\newcounter
\setcounter
\addtocounter
\stepcounter
\refstepcounter
\value

\arabic

\roman

\Roman

\alph

\Alph
\fnsymbol
\counterwithin

\counterwithout

ltcounts.dtx

Johannes Braams David Carlisle Alan Jeffrey
Leslie Lamport Frank Mittelbach Chris Rowley
Rainer Schopf

2018/03/08

This file is maintained by the IKTEX Project team.
Bug reports can be opened (category latex) at
https://latex-project.org/bugs.html.

1 Counters and Lengths

Commands for defining and using counters. This file defines:

To define a new counter.

To set the value of counters.

Increase the counter #1 by the number #2.

Increase a counter by one.

Increase a counter by one, also setting the value used by \label.

For accessing the value of the counter as a TEX number (as opposed to
\the(counter) which expands to the printed representation of (counter))

\arabic{(counter)}: 1,2, 3, ...

\roman{(counter)}: i, ii, iii, ...

\Roman{(counter)}: I, II, III, ...

\alph{{counter)}: a, b, c, ...

\Alph{(counter)}: A, B, C, ...

\fnsymbol{{counter)}: *, 1, i, ...

\counterwithin{(counter)}{{within-counter)}: Resets (counter) whenever
(within-counter) is stepped. Also redefines \the(counter) command to produce
\the(within-counter) .\arabic{(counter)}. Star form omits redefining the print
representation.

\counterwithout{(counter)}{{within-counter)}: Removes (counter) from the
reset list of (within-counter). Also redefines \the{counter) command to produce
\arabic{(counter)}. Star form omits redefining the print representation.

1 (x2ekernel)

\setcounter

\addtocounter

1.1 Environment Counter Macros

An environment foo has an associated counter defined by the following control
sequences:
\c@foo Contains the counter’s numerical value. It is defined by
\newcount\foocounter.
\thefoo Macro that expands to the printed value of \foocounter.
For example, if sections are numbered within chapters, and
section headings look like
Section II-3. The Nature of Counters
then \thesection might be defined by:
\def\thesection
{\@Roman{\c@chapter}-\Qarabic{\c@sectionl}}
\p@foo Macro that expands to a printed ‘reference prefix’ of counter
foo. Any \ref to a value created by counter foo will produce
the expansion of \p@foo\thefoo when the \label command
is executed. See file 1txref .dtx for an extension of this mech-
anism.
\cl@foo List of counters to be reset when foo stepped. Has format
\@elt{countera}\@elt{counterb}\@elt{counterc}.
NOTE:
\thefoo and \p@foo must be defined in such a way that \edef\bar{\thefoo} or
\edef\bar{\p@foo} defines \bar so that it will evaluate to the counter value at
the time of the \edef, even after \foocounter and any other counters have been
changed. This will happen if you use the standard commands \@arabic, \@Roman,
ete.
The following commands are used to define and modify counters.
\refstepcounter{(foo)}
Same as \stepcounter, but it also defines \@currentreference so that a subse-
quent \label{(bar)} command causes \ref{(bar)} to generate the current value
of counter (foo).
\@definecounter{(foo)}
Initializes counter {(foo)} (with empty reset list), defines \p@foo and \thefoo to
be null. Also adds (foo) to \cl@@ckpt — the reset list of a dummy counter @ckpt
used for taking checkpoints for the \include system.
\@addtoreset{(foo)}{(bar)} : Adds counter (foo) to the list of counters
\cl@bar to be reset when counter {bar) is stepped.
\@removefromreset{(foo)}{(bar)} : Removes counter (foo) to the list of coun-
ters \cl@bar to be reset when counter (bar) is stepped.

\setcounter{(foo)}{(val)} : Globally sets \foocounter equal to (val).
2 \def\setcounter#1#2{%

3 \@ifundefined{c@#1}%

4 {\@nocounterr{#1}1}/

5 {\global\csname c@#1\endcsname#2\relax}}

\addtocounter{(foo)}{(val)} Globally increments \foocounter by (val).

\newcounter

\value

\@newctr

\stepcounter

\@stpelt

\cl@@ckpt

6 \def\addtocounter#1#2{/,

7 \@ifundefined{c@#1}/,

8 {\@nocounterr{#1}}Y

9 {\global\advance\csname c@#1\endcsname #2\relaxl}}

\newcounter{(newctr)} [{oldctr)] Defines (newctr) to be a counter, which is
reset when counter (oldctr) is stepped. If (newctr) already defined produces
‘c@newctr already defined’ error.

10 \def\newcounter#1{/,

11 \expandafter\@ifdefinable \csname c@#1\endcsname

12 {\@definecounter{#1}1}/

13 \@ifnextchar[{\@newctr{#1}}{}}

\value{(ctr)} produces the value of counter (ctr), for use with a \setcounter or
\addtocounter command.

14 \def\value#1{\csname c@#1\endcsname}

15 \def\@newctr#1 [#2]{%
16 \@ifundefined{c@#2}{\@nocounterr{#2}}{\@addtoreset{#1}{#2}}}

\stepcounterfoo Globally increments counter \c@F00 and resets all subsidiary
counters.

17 \def\stepcounter#1{/,

18 \addtocounter{#1}\@ne

19 \begingroup

20 \let\@elt\@stpelt

21 \csname cl@#1\endcsname
22 \endgroup}

Rather than resetting the “within” counter to zero we set it to —1 and then run
\stepcounter that moves it to 0 and also initiates resetting the next level down.

23 (/2ekernel)

24 (latexrelease)\IncludeInRelease{2015/01/01}{\@stpelt}

25 (latexrelease) {Reset nested counters}’

26 (x2ekernel | latexrelease)

27 \def\@stpelt#1{\global\csname c@#1\endcsname \m@ne\stepcounter{#1}1}}
28 (latexrelease) \EndIncludeInRelease

29 (/2ekernel | latexrelease)

30 (latexrelease)\IncludeInRelease{0000/00/00}{\@stpelt}

31 (latexrelease) {Reset nested countersl}%
32 (latexrelease)\def\@stpelt#1{\global\csname c@#1\endcsname \z@}},

33 (latexrelease)\EndIncludeInRelease

34 (x2ekernel)

35 \def\cle@ckpt{\@elt{page}}

\@definecounter

\@addtoreset

\@removefromreset

\@ifbothcounters

\counterwithout

36 \def\@definecounter#1{\expandafter\newcount\csname c@#1\endcsname
37 \setcounter{#1}\z@

38 \global\expandafter\let\csname cl@#1\endcsname\@empty
39 \Q@addtoreset{#1}{@ckptl}/,

40 \global\expandafter\let\csname p@#1\endcsname\@empty
41 \expandafter

42 \gdef\csname the#1l\expandafter\endcsname\expandafter
43 {\expandafter\@arabic\csname c@#1\endcsnamel}}

44 \def\Qaddtoreset#1#2{\expandafter\@cons\csname cl@#2\endcsname {{#1}}}

45 (/2ekernel)

46 (latexrelease)\IncludeInRelease{2018-04-01}
47 (latexrelease) {\@removefromreset}{Add interfaces}/,
48 (x2ekernel | latexrelease)

49 \def\@removefromreset#1#2{/

Even through this is internal and the programmer should know what he/she is
doing we test here if counter #2 is defined. If not, the execution would run into a
tight loop.

50 \@ifundefined{c@#2}\relax

51 {\begingroup

52 \expandafter\let\csname c@#1\endcsname\@removefromreset

53 \def\@elt##1{%

54 \expandafter\ifx\csname c@##1\endcsname\@removefromreset
55 \else

56 \noexpand\Q@elt{##11}/,

57 \fi}%

58 \expandafter\xdef\csname cl@#2\endcsname

59 {\csname cl@#2\endcsnamel}y,

60 \endgroup}}

Test if arg #1 and #2 are counters and if so execute #3.

61 \def\@ifbothcounters#1#2#3{%
62 \@ifundefined{c@#1}{\@nocounterr{#1}1}%

63 {% else counter is defined

64 \@ifundefined{c@#2}{\@nocounterr{#2}}/

65 {% else both counter and within are defined
66 #3313}

67 \def\counterwithout {\@ifstar\counterwithout@s\counterwithout@x}

68 \def\counterwithout@s#1#2{%
69 \@ifbothcounters{#1}{#2}{\@removefromreset{#1}{#2}}}

70 \def\counterwithout@x#1#2{/
71 \Q@ifbothcounters{#1}{#2}Y

72 {\@removefromreset{#1}{#2}%

73 \expandafter

74 \gdef\csname the#1\expandafter\endcsname\expandafter

75 {\expandafter

76 \@arabic\csname c@#1\endcsname}}}
\counterwithin

77 \def\counterwithin{\@ifstar\counterwithin®@s\counterwithin@x}

78 \def\counterwithin@s#1#2{J,

79 \@ifbothcounters{#1}{#2}{\@addtoreset{#1}{#2}}}

80 \def\counterwithin@x#1#2{%

81 \@ifbothcounters{#1}{#21}},

82 {\@addtoreset{#1}{#2}/,

83 \expandafter

84 \gdef\csname the#1l\expandafter\endcsname\expandafter

85 {\csname the#2\expandafter\endcsname\expandafter

86 \@arabic\csname c@#1\endcsname}}}

87 (/2ekernel | latexrelease)

88 (latexrelease)\EndIncludeInRelease

89 (latexrelease)\IncludeInRelease{0000-00-00}

90 (latexrelease) {\@removefromreset}{Add interfaces}’

91 (latexrelease)\let \@removefromreset \undefined

92 (latexrelease)\let \@ifbothcounters \undefined

93 (latexrelease)\let \counterwithout \undefined

94 (latexrelease)\let \counterwithout@s \undefined

95 (latexrelease)\let \counterwithout@x \undefined

96 (latexrelease)\let \counterwithin \undefined

97 (latexrelease)\let \counterwithin@s \undefined

98 (latexrelease)\let \counterwithin@x \undefined

99 (latexrelease)\EndIncludeInRelease

100 (x2ekernel)

Numbering commands for definitions of \theCOUNTER and \list arguments.
All commands can now be used in text and math mode.

\arabic Representation of{counter) as arabic numerals. Changed 29 Apr 86 to make it
print the obvious thing it COUNTER not positive.

101 \def\arabic#1{\expandafter\@arabic\csname c@#1\endcsname}

\roman Representation of (counter) as lower-case Roman numerals.

102 \def\roman#1{\expandafter\Q@roman\csname c@#1\endcsname}

\Roman Representation of {counter) as upper-case Roman numerals.
103 \def\Roman#1{\expandafter\ORoman\csname c@#1\endcsname}

\alph Representation of (counter) as a lower-case letter: 1 = a, 2 = b, etc.
104 \def\alph#1i{\expandafter\@alph\csname c@#1\endcsname}

\Alph

\fnsymbol

\@arabic

\@roman

\@Roman

\@slowromancap

\@alph

\@Alph

\@fnsymbol

Representation of (counter) as an upper-case letter: 1 = A, 2 = B, etc.
105 \def\Alph#1{\expandafter\@Alph\csname c@#1\endcsname}

Representation of (COUNTER) as a footnote symbol: 1 = %, 2 = 7, etc.
106 \def\fnsymbol#1{\expandafter\@fnsymbol\csname c@#1\endcsname}

\@arabic\FOOcounter Representation of \FOOcounter as arabic numerals.
107 \def\@arabic#1{\number #1} %% changed 29 Apr 86

\@roman\F0Ocounter Representation of \FOOcounter as lower-case Roman nu-
merals.

108 \def\@roman#1{\romannumeral #1}

\@Roman\FOOcounter Representation of \FOOcounter as upper-case Roman nu-
merals.

109 \def\O@Roman#1{\expandafter\@slowromancap\romannumeral #1@}

Fully expandable macro to change a roman number to uppercase.
110 \def\@slowromancap#1{\ifx @#1% then terminate

111 \else

112 \if i#1I\else\if v#1V\else\if x#1X\else\if 1#1L\else\if

113 c#1C\else\if d#1D\else \if m#i1M\else#1\fi\fi\fi\fi\fi\fi\fi
114 \expandafter\@slowromancap

115 \fi

116 }

\@alph\FOOcounter Representation of \FOOcounter as a lower-case letter: 1 =
a, 2 = b, etc.

117 \def\@alph#1{J,

118 \ifcase#1\or al\or b\or c\or d\or e\or flor g\or h\or ilor j\or

119 k\or 1\or m\or n\or o\or p\or g\or r\or s\or t\or ulor v\or w\or x\or
120 y\or z\else\@ctrerr\fi}

\@A1lph\FOOcounter Representation of \FOOcounter as an upper-case letter: 1 =
A, 2 =B, etc.

121 \def\@Alph#1{},

122 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or

123 K\or L\or M\or N\or O\or P\or Q\or R\or S\or T\or Ulor Vlor W\or X\or
124 Y\or Z\else\@ctrerr\fi}

Typesetting old fashioned footnote symbols. This can be done both in text or
math mode now.

This macro is another example of an ever recurring problem in TEX: Deter-
mining if something is text-mode or math-mode. It is imperative for the decision
between text and math to be delayed until the actual typesetting is done as the
code in question may go through an \edef or \write where an \ifmmode test
would be executed prematurely. Hence in the implementation below, \@fnsymbol
is not robust in itself but the parts doing the actual typesetting are.

\TextOrMath

In the case of \@fnsymbol we make use of the robust command \TextOrMath
which takes two arguments and typesets the first if in text-mode and the second if
in math-mode. Note that in order for this command to make the correct decision,
it must insert a \relax token if run under regular TEX, which ruins any kerning
between the preceding characters and whatever awaits typesetting. If you use
eTEX as engine for INTEX (as recommended) this unfortunate side effect is not
present.

125 (/2ekernel)

126 (latexrelease)\IncludeInRelease{2015/01/01}{\@fnsymbol}{Use \TexOrMathl}},
127 (x2ekernel | latexrelease)

128 \def\@fnsymbol#1{%

129 \ifcase#1\or \TextOrMath\textasteriskcentered *\or

130 \TextOrMath \textdagger \dagger\or

131 \TextOrMath \textdaggerdbl \ddagger \or

132 \TextOrMath \textsection \mathsection\or

133 \TextOrMath \textparagraph \mathparagraph\or

134 \TextOrMath \textbardbl \|\or

135 \TextOrMath {\textasteriskcentered\textasteriskcentered}{**}\or
136 \TextOrMath {\textdagger\textdagger}{\dagger\dagger}\or

137 \TextOrMath {\textdaggerdbl\textdaggerdbl}{\ddagger\ddagger}\else
138 \@ctrerr \fi

139 }%

140 (/2ekernel | latexrelease)

141 (latexrelease)\EndIncludeInRelease

142 (latexrelease)\IncludeInRelease{0000/00/00}{\@fnsymbol}{Use \TexOrMath}%
143 (latexrelease)\def\@fnsymbol#1{\ensuremath{%

144 (latexrelease) \ifcase#1\or *\or \dagger\or \ddagger\or \mathsection\or
145 (latexrelease) \mathparagraph\or \|\or **\or \dagger\dagger

146 (latexrelease) \or \ddagger\ddagger \else\@ctrerr\fi}}}

147 (latexrelease)\EndIncludeInRelease

148 (x2ekernel)

When using regular TEX, we make this command robust so that it always selects
the correct branch in an \ifmmode switch with the usual disadvantage of ruining
kerning. For the application we use it for here that shouldn’t matter. The alterna-
tive would be to mimic \IeC from inputenc but then it wil have the disadvantage
of choosing the wrong branch if appearing at the beginning of an alignment cell.
However, users of eTEX will be pleasantly surprised to get the best of both worlds
and no bad side effects.

First some code for checking if we are running eTEX but making sure not to
permanently turn \protected into \relax.
149 (/2ekernel)
150 (latexrelease)\IncludeInRelease{2015/01/01}{\TextOrMath}{\TextOrMath}
151 (*2ekernel | latexrelease)
152 \begingroup\expandafter\expandafter\expandafter\endgroup
153 \expandafter\ifx\csname protected\endcsname\relax

In case of ordinary TEX we define \TextOrMath as a robust command but make
sure it always grabs its arguments. If we didn’t do this it might very well gobble

spaces in the input stream.

154 \DeclareRobustCommand\Text0OrMath{%
155 \ifmmode \expandafter\@secondoftwo

156 \else \expandafter\@firstoftwo \fi}
157 \protected@edef\TextOrMath#1#2{\TextOrMath{#1}{#2}}
158 \else

For eTEX the situation is similar. The robust macro is a hidden one so that we
again avoid problems of gobbling spaces in the input.

159 \protected\expandafter\def\csname TextOrMath\space\endcsname{’,

160 \ifmmode \expandafter\@secondoftwo

161 \else \expandafter\@firstoftwo \fi}

162 \edef\TextOrMath#1#2{J,

163 \expandafter\noexpand\csname TextOrMath\space\endcsname

164 {#1}{#2}}

165 \fi

166 (/2ekernel | latexrelease)

167 (latexrelease)\EndIncludeInRelease

168 (latexrelease)\IncludeInRelease{0000/00/00}{\TextOrMath}{\TextOrMath}/,
169 (latexrelease)\let\TextOrMath\Q@undefined
170 (latexrelease)\EndIncludeInRelease
171 (*2ekernel)

172 (/2ekernel)

