntactic sugar for saying that ⟨label1 ⟩ and ⟨label2 ⟩ are unrelated for the given ⟨hook⟩.
\ClearHookRule

\DeclareDefaultHookRule{⟨label1⟩}{⟨relation⟩}{⟨label2⟩}

This sets up a relation between ⟨label1 ⟩ and ⟨label2 ⟩ for all hooks unless overwritten by
a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

Declaring default rules is only supported in the document preamble.3
The ⟨label⟩ can be specified using the dot-syntax to denote the current package name.

See section 2.1.5.

\DeclareDefaultHookRule

2.1.8 Querying hooks

Simpler data types, like token lists, have three possible states; they can:

• exist and be empty;

• exist and be non-empty; and

• not exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: a hook may exist or not, and independently it may or
may not be empty. This means that even a hook that doesn’t exist may be non-empty
and it can also be disabled.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

Given that code or rules can be added to a hook even if it doesn’t physically exist
yet, means that a querying its existence has no real use case (in contrast to other variables
that can only be update if they have already been declared). For that reason only the
test for emptiness has a public interface.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have
code added to its code pool. A hook is said to exist when it was declared with \NewHook
or some variant thereof. Generic hooks such as file and env hooks are automatically
declared when code is added to them.

\IfHookEmptyTF {⟨hook⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨hook⟩ is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext) or such code was removed again (via \RemoveFromHook), and branches
to either ⟨true code⟩ or ⟨false code⟩ depending on the result.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\IfHookEmptyTF ⋆

3Trying to do so, e.g., via \DeclareHookRule with ?? has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

10

2.1.9 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

\ShowHook {⟨hook⟩}
\LogHook {⟨hook⟩}

Displays information about the ⟨hook⟩ such as

• the code chunks (and their labels) added to it,

• any rules set up to order them,

• the computed order in which the chunks are executed,

• any code executed on the next invocation only.

\ShowHook
\LogHook

\LogHook prints the information to the .log file, and \ShowHook prints them to the
terminal/command window and starts TEX’s prompt (only in \errorstopmode) to wait
for user action.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

Suppose a hook example-hook whose output of \ShowHook{example-hook} is:

1 -> The hook ’example-hook’:
2 > Code chunks:
3 > foo -> [code from package ’foo’]
4 > bar -> [from package ’bar’]
5 > baz -> [package ’baz’ is here]
6 > Document-level (top-level) code (executed last):
7 > -> [code from ’top-level’]
8 > Extra code for next invocation:
9 > -> [one-time code]

10 > Rules:
11 > foo|baz with relation >
12 > baz|bar with default relation <
13 > Execution order (after applying rules):
14 > baz, foo, bar.

In the listing above, lines 3 to 5 show the three code chunks added to the hook and
their respective labels in the format

⟨label⟩ -> ⟨code⟩

Line 7 shows the code chunk added by the user in the main document (labeled
top-level) in the format

Document-level (top-level) code (executed ⟨first|last⟩):
-> ⟨top-level code⟩

11

This code will be either the first or last code executed by the hook (last if the hook is
normal, first if it is reversed). This chunk is not affected by rules and does not take
part in sorting.

Line 9 shows the code chunk for the next execution of the hook in the format

-> ⟨next-code⟩

This code will be used and disappear at the next \UseHook{example-hook}, in contrast
to the chunks mentioned earlier, which can only be removed from that hook by doing
\RemoveFromHook{⟨label⟩}[example-hook].

Lines 11 and 12 show the rules declared that affect this hook in the format

⟨label-1 ⟩|⟨label-2 ⟩ with ⟨default?⟩ relation ⟨relation⟩

which means that the ⟨relation⟩ applies to ⟨label-1 ⟩ and ⟨label-2 ⟩, in that order, as detailed
in \DeclareHookRule. If the relation is default it means that this rule applies to
⟨label-1 ⟩ and ⟨label-2 ⟩ in all hooks, (unless overridden by a non-default relation).

Finally, line 14 lists the labels in the hook after sorting; that is, in the order they
will be executed when the hook is used.

2.1.10 Debugging hook code

\DebugHooksOn

Turn the debugging of hook code on or off. This displays most changes made to the hook
data structures. The output is rather coarse and not really intended for normal use.

\DebugHooksOn
\DebugHooksOff

2.2 L3 programming layer (expl3) interfaces
This is a quick summary of the LATEX3 programming interfaces for use with packages
written in expl3. In contrast to the LATEX 2ε interfaces they always use mandatory
arguments only, e.g., you always have to specify the ⟨label⟩ for a code chunk. We therefore
suggest to use the declarations discussed in the previous section even in expl3 packages,
but the choice is yours.

\hook_new:n {⟨hook⟩}
\hook_new_reversed:n {⟨hook⟩}
\hook_new_pair:nn {⟨hook-1⟩} {⟨hook-2⟩}

Creates a new ⟨hook⟩ with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {⟨hook-2 ⟩} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

\hook_disable_generic:n {⟨hook⟩}

Marks {⟨hook⟩} as disabled. Any further attempt to add code to it or declare it, will
result in an error and any call to \hook_use:n will simply do nothing.

This declaration is intended for use with generic hooks that are known not to work
(see ltcmdhooks-doc) if they receive code.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_disable_generic:n

12

\hook_activate_generic:n {⟨hook⟩}

This is like \hook_new:n but it does nothing if the hook was previously declared with
\hook_new:n. This declaration should be used only in special situations, e.g., when a
command from another package needs to be altered and it is not clear whether a generic
cmd hook (for that command) has been previously explicitly declared.

Normally \hook_new:n should be used instead of this.

\hook_activate_generic:n

\hook_use:n {⟨hook⟩}

Executes the {⟨hook⟩} code followed (if set up) by the code for next invocation only, then
empties that next invocation code.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use:n

\hook_use_once:n {⟨hook⟩}

Changes the {⟨hook⟩} status so that from now on any addition to the hook code is
executed immediately. Then execute any {⟨hook⟩} code already set up.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use_once:n

\hook_gput_code:nnn {⟨hook⟩} {⟨label⟩} {⟨code⟩}

Adds a chunk of ⟨code⟩ to the ⟨hook⟩ labeled ⟨label⟩. If the label already exists the ⟨code⟩
is appended to the already existing code.

If code is added to an external ⟨hook⟩ (of the kernel or another package) then the
convention is to use the package name as the ⟨label⟩ not some internal module name or
some other arbitrary string.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\hook_gput_code:nnn

\hook_gput_next_code:nn {⟨hook⟩} {⟨code⟩}

Adds a chunk of ⟨code⟩ for use only in the next invocation of the ⟨hook⟩. Once used it is
gone.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed.

Thus if one needs to undo what the standard does one has to do that as part of
⟨code⟩.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_gput_next_code:nn

\hook_gclear_next_code:n {⟨hook⟩}

Undo any earlier \hook_gput_next_code:nn.
\hook_gclear_next_code:n

13

\hook_gremove_code:nn {⟨hook⟩} {⟨label⟩}

Removes any code for ⟨hook⟩ labeled ⟨label⟩.
If there is no code under the ⟨label⟩ in the ⟨hook⟩, or if the ⟨hook⟩ does not exist, a

warning is issued when you attempt to use \hook_gremove_code:nn, and the command
is ignored.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5.

\hook_gremove_code:nn

\hook_gset_rule:nnnn {⟨hook⟩} {⟨label1⟩} {⟨relation⟩} {⟨label2⟩}

Relate ⟨label1 ⟩ with ⟨label2 ⟩ when used in ⟨hook⟩. See \DeclareHookRule for the allowed
⟨relation⟩s. If ⟨hook⟩ is ?? a default rule is specified.

The ⟨hook⟩ and ⟨label⟩ can be specified using the dot-syntax to denote the current
package name. See section 2.1.5. The dot-syntax is parsed in both ⟨label⟩ arguments,
but it usually makes sense to be used in only one of them.

\hook_gset_rule:nnnn

\hook_if_empty:nTF {⟨hook⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨hook⟩ is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either ⟨true code⟩ or ⟨false code⟩ depending on the
result.

The ⟨hook⟩ cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_if_empty_p:n ⋆
\hook_if_empty:nTF ⋆

\hook_show:n {⟨hook⟩}
\hook_log:n {⟨hook⟩}

Displays information about the ⟨hook⟩ such as

• the code chunks (and their labels) added to it,

• any rules set up to order them,

• the computed order in which the chunks are executed,

• any code executed on the next invocation only.

\hook_log:n prints the information to the .log file, and \hook_show:n prints them
to the terminal/command window and starts TEX’s prompt (only if \errorstopmode) to
wait for user action.

The ⟨hook⟩ can be specified using the dot-syntax to denote the current package
name. See section 2.1.5.

\hook_show:n
\hook_log:n

\hook_debug_on:

Turns the debugging of hook code on or off. This displays changes to the hook data.
\hook_debug_on:
\hook_debug_off:

2.3 On the order of hook code execution
Chunks of code for a ⟨hook⟩ under different labels are supposed to be independent if there
are no special rules set up that define a relation between the chunks. This means that
you can’t make assumptions about the order of execution!

14

Suppose you have the following declarations:

\NewHook{myhook}
\AddToHook{myhook}[packageA]{\typeout{A}}
\AddToHook{myhook}[packageB]{\typeout{B}}
\AddToHook{myhook}[packageC]{\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

-> The hook ’myhook’:
> Code chunks:
> packageA -> \typeout {A}
> packageB -> \typeout {B}
> packageC -> \typeout {C}
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order:
> packageA, packageB, packageC.

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

Suppose, for example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook}[packageA]
\AddToHook{myhook}[packageA]{\typeout{A alt}}

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}

instead of the previous lines we get

-> The hook ’myhook’:
> Code chunks:
> packageA -> \typeout {A}
> packageB -> \typeout {B}
> packageC -> \typeout {C}
> Document-level (top-level) code (executed last):
> ---
> Extra code for next invocation:
> ---
> Rules:
> packageB|packageA with relation >
> Execution order (after applying rules):
> packageA, packageC, packageB.

15

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{packageC}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules

that partially or fully define the order (in which you can rely on them being fulfilled).

2.4 The use of “reversed” hooks
You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example4, suppose there is a package
adding the following:

\AddToHook{env/quote/before}[package-1]{\begin{itshape}}
\AddToHook{env/quote/after} [package-1]{\end{itshape}}

As a result, all quotes will be in italics. Now suppose further that another package-too
makes the quotes also in blue and therefore adds:

\usepackage{color}
\AddToHook{env/quote/before}[package-too]{\begin{color}{blue}}
\AddToHook{env/quote/after} [package-too]{\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, package-too

(or vice versa) and as a result, would get:

\begin{itshape}\begin{color}{blue} ...
\end{itshape}\end{color}

and an error message that \begin{color} ended by \end{itshape}. With env/quote/after
declared as a reversed hook the execution order is reversed and so all environments are
closed in the correct sequence and \ShowHook would give us the following output:

-> The hook ’env/quote/after’:
> Code chunks:
> package-1 -> \end {itshape}
> package-too -> \end {color}
> Document-level (top-level) code (executed first):

4there are simpler ways to achieve the same effect.

16

> ---
> Extra code for next invocation:
> ---
> Rules:
> ---
> Execution order (after reversal):
> package-too, package-1.

The reversal of the execution order happens before applying any rules, so if you
alter the order you will probably have to alter it in both hooks, not just in one, but that
depends on the use case.

2.5 Difference between “normal” and “one-time” hooks
When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the ⟨code⟩ immediately.

This has some consequences one needs to be aware of:

• If ⟨code⟩ is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new ⟨code⟩ will never be
executed.

• In contrast if that happens with a one-time hook the ⟨code⟩ is executed immediately.

In particular this means that construct such as

\AddToHook{myhook}
{ ⟨code-1 ⟩ \AddToHook{myhook}{⟨code-2 ⟩} ⟨code-3 ⟩ }

works for one-time hooks5 (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook} is executed it would

• execute ⟨code-1 ⟩,

• then execute \AddToHook{myhook}{code-2} which adds the code chunk ⟨code-2 ⟩
to the hook for use on the next invocation,

• and finally execute ⟨code-3 ⟩.

The second time \UseHook is called it would execute the above and in addition ⟨code-2 ⟩
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of ⟨code-2 ⟩ is added and so that code chunk is executed
⟨# of invocations⟩ − 1 times.

5This is sometimes used with \AtBeginDocument which is why it is supported.

17

2.6 Generic hooks provided by packages
The hook management system also implements a category of hooks that are called
“Generic Hooks”. Normally a hook has to be explicitly declared before it can be used
in code. This ensures that different packages are not using the same hook name for
unrelated purposes—something that would result in absolute chaos. However, there are
a number of “standard” hooks where it is unreasonable to declare them beforehand, e.g,
each and every command has (in theory) an associated before and after hook. In such
cases, i.e., for command, environment or file hooks, they can be used simply by adding
code to them with \AddToHook. For more specialized generic hooks, e.g., those provided
by babel, you have to additionally enable them with \ActivateGenericHook as explained
below.

The generic hooks provided by LATEX are those for cmd, env, file, include package,
and class, and all these are available out of the box: you only have to use \AddToHook
to add code to them, but you don’t have to add \UseHook or \UseOneTimeHook to your
code, because this is already done for you (or, in the case of cmd hooks, the command’s
code is patched at \begin{document}, if necessary).

However, if you want to provide further generic hooks in your own code, the situation
is slightly different. To do this you should use \UseHook or \UseOneTimeHook, but
without declaring the hook with \NewHook. As mentioned earlier, a call to \UseHook with
an undeclared hook name does nothing. So as an additional setup step, you need to
explicitly activate your generic hook. Note that a generic hook produced in this way is
always a normal hook.

For a truly generic hook, with a variable part in the hook name, such upfront acti-
vation would be difficult or impossible, because you typically do not know what kind of
variable parts may come up in real documents.

For example, babel may want to provide hooks such as babel/⟨language⟩/afterextras.
Language support in babel is often done through external language packages. Thus do-
ing the activation for all languages inside the core babel code is not a viable approach.
Instead it needs to be done by each language package (or by the user who wants to use
a particular hook).

Because the hooks are not declared with \NewHook their names should be carefully
chosen to ensure that they are (likely to be) unique. Best practice is to include the
package or command name, as was done in the babel example above.

Generic hooks defined in this way are always normal hooks (i.e., you can’t imple-
ment reversed hooks this way). This is a deliberate limitation, because it speeds up the
processessing conciderably.

2.7 Private LATEX kernel hooks
There are a few places where it is absolutely essential for LATEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document
unnecessary slow, because there has to be sorting even though the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break LATEX).

For that reason such code is not using the hook management, but instead private ker-
nel commands directly before or after a public hook with the following naming convention:

18

\@kernel@before@⟨hook⟩ or \@kernel@after@⟨hook⟩. For example, in \enddocument
you find

\UseHook{enddocument}%
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.6

2.8 Legacy LATEX 2ε interfaces
LATEX 2ε offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management, several additional hooks have been added to LATEX
and more will follow. See the next section for what is already available.

\AtBeginDocument [⟨label⟩] {⟨code⟩}

If used without the optional argument ⟨label⟩, it works essentially like before, i.e., it is
adding ⟨code⟩ to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level (see section 2.1.6)
if done outside of a package or class or with the package/class name if called inside such
a file (see section 2.1.5).

This way one can add further code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after another package’s code. When using the optional argument the call
is equivalent to running \AddToHook {begindocument} [⟨label⟩] {⟨code⟩}.

\AtBeginDocument is a wrapper around the begindocument hook (see section 3.2),
which is a one-time hook. As such, after the begindocument hook is executed at
\begin{document} any attempt to add ⟨code⟩ to this hook with \AtBeginDocument or
with \AddToHook will cause that ⟨code⟩ to execute immediately instead. See section 2.5
for more on one-time hooks.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtBeginDocument

\AtEndDocument [⟨label⟩] {⟨code⟩}

Like \AtBeginDocument but for the enddocument hook.
\AtEndDocument

The few hooks that existed previously in LATEX 2ε used internally commands such
as \@begindocumenthook and packages sometimes augmented them directly rather than
working through \AtBeginDocument. For that reason there is currently support for this,
that is, if the system detects that such an internal legacy hook command contains code
it adds it to the new hook system under the label legacy so that it doesn’t get lost.

However, over time the remaining cases of direct usage need updating because in one
of the future release of LATEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

6As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

19

3 LATEX 2ε commands and environments augmented
by hooks

In this section we describe the standard hooks that are now offered by LATEX, or give
pointers to other documents in which they are described. This section will grow over
time (and perhaps eventually move to usrguide3).

3.1 Generic hooks
As stated earlier, with the exception of generic hooks, all hooks must be declared
with \NewHook before they can be used. All generic hooks have names of the form
“⟨type⟩/⟨name⟩/⟨position⟩”, where ⟨type⟩ is from the predefined list shown below, and
⟨name⟩ is the variable part whose meaning will depend on the ⟨type⟩. The last compo-
nent, ⟨position⟩, has more complex possibilities: it can always be before or after; for
env hooks, it can also be begin or end; and for include hooks it can also be end. Each
specific hook is documented below, or in ltcmdhooks-doc.pdf or ltfilehook-doc.pdf.

The generic hooks provided by LATEX belong to one of the six types:

env Hooks executed before and after environments – ⟨name⟩ is the name of the environ-
ment, and available values for ⟨position⟩ are before, begin, end, and after;

cmd Hooks added to and executed before and after commands – ⟨name⟩ is the name of
the command, and available values for ⟨position⟩ are before and after;

file Hooks executed before and after reading a file – ⟨name⟩ is the name of the file (with
extension), and available values for ⟨position⟩ are before and after;

package Hooks executed before and after loading packages – ⟨name⟩ is the name of the
package, and available values for ⟨position⟩ are before and after;

class Hooks executed before and after loading classes – ⟨name⟩ is the name of the class,
and available values for ⟨position⟩ are before and after;

include Hooks executed before and after \included files – ⟨name⟩ is the name of the
included file (without the .tex extension), and available values for ⟨position⟩ are
before, end, and after.

Each of the hooks above are detailed in the following sections and in linked docu-
mentation.

3.1.1 Generic hooks for all environments

Every environment ⟨env⟩ has now four associated hooks coming with it:

env/⟨env⟩/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/⟨env⟩/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the second argument of \newenvironment).
Its scope is the environment body.

env/⟨env⟩/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the third argument of \newenvironment).

20

env/⟨env⟩/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.
The hook is implemented as a reversed hook so if two packages add code to
env/⟨env⟩/before and to env/⟨env⟩/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Generic environment hooks are never one-time hooks even with environments that are
supposed to appear only once in a document.7 In contrast to other hooks there is also
no need to declare them using \NewHook.

The hooks are only executed if \begin{⟨env⟩} and \end{⟨env⟩} is used. If the
environment code is executed via low-level calls to \⟨env⟩ and \end⟨env⟩ (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like
\UseHook{env/quote/before}\quote

...
\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.
Largely for compatibility with existing packages, the following four commands are

also available to set the environment hooks; but for new packages we recommend directly
using the hook names and \AddToHook.

\BeforeBeginEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This declaration adds to the env/⟨env⟩/before hook using the ⟨label⟩. If ⟨label⟩ is not
given, the ⟨default label⟩ is used (see section 2.1.5).

\BeforeBeginEnvironment

\AtBeginEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This is like \BeforeBeginEnvironment but it adds to the env/⟨env⟩/begin hook.
\AtBeginEnvironment

\AtEndEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This is like \BeforeBeginEnvironment but it adds to the env/⟨env⟩/end hook.
\AtEndEnvironment

\AfterEndEnvironment [⟨label⟩] {⟨env⟩} {⟨code⟩}

This is like \BeforeBeginEnvironment but it adds to the env/⟨env⟩/after hook.
\AfterEndEnvironment

3.1.2 Generic hooks for commands

Similar to environments there are now (at least in theory) two generic hooks available
for any LATEX command. These are
cmd/⟨name⟩/before This hook is executed at the very start of the command execution.

cmd/⟨name⟩/after This hook is executed at the very end of the command body. It is
implemented as a reversed hook.

In practice there are restrictions and especially the after hook works only with a subset
of commands. Details about these restrictions are documented in ltcmdhooks-doc.pdf
or with code in ltcmdhooks-code.pdf.

7Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

21

3.1.3 Generic hooks provided by file loading operations

There are several hooks added to LATEX’s process of loading file via its high-level interfaces
such as \input, \include, \usepackage, \RequirePackage, etc. These are documented
in ltfilehook-doc.pdf or with code in ltfilehook-code.pdf.

3.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument This hook is added to when using \AtBeginDocument and it is executed
after the .aux file as be read in and most initialization are done, so they can be
altered and inspected by the hook code. It is followed by a small number of further
initializations that shouldn’t be altered and are therefore coming later.
The hook should not be used to add material for typesetting as we are still in
LATEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

3.3 Hooks provided by \end{document}

LATEX 2ε always provided \AtEndDocument to add code to the execution of \end{document}
just in front of the code that is normally executed there. While this was a big improve-
ment over the situation in LATEX 2.09 it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of

22

additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.
When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data, but since there will be no more pages you
need to write to it using \immediate\write). It is also the correct place to set up
any testing code to be run when the .aux file is re-read in the next step.
After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
etc.).
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.
This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.
This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.
This is a one-time hook, so after it is executed, all further attempts to add code
to it will execute such code immediately (see section 2.5).is it even possible to add
code after this one?

23

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,
LATEX needs to be run several times, so initially it might get executed on the wrong page.
See section 3.4 for where to find the details.

It is in also possible to use the generic env/document/end hook which is executed
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time LATEX has finished the document processing.

3.4 Hooks provided by \shipout operations
There are several hooks and mechanisms added to LATEX’s process of generating pages.
These are documented in ltshipout-doc.pdf or with code in ltshipout-code.pdf.

3.5 Hooks provided for paragraphs
The paragraph processing has been augmented to include a number of internal and public
hooks. These are documented in ltpara-doc.pdf or with code in ltpara-code.pdf.

3.6 Hooks provided in NFSS commands
In languages that need to support for more than one script in parallel (and thus several
sets of fonts, e.g., supporting both Latin and Japanese fonts), NFSS font commands such
as \sffamily need to switch both the Latin family to “Sans Serif” and in addition alter
a second set of fonts.

To support this, several NFSS commands have hooks to which such support can be
added.

rmfamily After \rmfamily has done its initial checks and prepared a font series update,
this hook is executed before \selectfont.

sffamily This is like the rmfamily hook, but for the \sffamily command.

ttfamily This is like the rmfamily hook, but for the \ttfamily command.

normalfont The \normalfont command resets the font encoding, family, series and
shape to their document defaults. It then executes this hook and finally calls
\selectfont.

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the meta families (rm/sf/tt) and the meta series
(bf/md). If the NFSS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user, its
new value is used to set the bf series defaults for the meta families (rm/sf/tt) when
\bfseries is called. The bfseries/defaults hook allows further adjustments to
be made in this case. This hook is only executed if such a change is detected. In
contrast, the bfseries hook is always executed just before \selectfont is called
to change to the new series.

24

mdseries/defaults, mdseries These two hooks are like the previous ones but they are
in the \mdseries command.

selectfont This hook is executed inside \selectfont, after the current values for en-
coding, family, series, shape, and size are evaluated and the new font is selected
(and if necessary loaded). After the hook has executed, NFSS will still do any
updates necessary for a new size (such as changing the size of \strut) and any
updates necessary to a change in encoding.
This hook is intended for use cases where, in parallel to a change in the main font,
some other fonts need to be altered (e.g., in CJK processing where you may need
to deal with several different alphabets).

3.7 Hook provided by the mark mechanism
See ltmarks-doc.pdf for details.

insertmark This hook allows for a special setup while \InsertMark inserts a mark. It
is executed in group so local changes only apply to the mark being inserted.

4 The Implementation
1 ⟨@@=hook⟩

2 ⟨∗2ekernel | latexrelease⟩
3 \ExplSyntaxOn
4 ⟨latexrelease⟩\NewModuleRelease{2020/10/01}{lthooks}
5 ⟨latexrelease⟩ {The~hook~management~system}

4.1 Debugging
\g__hook_debug_bool Holds the current debugging state.

6 \bool_new:N \g__hook_debug_bool

(End definition for \g__hook_debug_bool.)

\hook_debug_on:
\hook_debug_off:
__hook_debug:n

__hook_debug_gset:

Turns debugging on and off by redefining __hook_debug:n.
7 \cs_new_eq:NN __hook_debug:n \use_none:n
8 \cs_new_protected:Npn \hook_debug_on:
9 {

10 \bool_gset_true:N \g__hook_debug_bool
11 __hook_debug_gset:
12 }
13 \cs_new_protected:Npn \hook_debug_off:
14 {
15 \bool_gset_false:N \g__hook_debug_bool
16 __hook_debug_gset:
17 }
18 \cs_new_protected:Npn __hook_debug_gset:
19 {
20 \cs_gset_protected:Npx __hook_debug:n ##1
21 { \bool_if:NT \g__hook_debug_bool {##1} }
22 }

(End definition for \hook_debug_on: and others. These functions are documented on page 14.)

25

4.2 Borrowing from internals of other kernel modules
__hook_str_compare:nn Private copy of __str_if_eq:nn

23 \cs_new_eq:NN __hook_str_compare:nn __str_if_eq:nn

(End definition for __hook_str_compare:nn.)

4.3 Declarations
\l__hook_tmpa_bool Scratch boolean used throughout the package.

24 \bool_new:N \l__hook_tmpa_bool

(End definition for \l__hook_tmpa_bool.)

\l__hook_return_tl
\l__hook_tmpa_tl
\l__hook_tmpb_tl

Scratch variables used throughout the package.
25 \tl_new:N \l__hook_return_tl
26 \tl_new:N \l__hook_tmpa_tl
27 \tl_new:N \l__hook_tmpb_tl

(End definition for \l__hook_return_tl , \l__hook_tmpa_tl , and \l__hook_tmpb_tl.)

\g__hook_all_seq In a few places we need a list of all hook names ever defined so we keep track if them in
this sequence.

28 \seq_new:N \g__hook_all_seq

(End definition for \g__hook_all_seq.)

\l__hook_cur_hook_tl Stores the name of the hook currently being sorted.
29 \tl_new:N \l__hook_cur_hook_tl

(End definition for \l__hook_cur_hook_tl.)

\l__hook_work_prop A property list holding a copy of the \g__hook_⟨hook⟩_code_prop of the hook being
sorted to work on, so that changes don’t act destructively on the hook data structure.

30 \prop_new:N \l__hook_work_prop

(End definition for \l__hook_work_prop.)

\g__hook_used_prop All hooks that receive code (for use in debugging display).
31 \prop_new:N \g__hook_used_prop

(End definition for \g__hook_used_prop.)

\g__hook_hook_curr_name_tl
\g__hook_name_stack_seq

Default label used for hook commands, and a stack to keep track of packages within
packages.

32 \tl_new:N \g__hook_hook_curr_name_tl
33 \seq_new:N \g__hook_name_stack_seq

(End definition for \g__hook_hook_curr_name_tl and \g__hook_name_stack_seq.)

__hook_tmp:w Temporary macro for generic usage.
34 \cs_new_eq:NN __hook_tmp:w ?

(End definition for __hook_tmp:w.)

\tl_gremove_once:Nx
\tl_show:x
\tl_log:x

Some variants of expl3 functions.

26

FMi: should probably be moved to expl3

35 \cs_generate_variant:Nn \tl_gremove_once:Nn { Nx }
36 \cs_generate_variant:Nn \tl_show:n { x }
37 \cs_generate_variant:Nn \tl_log:n { x }

(End definition for \tl_gremove_once:Nx , \tl_show:x , and \tl_log:x.)

\s__hook_mark Scan mark used for delimited arguments.
38 \scan_new:N \s__hook_mark

(End definition for \s__hook_mark.)

__hook_clean_to_scan:w Removes tokens until the next \s__hook_mark.
39 \cs_new:Npn __hook_clean_to_scan:w #1 \s__hook_mark { }

(End definition for __hook_clean_to_scan:w.)

__hook_tl_set:Nn
__hook_tl_set:Nx
__hook_tl_set:cn
__hook_tl_set:cx

Private copies of a few expl3 functions. l3debug will only add debugging to the public
names, not to these copies, so we don’t have to use \debug_suspend: and \debug_-
resume: everywhere.

Functions like __hook_tl_set:Nn have to be redefined, rather than copied because
in expl3 they use __kernel_tl_(g)set:Nx, which is also patched by l3debug.

40 \cs_new_protected:Npn __hook_tl_set:Nn #1#2
41 { \cs_set_nopar:Npx #1 { __kernel_exp_not:w {#2} } }
42 \cs_new_protected:Npn __hook_tl_set:Nx #1#2
43 { \cs_set_nopar:Npx #1 {#2} }
44 \cs_generate_variant:Nn __hook_tl_set:Nn { c }
45 \cs_generate_variant:Nn __hook_tl_set:Nx { c }

(End definition for __hook_tl_set:Nn.)

__hook_tl_gset:Nn
__hook_tl_gset:No
__hook_tl_gset:Nx
__hook_tl_gset:cn
__hook_tl_gset:co
__hook_tl_gset:cx

Same as above.
46 \cs_new_protected:Npn __hook_tl_gset:Nn #1#2
47 { \cs_gset_nopar:Npx #1 { __kernel_exp_not:w {#2} } }
48 \cs_new_protected:Npn __hook_tl_gset:No #1#2
49 { \cs_gset_nopar:Npx #1 { __kernel_exp_not:w \exp_after:wN {#2} } }
50 \cs_new_protected:Npn __hook_tl_gset:Nx #1#2
51 { \cs_gset_nopar:Npx #1 {#2} }
52 \cs_generate_variant:Nn __hook_tl_gset:Nn { c }
53 \cs_generate_variant:Nn __hook_tl_gset:No { c }
54 \cs_generate_variant:Nn __hook_tl_gset:Nx { c }

(End definition for __hook_tl_gset:Nn.)

__hook_tl_gput_right:Nn
__hook_tl_gput_right:No
__hook_tl_gput_right:cn

Same as above.
55 \cs_new_protected:Npn __hook_tl_gput_right:Nn #1#2
56 { __hook_tl_gset:Nx #1 { __kernel_exp_not:w \exp_after:wN { #1 #2 } } }
57 \cs_generate_variant:Nn __hook_tl_gput_right:Nn { No, cn }

(End definition for __hook_tl_gput_right:Nn.)

27

__hook_tl_gput_left:Nn
__hook_tl_gput_left:No

Same as above.
58 \cs_new_protected:Npn __hook_tl_gput_left:Nn #1#2
59 {
60 __hook_tl_gset:Nx #1
61 { __kernel_exp_not:w {#2} __kernel_exp_not:w \exp_after:wN {#1} }
62 }
63 \cs_generate_variant:Nn __hook_tl_gput_left:Nn { No }

(End definition for __hook_tl_gput_left:Nn.)

__hook_tl_gset_eq:NN Same as above.
64 \cs_new_eq:NN __hook_tl_gset_eq:NN \tl_gset_eq:NN

(End definition for __hook_tl_gset_eq:NN.)

__hook_tl_gclear:N
__hook_tl_gclear:c

Same as above.
65 \cs_new_protected:Npn __hook_tl_gclear:N #1
66 { __hook_tl_gset_eq:NN #1 \c_empty_tl }
67 \cs_generate_variant:Nn __hook_tl_gclear:N { c }

(End definition for __hook_tl_gclear:N.)

4.4 Providing new hooks
4.4.1 The data structures of a hook

Hooks have a name (called ⟨hook⟩ in the description below) and for each hook we have\g_@@_⟨hook⟩_code_prop
\@@␣⟨hook⟩

\@@_next␣⟨hook⟩
to provide a number of data structures. These are

\g__hook_⟨hook⟩_code_prop A property list holding the code for the hook in separate
chunks. The keys are by default the package names that add code to the hook, but
it is possible for packages to define other keys.

\g__hook_⟨hook⟩_rule_⟨label1⟩|⟨label2⟩_tl A token list holding the relation be-
tween ⟨label1 ⟩ and ⟨label2 ⟩ in the ⟨hook⟩. The ⟨labels⟩ are lexically (reverse) sorted
to ensure that two labels always point to the same token list. For global rules, the
⟨hook⟩ name is ??.

__hook␣⟨hook⟩ The code that is actually executed when the hook is called in the doc-
ument is stored in this token list. It is constructed from the code chunks applying
the information. This token list is named like that so that in case of an error inside
the hook, the reported token list in the error is shorter, and to make it simpler to
normalize hook names in __hook_make_name:n.

\g__hook_⟨hook⟩_reversed_tl Some hooks are “reversed”. This token list stores a - for
such hook so that it can be identified. The - character is used because ⟨reversed⟩1
is +1 for normal hooks and −1 for reversed ones.

\g__hook_⟨hook⟩_declared_tl This token list serves as marker for the hook being offi-
cially declared. Its existence is tested to raise an error in case another declaration
is attempted.

28

__hook_toplevel␣⟨hook⟩ This token list stores the code inserted in the hook from
the user’s document, in the top-level label. This label is special, and doesn’t
participate in sorting. Instead, all code is appended to it and executed after (or
before, if the hook is reversed) the normal hook code, but before the next code
chunk.

__hook_next␣⟨hook⟩ Finally there is extra code (normally empty) that is used on the
next invocation of the hook (and then deleted). This can be used to define some
special behavior for a single occasion from within the document. This token list
follows the same naming scheme than the main __hook␣⟨hook⟩ token list. It is
called __hook_next␣⟨hook⟩ rather than __hook␣next_⟨hook⟩ because otherwise
a hook whose name is next_⟨hook⟩ would clash with the next code-token list of the
hook called ⟨hook⟩.

4.4.2 On the existence of hooks

A hook may be in different states of existence. Here we give an overview of the internal
commands to set up hooks and explain how the different states are distinguished. The
actual implementation then follows in subsequent sections.

One problem we have to solve is that we need to be able to add code to hooks (e.g.,
with \AddToHook) even if that code has not yet been declared. For example, one package
needs to write into a hook of another package, but that package may not get loaded, or
is loaded only later. Another problem is that most hooks, but not the generic hooks,
require a declaration.

We therefore distinguish the following states for a hook, which are managed by
four different tests: structure existence (__hook_if_structure_exist:nTF), creation
(__hook_if_usable:nTF), declaration (__hook_if_declared:nTF) and disabled or
not (__hook_if_disabled:nTF)

not existing Nothing is known about the hook so far. This state can be detected with
__hook_if_structure_exist:nTF (which uses the false branch).
In this state the hook can be declared, disabled, rules can be defined or code could
be added to it, but it is not possible to use the hook (with \UseHook).

basic data structure set up A hook is this state when its basic data structure has
been set up (using __hook_init_structure:n). The data structure setup hap-
pens automatically when commands such as \AddToHook are used and the hook is
at that point in state “not existing”.
In this state the four tests give the following results:

__hook_if_structure_exist:nTF returns true.
__hook_if_usable:nTF returns false.

__hook_if_declared:nTF returns false.
__hook_if_disabled:nTF returns false.

The allowed actions are the same as in the “not existing” state.

declared A hook is in this state it is not disabled and was explicitly declared (e.g., with
\NewHook). In this case the four tests give the following results:

__hook_if_structure_exist:nTF returns true.

29

__hook_if_usable:nTF returns true.
__hook_if_declared:nTF returns true.
__hook_if_disabled:nTF returns false.

usable A hook is in this state if it is not disabled, was not explicitly declared but
nevertheless is allowed to be used (with \UseHook or \hook_use:n). This state is
only possible for generic hooks as they do not need to be declared. Therefore such
hooks move directly from state “not existing” to “usable” the moment a declaration
such as \AddToHook wants to add to the hook data structure. In this state the tests
give the following results:

__hook_if_structure_exist:nTF returns true.
__hook_if_usable:nTF returns true.

__hook_if_declared:nTF returns false.
__hook_if_disabled:nTF returns false.

disabled A generic hook in any state is moved to this state when \DisableGenericHook
is used. This changes the tests to give the following results:

__hook_if_structure_exist:nTF unchanged.
__hook_if_usable:nTF returns false.

__hook_if_declared:nTF returns true.
__hook_if_disabled:nTF returns true.

The structure test is unchanged (if the hook was unknown before it is false,
otherwise true). The usable test returns false so that any \UseHook will bypass
the hook from now on. The declared test returns true so that any further \NewHook
generates an error and the disabled test returns true so that \AddToHook can return
an error.

FMi: maybe it should do this only after begin document?

4.4.3 Setting hooks up

\hook_new:n
__hook_new:n

The \hook_new:n declaration declares a new hook and expects the hook ⟨name⟩ as its
argument, e.g., begindocument.

68 \cs_new_protected:Npn \hook_new:n #1
69 { __hook_normalize_hook_args:Nn __hook_new:n {#1} }

70 \cs_new_protected:Npn __hook_new:n #1
71 {

We check if the hook was already explicitly declared with \hook_new:n, and if it already
exists we complain, otherwise set the “created” flag for the hook so that it errors next
time \hook_new:n is used.

72 __hook_if_declared:nTF {#1}
73 { \msg_error:nnn { hooks } { exists } {#1} }
74 {
75 \tl_new:c { g__hook_#1_declared_tl }
76 __hook_make_usable:n {#1}
77 }
78 }

30

(End definition for \hook_new:n and __hook_new:n. This function is documented on page 12.)

__hook_make_usable:n This initializes all hook data structures for the hook but if used on its own doesn’t mark
the hook as declared (as \hook_new:n does, so a later \hook_new:n on that hook will
not result in an error. This command is internally used by \hook_gput_code:n when
adding code to a generic hook.

79 \cs_new_protected:Npn __hook_make_usable:n #1
80 {

Now we check if the hook’s data structure can be safely created without expl3 raising
errors, then we add the hook name to the list of all hooks and allocate the necessary data
structures for the new hook, otherwise just do nothing.

81 \tl_if_exist:cF { __hook~#1 }
82 {
83 \seq_gput_right:Nn \g__hook_all_seq {#1}

This is only used by the actual code of the current hook, so declare it normally:
84 \tl_new:c { __hook~#1 }

Now ensure that the base data structure for the hook exists:
85 __hook_init_structure:n {#1}

The \g__hook_⟨hook⟩_labels_clist holds the sorted list of labels (once it got sorted).
This is used only for debugging.

86 \clist_new:c { g__hook_#1_labels_clist }

Some hooks should reverse the default order of code chunks. To signal this we have a
token list which is empty for normal hooks and contains a - for reversed hooks.

87 \tl_new:c { g__hook_#1_reversed_tl }

The above is all in L3 convention, but we also provide an interface to legacy LATEX 2ε
hooks of the form \@...hook, e.g., \@begindocumenthook. there have been a few of
them and they have been added to using \g@addto@macro. If there exists such a macro
matching the name of the new hook, i.e., \@⟨hook-name⟩hook and it is not empty then
we add its contents as a code chunk under the label legacy.

Warning: this support will vanish in future releases!

88 __hook_include_legacy_code_chunk:n {#1}
89 }
90 }

(End definition for __hook_make_usable:n.)

__hook_init_structure:n This function declares the basic data structures for a hook without explicit declaring the
hook itself. This is needed to allow adding to undeclared hooks. Here it is unnecessary
to check whether all variables exist, since all three are declared at the same time (either
all of them exist, or none).

It creates the hook code pool (\g__hook_⟨hook⟩_code_prop) and the top-level
and next token lists. A hook is initialized with __hook_init_structure:n the first
time anything is added to it. Initializing a hook just with __hook_init_structure:n
will not make it usable with \hook_use:n.

91 \cs_new_protected:Npn __hook_init_structure:n #1
92 {
93 __hook_if_structure_exist:nF {#1}
94 {

31

95 \prop_new:c { g__hook_#1_code_prop }
96 \tl_new:c { __hook_toplevel~#1 }
97 \tl_new:c { __hook_next~#1 }
98 }
99 }

(End definition for __hook_init_structure:n.)

\hook_new_reversed:n
__hook_new_reversed:n

Declare a new hook. The default ordering of code chunks is reversed, signaled by setting
the token list to a minus sign.

100 \cs_new_protected:Npn \hook_new_reversed:n #1
101 { __hook_normalize_hook_args:Nn __hook_new_reversed:n {#1} }
102 \cs_new_protected:Npn __hook_new_reversed:n #1
103 {
104 __hook_new:n {#1}

If the hook already exists the above will generate an error message, so the next line should
be executed (but it is — too bad).

105 \tl_gset:cn { g__hook_#1_reversed_tl } { - }
106 }

(End definition for \hook_new_reversed:n and __hook_new_reversed:n. This function is documented
on page 12.)

\hook_new_pair:nn A shorthand for declaring a normal and a (matching) reversed hook in one go.
107 \cs_new_protected:Npn \hook_new_pair:nn #1#2
108 { \hook_new:n {#1} \hook_new_reversed:n {#2} }

(End definition for \hook_new_pair:nn. This function is documented on page 12.)

__hook_include_legacy_code_chunk:n The LATEX legacy concept for hooks uses with hooks the following naming scheme in the
code: \@...hook.

If this macro is not empty we add it under the label legacy to the current hook and
then empty it globally. This way packages or classes directly manipulating commands
such as \@begindocumenthook still get their hook data added.

Warning: this support will vanish in future releases!
109 \cs_new_protected:Npn __hook_include_legacy_code_chunk:n #1
110 {

If the macro doesn’t exist (which is the usual case) then nothing needs to be done.
111 \tl_if_exist:cT { @#1hook }

Of course if the legacy hook exists but is empty, there is no need to add anything under
legacy the legacy label.

112 {
113 \tl_if_empty:cF { @#1hook }
114 {
115 \exp_args:Nnnv __hook_hook_gput_code_do:nnn {#1}
116 { legacy } { @#1hook }

Once added to the hook, we need to clear it otherwise it might get added again later if
the hook data gets updated.

117 __hook_tl_gclear:c { @#1hook }
118 }
119 }
120 }

(End definition for __hook_include_legacy_code_chunk:n.)

32

4.4.4 Disabling and providing hooks

\hook_disable_generic:n
__hook_disable:n

__hook_if_disabled_p:n
__hook_if_disabled:nTF

Disables a hook by creating its \g__hook_⟨hook⟩_declared_tl so that the hook errors
when used with \hook_new:n, then it undefines __hook␣⟨hook⟩ so that it may not be
executed.

This does not clear any code that may be already stored in the hook’s structure, but
doesn’t allow adding more code. __hook_if_disabled:nTF uses that specific combina-
tion to check if the hook is disabled.

121 ⟨latexrelease⟩\IncludeInRelease{2021/06/01}%
122 ⟨latexrelease⟩ {\hook_disable_generic:n}{Disable~hooks}

123 \cs_new_protected:Npn \hook_disable_generic:n #1
124 { __hook_normalize_hook_args:Nn __hook_disable:n {#1} }
125 \cs_new_protected:Npn __hook_disable:n #1
126 {
127 \tl_gclear_new:c { g__hook_#1_declared_tl }
128 \cs_undefine:c { __hook~#1 }
129 }
130 \prg_new_conditional:Npnn __hook_if_disabled:n #1 { p, T, F, TF }
131 {
132 \bool_lazy_and:nnTF
133 { \tl_if_exist_p:c { g__hook_#1_declared_tl } }
134 { ! \tl_if_exist_p:c { __hook~#1 } }
135 { \prg_return_true: }
136 { \prg_return_false: }
137 }
138 ⟨latexrelease⟩\EndIncludeInRelease

139 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}
140 ⟨latexrelease⟩ {\hook_disable_generic:n}{Disable~hooks}
141 ⟨latexrelease⟩
142 ⟨latexrelease⟩\cs_new_protected:Npn \hook_disable_generic:n #1 {}
143 ⟨latexrelease⟩
144 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for \hook_disable_generic:n , __hook_disable:n , and __hook_if_disabled:nTF.
This function is documented on page 12.)

\hook_activate_generic:n
__hook_activate_generic:n

The \hook_activate_generic:n declaration declares a new hook if it wasn’t declared
already, in which case it only checks that the already existing hook is not a reversed hook.

145 ⟨latexrelease⟩\IncludeInRelease{2021/06/01}%
146 ⟨latexrelease⟩ {\hook_activate_generic:n}{Providing~hooks}

147 \cs_new_protected:Npn \hook_activate_generic:n #1
148 { __hook_normalize_hook_args:Nn __hook_activate_generic:nn {#1} { } }

149 \cs_new_protected:Npn __hook_activate_generic:nn #1 #2
150 {

If the hook to be activated was disabled we warn (for now — this may change).
151 __hook_if_disabled:nTF {#1}
152 { \msg_warning:nnn { hooks } { activate-disabled } {#1} }

Otherwise we check if the hook is not declared, and if it isn’t, figure out if it’s reversed
or not, then declare it accordingly.

153 {
154 __hook_if_declared:nF {#1}

33

155 {
156 \tl_new:c { g__hook_#1_declared_tl }
157 __hook_make_usable:n {#1}
158 \tl_gset:cx { g__hook_#1_reversed_tl }
159 { __hook_if_generic_reversed:nT {#1} { - } }

Reflect that we have activated the generic hook and set its execution code.
160 __hook_update_hook_code:n {#1}
161 }
162 }
163 }

(End definition for \hook_activate_generic:n and __hook_activate_generic:n. This function is doc-
umented on page 13.)

164 ⟨latexrelease⟩\EndIncludeInRelease

165 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}
166 ⟨latexrelease⟩ {\hook_activate_generic:n}{Providing~hooks}
167 ⟨latexrelease⟩
168 ⟨latexrelease⟩\cs_new_protected:Npn \hook_activate_generic:n #1 {}
169 ⟨latexrelease⟩
170 ⟨latexrelease⟩\EndIncludeInRelease

4.5 Parsing a label
__hook_parse_label_default:n This macro checks if a label was given (not \c_novalue_tl), and if so, tries to parse the

label looking for a leading . to replace by __hook_currname_or_default:.
171 \cs_new:Npn __hook_parse_label_default:n #1
172 {
173 \tl_if_novalue:nTF {#1}
174 { __hook_currname_or_default: }
175 { \tl_trim_spaces_apply:nN {#1} __hook_parse_dot_label:n }
176 }

(End definition for __hook_parse_label_default:n.)

__hook_parse_dot_label:n
__hook_parse_dot_label:w

__hook_parse_dot_label_cleanup:w
__hook_parse_dot_label_aux:w

Start by checking if the label is empty, which raises an error, and uses the fallback value.
If not, split the label at a ./, if any, and check if no tokens are before the ./, or if the
only character is a .. If these requirements are fulfilled, the leading . is replaced with
__hook_currname_or_default:. Otherwise the label is returned unchanged.

177 \cs_new:Npn __hook_parse_dot_label:n #1
178 {
179 \tl_if_empty:nTF {#1}
180 {
181 \msg_expandable_error:nn { hooks } { empty-label }
182 __hook_currname_or_default:
183 }
184 {
185 \str_if_eq:nnTF {#1} { . }
186 { __hook_currname_or_default: }
187 { __hook_parse_dot_label:w #1 ./ \s__hook_mark }
188 }
189 }
190 \cs_new:Npn __hook_parse_dot_label:w #1 ./ #2 \s__hook_mark

34

191 {
192 \tl_if_empty:nTF {#1}
193 { __hook_parse_dot_label_aux:w #2 \s__hook_mark }
194 {
195 \tl_if_empty:nTF {#2}
196 { __hook_make_name:n {#1} }
197 { __hook_parse_dot_label_cleanup:w #1 ./ #2 \s__hook_mark }
198 }
199 }
200 \cs_new:Npn __hook_parse_dot_label_cleanup:w #1 ./ \s__hook_mark {#1}
201 \cs_new:Npn __hook_parse_dot_label_aux:w #1 ./ \s__hook_mark
202 { __hook_currname_or_default: / __hook_make_name:n {#1} }

(End definition for __hook_parse_dot_label:n and others.)

__hook_currname_or_default: This uses \g__hook_hook_curr_name_tl if it is set, otherwise it tries \@currname. If
neither is set, it raises an error and uses the fallback value label-missing.

203 \cs_new:Npn __hook_currname_or_default:
204 {
205 \tl_if_empty:NTF \g__hook_hook_curr_name_tl
206 {
207 \tl_if_empty:NTF \@currname
208 {
209 \msg_expandable_error:nnn { latex2e } { should-not-happen }
210 { Empty~default~label. }
211 __hook_make_name:n { label-missing }
212 }
213 { \@currname }
214 }
215 { \g__hook_hook_curr_name_tl }
216 }

(End definition for __hook_currname_or_default:.)

__hook_make_name:n
__hook_make_name:w

This provides a standard sanitization of a hook’s name. It uses \cs:w to build a control
sequence out of the hook name, then uses \cs_to_str:N to get the string representation
of that, without the escape character. \cs:w-based expansion is used instead of e-based
because Unicode characters don’t behave well inside \expanded. The macro adds the _-
_hook␣ prefix to the hook name to reuse the hook’s code token list to build the csname
and avoid leaving “public” control sequences defined (as \relax) in TeX’s memory.

217 \cs_new:Npn __hook_make_name:n #1
218 {
219 \exp_after:wN \exp_after:wN \exp_after:wN __hook_make_name:w
220 \exp_after:wN \token_to_str:N \cs:w __hook~ #1 \cs_end:
221 }
222 \exp_last_unbraced:NNNNo
223 \cs_new:Npn __hook_make_name:w #1 \tl_to_str:n { __hook~ } { }

(End definition for __hook_make_name:n and __hook_make_name:w.)

__hook_normalize_hook_args:Nn
__hook_normalize_hook_args:Nnn

__hook_normalize_hook_rule_args:Nnnnn
__hook_normalize_hook_args_aux:Nn

This is the standard route for normalizing hook and label arguments. The main macro
does the entire operation within a group so that csnames made by __hook_make_-
name:n are wiped off before continuing. This means that this function cannot be used
for \hook_use:n!

35

224 \cs_new_protected:Npn __hook_normalize_hook_args_aux:Nn #1 #2
225 {
226 \group_begin:
227 \use:e
228 {
229 \group_end:
230 \exp_not:N #1 #2
231 }
232 }
233 \cs_new_protected:Npn __hook_normalize_hook_args:Nn #1 #2
234 {
235 __hook_normalize_hook_args_aux:Nn #1
236 { { __hook_parse_label_default:n {#2} } }
237 }
238 \cs_new_protected:Npn __hook_normalize_hook_args:Nnn #1 #2 #3
239 {
240 __hook_normalize_hook_args_aux:Nn #1
241 {
242 { __hook_parse_label_default:n {#2} }
243 { __hook_parse_label_default:n {#3} }
244 }
245 }
246 \cs_new_protected:Npn __hook_normalize_hook_rule_args:Nnnnn #1 #2 #3 #4 #5
247 {
248 __hook_normalize_hook_args_aux:Nn #1
249 {
250 { __hook_parse_label_default:n {#2} }
251 { __hook_parse_label_default:n {#3} }
252 { \tl_trim_spaces:n {#4} }
253 { __hook_parse_label_default:n {#5} }
254 }
255 }

(End definition for __hook_normalize_hook_args:Nn and others.)

__hook_curr_name_push:n
__hook_curr_name_push_aux:n

__hook_curr_name_pop:
__hook_end_document_label_check:

The token list \g__hook_hook_curr_name_tl stores the name of the current pack-
age/file to be used as the default label in hooks. Providing a consistent interface is
tricky because packages can be loaded within packages, and some packages may not use
\SetDefaultHookLabel to change the default label (in which case \@currname is used).

To pull that one off, we keep a stack that contains the default label for each level
of input. The bottom of the stack contains the default label for the top-level (this
stack should never go empty). If we’re building the format, set the default label to be
top-level:

256 \tl_gset:Nn \g__hook_hook_curr_name_tl { top-level }

Then, in case we’re in latexrelease we push something on the stack to support roll
forward. But in some rare cases, latexrelease may be loaded inside another package
(notably platexrelease), so we’ll first push the top-level entry:

257 ⟨latexrelease⟩\seq_if_empty:NT \g__hook_name_stack_seq
258 ⟨latexrelease⟩ { \seq_gput_right:Nn \g__hook_name_stack_seq { top-level } }

then we dissect the \@currnamestack, adding \@currname to the stack:
259 ⟨latexrelease⟩\cs_set_protected:Npn __hook_tmp:w #1 #2 #3
260 ⟨latexrelease⟩ {

36

261 ⟨latexrelease⟩ \quark_if_recursion_tail_stop:n {#1}
262 ⟨latexrelease⟩ \seq_gput_right:Nn \g__hook_name_stack_seq {#1}
263 ⟨latexrelease⟩ __hook_tmp:w
264 ⟨latexrelease⟩ }
265 ⟨latexrelease⟩\exp_after:wN __hook_tmp:w \@currnamestack
266 ⟨latexrelease⟩ \q_recursion_tail \q_recursion_tail
267 ⟨latexrelease⟩ \q_recursion_tail \q_recursion_stop

and finally set the default label to be the \@currname:
268 ⟨latexrelease⟩\tl_gset:Nx \g__hook_hook_curr_name_tl { \@currname }
269 ⟨latexrelease⟩\seq_gpop_right:NN \g__hook_name_stack_seq \l__hook_tmpa_tl

Two commands keep track of the stack: when a file is input, __hook_curr_name_-
push:n pushes the current default label onto the stack and sets the new default label (all
in one go):

270 \cs_new_protected:Npn __hook_curr_name_push:n #1
271 { \exp_args:Nx __hook_curr_name_push_aux:n { __hook_make_name:n {#1} } }
272 \cs_new_protected:Npn __hook_curr_name_push_aux:n #1
273 {
274 \tl_if_blank:nTF {#1}
275 { \msg_error:nn { hooks } { no-default-label } }
276 {
277 \str_if_eq:nnTF {#1} { top-level }
278 {
279 \msg_error:nnnnn { hooks } { set-top-level }
280 { to } { PushDefaultHookLabel } {#1}
281 }
282 {
283 \seq_gpush:NV \g__hook_name_stack_seq \g__hook_hook_curr_name_tl
284 \tl_gset:Nn \g__hook_hook_curr_name_tl {#1}
285 }
286 }
287 }

and when an input is over, the topmost item of the stack is popped, since that label
will not be used again, and \g__hook_hook_curr_name_tl is updated to equal the now
topmost item of the stack:

288 \cs_new_protected:Npn __hook_curr_name_pop:
289 {
290 \seq_gpop:NNTF \g__hook_name_stack_seq \l__hook_return_tl
291 { \tl_gset_eq:NN \g__hook_hook_curr_name_tl \l__hook_return_tl }
292 { \msg_error:nn { hooks } { extra-pop-label } }
293 }

At the end of the document we want to check if there was no __hook_curr_name_-
push:n without a matching __hook_curr_name_pop: (not a critical error, but it might
indicate that something else is not quite right):

294 \tl_gput_right:Nn \@kernel@after@enddocument@afterlastpage
295 { __hook_end_document_label_check: }
296 \cs_new_protected:Npn __hook_end_document_label_check:
297 {
298 \seq_gpop:NNT \g__hook_name_stack_seq \l__hook_return_tl
299 {
300 \msg_error:nnx { hooks } { missing-pop-label }
301 { \g__hook_hook_curr_name_tl }

37

302 \tl_gset_eq:NN \g__hook_hook_curr_name_tl \l__hook_return_tl
303 __hook_end_document_label_check:
304 }
305 }

The token list \g__hook_hook_curr_name_tl is but a mirror of the top of the stack.

__hook_set_default_hook_label:n
__hook_set_default_label:n

Now define a wrapper that replaces the top of the stack with the argument, and updates
\g__hook_hook_curr_name_tl accordingly.

306 \cs_new_protected:Npn __hook_set_default_hook_label:n #1
307 {
308 \seq_if_empty:NTF \g__hook_name_stack_seq
309 {
310 \msg_error:nnnnn { hooks } { set-top-level }
311 { for } { SetDefaultHookLabel } {#1}
312 }
313 { \exp_args:Nx __hook_set_default_label:n { __hook_make_name:n {#1} } }
314 }
315 \cs_new_protected:Npn __hook_set_default_label:n #1
316 {
317 \str_if_eq:nnTF {#1} { top-level }
318 {
319 \msg_error:nnnnn { hooks } { set-top-level }
320 { to } { SetDefaultHookLabel } {#1}
321 }
322 { \tl_gset:Nn \g__hook_hook_curr_name_tl {#1} }
323 }

(End definition for __hook_curr_name_push:n and others.)

4.6 Adding or removing hook code
\hook_gput_code:nnn

__hook_gput_code:nnn
__hook_hook_gput_code_do:nnn

With \hook_gput_code:nnn{⟨hook⟩}{⟨label⟩}{⟨code⟩} a chunk of ⟨code⟩ is added to an
existing ⟨hook⟩ labeled with ⟨label⟩.

324 \cs_new_protected:Npn \hook_gput_code:nnn #1 #2
325 { __hook_normalize_hook_args:Nnn __hook_gput_code:nnn {#1} {#2} }

326 \cs_new_protected:Npn __hook_gput_code:nnn #1 #2 #3
327 {

First check if the code should be executed immediately, rather than stored:
328 __hook_if_execute_immediately:nTF {#1}
329 {#3}
330 {

Then check if the hook is usable.
331 __hook_if_usable:nTF {#1}

If so we simply add (or append) the new code to the property list holding different chunks
for the hook. At \begin{document} this is then sorted into a token list for fast execution.

332 {
333 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}

However, if there is an update within the document we need to alter this execution code
which is done by __hook_update_hook_code:n. In the preamble this does nothing.

334 __hook_update_hook_code:n {#1}
335 }

38

If the hook is not usable, before giving up, check if it’s not disabled and otherwise
try to declare it as a generic hook, if its name matches one of the valid patterns.

336 {
337 __hook_if_disabled:nTF {#1}
338 { \msg_error:nnn { hooks } { hook-disabled } {#1} }
339 { __hook_try_declaring_generic_hook:nnn {#1} {#2} {#3} }
340 }
341 }
342 }

This macro will unconditionally add a chunk of code to the given hook.
343 \cs_new_protected:Npn __hook_hook_gput_code_do:nnn #1 #2 #3
344 {

However, first some debugging info if debugging is enabled:
345 __hook_debug:n{\iow_term:x{****~ Add~ to~
346 __hook_if_usable:nF {#1} { undeclared~ }
347 hook~ #1~ (#2)
348 \on@line\space <-~ \tl_to_str:n{#3}} }

Then try to get the code chunk labeled #2 from the hook. If there’s code already there,
then append #3 to that, otherwise just put #3. If the current label is top-level, the
code is added to a dedicated token list __hook_toplevel␣⟨hook⟩ that goes at the end
of the hook (or at the beginning, for a reversed hook), just before __hook_next␣⟨hook⟩.

349 \str_if_eq:nnTF {#2} { top-level }
350 {
351 \str_if_eq:eeTF { top-level } { __hook_currname_or_default: }
352 {

If the hook’s basic structure does not exist, we need to declare it with __hook_init_-
structure:n.

353 __hook_init_structure:n {#1}
354 __hook_tl_gput_right:cn { __hook_toplevel~#1 } {#3}
355 }
356 { \msg_error:nnn { hooks } { misused-top-level } {#1} }
357 }
358 {
359 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \l__hook_return_tl
360 {
361 \prop_gput:cno { g__hook_#1_code_prop } {#2}
362 { \l__hook_return_tl #3 }
363 }
364 { \prop_gput:cnn { g__hook_#1_code_prop } {#2} {#3} }
365 }
366 }

(End definition for \hook_gput_code:nnn , __hook_gput_code:nnn , and __hook_hook_gput_code_-
do:nnn. This function is documented on page 13.)

__hook_gput_undeclared_hook:nnn Often it may happen that a package A defines a hook foo, but package B, that adds
code to that hook, is loaded before A. In such case we need to add code to the hook
before its declared.

367 \cs_new_protected:Npn __hook_gput_undeclared_hook:nnn #1 #2 #3
368 {
369 __hook_init_structure:n {#1}

39

370 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}
371 }

(End definition for __hook_gput_undeclared_hook:nnn.)

__hook_try_declaring_generic_hook:nnn
__hook_try_declaring_generic_next_hook:nn

These entry-level macros just pass the arguments along to the common __hook_try_-
declaring_generic_hook:nNNnn with the right functions to execute when some action
is to be taken.

The wrapper __hook_try_declaring_generic_hook:nnn then defers \hook_-
gput_code:nnn if the generic hook was declared, or to __hook_gput_undeclared_-
hook:nnn otherwise (the hook was tested for existence before, so at this point if it isn’t
generic, it doesn’t exist).

The wrapper __hook_try_declaring_generic_next_hook:nn for next-execution
hooks does the same: it defers the code to \hook_gput_next_code:nn if the generic hook
was declared, or to __hook_gput_next_do:nn otherwise.

372 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{__hook_try_declaring_generic_hook:nnn}
373 ⟨latexrelease⟩ {Standardise~generic~hook~names}
374 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nnn #1
375 {
376 __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}
377 \hook_gput_code:nnn
378 __hook_gput_undeclared_hook:nnn
379 {#1}
380 }
381 \cs_new_protected:Npn __hook_try_declaring_generic_next_hook:nn #1
382 {
383 __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}
384 \hook_gput_next_code:nn
385 __hook_gput_next_do:nn
386 {#1}
387 }
388 ⟨latexrelease⟩\EndIncludeInRelease
389 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{__hook_try_declaring_generic_hook:nnn}
390 ⟨latexrelease⟩ {Standardise~generic~hook~names}
391 ⟨latexrelease⟩\cs_new_protected:Npn __hook_try_declaring_generic_hook:nnn #1
392 ⟨latexrelease⟩ {
393 ⟨latexrelease⟩ __hook_try_declaring_generic_hook:nNNnn {#1}
394 ⟨latexrelease⟩ \hook_gput_code:nnn __hook_gput_undeclared_hook:nnn
395 ⟨latexrelease⟩ }
396 ⟨latexrelease⟩\cs_new_protected:Npn __hook_try_declaring_generic_next_hook:nn #1
397 ⟨latexrelease⟩ {
398 ⟨latexrelease⟩ __hook_try_declaring_generic_hook:nNNnn {#1}
399 ⟨latexrelease⟩ \hook_gput_next_code:nn __hook_gput_next_do:nn
400 ⟨latexrelease⟩ }

(End definition for __hook_try_declaring_generic_hook:nnn and __hook_try_declaring_generic_-
next_hook:nn.)

__hook_try_declaring_generic_hook:nNNnn
__hook_try_declaring_generic_hook_split:nNNnn

__hook_try_declaring_generic_hook:nNNnn now splits the hook name at the first /
(if any) and first checks if it is a file-specific hook (they require some normalization) using
__hook_if_file_hook:wTF. If not then check it is one of a predefined set for generic
names. We also split off the second component to see if we have to make a reversed hook.
In either case the function returns ⟨true⟩ for a generic hook and ⟨false⟩ in other cases.

40

401 ⟨latexrelease⟩\cs_new_protected:Npn __hook_try_declaring_generic_hook:nNNnn #1
402 ⟨latexrelease⟩ {
403 ⟨latexrelease⟩ __hook_if_file_hook:wTF #1 / \s__hook_mark
404 ⟨latexrelease⟩ {
405 ⟨latexrelease⟩ \exp_args:Ne __hook_try_declaring_generic_hook_split:nNNnn
406 ⟨latexrelease⟩ { \exp_args:Ne __hook_file_hook_normalize:n {#1} }
407 ⟨latexrelease⟩ }
408 ⟨latexrelease⟩ { __hook_try_declaring_generic_hook_split:nNNnn {#1} }
409 ⟨latexrelease⟩ }

410 ⟨latexrelease⟩\cs_new_protected:Npn __hook_try_declaring_generic_hook_split:nNNnn #1 #2 #3
411 ⟨latexrelease⟩ {
412 ⟨latexrelease⟩ __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}
413 ⟨latexrelease⟩ { #2 }
414 ⟨latexrelease⟩ { #3 } {#1}
415 ⟨latexrelease⟩ }
416 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for __hook_try_declaring_generic_hook:nNNnn and __hook_try_declaring_generic_-
hook_split:nNNnn.)

__hook_try_declaring_generic_hook:wnTF

417 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{__hook_try_declaring_generic_hook:wn}%
418 ⟨latexrelease⟩ {Standardise~generic~hook~names}
419 \prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
420 #1 / #2 / #3 / #4 \scan_stop: #5 { TF }
421 {
422 __hook_if_generic:nTF {#5}
423 {
424 __hook_if_usable:nF {#5}
425 {

If the hook doesn’t exist yet we check if it is a cmd hook and if so we attempt patching
the command in addition to declaring the hook.

For some commands this will not be possible, in which case __hook_patch_cmd_-
or_delay:Nnn (defined in ltcmdhooks) will generate an appropriate error message.

426 \str_if_eq:nnT {#1} { cmd }
427 { __hook_try_put_cmd_hook:n {#5} }

Declare the hook always even if it can’t really be used (error message generated
elsewhere).

Here we use __hook_make_usable:n, so that a \hook_new:n is still possible later.
428 __hook_make_usable:n {#5}
429 }
430 __hook_if_generic_reversed:nT {#5}
431 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }
432 \prg_return_true:
433 }
434 {

Generic hooks are all named ⟨type⟩/⟨name⟩/⟨place⟩, where ⟨type⟩ and ⟨place⟩ are
predefined (\c__hook_generic_⟨type⟩/./⟨place⟩_tl), and ⟨name⟩ is the variable com-
ponent. Older releases had some hooks with the ⟨name⟩ in the third part, so the code
below supports that syntax for a while, with a warning.

41

The \exp_after:wN ... \exp:w trick is there to remove the conditional structure
inserted by __hook_try_declaring_generic_hook:wnTF and thus allow access to the
tokens that follow it, as is needed to keep things going.

When the deprecation cycle ends, the lines below should all be replaced by \prg_-
return_false:.

435 __hook_if_deprecated_generic:nTF {#5}
436 {
437 __hook_deprecated_generic_warn:n {#5}
438 \exp_after:wN __hook_declare_deprecated_generic:NNn
439 \exp:w % \exp_end:
440 }
441 { \prg_return_false: }
442 }
443 }

__hook_deprecated_generic_warn:Nn
__hook_deprecated_generic_warn:Nw

__hook_deprecated_generic_warn:n will issue a deprecation warning for a given hook,
and mark that hook such that the warning will not be issued again (multiple warnings
can be issued, but only once per hook).

444 \cs_new_protected:Npn __hook_deprecated_generic_warn:n #1
445 { __hook_deprecated_generic_warn:w #1 \s__hook_mark }
446 \cs_new_protected:Npn __hook_deprecated_generic_warn:w
447 #1 / #2 / #3 \s__hook_mark
448 {
449 \if_cs_exist:w __hook~#1/#2/#3 \cs_end: \else:
450 \msg_warning:nnnnn { hooks } { generic-deprecated } {#1} {#2} {#3}
451 \fi:
452 \cs_gset_eq:cN { __hook~#1/#2/#3 } \scan_stop:
453 }

__hook_do_deprecated_generic:Nn
__hook_do_deprecated_generic:Nw

__hook_declare_deprecated_generic:NNw
__hook_declare_deprecated_generic:NNw

Now that the user has been told about the deprecation, we proceed by swapping ⟨name⟩
and ⟨place⟩ and adding the code to the correct hook.

454 \cs_new_protected:Npn __hook_do_deprecated_generic:Nn #1 #2
455 { __hook_do_deprecated_generic:Nw #1 #2 \s__hook_mark }
456 \cs_new_protected:Npn __hook_do_deprecated_generic:Nw #1
457 #2 / #3 / #4 \s__hook_mark
458 { #1 { #2 / #4 / #3 } }
459 \cs_new_protected:Npn __hook_declare_deprecated_generic:NNn #1 #2 #3
460 { __hook_declare_deprecated_generic:NNw #1 #2 #3 \s__hook_mark }
461 \cs_new_protected:Npn __hook_declare_deprecated_generic:NNw #1 #2
462 #3 / #4 / #5 \s__hook_mark
463 {
464 __hook_try_declaring_generic_hook:wnTF #3 / #5 / #4 / \scan_stop:
465 { #3 / #5 / #4 }
466 #1 #2 { #3 / #5 / #4 }
467 }
468 ⟨latexrelease⟩\EndIncludeInRelease

469 ⟨latexrelease⟩\IncludeInRelease{2021/06/01}{__hook_try_declaring_generic_hook:wn}
470 ⟨latexrelease⟩ {Support~cmd~hooks}
471 ⟨latexrelease⟩\prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
472 ⟨latexrelease⟩ #1 / #2 / #3 / #4 \scan_stop: #5 { TF }
473 ⟨latexrelease⟩ {
474 ⟨latexrelease⟩ \tl_if_empty:nTF {#2}

42

475 ⟨latexrelease⟩ { \prg_return_false: }
476 ⟨latexrelease⟩ {
477 ⟨latexrelease⟩ \prop_if_in:NnTF \c__hook_generics_prop {#1}
478 ⟨latexrelease⟩ {
479 ⟨latexrelease⟩ __hook_if_usable:nF {#5}
480 ⟨latexrelease⟩ {
481 ⟨latexrelease⟩ \str_if_eq:nnT {#1} { cmd }
482 ⟨latexrelease⟩ { __hook_try_put_cmd_hook:n {#5} }
483 ⟨latexrelease⟩ __hook_make_usable:n {#5}
484 ⟨latexrelease⟩ }
485 ⟨latexrelease⟩ \prop_if_in:NnTF \c__hook_generics_reversed_ii_prop {#2}
486 ⟨latexrelease⟩ { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }
487 ⟨latexrelease⟩ {
488 ⟨latexrelease⟩ \prop_if_in:NnT \c__hook_generics_reversed_iii_prop {#3}
489 ⟨latexrelease⟩ { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }
490 ⟨latexrelease⟩ }
491 ⟨latexrelease⟩ \prg_return_true:
492 ⟨latexrelease⟩ }
493 ⟨latexrelease⟩ { \prg_return_false: }
494 ⟨latexrelease⟩ }
495 ⟨latexrelease⟩ }
496 ⟨latexrelease⟩\EndIncludeInRelease

497 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{__hook_try_declaring_generic_hook:wn}%
498 ⟨latexrelease⟩ {Support~cmd~hooks}
499 ⟨latexrelease⟩\prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
500 ⟨latexrelease⟩ #1 / #2 / #3 / #4 \scan_stop: #5 { TF }
501 ⟨latexrelease⟩ {
502 ⟨latexrelease⟩ \tl_if_empty:nTF {#2}
503 ⟨latexrelease⟩ { \prg_return_false: }
504 ⟨latexrelease⟩ {
505 ⟨latexrelease⟩ \prop_if_in:NnTF \c__hook_generics_prop {#1}
506 ⟨latexrelease⟩ {
507 ⟨latexrelease⟩ __hook_if_declared:nF {#5} { \hook_new:n {#5} }
508 ⟨latexrelease⟩ \prop_if_in:NnTF \c__hook_generics_reversed_ii_prop {#2}
509 ⟨latexrelease⟩ { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }
510 ⟨latexrelease⟩ {
511 ⟨latexrelease⟩ \prop_if_in:NnT \c__hook_generics_reversed_iii_prop {#3}
512 ⟨latexrelease⟩ { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }
513 ⟨latexrelease⟩ }
514 ⟨latexrelease⟩ \prg_return_true:
515 ⟨latexrelease⟩ }
516 ⟨latexrelease⟩ { \prg_return_false: }
517 ⟨latexrelease⟩ }
518 ⟨latexrelease⟩ }
519 ⟨latexrelease⟩
520 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for __hook_try_declaring_generic_hook:wnTF and others.)

__hook_if_file_hook_p:w
__hook_if_file_hook:wTF

__hook_if_file_hook:wTF checks if the argument is a valid file-specific hook (not, for
example, file/before, but file/foo.tex/before). If it is a file-specific hook, then it
executes the ⟨true⟩ branch, otherwise ⟨false⟩.

521 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{__hook_if_file_hook:w}%
522 ⟨latexrelease⟩ {Standardise~generic~hook~names}

43

523 \prg_new_conditional:Npnn __hook_if_file_hook:w
524 #1 / #2 \s__hook_mark #3 { TF }
525 {
526 __hook_if_generic:nTF {#3}
527 {
528 \str_if_eq:nnTF {#1} { file }
529 { \prg_return_true: }
530 { \prg_return_false: }
531 }
532 { \prg_return_false: }
533 }
534 ⟨latexrelease⟩\EndIncludeInRelease

535 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{__hook_if_file_hook:w}%
536 ⟨latexrelease⟩ {Standardise~generic~hook~names}
537 ⟨latexrelease⟩\prg_new_conditional:Npnn __hook_if_file_hook:w
538 ⟨latexrelease⟩ #1 / #2 / #3 \s__hook_mark { TF }
539 ⟨latexrelease⟩ {
540 ⟨latexrelease⟩ \str_if_eq:nnTF {#1} { file }
541 ⟨latexrelease⟩ {
542 ⟨latexrelease⟩ \bool_lazy_or:nnTF
543 ⟨latexrelease⟩ { \tl_if_empty_p:n {#3} }
544 ⟨latexrelease⟩ { \str_if_eq_p:nn {#3} { / } }
545 ⟨latexrelease⟩ { \prg_return_false: }
546 ⟨latexrelease⟩ {
547 ⟨latexrelease⟩ \prop_if_in:NnTF \c__hook_generics_file_prop {#2}
548 ⟨latexrelease⟩ { \prg_return_true: }
549 ⟨latexrelease⟩ { \prg_return_false: }
550 ⟨latexrelease⟩ }
551 ⟨latexrelease⟩ }
552 ⟨latexrelease⟩ { \prg_return_false: }
553 ⟨latexrelease⟩ }
554 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for __hook_if_file_hook:wTF.)

__hook_file_hook_normalize:n
__hook_strip_double_slash:n
__hook_strip_double_slash:w

555 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{__hook_file_hook_normalize:n}%
556 ⟨latexrelease⟩ {Standardise~generic~hook~names}
557 ⟨latexrelease⟩\EndIncludeInRelease

When a file-specific hook is found, before being declared it is lightly normalized
by __hook_file_hook_normalize:n. The current implementation just replaces two
consecutive slashes (//) by a single one, to cope with simple cases where the user did
something like \def\input@path{{./mypath/}}, in which case a hook would have to be
\AddToHook{file/./mypath//file.tex/after}.

558 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{__hook_file_hook_normalize:n}%
559 ⟨latexrelease⟩ {Standardise~generic~hook~names}
560 ⟨latexrelease⟩\cs_new:Npn __hook_file_hook_normalize:n #1
561 ⟨latexrelease⟩ { __hook_strip_double_slash:n {#1} }
562 ⟨latexrelease⟩\cs_new:Npn __hook_strip_double_slash:n #1
563 ⟨latexrelease⟩ { __hook_strip_double_slash:w #1 // \s__hook_mark }

This function is always called after testing if the argument is a file hook with __hook_-
if_file_hook:wTF, so we can assume it has three parts (it is either file/.../before

44

or file/.../after), so we use #1/#2/#3 // instead of just #1 // to prevent losing a
slash if the file name is empty.

564 ⟨latexrelease⟩\cs_new:Npn __hook_strip_double_slash:w #1/#2/#3 // #4 \s__hook_mark
565 ⟨latexrelease⟩ {
566 ⟨latexrelease⟩ \tl_if_empty:nTF {#4}
567 ⟨latexrelease⟩ { #1/#2/#3 }
568 ⟨latexrelease⟩ { __hook_strip_double_slash:w #1/#2/#3 / #4 \s__hook_mark }
569 ⟨latexrelease⟩ }
570 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for __hook_file_hook_normalize:n , __hook_strip_double_slash:n , and __hook_-
strip_double_slash:w.)

\c__hook_generic_cmd/./before_tl
\c__hook_generic_cmd/./after_tl

\c__hook_generic_env/./before_tl
\c__hook_generic_env/./after_tl

\c__hook_generic_file/./before_tl
\c__hook_generic_file/./after_tl

\c__hook_generic_package/./before_tl
\c__hook_generic_package/./after_tl
\c__hook_generic_class/./before_tl
\c__hook_generic_class/./after_tl

\c__hook_generic_include/./before_tl
\c__hook_generic_include/./after_tl

\c__hook_generic_env/./begin_tl
\c__hook_generic_env/./end_tl

\c__hook_generic_include/./end_tl

Token lists defining the possible generic hooks. We don’t provide any user interface to
this as this is meant to be static.

cmd The generic hooks used for commands.

env The generic hooks used in \begin and \end.

file, package, class, include The generic hooks used when loading a file

571 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{\c__hook_generics_prop}%
572 ⟨latexrelease⟩ {Standardise~generic~hook~names}
573 \clist_map_inline:nn { cmd , env , file , package , class , include }
574 {
575 \tl_const:cn { c__hook_generic_#1/./before_tl } { + }
576 \tl_const:cn { c__hook_generic_#1/./after_tl } { - }
577 }
578 \tl_const:cn { c__hook_generic_env/./begin_tl } { + }
579 \tl_const:cn { c__hook_generic_env/./end_tl } { + }

580 \tl_const:cn { c__hook_generic_include/./end_tl } { - }
581 \tl_const:cn { c__hook_generic_include/./excluded_tl } { + }

Deprecated generic hooks:
582 \clist_map_inline:nn { file , package , class , include }
583 {
584 \tl_const:cn { c__hook_deprecated_#1/./before_tl } { }
585 \tl_const:cn { c__hook_deprecated_#1/./after_tl } { }
586 }
587 \tl_const:cn { c__hook_deprecated_include/./end_tl } { }
588 ⟨latexrelease⟩\EndIncludeInRelease

589 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{\c__hook_generics_prop}%
590 ⟨latexrelease⟩ {Standardise~generic~hook~names}
591 ⟨latexrelease⟩\prop_const_from_keyval:Nn \c__hook_generics_prop
592 ⟨latexrelease⟩ {cmd=,env=,file=,package=,class=,include=}
593 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for \c__hook_generic_cmd/./before_tl and others.)

\c__hook_generics_reversed_ii_prop
\c__hook_generics_reversed_iii_prop

\c__hook_generics_file_prop

The following generic hooks are supposed to use reverse ordering (the ii and iii names
are kept for the deprecation cycle):

594 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{\c__hook_generics_reversed_ii_prop}%
595 ⟨latexrelease⟩ {Standardise~generic~hook~names}
596 ⟨latexrelease⟩\EndIncludeInRelease

45

597 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{\c__hook_generics_reversed_ii_prop}%
598 ⟨latexrelease⟩ {Standardise~generic~hook~names}
599 ⟨latexrelease⟩\prop_const_from_keyval:Nn \c__hook_generics_reversed_ii_prop {after=,end=}
600 ⟨latexrelease⟩\prop_const_from_keyval:Nn \c__hook_generics_reversed_iii_prop {after=}
601 ⟨latexrelease⟩\prop_const_from_keyval:Nn \c__hook_generics_file_prop {before=,after=}
602 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for \c__hook_generics_reversed_ii_prop , \c__hook_generics_reversed_iii_prop ,
and \c__hook_generics_file_prop.)

\hook_gremove_code:nn
__hook_gremove_code:nn

With \hook_gremove_code:nn{⟨hook⟩}{⟨label⟩} any code for ⟨hook⟩ stored under ⟨label⟩
is removed.

603 \cs_new_protected:Npn \hook_gremove_code:nn #1 #2
604 { __hook_normalize_hook_args:Nnn __hook_gremove_code:nn {#1} {#2} }
605 \cs_new_protected:Npn __hook_gremove_code:nn #1 #2
606 {

First check that the hook code pool exists. __hook_if_usable:nTF isn’t used here
because it should be possible to remove code from a hook before its defined (see sec-
tion 2.1.8).

607 __hook_if_structure_exist:nTF {#1}
608 {

Then remove the chunk and run __hook_update_hook_code:n so that the execution
token list reflects the change if we are after \begin{document}.

If all code is to be removed, clear the code pool \g__hook_⟨hook⟩_code_prop,
the top-level code __hook_toplevel␣⟨hook⟩, and the next-execution code __hook_-
next␣⟨hook⟩.

609 \str_if_eq:nnTF {#2} {*}
610 {
611 \prop_gclear:c { g__hook_#1_code_prop }
612 __hook_tl_gclear:c { __hook_toplevel~#1 }
613 __hook_tl_gclear:c { __hook_next~#1 }
614 }
615 {

If the label is top-level then clear the token list, as all code there is under the same
label.

616 \str_if_eq:nnTF {#2} { top-level }
617 { __hook_tl_gclear:c { __hook_toplevel~#1 } }
618 {
619 \prop_gpop:cnNF { g__hook_#1_code_prop } {#2} \l__hook_return_tl
620 { \msg_warning:nnnn { hooks } { cannot-remove } {#1} {#2} }
621 }
622 }

Finally update the code, if the hook exists.
623 __hook_if_usable:nT {#1}
624 { __hook_update_hook_code:n {#1} }
625 }

If the code pool for this hook doesn’t exist, show a warning:
626 {
627 __hook_if_deprecated_generic:nTF {#1}
628 {
629 __hook_deprecated_generic_warn:n {#1}

46

630 __hook_do_deprecated_generic:Nn __hook_gremove_code:nn {#1} {#2}
631 }
632 { \msg_warning:nnnn { hooks } { cannot-remove } {#1} {#2} }
633 }
634 }

(End definition for \hook_gremove_code:nn and __hook_gremove_code:nn. This function is docu-
mented on page 14.)

\g__hook_??_code_prop
__hook~??

\g__hook_??_reversed_tl

Initially these variables simply used an empty “label” name (not two question marks).
This was a bit unfortunate, because then l3doc complains about __ in the middle of a
command name when trying to typeset the documentation. However using a “normal”
name such as default has the disadvantage of that being not really distinguishable from
a real hook name. I now have settled for ?? which needs some gymnastics to get it into
the csname, but since this is used a lot, the code should be fast, so this is not done with
c expansion in the code later on.

__hook␣?? isn’t used, but it has to be defined to trick the code into thinking that
?? is actually a hook.

635 \prop_new:c {g__hook_??_code_prop}
636 \prop_new:c {__hook~??}

Default rules are always given in normal ordering (never in reversed ordering). If
such a rule is applied to a reversed hook it behaves as if the rule is reversed (e.g., after
becomes before) because those rules are applied first and then the order is reversed.

637 \tl_new:c {g__hook_??_reversed_tl}

(End definition for \g__hook_??_code_prop , __hook~?? , and \g__hook_??_reversed_tl.)

4.7 Setting rules for hooks code
\hook_gset_rule:nnnn

__hook_gset_rule:nnnn
With \hook_gset_rule:nnnn{⟨hook⟩}{⟨label1 ⟩}{⟨relation⟩}{⟨label2 ⟩} a relation is de-
fined between the two code labels for the given ⟨hook⟩. The special hook ?? stands for
any hook, which sets a default rule (to be used if no other relation between the two hooks
exist).

638 \cs_new_protected:Npn \hook_gset_rule:nnnn #1#2#3#4
639 {
640 __hook_normalize_hook_rule_args:Nnnnn __hook_gset_rule:nnnn
641 {#1} {#2} {#3} {#4}
642 }

643 ⟨latexrelease⟩\IncludeInRelease{2022/06/01}{__hook_gset_rule:nnnn}
644 ⟨latexrelease⟩ {Refuse~setting~rule~for~one-time~hooks}

645 \cs_new_protected:Npn __hook_gset_rule:nnnn #1#2#3#4
646 {
647 __hook_if_deprecated_generic:nT {#1}
648 {
649 __hook_deprecated_generic_warn:n {#1}
650 __hook_do_deprecated_generic:Nn __hook_gset_rule:nnnn {#1}
651 {#2} {#3} {#4}
652 __hook_clean_to_scan:w
653 }
654 __hook_if_execute_immediately:nT {#1}
655 {
656 \msg_error:nnnnnn { hooks } { rule-too-late }

47

657 {#1} {#2} {#3} {#4}
658 __hook_clean_to_scan:w
659 }

First we ensure the basic data structure of the hook exists:
660 __hook_init_structure:n {#1}

Then we clear any previous relationship between both labels.
661 __hook_rule_gclear:nnn {#1} {#2} {#4}

Then we call the function to handle the given rule. Throw an error if the rule is invalid.
662 \cs_if_exist_use:cTF { __hook_rule_#3_gset:nnn }
663 {
664 {#1} {#2} {#4}
665 __hook_update_hook_code:n {#1}
666 }
667 {
668 \msg_error:nnnnnn { hooks } { unknown-rule }
669 {#1} {#2} {#3} {#4}
670 }
671 \s__hook_mark
672 }

673 ⟨latexrelease⟩\EndIncludeInRelease
674 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{__hook_gset_rule:nnnn}
675 ⟨latexrelease⟩ {Refuse~setting~rule~for~one-time~hooks}
676 ⟨latexrelease⟩\cs_new_protected:Npn __hook_gset_rule:nnnn #1#2#3#4
677 ⟨latexrelease⟩ {
678 ⟨latexrelease⟩ __hook_if_deprecated_generic:nT {#1}
679 ⟨latexrelease⟩ {
680 ⟨latexrelease⟩ __hook_deprecated_generic_warn:n {#1}
681 ⟨latexrelease⟩ __hook_do_deprecated_generic:Nn __hook_gset_rule:nnnn {#1}
682 ⟨latexrelease⟩ {#2} {#3} {#4}
683 ⟨latexrelease⟩ \exp_after:wN \use_none:nnnnnnnnn \use_none:n
684 ⟨latexrelease⟩ }
685 ⟨latexrelease⟩ __hook_init_structure:n {#1}
686 ⟨latexrelease⟩ __hook_rule_gclear:nnn {#1} {#2} {#4}
687 ⟨latexrelease⟩ \cs_if_exist_use:cTF { __hook_rule_#3_gset:nnn }
688 ⟨latexrelease⟩ {
689 ⟨latexrelease⟩ {#1} {#2} {#4}
690 ⟨latexrelease⟩ __hook_update_hook_code:n {#1}
691 ⟨latexrelease⟩ }
692 ⟨latexrelease⟩ {
693 ⟨latexrelease⟩ \msg_error:nnnnnn { hooks } { unknown-rule }
694 ⟨latexrelease⟩ {#1} {#2} {#3} {#4}
695 ⟨latexrelease⟩ }
696 ⟨latexrelease⟩ }
697 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for \hook_gset_rule:nnnn and __hook_gset_rule:nnnn. This function is documented
on page 14.)

__hook_rule_before_gset:nnn
__hook_rule_after_gset:nnn

__hook_rule_<_gset:nnn
__hook_rule_>_gset:nnn

Then we add the new rule. We need to normalize the rules here to allow for faster pro-
cessing later. Given a pair of labels lA and lB , the rule lA > lB is the same as lB < lA only
presented differently. But by normalizing the forms of the rule to a single representation,
say, lB < lA, reduces the time spent looking for the rules later considerably.

48

Here we do that normalization by using \(pdf)strcmp to lexically sort labels lA and
lB to a fixed order. This order is then enforced every time these two labels are used
together.

Here we use __hook_label_pair:nn {⟨hook⟩} {⟨lA⟩} {⟨lB⟩} to build a string lB|lA
with a fixed order, and use __hook_label_ordered:nnTF to apply the correct rule to
the pair of labels, depending if it was sorted or not.

698 \cs_new_protected:Npn __hook_rule_before_gset:nnn #1#2#3
699 {
700 __hook_tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
701 { __hook_label_ordered:nnTF {#2} {#3} { < } { > } }
702 }
703 \cs_new_eq:cN { __hook_rule_<_gset:nnn } __hook_rule_before_gset:nnn

704 \cs_new_protected:Npn __hook_rule_after_gset:nnn #1#2#3
705 {
706 __hook_tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#3} {#2} _tl }
707 { __hook_label_ordered:nnTF {#3} {#2} { < } { > } }
708 }
709 \cs_new_eq:cN { __hook_rule_>_gset:nnn } __hook_rule_after_gset:nnn

(End definition for __hook_rule_before_gset:nnn and others.)

__hook_rule_voids_gset:nnn This rule removes (clears, actually) the code from label #3 if label #2 is in the hook #1.
710 \cs_new_protected:Npn __hook_rule_voids_gset:nnn #1#2#3
711 {
712 __hook_tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
713 { __hook_label_ordered:nnTF {#2} {#3} { -> } { <- } }
714 }

(End definition for __hook_rule_voids_gset:nnn.)

__hook_rule_incompatible-error_gset:nnn
__hook_rule_incompatible-warning_gset:nnn

These relations make an error/warning if labels #2 and #3 appear together in hook #1.
715 \cs_new_protected:cpn { __hook_rule_incompatible-error_gset:nnn } #1#2#3
716 { __hook_tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
717 { xE } }
718 \cs_new_protected:cpn { __hook_rule_incompatible-warning_gset:nnn } #1#2#3
719 { __hook_tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
720 { xW } }

(End definition for __hook_rule_incompatible-error_gset:nnn and __hook_rule_incompatible-warning_-
gset:nnn.)

__hook_rule_unrelated_gset:nnn
__hook_rule_gclear:nnn

Undo a setting. __hook_rule_unrelated_gset:nnn doesn’t need to do anything, since
we use __hook_rule_gclear:nnn before setting any rule.

721 \cs_new_protected:Npn __hook_rule_unrelated_gset:nnn #1#2#3 { }
722 \cs_new_protected:Npn __hook_rule_gclear:nnn #1#2#3
723 { \cs_undefine:c { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl } }

(End definition for __hook_rule_unrelated_gset:nnn and __hook_rule_gclear:nnn.)

__hook_label_pair:nn Ensure that the lexically greater label comes first.
724 \cs_new:Npn __hook_label_pair:nn #1#2
725 {
726 \if_case:w __hook_str_compare:nn {#1} {#2} \exp_stop_f:
727 #1 | #1 % 0

49

728 \or: #1 | #2 % +1
729 \else: #2 | #1 % -1
730 \fi:
731 }

(End definition for __hook_label_pair:nn.)

__hook_label_ordered_p:nn
__hook_label_ordered:nnTF

Check that labels #1 and #2 are in the correct order (as returned by __hook_label_-
pair:nn) and if so return true, else return false.

732 \prg_new_conditional:Npnn __hook_label_ordered:nn #1#2 { TF }
733 {
734 \if_int_compare:w __hook_str_compare:nn {#1} {#2} > 0 \exp_stop_f:
735 \prg_return_true:
736 \else:
737 \prg_return_false:
738 \fi:
739 }

(End definition for __hook_label_ordered:nnTF.)

__hook_if_label_case:nnnnn To avoid doing the string comparison twice in __hook_initialize_single:NNn (once
with \str_if_eq:nn and again with __hook_label_ordered:nn), we use a three-way
branching macro that will compare #1 and #2 and expand to \use_i:nnn if they are
equal, \use_ii:nn if #1 is lexically greater, and \use_iii:nn otherwise.

740 \cs_new:Npn __hook_if_label_case:nnnnn #1#2
741 {
742 \cs:w use_
743 \if_case:w __hook_str_compare:nn {#1} {#2}
744 i \or: ii \else: iii \fi: :nnn
745 \cs_end:
746 }

(End definition for __hook_if_label_case:nnnnn.)

__hook_update_hook_code:n Before \begin{document} this does nothing, in the body it reinitializes the hook code
using the altered data.

747 \cs_new_eq:NN __hook_update_hook_code:n \use_none:n

(End definition for __hook_update_hook_code:n.)

__hook_initialize_all: Initialize all known hooks (at \begin{document}), i.e., update the fast execution token
lists to hold the necessary code in the right order.

748 \cs_new_protected:Npn __hook_initialize_all: {

First we change __hook_update_hook_code:n which so far was a no-op to now initialize
one hook. This way any later updates to the hook will run that code and also update
the execution token list.

749 \cs_gset_eq:NN __hook_update_hook_code:n __hook_initialize_hook_code:n

Now we loop over all hooks that have been defined and update each of them.
750 __hook_debug:n { \prop_gclear:N \g__hook_used_prop }
751 \seq_map_inline:Nn \g__hook_all_seq
752 {
753 __hook_update_hook_code:n {##1}
754 }

50

If we are debugging we show results hook by hook for all hooks that have data.
755 __hook_debug:n
756 { \iow_term:x{^^JAll~ initialized~ (non-empty)~ hooks:}
757 \prop_map_inline:Nn \g__hook_used_prop
758 { \iow_term:x{^^J~ ##1~ ->~
759 \exp_not:v {__hook~##1}~ }
760 }
761 }

After all hooks are initialized we change the “use” to just call the hook code and not
initialize it (as it was done in the preamble.

762 \cs_gset_eq:NN \hook_use:n __hook_use_initialized:n
763 \cs_gset_eq:NN __hook_preamble_hook:n \use_none:n
764 }

(End definition for __hook_initialize_all:.)

__hook_initialize_hook_code:n Initializing or reinitializing the fast execution hook code. In the preamble this is selec-
tively done in case a hook gets used and at \begin{document} this is done for all hooks
and afterwards only if the hook code changes.

765 \cs_new_protected:Npn __hook_initialize_hook_code:n #1
766 {
767 __hook_debug:n
768 { \iow_term:x { ^^J Update~code~for~hook~’#1’ \on@line :^^J } }

This does the sorting and the updates. First thing we do is to check if a legacy hook
macro exists and if so we add it to the hook under the label legacy. This might make
the hook non-empty so we have to do this before the then following test.

769 __hook_include_legacy_code_chunk:n {#1}

If there aren’t any code chunks for the current hook, there is no point in even starting
the sorting routine so we make a quick test for that and in that case just update __-
hook␣⟨hook⟩ to hold the top-level and next code chunks. If there are code chunks we
call __hook_initialize_single:NNn and pass to it ready made csnames as they are
needed several times inside. This way we save a bit on processing time if we do that up
front.

770 __hook_if_usable:nT {#1}
771 {
772 \prop_if_empty:cTF { g__hook_#1_code_prop }
773 {
774 __hook_tl_gset:co { __hook~#1 }
775 {
776 \cs:w __hook_toplevel~#1 \exp_after:wN \cs_end:
777 \cs:w __hook_next~#1 \cs_end:
778 }
779 }
780 {

By default the algorithm sorts the code chunks and then saves the result in a token list
for fast execution; this is done by adding the code chunks one after another, using \tl_-
gput_right:NV. When we sort code for a reversed hook, all we have to do is to add the
code chunks in the opposite order into the token list. So all we have to do in preparation
is to change two definitions that are used later on.

781 __hook_if_reversed:nTF {#1}

51

782 { \cs_set_eq:NN __hook_tl_gput:Nn __hook_tl_gput_left:Nn
783 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_left:NV }
784 { \cs_set_eq:NN __hook_tl_gput:Nn __hook_tl_gput_right:Nn
785 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_right:NV }

When sorting, some relations (namely voids) need to act destructively on the code
property lists to remove code that shouldn’t appear in the sorted hook token list, so we
make a copy of the code property list that we can safely work on without changing the
main one.

786 \prop_set_eq:Nc \l__hook_work_prop { g__hook_#1_code_prop }
787 __hook_initialize_single:ccn
788 { __hook~#1 } { g__hook_#1_labels_clist } {#1}

For debug display we want to keep track of those hooks that actually got code added to
them, so we record that in plist. We use a plist to ensure that we record each hook name
only once, i.e., we are only interested in storing the keys and the value is arbitrary.

789 __hook_debug:n
790 { \exp_args:NNx \prop_gput:Nnn \g__hook_used_prop {#1} { } }
791 }
792 }
793 }

(End definition for __hook_initialize_hook_code:n.)

__hook_tl_csname:n
__hook_seq_csname:n

It is faster to pass a single token and expand it when necessary than to pass a bunch of
character tokens around.

FMi: note to myself: verify

794 \cs_new:Npn __hook_tl_csname:n #1 { l__hook_label_#1_tl }
795 \cs_new:Npn __hook_seq_csname:n #1 { l__hook_label_#1_seq }

(End definition for __hook_tl_csname:n and __hook_seq_csname:n.)

\l__hook_labels_seq
\l__hook_labels_int

\l__hook_front_tl
\l__hook_rear_tl

\l__hook_label_0_tl

For the sorting I am basically implementing Knuth’s algorithm for topological sorting as
given in TAOCP volume 1 pages 263–266. For this algorithm we need a number of local
variables:

• List of labels used in the current hook to label code chunks:

796 \seq_new:N \l__hook_labels_seq

• Number of labels used in the current hook. In Knuth’s algorithm this is called N :

797 \int_new:N \l__hook_labels_int

• The sorted code list to be build is managed using two pointers one to the front of
the queue and one to the rear. We model this using token list pointers. Knuth calls
them F and R:

798 \tl_new:N \l__hook_front_tl
799 \tl_new:N \l__hook_rear_tl

52

• The data for the start of the queue is kept in this token list, it corresponds to what
Don calls QLINK[0] but since we aren’t manipulating individual words in memory
it is slightly differently done:

800 \tl_new:c { __hook_tl_csname:n { 0 } }

(End definition for \l__hook_labels_seq and others.)

__hook_initialize_single:NNn
__hook_initialize_single:ccn

__hook_initialize_single:NNn implements the sorting of the code chunks for a
hook and saves the result in the token list for fast execution (#4). The argu-
ments are ⟨hook-code-plist⟩, ⟨hook-code-tl⟩, ⟨hook-top-level-code-tl⟩, ⟨hook-next-code-tl⟩,
⟨hook-ordered-labels-clist⟩ and ⟨hook-name⟩ (the latter is only used for debugging—the
⟨hook-rule-plist⟩ is accessed using the ⟨hook-name⟩).

The additional complexity compared to Don’s algorithm is that we do not use simple
positive integers but have arbitrary alphanumeric labels. As usual Don’s data structures
are chosen in a way that one can omit a lot of tests and I have mimicked that as far as
possible. The result is a restriction I do not test for at the moment: a label can’t be
equal to the number 0!

FMi: Needs checking for, just in case ... maybe

801 \cs_new_protected:Npn __hook_initialize_single:NNn #1#2#3
802 {

Step T1: Initialize the data structure . . .
803 \seq_clear:N \l__hook_labels_seq
804 \int_zero:N \l__hook_labels_int

Store the name of the hook:
805 \tl_set:Nn \l__hook_cur_hook_tl {#3}

We loop over the property list holding the code and record all the labels listed there.
Only the rules for those labels are of interest to us. While we are at it we count them
(which gives us the N in Knuth’s algorithm). The prefix label_ is added to the variables
to ensure that labels named front, rear, labels, or return don’t interact with our code.

806 \prop_map_inline:Nn \l__hook_work_prop
807 {
808 \int_incr:N \l__hook_labels_int
809 \seq_put_right:Nn \l__hook_labels_seq {##1}
810 __hook_tl_set:cn { __hook_tl_csname:n {##1} } { 0 }
811 \seq_clear_new:c { __hook_seq_csname:n {##1} }
812 }

Steps T2 and T3: Here we sort the relevant rules into the data structure. . .
This loop constitutes a square matrix of the labels in \l__hook_work_prop in the

vertical and the horizontal directions. However, since the rule lA⟨rel⟩lB is the same as
lB⟨rel⟩−1lA we can cut the loop short at the diagonal of the matrix (i.e., when both
labels are equal), saving a good amount of time. The way the rules were set up (see
the implementation of __hook_rule_before_gset:nnn above) ensures that we have no
rule in the ignored side of the matrix, and all rules are seen. The rules are applied
in __hook_apply_label_pair:nnn, which takes the properly-ordered pair of labels as
argument.

813 \prop_map_inline:Nn \l__hook_work_prop
814 {

53

815 \prop_map_inline:Nn \l__hook_work_prop
816 {
817 __hook_if_label_case:nnnnn {##1} {####1}
818 { \prop_map_break: }
819 { __hook_apply_label_pair:nnn {##1} {####1} }
820 { __hook_apply_label_pair:nnn {####1} {##1} }
821 {#3}
822 }
823 }

Now take a breath, and look at the data structures that have been set up:
824 __hook_debug:n { __hook_debug_label_data:N \l__hook_work_prop }

Step T4:
825 \tl_set:Nn \l__hook_rear_tl { 0 }
826 \tl_set:cn { __hook_tl_csname:n { 0 } } { 0 }
827 \seq_map_inline:Nn \l__hook_labels_seq
828 {
829 \int_compare:nNnT { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
830 {
831 \tl_set:cn { __hook_tl_csname:n { \l__hook_rear_tl } }{##1}
832 \tl_set:Nn \l__hook_rear_tl {##1}
833 }
834 }
835 \tl_set_eq:Nc \l__hook_front_tl { __hook_tl_csname:n { 0 } }

836 __hook_tl_gclear:N #1
837 \clist_gclear:N #2

The whole loop gets combined in steps T5–T7:
838 \bool_while_do:nn { ! \str_if_eq_p:Vn \l__hook_front_tl { 0 } }
839 {

This part is step T5:
840 \int_decr:N \l__hook_labels_int
841 \prop_get:NVN \l__hook_work_prop \l__hook_front_tl \l__hook_return_tl
842 \exp_args:NNV __hook_tl_gput:Nn #1 \l__hook_return_tl

843 __hook_clist_gput:NV #2 \l__hook_front_tl
844 __hook_debug:n{ \iow_term:x{Handled~ code~ for~ \l__hook_front_tl} }

This is step T6, except that we don’t use a pointer P to move through the successors,
but instead use ##1 of the mapping function.

845 \seq_map_inline:cn { __hook_seq_csname:n { \l__hook_front_tl } }
846 {
847 \tl_set:cx { __hook_tl_csname:n {##1} }
848 { \int_eval:n
849 { \cs:w __hook_tl_csname:n {##1} \cs_end: - 1 }
850 }
851 \int_compare:nNnT
852 { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
853 {
854 \tl_set:cn { __hook_tl_csname:n { \l__hook_rear_tl } } {##1}
855 \tl_set:Nn \l__hook_rear_tl {##1}
856 }
857 }

54

and here is step T7:
858 \tl_set_eq:Nc \l__hook_front_tl
859 { __hook_tl_csname:n { \l__hook_front_tl } }

This is step T8: If we haven’t moved the code for all labels (i.e., if \l__hook_-
labels_int is still greater than zero) we have a loop and our partial order can’t be
flattened out.

860 }
861 \int_compare:nNnF \l__hook_labels_int = 0
862 {
863 \iow_term:x{====================}
864 \iow_term:x{Error:~ label~ rules~ are~ incompatible:}

This is not really the information one needs in the error case but it will do for now
. . .

FMi: improve output on a rainy day

865 __hook_debug_label_data:N \l__hook_work_prop
866 \iow_term:x{====================}
867 }

After we have added all hook code to #1, we finish it off by adding extra code for the
top-level (#2) and for one time execution (#3). These should normally be empty. The
top-level code is added with __hook_tl_gput:Nn as that might change for a reversed
hook (then top-level is the very first code chunk added). The next code is always
added last.

868 \exp_args:NNo __hook_tl_gput:Nn #1 { \cs:w __hook_toplevel~#3 \cs_end: }
869 __hook_tl_gput_right:No #1 { \cs:w __hook_next~#3 \cs_end: }
870 }

871 \cs_generate_variant:Nn __hook_initialize_single:NNn { cc }

(End definition for __hook_initialize_single:NNn.)

__hook_tl_gput:Nn
__hook_clist_gput:NV

These append either on the right (normal hook) or on the left (reversed hook). This is
setup up in __hook_initialize_hook_code:n, elsewhere their behavior is undefined.

872 \cs_new:Npn __hook_tl_gput:Nn { \ERROR }
873 \cs_new:Npn __hook_clist_gput:NV { \ERROR }

(End definition for __hook_tl_gput:Nn and __hook_clist_gput:NV.)

__hook_apply_label_pair:nnn
__hook_label_if_exist_apply:nnnF

This is the payload of steps T2 and T3 executed in the loop described above. This macro
assumes #1 and #2 are ordered, which means that any rule pertaining the pair #1 and #2
is \g__hook_⟨hook⟩_rule_#1|#2_tl, and not \g__hook_⟨hook⟩_rule_#2|#1_tl. This
also saves a great deal of time since we only need to check the order of the labels once.

The arguments here are ⟨label1 ⟩, ⟨label2 ⟩, ⟨hook⟩, and ⟨hook-code-plist⟩. We are
about to apply the next rule and enter it into the data structure. __hook_apply_-
label_pair:nnn will just call __hook_label_if_exist_apply:nnnF for the ⟨hook⟩,
and if no rule is found, also try the ⟨hook⟩ name ?? denoting a default hook rule.

__hook_label_if_exist_apply:nnnF will check if the rule exists for the given
hook, and if so call __hook_apply_rule:nnn.

874 \cs_new_protected:Npn __hook_apply_label_pair:nnn #1#2#3
875 {

55

Extra complication: as we use default rules and local hook specific rules we first have to
check if there is a local rule and if that exist use it. Otherwise check if there is a default
rule and use that.

876 __hook_label_if_exist_apply:nnnF {#1} {#2} {#3}
877 {

If there is no hook-specific rule we check for a default one and use that if it exists.
878 __hook_label_if_exist_apply:nnnF {#1} {#2} { ?? } { }
879 }
880 }
881 \cs_new_protected:Npn __hook_label_if_exist_apply:nnnF #1#2#3
882 {
883 \if_cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end:

What to do precisely depends on the type of rule we have encountered. If it is a before
rule it will be handled by the algorithm but other types need to be managed differently.
All this is done in __hook_apply_rule:nnnN.

884 __hook_apply_rule:nnn {#1} {#2} {#3}
885 \exp_after:wN \use_none:n
886 \else:
887 \use:nn
888 \fi:
889 }

(End definition for __hook_apply_label_pair:nnn and __hook_label_if_exist_apply:nnnF.)

__hook_apply_rule:nnn This is the code executed in steps T2 and T3 while looping through the matrix This is
part of step T3. We are about to apply the next rule and enter it into the data structure.
The arguments are ⟨label1 ⟩, ⟨label2 ⟩, ⟨hook-name⟩, and ⟨hook-code-plist⟩.

890 \cs_new_protected:Npn __hook_apply_rule:nnn #1#2#3
891 {
892 \cs:w __hook_apply_
893 \cs:w g__hook_#3_reversed_tl \cs_end: rule_
894 \cs:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end: :nnn \cs_end:
895 {#1} {#2} {#3}
896 }

(End definition for __hook_apply_rule:nnn.)

__hook_apply_rule_<:nnn
__hook_apply_rule_>:nnn

The most common cases are < and > so we handle that first. They are relations ≺ and
≻ in TAOCP, and they dictate sorting.

897 \cs_new_protected:cpn { __hook_apply_rule_<:nnn } #1#2#3
898 {
899 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
900 \tl_set:cx { __hook_tl_csname:n {#2} }
901 { \int_eval:n{ \cs:w __hook_tl_csname:n {#2} \cs_end: + 1 } }
902 \seq_put_right:cn{ __hook_seq_csname:n {#1} }{#2}
903 }
904 \cs_new_protected:cpn { __hook_apply_rule_>:nnn } #1#2#3
905 {
906 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
907 \tl_set:cx { __hook_tl_csname:n {#1} }
908 { \int_eval:n{ \cs:w __hook_tl_csname:n {#1} \cs_end: + 1 } }
909 \seq_put_right:cn{ __hook_seq_csname:n {#2} }{#1}
910 }

56

(End definition for __hook_apply_rule_<:nnn and __hook_apply_rule_>:nnn.)

__hook_apply_rule_xE:nnn
__hook_apply_rule_xW:nnn

These relations make two labels incompatible within a hook. xE makes raises an error if
the labels are found in the same hook, and xW makes it a warning.

911 \cs_new_protected:cpn { __hook_apply_rule_xE:nnn } #1#2#3
912 {
913 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
914 \msg_error:nnnnnn { hooks } { labels-incompatible }
915 {#1} {#2} {#3} { 1 }
916 \use:c { __hook_apply_rule_->:nnn } {#1} {#2} {#3}
917 \use:c { __hook_apply_rule_<-:nnn } {#1} {#2} {#3}
918 }
919 \cs_new_protected:cpn { __hook_apply_rule_xW:nnn } #1#2#3
920 {
921 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
922 \msg_warning:nnnnnn { hooks } { labels-incompatible }
923 {#1} {#2} {#3} { 0 }
924 }

(End definition for __hook_apply_rule_xE:nnn and __hook_apply_rule_xW:nnn.)

__hook_apply_rule_->:nnn
__hook_apply_rule_<-:nnn

If we see -> we have to drop code for label #3 and carry on. We could do a little better
and drop everything for that label since it doesn’t matter where we put such empty
code. However that would complicate the algorithm a lot with little gain.8 So we still
unnecessarily try to sort it in and depending on the rules that might result in a loop that
is otherwise resolved. If that turns out to be a real issue, we can improve the code.

Here the code is removed from \l__hook_cur_hook_tl rather than #3 because the
latter may be ??, and the default hook doesn’t store any code. Removing it instead from
\l__hook_cur_hook_tl makes the default rules -> and <- work properly.

925 \cs_new_protected:cpn { __hook_apply_rule_->:nnn } #1#2#3
926 {
927 __hook_debug:n
928 {
929 __hook_msg_pair_found:nnn {#1} {#2} {#3}
930 \iow_term:x{--->~ Drop~ ’#2’~ code~ from~
931 \iow_char:N \\ g__hook_ \l__hook_cur_hook_tl _code_prop ~
932 because~ of~ ’#1’ }
933 }
934 \prop_put:Nnn \l__hook_work_prop {#2} { }
935 }
936 \cs_new_protected:cpn { __hook_apply_rule_<-:nnn } #1#2#3
937 {
938 __hook_debug:n
939 {
940 __hook_msg_pair_found:nnn {#1} {#2} {#3}
941 \iow_term:x{--->~ Drop~ ’#1’~ code~ from~
942 \iow_char:N \\ g__hook_ \l__hook_cur_hook_tl _code_prop ~
943 because~ of~ ’#2’ }
944 }
945 \prop_put:Nnn \l__hook_work_prop {#1} { }
946 }

8This also has the advantage that the result of the sorting doesn’t change, as it might otherwise do
(for unrelated chunks) if we aren’t careful.

57

(End definition for __hook_apply_rule_->:nnn and __hook_apply_rule_<-:nnn.)

__hook_apply_-rule_<:nnn
__hook_apply_-rule_>:nnn
__hook_apply_-rule_<-:nnn
__hook_apply_-rule_->:nnn
__hook_apply_-rule_xW:nnn
__hook_apply_-rule_xE:nnn

Reversed rules.
947 \cs_new_eq:cc { __hook_apply_-rule_<:nnn } { __hook_apply_rule_>:nnn }
948 \cs_new_eq:cc { __hook_apply_-rule_>:nnn } { __hook_apply_rule_<:nnn }
949 \cs_new_eq:cc { __hook_apply_-rule_<-:nnn } { __hook_apply_rule_<-:nnn }
950 \cs_new_eq:cc { __hook_apply_-rule_->:nnn } { __hook_apply_rule_->:nnn }
951 \cs_new_eq:cc { __hook_apply_-rule_xE:nnn } { __hook_apply_rule_xE:nnn }
952 \cs_new_eq:cc { __hook_apply_-rule_xW:nnn } { __hook_apply_rule_xW:nnn }

(End definition for __hook_apply_-rule_<:nnn and others.)

__hook_msg_pair_found:nnn A macro to avoid moving this many tokens around.
953 \cs_new_protected:Npn __hook_msg_pair_found:nnn #1#2#3
954 {
955 \iow_term:x{~ \str_if_eq:nnTF {#3} {??} {default} {~normal} ~
956 rule~ __hook_label_pair:nn {#1} {#2}:~
957 \use:c { g__hook_#3_rule_ __hook_label_pair:nn {#1} {#2} _tl } ~
958 found}
959 }

(End definition for __hook_msg_pair_found:nnn.)

__hook_debug_label_data:N
960 \cs_new_protected:Npn __hook_debug_label_data:N #1 {
961 \iow_term:x{Code~ labels~ for~ sorting:}
962 \iow_term:x{~ \seq_use:Nnnn\l__hook_labels_seq {~and~}{,~}{~and~} }
963 \iow_term:x{^^J Data~ structure~ for~ label~ rules:}
964 \prop_map_inline:Nn #1
965 {
966 \iow_term:x{~ ##1~ =~ \tl_use:c{ __hook_tl_csname:n {##1} }~ ->~
967 \seq_use:cnnn{ __hook_seq_csname:n {##1} }{~->~}{~->~}{~->~}
968 }
969 }
970 \iow_term:x{}
971 }

(End definition for __hook_debug_label_data:N.)

\hook_show:n
\hook_log:n

__hook_log_line:x
__hook_log_line_indent:x

__hook_log:nN

This writes out information about the hook given in its argument onto the .log file and
the terminal, if \show_hook:n is used. Internally both share the same structure, except
that at the end, \hook_show:n triggers TEX’s prompt.

972 \cs_new_protected:Npn \hook_log:n #1
973 {
974 \cs_set_eq:NN __hook_log_cmd:x \iow_log:x
975 __hook_normalize_hook_args:Nn __hook_log:nN {#1} \tl_log:x
976 }
977 \cs_new_protected:Npn \hook_show:n #1
978 {
979 \cs_set_eq:NN __hook_log_cmd:x \iow_term:x
980 __hook_normalize_hook_args:Nn __hook_log:nN {#1} \tl_show:x
981 }
982 \cs_new_protected:Npn __hook_log_line:x #1
983 { __hook_log_cmd:x { >~#1 } }
984 \cs_new_protected:Npn __hook_log_line_indent:x #1
985 { __hook_log_cmd:x { >~\@spaces #1 } }

58

986 \cs_new_protected:Npn __hook_log:nN #1 #2
987 {
988 __hook_if_deprecated_generic:nT {#1}
989 {
990 __hook_deprecated_generic_warn:n {#1}
991 __hook_do_deprecated_generic:Nn __hook_log:nN {#1} #2
992 \exp_after:wN \use_none:nnnnnnnnn \use_none:nnnnn
993 }
994 __hook_preamble_hook:n {#1}
995 __hook_log_cmd:x
996 { ^^J ->~The~ __hook_if_generic:nT {#1} { generic~ } hook~’#1’: }

997 __hook_if_usable:nF {#1}
998 { __hook_log_line:x { The~hook~is~not~declared. } }
999 __hook_if_disabled:nT {#1}

1000 { __hook_log_line:x { The~hook~is~disabled. } }
1001 \hook_if_empty:nTF {#1}
1002 { #2 { The~hook~is~empty } }
1003 {
1004 __hook_log_line:x { Code~chunks: }
1005 \prop_if_empty:cTF { g__hook_#1_code_prop }
1006 { __hook_log_line_indent:x { --- } }
1007 {
1008 \prop_map_inline:cn { g__hook_#1_code_prop }
1009 { __hook_log_line_indent:x { ##1~->~\tl_to_str:n {##2} } }
1010 }

If there is code in the top-level token list, print it:
1011 __hook_log_line:x
1012 {
1013 Document-level~(top-level)~code
1014 __hook_if_usable:nT {#1}
1015 { ~(executed~__hook_if_reversed:nTF {#1} {first} {last}) } :
1016 }
1017 __hook_log_line_indent:x
1018 {
1019 \tl_if_empty:cTF { __hook_toplevel~#1 }
1020 { --- }
1021 { -> ~ \exp_args:Nv \tl_to_str:n { __hook_toplevel~#1 } }
1022 }

1023 __hook_log_line:x { Extra~code~for~next~invocation: }
1024 __hook_log_line_indent:x
1025 {
1026 \tl_if_empty:cTF { __hook_next~#1 }
1027 { --- }

If the token list is not empty we want to display it but without the first tokens (the
code to clear itself) so we call a helper command to get rid of them.

1028 { ->~ \exp_args:Nv __hook_log_next_code:n { __hook_next~#1 } }
1029 }

Loop through the rules in a hook and for every rule found, print it. If no rule is
there, print ---. The boolean \l__hook_tmpa_bool here indicates if the hook has no
rules.

1030 __hook_log_line:x { Rules: }

59

1031 \bool_set_true:N \l__hook_tmpa_bool
1032 __hook_list_rules:nn {#1}
1033 {
1034 \bool_set_false:N \l__hook_tmpa_bool
1035 __hook_log_line_indent:x
1036 {
1037 ##2~ with~
1038 \str_if_eq:nnT {##3} {??} { default~ }
1039 relation~ ##1
1040 }
1041 }
1042 \bool_if:NT \l__hook_tmpa_bool
1043 { __hook_log_line_indent:x { --- } }

When the hook is declared (that is, the sorting algorithm is applied to that hook)
and not empty

1044 \bool_lazy_and:nnTF
1045 { __hook_if_usable_p:n {#1} }
1046 { ! \hook_if_empty_p:n {#1} }
1047 {
1048 __hook_log_line:x
1049 {
1050 Execution~order
1051 \bool_if:NTF \l__hook_tmpa_bool
1052 { __hook_if_reversed:nT {#1} { ~(after~reversal) } }
1053 { ~(after~
1054 __hook_if_reversed:nT {#1} { reversal~and~ }
1055 applying~rules)
1056 } :
1057 }
1058 #2 % \tl_show:n
1059 {
1060 \@spaces
1061 \clist_if_empty:cTF { g__hook_#1_labels_clist }
1062 { --- }
1063 { \clist_use:cn {g__hook_#1_labels_clist} { ,~ } }
1064 }
1065 }
1066 {
1067 __hook_log_line:x { Execution~order: }
1068 #2
1069 {
1070 \@spaces Not~set~because~the~hook~ __hook_if_usable:nTF {#1}
1071 { code~pool~is~empty }
1072 { is~__hook_if_disabled:nTF {#1} {disabled} {undeclared} }
1073 }
1074 }
1075 }
1076 }

__hook_log_next_code:n

To display the code for next invocation only (i.e., from \AddToHookNext we have to
remove the first two tokens at the front which are \tl_gclear:N and the token list to
clear.

1077 \cs_new:Npn __hook_log_next_code:n #1

60

1078 { \exp_args:No \tl_to_str:n { \use_none:nn #1 } }

(End definition for \hook_show:n and others. These functions are documented on page 14.)

__hook_list_rules:nn
__hook_list_one_rule:nnn

__hook_list_if_rule_exists:nnnF

This macro takes a ⟨hook⟩ and an ⟨inline function⟩ and loops through each pair of ⟨labels⟩
in the ⟨hook⟩, and if there is a relation between this pair of ⟨labels⟩, the ⟨inline function⟩
is executed with #1 = ⟨relation⟩, #2 = ⟨label1⟩|⟨label2⟩, and #3 = ⟨hook⟩ (the latter may
be the argument #1 to __hook_list_rules:nn, or ?? if it is a default rule).

1079 \cs_new_protected:Npn __hook_list_rules:nn #1 #2
1080 {
1081 \cs_set_protected:Npn __hook_tmp:w ##1 ##2 ##3 {#2}
1082 \prop_map_inline:cn { g__hook_#1_code_prop }
1083 {
1084 \prop_map_inline:cn { g__hook_#1_code_prop }
1085 {
1086 __hook_if_label_case:nnnnn {##1} {####1}
1087 { \prop_map_break: }
1088 { __hook_list_one_rule:nnn {##1} {####1} }
1089 { __hook_list_one_rule:nnn {####1} {##1} }
1090 {#1}
1091 }
1092 }
1093 }

These two are quite similar to __hook_apply_label_pair:nnn and __hook_-
label_if_exist_apply:nnnF, respectively, but rather than applying the rule, they pass
it to the ⟨inline function⟩.

1094 \cs_new_protected:Npn __hook_list_one_rule:nnn #1#2#3
1095 {
1096 __hook_list_if_rule_exists:nnnF {#1} {#2} {#3}
1097 { __hook_list_if_rule_exists:nnnF {#1} {#2} { ?? } { } }
1098 }
1099 \cs_new_protected:Npn __hook_list_if_rule_exists:nnnF #1#2#3
1100 {
1101 \if_cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end:
1102 \exp_args:Nv __hook_tmp:w
1103 { g__hook_ #3 _rule_ #1 | #2 _tl } { #1 | #2 } {#3}
1104 \exp_after:wN \use_none:nn
1105 \fi:
1106 \use:n
1107 }

(End definition for __hook_list_rules:nn , __hook_list_one_rule:nnn , and __hook_list_if_-
rule_exists:nnnF.)

__hook_debug_print_rules:n A shorthand for debugging that prints similar to \prop_show:N.
1108 \cs_new_protected:Npn __hook_debug_print_rules:n #1
1109 {
1110 \iow_term:n { The~hook~#1~contains~the~rules: }
1111 \cs_set_protected:Npn __hook_tmp:w ##1
1112 {
1113 __hook_list_rules:nn {#1}
1114 {
1115 \iow_term:x
1116 {

61

1117 > ##1 {####2} ##1 => ##1 {####1}
1118 \str_if_eq:nnT {####3} {??} { ~(default) }
1119 }
1120 }
1121 }
1122 \exp_args:No __hook_tmp:w { \use:nn { ~ } { ~ } }
1123 }

(End definition for __hook_debug_print_rules:n.)

4.8 Specifying code for next invocation
\hook_gput_next_code:nn

1124 \cs_new_protected:Npn \hook_gput_next_code:nn #1
1125 { __hook_normalize_hook_args:Nn __hook_gput_next_code:nn {#1} }

(End definition for \hook_gput_next_code:nn. This function is documented on page 13.)

__hook_gput_next_code:nn
__hook_gput_next_do:nn

__hook_gput_next_do:Nnn
1126 \cs_new_protected:Npn __hook_gput_next_code:nn #1 #2
1127 {
1128 __hook_if_disabled:nTF {#1}
1129 { \msg_error:nnn { hooks } { hook-disabled } {#1} }
1130 {
1131 __hook_if_structure_exist:nTF {#1}
1132 { __hook_gput_next_do:nn {#1} {#2} }
1133 { __hook_try_declaring_generic_next_hook:nn {#1} {#2} }
1134 }
1135 }

1136 \cs_new_protected:Npn __hook_gput_next_do:nn #1
1137 {
1138 \exp_args:Nc __hook_gput_next_do:Nnn
1139 { __hook_next~#1 } {#1}
1140 }

First check if the “next code” token list is empty: if so we need to add a \tl_gclear:c
to clear it, so the code lasts for one usage only. The token list is cleared early so that
nested usages don’t get lost. \tl_gclear:c is used instead of \tl_gclear:N in case
the hook is used in an expansion-only context, so the token list doesn’t expand before
\tl_gclear:N: that would make an infinite loop. Also in case the main code token list
is empty, the hook code has to be updated to add the next execution token list.

1141 \cs_new_protected:Npn __hook_gput_next_do:Nnn #1 #2
1142 {
1143 \tl_if_empty:cT { __hook~#2 }
1144 { __hook_update_hook_code:n {#2} }
1145 \tl_if_empty:NT #1
1146 { __hook_tl_gset:Nn #1 { __hook_clear_next:n {#2} } }
1147 __hook_tl_gput_right:Nn #1
1148 }

(End definition for __hook_gput_next_code:nn , __hook_gput_next_do:nn , and __hook_gput_next_-
do:Nnn.)

62

\hook_gclear_next_code:n
__hook_clear_next:n

Discard anything set up for next invocation of the hook.
1149 \cs_new_protected:Npn \hook_gclear_next_code:n #1
1150 { __hook_normalize_hook_args:Nn __hook_clear_next:n {#1} }
1151 \cs_new_protected:Npn __hook_clear_next:n #1
1152 { \cs_gset_eq:cN { __hook_next~#1 } \c_empty_tl }

(End definition for \hook_gclear_next_code:n and __hook_clear_next:n. This function is docu-
mented on page 13.)

4.9 Using the hook
\hook_use:n

__hook_use_initialized:n
__hook_use_undefined:w

__hook_use_end:
__hook_preamble_hook:n

\hook_use:n as defined here is used in the preamble, where hooks aren’t initialized by
default. __hook_use_initialized:n is also defined, which is the non-\protected ver-
sion for use within the document. Their definition is identical, except for the __hook_-
preamble_hook:n (which wouldn’t hurt in the expandable version, but it would be an
unnecessary extra expansion).

__hook_use_initialized:n holds the expandable definition while in the pream-
ble. __hook_preamble_hook:n initializes the hook in the preamble, and is redefined to
\use_none:n at \begin{document}.

Both versions do the same thing internally: they check that the hook exists as given,
and if so they use it as quickly as possible.

At \begin{document}, all hooks are initialized, and any change in them causes an
update, so \hook_use:n can be made expandable. This one is better not protected
so that it can expand into nothing if containing no code. Also important in case of
generic hooks that we do not generate a \relax as a side effect of checking for a csname.
In contrast to the TEX low-level \csname ...\endcsname construct \tl_if_exist:c is
careful to avoid this.

1153 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{\hook_use:n}
1154 ⟨latexrelease⟩ {Standardise~generic~hook~names}
1155 \cs_new_protected:Npn \hook_use:n #1
1156 {
1157 \tl_if_exist:cT { __hook~#1 }
1158 {
1159 __hook_preamble_hook:n {#1}
1160 \cs:w __hook~#1 \cs_end:
1161 }
1162 }
1163 \cs_new:Npn __hook_use_initialized:n #1
1164 {
1165 \if_cs_exist:w __hook~#1 \cs_end:
1166 \cs:w __hook~#1 \exp_after:wN \cs_end:
1167 \fi:
1168 }
1169 \cs_new_protected:Npn __hook_preamble_hook:n #1
1170 { __hook_initialize_hook_code:n {#1} }
1171 ⟨latexrelease⟩\EndIncludeInRelease

1172 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{\hook_use:n}
1173 ⟨latexrelease⟩ {Standardise~generic~hook~names}
1174 ⟨latexrelease⟩\cs_new_protected:Npn \hook_use:n #1
1175 ⟨latexrelease⟩ {
1176 ⟨latexrelease⟩ \tl_if_exist:cTF { __hook~#1 }
1177 ⟨latexrelease⟩ {

63

1178 ⟨latexrelease⟩ __hook_preamble_hook:n {#1}
1179 ⟨latexrelease⟩ \cs:w __hook~#1 \cs_end:
1180 ⟨latexrelease⟩ }
1181 ⟨latexrelease⟩ { __hook_use:wn #1 / \s__hook_mark {#1} }
1182 ⟨latexrelease⟩ }
1183 ⟨latexrelease⟩\cs_new:Npn __hook_use_initialized:n #1
1184 ⟨latexrelease⟩ {
1185 ⟨latexrelease⟩ \if_cs_exist:w __hook~#1 \cs_end:
1186 ⟨latexrelease⟩ \else:
1187 ⟨latexrelease⟩ __hook_use_undefined:w
1188 ⟨latexrelease⟩ \fi:
1189 ⟨latexrelease⟩ \cs:w __hook~#1 __hook_use_end:
1190 ⟨latexrelease⟩ }
1191 ⟨latexrelease⟩\cs_new:Npn __hook_use_undefined:w #1 #2 __hook~#3 __hook_use_end:
1192 ⟨latexrelease⟩ {
1193 ⟨latexrelease⟩ #1 % fi
1194 ⟨latexrelease⟩ __hook_use:wn #3 / \s__hook_mark {#3}
1195 ⟨latexrelease⟩ }
1196 ⟨latexrelease⟩\cs_new_protected:Npn __hook_preamble_hook:n #1
1197 ⟨latexrelease⟩ { __hook_initialize_hook_code:n {#1} }
1198 ⟨latexrelease⟩\cs_new_eq:NN __hook_use_end: \cs_end:
1199 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for \hook_use:n and others. This function is documented on page 13.)

__hook_use:wn
__hook_try_file_hook:n
__hook_if_usable_use:n

__hook_use:wn does a quick check to test if the current hook is a file hook: those
need a special treatment. If it is not, the hook does not exist. If it is, then __hook_-
try_file_hook:n is called, and checks that the current hook is a file-specific hook using
__hook_if_file_hook:wTF. If it’s not, then it’s a generic file/ hook and is used if it
exist.

If it is a file-specific hook, it passes through the same normalization as during dec-
laration, and then it is used if defined. __hook_if_usable_use:n checks if the hook
exist, and calls __hook_preamble_hook:n if so, then uses the hook.

1200 ⟨latexrelease⟩\IncludeInRelease{2021/11/15}{__hook_use:wn}
1201 ⟨latexrelease⟩ {Standardise~generic~hook~names}
1202 ⟨latexrelease⟩\EndIncludeInRelease
1203 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}{__hook_use:wn}
1204 ⟨latexrelease⟩ {Standardise~generic~hook~names}
1205 ⟨latexrelease⟩\cs_new:Npn __hook_use:wn #1 / #2 \s__hook_mark #3
1206 ⟨latexrelease⟩ {
1207 ⟨latexrelease⟩ \str_if_eq:nnTF {#1} { file }
1208 ⟨latexrelease⟩ { __hook_try_file_hook:n {#3} }
1209 ⟨latexrelease⟩ { } % Hook doesn’t exist
1210 ⟨latexrelease⟩ }

1211 ⟨latexrelease⟩\cs_new_protected:Npn __hook_try_file_hook:n #1
1212 ⟨latexrelease⟩ {
1213 ⟨latexrelease⟩ __hook_if_file_hook:wTF #1 / \s__hook_mark
1214 ⟨latexrelease⟩ {
1215 ⟨latexrelease⟩ \exp_args:Ne __hook_if_usable_use:n
1216 ⟨latexrelease⟩ { \exp_args:Ne __hook_file_hook_normalize:n {#1} }
1217 ⟨latexrelease⟩ }
1218 ⟨latexrelease⟩ { __hook_if_usable_use:n {#1} } % file/ generic hook (e.g. file/before)
1219 ⟨latexrelease⟩ }

64

1220 ⟨latexrelease⟩\cs_new_protected:Npn __hook_if_usable_use:n #1
1221 ⟨latexrelease⟩ {
1222 ⟨latexrelease⟩ \tl_if_exist:cT { __hook~#1 }
1223 ⟨latexrelease⟩ {
1224 ⟨latexrelease⟩ __hook_preamble_hook:n {#1}
1225 ⟨latexrelease⟩ \cs:w __hook~#1 \cs_end:
1226 ⟨latexrelease⟩ }
1227 ⟨latexrelease⟩ }
1228 ⟨latexrelease⟩\EndIncludeInRelease

(End definition for __hook_use:wn , __hook_try_file_hook:n , and __hook_if_usable_use:n.)

\hook_use_once:n
__hook_use_once:n

For hooks that can and should be used only once we have a special use command that
further inhibits the hook from getting more code added to it. This has the effect that
any further code added to the hook is executed immediately rather than stored in the
hook.

The code needs some gymnastics to prevent space trimming from the hook name,
since \hook_use:n and \hook_use_once:n are documented to not trim spaces.

1229 \cs_new_protected:Npn \hook_use_once:n #1
1230 {
1231 __hook_if_execute_immediately:nF {#1}
1232 { __hook_normalize_hook_args:Nn __hook_use_once:n { \use:n {#1} } }
1233 }
1234 \cs_new_protected:Npn __hook_use_once:n #1
1235 {
1236 __hook_preamble_hook:n {#1}
1237 __hook_use_once_set:n {#1}
1238 __hook_use_initialized:n {#1}
1239 __hook_use_once_clear:n {#1}
1240 }

__hook_use_once_set:n
__hook_use_once_clear:n

__hook_use_once_set:n is used before the actual hook code is executed so that any
usage of \AddToHook inside the hook causes the code to execute immediately. Setting
\g__hook_⟨hook⟩_reversed_tl to I prevents further code from being added to the hook.
__hook_use_once_clear:n then clears the hook so that any further call to \hook_use:n
or \hook_use_once:n will expand to nothing.

1241 \cs_new_protected:Npn __hook_use_once_set:n #1
1242 { __hook_tl_gset:cn { g__hook_#1_reversed_tl } { I } }
1243 \cs_new_protected:Npn __hook_use_once_clear:n #1
1244 {
1245 __hook_tl_gclear:c { __hook~#1 }
1246 __hook_tl_gclear:c { __hook_next~#1 }
1247 __hook_tl_gclear:c { __hook_toplevel~#1 }
1248 \prop_gclear_new:c { g__hook_#1_code_prop }
1249 }

(End definition for \hook_use_once:n and others. This function is documented on page 13.)

__hook_if_execute_immediately_p:n
__hook_if_execute_immediately:nTF

To check whether the code being added should be executed immediately (that is, if the
hook is a one-time hook), we check if it’s usable (it can’t be one-time if it was not already
usable), then we check that \g__hook_⟨hook⟩_reversed_tl is I. The gymnastics around
\if:w is there to allow the reversed token list to be empty.

1250 \prg_new_conditional:Npnn __hook_if_execute_immediately:n #1 { T, F, TF }

65

1251 {
1252 __hook_if_usable:nTF {#1}
1253 {
1254 \exp_after:wN __hook_clean_to_scan:w
1255 \if:w I \cs:w g__hook_#1_reversed_tl \cs_end:
1256 \s__hook_mark \prg_return_true:
1257 \else:
1258 \s__hook_mark \prg_return_false:
1259 \fi:
1260 }
1261 { \prg_return_false: }
1262 }

(End definition for __hook_if_execute_immediately:nTF.)

4.10 Querying a hook
Simpler data types, like token lists, have three possible states; they can exist and be
empty, exist and be non-empty, and they may not exist, in which case emptiness doesn’t
apply (though \tl_if_empty:N returns false in this case).

Hooks are a bit more complicated: they have several other states as discussed in
4.4.2. A hook may exist or not, and either way it may or may not be empty (even a hook
that doesn’t exist may be non-empty) or may be disabled.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool (it may happen that a package A defines a hook foo, but it’s
loaded after package B, which adds some code to that hook. In this case it is important
that the code added by package B is remembered until package A is loaded).

All other states can only be queried with internal tests as the different states are
irrelevant for package code.

\hook_if_empty_p:n
\hook_if_empty:nTF

Test if a hook is empty (that is, no code was added to that hook). A ⟨hook⟩ being empty
means that all three of its \g__hook_⟨hook⟩_code_prop, its __hook_toplevel␣⟨hook⟩
and its __hook_next␣⟨hook⟩ are empty.

1263 \prg_new_conditional:Npnn \hook_if_empty:n #1 { p , T , F , TF }
1264 {
1265 __hook_if_structure_exist:nTF {#1}
1266 {
1267 \bool_lazy_and:nnTF
1268 { \prop_if_empty_p:c { g__hook_#1_code_prop } }
1269 {
1270 \bool_lazy_and_p:nn
1271 { \tl_if_empty_p:c { __hook_toplevel~#1 } }
1272 { \tl_if_empty_p:c { __hook_next~#1 } }
1273 }
1274 { \prg_return_true: }
1275 { \prg_return_false: }
1276 }
1277 { \prg_return_true: }
1278 }

(End definition for \hook_if_empty:nTF. This function is documented on page 14.)

66

__hook_if_usable_p:n
__hook_if_usable:nTF

A hook is usable if the token list that stores the sorted code for that hook, __-
hook ⟨hook⟩, exists. The property list \g__hook_⟨hook⟩_code_prop cannot be used
here because often it is necessary to add code to a hook without knowing if such hook
was already declared, or even if it will ever be (for example, in case the package that
defines it isn’t loaded).

1279 \prg_new_conditional:Npnn __hook_if_usable:n #1 { p , T , F , TF }
1280 {
1281 \tl_if_exist:cTF { __hook~#1 }
1282 { \prg_return_true: }
1283 { \prg_return_false: }
1284 }

(End definition for __hook_if_usable:nTF.)

__hook_if_structure_exist_p:n
__hook_if_structure_exist:nTF

An internal check if the hook has already its basic internal structure set up with
__hook_init_structure:n. This means that the hook was already used somehow (a
code chunk or rule was added to it), but it still wasn’t declared with \hook_new:n.

1285 \prg_new_conditional:Npnn __hook_if_structure_exist:n #1 { p , T , F , TF }
1286 {
1287 \prop_if_exist:cTF { g__hook_#1_code_prop }
1288 { \prg_return_true: }
1289 { \prg_return_false: }
1290 }

(End definition for __hook_if_structure_exist:nTF.)

__hook_if_declared_p:n
__hook_if_declared:nTF

Internal test to check if the hook was officially declared with \hook_new:n or a variant.
1291 \prg_new_conditional:Npnn __hook_if_declared:n #1 { p, T, F, TF }
1292 {
1293 \tl_if_exist:cTF { g__hook_#1_declared_tl }
1294 { \prg_return_true: }
1295 { \prg_return_false: }
1296 }

(End definition for __hook_if_declared:nTF.)

__hook_if_reversed_p:n
__hook_if_reversed:nTF

An internal conditional that checks if a hook is reversed.
1297 \prg_new_conditional:Npnn __hook_if_reversed:n #1 { p , T , F , TF }
1298 {
1299 \exp_after:wN __hook_clean_to_scan:w
1300 \if:w - \cs:w g__hook_#1_reversed_tl \cs_end:
1301 \s__hook_mark \prg_return_true:
1302 \else:
1303 \s__hook_mark \prg_return_false:
1304 \fi:
1305 }

(End definition for __hook_if_reversed:nTF.)

__hook_if_generic_p:n
__hook_if_generic:nTF
__hook_if_deprecated_generic_p:n
__hook_if_deprecated_generic:nTF

An internal conditional that checks if a name belongs to a generic hook. The deprecated
version needs to check if #3 is empty to avoid returning true on file/before, for example.

1306 \prg_new_conditional:Npnn __hook_if_generic:n #1 { T, TF }
1307 { __hook_if_generic:w #1 / / / \s__hook_mark }
1308 \cs_new:Npn __hook_if_generic:w #1 / #2 / #3 / #4 \s__hook_mark

67

1309 {
1310 \cs_if_exist:cTF { c__hook_generic_#1/./#3_tl }
1311 { \prg_return_true: }
1312 { \prg_return_false: }
1313 }
1314 \prg_new_conditional:Npnn __hook_if_deprecated_generic:n #1 { T, TF }
1315 { __hook_if_deprecated_generic:w #1 / / / \s__hook_mark }
1316 \cs_new:Npn __hook_if_deprecated_generic:w #1 / #2 / #3 / #4 \s__hook_mark
1317 {
1318 \cs_if_exist:cTF { c__hook_deprecated_#1/./#2_tl }
1319 {
1320 \tl_if_empty:nTF {#3}
1321 { \prg_return_false: }
1322 { \prg_return_true: }
1323 }
1324 { \prg_return_false: }
1325 }

(End definition for __hook_if_generic:nTF and __hook_if_deprecated_generic:nTF.)

__hook_if_generic_reversed_p:n
__hook_if_generic_reversed:nTF

An internal conditional that checks if a name belongs to a generic reversed hook.
1326 \prg_new_conditional:Npnn __hook_if_generic_reversed:n #1 { T }
1327 { __hook_if_generic_reversed:w #1 / / / \scan_stop: }
1328 \cs_new:Npn __hook_if_generic_reversed:w #1 / #2 / #3 / #4 \scan_stop:
1329 {
1330 \if_charcode:w - \cs:w c__hook_generic_#1/./#3_tl \cs_end:
1331 \prg_return_true:
1332 \else:
1333 \prg_return_false:
1334 \fi:
1335 }

(End definition for __hook_if_generic_reversed:nTF.)

4.11 Messages
Hook errors are LaTeX kernel errors:

1336 \prop_gput:Nnn \g_msg_module_type_prop { hooks } { LaTeX }

And so are kernel errors (this should move elsewhere eventually).
1337 \prop_gput:Nnn \g_msg_module_type_prop { latex2e } { LaTeX }
1338 \prop_gput:Nnn \g_msg_module_name_prop { latex2e } { kernel }

1339 \msg_new:nnnn { hooks } { labels-incompatible }
1340 {
1341 Labels~’#1’~and~’#2’~are~incompatible
1342 \str_if_eq:nnF {#3} {??} { ~in~hook~’#3’ } .~
1343 \int_compare:nNnTF {#4} = { 1 }
1344 { The~ code~ for~ both~ labels~ will~ be~ dropped. }
1345 { You~ may~ see~ errors~ later. }
1346 }
1347 { LaTeX~found~two~incompatible~labels~in~the~same~hook.~
1348 This~indicates~an~incompatibility~between~packages. }

68

1349 \msg_new:nnnn { hooks } { exists }
1350 { Hook~’#1’~ has~ already~ been~ declared. }
1351 { There~ already~ exists~ a~ hook~ declaration~ with~ this~
1352 name.\\
1353 Please~ use~ a~ different~ name~ for~ your~ hook.}

1354 \msg_new:nnnn { hooks } { hook-disabled }
1355 { Cannot~add~code~to~disabled~hook~’#1’. }
1356 {
1357 The~hook~’#1’~you~tried~to~add~code~to~was~previously~disabled~
1358 with~\iow_char:N\\hook_disable_generic:n~or~\iow_char:N\\DisableGenericHook,~so~
1359 it~cannot~have~code~added~to~it.
1360 }

1361 \msg_new:nnn { hooks } { empty-label }
1362 {
1363 Empty~code~label~\msg_line_context:.~
1364 Using~’__hook_currname_or_default:’~instead.
1365 }

1366 \msg_new:nnn { hooks } { no-default-label }
1367 {
1368 Missing~(empty)~default~label~\msg_line_context:. \\
1369 This~command~was~ignored.
1370 }

1371 \msg_new:nnnn { hooks } { unknown-rule }
1372 {
1373 Unknown~ relationship~ ’#3’~
1374 between~ labels~ ’#2’~ and~ ’#4’~
1375 \str_if_eq:nnF {#1} {??} { ~in~hook~’#1’ }. ~
1376 Perhaps~ a~ misspelling?
1377 }
1378 {
1379 The~ relation~ used~ not~ known~ to~ the~ system.~ Allowed~ values~ are~
1380 ’before’~ or~ ’<’,~
1381 ’after’~ or~ ’>’,~
1382 ’incompatible-warning’,~
1383 ’incompatible-error’,~
1384 ’voids’~ or~
1385 ’unrelated’.
1386 }

1387 \msg_new:nnnn { hooks } { rule-too-late }
1388 {
1389 Sorting~rule~for~’#1’~hook~applied~too~late.\\
1390 Try~setting~this~rule~earlier.
1391 }
1392 {
1393 You~tried~to~set~the~ordering~of~hook~’#1’~using\\
1394 \ \ \iow_char:N\\DeclareHookRule{#1}{#2}{#3}{#4}\\
1395 but~hook~’#1’~was~already~used~as~a~one-time~hook,~
1396 thus~sorting~is\\
1397 no~longer~possible.~Declare~the~rule~
1398 before~the~hook~is~used.
1399 }

1400 \msg_new:nnnn { hooks } { misused-top-level }

69

1401 {
1402 Illegal~use~of~\iow_char:N \\AddToHook{#1}[top-level]{...}.\\
1403 ’top-level’~is~reserved~for~the~user’s~document.
1404 }
1405 {
1406 The~’top-level’~label~is~meant~for~user~code~only,~and~should~only~
1407 be~used~(sparingly)~in~the~main~document.~Use~the~default~label~
1408 ’__hook_currname_or_default:’~for~this~\@cls@pkg,~or~another~
1409 suitable~label.
1410 }

1411 \msg_new:nnn { hooks } { set-top-level }
1412 {
1413 You~cannot~change~the~default~label~#1~’top-level’.~Illegal \\
1414 \use:nn { ~ } { ~ } \iow_char:N \\#2{#3} \\
1415 \msg_line_context:.
1416 }

1417 \msg_new:nnn { hooks } { extra-pop-label }
1418 {
1419 Extra~\iow_char:N \\PopDefaultHookLabel. \\
1420 This~command~will~be~ignored.
1421 }
1422 \msg_new:nnn { hooks } { missing-pop-label }
1423 {
1424 Missing~\iow_char:N \\PopDefaultHookLabel. \\
1425 The~label~’#1’~was~pushed~but~never~popped.~Something~is~wrong.
1426 }

1427 \msg_new:nnn { latex2e } { should-not-happen }
1428 {
1429 This~should~not~happen.~#1 \\
1430 Please~report~at~https://github.com/latex3/latex2e.
1431 }

1432 \msg_new:nnn { hooks } { activate-disabled }
1433 {
1434 Cannot~ activate~ hook~ ’#1’~ because~ it~ is~ disabled!
1435 }

1436 \msg_new:nnn { hooks } { cannot-remove }
1437 {
1438 Cannot~remove~chunk~’#2’~from~hook~’#1’~because~
1439 __hook_if_structure_exist:nTF {#1}
1440 { it~does~not~exist~in~that~hook. }
1441 { the~hook~does~not~exist. }
1442 }

1443 \msg_new:nnn { hooks } { generic-deprecated }
1444 {
1445 Generic~hook~’#1/#2/#3’~is~deprecated. \\
1446 Use~hook~’#1/#3/#2’~instead.
1447 }

4.12 LATEX 2ε package interface commands
\NewHook

\NewReversedHook
\NewMirroredHookPair

Declaring new hooks . . .

70

1448 \NewDocumentCommand \NewHook { m }{ \hook_new:n {#1} }
1449 \NewDocumentCommand \NewReversedHook { m }{ \hook_new_reversed:n {#1} }
1450 \NewDocumentCommand \NewMirroredHookPair { mm }{ \hook_new_pair:nn {#1}{#2} }

(End definition for \NewHook , \NewReversedHook , and \NewMirroredHookPair. These functions are doc-
umented on page 3.)

1451 ⟨latexrelease⟩\IncludeInRelease{2021/06/01}%
1452 ⟨latexrelease⟩ {\hook_activate_generic:n}{Providing~hooks}

\ActivateGenericHook Providing new hooks . . .
1453 \NewDocumentCommand \ActivateGenericHook { m }{ \hook_activate_generic:n {#1} }

(End definition for \ActivateGenericHook. This function is documented on page 3.)

\DisableGenericHook Disabling a generic hook.
1454 \NewDocumentCommand \DisableGenericHook { m }{ \hook_disable_generic:n {#1} }

(End definition for \DisableGenericHook. This function is documented on page 3.)

1455 ⟨latexrelease⟩\EndIncludeInRelease
1456 ⟨latexrelease⟩\IncludeInRelease{2020/10/01}
1457 ⟨latexrelease⟩ {\hook_activate_generic:n}{Providing~hooks}
1458 ⟨latexrelease⟩
1459 ⟨latexrelease⟩\def \ActivateGenericHook#1{}
1460 ⟨latexrelease⟩
1461 ⟨latexrelease⟩\EndIncludeInRelease

\AddToHook

1462 \NewDocumentCommand \AddToHook { m o +m }
1463 { \hook_gput_code:nnn {#1} {#2} {#3} }

(End definition for \AddToHook. This function is documented on page 4.)

\AddToHookNext

1464 \NewDocumentCommand \AddToHookNext { m +m }
1465 { \hook_gput_next_code:nn {#1} {#2} }

(End definition for \AddToHookNext. This function is documented on page 6.)

\ClearHookNext

1466 \NewDocumentCommand \ClearHookNext { m }
1467 { \hook_gclear_next_code:n {#1} }

(End definition for \ClearHookNext. This function is documented on page 6.)

\RemoveFromHook

1468 \NewDocumentCommand \RemoveFromHook { m o }
1469 { \hook_gremove_code:nn {#1} {#2} }

(End definition for \RemoveFromHook. This function is documented on page 5.)

71

\SetDefaultHookLabel
\PushDefaultHookLabel
\PopDefaultHookLabel

Now define a wrapper that replaces the top of the stack with the argument, and updates
\g__hook_hook_curr_name_tl accordingly.

1470 \NewDocumentCommand \SetDefaultHookLabel { m }
1471 { __hook_set_default_hook_label:n {#1} }
1472 %
1473 % The label is only automatically updated with \cs{@onefilewithoptions}
1474 % (\cs{usepackage} and \cs{documentclass}), but some packages, like
1475 % Ti\emph{k}Z, define package-like interfaces, like
1476 % \cs{usetikzlibrary} that are wrappers around \cs{input}, so they
1477 % inherit the default label currently in force (usually |top-level|,
1478 % but it may change if loaded in another package). To provide a
1479 % package-like behavior also for hooks in these files, we provide
1480 % high-level access to the default label stack.
1481 % \begin{macrocode}
1482 \NewDocumentCommand \PushDefaultHookLabel { m }
1483 { __hook_curr_name_push:n {#1} }
1484 \NewDocumentCommand \PopDefaultHookLabel { }
1485 { __hook_curr_name_pop: }

The current label stack holds the labels for all files but the current one (more or less
like \@currnamestack), and the current label token list, \g__hook_hook_curr_name_tl,
holds the label for the current file. However \@pushfilename happens before \@currname
is set, so we need to look ahead to get the \@currname for the label. expl3 also requires
the current file in \@pushfilename, so here we abuse \@expl@push@filename@aux@@ to
do __hook_curr_name_push:n.

1486 \cs_gset_protected:Npn \@expl@push@filename@aux@@ #1#2#3
1487 {
1488 __hook_curr_name_push:n {#3}
1489 \str_gset:Nx \g_file_curr_name_str {#3}
1490 #1 #2 {#3}
1491 }

(End definition for \SetDefaultHookLabel , \PushDefaultHookLabel , and \PopDefaultHookLabel. These
functions are documented on page 8.)

\UseHook
\UseOneTimeHook

Avoid the overhead of xparse and its protection that we don’t want here (since the hook
should vanish without trace if empty)!

1492 \cs_new:Npn \UseHook { \hook_use:n }
1493 \cs_new:Npn \UseOneTimeHook { \hook_use_once:n }

(End definition for \UseHook and \UseOneTimeHook. These functions are documented on page 4.)

\ShowHook
\LogHook 1494 \cs_new_protected:Npn \ShowHook { \hook_show:n }

1495 \cs_new_protected:Npn \LogHook { \hook_log:n }

(End definition for \ShowHook and \LogHook. These functions are documented on page 11.)

\DebugHooksOn
\DebugHooksOff 1496 \cs_new_protected:Npn \DebugHooksOn { \hook_debug_on: }

1497 \cs_new_protected:Npn \DebugHooksOff { \hook_debug_off: }

(End definition for \DebugHooksOn and \DebugHooksOff. These functions are documented on page 12.)

72

\DeclareHookRule

1498 \NewDocumentCommand \DeclareHookRule { m m m m }
1499 { \hook_gset_rule:nnnn {#1}{#2}{#3}{#4} }

(End definition for \DeclareHookRule. This function is documented on page 9.)

\DeclareDefaultHookRule This declaration is only supported before \begin{document}.
1500 \NewDocumentCommand \DeclareDefaultHookRule { m m m }
1501 { \hook_gset_rule:nnnn {??}{#1}{#2}{#3} }
1502 \@onlypreamble\DeclareDefaultHookRule

(End definition for \DeclareDefaultHookRule. This function is documented on page 10.)

\ClearHookRule A special setup rule that removes an existing relation. Basically @@_rule_gclear:nnn
plus fixing the property list for debugging.

FMi: Needs perhaps an L3 interface, or maybe it should get dropped?

1503 \NewDocumentCommand \ClearHookRule { m m m }
1504 { \hook_gset_rule:nnnn {#1}{#2}{unrelated}{#3} }

(End definition for \ClearHookRule. This function is documented on page 10.)

\IfHookEmptyTF Here we avoid the overhead of xparse, since \IfHookEmptyTF is used in \end (that is,
every LATEX environment). As a further optimization, use \let rather than \def to avoid
one expansion step.

1505 \cs_new_eq:NN \IfHookEmptyTF \hook_if_empty:nTF

(End definition for \IfHookEmptyTF. This function is documented on page 10.)

\IfHookExistsTF Marked for removal and no longer documented in the doc section!
PhO: \IfHookExistsTF is used in jlreq.cls, pxatbegshi.sty, pxeverysel.sty, pxeveryshi.sty,
so the public name may be an alias of the internal conditional for a while. Regardless,
those packages’ use for \IfHookExistsTF is not really correct and can be changed.

1506 \cs_new_eq:NN \IfHookExistsTF __hook_if_usable:nTF

(End definition for \IfHookExistsTF. This function is documented on page ??.)

4.13 Deprecated that needs cleanup at some point
\hook_disable:n
\hook_provide:n

\hook_provide_reversed:n
\hook_provide_pair:nn

__hook_activate_generic_reversed:n
__hook_activate_generic_pair:nn

Deprecated.
1507 \cs_new_protected:Npn \hook_disable:n
1508 {
1509 __hook_deprecated_warn:nn
1510 { hook_disable:n }
1511 { hook_disable_generic:n }
1512 \hook_disable_generic:n
1513 }
1514 \cs_new_protected:Npn \hook_provide:n
1515 {
1516 __hook_deprecated_warn:nn
1517 { hook_provide:n }
1518 { hook_activate_generic:n }
1519 \hook_activate_generic:n
1520 }

73

1521 \cs_new_protected:Npn \hook_provide_reversed:n
1522 {
1523 __hook_deprecated_warn:nn
1524 { hook_provide_reversed:n }
1525 { hook_activate_generic:n }
1526 __hook_activate_generic_reversed:n
1527 }
1528 \cs_new_protected:Npn \hook_provide_pair:nn
1529 {
1530 __hook_deprecated_warn:nn
1531 { hook_provide_pair:nn }
1532 { hook_activate_generic:n }
1533 __hook_activate_generic_pair:nn
1534 }
1535 \cs_new_protected:Npn __hook_activate_generic_reversed:n #1
1536 { __hook_normalize_hook_args:Nn __hook_activate_generic:nn {#1} { - } }
1537 \cs_new_protected:Npn __hook_activate_generic_pair:nn #1#2
1538 { \hook_activate_generic:n {#1} __hook_activate_generic_reversed:n {#2} }

(End definition for \hook_disable:n and others. These functions are documented on page ??.)

\DisableHook
\ProvideHook

\ProvideReversedHook
\ProvideMirroredHookPair

Deprecated.
1539 \cs_new_protected:Npn \DisableHook
1540 {
1541 __hook_deprecated_warn:nn
1542 { DisableHook }
1543 { DisableGenericHook }
1544 \hook_disable_generic:n
1545 }
1546 \cs_new_protected:Npn \ProvideHook
1547 {
1548 __hook_deprecated_warn:nn
1549 { ProvideHook }
1550 { ActivateGenericHook }
1551 \hook_activate_generic:n
1552 }
1553 \cs_new_protected:Npn \ProvideReversedHook
1554 {
1555 __hook_deprecated_warn:nn
1556 { ProvideReversedHook }
1557 { ActivateGenericHook }
1558 __hook_activate_generic_reversed:n
1559 }
1560 \cs_new_protected:Npn \ProvideMirroredHookPair
1561 {
1562 __hook_deprecated_warn:nn
1563 { ProvideMirroredHookPair }
1564 { ActivateGenericHook }
1565 __hook_activate_generic_pair:nn
1566 }

(End definition for \DisableHook and others. These functions are documented on page ??.)

__hook_deprecated_warn:nn Warns about a deprecation, telling what should be used instead.

74

1567 \cs_new_protected:Npn __hook_deprecated_warn:nn #1 #2
1568 { \msg_warning:nnnn { hooks } { deprecated } {#1} {#2} }
1569 \msg_new:nnn { hooks } { deprecated }
1570 {
1571 Command~\iow_char:N\\#1~is~deprecated~and~will~be~removed~in~a~
1572 future~release. \\ \\
1573 Use~\iow_char:N\\#2~instead.
1574 }

(End definition for __hook_deprecated_warn:nn.)

4.14 Internal commands needed elsewhere
Here we set up a few horrible (but consistent) LATEX 2ε names to allow for internal
commands to be used outside this module. We have to unset the @@ since we want
double “at” sign in place of double underscores.

1575 ⟨@@=⟩

\@expl@@@initialize@all@@
\@expl@@@hook@curr@name@pop@@ 1576 \cs_new_eq:NN \@expl@@@initialize@all@@

1577 __hook_initialize_all:

1578 \cs_new_eq:NN \@expl@@@hook@curr@name@pop@@
1579 __hook_curr_name_pop:

(End definition for \@expl@@@initialize@all@@ and \@expl@@@hook@curr@name@pop@@. These functions
are documented on page ??.)

Rolling back here doesn’t undefine the interface commands as they may be used in
packages without rollback functionality. So we just make them do nothing which may or
may not work depending on the code usage.

1580 %
1581 ⟨latexrelease⟩\IncludeInRelease{0000/00/00}%
1582 ⟨latexrelease⟩ {lthooks}{The~hook~management}%
1583 ⟨latexrelease⟩
1584 ⟨latexrelease⟩\def \NewHook#1{}
1585 ⟨latexrelease⟩\def \NewReversedHook#1{}
1586 ⟨latexrelease⟩\def \NewMirroredHookPair#1#2{}
1587 ⟨latexrelease⟩
1588 ⟨latexrelease⟩\def \DisableGenericHook #1{}
1589 ⟨latexrelease⟩
1590 ⟨latexrelease⟩\long\def\AddToHookNext#1#2{}
1591 ⟨latexrelease⟩
1592 ⟨latexrelease⟩\def\AddToHook#1{\@gobble@AddToHook@args}
1593 ⟨latexrelease⟩\providecommand\@gobble@AddToHook@args[2][]{}
1594 ⟨latexrelease⟩
1595 ⟨latexrelease⟩\def\RemoveFromHook#1{\@gobble@RemoveFromHook@arg}
1596 ⟨latexrelease⟩\providecommand\@gobble@RemoveFromHook@arg[1][]{}
1597 ⟨latexrelease⟩
1598 ⟨latexrelease⟩\def \UseHook #1{}
1599 ⟨latexrelease⟩\def \UseOneTimeHook #1{}
1600 ⟨latexrelease⟩\def \ShowHook #1{}
1601 ⟨latexrelease⟩\let \DebugHooksOn \@empty
1602 ⟨latexrelease⟩\let \DebugHooksOff\@empty
1603 ⟨latexrelease⟩

75

1604 ⟨latexrelease⟩\def \DeclareHookRule #1#2#3#4{}
1605 ⟨latexrelease⟩\def \DeclareDefaultHookRule #1#2#3{}
1606 ⟨latexrelease⟩\def \ClearHookRule #1#2#3{}

If the hook management is not provided we make the test for existence false and the test
for empty true in the hope that this is most of the time reasonable. If not a package
would need to guard against running in an old kernel.

1607 ⟨latexrelease⟩\long\def \IfHookExistsTF #1#2#3{#3}
1608 ⟨latexrelease⟩\long\def \IfHookEmptyTF #1#2#3{#2}
1609 ⟨latexrelease⟩
1610 ⟨latexrelease⟩\EndModuleRelease
1611 \ExplSyntaxOff
1612 ⟨/2ekernel | latexrelease⟩

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\@@\textvisiblespace␣\meta␣{hook} . . 28
\@@_next\textvisiblespace␣\meta␣{hook}

. 28
\\ 931, 942, 1352, 1358, 1368, 1389, 1393,

1394, 1396, 1402, 1413, 1414, 1419,
1424, 1429, 1445, 1571, 1572, 1573

\⟨addto-cmd⟩ . 4
\␣ . 1394

A
\ActivateGenericHook 1453, 1459, 3
\AddToHook 1462, 1592, 4
\AddToHookNext 1464, 1590, 60
\AfterEndEnvironment 21
\AtBeginDocument 4
\AtBeginEnvironment 21
\AtEndDocument 22
\AtEndEnvironment 21
\AtEndPreamble 22

B
\BeforeBeginEnvironment 21
\begin . 1481, 21
\bfdefault . 24
\bfseries . 24
bool commands:

\bool_gset_false:N 15
\bool_gset_true:N 10
\bool_if:NTF 1042, 1051, 21
\bool_lazy_and:nnTF . . 1044, 1267, 132
\bool_lazy_and_p:nn 1270
\bool_lazy_or:nnTF 542

\bool_new:N 6, 24
\bool_set_false:N 1034
\bool_set_true:N 1031
\bool_while_do:nn 838

C
\ClearHookNext 1466, 6
\ClearHookRule 1503, 1606, 10
\clearpage . 23
clist commands:

\clist_gclear:N 837
\clist_gput_left:Nn 783
\clist_gput_right:Nn 785
\clist_if_empty:NTF 1061
\clist_map_inline:nn 573, 582
\clist_new:N 86
\clist_use:Nn 1063

\cs 1473, 1474, 1476
cs commands:

\cs:w 742, 776, 777,
829, 849, 852, 868, 869, 892, 893,
894, 901, 908, 1160, 1166, 1179,
1189, 1225, 1255, 1300, 1330, 220, 35

\cs_end: 745, 776, 777, 829, 849, 852,
868, 869, 883, 893, 894, 901, 908,
1101, 1160, 1165, 1166, 1179, 1185,
1198, 1225, 1255, 1300, 1330, 220, 449

\cs_generate_variant:Nn 871,
35, 36, 37, 44, 45, 52, 53, 54, 57, 63, 67

\cs_gset_eq:NN 749, 762, 763, 1152, 452
\cs_gset_nopar:Npx 47, 49, 51
\cs_gset_protected:Npn 1486
\cs_gset_protected:Npx 20

76

\cs_if_exist:NTF 1310, 1318
\cs_if_exist_use:NTF 662, 687
\cs_new:Npn 560,

562, 564, 724, 740, 794, 795, 872,
873, 1077, 1163, 1183, 1191, 1205,
1308, 1316, 1328, 1492, 1493, 39,
171, 177, 190, 200, 201, 203, 217, 223

\cs_new_eq:NN 703, 709, 747,
947, 948, 949, 950, 951, 952, 1198,
1505, 1506, 1576, 1578, 7, 23, 34, 64

\cs_new_protected:Npn
. 603, 605, 638, 645, 676,
698, 704, 710, 715, 718, 721, 722,
748, 765, 801, 874, 881, 890, 897,
904, 911, 919, 925, 936, 953, 960,
972, 977, 982, 984, 986, 1079, 1094,
1099, 1108, 1124, 1126, 1136, 1141,
1149, 1151, 1155, 1169, 1174, 1196,
1211, 1220, 1229, 1234, 1241, 1243,
1494, 1495, 1496, 1497, 1507, 1514,
1521, 1528, 1535, 1537, 1539, 1546,
1553, 1560, 1567, 8, 13, 18, 40, 42,
46, 48, 50, 55, 58, 65, 68, 70, 79, 91,
100, 102, 107, 109, 123, 125, 142,
147, 149, 168, 224, 233, 238, 246,
270, 272, 288, 296, 306, 315, 324,
326, 343, 367, 374, 381, 391, 396,
401, 410, 444, 446, 454, 456, 459, 461

\cs_set_eq:NN
. 782, 783, 784, 785, 974, 979

\cs_set_nopar:Npx 41, 43
\cs_set_protected:Npn 1081, 1111, 259
\cs_to_str:N 35
\cs_undefine:N 723, 128

\csname . 7

D
debug commands:

\debug_resume: 27
\debug_suspend: 27

\DebugHooksOff 1496, 1602, 12
\DebugHooksOn 1496, 1601, 12
\DeclareDefaultHookRule . 1500, 1605, 10
\DeclareHookRule 1498, 1604, 9
\DeclareHookrule 9
\def 1459, 1584, 1585, 1586,

1588, 1590, 1592, 1595, 1598, 1599,
1600, 1604, 1605, 1606, 1607, 1608, 73

\DisableGenericHook 1454, 1588, 3
\DisableHook 1539, 3
\DiscardShipoutBox 6
\document . 22
\documentclass 8

E
else commands:

\else: 729, 736,
744, 886, 1186, 1257, 1302, 1332, 449

\emph . 1475
\end . 21
\endcsname . 7
\enddocument . 23
\EndIncludeInRelease 534, 554, 557, 570,

588, 593, 596, 602, 673, 697, 1171,
1199, 1202, 1228, 1455, 1461, 138,
144, 164, 170, 388, 416, 468, 496, 520

\EndModuleRelease 1610
\ERROR . 872, 873
\errorstopmode 14
exp commands:

\exp:w 439, 42
\exp_after:wN 683,

776, 885, 992, 1104, 1166, 1254,
1299, 49, 56, 61, 219, 220, 265, 438, 42

\exp_args:Nc 1138
\exp_args:Ne 1215, 1216, 405, 406
\exp_args:Nnnv 115
\exp_args:NNo 868
\exp_args:NNV 842
\exp_args:NNx 790
\exp_args:No 1078, 1122
\exp_args:Nv 1021, 1028, 1102
\exp_args:Nx 271, 313
\exp_end: 439
\exp_last_unbraced:NNNNo 222
\exp_not:N 230
\exp_not:n 759
\exp_stop_f: 726, 734

\expanded . 35
\ExplSyntaxOff 1611
\ExplSyntaxOn . 3

F
fi commands:

\fi: 730, 738, 744, 888,
1105, 1167, 1188, 1259, 1304, 1334, 451

file commands:
\g_file_curr_name_str 1489

G
\g_@@_\meta␣{hook}_code_prop 28
group commands:

\group_begin: 226
\group_end: 229

H
hook commands:

\hook_activate_generic:n

77

. 1452, 1453, 1457, 1519,
1538, 1551, 145, 146, 147, 166, 168, 13

\hook_debug_off: 1497, 7, 13, 14
\hook_debug_on: 1496, 7, 8, 14
\hook_disable:n 1507, 1507
\hook_disable_generic:n . . . 1454,

1512, 1544, 121, 122, 123, 140, 142, 12
\hook_gclear_next_code:n

. 1149, 1149, 1467, 13
\hook_gput_code:n 31
\hook_gput_code:nnn

. 1463, 324, 324, 377, 394, 38
\hook_gput_next_code:nn

. 1124, 1124, 1465, 384, 399, 13
\hook_gremove_code:nn

. 603, 603, 1469, 14
\hook_gset_rule:nnnn

. 638, 638, 1499, 1501, 1504, 14
\hook_if_empty:n 1263
\hook_if_empty:nTF 1001, 1263, 1505, 14
\hook_if_empty_p:n . . . 1046, 1263, 14
\hook_log:n 972, 972, 1495, 14
\hook_new:n . 1448, 68, 68, 108, 507, 67
\hook_new_pair:nn . . 1450, 107, 107, 12
\hook_new_reversed:n

. 1449, 100, 100, 108, 12
\hook_provide:n 1507, 1514
\hook_provide_pair:nn . . . 1507, 1528
\hook_provide_reversed:n . 1507, 1521
\hook_show:n 972, 977, 1494, 14
\hook_use:n 762,

1153, 1153, 1155, 1172, 1174, 1492, 35
\hook_use_once:n . 1229, 1229, 1493, 17

hook internal commands:
\g__hook_??_code_prop 635
\g__hook_??_reversed_tl 635
\g__hook_⟨hook⟩_code_prop 46
\g__hook_⟨hook⟩_labels_clist 31
\g__hook_⟨hook⟩_reversed_tl 28
__hook_activate_generic:n 145
__hook_activate_generic:nn

. 1536, 148, 149
__hook_activate_generic_pair:nn

. 1507, 1533, 1537, 1565
__hook_activate_generic_-

reversed:n
. 1507, 1526, 1535, 1538, 1558

\g__hook_all_seq 751, 28, 83
__hook_apply_-rule_->:nnn 947
__hook_apply_-rule_<-:nnn 947
__hook_apply_-rule_<:nnn 947
__hook_apply_-rule_>:nnn 947
__hook_apply_-rule_xE:nnn 947
__hook_apply_-rule_xW:nnn 947

__hook_apply_label_pair:nnn . . .
. 819, 820, 874, 874, 61

__hook_apply_rule:nnn
. 884, 890, 890, 55

__hook_apply_rule:nnnN 56
__hook_apply_rule_->:nnn 925
__hook_apply_rule_<-:nnn 925
__hook_apply_rule_<:nnn 897
__hook_apply_rule_>:nnn 897
__hook_apply_rule_xE:nnn 911
__hook_apply_rule_xW:nnn 911
__hook_clean_to_scan:w

. 652, 658, 1254, 1299, 39, 39
__hook_clear_next:n

. 1146, 1149, 1150, 1151
__hook_clist_gput:Nn

. 783, 785, 843, 872, 873
\l__hook_cur_hook_tl

. 805, 931, 942, 29, 57
__hook_curr_name_pop:

. 1485, 1579, 256, 288, 37
__hook_curr_name_push:n

. 1483, 1488, 256, 270, 37
__hook_curr_name_push_aux:n . . .

. 256, 271, 272
__hook_currname_or_default: . . .

. 1364, 1408,
174, 182, 186, 202, 203, 203, 351, 34

__hook_debug:n 750,
755, 767, 789, 824, 844, 899, 906,
913, 921, 927, 938, 7, 7, 20, 345, 25

\g__hook_debug_bool 6, 10, 15, 21
__hook_debug_gset: 7, 11, 16, 18
__hook_debug_label_data:N

. 824, 865, 960, 960
__hook_debug_print_rules:n

. 1108, 1108
__hook_declare_deprecated_-

generic:NNn 438, 459
__hook_declare_deprecated_-

generic:NNw 454, 460, 461
__hook_deprecated_generic_-

warn:n 629, 649, 680, 990, 437, 444, 42
__hook_deprecated_generic_-

warn:Nn 444
__hook_deprecated_generic_-

warn:Nw 444
__hook_deprecated_generic_-

warn:w 445, 446
__hook_deprecated_warn:nn

. 1509, 1516, 1523, 1530,
1541, 1548, 1555, 1562, 1567, 1567

__hook_disable:n 121, 124, 125

78

__hook_do_deprecated_generic:Nn
. 630, 650, 681, 991, 454, 454

__hook_do_deprecated_generic:Nw
. 454, 455, 456

__hook_end_document_label_-
check: 256, 295, 296, 303

__hook_file_hook_normalize:n . . .
. . . . 555, 555, 558, 560, 1216, 406, 44

\l__hook_front_tl 796,
835, 838, 841, 843, 844, 845, 858, 859

\c__hook_generic_⟨type⟩/./⟨place⟩_tl
. 41

\c__hook_generic_class/./after_-
tl . 571

\c__hook_generic_class/./before_-
tl . 571

\c__hook_generic_cmd/./after_tl 571
\c__hook_generic_cmd/./before_tl 571
\c__hook_generic_env/./after_tl 571
\c__hook_generic_env/./before_tl 571
\c__hook_generic_env/./begin_tl 571
\c__hook_generic_env/./end_tl . . 571
\c__hook_generic_file/./after_tl 571
\c__hook_generic_file/./before_-

tl . 571
\c__hook_generic_include/./after_-

tl . 571
\c__hook_generic_include/./before_-

tl . 571
\c__hook_generic_include/./end_-

tl . 571
\c__hook_generic_package/./after_-

tl . 571
\c__hook_generic_package/./before_-

tl . 571
\c__hook_generics_file_prop 547, 594
\c__hook_generics_prop

. 571, 589, 591, 477, 505
\c__hook_generics_reversed_ii_-

prop 594, 485, 508
\c__hook_generics_reversed_iii_-

prop 594, 488, 511
__hook_gput_code:nnn . 324, 325, 326
__hook_gput_next_code:nn

. 1125, 1126, 1126
__hook_gput_next_do:nn

. 1126, 1132, 1136, 385, 399, 40
__hook_gput_next_do:Nnn

. 1126, 1138, 1141
__hook_gput_undeclared_hook:nnn

. 367, 367, 378, 394, 40
__hook_gremove_code:nn

. 603, 604, 605, 630

__hook_gset_rule:nnnn
638, 640, 643, 645, 650, 674, 676, 681

\g__hook_hook_curr_name_tl
. 32, 205, 215, 256,
268, 283, 284, 291, 301, 302, 322, 35

__hook_hook_gput_code_do:nnn . . .
. 115, 324, 333, 343, 370

__hook_if_declared:n 1291
__hook_if_declared:nTF

. 1291, 72, 154, 507, 29
__hook_if_declared_p:n 1291
__hook_if_deprecated_generic:n 1314
__hook_if_deprecated_generic:nTF

. 627, 647, 678, 988, 1306, 435
__hook_if_deprecated_generic:w .

. 1315, 1316
__hook_if_deprecated_generic_-

p:n . 1306
__hook_if_disabled:n 130
__hook_if_disabled:nTF

. . . 999, 1072, 1128, 121, 151, 337, 33
__hook_if_disabled_p:n 121
__hook_if_execute_immediately:n

. 1250
__hook_if_execute_immediately:nTF

. 654, 1231, 1250, 328
__hook_if_execute_immediately_-

p:n . 1250
__hook_if_file_hook:w

. 535, 537, 521, 523
__hook_if_file_hook:wTF

. 1213, 403, 521, 44
__hook_if_file_hook_p:w 521
__hook_if_generic:n 1306
__hook_if_generic:nTF

. 996, 1306, 422, 526
__hook_if_generic:w 1307, 1308
__hook_if_generic_p:n 1306
__hook_if_generic_reversed:n . 1326
__hook_if_generic_reversed:nTF .

. 1326, 159, 430
__hook_if_generic_reversed:w . . .

. 1327, 1328
__hook_if_generic_reversed_p:n 1326
__hook_if_label_case:nnnnn

. 740, 740, 817, 1086
__hook_if_reversed:n 1297
__hook_if_reversed:nTF

. 781, 1015, 1052, 1054, 1297
__hook_if_reversed_p:n 1297
__hook_if_structure_exist:n . 1285
__hook_if_structure_exist:nTF . .

. . 607, 1131, 1265, 1285, 1439, 93, 29
__hook_if_structure_exist_p:n 1285

79

__hook_if_usable:n 1279
__hook_if_usable:nTF

. . 623, 770, 997, 1014, 1070, 1252,
1279, 1506, 331, 346, 424, 479, 46

__hook_if_usable_p:n . . . 1045, 1279
__hook_if_usable_use:n

. 1200, 1215, 1218, 1220, 64
__hook_include_legacy_code_-

chunk:n 769, 88, 109, 109
__hook_init_structure:n

. . . 660, 685, 85, 91, 91, 353, 369, 39
__hook_initialize_all: 748, 748, 1577
__hook_initialize_hook_code:n . .

. 749, 765, 765, 1170, 1197, 55
__hook_initialize_single:NNn . . .

. 787, 801, 801, 871, 50
\l__hook_label_0_tl 796
__hook_label_if_exist_apply:nnnTF

. 874, 876, 878, 881, 55
__hook_label_ordered:nn 732, 50
__hook_label_ordered:nnTF

. 701, 707, 713, 732, 49
__hook_label_ordered_p:nn 732
__hook_label_pair:nn 700, 706, 712,

716, 719, 723, 724, 724, 956, 957, 49
\l__hook_labels_int

. 796, 804, 808, 840, 861, 55
\l__hook_labels_seq

. 796, 803, 809, 827, 962
__hook_list_if_rule_exists:nnnTF

. 1079, 1096, 1097, 1099
__hook_list_one_rule:nnn

. 1079, 1088, 1089, 1094
__hook_list_rules:nn

. 1032, 1079, 1079, 1113, 61
__hook_log:nN 972, 975, 980, 986, 991
__hook_log_cmd:n

. 974, 979, 983, 985, 995
__hook_log_line:n

. 972, 982, 998, 1000,
1004, 1011, 1023, 1030, 1048, 1067

__hook_log_line_indent:n . . 972,
984, 1006, 1009, 1017, 1024, 1035, 1043

__hook_log_next_code:n
. 1028, 1077, 1077

__hook_make_name:n
. 196, 202, 211, 217, 217, 271, 313, 35

__hook_make_name:w . . . 217, 219, 223
__hook_make_usable:n

. 76, 79, 79, 157, 428, 483, 41
__hook_msg_pair_found:nnn

899, 906, 913, 921, 929, 940, 953, 953
\g__hook_name_stack_seq 32,

257, 258, 262, 269, 283, 290, 298, 308

__hook_new:n 68, 69, 70, 104
__hook_new_reversed:n . 100, 101, 102
__hook_next␣⟨hook⟩ 46
__hook_normalize_hook_args:Nn . .

. 975, 980, 1125, 1150,
1232, 1536, 69, 101, 124, 148, 224, 233

__hook_normalize_hook_args:Nnn .
. 604, 224, 238, 325

__hook_normalize_hook_args_-
aux:Nn 224, 224, 235, 240, 248

__hook_normalize_hook_rule_-
args:Nnnnn 640, 224, 246

__hook_parse_dot_label:n
. 175, 177, 177

__hook_parse_dot_label:w
. 177, 187, 190

__hook_parse_dot_label_aux:w . . .
. 177, 193, 201

__hook_parse_dot_label_cleanup:w
. 177, 197, 200

__hook_parse_label_default:n . . .
171, 171, 236, 242, 243, 250, 251, 253

__hook_patch_cmd_or_delay:Nnn . . 41
__hook_preamble_hook:n

. 763, 994, 1153,
1159, 1169, 1178, 1196, 1224, 1236, 63

\l__hook_rear_tl
. 796, 825, 831, 832, 854, 855

\l__hook_return_tl 619, 841,
842, 25, 290, 291, 298, 302, 359, 362

__hook_rule_<_gset:nnn 698
__hook_rule_>_gset:nnn 698
__hook_rule_after_gset:nnn

. 698, 704, 709
__hook_rule_before_gset:nnn . . .

. 698, 698, 703, 53
__hook_rule_gclear:nnn

. 661, 686, 721, 722, 49
__hook_rule_incompatible-error_-

gset:nnn 715
__hook_rule_incompatible-warning_-

gset:nnn 715
__hook_rule_unrelated_gset:nnn .

. 721, 721, 49
__hook_rule_voids_gset:nnn 710, 710
__hook_seq_csname:n

. . . . 794, 795, 811, 845, 902, 909, 967
__hook_set_default_hook_label:n

. 1471, 306, 306
__hook_set_default_label:n

. 306, 313, 315
__hook_str_compare:nn

. 726, 734, 743, 23, 23

80

__hook_strip_double_slash:n . . .
. 555, 561, 562

__hook_strip_double_slash:w . . .
. 555, 563, 564, 568

__hook_tl_csname:n 794, 794, 800,
810, 826, 829, 831, 835, 847, 849,
852, 854, 859, 900, 901, 907, 908, 966

__hook_tl_gclear:N 612, 613, 617,
836, 1245, 1246, 1247, 65, 65, 67, 117

__hook_tl_gput:Nn
. 782, 784, 842, 868, 872, 872, 55

__hook_tl_gput_left:Nn 782, 58, 58, 63
__hook_tl_gput_right:Nn

. 784, 869, 1147, 55, 55, 57, 354
__hook_tl_gset:Nn

700, 706, 712, 716, 719, 774, 1146,
1242, 46, 46, 48, 50, 52, 53, 54, 56, 60

__hook_tl_gset_eq:NN 64, 64, 66
__hook_tl_set:Nn

. 810, 40, 40, 42, 44, 45, 27
__hook_tmp:w 1081,

1102, 1111, 1122, 34, 34, 259, 263, 265
\l__hook_tmpa_bool

. 1031, 1034, 1042, 1051, 24, 59
\l__hook_tmpa_tl 25, 269
\l__hook_tmpb_tl 25
__hook_toplevel␣⟨hook⟩ 29
__hook_try_declaring_generic_-

hook:nnn
. 339, 372, 372, 374, 389, 391, 40

__hook_try_declaring_generic_-
hook:nNNnn . . 393, 398, 401, 401, 40

__hook_try_declaring_generic_-
hook:wn 417, 419, 469, 471, 497, 499

__hook_try_declaring_generic_-
hook:wnTF 376, 383, 412, 417, 464, 42

__hook_try_declaring_generic_-
hook_split:nNNnn 401, 405, 408, 410

__hook_try_declaring_generic_-
next_hook:nn 1133, 372, 381, 396, 40

__hook_try_file_hook:n
. 1200, 1208, 1211, 64

__hook_try_put_cmd_hook:n . 427, 482
__hook_update_hook_code:n

. 624, 665, 690,
747, 747, 749, 753, 1144, 160, 334, 46

__hook_use:wn
1181, 1194, 1200, 1200, 1203, 1205, 64

__hook_use_end: 1153, 1189, 1191, 1198
__hook_use_initialized:n

. 762, 1153, 1163, 1183, 1238, 63
__hook_use_once:n . . 1229, 1232, 1234
__hook_use_once_clear:n

. 1239, 1241, 1243, 65

__hook_use_once_set:n
. 1237, 1241, 1241, 65

__hook_use_undefined:w
. 1153, 1187, 1191

\g__hook_used_prop . . 750, 757, 790, 31
\l__hook_work_prop . 786, 806, 813,

815, 824, 841, 865, 934, 945, 30, 53
hook␣?? internal commands:

__hook␣?? 47
hook␣⟨hook⟩ internal commands:

__hook␣⟨hook⟩ 51
hook ?? internal commands:

__hook~?? 635

I
if commands:

\if:w 1255, 1300, 65
\if_case:w 726, 743
\if_charcode:w 1330
\if_cs_exist:w

. 883, 1101, 1165, 1185, 449
\if_int_compare:w 734

\IfHookEmptyTF 1505, 1608, 10
\IfHookExistsTF 1506, 1607, 73
\ignorespaces 22
\immediate . 23
\include . 20
\IncludeInRelease

. . . . 535, 555, 558, 571, 589, 594,
597, 643, 674, 1153, 1172, 1200,
1203, 1451, 1456, 1581, 121, 139,
145, 165, 372, 389, 417, 469, 497, 521

\input . 8
\InsertMark . 25
int commands:

\int_compare:nNnTF 829, 851, 861, 1343
\int_decr:N 840
\int_eval:n 848, 901, 908
\int_incr:N 808
\int_new:N 797
\int_zero:N 804

iow commands:
\iow_char:N . . 931, 942, 1358, 1394,

1402, 1414, 1419, 1424, 1571, 1573
\iow_log:n 974
\iow_term:n 756, 758, 768, 844,

863, 864, 866, 930, 941, 955, 961,
962, 963, 966, 970, 979, 1110, 1115, 345

K
kernel internal commands:

__kernel_exp_not:w 41, 47, 49, 56, 61

L
\let 1601, 1602, 73

81

\listfiles . 23
\LogHook 1494, 11
\long 1590, 1607, 1608

M
\mdseries . 25
msg commands:

\msg_error:nn 275, 292
\msg_error:nnn 1129, 73, 300, 338, 356
\msg_error:nnnnn 279, 310, 319
\msg_error:nnnnnn . . 656, 668, 693, 914
\msg_expandable_error:nn 181
\msg_expandable_error:nnn 209
\msg_line_context: . . 1363, 1368, 1415
\g_msg_module_name_prop 1338
\g_msg_module_type_prop . . 1336, 1337
\msg_new:nnn 1361, 1366, 1411, 1417,

1422, 1427, 1432, 1436, 1443, 1569
\msg_new:nnnn

. . 1339, 1349, 1354, 1371, 1387, 1400
\msg_warning:nnn 152
\msg_warning:nnnn 620, 632, 1568
\msg_warning:nnnnn 450
\msg_warning:nnnnnn 922

N
\NewDocumentCommand . 1448, 1449, 1450,

1453, 1454, 1462, 1464, 1466, 1468,
1470, 1482, 1484, 1498, 1500, 1503

\newenvironment 20
\NewHook 1448, 1584, 29
\NewMirroredHookPair 1448, 1586, 3
\NewModuleRelease 4
\NewReversedHook 1448, 1585, 3
\normalfont . 24
\normalsize . 5

O
or commands:

\or: . 728, 744

P
\PopDefaultHookLabel 1470, 8
prg commands:

\prg_new_conditional:Npnn
. 537, 732, 1250, 1263, 1279, 1285,
1291, 1297, 1306, 1314, 1326, 130, 523

\prg_new_protected_conditional:Npnn
. 419, 471, 499

\prg_return_false:
. 545, 549, 552, 737,
1258, 1261, 1275, 1283, 1289, 1295,
1303, 1312, 1321, 1324, 1333, 136,
441, 475, 493, 503, 516, 530, 532, 42

\prg_return_true:
. 548, 735, 1256, 1274,
1277, 1282, 1288, 1294, 1301, 1311,
1322, 1331, 135, 432, 491, 514, 529

prop commands:
\prop_const_from_keyval:Nn

. 591, 599, 600, 601
\prop_gclear:N 611, 750
\prop_gclear_new:N 1248
\prop_get:NnN 841
\prop_get:NnNTF 359
\prop_gpop:NnNTF 619
\prop_gput:Nnn

. 790, 1336, 1337, 1338, 361, 364
\prop_if_empty:NTF 772, 1005
\prop_if_empty_p:N 1268
\prop_if_exist:NTF 1287
\prop_if_in:NnTF

. . . . 547, 477, 485, 488, 505, 508, 511
\prop_map_break: 818, 1087
\prop_map_inline:Nn 757,

806, 813, 815, 964, 1008, 1082, 1084
\prop_new:N 635, 636, 30, 31, 95
\prop_put:Nnn 934, 945
\prop_set_eq:NN 786
\prop_show:N 61

\providecommand 1593, 1596
\ProvideHook 1539
\ProvideMirroredHookPair 1539
\ProvideReversedHook 1539
\PushDefaultHookLabel 1470, 8

Q
quark commands:

\quark_if_recursion_tail_stop:n 261
\q_recursion_stop 267
\q_recursion_tail 266, 267

R
\RemoveFromHook 1468, 1595, 5
\RequirePackage 8
\rmfamily . 24

S
scan commands:

\scan_new:N 38
\scan_stop: 1327, 1328,

376, 383, 412, 420, 452, 464, 472, 500
scan internal commands:

\s__hook_mark
538, 563, 564, 568, 671, 1181, 1194,
1205, 1213, 1256, 1258, 1301, 1303,
1307, 1308, 1315, 1316, 38, 39,
187, 190, 193, 197, 200, 201, 403,
445, 447, 455, 457, 460, 462, 524, 27

82

\selectfont . 24
seq commands:

\seq_clear:N 803
\seq_clear_new:N 811
\seq_gpop:NNTF 290, 298
\seq_gpop_right:NN 269
\seq_gpush:Nn 283
\seq_gput_right:Nn 83, 258, 262
\seq_if_empty:NTF 257, 308
\seq_map_inline:Nn 751, 827, 845
\seq_new:N 796, 28, 33
\seq_put_right:Nn 809, 902, 909
\seq_use:Nnnn 962, 967

\SetDefaultHookLabel 1470, 7
\sffamily . 24
\shipout . 24
show commands:

\show_hook:n 58
\ShowHook 1494, 1600, 15
\small . 5
\space . 348
\special . 24
str commands:

\str_gset:Nn 1489
\str_if_eq:nn 50
\str_if_eq:nnTF . . . 540, 609, 616,

955, 1038, 1118, 1207, 1342, 1375,
185, 277, 317, 349, 351, 426, 481, 528

\str_if_eq_p:nn 544, 838
str internal commands:

__str_if_eq:nn 23, 26
\strut . 25

T
TEX and LATEX 2ε commands:

\@...hook . 31
\@begindocumenthook 19
\@cls@pkg 1408
\@currname 207, 213, 268, 72
\@currnamestack 265, 36
\@empty 1601, 1602
\@expl@@@hook@curr@name@pop@@ . 1576
\@expl@@@initialize@all@@ 1576
\@expl@push@filename@aux@@ . 1486, 72
\@firstofone 4
\@gobble@AddToHook@args . . 1592, 1593
\@gobble@RemoveFromHook@arg

. 1595, 1596
\@kernel@after@⟨hook⟩ 19
\@kernel@after@enddocument@afterlastpage

. 294
\@kernel@before@⟨hook⟩ 19
\@onlypreamble 1502
\@pushfilename 72

\@spaces 985, 1060, 1070
\@@end . 23
\expand@font@defaults 24
\g@addto@macro 31
\on@line 768, 348
\protected 63

tl commands:
\c_empty_tl 1152, 66
\c_novalue_tl 34
\tl_const:Nn 575,

576, 578, 579, 580, 581, 584, 585, 587
\tl_gclear:N 60
\tl_gclear_new:N 127
\tl_gput_right:Nn 294, 51
\tl_gremove_once:Nn 35, 35
\tl_gset:Nn 105, 158, 256,

268, 284, 322, 431, 486, 489, 509, 512
\tl_gset_eq:NN 64, 291, 302
\tl_if_blank:nTF 274
\tl_if_empty:N 66
\tl_if_empty:NTF

1019, 1026, 1143, 1145, 113, 205, 207
\tl_if_empty:nTF

. . . 566, 1320, 179, 192, 195, 474, 502
\tl_if_empty_p:N 1271, 1272
\tl_if_empty_p:n 543
\tl_if_exist:N 63
\tl_if_exist:NTF

1157, 1176, 1222, 1281, 1293, 81, 111
\tl_if_exist_p:N 133, 134
\tl_if_novalue:nTF 173
\tl_log:n 975, 35, 37
\tl_new:N . . . 637, 798, 799, 800, 25,

26, 27, 29, 32, 75, 84, 87, 96, 97, 156
\tl_set:Nn 805, 825,

826, 831, 832, 847, 854, 855, 900, 907
\tl_set_eq:NN 835, 858
\tl_show:n 980, 1058, 35, 36
\tl_to_str:n 1009, 1021, 1078, 223, 348
\tl_trim_spaces:n 252
\tl_trim_spaces_apply:nN 175
\tl_use:N 966

token commands:
\token_to_str:N 220

\ttfamily . 24

U
use commands:

\use:N 916, 917, 957
\use:n 1106, 1232, 227
\use:nn 887, 1122, 1414
\use_i:nnn 50
\use_ii:nn 50
\use_iii:nn 50

83

\use_none:n . . 683, 747, 763, 885, 7, 63
\use_none:nn 1078, 1104
\use_none:nnnnn 992
\use_none:nnnnnnnnn 683, 992

\UseHook 1492, 1598, 18

\UseOneTimeHook 1492, 1599, 17
\usepackage . 22
\usetikzlibrary 8

W
\write . 23

84

	Contents
	1 Introduction
	2 Package writer interface
	2.1 LaTeX2ε interfaces
	2.1.1 Declaring hooks
	2.1.2 Special declarations for generic hooks
	2.1.3 Using hooks in code
	2.1.4 Updating code for hooks
	2.1.5 Hook names and default labels
	2.1.6 The top-level label
	2.1.7 Defining relations between hook code
	2.1.8 Querying hooks
	2.1.9 Displaying hook code
	2.1.10 Debugging hook code

	2.2 L3 programming layer (expl3) interfaces
	2.3 On the order of hook code execution
	2.4 The use of "reversed" hooks
	2.5 Difference between "normal" and "one-time" hooks
	2.6 Generic hooks provided by packages
	2.7 Private LaTeX kernel hooks
	2.8 Legacy LaTeX2ε interfaces

	3 LaTeX2ε commands and environments augmented by hooks
	3.1 Generic hooks
	3.1.1 Generic hooks for all environments
	3.1.2 Generic hooks for commands
	3.1.3 Generic hooks provided by file loading operations

	3.2 Hooks provided by \begin{document}
	3.3 Hooks provided by \end{document}
	3.4 Hooks provided by \shipout operations
	3.5 Hooks provided for paragraphs
	3.6 Hooks provided in NFSS commands
	3.7 Hook provided by the mark mechanism

	4 The Implementation
	4.1 Debugging
	4.2 Borrowing from internals of other kernel modules
	4.3 Declarations
	4.4 Providing new hooks
	4.4.1 The data structures of a hook
	4.4.2 On the existence of hooks
	4.4.3 Setting hooks up
	4.4.4 Disabling and providing hooks

	4.5 Parsing a label
	4.6 Adding or removing hook code
	4.7 Setting rules for hooks code
	4.8 Specifying code for next invocation
	4.9 Using the hook
	4.10 Querying a hook
	4.11 Messages
	4.12 LaTeX2ε package interface commands
	4.13 Deprecated that needs cleanup at some point
	4.14 Internal commands needed elsewhere

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

