The DocStrip program *

Frank Mittelbach Denys Duchier Johannes Braams
Marcin Wolinski Mark Wooding

Printed September 30, 2015

This file is maintained by the KTEX Project team.
Bug reports can be opened (category latex) at
http://latex-project.org/bugs.html.

Abstract

This document describes the implementation of the DocStrip program.
The original version of this program was developed by Frank Mittelbach to
accompany his doc. sty which enables literate programming in ITEX. Denys
Duchier rewrote it to run either with TEX or with I¥IEX, and to allow full
boolean expressions in conditional guards instead of just comma-separated
lists. Johannes Braams re-united the two implementations, documented and
debugged the code.

In September 1995 Marcin Woliniski changed many parts of the program
to make use of TEX’s ability to write to multiple files at the same time to
avoid re-reading sources. The performance improvement of version 2.3 came
at a price of compatibility with some more obscure operating systems which
limit the number of files a process can keep open. This was corrected in
September 1996 by Mark Wooding and his changes were “creatively merged”
by Marcin Woliniski who made at the same time changes in batch files pro-
cessing, handling of preambles and introduced “verbatim mode”. After all
that, David Carlisle merged the new version into the KTEX sources, and
made a few other changes, principally making DocStrip work under initex,
and removing the need for batch files to say \def\batchfile{...}.

1 Introduction

1.1 Why the DocStrip program?

When Frank Mittelbach created the doc package, he invented a way to combine
TEX code and its documentation. From then on it was more or less possible to do
literate programming in TEX.

This way of writing TEX programs obviously has great advantages, especially
when the program becomes larger than a couple of macros. There is one drawback
however, and that is that such programs may take longer than expected to run
because TEX is an interpreter and has to decide for each line of the program file

*This file has version number 2.5e, last revised 2014/09/29, documentation dated 2014/09/29.

http://latex-project.org/bugs.html

what it has to do with it. Therefore, TEX programs may be sped up by removing
all comments from them.

By removing the comments from a TEX program a new problem is introduced.
We now have two versions of the program and both of them have to be maintained.
Therefore it would be nice to have a possibility to remove the comments automati-
cally, instead of doing it by hand. So we need a program to remove comments from
TEX programs. This could be programmed in any high level language, but maybe
not everybody has the right compiler to compile the program. Everybody who
wants to remove comments from TEX programs has TEX. Therefore the DocStrip
program is implemented entirely in TEX.

1.2 Functions of the DocStrip program

Having created the DocStrip program to remove comment lines from TEX pro-
grams' it became feasible to do more than just strip comments.

Wouldn’t it be nice to have a way to include parts of the code only when some
condition is set true? Wouldn’t it be as nice to have the possibility to split the
source of a TEX program into several smaller files and combine them later into
one ‘executable’?

Both these wishes have been implemented in the DocStrip program.

2 How to use the DocStrip program

A number of ways exist to use the DocStrip program:

1. The usual way to use DocStrip is to write a batch file in such a way that it can
be directly processed by TEX. The batch file should contain the commands
described below for controlling the DocStrip program. This allows you to set
up a distribution where you can instruct the user to simply run

TEX (batch file)

to generate the executable versions of your files from the distribution sources.
Most of the ITEX distribution is packaged this way. To produce such a
batch file include a statement in your ‘batch file’ that instructs TEX to read
docstrip.tex. The beginning of such a file would look like:

\input docstrip

By convention the batch file should have extension .ins. But these days
DocStrip in fact work with any extension.

2. Alternatively you can instruct TEX to read the file docstrip.tex and to see
what happens. TEX will ask you a few questions about the file you would
like to be processed. When you have answered these questions it does its
job and strips the comments from your TEX code.

1Note that only comment lines, that is lines that start with a single % character, are removed;
all other comments stay in the code.

\usedir

\showdirectory

\BaseDirectory

\DeclareDir

3 Configuring DocStrip

3.1 Selecting output directories

Inspired by a desire to simplify reinstallations of A TEX 2¢ and to support operating
systems which have an upper limit on the number of files allowed in a directory,
DocStrip now allows installation scripts to specify output directories for files it
creates. We suggest using TDS (TEX directory structure) names of directories
relative to texmf here. However these names should be thought of as a labels
rather than actual names of directories. They get translated to actual system-
dependent pathnames according to commands contained in a configuration file
named docstrip.cfg.

The configuration file is read by DocStrip just before it starts to process any
batch file commands.

If this file is not present DocStrip uses some default settings which ensure that
files are only written to the current directory. However by use of this configuration
file, a site maintainer can ‘enable’ features of DocStrip that allow files to be written
to alternative directories.

Using this macro package author can tell where a file should be installed.
All \files generated in the scope of that declaration are written to a directory
specified by its one argument. For example in IATEX 2¢ installation following
declarations are used:

\usedir{tex/latex/base}
\usedir{makeindex}

And standard packages use

\usedir{tex/latex/tools}
\usedir{tex/latex/babel}

etc.

Used to display directory names in messages. If some label is not defined
it expands to UNDEFINED (label is ...) otherwise to a directory name. It is
probably a good idea for every installation script to display at startup list of all
directories that would be used and asking user to confirm that.

The above macros are used by package/installation script author. The follow-
ing macros are used in a configuration file, docstrip.cfg, by a system adminis-
trator to describe her /his local directory structure.

This macro is administrator’s way of saying “yes, I want to use that directories
support of yours”. DocStrip will write only to current directory unless your config
has a call to this macro. (This means DocStrip won’t write to random directories
unless you tell it to, which is nice.) Using this macro you can specify a base
directory for TEX-related stuff. E.g., for many Unix systems that would be

\BaseDirectory{/usr/local/lib/texmf}
and for standard emTREX installation
\BaseDirectory{c:/emtex}

Having specified the base directory you should tell DocStrip how to interpret
labels used in \usedir commands. This is done with \DeclareDir with two
arguments. The first is the label and the second is actual name of directory

\UseTDS

\maxfiles

relative to base directory. For example to teach DocStrip using standard emTEX
directories one would say:

\BaseDirectory{c:/emtex}
\DeclareDir{tex/latex/base}{texinput/latex2e}
\DeclareDir{tex/latex/tools}{texinput/tools}
\DeclareDir{makeindex}{idxstyle}

This will cause base latex files and font descriptions to be written to direc-
tory c:\emtex\texinput\latex2e, files of the tools package to be written to
c:\emtex\texinput\tools and makeindex files to c:\emtex\idxstyle.

Sometimes it is desirable to put some files outside of the base directory. For that
reason \DeclareDir has a star form specifying absolute pathname. For example
one could say

\DeclareDir*{makeindex}{d:/tools/texindex/styles}

Users of systems conforming to TDS may well ask here “do I really need to
put a dozen of lines like

\DeclareDir{tex/latex/base}{tex/latex/base}

in my config file”. The answer is \UseTDS. This macro causes DocStrip to use
labels themselves for any directory you haven’t overridden with \DeclareDir.
The default behaviour is to raise an error on undefined labels because some users
may want to know exactly where files go and not to allow DocStrip to write to
random places. However I (MW) think this is pretty cool and my config says just
(’'m running teTEX under Linux)

\BaseDirectory{/usr/local/teTeX/texmf}
\UseTDS

The important thing to note here is that it is impossible to create a new
directory from inside TEX. So however you configure DocStrip, you need to create
all needed directories before running the installation. Authors may want to begin
every installation script by displaying a list of directories that will be used and
asking user if he’s sure all of them exist.

Since file name syntax is OS specific DocStrip tries to guess it from the cur-
rent directory syntax. It should succeed for Unix, MSDOS, Macintosh and VMS.
However DocStrip will only initially know the current directory syntax if it is used
with BTEX. If used with plainTEX or initex it will not have this information?.
If you often use DocStrip with formats other than I¥TEX you should start the
file docstrip.cfg with a definition of \WriteToDir. E.g., \def\WriteToDir{./}
on MSDOS/Unix, \def\WriteToDir{:} on Macintosh, \def\WriteToDir{[1} on
VMS.

If your system requires something completely different you can define in
docstrip.cfg macros \dirsep and \makepathname. Check for their definition
in the implementation part. If you want some substantially different scheme of
translating \usedir labels into directory names try redefining macro \usedir.

3.2 Setting maximum numbers of streams

In support of some of the more obscure operating systems, there’s a limit on the

2Except when processing the main unpack.ins batch file for the IATEX distribution, which
takes special measures so that initex can learn the directory syntax.

\maxoutfiles

\processbatchFile

\interactive

\ReportTotals

\input

\endbatchfile

\generate
\file
\from

number of files a program can have open. This can be expressed to DocStrip
through the \maxfiles macro. If the number of streams DocStrip is allowed to
open is n, your configuration file can say \maxfiles{n}, and DocStrip won’t try
to open more files than this. Note that this limit won’t include files which are
already open. There’ll usually be two of these: the installation script which you
started, and the file docstrip.tex which it included; you must bear these in mind
yourself. DocStrip assumes that it can open at least four files before it hits some
kind of maximum: if this isn’t the case, you have real problems.

Maybe instead of having a limit on the number of files TEX can have open,
there’s a limit on the number of files it can write to (e.g., TEX itself imposes
a limit of 16 files being written at a time). This can be expressed by saying
\maxoutfiles{m} in a configuration file. You must be able to have at least one
output file open at a time; otherwise DocStrip can’t do anything at all.

Both these options would typically be put in the docstrip.cfg file.

4 The user interface

4.1 The main program

The ‘main program’ starts with trying to process a batch file, this is accomplished
by calling the macro \processbatchFile. It counts the number of batch files it
processes, so that when the number of files processed is still zero after the call to
\processbatchFile appropriate action can be taken.

When no batch files have been processed the macro \interactive is called.
It prompts the user for information. First the extensions of the input and output
files is determined. Then a question about optional code is asked and finally the
user can give a list of files that have to be processed.

When the stats option is included in the DocStrip-program it keeps a record
of the number of files and lines that are processed. Also the number of comments
removed and passed as well as the number of code lines that were passed to
the output are accounted. The macro \ReportTotals shows a summary of this
information.

4.2 Batchfile commands

The commands described in this section are available to build a batch file for TEX.

All DocStrip batch files should start with the line: \input docstrip

Do not use the ITEX syntax \input{docstrip} as batch files may be used
with plain TEX or iniTgX. You may that old batch files always have a line
\def\batchfile{(filename)} just before the input. Such usage is still supported
but is now discouraged, as it causes TEX to re-input the same file, using up one
of its limited number of input streams.

All batch files should end with this command. Any lines after this in the file
are ignored. In old files that start \def\batchfile{... this command is optional,
but is a good idea anyway. If this command is omitted from a batchfile then
normally TEX will go to its interactive * prompt, so you may stop DocStrip by
typing \endbatchfile to this prompt.

The main reason for constructing a DocStrip command file is to describe what
files should be generated, from what sources and what optional (‘guarded’) pieces

of code should be included. The macro \generate is used to give TEX this infor-
mation. Its syntax is:

\generate{[\file{(output) H[\from{(input)}{{optionlist)}|*}*}

The (output) and (input) are normal file specifications as are appropriate for your
computer system. The (optionlist) is a comma separated list of ‘options’ that
specify which optional code fragments in (input) should be included in (output).
Argument to \generate may contain some local declarations (e.g., the \use. ..
commands described below) that will apply to all \files after them. Argument
to \generate is executed inside a group, so all local declarations are undone when
\generate concludes.

It is possible to specify multiple input files, each with its own (optionlist).
This is indicated by the notation [...]*. Moreover there can be many \file
specifications in one \generate clause. This means that all these (output) files
should be generated while reading each of (input) files once. Input files are read
in order of first appearance in this clause. E.g.

\generate{\file{pl.sty}{\from{s1.dtx}{foo,bar}}
\file{p2.sty}{\from{s2.dtx}{baz}
\from{s3.dtx}{baz}}
\file{p3.sty}{\from{s1.dtx}{zip}
\from{s2.dtx}{zip}}
}

will cause DocStrip to read files s1.dtx, s2.dtx, s3.dtx (in that order) and pro-
duce files p1.sty, p2.sty, p3.sty.

The restriction to at most 16 output streams open in a while does not mean that
you can produce at most 16 files with one \generate. In the example above only
2 streams are needed, since while s1.dtx is processed only pl.sty and p3.sty
are being generated; while reading s2.dtx only p2.sty and p3.sty; and while
reading s3.dtx file p2.sty . However example below needs 3 streams:

\generate{\file{pl.sty}{\from{sl.dtx}{foo,bar}}
\file{p2.sty}{\from{s2.dtx}{baz}
\from{s3.dtx}{baz}}
\file{p3.sty}{\from{sl.dtx}{zip}
\from{s3.dtx}{zip}}
}

Although while reading s2.dtx file p3.sty is not written it must remain open
since some parts of s3.dtx will go to it later.

Sometimes it is not possible to create a file by reading all sources once. Consider
the following example:

\generate{\file{pl.sty}{\from{s1.dtx}{head}
\from{s2.dtx}{foo}
\from{s1.dtx}{taill}}
\file{s1.drv}{\from{sl.dtx}{driver}}
}

To generate pl.sty file s1.dtx must be read twice: first time with option head,
then file s2.dtx is read and then s1.dtx again this time with option tail. Doc-
Strip handles this case correctly: if inside one \file declaration there are multiple
\fromes with the same input file this file is read multiple times.

\askforoverwritetrue
\askforoverwritefalse

\askonceonly

If the order of \froms specified in one of your \file specifications does not
match the order of input files established by previous \files, DocStrip will raise
an error and abort. Then you may either read one of next sections or give up and
put that file in separate \generate (but then sources will be read again just for
that file).

For impatient. Try following algorithm: Find file that is generated from largest
number of sources, start writing \generate clause with this file and its sources in
proper order. Take other files that are to be generated and add them checking if
they don’t contradict order of sources for the first one. If this doesn’t work read
next sections.

For mathematicians. Relation “file A must be read before file B” is a partial
order on the set of all your source files. Each \from clause adds a chain to this
order. What you have to do is to perform a topological sort i.e. to extend partial
order to linear one. When you have done it just list your source files in \generate
in such a way that order of their first appearance in the clause matches linear
order. If this cannot be achieved read next paragraph. (Maybe future versions of
DocStrip will perform this sort automatically, so all these troubles will disappear.)

For that who must know that all. There is a diverse case when it’s not
possible to achieve proper order of reading source files. Suppose you have to
generate two files, first from s1.dtx and s3.dtx (in that order) and second from
s2.dtx and s3.dtx. Whatever way you specify this the files will be read in either
as s1 s3 s2 or s2 s3 sl1. The key to solution is magical macro \needed that
marks a file as needed to be input but not directing any output from it to current
\file. In our example proper specification is:

\generate{\file{pl.sty}{\from{s1.dtx}{foo}
\needed{s2.dtx}
\from{s3.dtx}{bar}}
\file{p2.sty}{\from{s2.dtx}{zip}
\from{s3.dtx}{zap}}
}

These macros specify what should happen if a file that is to be generated
already exists. If \askforoverwritetrue is active (the default) the user is asked
whether the file should be overwritten. If however \askforoverwritefalse was
issued existing files will be overwritten silently. These switches are local and can
be issued in any place in the file even inside \generate clause (between \files
however).

You might not want to set \askforoverwritefalse in a batch file as that
says that it us always all right to overwrite other people’s files. However for large
installations, such as the base KTEX distribution, being asked individually about
hundreds of files is not very helpful either. A batchfile may therefore specify
\askonceonly. This means that after the first time the batchfile asks the user
a question, the user is given an option of to change the behaviour so that ‘yes’
will be automatically assumed for all future questions. This applies to any use
of the DocStrip command \Ask including, but not restricted to, the file overwrite
questions controlled by \askforoverwritetrue.

\preamble
\endpreamble
\postamble
\endpostamble

\declarepreamble
\declarepostamble
\usepreamble
\usepostamble
\nopreamble
\nopostamble

\batchinput

\ifToplevel

\showprogress
\keepsilent

It is possible to add a number of lines to the output of the DocStrip pro-
gram. The information you want to add to the start of the output file should be
listed between the \preamble and \endpreamble commands; the lines you want
to add to the end of the output file should be listed between the \postamble and
\endpostamble commands. Everything that DocStrip finds for both the pre- and
postamble it writes to the output file, but preceded with value of \MetaPrefix
(default is two %-characters). If you include a ~~J character in one of these lines,
everything that follows it on the same line is written to a new line in the output
file. This ‘feature’ can be used to add a \typeout or \message to the stripped
file.

Sometimes it is desirable to have different preambles for different files
of a larger package (e.g., because some of them are customisable configura-
tion files and they should be marked as such). In such a case one can
say \declarepreamble\somename, then type in his/her preamble, end it with
\endpreamble, and later on \usepreamble\somename to switch to this pream-
ble. If no preamble should be used you can deploy the \nopreamble command.
This command is equivalent to saying \usepreamble\empty. The same mecha-
nism works for postambles, \use. .. declarations are local and can appear inside
\generate.

Commands \preamble and \postamble define and activate pre(post)ambles
named \defaultpreamble and \defaultpostamble.

The batch file commands can be put into several batch files which are then
executed from a master batch file. This is, for example, useful if a distribution
consists of several distinct parts. You can then write individual batch files for every
part and in addition a master file that simply calls the batch files for the parts.
For this, call the individual batch files from the master file with the command
\batchinput{(file)}. Don’t use \input for this purpose, this command should
be used only for calling the DocStrip program as explained above and is ignored
when used for any other purpose.

When batch files are nested you may want to suppress certain commands in the
lower-level batch files such as terminal messages. For this purpose you can use the
\ifToplevel command which executes its argument only if the current batch file
is the outermost one. Make sure that you put the opening brace of the argument
into the same line as the command itself, otherwise the DocStrip program will get
confused.

When the option stats is included in DocStrip it can write message to the
terminal as each line of the input file(s) is processed. This message consists of
a single character, indicating kind of that particular line. We use the following
characters:

% Whenever an input line is a comment %-character is written to the terminal.
. Whenever a code line is encountered a .-character is written on the terminal.

/ When a number of empty lines appear in a row in the input file, at most one
of them is retained. The DocStrip program signals the removal of an empty
line with the /-character.

< When a ‘guard line’ is found in the input and it starts a block of optionally
included code, this is signalled on the terminal by showing the <-character,
together with the boolean expression of the guard.

\generateFile

\include
\processFile

> The end of a conditionally included block of code is indicated by showing
the >-character.

This feature is turned on by default when the option stats is included, otherwise
it is turned off. The feature can be toggled with the commands \showprogress
and \keepsilent.

4.2.1 Supporting old interface

Here is the old syntax for specifying what files are to be generated. It allows
specification of just one output file.

\generateFile{({output)}{{ask)H[\from{(input)}H (optionlist)}]*}

The meaning of (output), (input) and (optionslist) is just as for \generate. With
(ask) you can instruct TEX to either silently overwrite a previously existing file
(£) or to issue a warning and ask you if it should overwrite the existing file (t) (it
overrides the \askforoverwrite setting).

The earlier version of the DocStrip program supported a different kind of com-
mand to tell TEX what to do. This command is less powerful than \generateFile;
it can be used when (output) is created from one (input). The syntax is:

\include{{optionlist)}
\processFile{(name)}{ (inext) }H (outext)}{{ask)}

This command is based on environments where filenames are constructed of two
parts, the name and the extension, separated with a dot. The syntax of this
command assumes that the (input) and (output) share the same name and only
differ in their extension. This command is retained to be backwards compatible
with the older version of DocStrip, but its use is not encouraged.

5 Conditional inclusion of code

When you use the DocStrip program to strip comments out of TEX macro files
you have the possibility to make more than one stripped macro file from one
documented file. This is achieved by the support for optional code. The optional
code is marked in the documented file with a ‘guard’.

A guard is a boolean expression that is enclosed in < and >. It also has to
follow the % at the beginning of the line. For example:

%<bool>\TeX code

In this example the line of code will be included in (output) if the option bool is
present in the (optionlist) of the \generateFile command.
The syntax for the boolean expressions is:

(Ezpression) == (Secondary) [{|, ,} (Secondary)]*
(Secondary) == (Primary) [& {Primary)]*
(Primary) = (Terminal) | '(Primary) | ({Expression))

The | stands for disjunction, the & stands for conjunction and the ! stands for
negation. The (Terminal) is any sequence of letters and evaluates to (true) iff® it
occurs in the list of options that have to be included.

Two kinds of optional code are supported: one can either have optional code
that ‘fits’ on one line of text, like the example above, or one can have blocks of
optional code.

To distinguish both kinds of optional code the ‘guard modifier’ has been in-
troduced. The ‘guard modifier’ is one character that immediately follows the < of
the guard. It can be either * for the beginning of a block of code, or / for the end
of a block of code*. The beginning and ending guards for a block of code have to
be on a line by themselves.

When a block of code is not included, any guards that occur within that block
are not evaluated.

6 Those other languages

Since TEX is an open system some of TEX packages include non-TEX files. Some
authors use DocStrip to generate PostScript headers, shell scripts or programs in
other languages. For them the comments-stripping activity of DocStrip may cause
some trouble. This section describes how to produce non-TEX files with DocStrip
effectively.

6.1 Stuff DocStrip puts in every file

First problem when producing files in “other” languages is that DocStrip adds
some bits to the beginning and end of every generated file that may not fit with
the syntax of the language in question. So we’ll study carefully what exactly goes
where.

The whole text put on beginning of file is kept in a macro defined by
\declarepreamble. FEvery line of input presented to \declarepreamble is
prepended with current value of \MetaPrefix. Standard DocStrip header
is inserted before your text, and macros \inFileName, \outFileName and
\ReferenceLines are used as placeholders for information which will be filled
in later (specifically for each output file). Don’t try to redefine these macros.
After

\declarepreamble\foo

Package FOO for use with TeX
\endpreamble

macro \foo is defined as
WhJ
%% This is file ‘\outFileName ’,~"J
%% generated with the docstrip utility.”"J

3iff stands for ‘if and only if’

4To be compatible with the earlier version of DocStrip also + and - are supported as ‘guard
modifiers’. However, there is an incompatibility with the earlier version since a line with a +-
modified guard is not included inside a block with a guard that evaluates to false, in contrast to
the previous behaviour.

10

\ReferenceLines~"J

hh _— .)
%% Package FOO for use with TeX.

You can play with it freely or even define it from scratch. To embed the preamble
in Adobe structured comments just use \edef:

\edef\foo{\perCent !PS-Adobe-3.0""J%
\DoubleperCent\space Title: \outFileName~"J}
\foo~"J%
\DoubleperCent\space EndComments}

After that use \usepreamble\foo to select your new preamble. Everything above
works as well for postambles.

You may also prevent DocStrip from adding anything to your file, and put any
language specific invocations directly in your code:

\generate{\usepreamble\empty
\usepostamble\empty
\file{foo.ps}{\from{mypackage.dtx}{ps}}}

or alternatively \nopreamble and \nopostamble.

6.2 Meta comments

You can change the prefix used for putting meta comments to output files by
redefining \MetaPrefix. Its default value is \DoubleperCent. The preamble uses
value of \MetaPrefix current at time of \declarepreamble while meta comments
in the source file use value current at time of \generate. Note that this means
that you cannot produce concurrently two files using different \MetaPrefixes.

6.3 Verbatim mode

If your programming language uses some construct that can interferes badly with
DocStrip (e.g., percent in column one) you may need a way for preventing it from
being stripped off. For that purpose DocStrip features ‘verbatim mode’.

A ‘Guard expression’ of the form %<<(END-TAG) marks the start of a section
that will be copied verbatim upto a line containing only a percent in column 1
followed by (END-TAG). You can select any (END-TAG) you want, but note
that spaces count here. Example:

%<*myblock>
some stupid()
#computer<program>
%<<COMMENT
% These two lines are copied verbatim (including percents
%% even if \MetaPrefix is something different than %%).
%COMMENT
using*strange@programming<language>
%</myblock>

And the output is (when stripped with myblock defined):
some stupid()

#computer<program>

11

% These two lines are copied verbatim (including percents
%h even if \MetaPrefix is something different than %%).
using*strange@programming<language>

7 Producing the documentation

We provide a short driver file that can be extracted by the DocStrip program using
the conditional ‘driver’. To allow the use of docstrip.dtx as a program at IniTEX
time (e.g., to strip off its own comments) we need to add a bit of primitive code.
With this extra checking it is still possible to process this file with KTEX 2¢ to
typeset the documentation.

1 (*driver)

If \documentclass is undefined, e.g., if IniTEX or plain TEX is used for formatting,
we bypass the driver file.

We use some trickery to avoid issuing \end{document} when the \ifx con-
struction is unfinished. If condition below is true a \fi is constructed on the
fly, the \ifx is completed, and the real \fi will never be seen as it comes af-
ter \end{document}. On the other hand if condition is false TEX skips over
\csname fil\endcsname having no idea that this could stand for \fi, driver is
skipped and only then the condition completed.

Additional guard gobble prevents DocStrip from extracting these tricks to real
driver file.

2 (*gobble)

3 \ifx\jobname\relax\let\documentclass\undefined\fi

4 \ifx\documentclass\undefined

5 \else \csname fi\endcsname
6 (/gobble)

Otherwise we process the following lines which will result in formatting the doc-
umentation.

7 \documentclass{ltxdoc}

8 \EnableCrossrefs

9 % \DisableCrossrefs

10 % use \DisableCrossrefs if the
11 % index is ready

12 \RecordChanges

13 % \OnlyDescription

14 \typeout{Expect some Under- and overfull boxes}
15 \begin{document}

16 \DocInput{docstrip.dtx}

17 \end{document}

18 (*gobble)

19 \fi

20 (/gobble)

21 (/driver)

12

8 The implementation

8.1 Initex initializations

Allow this program to run with initex. The Z trickery saves the need to worry
about \outer stuff in plain TEX.

22 (¥initex)

23 \catcode ‘\Z=\catcode‘\’

24 \ifnumi3=\catcode ‘\~{\egroup\else

25 \catcode‘\Z=9

26 Z

27 Z \catcode‘\{=1 \catcode‘\}=2

28 Z \catcode‘\#=6 \catcode‘\"=7

29 Z \catcode‘\@=11 \catcode‘\""L=13

30 Z \let\bgroup={ \let\egroup=}

317Z

32 Z \dimendef\z@=10 \z@=Opt \chardef\@ne=1 \countdef\m@ne=22 \m@ne=-1

33 Z \countdef\count@=255

34 Z

35 Z \def\wlog{\immediate\write\m@ne} \def\space{ }

36 Z

37Z \count10=22 % allocates \count registers 23, 24,

38 Z \count15=9 % allocates \toks registers 10, 11,

39 Z \count16=-1 Y, allocates input streams O, 1,

40 Z \countl17=-1 Y, allocates output streams 0, 1,

41 Z

42 Z \def\alloc@#1#2#3{\advance\count1#1\@ne#2#3\counti#1\relax}

43 Z

44 Z \def\newcount{\alloc@0\countdef} \def\newtoks{\alloc@5\toksdef}

45 Z \def\newread{\alloc@6\chardef} \def\newwrite{\alloc@7\chardef}

46 Z

47 Z \def\newif#1{}

48 Z \count@\escapechar \escapechar\m@ne

49 Z \let#1\iffalse
50 Z \@if#1\iftrue
51 Z \eif#1\iffalse

52 Z \escapechar\count@}
53 Z \def\Qif#1#2{%
54 Z \expandafter\def\csname\expandafter\Q@gobbletwo\string#1/

55 Z \expandafter\@gobbletwo\string#2\endcsname
56 Z {\let#1#2}}
57 Z

58 Z \def\@gobbletwo#1#2{}

59 Z \def\@gobblethree#1#2#3{}

60 Z

61 Z \def\loop#l\repeat{\def\body{#1}\iterate}

62 Z \def\iterate{\body \let\next\iterate \else\let\next\relax\fi \next}
63Z \let\repeat\fi

64 Z

65 Z \def\empty{}

66 Z

67 Z \def\tracingall{\tracingcommands2 \tracingstats2

68 Z \tracingpagesl \tracingoutputl \tracinglostcharsl

69 Z \tracingmacros2 \tracingparagraphsl \tracingrestoresl

13

\ifGenerate

\ifContinue

\ifForlist

\ifDefault

\ifMoreFiles

\ifaskforoverwrite

\blockLevel

70 Z \showboxbreadth 10000 \showboxdepth 10000 \errorstopmode
712 \errorcontextlines 10000 \tracingonlinel }

72 Z

73 \bgroup}\filcatcode ‘\Z=11

74 \let\bgroup={ \let\egroup=}

75 (/initex)

8.2 Declarations and initializations

In order to be able to include the @-sign in control sequences its category code
is changed to (letter). The ‘program’ guard here allows most of the code to be
excluded when extracting the driver file.
76 (*program)
77 \catcode ‘\@=11
When we want to write multiple lines to the terminal with one statement, we
need a character that tells TEX to break the lines. We use ~~J for this purpose.

78 \newlinechar=‘\""J

8.2.1 Switches

The program will check if a file of the same name as the file it would be creating
already exists. The switch \ifGenerate is used to indicate if the stripped file has
to be generated.

79 \newif\ifGenerate

The switch \ifContinue is used in various places in the program to indicate if a
\loop has to end.

80 \newif\ifContinue

The program contains an implementation of a for-loop, based on plain TEX’s \loop
macros. The implementation needs a switch to terminate the loop.

81 \newif\ifForlist

The switch \ifDefault is used to indicate whether the default batch file has to
be used.

82 \newif\ifDefault

The switch \ifMoreFiles is used to decide if the user wants more files to be
processed. It is used only in interactive mode; initially it evaluates to (true).

83 \newif\ifMoreFiles \MoreFilestrue

The switch \askforoverwrite is used to decide if the user should be asked when
a file is to be overwritten.

84 \newif\ifaskforoverwrite \askforoverwritetrue

8.2.2 Count registers

Optionally included blocks of code can be nested. The counter \blockLevel will
be used to keep track of the level of nesting. Its initial value is zero.

85 \newcount\blockLevel \blockLevel\z@

14

\emptyLines

\processedLines
\commentsRemoved
\commentsPassed
\codeLinesPassed

\TotalprocessedLines
\TotalcommentsRemoved
\TotalcommentsPassed
\TotalcodeLinesPassed

\NumberOfFiles

\inFile

\ttyin

\ttyout

\inputcheck

\ifToplevel

The count register \emptyLines is used to count the number of consecutive empty
input lines. Only the first will be copied to the output file.

86 \newcount\emptyLines \emptyLines \zQ

To be able to provide the user with some statistics about the stripping process
four counters are allocated if the statistics have been included when this pro-
gram was DocStripped. The number of lines processed is stored in the counter
\processedLines. The number of lines containing comments that are not writ-
ten on the output file is stored in the counter \commentsRemoved; the number
of comments copied to the output file is stored in the counter \commentsPassed.
The number of lines containing macro code that are copied to the output file is
stored in the counter \codeLinesPassed.

87 (*stats)

88 \newcount\processedLines \processedLines \z@
89 \newcount\commentsRemoved \commentsRemoved \z@
90 \newcount\commentsPassed \commentsPassed \z@

91 \newcount\codeLinesPassed \codeLinesPassed \z@

When more than one file is processed and when statistics have been included we
provide the user also with information about the total amount of lines processed.
For this purpose four more count registers are allocated here.

92 \newcount\TotalprocessedLines

93 \newcount\TotalcommentsRemoved
94 \newcount\TotalcommentsPassed

95 \newcount\TotalcodeLinesPassed
96 (/stats)

\TotalprocessedLines \z@
\TotalcommentsRemoved \z@
\TotalcommentsPassed \z@
\TotalcodeLinesPassed \z@

When more than one file is processed, the number of files is stored in the count
register \NumberOfFiles.

97 \newcount\NumberOfFiles \NumberOfFiles\z@

8.2.3 I/0 streams

For reading the file with documented TEX-code, an input stream \inFile is allo-
cated.

98 \newread\inFile

Communication with the user goes through (nonexistent) stream 16.

99 \chardef\ttyin16
100 \chardef\ttyout16

This stream is only used for checking for existence of files.

101 \newread\inputcheck

Execute the argument if current batch file is the outermost one. Otherwise sup-
press it.

102 \newif\iftopbatchfile \topbatchfiletrue

103 \def\ifToplevel{\relax\iftopbatchfile

104 \expandafter\iden \else \expandafter\@gobble\fi}

15

\batchinput

\@@input

\skip@input

\guardStack

\blockHead

When the file docstrip.tex is read because of an \input statement in a batch
file we have to prevent an endless loop (well, limited by TEX’s stack). Therefore
we save the original primitive \input and define a new macro with an argument
delimited by |, (i.e. a space) that just gobbles the argument. Since the end-of-line
character is converted by TEX to a space. This means that \input is not available
as a command within batch files.

We therefore keep a copy of the original under the name \@@input for internal
use. If DocStrip runs under KTEX this command is already defined, so we make a
quick test.

105 \ifx\undefined\@@input \let\@@input\input\fi

To allow the nesting of batch files the \batchinput command is provided it
takes one argument, the name of the batch file to switch to.
106 \def\batchinput#1{/
We start a new group and locally redefine \batchFile to hold the new batch

file name. We toggle the \iftopbatchfile switch since this definitely is not top
batch file.

107 \begingroup

108 \def\batchfile{#1}Y

109 \topbatchfilefalse

110 \Defaultfalse

111 \usepreamble\org@preamble
112 \usepostamble\org@postamble
113 \let\destdir\WriteToDir

After this we can simply call \processbatchFile which will open the new batch
file and read it until it is exhausted. Note that if the batch file is not available, or
misspelled this routine will produce a warning and return.

114 \processbatchFile
The value of \batchfile as well as local definitions of preambles, directories etc.

will be restored at this closing \endgroup, so that further processing continues in
the calling batch file.

115 \endgroup
116 }

And here is the promised redefinition of \input:

117 \def\skip@input#1 {}
118 \let\input\skip@input

8.2.4 Empty macros and macros that expand to a string

Because blocks of code that will conditionally be included in the output can be
nested, a stack is maintained to keep track of these blocks. The main reason for
this is that we want to be able to check if the blocks are properly nested. The
stack itself is stored in \guardStack.

119 \def\guardStack{}

The macro \blockHead is used for storing and retrieving the boolean expression
that starts a block.

120 \def\blockHead{}

16

\yes
\y

\n

\Defaultbatchile

\perCent
\DoubleperCent
\MetaPrefix

\sourceFileName
\batchfile

\inLine

\answer

\tmp

When the user is asked a question that he has to answer with either (yes) or (no),
his response has to be evaluated. For this reason the macros \yes and \y are
defined.

121 \def\yes{yes}

122 \def\y{y}

We also define \n for use in DocStrip command files.
123 \def\n{n}

When the DocStrip program has to process a batch file it can look for a batch file
with a default name. This name is stored in \DefaultbatchFile.

124 \def\DefaultbatchFile{docstrip.cmd}

To be able to display percent-signs on the terminal, a % with category code 12
is stored in \perCent and \DoubleperCent. The macro \MetaPrefix is put on
beginning of every meta-comment line. It is defined indirect way since some ap-
plications need redefining it.

125 {\catcode ‘\%=12

126 \gdef\perCent{%}

127 \gdef\DoubleperCent{%%}

128 }

129 \let\MetaPrefix\DoubleperCent

In order to allow formfeeds in the input we define a one-character control sequence
~~L.
130 \def~"L{ }

The only result of using \Name is slowing down execution since its typical
use (e.g., \Name\def{foo bar}...) has exactly the same number of tokens as its
expansion. However I think that it’s easier to read. The meaning of \Name as a
black box is: “construct a name from second parameter and then pass it to your
first parameter as a parameter”.

\@stripstring is used to get tokens building name of a macro without leading
backslash.

131 \def\Name#1#2{\expandafter#1\csname#2\endcsname}
132 \def\@stripstring{\expandafter\@gobble\string}

8.2.5 Miscellaneous variables

The macro \sourceFileName is used to store the name of the current input file.
The macro \batchfile is used to store the name of the batch file.

The macro \inLine is used to store the lines, read from the input file, before
further processing.

When some interaction with the user is needed the macro \answer is used to store
his response.

Sometimes something has to be temporarily stored in a control sequence. For
these purposes the control sequence \tmp is used.

17

\eltStart
\eltEnd

\gStop

\pop

\popX

\push

\pushX

8.3 Support macros
8.3.1 The stack mechanism

It is possible to have ‘nested guards’. This means that within a block of optionally
included code a subgroup is only included when an additional option is specified.
To keep track of the nesting of the guards the currently ‘open’ guard can be pushed
on the stack \guardStack and later popped off the stack again. The macros that
implement this stack mechanism are loosely based on code that is developed in
the context of the IXTEX3 project.

To be able to implement a stack mechanism we need a couple of support
macros.

The macros \eltStart and \eltEnd are used to delimit a stack element. They
are both empty.

133 \def\eltStart{}
134 \def\eltEnd{}

The macro \qStop is a so-called ‘quark’, a macro that expands to itself®.
135 \def\gStop{\gStop}

The macro \pop(stack){cs) ‘pops’ the top element from the stack. It assigns the
value of the top element to (cs) and removes it from (stack). When (stack) is
empty a warning is issued and (cs) is assigned an empty value.

136 \def\pop#1#2{J,

137 \ifx#1\empty

138 \Msg{Warning: Found end guard without matching beginl}},
139 \let#2\empty
140 \else

To be able to ‘peel’ off the first guard we use an extra macro \popX that receives
both the expanded and the unexpanded stack in its arguments. The expanded
stack is delimited with the quark \gStop.

141 \def\tmp{\expandafter\popX #1\gStop #1#2}/,

142 \expandafter\tmp\fi}

When the stack is expanded the elements are surrounded with \eltStart and
\eltEnd. The first element of the stack is assigned to #4.

143 \def\popX\eltStart #1\eltEnd #2\qStop #3#4{\def#3{#2}\def#4{#1}}

Guards can be pushed on the stack using the macro \push(stack){guard). Again
we need a secondary macro (\pushX) that has both the expanded and the unex-
panded stack as arguments.

144 \def\push#1#2{\expandafter\pushX #1\qStop #1{\eltStart #2\eltEnd}}

The macro \pushX picks up the complete expansion of the stack as its first argu-
ment and places the guard in #3 on the ‘top’.

145 \def\pushX #1\qStop #2#3{\def #2{#3#1}}

5The concept of ‘quarks’ is developed for the IATEX3 project.

18

\forlist

\FirstElt

\OtherElts

\whileswitch

8.3.2 Programming structures

When the program is used in interactive mode the user can supply a list of files
that have to be processed. In order to process this list a for-loop is needed.
This implementation of such a programming construct is based on the use of the
\loop{(body)}\repeat macro that is defined in plain TEX. The syntax for this
loop is:

\for{control sequence) := (list) \do
(body)
\od

The (list) should be a comma separated list.

The first actions that have to be taken are to set the switch \ifForlist to
(true) and to store the loop condition in the macro \ListCondition. This is done
using an \edef to allow for a control sequence that contains a (list).

146 \def\forlist#1:=#2\do#3\od{/

147 \edef\ListCondition{#2}/,

148 \Forlisttrue
Then we start the loop. We store the first element from the \ListCondition in
the macro that was supplied as the first argument to \forlist. This element is
then removed from the \ListCondition.

149 \loop
150 \edef#1{\expandafter\FirstElt\ListCondition, \empty.}%
151 \edef\ListCondition{\expandafter\OtherElts\ListCondition, \empty.2}%

When the first element from the (list) is empty, we are done processing, so we
switch \ifForlist to (false). When it is not empty we execute the third argument
that should contain TEX commands to execute.

152 \ifx#1\empty \Forlistfalse \else#3\fi

Finally we test the switch \ifForlist to decide whether the loop has to be con-
tinued.

153 \ifForlist
154 \repeat}

The macro \FirstElt is used to get the first element from a comma-separated
list.

155 \def\FirstE1t#1,#2.{#1}

The macro \OtherElts is used to get all elements but the first element from a
comma-separated list.
156 \def\OtherElts#1,#2.{#2}

When the program is used in interactive mode the user might want to process
several files with different options or extensions. This goal could be reached by
running the program several times, but it is more user-friendly to ask if he would
like to process more files when we are done processing his last request. To ac-
complish this we need the implementation of a while-loop. Again plain TEX’s
\loop{(body)}\repeat is used to implement this programming structure.

The syntax for this loop is:

\whileswitch(switch) \fi (list) {(body)}

19

\@nostreamerror
\@streamfound

The first argument to this macro has to be a switch, defined using \newif; the
second argument contains the statements to execute while the switch evaluates to
(true).

157 \def\whileswitch#1\fi#2{#1\loop#2#1\repeat\fi}

8.3.3 Output streams allocator

For each of sixteen output streams available we have a macro named \s@0 through
\s@15 saying if the stream is assigned to a file (1) or not (0). Initially all streams
are not assigned.

We also declare 16 counters which will be needed by the conditional code
inclusion algorithm.

158 \ifx\@tempcnta\undefined \newcount\@tempcnta \fi
159 \@tempcnta=0

160 \1loop

161 \Name\chardef{s@\number\@tempcntal}=0

162 \csname newcount\expandafter\endcsnamey,

163 \csname off@\number\@tempcnta\endcsname

164 \advance\@tempcntal

165 \ifnum\@tempcnta<i6\repeat

We will use The TgXbook style list to search through streams.

166 \let\s@do\relax

167 \edef\@Qoutputstreams{},

168 \s@do\Name\noexpand{s@0}\s@do\Name\noexpand{s@1}%
169 \s@do\Name\noexpand{s@2}\s@do\Name\noexpand{s@3}}
170 \s@do\Name\noexpand{s@4}\s@do\Name\noexpand{s@5}/,
171 \s@do\Name\noexpand{s@6}\s@do\Name\noexpand{s@71}%
172 \s@do\Name\noexpand{s@8}\s@do\Name\noexpand{s@9}y
173 \s@do\Name\noexpand{s@10}\s@do\Name\noexpand{s@11}%
174 \s@do\Name\noexpand{s@12}\s@do\Name\noexpand{s@13}%
175 \s@do\Name\noexpand{s@14}\s@do\Name\noexpand{s@15}%
176 \noexpand\@nostreamerror

177}

When \@outputstreams is executed \s@do is defined to do something on condition
of some test. If condition always fails macro \@nostreamerror on the end of the
list causes an error. When condition succeeds \@streamfound is called, which
gobbles rest of the list including the ending \@nostreamerror. It also gobbles
\fi ending the condition, so the \fi is reinserted.

178 \def\@nostreamerror{\errmessage{No more output streams!}}
179 \def\@streamfound#1\@nostreamerror{\fi}

\@stripstr is auxiliary macro eating characters \s@ (backslash,s,@). Tt is
defined in somewhat strange way since \s@ must have all category code 12 (other).
This macro is used to extract stream numbers from stream names.

180 \bgroup\edef\x{\egroup
181 \def\noexpand\@stripstr\string\se{}}
182 \x

20

\StreamOpen
\StreamPut
\StreamClose

\maybeMsg
\showprogress
\keepsilent

\Msg

\Ask

Here is stream opening operator. Its parameter should be a macro named the
same as the external file being opened. E.g., to write to file foo.tex use
\StreamOpen\foo, then \StreamPut\foo and \StreamClose\foo.

183 \chardef\stream@closed=16
184 \def\StreamOpen#1{%

185 \chardef#1=\stream@closed
186 \def\s@do##1{\ifnum##1=0

187 \chardef#1=\expandafter\@stripstr\string##1 7

188 \global\chardef##1=1 %

189 \immediate\openout#1=\csname pth@\@stripstring#1l\endcsname %
190 \@streamfound

191 \fi}

192 \Q@outputstreams

193}

194 \def\StreamClose#1{%
195 \immediate\closeout#1,
196 \def\s@do##1{\ifnum#l=\expandafter\@stripstr\string##l 7

197 \global\chardef##1=0 %
198 \@streamfound
199 \fi}

200 \@outputstreams

201 \chardef#1l=\stream@closed

202 %}

203 \def\StreamPut{\immediate\write}

8.3.4 Input and Output

When this program is used it can optionally show its progress on the terminal.
In that case it will write a special character to the terminal (and the transcript
file) for each input line. This option is on by default when statistics are in-
cluded in docstrip.tex. It is off when statistics are excluded. The commands
\showprogress and \keepsilent can be used to choose otherwise.

204 \def\showprogress{\let\maybeMsg\message}

205 \def\keepsilent{\let\maybeMsg\Qgobble}

206 (*stats)

207 \showprogress

208 (/stats)

209 (-stats) \keepsilent

For displaying messages on the terminal the macro \Msg is defined to write im-
mediately to \ttyout.

210 \def\Msg{\immediate\write\ttyout}

The macro \Ask{(cs)}{(string)} is a slightly modified copy of the WTEX macro
\typein. It is used to ask the user a question. The (string) will be displayed on
his terminal and the response will be stored in the (¢s). The trailing space left
over from the carriage return is stripped off by the macro \strip. If the user just
types a carriage return, the result will be an empty macro.

211 \def\iden#1{#1}

212 \def\strip#1#2 \@gobble{\def #1{#2}}

213 \def\@defpar{\par}

214 \def\Ask#1#2{J,

21

\OriginalAsk

\askonceonly

\@gobble

\Endinput

\makeOther

\end

\@addto

215 \message{#2}\read\ttyin to #1\ifx#1\@defpar\def#1{}\else
216 \iden{\expandafter\strip
217 \expandafter#1#1\@gobble\@gobble} \@gobble\fi}

218 \let\OriginalAsk=\Ask

219 \def\askonceonly{/
220 \def\Ask##1##2{},
221 \OriginalAsk{##1}{##2}/,

222 \global\let\Ask\OriginalAsk

223 \Ask\noprompt{’

224 By default you will be asked this question for every file.""J}
225 If you enter ‘y’ now,”"J%

226 I will assume ‘y’ for all future questions”"J%

227 without prompting.},
228 \ifx\y\noprompt\let\noprompt\yes\fi
229 \ifx\yes\noprompt\gdef \Ask####1####2{\def####1{y}}\fi}}

8.3.5 Miscellaneous

A macro that has an argument and puts it in the bitbucket.
230 \def\@gobble#1{}

When a doc file contains a \endinput on a line by itself this normally means
that anything following in this file should be ignored. Therefore we need a macro
containing \endinput as its replacement text to check this against \inLine (the
current line from the current input file). Of course the backslash has to have the
correct \catcode. One way of doing this is feeding \\ to the \string operation
and afterwards removing one of the \ characters.

231 \edef\Endinput{\expandafter\@gobble\string\\endinput}

During the process of reading a file with TEX code the category code of all spe-
cial characters has to be changed to (other). The macro \makeOther serves this
purpose.

232 \def\makeOther#1{\catcode ‘#1=12\relax}

For now we want the DocStrip program to be compatible with both plain TEX and
ETEX. ETEX hides plain TEX’s \end command and calls it \@@end. We unhide it
here.

233 \ifx\undefined\@@end\else\let\end\@@end\fi

A macro extending macro’s definition. The trick with \csname is necessary to get
around \newtoks being outer in plain TEX and ETEX version 2.09.

234 \ifx\@temptokena\undefined \csname newtoks\endcsname\Q@temptokena\fi

235 \def \Q@addto#1#2{/,
236 \Q@temptokena\expandafter{#1}/
237 \edef#1{\the\@temptokena#2}}

22

\@ifpresent

\tospaces

\uptospace

\afterfi

\@ifnextchar

\kernel@ifnextchar

This macro checks if its first argument is present on a list passed as the second
argument. Depending on the result it executes either its third or fourth argument.

238 \def\Q@ifpresent#1#2#3#4{Y,

239 \def\tmp##1#1##2\qStop{\ifx!##2!}%

240 \expandafter\tmp#2#1\qStop #4\else #3\fi
241}

This macro converts its argument delimited with \secapsot to appropriate num-

ber of spaces. We need this for smart displaying messages on the screen.
\@spaces are used when we need many spaces in a row.

242 \def\tospaces#1{%

243 \ifx#1\secapsot\secapsot\fi\space\tospaces}

244 \def\secapsot\fi\space\tospaces{\fi}

245 \def\@spaces{\space\space\space\space\space}

This macro extracts from its argument delimited with \gStop part up to first
occurrence of space.

246 \def\uptospace#1 #2\qStop{#1}

This macro can be used in conditionals to perform some actions (its first parame-
ter) after the condition is completed (i.e. after reading the matching \fi. Second
parameter is used to gobble the rest of \if ... \fi construction (some \else
maybe). Note that this won’t work in nested \ifs!

247 \def\afterfi#i1#2\fi{\fi#1}

This is one of IXTEX’s macros not defined by plain. My devious definition differs
from the standard one but functionality is the same.

248 \def\@ifnextchar#1#2#3{\bgroup

249 \def\reserved@a{\ifx\reserved@c #1 \aftergroup\@firstoftwo

250 \else \aftergroup\@secondoftwo\fi\egroup

251 {#23{#3}},

252 \futurelet\reserved@c\@ifnch

253}

254 \def\@ifnch{\ifx \reserved@c \@sptoken \expandafter\@xifnch
255 \else \expandafter\reserved@a

256 \fi}

257 \def\@firstoftwo#1#2{#1}
258 \def\@secondoftwo#1#2{#2}
259 \iden{\let\@sptoken= } %
260 \iden{\def\@xifnch} {\futurelet\reserved@c\@ifnch}

The 2003/12/01 release of IXTEX incorporated this macro to avoid problems with
amsmath but this also means that we have to perform the same trick here when
people use KTEX on a installation file containing \ProvidesFile.

261 \let\kernel@ifnextchar\@ifnextchar

8.4 The evaluation of boolean expressions

For clarity we repeat here the syntax for the boolean expressions in a somewhat
changed but equivalent way:

23

\Terminal

(Expression) == (Secondary) | (Secondary) {|, ,} (Ezpression)
(Secondary) == (Primary) | (Primary) & (Secondary)
(Primary) = (Terminal) | '(Primary) | ({Expression))

The | stands for disjunction, the & stands for conjunction and the ! stands for
negation. The (Terminal) is any sequence of letters and evaluates to (true) iff it
occurs in the list of options that have to be included.

Since we can generate multiple output files from one input, same guard ex-
pressions can be computed several times with different options. For that reason
we first “compile” the expression to the form of one parameter macro \Expr ex-
panding to nested \ifs that when given current list of options produces 1 or 0
as a result. The idea is to say \if1\Expr{(current set of options)}...\fi for all
output files.

Here is a table recursively defining translations for right sides of the grammar.
7(X) denotes translation of X.

T((Terminal)) = \t@<Terminal>,#1,<Terminal>,\qStop
) = \if17({(Primary))0\elsel\fi
7(((Expression))) = 7((Expression))
)) = \ifo7((Primary))0\else 7((Secondary)) \fi
)

= \if17({Secondary)) 1\else 7({Ezpression)) \fi

7(Y{Primary)

T((Primary)&(Secondary
T((Secondary) | (Expression

\t@<Terminal> denotes macro with name constructed from t@ with appended
tokens of terminal. E.g., for terminal foo the translation would be

\t@foo,#1,foo,\gStop

This will end up in definition of \Expr, so #1 here will be substituted by current
list of options when \Expr is called. Macro \t@foo would be defined as

\def\t@foo#1,foo,#2\qStop{\ifx>#2>0\elsel\fi}

When called as above this will expand to 1 if foo is present on current list of
options and to 0 otherwise.

Macros below work in “almost expand-only” mode i.e. expression is analyzed
only by expansion but we have to define some macros on the way (e.g., \Expr and
\t@foo).

The first parameter of each of these macros is “continuation” (in the sense
similar to the language SCHEME). Continuation is a function of at least one argu-
ment (parameter) being the value of previous steps of computation. For example
macro \Primary constructs translation of (Primary) expression. When it decides
that expression is completed it calls its continuation (its first argument) passing
to it whole constructed translation. Continuation may expect more arguments if
it wants to see what comes next on the input.

We will perform recursive descent parse, but definitions will be presented in
bottom-up order.

(Terminal)s are recognized by macro \Terminal. The proper way of calling it is
\Terminal{({current continuation)}{}. Parameters are: continuation, (Terminal)
so far and next charact