
A new font selection scheme for TEX macro

packages

(Basic Macros)∗

Frank Mittelbach Rainer Schöpf

March 27, 2018

This file is maintained by the LATEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

This file contains the main implementation of the ‘low level’ font selection
commands. See other parts of the LATEX distribution, or The LATEX Companion
for higher level documentation of the LATEX ‘New’ Font Selection Scheme.

Warning: The macro documentation is still basically the documenta-
tion from the first NFSS release and therefore in some cases probably
not completely accurate.

The ‘2ekernel’ code ensures that a \usepackage{autofss1} is essentially ig-
nored if a ‘full’ format is being used that has picture mode already in the format.

Note the autofss2 loading is currently disabled.

1 〈2ekernel〉\expandafter\let\csname ver@autofss1.sty\endcsname\fmtversion

1 Preliminary macros

We define a number of macros that will be used later.

\@nomath \@nomath is used by most macros that will have no effect in math mode. It issues
a warning message.

2 〈∗2ekernel〉
3 \def\@nomath#1{\relax\ifmmode

4 \@font@warning{Command \noexpand#1invalid in math mode}\fi}

∗This file has version number v3.2a dated 2017/01/10

1

\no@alphabet@error The macro \no@alphabet@error is called whenever the user requests a math
alphabet that is not available in the current version. In math mode an error
message is produced otherwise the command keeps silent. The argument is the
name of the control sequence that identifies the math alphabet. The \relax at the
beginning is necessary to prevent TEX from scanning too far in certain situations.

5 \gdef\no@alphabet@error#1{\relax \ifmmode

6 \@latex@error{Math\space alphabet\space identifier\space

7 \noexpand#1is\space undefined\space in\space math\space

8 version\space ‘\math@version’}%

9 {Your\space requested\space math\space alphabet\space

10 is\space undefined\space in\space the\space current\space

11 math\space version.^^JCheck\space the\space spelling\space

12 or\space use\space the\space \noexpand\SetMathAlphabet\space

13 command.}

14 \fi}

\new@mathgroup

\mathgroup

We also give a new name to \newfam and \fam to avoid verbal confusion (see the
introduction).1

15 %\def\new@mathgroup{\alloc@8\mathgroup\chardef\sixt@@n}

16 \let\mathgroup\fam

17 %\let\newfam\new@mathgroup

18 \@onlypreamble\new@mathgroup

2 Macros for setting up the tables

\DeclareFontShape The macro \DeclareFontShape takes 6 arguments:

19 \def\DeclareFontShape{\begingroup

First we restore the catcodes of all characters used in the syntax.

20 \nfss@catcodes

We use \expandafter \endgroup to restore catcode in case something goes wrong
with the argument parsing (suggested by Tim Van Zandt)

\DeclareFontShape

21 \expandafter\endgroup

22 \DeclareFontShape@}

23 \def\DeclareFontShape@#1#2#3#4#5#6{%

24 \expandafter\ifx\csname #1+#2\endcsname\relax

25 \@latex@error{Font family ‘#1+#2’ unknown}\@eha

26 \else

27 \expandafter

28 \xdef\csname#1/#2/#3/#4\endcsname{\expandafter\noexpand

29 \csname #5\endcsname}%

30 \def\reserved@a{#6}%

31 \global

1For the same reason it seems advisable to \let\fam and \newfam equal to \relax, but this
is commented out to retain compatibility to existing style files.

2

32 \expandafter\let\csname#5\expandafter\endcsname

33 \ifx\reserved@a\@empty

34 \@empty

35 \else

36 \reserved@a

37 \fi

38 \fi

39 }

\DeclareFixedFont Define a direct font switch that avoids all overhead.

40 \def\DeclareFixedFont#1#2#3#4#5#6{%

41 \begingroup

42 \math@fontsfalse

43 \every@math@size{}%

44 \fontsize{#6}\z@

45 \usefont{#2}{#3}{#4}{#5}%

46 \global\expandafter\let\expandafter#1\the\font

47 \endgroup

48 }

\do@subst@correction

49 \def\do@subst@correction{%

50 \xdef\subst@correction{%

51 \font@name

52 \global\expandafter\font

53 \csname \curr@fontshape/\f@size\endcsname

54 \noexpand\fontname\font

55 \relax}%

Calling \subst@correction after the current group means calling it after we have
loaded the substitution font which is done inside a group.

56 \aftergroup\subst@correction

57 }

\DeclareFontFamily

58 \def\DeclareFontFamily#1#2#3{%

If we want fast checking for the encoding scheme we can just check for \T@.. being
defined.

59 % \@tempswafalse

60 % \def\reserved@b{#1}%

61 % \def\cdp@elt##1##2##3##4{\def\reserved@c{##1}%

62 % \ifx\reserved@b\reserved@c \@tempswatrue\fi}%

63 % \cdp@list

64 % \if@tempswa

65 \@ifundefined{T@#1}%

66 {%

67 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha

68 }%

69 {%

3

Now we have to define the macro \〈#1 〉+〈#2 〉 to contain #3. But since most of
the time #3 will be empty we use \let in a tricky way rather than a simple \def

since this will save internal memory. We store the argument #3 in a temporary
macro \reserved@a.

70 \def\reserved@a{#3}%

We compare \reserved@a with \@empty If these two are the same we \let the ‘ex-
tra’ macro equal to \@empty which is not the same a doing a \let to \reserved@a

— the latter would blow one extra memory location rather then reusing the one
from \@empty.

71 \global

72 \expandafter\let\csname #1+#2\expandafter\endcsname

73 \ifx \reserved@a\@empty

74 \@empty

75 \else \reserved@a

76 \fi

77 }%

78 }

\cdp@list We initialize the code page list to be empty.

79 \let\cdp@list\@empty

80 \@onlypreamble\cdp@list

\cdp@elt

81 \let\cdp@elt\relax

82 \@onlypreamble\cdp@elt

\DeclareFontEncoding

83 \def\DeclareFontEncoding{%

First we start with ignoring all blanks and newlines since every surplus space in
the second or third argument will come out in a weird place in the document.

84 \begingroup

85 \nfss@catcodes

86 \expandafter\endgroup

87 \DeclareFontEncoding@}

88 \@onlypreamble\DeclareFontEncoding

89 \def\DeclareFontEncoding@#1#2#3{%

90 \expandafter

91 \ifx\csname T@#1\endcsname\relax

92 \def\cdp@elt{\noexpand\cdp@elt}%

93 \xdef\cdp@list{\cdp@list\cdp@elt{#1}%

94 {\default@family}{\default@series}%

95 {\default@shape}}%

To support encoding dependent commands (like accents) we initialise the com-
mand \〈encoding〉-cmd to be \@changed@cmd. (See ltoutenc.dtx for details.)

96 \expandafter\let\csname#1-cmd\endcsname\@changed@cmd

97 \else

4

98 \@font@info{Redeclaring font encoding #1}%

99 \fi

100 \global\@namedef{T@#1}{#2}%

101 \global\@namedef{M@#1}{\default@M#3}%

Keep a record of the last encoding being declared:

102 \xdef\LastDeclaredEncoding{#1}%

103 }

104 \@onlypreamble\DeclareFontEncoding@

\LastDeclaredEncoding The last encoding being declared by \DeclareFontEncoding.

105 \def\LastDeclaredEncoding{}

\DeclareFontSubstitution

106 \def\DeclareFontSubstitution#1#2#3#4{%

107 \expandafter

108 \ifx\csname T@#1\endcsname\relax

109 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha

110 \else

111 \begingroup

We loop through the \cdp@list and rebuild it anew in \toks@ thereby replacing
the defaults for the encoding in question with the new defaults. It is important
to store the encoding to test against expanded in \reserved@a since it might just
be \LastDeclaredEncoding that is passed as #1.

112 \edef\reserved@a{#1}%

113 \toks@{}%

114 \def\cdp@elt##1##2##3##4{%

115 \def\reserved@b{##1}%

116 \ifx\reserved@a\reserved@b

Here we use the new defaults but we use ##1 (i.e., the encoding name already
stored previously) since we know that it is expanded.

117 \addto@hook\toks@{\cdp@elt{##1}{#2}{#3}{#4}}%

118 \else

If \reserved@a and \reserved@b differ then we simply copy from the old list to
the new.

119 \addto@hook\toks@{\cdp@elt{##1}{##2}{##3}{##4}}%

120 \fi}%

121 \cdp@list

122 \xdef\cdp@list{\the\toks@}%

123 \endgroup

124 \global

125 \@namedef{D@#1}{%

126 \def\default@family{#2}%

127 \def\default@series{#3}%

128 \def\default@shape{#4}%

129 }%

130 \fi

5

131 }

132 \@onlypreamble\DeclareFontSubstitution

\DeclareFontEncodingDefaults

133 \def\DeclareFontEncodingDefaults#1#2{%

134 \ifx\relax#1\else

135 \ifx\default@T\@empty\else

136 \@font@info{Overwriting encoding scheme text defaults}%

137 \fi

138 \gdef\default@T{#1}%

139 \fi

140 \ifx\relax#2\else

141 \ifx\default@M\@empty\else

142 \@font@info{Overwriting encoding scheme math defaults}%

143 \fi

144 \gdef\default@M{#2}%

145 \fi

146 }

147 \@onlypreamble\DeclareFontEncodingDefaults

\default@T

\default@M 148 \let\default@T\@empty

149 \let\default@M\@empty

\DeclarePreloadSizes

150 \def\DeclarePreloadSizes#1#2#3#4#5{%

151 \@ifundefined{T@#1}%

152 {\@latex@error{Encoding scheme ‘#1’ unknown}\@eha}%

153 {%

Don’t know at the moment what this group here does!

154 \begingroup

We define a macro \reserved@f2 that grabs the next size and loads the corre-
sponding font. This is done by delimiting \reserved@f’s only argument by the
token , (comma).

155 \def\reserved@f##1,{%

The end of the list will be detected when there are no more elements, i.e. when
\reserved@f’s argument is empty. The trick used here is explained in Appendix D
of the TEXbook: if the argument is empty the \if will select the first clause and
\let \reserved@f equal to \relax. (We use the > character here since it cannot
appear in font file names.)

156 \if>##1>%

157 \let\reserved@f\relax

158 \else

2We cannot use \@tempa since it is needed in \pickup@font.

6

Otherwise, we define \font@name appropriately and call \pickup@font to do the
work. Note that the requested \curr@fontshape combination must have been
defined, or you will get an error. The definition of \font@name is carried out
globally to be consistent with the rest of the code in this file.

159 \xdef\font@name{\csname#1/#2/#3/#4/##1\endcsname}%

160 \pickup@font

Now we forget the name of the font just loaded. More precisely, we set the cor-
responding control sequence to \relax. This means that later on, when the font
is first used, the macro \define@newfont is called again to execute the ‘extra’
macro for this font.

161 \global\expandafter\let\font@name\relax

162 \fi

Finally we call \reserved@f again to process the next size. If \reserved@f was
\let equal to \relax this will end the macro.

163 \reserved@f}%

We finish with reinserting the list of sizes after the \reserved@f macro and ap-
pending an empty element so that the end of the list is recognized properly.

164 \reserved@f#5,,%

165 \endgroup

166 }%

167 }

168 \@onlypreamble\DeclarePreloadSizes

\ifmath@fonts We need a switch to decide if we have to switch math fonts. For this purpose
we provide \ifmath@fonts that can be set to true or false by the \S@... macros
depending on if math fonts are provided for this size or not. The default is of
course to switch all fonts.

169 \newif\ifmath@fonts \math@fontstrue

\DeclareMathSizes

\DeclareMathSizes*

\DeclareMathSizes takes the text size, math text size, math script size, and math
scriptscript size as arguments and defines the right \S@. . . macro.

170 \def\DeclareMathSizes{%

171 \@ifstar{\@DeclareMathSizes\math@fontsfalse}%

172 {\@DeclareMathSizes{}}}

173 \@onlypreamble\DeclareMathSizes

\@DeclareMathSizes This modification by Michael J. Downes on comp.text.tex on 2002/10/17 allows
the user to have settings such as
\DeclareMathSizes{9.5dd}{9.5dd}{7.4dd}{6.6dd}.

174 〈/2ekernel〉
175 〈latexrelease〉\IncludeInRelease{2015/01/01}{\@DeclareMathSizes}%
176 〈latexrelease〉 {Arbitrary units in \DeclareMathSizes}%

177 〈∗2ekernel | latexrelease〉
178 \def\@DeclareMathSizes #1#2#3#4#5{%

179 \@defaultunits\dimen@ #2pt\relax\@nnil

180 \if $#3$%

7

181 \expandafter\let\csname S@\strip@pt\dimen@\endcsname\math@fontsfalse

182 \else

183 \@defaultunits\dimen@ii #3pt\relax\@nnil

184 \@defaultunits\@tempdima #4pt\relax\@nnil

185 \@defaultunits\@tempdimb #5pt\relax\@nnil

186 \toks@{#1}%

187 \expandafter\xdef\csname S@\strip@pt\dimen@\endcsname{%

188 \gdef\noexpand\tf@size{\strip@pt\dimen@ii}%

189 \gdef\noexpand\sf@size{\strip@pt\@tempdima}%

190 \gdef\noexpand\ssf@size{\strip@pt\@tempdimb}%

191 \the\toks@

192 }%

193 \fi

194 }%

195 〈/2ekernel | latexrelease〉
196 〈latexrelease〉\EndIncludeInRelease
197 〈latexrelease〉\IncludeInRelease{0000/00/00}{\@DeclareMathSizes}%
198 〈latexrelease〉 {Arbitrary units in \DeclareMathSizes}%

199 〈latexrelease〉\def\@DeclareMathSizes#1#2#3#4#5{%
200 〈latexrelease〉 \@defaultunits\dimen@#2pt\relax\@nnil

201 〈latexrelease〉 \if$#3$%

202 〈latexrelease〉 \expandafter \let

203 〈latexrelease〉 \csname S@\strip@pt\dimen@\endcsname

204 〈latexrelease〉 \math@fontsfalse

205 〈latexrelease〉 \else

206 〈latexrelease〉 \expandafter \gdef

207 〈latexrelease〉 \csname S@\strip@pt\dimen@\endcsname

208 〈latexrelease〉 {\gdef\tf@size{#3}\gdef\sf@size{#4}%

209 〈latexrelease〉 \gdef\ssf@size{#5}%

210 〈latexrelease〉 #1%

211 〈latexrelease〉 }%

212 〈latexrelease〉 \fi}%

213 〈latexrelease〉\EndIncludeInRelease
214 〈∗2ekernel〉

215 \@onlypreamble\@DeclareMathSizes

3 Selecting a new font

3.1 Macros for the user

\fontencoding

\f@encoding

As we said in the introduction a font is described by four parameters. We first
define macros to specify the wanted family, series, or shape. These are simply
recorded in internal macros \f@family, \f@series, and \f@shape, resp. We use
\edef’s so that the arguments can also be macros.

216 \DeclareRobustCommand\fontencoding[1]{%

217 \expandafter\ifx\csname T@#1\endcsname\relax

218 \@latex@error{Encoding scheme ‘#1’ unknown}\@eha

219 \else

8

220 \edef\f@encoding{#1}%

221 \ifx\cf@encoding\f@encoding

If the new encoding is the same as the old encoding we have nothing to do. How-
ever, in case we had a sequence of several encoding changes without a \selectfont

in-between we can save processing by making sure that \enc@update is \relax.

222 \let\enc@update\relax

223 \else

If current and new encoding differ we define the macro \enc@update to contain
all updates necessary at \selectfont time.

224 \let\enc@update\@@enc@update

225 \fi

226 \fi

227 }

\@@enc@update

228 \def\@@enc@update{%

When \@@enc@update is executed \f@encoding holds the encoding name for the
new encoding and \cf@encoding the name of the last active encoding.

We start by setting the init command for encoding dependent macros to
\@changed@cmd.

229 \expandafter

230 \let

231 \csname\cf@encoding -cmd\endcsname

232 \@changed@cmd

Then we turn the one for the new encoding to \@current@cmd (see ltoutenc.dtx

for further explanations).

233 \expandafter

234 \let

235 \csname\f@encoding-cmd\endcsname

236 \@current@cmd

We execute the default settings \default@T, followed by the one for the new
encoding.

237 \default@T

238 \csname T@\f@encoding\endcsname

Finally we change the default substitution values, disable \enc@update and make
\f@encoding officially the current encoding.

239 \csname D@\f@encoding\endcsname

240 \let\enc@update\relax

241 \let\cf@encoding\f@encoding

242 }

\enc@update The default action in \selectfont is to do nothing.

243 \let\enc@update\relax

9

\fontfamily

\f@family

\fontseries

\f@series

\fontshape

\f@shape

244 \DeclareRobustCommand\fontfamily[1]{\edef\f@family{#1}}

245 \DeclareRobustCommand\fontseries[1]{\edef\f@series{#1}}

246 \DeclareRobustCommand\fontshape [1]{\edef\f@shape{#1}}

Some handy abbreviation if you want to get some particular font in the current
size. If also the size should change one has to issue a \fontsize command first.

247 \def\usefont#1#2#3#4{\fontencoding{#1}\fontfamily{#2}%

248 \fontseries{#3}\fontshape{#4}\selectfont

249 \ignorespaces}

\linespread The command \linespread changes the current \baselinestretch by calling
\set@fontsize. The values for \f@size and \f@baselineskip will be left un-
changed.

250 \DeclareRobustCommand\linespread[1]

251 {\set@fontsize{#1}\f@size\f@baselineskip}

\fontsize We also define a macro that allows to specify a size. In this case, however, we also
need the value of \baselineskip. As the first argument to \set@fontsize we
pass the current value of \baselinestretch. This will either match the internal
value (in which case nothing changes, or it will be an updated value due to a
user change of that macro using \renewcommand. If we would pass the internal
\f@linespread such a change would be effectively overwritten by a size change.

252 \DeclareRobustCommand\fontsize[2]

253 {\set@fontsize\baselinestretch{#1}{#2}}

\f@linespread This macro holds the current internal value for \baselinestretch.

254 \let\f@family\@empty

255 \let\f@series\@empty

256 \let\f@shape\@empty

257 \let\f@size\@empty

258 \let\f@baselineskip\@empty

259 \let\f@linespread\@empty

\cf@encoding

260 \let\f@encoding\@empty

261 \let\cf@encoding\@empty

\@defaultunits The function \@defaultunits when wrapped around a dimen or skip assignment
supplies default units. Usage:

\@defaultunits\dimen@=#1pt\relax\@nnil

Note: the \relax is *important*. Other units can be substituted for the ‘pt’
if desired.

We use \remove@to@nnil as an auxiliary macros for \@defaultunits. It just
has to gobble the supplied default unit ‘pt’ or whatever, if it wasn’t used in the
assignment.

262 \def\@defaultunits{\afterassignment\remove@to@nnil}

10

\strip@pt

\rem@pt

This macro strips the characters pt produced by using \the on a dimen register.

263 \begingroup

264 \catcode‘P=12

265 \catcode‘T=12

266 \lowercase{

267 \def\x{\def\rem@pt##1.##2PT{##1\ifnum##2>\z@.##2\fi}}}

268 \expandafter\endgroup\x

269 \def\strip@pt{\expandafter\rem@pt\the}

\mathversion

\math@version

\mathversion takes the math version name as argument, defines \math@version
appropriately and switches to the font selected forcing a call to \glb@settings if
the version is known to the system.

270 \DeclareRobustCommand\mathversion[1]

271 {\@nomath\mathversion

272 \expandafter\ifx\csname mv@#1\endcsname\relax

273 \@latex@error{Math version ‘#1’ is not defined}\@eha\else

274 \edef\math@version{#1}%

We need to force a math font setup both now and at the point where we return
to the previous math version. Forcing a math font setup can simply be done by
setting \glb@currsize to an invalid value since this will trigger the setup when
the formula starts.

275 \gdef\glb@currsize{}%

When the scope of the current \mathversion ends we need to restore the old
setup. However this time we need to force it directly at least if we are inside
math, otherwise we could wait. Another way to enhance this code here is todo the
setting only if the version really has changed after all. This might be interesting
in case of amstext and boldsymbol.

276 \aftergroup\glb@settings

277 \fi}

If TEX would support a hook just before the end of a formula (opposite of
\everymath so to speak) the implementation of the algorithm would be much
simpler because in that case we would set up the correct math fonts at this point
without having to worry about incorrect settings due to nesting. The same would
be true if in LATEX the use of $ (as the primitive TEX command) would be impos-
sible and instead only a higher-level interface would be available. Note that this
does not mean that a $ couldn’t be the short-hand for starting and stopping that
higher-level interface, it only means that the direct TEX function must be hidden.

Anyway, since we don’t have this and won’t have it in LATEX 2ε we need to
implement it in a somewhat slower way.

We test for the current math font setup on entry of a formula, i.e., on the hooks
\everymath and \everydisplay. But since these hooks may contain user data
we provide ourselves with an internal version of these hooks which stays frozen.

\frozen@everymath

\frozen@everydisplay

New internal names for \everymath and \everydisplay.

278 \let\frozen@everymath\everymath

279 \let\frozen@everydisplay\everydisplay

11

\everymath

\everydisplay

Now we provide now user hooks that will be called in the frozen internals.

280 \newtoks\everymath

281 \newtoks\everydisplay

\frozen@everymath Now we define the behaviour of the frozen hooks: first check the math setup then
call the user hook.

282 \frozen@everymath = {\check@mathfonts

283 \the\everymath}

\frozen@everydisplay Ditto for the display hook.

284 \frozen@everydisplay = {\check@mathfonts

285 \the\everydisplay}

\curr@math@size This holds locally the current math size.

286 \let\curr@math@size\@empty

3.2 Macros for loading fonts

\pickup@font The macro \pickup@font which is used in \selectfont is very simple: if the font
name is undefined (i.e. not known yet) it calls \define@newfont to load it.

287 \def\pickup@font{%

288 \expandafter \ifx \font@name \relax

289 \define@newfont

290 \fi}

\split@name \pickup@font assumes that \font@name is set but it is sometimes called when
\f@family, \f@series, \f@shape, or \f@size may have the wrong settings (see,
e.g., the definition of \getanddefine@fonts). Therefore we need a macro to ex-
tract font family, series, shape, and size from the font name. To this end we
define \split@name which takes the font name as a list of characters of \catcode
12 (without the backslash at the beginning) delimited by the special control se-
quence \@nil. This is not very complicated: we first ensure that / has the right
\catcode

291 {\catcode‘\/=12

and define \split@name so that it will define our private \f@encoding, \f@family,
\f@series, \f@shape, and \f@size macros.

292 \gdef\split@name#1/#2/#3/#4/#5\@nil{\def\f@encoding{#1}%

293 \def\f@family{#2}%

294 \def\f@series{#3}%

295 \def\f@shape{#4}%

296 \def\f@size{#5}}}

\curr@fontshape Abbreviation which may get removed again for speed.

297 \def\curr@fontshape{\f@encoding/\f@family/\f@series/\f@shape}

\define@newfont Now we can tackle the problem of defining a new font.

298 \def\define@newfont{%

12

We have already mentioned that the token list that \split@name will get as ar-
gument must not start with a backslash. To reach this goal we will set the
\escapechar to −1 so that the \string primitive will not generate an escape
character. To keep this change local we open a group. We use \begingroup

for this purpose since \define@newfont might be called in math mode, and an
empty \bgroup. . . \egroup would add an empty Ord atom to the math list and
thus affect the spacing.

Also locally redefine \typeout so that ‘No file ...fd’ Warnings become Font
Info message just sent to the log file.

299 \begingroup

300 \let\typeout\@font@info

301 \escapechar\m@ne

Then we extract encoding scheme, family, series, shape, and size from the font
name. Note the four \expandafter’s so that \font@name is expanded first, then
\string, and finally \split@name.

302 \expandafter\expandafter\expandafter

303 \split@name\expandafter\string\font@name\@nil

If the \curr@fontshape combination is not available, (i.e. undefined) we call the
macro \wrong@fontshape to take care of this case. Otherwise \extract@font

will load the external font for us.

304 % \expandafter\ifx

305 % \csname\curr@fontshape\endcsname \relax

306 \try@load@fontshape % try always

307 % \fi

308 \expandafter\ifx

309 \csname\curr@fontshape\endcsname \relax

310 \wrong@fontshape\else

To allow substitution we call the curr@fontshape macro which usually will expand
to \relax but may hold code for substitution (see \subst@fontshape definition).

311 % \csname\curr@fontshape\endcsname

312 \extract@font\fi

We are nearly finished and must only restore the \escapechar by closing the
group.

313 \endgroup}

314 \def\try@load@fontshape{%

315 \expandafter

316 \ifx\csname \f@encoding+\f@family\endcsname\relax

317 \@font@info{Try loading font information for

318 \f@encoding+\f@family}%

We predefine this combination to be \@empty which means that next time we
don’t try again unnecessary in case we don’t find a .fd file. If the file contains a
\DeclareFontFamily command than this setting will be overwritten.

319 \global\expandafter\let

320 \csname\f@encoding+\f@family\endcsname\@empty

13

Set the catcodes used in the syntax, but do it only once (this will be restored at
the end of the font loading group).

321 \nfss@catcodes

322 \let\nfss@catcodes\relax

For increased portability make the external filename monocase, but look for
the (old style) mixed case filename if the first attempt fails.

On any monocase system this means that the file is looked for twice which
takes up time and string space, but at least for this release Check for both names
to give people time to re-install their private fd files with lowercase names.

323 \edef\reserved@a{%

324 \lowercase{%

325 \noexpand\InputIfFileExists{\f@encoding\f@family.fd}}}%

326 \reserved@a\relax

327 {\@input@{\f@encoding\f@family.fd}}%

328 \fi}

\nfss@catcodes This macro should contain the standard \catcode assignments to all characters
which are used in the commands found in an .fd file and which might have special
\catcodes in the middle of a document. If necessary, this list can be extended in
a package file using a suitable number of \expandafter, i.e.,

\expandafter\def\expandafter\nfss@catcodes

\expandafter{\nfss@catcodes <additional settings>}

Note, that this macro might get executed several times since it is also called by
\DeclareFontShape, thus it probably should not be misused as a general purpose
hook.

329 \def\nfss@catcodes{%

We start by making @ a letter and ignoring all blanks and newlines.

330 \makeatletter

331 \catcode‘\ 9%

332 \catcode‘\^^I9%

333 \catcode‘\^^M9%

Then we set up \, {, }, # and % in case an .fd file is loaded during a verbatim
environment.

334 \catcode‘\\\z@

335 \catcode‘\{\@ne

336 \catcode‘\}\tw@

337 \catcode‘\#6%

338 \catcode‘\^7%

339 \catcode‘\%14%

The we make sure that the important syntax parts have the right \catcode.

340 \@makeother\<%

341 \@makeother\>%

342 \@makeother*%

343 \@makeother\.%

344 \@makeother\-%

14

345 \@makeother\/%

346 \@makeother\[%

347 \@makeother\]%

348 \@makeother\‘%

349 \@makeother\’%

350 \@makeother\"%

351 }

\DeclareErrorFont Declare the last resort shape! We assume that in this fontshape there is a 10pt
font but it doesn’t really matter. We only loose one macro name if the assumption
is false. But at least the font should be there!

352 \def\DeclareErrorFont#1#2#3#4#5{%

353 \xdef\error@fontshape{%

354 \noexpand\expandafter\noexpand\split@name\noexpand\string

355 \expandafter\noexpand\csname#1/#2/#3/#4/#5\endcsname

356 \noexpand\@nil}%

Initialize all those internal variables which may or may not have values in the
first seconds of NFSS’ bootstraping process. Later on such values will be updated
when an encoding is selected, etc.

We definitely don’t want to set \f@encoding; we can set all the others since
if they are left “blank” any selection would grap “error default values” as well.
However, this probably should go also.

357 % \gdef\f@encoding{#1}%

358 \gdef\default@family{#2}%

359 \gdef\default@series{#3}%

360 \gdef\default@shape{#4}%

361 \global\let\f@family\default@family

362 \global\let\f@series\default@series

363 \global\let\f@shape\default@shape

364 \gdef\f@size{#5}%

365 \gdef\f@baselineskip{#5pt}%

366 }

367 \@onlypreamble\DeclareErrorFont

\wrong@fontshape Before we come to the macro \extract@font we have to take care of unknown
\curr@fontshape combinations. The general strategy is to issue a warning and
to try a default shape, then a default series, and finally a default family. If this
last one also fails TEX will go into an infinite loop. But if the defaults are set
incorrectly one deserves nothing else!

368 〈/2ekernel〉
369 〈latexrelease〉\IncludeInRelease{2015/01/01}{\wrong@fontshape}%
370 〈latexrelease〉 {Font substituation in preamble}%

371 〈∗2ekernel | latexrelease〉
372 \def\wrong@fontshape{%

373 \csname D@\f@encoding\endcsname % install defaults if in math

We remember the wanted \curr@fontshape combination which we will need in a
moment.

15

374 \edef\reserved@a{\csname\curr@fontshape\endcsname}%

375 \ifx\last@fontshape\reserved@a

376 \errmessage{Corrupted NFSS tables}%

377 \error@fontshape

378 \else

Then we warn the user about the mess and set the shape to its default.

379 \let\f@shape\default@shape

If the combination is not known, try the default series.

380 \expandafter\ifx\csname\curr@fontshape\endcsname\relax

381 \let\f@series\default@series

If this is still undefined, try the default family. Otherwise give up. We never try
to change the encoding scheme!

382 \expandafter

383 \ifx\csname\curr@fontshape\endcsname\relax

384 \let\f@family\default@family

If we change the font family and we are in the preamble then the corresponding
.fd file may not been loaded yet. Therefore we try this now. Otherwise equating
the requested font shape with the finally selected fontshape below will fail and can
result in “NFSS tables corruped”. After begin document that will not happen as
all .fd files involved in substituation are loaded at \begin{document}.

385 \begingroup

386 \try@load@fontshape

387 \endgroup

388 \fi \fi

389 \fi

At this point a valid \curr@fontshape combination must have been found. We
inform the user about this fact.

The \expandafter\string here stops TEX adding the space that it usu-
ally puts after command names in messages. The similar construction with
\@undefined just produces ‘undefined’, but saves a few tokens.

\@wrong@font@char is locally redefined in \UseTextSymbol from its normal
(empty) definition, to report the symbol generating the font switch.

390 \@font@warning{Font shape ‘\expandafter\string\reserved@a’

391 \expandafter\@gobble\string\@undefined\MessageBreak

392 using ‘\curr@fontshape’ instead\@wrong@font@char}%

393 \global\let\last@fontshape\reserved@a

We change \@defaultsubs to produce a warning at the end of the document. The
macro \@defaultsubs is initially \relax but gets changed here if some default
font substitution happens. It is then executed in \enddocument.

394 \gdef\@defaultsubs{%

395 \@font@warning{Some font shapes were not available, defaults

396 substituted.\@gobbletwo}}%

If we substitute a \curr@fontshape combination by the default one we don’t
want the warning to be printed out whenever this (unknown) combination is used.

16

Therefore we globally \let the macro corresponding to the wanted combination
equal to its substitution. This requires the use of four \expandafter’s since
\csname. . . \endcsname has to be expanded before \reserved@a (i.e. the requested
combination), and this must happen before the \let is executed.

397 \global\expandafter\expandafter\expandafter\let

398 \expandafter\reserved@a

399 \csname\curr@fontshape\endcsname

Now we can redefine \font@name accordingly. This must be done globally since
it might occur in the group opened by \define@newfont. If we would this def-
inition were local the closing \endgroup there would restore the old meaning of
\font@name and then switch to the wrong font at the end of \selectfont although
the correct font was loaded.

400 \xdef\font@name{%

401 \csname\curr@fontshape/\f@size\endcsname}%

The last thing this macro does is to call \pickup@font again to load the font if
it is not defined yet. At this point this code will loop endlessly if the defaults are
not well defined.

402 \pickup@font}

403 〈/2ekernel | latexrelease〉
404 〈latexrelease〉\EndIncludeInRelease
405 〈latexrelease〉\IncludeInRelease{0000/00/00}{\wrong@fontshape}%
406 〈latexrelease〉 {Font substituation in preamble}%

407 〈latexrelease〉\def\wrong@fontshape{%
408 〈latexrelease〉 \csname D@\f@encoding\endcsname

409 〈latexrelease〉 \edef\reserved@a{\csname\curr@fontshape\endcsname}%

410 〈latexrelease〉 \ifx\last@fontshape\reserved@a

411 〈latexrelease〉 \errmessage{Corrupted NFSS tables}%

412 〈latexrelease〉 \error@fontshape

413 〈latexrelease〉 \else

414 〈latexrelease〉 \let\f@shape\default@shape

415 〈latexrelease〉 \expandafter\ifx\csname\curr@fontshape\endcsname\relax

416 〈latexrelease〉 \let\f@series\default@series

417 〈latexrelease〉 \expandafter

418 〈latexrelease〉 \ifx\csname\curr@fontshape\endcsname\relax

419 〈latexrelease〉 \let\f@family\default@family

420 〈latexrelease〉 \fi \fi

421 〈latexrelease〉 \fi

422 〈latexrelease〉 \@font@warning{Font shape

423 〈latexrelease〉 ‘\expandafter\string\reserved@a’

424 〈latexrelease〉 \expandafter\@gobble\string\@undefined

425 〈latexrelease〉 \MessageBreak

426 〈latexrelease〉 using ‘\curr@fontshape’ instead\@wrong@font@char}%

427 〈latexrelease〉 \global\let\last@fontshape\reserved@a

428 〈latexrelease〉 \gdef\@defaultsubs{%

429 〈latexrelease〉 \@font@warning{Some font shapes were not available,

430 〈latexrelease〉 defaults substituted.\@gobbletwo}}%

431 〈latexrelease〉 \global\expandafter\expandafter\expandafter\let

432 〈latexrelease〉 \expandafter\reserved@a

17

433 〈latexrelease〉 \csname\curr@fontshape\endcsname

434 〈latexrelease〉 \xdef\font@name{%

435 〈latexrelease〉 \csname\curr@fontshape/\f@size\endcsname}%

436 〈latexrelease〉 \pickup@font}

437 〈latexrelease〉\EndIncludeInRelease
438 〈∗2ekernel〉

\@wrong@font@char Normally empty but redefined in \UseTextSymbol so that the Font shape unde-
fined message can refer to the symbol causing the problem.

439 \let\@wrong@font@char\@empty

\@@defaultsubs

\@defaultsubs

See above.

440 \let\@defaultsubs\relax

\strip@prefix In \extract@font we will need a way to recover the replacement text of a macro.
This is done by the primitive \meaning together with the macro \strip@prefix

(for the details see appendix D of the TEXbook, p. 382).

441 \def\strip@prefix#1>{}

4 Assigning math fonts to versions

\install@mathalphabet This is just another name for \gdef but we can redefine it if necessary later on.

442 \let\install@mathalphabet\gdef

\math@fonts

443 \let\math@fonts\@empty

\select@group \select@group has four arguments: the new 〈math alphabet identifier〉 (a control
sequence), the 〈math group number〉, the extra macro for math mode and the
\curr@fontshape definition macro name. We first check if we are in math mode.

444 %\def\select@group#1#2#3{\relax\ifmmode

We do these things locally using \begingroup instead of \bgroup to avoid the
appearance of an empty Ord atom on the math list.

445 % \begingroup

We set the math fonts for the family in question by calling \getanddefine@fonts

in the correct environment.

446 % \escapechar\m@ne

447 % \getanddefine@fonts{\csname c@mv@\math@version\endcsname}#3%

We globally select the math fonts. . .

448 % \globaldefs\@ne \math@fonts

. . . and close the group to restore \globaldefs and \escapechar.

449 % \endgroup

18

As long as no size or version change occurs the 〈math alphabet identifier〉 should
simply switch to the installed math group instead of calling \select@group un-
necessarily. So we globally redefine the first argument (the new 〈math alphabet
identifier〉) to expand into a \mathgroup switch and then select this alphabet.
Note that this redefinition will be overwritten by the next call to a version macro.
The original code for the end of \select@group was

\gdef#1{#3\mathgroup #2}#1\fi}

i.e. first redefining the 〈math alphabet identifier〉 and then calling the new defi-
nition to switch to the wanted 〈math group〉. Now we define the 〈math alphabet
identifier〉 as a call to the \use@mathgroup command.

450 % \xdef#1{\noexpand\use@mathgroup\noexpand#2%

451 % {\number\csname c@mv@\math@version\endcsname}}%

But this is not sufficient, as we learned the hard way. The problem here is that
the loading of the fonts that comprise the alphabet identifier #1, as well as the
necessary math font assignments is deferred until it is used. This is OK so far,
but if the fonts are switched within the current formula (which may happen if a
sub-formula is a box that contains a math version switch) the font assignments
for #1 are not restored unless #1 is used again. This is disastrous since TeX sees
the wrong fonts at the end of the math formula, when it converts the math list
into a horizontal list.

This is taken into account as follows: When a math alphabet identifier is
used for the first time in a certain version it modifies the corresponding macro
\mv@〈version〉 so that it calls \getanddefine@fonts directly in future as well.
We use the macro \extract@alph@from@version to do this. It takes the math
alphabet identifer #1 and the math version macro as arguments.

452 % \expandafter\extract@alph@from@version

453 % \csname mv@\math@version\expandafter\endcsname

454 % \expandafter{\number\csname c@mv@\math@version\endcsname}%

455 % #1%

456 % \stepcounter{mv@\math@version}%

Finally, it is not possible to simply call the new definition since we have an ar-
gument (the third argument of \use@mathgroup or more exactly the argument
od \math@egroup if the margid option is in force) which would swallow our clos-
ing \fi. So we use the \expandafter technique to remove the \fi before the
\use@mathgroup is expanded.

457 %\expandafter #1\fi}

\extract@alph@from@version We proceed to the definition of the macro \extract@alph@from@version. As
stated above, it takes a math alphabet identifier and a math version macro (e.g.
\mv@normal) as its arguments.

458 \def\extract@alph@from@version#1#2#3{%

To extract and replace the definition of math alphabet identifier #3 in macro #1

we have to recall how this definition looks like: Somewhere in the replacement
text of #1 there is the sequence

19

\install@mathalphabet〈math alphabet identifier〉 #3{%
〈Definitions for 〉#3}

Hence, the first thing we do is to extract the tokens preceding this definitions, the
definition itself, and the tokens following it. To this end we define one auxiliary
macro \reserved@a.

459 \def\reserved@a##1\install@mathalphabet#3##2##3\@nil{%

When \reserved@a is expanded, it will have the tokens preceding the definition
in question in its first argument (##1), the following tokens in its third argument
(##3), and the replacement text for the math alphabet identifier #3 in its sec-
ond argument. (##2). This is then recorded for later use in a temporary macro
\reserved@b.

460 \def\reserved@b{##2}%

Additionally, we define a macro \reserved@c to reconstruct the definitions for the
math version in question from the tokens that will remain unchanged (##1 and
##3) and the yet to build new definitions for the math alphabet identifier #3.

461 \def\reserved@c####1{\gdef#1{##1####1##3}}}%

Then we execute our auxiliary macro.

462 \expandafter\reserved@a#1\@nil

OK, so now we have to build the new definition for #3. To do so, we first extract
the interesting parts out of the old one. The old definition looks like:

\select@group〈math alphabet identifier〉
〈math group number〉〈math extra part〉

〈curr@fontshape definition〉
So we define a new temporary macro \reserved@a that extracts these parts.

463 \def\reserved@a\select@group#3##1##2\@nil{%

This macro can now directly rebuild the math version definition by calling
\reserved@c:

464 \reserved@c{%

465 \getanddefine@fonts{#2}##2%

466 \install@mathalphabet#3{%

467 \relax\ifmmode \else \non@alpherr#3\fi

468 \use@mathgroup##1{#2}}}%

In addtion it defines the alphabet the way it should be used from now on.

469 \gdef#3{\relax\ifmmode \else \non@alpherr#3\fi

470 \use@mathgroup##1{#2}}}%

Finally, we only have to call this macro \reserved@a on the old definitions
recorded in \reserved@b:

471 \expandafter\reserved@a\reserved@b\@nil

472 }

\math@bgroup

\math@egroup

Here are the default definitions for \math@bgroup and \math@egroup. We use
\bgroup instead of \begingroup to avoid ‘leaking out’ of style changes. This has
the side effect of always producing mathord atoms.

20

473 \let\math@bgroup\bgroup

474 \def\math@egroup#1{#1\egroup}

\calculate@math@sizes Here is the default definition for \calculate@math@sizes a more elaborate inter-
face is under testing in mthscale.sty.

475 \gdef\calculate@math@sizes{%

476 \@font@info{Calculating\space math\space sizes\space for\space

477 size\space <\f@size>}%

478 \dimen@\f@size \p@

479 \@tempdimb \defaultscriptratio \dimen@

480 \dimen@ \defaultscriptscriptratio \dimen@

481 \expandafter\xdef\csname S@\f@size\endcsname{%

482 \gdef\noexpand\tf@size{\f@size}%

483 \gdef\noexpand\sf@size{\strip@pt\@tempdimb}%

484 \gdef\noexpand\ssf@size{\strip@pt\dimen@}%

485 \noexpand\math@fontstrue}}

\defaultscriptratio

\defaultscriptscriptratio

The default ratio for math sizes is:
1 to \defaultscriptratio to \defaultscriptscriptratio.
By default this is 1 to .7 to .5.

486 \def\defaultscriptratio{.7}

487 \def\defaultscriptscriptratio{.5}

\noaccents@ If we don’t have a definition for \noaccents@ we provide a dummy.

488 \ifx\noaccents@\@undefined

489 \let\noaccents@\@empty

490 \fi

\showhyphens The \showhyphens command must be redefined since the version in plain.tex

uses \tenrm. We have also made some further adjustments for its use in LATEX.

491 〈/2ekernel〉
492 〈latexrelease〉\IncludeInRelease{2017/01/01}{\showhyphens}%
493 〈latexrelease〉 {XeTeX support for \showhyphens}%

494 〈∗2ekernel | latexrelease〉
495 \ifx\XeTeXcharclass\@undefined

Version for engines other than XeTEX.

496 \gdef\showhyphens#1{%

497 \setbox0\vbox{%

498 \color@begingroup

499 \everypar{}%

500 \parfillskip\z@skip\hsize\maxdimen

501 \normalfont

502 \pretolerance\m@ne\tolerance\m@ne\hbadness\z@\showboxdepth\z@\ #1%

503 \color@endgroup}}

504 \else

XeTEX version. When using system fonts XeTEX reports consecutive runs of char-
acters as a single item in box logging, which means the standard \showhyphens

21

does not work. This version typesets the text into a narrow box to force hyphen-
ation and then reconstructs a horizontal list with explicit hyphens to generate the
display. Note that the lmr OpenType font is forced, this works even if the charac-
ters are not in the font as hyphenation is attempted due to the width of the space
and hyphen character. It may generate spurious Missing Character warnings in
the log, these are however suppressed from the terminal output by ensuring that
\tracingonline is locally zero.

505 \long\def\showhyphens#1{%

506 \setbox0\vbox{%

507 \usefont{TU}{lmr}{m}{n}%

508 \hsize 1sp %

509 \hbadness\@M

510 \hfuzz\maxdimen

511 \tracingonline\z@

512 \everypar={}%

513 \leftskip\z@skip

514 \rightskip\z@skip

515 \parfillskip\z@skip

516 \hyphenpenalty=-\@M

517 \pretolerance\m@ne

518 \interlinepenalty\z@

519 \clubpenalty\z@

520 \widowpenalty\z@

521 \brokenpenalty1127 %

522 \setbox\z@\hbox{}%

523 \noindent

524 \hskip\z@skip

525 #1%

526 \par

Note here we stop the loop if made no progress, non-removable items may
mean that we can not process the whole list (which would be testable as
\lastnodetype=-1).

527 \loop

528 \@tempswafalse

529 \ifnum\lastnodetype=11\unskip\@tempswatrue\fi

530 \ifnum\lastnodetype=12\unkern\@tempswatrue\fi

531 \ifnum\lastnodetype=13 %

532 \count@\lastpenalty

533 \unpenalty\@tempswatrue

534 \fi

535 \ifnum\lastnodetype=\@ne

536 \setbox\tw@\lastbox\@tempswatrue

537 \setbox0\hbox{\unhbox\tw@\unskip\unskip\unpenalty

538 \ifnum\count@=1127 \else\ \fi

539 \unhbox0}%

540 \count@\z@

541 \fi

542 \if@tempswa

22

543 \repeat

544 \hbadness\z@

545 \hsize\maxdimen

546 \showboxdepth\z@

547 \tolerance\m@ne

548 \hyphenpenalty\z@

549 \noindent\unhbox\z@

550 }}

551 \fi

552 〈/2ekernel | latexrelease〉
553 〈latexrelease〉\EndIncludeInRelease
554 〈latexrelease〉\IncludeInRelease{0000/00/00}{\showhyphens}%
555 〈latexrelease〉 {XeTeX support for \showhyphens}%

556 〈latexrelease〉\gdef\showhyphens#1{%
557 〈latexrelease〉 \setbox0\vbox{%

558 〈latexrelease〉 \color@begingroup

559 〈latexrelease〉 \everypar{}%

560 〈latexrelease〉 \parfillskip\z@skip\hsize\maxdimen

561 〈latexrelease〉 \normalfont

562 〈latexrelease〉 \pretolerance\m@ne\tolerance\m@ne

563 〈latexrelease〉 \hbadness\z@\showboxdepth\z@\ #1%

564 〈latexrelease〉 \color@endgroup}}

565 〈latexrelease〉\EndIncludeInRelease
566 〈∗2ekernel〉

\addto@hook We need a macro to add tokens to a hook.

567 \long\def\addto@hook#1#2{#1\expandafter{\the#1#2}}

\@vpt

568 \def\@vpt{5}

\@vipt

569 \def\@vipt{6}

\@viipt

570 \def\@viipt{7}

\@viiipt

571 \def\@viiipt{8}

\@ixpt

572 \def\@ixpt{9}

\@xpt

573 \def\@xpt{10}

\@xipt

574 \def\@xipt{10.95}

23

\@xiipt

575 \def\@xiipt{12}

\@xivpt

576 \def\@xivpt{14.4}

\@xviipt

577 \def\@xviipt{17.28}

\@xxpt

578 \def\@xxpt{20.74}

\@xxvpt

579 \def\@xxvpt{24.88}

580 〈/2ekernel〉

24

