ltcounts.dtx

Johannes Braams Leslie Lamport

David Carlisle Frank Mittelbach Rainer Schöpf

Alan Jeffrey Chris Rowley

2018/03/08

This file is maintained by the LATEX Project team. Bug reports can be opened (category latex) at https://latex-project.org/bugs.html.

1 Counters and Lengths

Commands for defining and using counters. This file defines:

To define a new counter. \newcounter To set the value of counters. \setcounter

Increase the counter #1 by the number #2. \addtocounter

\stepcounter Increase a counter by one.

Increase a counter by one, also setting the value used by \label. \refstepcounter

> For accessing the value of the counter as a TEX number (as opposed to \value

 \t which expands to the *printed* representation of $\langle counter \rangle$

\arabic $\arabic{\langle counter \rangle}: 1, 2, 3, \dots$ \roman $\mbox{roman}{\langle counter \rangle}$: i, ii, iii, ... \mathbb{C} (counter): I, II, III, ... \Roman \alph

 $\Lambda \left(counter \right) : A, B, C, \dots$ \Alph

\fnsymbol \footnotemark : *, †, ‡, ...

 $\counterwithin{\langle counter \rangle}{\langle within\text{-}counter \rangle}: Resets \langle counter \rangle whenever$ \counterwithin

(within-counter) is stepped. Also redefines \the(counter) command to produce

representation.

\counterwithout

\counterwithout{ $\langle counter \rangle$ }{ $\langle within-counter \rangle$ }: Removes $\langle counter \rangle$ from the reset list of $\langle within-counter \rangle$. Also redefines $\backslash the \langle counter \rangle$ command to produce $\arabic{\langle counter \rangle}$. Star form omits redefining the print representation.

1 (*2ekernel)

1.1 Environment Counter Macros

An environment foo has an associated counter defined by the following control sequences:

\c@foo Contains the counter's numerical value. It is defined by

\newcount\foocounter.

\thefoo Macro that expands to the printed value of \foocounter.

For example, if sections are numbered within chapters, and

section headings look like

Section II-3. The Nature of Counters then \thesection might be defined by:

\def\thesection

{\@Roman{\c@chapter}-\@arabic{\c@section}}

\p@foo Macro that expands to a printed 'reference prefix' of counter foo. Any \ref to a value created by counter foo will produce the expansion of \p@foo\thefoo when the \label command is executed. See file ltxref.dtx for an extension of this mech-

anism.

\cl@foo List of counters to be reset when foo stepped. Has format \@elt{countera}\@elt{counterb}\@elt{counterc}.

NOTE:

\thefoo and \p@foo must be defined in such a way that \edef\bar{\thefoo} or \edef\bar{\p@foo} defines \bar so that it will evaluate to the counter value at the time of the \edef, even after \foocounter and any other counters have been changed. This will happen if you use the standard commands \@arabic, \@Roman, etc.

The following commands are used to define and modify counters.

 $\rcsin {\langle foo \rangle}$

Same as \stepcounter, but it also defines \@currentreference so that a subsequent \label{\label{\label}} command causes \ref{\langle bar\rangle} to generate the current value of counter \langle foo\rangle.

\@definecounter $\{\langle foo \rangle\}$

Initializes counter $\{\langle foo \rangle\}$ (with empty reset list), defines \p@foo and \thefoo to be null. Also adds $\langle foo \rangle$ to \cl@@ckpt – the reset list of a dummy counter @ckpt used for taking checkpoints for the \include system.

 $\ensuremath{\tt Qremovefromreset}{\langle foo \rangle}{\langle bar \rangle}$: Removes counter $\langle foo \rangle$ to the list of counters $\ensuremath{\tt clQbar}$ to be reset when counter $\langle bar \rangle$ is stepped.

\setcounter \setcounter $\{\langle foo\rangle\}\{\langle val\rangle\}$: Globally sets \foocounter equal to $\langle val\rangle$.

- 2 \def\setcounter#1#2{%
- $3 \ensuremath{\mbox{\sc 0}}\ensuremath{\mbox{\sc 0}}\ensuremath{\mbox{\sc 1}}\ensuremath{\mbox{\sc 0}}\ensuremath{\mbox{\sc 0}}\ensuremath{\mbox$
- 4 {\@nocounterr{#1}}%
- 5 {\global\csname c@#1\endcsname#2\relax}}

\addtocounter \ddtocounter $\{\langle foo\rangle\}\{\langle val\rangle\}$ Globally increments \foocounter by $\langle val\rangle$.

```
6 \def\addtocounter#1#2{%
                                                  \@ifundefined{c@#1}%
                                                         {\@nocounterr{#1}}%
                                                        {\global\advance\csname c@#1\endcsname #2\relax}}
                                       \mbox{\ensuremath{\text{newcounter}}} \{\mbox{\ensuremath{\textit{newctr}}}\} [\mbox{\ensuremath{\textit{oldctr}}}] \mbox{\ensuremath{\textit{Defines}}} \mbox{\ensuremath{\textit{newctr}}} \mbox{\ensuremath{\textit{to}}} \mbox{\ensuremath{\textit{e}}} \mbox{\en
  \newcounter
                                       reset when counter \langle oldctr \rangle is stepped. If \langle newctr \rangle already defined produces
                                       'c@newctr already defined' error.
                                       10 \def\newcounter#1{%
                                                  \expandafter\@ifdefinable \csname c@#1\endcsname
                                                        {\@definecounter{#1}}%
                                                  \@ifnextchar[{\@newctr{#1}}{}}
                \value \value{\langle ctr \rangle} produces the value of counter \langle ctr \rangle, for use with a \setcounter or
                                       \addtocounter command.
                                       14 \def\value#1{\csname c@#1\endcsname}
           \@newctr
                                       15 \def\@newctr#1[#2]{%
                                                \@ifundefined{c@#2}{\@nocounterr{#2}}{\@addtoreset{#1}{#2}}}
                                     \stepcounterfoo Globally increments counter \c@F00 and resets all subsidiary
\stepcounter
                                       counters.
                                       17 \def\stepcounter#1{%
                                                  \addtocounter{#1}\@ne
                                                  \begingroup
                                                        \let\@elt\@stpelt
                                       21
                                                         \csname cl@#1\endcsname
                                       22
                                                \endgroup}
           \@stpelt
                                      Rather than resetting the "within" counter to zero we set it to -1 and then run
                                       \stepcounter that moves it to 0 and also initiates resetting the next level down.
                                       23 (/2ekernel)
                                       24 \langle latexrelease \rangle \setminus IncludeInRelease \{2015/01/01\} \{ \end{vgtpelt} \}
                                       25 (latexrelease)
                                                                                                                                                             {Reset nested counters}%
                                       _{26} \langle *2ekernel \mid latexrelease \rangle
                                       27 \def\@stpelt#1{\global\csname c@#1\endcsname \m@ne\stepcounter{#1}}%
                                       28 \langle latexrelease \rangle \backslash EndIncludeInRelease
                                       29 \langle /2ekernel | latexrelease\rangle
                                       30 (latexrelease)\IncludeInRelease{0000/00/00}{\@stpelt}
                                       31 (latexrelease)
                                                                                                                                                             {Reset nested counters}%%
                                       32 \langle latexrelease \rangle \ def \ estpelt#1{\global\csname c@#1\endcsname \z@}%
                                       33 \langle latexrelease \rangle \setminus EndIncludeInRelease
                                       34 \langle *2ekernel \rangle
        \cl@@ckpt
```

35 \def\cl@ckpt{\@elt{page}}

```
\@definecounter
                                             36 \def\@definecounter#1{\expandafter\newcount\csname c@#1\endcsname
                                                               \setcounter{#1}\z@
                                                               \global\expandafter\let\csname cl@#1\endcsname\@empty
                                             39
                                                               \@addtoreset{#1}{@ckpt}%
                                             40
                                                               \global\expandafter\let\csname p@#1\endcsname\@empty
                                             41
                                                               \expandafter
                                             42
                                                               \gdef\csname the#1\expandafter\endcsname\expandafter
                                                                           {\expandafter\@arabic\csname c@#1\endcsname}}
                                             43
           \@addtoreset
                                             44 \end{cons} csname cl0#2\end{csname} \{ \#1 \} \}
                                             45 (/2ekernel)
\@removefromreset
                                             46 (latexrelease)\IncludeInRelease{2018-04-01}
                                             47 (latexrelease)
                                                                                                                     {\@removefromreset}{Add interfaces}%
                                             48 \langle *2ekernel \mid latexrelease \rangle
                                             49 \ensuremath{\mbox{\sc def}\mbox{\sc def
                                             Even through this is internal and the programmer should know what he/she is
                                             doing we test here if counter #2 is defined. If not, the execution would run into a
                                             tight loop.
                                                       \ensuremath{\mbox{\tt 0ifundefined{c0#2}}\
                                             50
                                                       {\begingroup
                                             51
                                             52
                                                               \expandafter\let\csname c@#1\endcsname\@removefromreset
                                                               \def\@elt##1{%
                                             54
                                                                    \expandafter\ifx\csname c@##1\endcsname\@removefromreset
                                                                    \else
                                             56
                                                                        \noexpand\@elt{##1}%
                                             57
                                                                    \fi}%
                                                               \expandafter\xdef\csname cl@#2\endcsname
                                             58
                                                                 {\csname cl@#2\endcsname}%
                                             59
                                                            \endgroup}}
  \@ifbothcounters
                                            Test if arg #1 and #2 are counters and if so execute #3.
                                             61 \def\@ifbothcounters#1#2#3{%
                                                       \@ifundefined{c@#1}{\@nocounterr{#1}}%
                                                            {% else counter is defined
                                             63
                                                               \@ifundefined{c@#2}{\@nocounterr{#2}}%
                                             64
                                                                    {% else both counter and within are defined
                                             65
                                             66
                                                                      #3}}}
    \counterwithout
                                             67 \def\counterwithout {\@ifstar\counterwithout@s\counterwithout@x}
                                             68 \def\counterwithout@s#1#2{%
                                                       \@ifbothcounters{#1}{#2}{\@removefromreset{#1}{#2}}}
```

```
70 \def\counterwithout@x#1#2{%
                      \@ifbothcounters{#1}{#2}%
                          {\@removefromreset{#1}{#2}%
                 73
                           \expandafter
                           \gdef\csname the#1\expandafter\endcsname\expandafter
                 74
                 75
                                 {\expandafter
                                  \@arabic\csname c@#1\endcsname}}}
\counterwithin
                 77 \def\counterwithin{\@ifstar\counterwithin@s\counterwithin@x}
                 78 \def\counterwithin@s#1#2{%
                     \verb|\difbothcounters{#1}{#2}{\daddtoreset{#1}{#2}}|
                 80 \def\counterwithin@x#1#2{%
                      \@ifbothcounters{#1}{#2}%
                          {\del{1}{\#2}}
                 82
                           \expandafter
                 83
                           \gdef\csname the#1\expandafter\endcsname\expandafter
                 84
                                 {\csname the #2\expandafter\endcsname\expandafter
                 85
                                  \@arabic\csname c@#1\endcsname}}}
                 87 (/2ekernel | latexrelease)
                 88 (latexrelease)\EndIncludeInRelease
                 89 \langle latexrelease \rangle \setminus IncludeInRelease \{0000-00-00\}
                 90 (latexrelease)
                                                  {\@removefromreset}{Add interfaces}%
                 91 \langle latexrelease \rangle \setminus let \setminus @removefromreset \setminus undefined
                 93 (latexrelease)\let \counterwithout
                                                         \undefined
                 94 (latexrelease)\let \counterwithout@s \undefined
                 95 (latexrelease)\let \counterwithout@x \undefined
                 96 (latexrelease)\let \counterwithin
                                                         \undefined
                 97 \langle latexrelease \rangle \setminus let \counterwithin@s \undefined
                 98 (latexrelease)\let \counterwithin@x \undefined
                 99 (latexrelease)\EndIncludeInRelease
                100 (*2ekernel)
                     Numbering commands for definitions of \theCOUNTER and \list arguments.
                     All commands can now be used in text and math mode.
       \arrapic Representation of (counter) as a
rabic numerals. Changed 29 Apr 86 to make it
                 print the obvious thing it COUNTER not positive.
                101 \def\arabic#1{\expandafter\@arabic\csname c@#1\endcsname}
        \roman Representation of \langle counter \rangle as lower-case Roman numerals.
                102 \def\roman#1{\expandafter\@roman\csname c@#1\endcsname}
        \Roman Representation of \langle counter \rangle as upper-case Roman numerals.
                103 \def\Roman#1{\expandafter\@Roman\csname c@#1\endcsname}
         \alph Representation of \langle counter \rangle as a lower-case letter: 1 = a, 2 = b, etc.
```

104 \def\alph#1{\expandafter\@alph\csname c@#1\endcsname}

```
\Alph Representation of \langle counter \rangle as an upper-case letter: 1 = A, 2 = B, etc. 105 \def\Alph#1{\expandafter\@Alph\csname c@#1\endcsname}
```

```
\fnsymbol Representation of \langle COUNTER \rangle as a footnote symbol: 1 = *, 2 = \dagger, etc. 106 \def\fnsymbol#1{\expandafter\@fnsymbol\csname c@#1\endcsname}
```

```
\@arabic \@arabic\F00counter Representation of \F00counter as arabic numerals.

107 \def\@arabic#1{\number #1} %% changed 29 Apr 86
```

\@roman \@roman\F00counter Representation of \F00counter as lower-case Roman numerals.

```
108 \def\@roman#1{\romannumeral #1}
```

\@Roman \@Roman\F00counter Representation of \F00counter as upper-case Roman numerals.

109 \def\@Roman#1{\expandafter\@slowromancap\romannumeral #1@}

\@slowromancap Fully expandable macro to change a roman number to uppercase.

```
110 \def\@slowromancap#1{\ifx @#1% then terminate
111  \else
112  \if i#1I\else\if v#1V\else\if x#1X\else\if l#1L\else\if
113     c#1C\else\if d#1D\else \if m#1M\else#1\fi\fi\fi\fi\fi\fi
114  \expandafter\@slowromancap
115  \fi
116 }
```

 $\cline{1.5} \cline{1.5} \cli$

```
117 \def\@alph#1{%
```

- 118 \ifcase#1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or
- 119 k\or l\or m\or o\or p\or q\or r\or s\or u\or v\or w\or x\or
- 120 y\or z\else\@ctrerr\fi}

\@Alph\F00counter Representation of \F00counter as an upper-case letter: 1 = A, 2 = B, etc.

```
121 \def\@Alph#1{%
```

- 122 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or
- 123 K\or L\or M\or O\or P\or Q\or R\or S\or T\or U\or V\or X\or
- 124 Y\or Z\else\@ctrerr\fi}

\Offinsymbol Typesetting old fashioned footnote symbols. This can be done both in text or math mode now.

This macro is another example of an ever recurring problem in TeX: Determining if something is text-mode or math-mode. It is imperative for the decision between text and math to be delayed until the actual typesetting is done as the code in question may go through an \edef or \write where an \iffmode test would be executed prematurely. Hence in the implementation below, \@fnsymbol is not robust in itself but the parts doing the actual typesetting are.

In the case of \@fnsymbol we make use of the robust command \TextOrMath which takes two arguments and typesets the first if in text-mode and the second if in math-mode. Note that in order for this command to make the correct decision, it must insert a \relax token if run under regular TeX, which ruins any kerning between the preceding characters and whatever awaits typesetting. If you use eTeX as engine for LaTeX (as recommended) this unfortunate side effect is not present.

```
125 (/2ekernel)
126 (latexrelease)\IncludeInRelease{2015/01/01}{\@fnsymbol}{Use \TexOrMath}%
127 (*2ekernel | latexrelease)
128 \left(\frac{9}{128}\right)
129
      \ifcase#1\or \TextOrMath\textasteriskcentered *\or
      \TextOrMath \textdagger \dagger\or
130
      \TextOrMath \textdaggerdbl \ddagger \or
131
      \TextOrMath \textsection \mathsection\or
132
      \TextOrMath \textparagraph \mathparagraph\or
133
      \TextOrMath \textbardbl \|\or
134
      \TextOrMath {\textasteriskcentered\textasteriskcentered}{**}\or
135
      \TextOrMath {\textdagger\textdagger}{\dagger\dagger}\or
136
      \TextOrMath {\textdaggerdbl\textdaggerdbl}{\ddagger\ddagger}\else
137
      \@ctrerr \fi
138
139 }%
140 (/2ekernel | latexrelease)
141 (latexrelease)\EndIncludeInRelease
142 (latexrelease)\IncludeInRelease{0000/00/00}{\@fnsymbol}{Use \TexOrMath}%
143 (latexrelease)\def\@fnsymbol#1{\ensuremath{%
                  \ifcase#1\or *\or \dagger\or \mathsection\or
144 (latexrelease)
145 (latexrelease)
                    \mathparagraph\or \|\or **\or \dagger\dagger
146 (latexrelease)
                    \or \ddagger\ddagger \else\@ctrerr\fi}}%
147~\langle {\tt latexrelease} \rangle {\tt \c EndIncludeInRelease}
148 (*2ekernel)
```

\TextOrMath

When using regular TEX, we make this command robust so that it always selects the correct branch in an \ifmmode switch with the usual disadvantage of ruining kerning. For the application we use it for here that shouldn't matter. The alternative would be to mimic \IeC from inputenc but then it wil have the disadvantage of choosing the wrong branch if appearing at the beginning of an alignment cell. However, users of eTEX will be pleasantly surprised to get the best of both worlds and no bad side effects.

First some code for checking if we are running eTeX but making sure not to permanently turn \protected into \relax.

In case of ordinary TEX we define **\TextOrMath** as a robust command but make sure it always grabs its arguments. If we didn't do this it might very well gobble

```
spaces in the input stream.
154 \DeclareRobustCommand\TextOrMath{%
     \ifmmode
               \expandafter\@secondoftwo
                \expandafter\@firstoftwo \fi}
157 \protected@edef\TextOrMath#1#2{\TextOrMath{#1}{#2}}
158 \ensuremath{\setminus} \texttt{else}
For eTeX the situation is similar. The robust macro is a hidden one so that we
again avoid problems of gobbling spaces in the input.
159 \protected\expandafter\def\csname TextOrMath\space\endcsname{%
     \ifmmode \expandafter\@secondoftwo
     \else
                \expandafter\@firstoftwo \fi}
161
162 \edef\TextOrMath#1#2{%
     \expandafter\noexpand\csname TextOrMath\space\endcsname
     {#1}{#2}}
165 \fi
```

171 $\langle *2ekernel \rangle$ 172 $\langle /2ekernel \rangle$

 $166 \langle /2ekernel \mid latexrelease \rangle$

 $167 \langle latexrelease \rangle \setminus EndIncludeInRelease$

 $169 \ \langle {\tt latexrelease} \rangle {\tt let} \ {\tt TextOrMath} \ {\tt Qundefined} \\ 170 \ \langle {\tt latexrelease} \rangle {\tt EndIncludeInRelease} \\$