
The doc and shortvrb Packages∗

Frank Mittelbach†

Gutenberg Universität Mainz

December 27, 2006

Abstract

This package contains the definitions that are necessary to format the
documentation of package files. The package was developed in Mainz in
cooperation with the Royal Military College of Science. This is an update
which documents various changes and new features in doc and integrates
the features of newdoc.

Contents

1 Introduction 3
1.1 Using the doc package . . 3

2 The User Interface 4
2.1 The driver file 4
2.2 General conventions . . . 4
2.3 Describing the usage of

new macros 5
2.4 Describing the definition

of new macros 5
2.5 Formatting the margins . 6
2.6 Using a special escape

character 6
2.7 Cross-referencing all

macros used 6
2.8 Producing the actual in-

dex entries 7
2.9 Setting the index entries . 8
2.10 Changing the default val-

ues of style parameters . . 8
2.11 Short input of verbatim

text pieces 9
2.12 Additional bells and

whistles 9
2.13 Basic usage summary . . 11
2.14 Acknowledgements 12

3 The Description of Macros 12

3.1 Options supported by doc 13
3.2 Macros surrounding the

‘definition parts’ 13
3.3 Macros for the ‘docu-

mentation parts’ 18
3.4 Formatting the margin . . 23
3.5 Creating index entries by

scanning ‘macrocode’ . . . 23
3.6 Macros for scanning

macro names 25
3.7 The index exclude list . . 28
3.8 Macros for generating in-

dex entries 29
3.9 Redefining the index en-

vironment 33
3.10 Dealing with the change

history 36
3.11 Bells and whistles 38
3.12 Providing a checksum

and character table 42
3.13 Attaching line numbers

to code lines 44
3.14 Layout Parameters for

documenting package files 45
3.15 Changing the \catcode

of % 46
3.16 GetFileInfo 46

∗This file has version number v2.1d dated 2006/02/02.
†Further commentary added at Royal Military College of Science by B. Hamilton Kelly;

English translation of parts of the original German commentary provided by Andrew Mills;
fairly substantial additions, particularly from newdoc, and documentation of post-v1.5q features
added at v1.7a by Dave Love (SERC Daresbury Lab). Extraction of shortvrb package added
by Joachim Schrod (TU Darmstadt).

1

Preface to version 1.7

This version of doc.dtx documents
changes which have occurred since the
last published version [5] but which have
been present in distributed versions of
doc.sty for some time. It also inte-
grates the (undocumented) features of
the distributed newdoc.sty.

The following changes and additions
have been made to the user interface
since the published version [5]. See §2
for more details.

Driver mechanism \DocInput is
now used in the driver file to input
possibly multiple independent doc
files and doc no longer has to be
the last package. \IndexListing
is replaced by \IndexInput;

Indexing is controlled by \PageIndex
and \CodelineIndex, one of
which must be specified to pro-
duce an index—there is no longer
a \makeindex in the default
\DocstyleParms;

The macro environment now takes
as argument the macro name with
the backslash;

Verbatim text Newlines are now for-
bidden inside \verb and com-
mands \MakeShortVerb and
\DeleteShortVerb are provided
for verbatim shorthand;

\par can now be used in \DoNotIndex;

Checksum/character table support
for ensuring the integrity of dis-
tributions is added;

\printindex becomes \PrintIndex;

multicol.sty is no longer necessary
to use doc or print the docu-
mentation (although it is recom-
mended);

‘Docstrip’ modules are recognised
and formatted specially.

As well as adding some completely
new stuff, the opportunity has been
taken to add some commentary to the
code formerly in newdoc.sty and that
added after version 1.5k of doc.sty.
Since (as noted in the sections con-
cerned) this commentary wasn’t writ-
ten by Frank Mittelbach but the code

was, it is probably not true in this case
that “if the code and comments disagree
both are probably wrong”!

Bugs

There are some known bugs in this ver-
sion:

• The \DoNotIndex command
doesn’t work for some single char-
acter commands most noticeable
\%.

• The ‘General changes’ glossary
entry would come out after macro
names with a leading ! and possi-
bly a leading ";

• If you have an old version of make-
index long \changes entries will
come out strangely and you may
find the section header amalga-
mated with the first changes en-
try. Try to get an up-to-date one
(see p. 8);

• Because the accompanying make-
index style files support the in-
consistent attribute specifications
of older and newer versions make-
index always complains about
three ‘unknown specifier’s when
sorting the index and changes en-
tries.

• If \MakeShortVerb and
\DeleteShortVerb are used with
single character arguments, e.g.,
{|} instead of {\|} chaos may
happen.

(Some ‘features’ are documented be-
low.)

Wish list

• Hooks to allow \DescribeMacro
and \DescribeEnv to write out
to a special file information about
the package’s ‘exported’ defini-
tions which they describe. This
could subsequently be included in
the docstripped .sty file in a
suitable form for use by smart
editors in command completion,
spelling checking etc., based on
the packages used in a document.

2

This would need agreement on a
‘suitable form’.

• Indexing of the modules used in
docstrip’s %< directives. I’m not
sure how to index directives con-
taining module combinations;

• Writing out bibliographic infor-
mation about the package;

• Allow turning off use of the spe-
cial font for, say, the next guarded
block.

1 Introduction

The TEX macros which are described
here allow definitions and documenta-
tion to be held in one and the same file.
This has the advantage that normally
very complicated instructions are made
simpler to understand by comments in-
side the definition. In addition to this,
updates are easier and only one source
file needs to be changed. On the other
hand, because of this, the package files
are considerably longer: thus TEX takes
longer to load them. If this is a prob-
lem, there is an easy remedy: one needs
only to run the docstrip.tex program
that removes nearly all lines that begin
with a percent sign.

The idea of integrated documenta-
tion was born with the development of
the TEX program; it was crystallized
in Pascal with the Web system. The
advantages of this method are plain to
see (it’s easy to make comparisons [2]).
Since this development, systems similar
to Web have been developed for other
programming languages. But for one
of the most complicated programming
languages (TEX) the documentation has
however been neglected. The TEX world
seems to be divided between:—

• a couple of “wizards”, who pro-
duce many lines of completely un-
readable code “off the cuff”, and

• many users who are amazed that
it works just how they want it to
do. Or rather, who despair that
certain macros refuse to do what
is expected of them.

I do not think that the Web sys-
tem is the reference work; on the con-
trary, it is a prototype which suffices
for the development of programs within
the TEX world. It is sufficient, but
not totally sufficient.1 As a result
of Web, new programming perspec-
tives have been demonstrated; unfortu-
nately, though, they haven’t been de-
veloped further for other programming
languages.

The method of documentation of
TEX macros which I have introduced
here should also only be taken as a first
sketch. It is designed explicitly to run
under LATEX alone. Not because I was of
the opinion that this was the best start-
ing point, but because from this start-
ing point it was the quickest to develop.2

As a result of this design decision, I had
to move away from the concept of mod-
ularization; this was certainly a step
backward.

I would be happy if this article could
spark off discussion over TEX docu-
mentation. I can only advise anyone
who thinks that they can cope with-
out documentation to “Stop Time” un-
til he or she completely understands the
AMS-TEX source code.

1.1 Using the doc package

Just like any other package, invoke it by
requesting it with a \usepackage com-
mand in the preamble. Doc’s use of
\reversemarginpars may make it in-
compatible with some classes.

1I know that this will be seen differently by a few people, but this product should not be
seen as the finished product, at least as far as applications concerning TEX are concerned. The
long-standing debate over ‘multiple change files’ shows this well.

2This argument is a bad one, however, it is all too often trotted out.

3

2 The User Interface

2.1 The driver file

If one is going to document a set of macros with the doc package one has to
prepare a special driver file which produces the formatted document. This driver
file has the following characteristics:
\documentclass[〈options〉]{〈document-class〉}
\usepackage{doc}

〈preamble〉
\begin{document}

〈special input commands〉
\end{document}

The 〈document-class〉 might be any document class, I normally use article.
In the 〈preamble〉 one should place declarations which manipulate the behavior

of the doc package like \DisableCrossrefs or \OnlyDescription.
Finally the 〈special input commands〉 part should contain one or more\DocInput

\IndexInput \DocInput〈file name〉 and/or \IndexInput〈file name〉 commands. The \DocInput
command is used for files prepared for the doc package whereas \IndexInput
can be used for all kinds of macro files. See page 10 for more details of
\IndexInput. Multiple \DocInputs can be used with a number of included files
which are each self-contained self-documenting packages—for instance, each con-
taining \maketitle.

As an example, the driver file for the doc package itself is the following text
surrounded by %<*driver> and %</driver>. To produce the documentation you
can simply run the .dtx file through LATEX in which case this code will be executed
(loading the document class ltxdoc, etc.) or you can extract this into a separate
file by using the docstrip program. The line numbers below are added by doc’s
formatting. Note that the class ltxdoc has the doc package preloaded.

1 〈∗driver〉
2 \documentclass{ltxdoc}

3 \EnableCrossrefs

4 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready

5 \CodelineIndex

6 \RecordChanges % Gather update information

7 %\OnlyDescription % comment out for implementation details

8 %\OldMakeindex % use if your MakeIndex is pre-v2.9

9 \setlength\hfuzz{15pt} % dont make so many

10 \hbadness=7000 % over and under full box warnings

11 \begin{document}

12 \DocInput{doc.dtx}

13 \end{document}

14 〈/driver〉

2.2 General conventions

A TEX file prepared to be used with the ‘doc’ package consists of ‘documentation
parts’ intermixed with ‘definition parts’.

Every line of a ‘documentation part’ starts with a percent sign (%) in column
one. It may contain arbitrary TEX or LATEX commands except that the character
‘%’ cannot be used as a comment character. To allow user comments, the ^^A
character is defined as a comment character later on. Such ‘metacomments’ may
be also be included simply by surrounding them with \iffalse . . . \fi.

All other parts of the file are called ‘definition parts’. They contain fractions
of the macros described in the ‘documentation parts’.

If the file is used to define new macros (e.g. as a package file in the \usepackage
macro), the ‘documentation parts’ are bypassed at high speed and the macro
definitions are pasted together, even if they are split into several ‘definition parts’.

4

On the other hand, if the documentation of these macros is to be produced,macrocode

the ‘definition parts’ should be typeset verbatim. To achieve this, these parts
are surrounded by the macrocode environment. More exactly: before a ‘definition
part’ there should be a line containing

% \begin{macrocode}
and after this part a line

% \end{macrocode}
There must be exactly four spaces between the % and \end{macrocode} — TEX is
looking for this string and not for the macro while processing a ‘definition part’.

Inside a ‘definition part’ all TEX commands are allowed; even the percent sign
could be used to suppress unwanted spaces etc.

Instead of the macrocode environment one can also use the macrocode∗ en-macrocode*

vironment which produces the same results except that spaces are printed as
characters.

2.3 Describing the usage of new macros

When you describe a new macro you may use \DescribeMacro to indicate that\DescribeMacro

at this point the usage of a specific macro is explained. It takes one argument
which will be printed in the margin and also produces a special index entry. For
example, I used \DescribeMacro{\DescribeMacro} to make clear that this is the
point where the usage of \DescribeMacro is explained.

An analogous macro \DescribeEnv should be used to indicate that a LATEX\DescribeEnv

environment is explained. It will produce a somewhat different index entry. Below
I used \DescribeEnv{verbatim}.

It is often a good idea to include examples of the usage of new macros in theverbatim

text. Because of the % sign in the first column of every row, the verbatim environ-
ment is slightly altered to suppress those characters.3 The verbatim∗ environmentverbatim*

is changed in the same way. The \verb command is re-implemented to give an\verb

error report if a newline appears in its argument. The verbatim and verbatim∗
environments set text in the style defined by \MacroFont (§2.4).

2.4 Describing the definition of new macros

To describe the definition of a new macro we use the macro environment. It hasmacro

one argument: the name of the new macro.4 This argument is also used to print
the name in the margin and to produce an index entry. Actually the index entries
for usage and definition are different to allow an easy reference. This environment
might be nested. In this case the labels in the margin are placed under each
other. There should be some text—even if it’s just an empty \mbox{}—in this
environment before \begin{macrocode} or the marginal label won’t print in the
right place.

There also exist four style parameters: \MacrocodeTopsep and \MacroTopsep\MacrocodeTopsep

\MacroTopsep are used to control the vertical spacing above and below the macrocode and
the macro environment, \MacroIndent is used to indent the lines of code and\MacroIndent
\MacroFont holds the font and a possible size change command for the code\MacroFont

lines, the verbatim[*] environment and the macro names printed in the margin.
If you want to change their default values in a class file (like ltugboat.cls)
use the \DocstyleParms command described below. Starting with release 2.0a
it can now be changed directly as long as the redefinition happens before the
\begin{document}.

3These macros were written by Rainer Schöpf [8]. He also provided a new verbatim environ-
ment which can be used inside of other macros.

4This is a change to the style design I described in TUGboat 10#1 (Jan. 89). We finally
decided that it would be better to use the macro name with the backslash as an argument.

5

2.5 Formatting the margins

As mentioned earlier, some macros and the macro environment print their ar-\PrintDescribeMacro

\PrintDescribeEnv

\PrintMacroName

\PrintEnvName

guments in the margin. This is actually done by four macros which are
user definable.5 They are named \PrintDescribeMacro, \PrintDescribeEnv,
\PrintMacroName (called by the macro environment) and \PrintEnvName (called
by the environment environment).

2.6 Using a special escape character

If one defines complicated macros it is sometimes necessary to introduce a new\SpecialEscapechar

escape character because the ‘\’ has got a special \catcode. In this case one can
use \SpecialEscapechar to indicate which character is actually used to play the
rôle of the ‘\’. A scheme like this is needed because the macrocode environment
and its counterpart macrocode∗ produce an index entry for every occurrence of
a macro name. They would be very confused if you didn’t tell them that you’d
changed \catcode s. The argument to \SpecialEscapechar is a single-letter
control sequence, that is, one has to use \| for example to denote that ‘|’ is used
as an escape character. \SpecialEscapechar only changes the behavior of the
next macrocode or macrocode∗ environment.

The actual index entries created will all be printed with \ rather than |, but this
probably reflects their usage, if not their definition, and anyway must be preferable
to not having any entry at all. The entries could be formatted appropriately, but
the effort is hardly worth it, and the resulting index might be more confusing (it
would certainly be longer!).

2.7 Cross-referencing all macros used

As already mentioned, every new macro name used within a macrocode or\DisableCrossrefs

\EnableCrossrefs macrocode∗ environment will produce an index entry. In this way one can eas-
ily find out where a specific macro is used. Since TEX is considerably slower
when it has to produce such a bulk of index entries one can turn off this fea-
ture by using \DisableCrossrefs in the driver file. To turn it on again just use
\EnableCrossrefs.6

But also finer control is provided. The \DoNotIndex macro takes a list of\DoNotIndex

macro names separated by commas. Those names won’t show up in the index.
You might use several \DoNotIndex commands: their lists will be concatenated.
In this article I used \DoNotIndex for all macros which are already defined in
LATEX.

All three above declarations are local to the current group.
Production (or not) of the index (via the \makeindex commend) is controlled

by using or omitting the following declarations in the driver file preamble; if nei-
ther is used, no index is produced. Using \PageIndex makes all index entries\PageIndex

refer to their page number; with \CodelineIndex, index entries produced by\CodelineIndex

\DescribeMacro and \DescribeEnv refer to page number but those produced
by the macro environment refer to the code lines, which will be numbered auto-
matically.7 The style of this numbering can be controlled by defining the macro\theCodelineNo

\theCodelineNo. Its default definition is to use scriptsize arabic numerals; a
user-supplied definition won’t be overwritten.

When you don’t wish to get an index but want your code lines numbered use\CodelineNumbered

5You may place the changed definitions in a separate package file or at the beginning of the
documentation file. For example, if you don’t like any names in the margin but want a fine index
you can simply \let these macros equal \@gobble. The doc package won’t redefine any existing
definitions of these macros.

6Actually, \EnableCrossrefs changes things more drastically; any following
\DisableCrossrefs which might be present in the source will be ignored.

7The line number is actually that of the first line of the first macrocode environment in the
macro environment.

6

\CodelineNumbered instead of \CodelineIndex. This prevents the generation of
an unnecessary .idx file.

2.8 Producing the actual index entries

Several of the aforementioned macros will produce some sort of index entries.
These entries have to be sorted by an external program—the current implemen-
tation assumes that the makeindex program by Chen [4] is used.

But this isn’t built in: one has only to redefine some of the following macros
to be able to use any other index program. All macros which are installation de-
pendent are defined in such a way that they won’t overwrite a previous definition.
Therefore it is safe to put the changed versions in a package file which might be
read in before the doc package.

To allow the user to change the specific characters recognized by his or her index
program all characters which have special meaning in the makeindex program are
given symbolic names.8 However, all characters used should be of \catcode other
than ‘letter’ (11).

The \actualchar is used to separate the ‘key’ and the actual index entry. The\actualchar

\quotechar \quotechar is used before a special index program character to suppress its special
meaning. The \encapchar separates the indexing information from a letter string\encapchar
which makeindex uses as a TEX command to format the page number associated
with a special entry. It is used in this package to apply the \main and the \usage
commands. Additionally \levelchar is used to separate ‘item’, ‘subitem’ and\levelchar

‘subsubitem’ entries.
It is a good idea to stick to these symbolic names even if you know which index

program is used. In this way your files will be portable.
To produce a main index entry for a macro the \SpecialMainIndex macro9\SpecialMainIndex

\SpecialMainEnvIndex may be used. It is called ‘special’ because it has to print its argument verbatim.
A similar macro, called \SpecialMainEnvIndex is used for indexing the main
definition point of an environment.10 If you want a normal index entry for a\SpecialIndex

macro name \SpecialIndex might be used.11 To index the usage of a macro\SpecialUsageIndex

\SpecialEnvIndex or an environment \SpecialUsageIndex and \SpecialEnvIndex may be used.
Additionally a \SortIndex command is provided. It takes two arguments—the\SortIndex
sort key and the actual index entry.

All these macros are normally used by other macros; you will need them only
in an emergency.

But there is one characteristic worth mentioning: all macro names in the index\verbatimchar

are typeset with the \verb* command. Therefore one special character is needed
to act as a delimiter for this command. To allow a change in this respect, again
this character is referenced indirectly, by the macro \verbatimchar. It expands
by default to + but if your code lines contain macros with ‘+’ characters in their
names (e.g. when you use \+) you will end up with an index entry containing
\verb+\++ which will be typeset as ‘\+’ and not as ‘\+’. In this case you should
redefine \verbatimchar globally or locally to overcome this problem.

We also provide a * macro. This is intended to be used for index entries like*

index entries
Special macros for ˜

Such an entry might be produced with the line:

\index{index entries\levelchar Special macros for *}

Versions of makeindex prior to 2.9 had some bugs affecting doc. One of these,\OldMakeindex

pertaining to the % character doesn’t have a work-around appropriate for versions
8I don’t know if there exists a program which needs more command characters, but I hope

not.
9This macro is called by the macro environment.

10This macro is called by the environment environment.
11This macro is called within the macrocode environment when encountering a macro name.

7

with and without the bug. If you have an old version, invoke \OldMakeindex in
a package file or the driver file to prevent problems with index entries such as \%,
although you’ll probably normally want to turn off indexing of \% anyway. Try to
get an up-to-date makeindex from one of the TEX repositories.

2.9 Setting the index entries

After the first formatting pass through the .dtx file you need to sort the index
entries written to the .idx file using makeindex or your favourite alternative. You
need a suitable style file for makeindex (specified by the -s switch). A suitable one
is supplied with doc, called gind.ist.

To read in and print the sorted index, just put the \PrintIndex command\PrintIndex

as the last (commented-out, and thus executed during the documentation pass
through the file) command in your package file. Precede it by any bibliography
commands necessary for your citations. Alternatively, it may be more convenient
to put all such calls amongst the arguments of the \StopEventually macro, in
which case a \Finale command should appear at the end of your file.

Contrary to standard LATEX, the index is typeset in three columns by de-theindex

fault. This is controlled by the LATEX counter ‘IndexColumns’ and can therefore
be changed with a \setcounter declaration. Additionally one doesn’t want to
start a new page unnecessarily. Therefore the theindex environment is redefined.
When the theindex environment starts it will measure how much space is left on\IndexMin

the current page. If this is more than \IndexMin then the index will start on this
page. Otherwise \newpage is called.

Then a short introduction about the meaning of several index entries is typeset
(still in onecolumn mode). Afterwards the actual index entries follow in multi-
column mode. You can change this prologue with the help of the \IndexPrologue\IndexPrologue

macro. Actually the section heading is also produced in this way, so you’d better
write something like:

\IndexPrologue{\section*{Index} The index entries underlined ...}

When the theindex environment is finished the last page will be reformatted to
produce balanced columns. This improves the layout and allows the next article to
start on the same page. Formatting of the index columns (values for \columnssep\IndexParms

etc.) is controlled by the \IndexParms macro. It assigns the following values:

\parindent = 0.0pt \columnsep = 15.0pt

\parskip = 0.0pt plus 1.0pt \rightskip = 15.0pt

\mathsurround= 0.0pt \parfillskip=−15.0pt

Additionally it defines \@idxitem (which will be used when an \item command\@idxitem

is encountered) and selects \small size. If you want to change any of these values
you have to define them all.

The page numbers for main index entries are encapsulated by the \main macro\main

\usage (underlining its argument) and the numbers denoting the description are encap-
sulated by the \usage macro (which produces italics). As usual these commands
are user definable.

2.10 Changing the default values of style parameters

If you want to overwrite some default settings made by the doc package, you can\DocstyleParms

either put your declarations in the driver file (that is after doc.sty is read in) or
use a separate package file for doing this work. In the latter case you can define
the macro \DocstyleParms to contain all assignments. This indirect approach is
necessary if your package file might be read before the doc.sty, when some of the
registers are not allocated. Its default definition is null.

The doc package currently assigns values to the following registers:

8

\IndexMin = 80.0pt \MacroTopsep = 7.0pt plus 2.0pt minus 2.0pt
\marginparwidth= 126.0pt \MacroIndent = 14.65285pt
\marginparpush = 0.0pt \MacrocodeTopsep= 3.0pt plus 1.2pt minus 1.0pt
\tolerance = 1000

2.11 Short input of verbatim text pieces

It is awkward to have to type, say, \verb|. . . | continually when quoting verba-\MakeShortVerb

\MakeShortVerb*

\DeleteShortVerb

tim bits (like macro names) in the text, so an abbreviation mechanism is pro-
vided. Pick a character 〈c〉—one which normally has catcode ‘other’ unless you
have very good reason not to—which you don’t envisage using in the text, or
not using often. (I like ", but you may prefer | if you have " active to do
umlauts, for instance.) Then if you say \MakeShortVerb{\〈c〉} you can subse-
quently use 〈c〉〈text〉〈c〉 as the equivalent of \verb〈c〉〈text〉〈c〉; analogously, the
-form \MakeShortVerb{\〈c〉} gives you the equivalent of \verb*〈c〉〈text〉〈c〉.
Use \DeleteShortVerb{\〈c〉} if you subsequently want 〈c〉 to revert to its pre-
vious meaning—you can always turn it on again after the unusual section. The
‘short verb’ commands make global changes. The abbreviated \verb may not
appear in the argument of another command just like \verb. However the ‘short
verb’ character may be used freely in the verbatim and macrocode environments
without ill effect. \DeleteShortVerb is silently ignored if its argument does not
currently represent a short verb character. Both commands type a message to tell
you the meaning of the character is being changed.

Please remember that the command \verb cannot be used in arguments of
other commands. Therefore abbreviation characters for \verb cannot be used
there either.

This feature is also available as a sole package, shortvrb.

2.12 Additional bells and whistles

We provide macros for logos such as Web, AMS-TEX, BibTEX, SLiTEX and
Plain TEX. Just type \Web, \AmSTeX, \BibTeX, \SliTeX or \PlainTeX, respec-
tively. LATEX and TEX are already defined in latex.tex.

Another useful macro is \meta which has one argument and produces some-\meta

thing like 〈dimen parameter〉.
You can use the \OnlyDescription declaration in the driver file to suppress\OnlyDescription

\StopEventually the last part of your document (which presumably exhibits the code). To make this
work you have to place the command \StopEventually at a suitable point in your
file. This macro has one argument in which you put all information you want to
see printed if your document ends at this point (for example a bibliography which
is normally printed at the very end). When the \OnlyDescription declaration is
missing the \StopEventually macro saves its argument in a macro called \Finale\Finale

which can afterwards be used to get things back (usually at the very end). Such
a scheme makes changes in two places unnecessary.

Thus you can use this feature to produce a local guide for the TEX users which
describes only the usage of macros (most of them won’t be interested in your
definitions anyway). For the same reason the \maketitle command is slightly\maketitle

changed to allow multiple titles in one document. So you can make one driver file
reading in several articles at once. To avoid an unwanted pagestyle on the title\ps@titlepage

page the \maketitle command issues a \thispagestyle{titlepage} declaration
which produces a plain page if the titlepage page style is undefined. This allows
class files like ltugboat.cls to define their own page styles for title pages.

Typesetting the whole document is the default. However, this default can also\AlsoImplementation

be explicitly selected using the declaration \AlsoImplementation. This over-
writes any previous \OnlyDescription declaration. The LATEX 2ε distribution,
for example, is documented using the ltxdoc class which allows for a configura-
tion file ltxdoc.cfg. In such a file one could then add the statement

9

\AtBeginDocument{\AlsoImplementation}

to make sure that all documents will show the code part.
Last but not least I defined an \IndexInput macro which takes a file name as\IndexInput

an argument and produces a verbatim listing of the file, indexing every command
as it goes along. This might be handy, if you want to learn something about macros
without enough documentation. I used this feature to cross-reference latex.tex
getting a verbatim copy with about 15 pages index.12

To maintain a change history within the file, the \changes command may be\changes

placed amongst the description part of the changed code. It takes three arguments,
thus:

\changes{〈version〉}{〈date〉}{〈text〉}

The changes may be used to produce an auxiliary file (LATEX’s \glossary mech-
anism is used for this) which may be printed after suitable formatting. The
\changes macro generates the printed entry in such a change history; because old
versions13 of the makeindex program limit such fields to 64 characters, care should
be taken not to exceed this limit when describing the change. The actual entry
consists of the 〈version〉, the \actualchar, the current macro name, a colon, the
\levelchar, and, finally, the 〈text〉. The result is a glossaryentry for the 〈version〉,
with the name of the current macro as subitem. Outside the macro environment,
the text \generalname is used instead of the macro name. When referring to
macros in change descriptions it is conventional to use \cs{〈macroname〉} rather
than attempting to format it properly and using up valuable characters in the
entry with old makeindex versions.

To cause the change information to be written out, include \RecordChanges\RecordChanges

in the driver file. To read in and print the sorted change history (in two columns),\PrintChanges

just put the \PrintChanges command as the last (commented-out, and thus ex-
ecuted during the documentation pass through the file) command in your pack-
age file. Alternatively, this command may form one of the arguments of the
\StopEventually command, although a change history is probably not required
if only the description is being printed. The command assumes that makeindex
or some other program has processed the .glo file to generate a sorted .gls file.
You need a special makeindex style file; a suitable one is supplied with doc, called
gglo.ist. The \GlossaryMin, \GlossaryPrologue and \GlossaryParms macros\GlossaryMin

\GlossaryPrologue

\GlossaryParms

are analagous to the \Index. . . versions. (The LATEX ‘glossary’ mechanism is used
for the change entries.)

To overcome some of the problems of sending files over the networks we devel-\CharacterTable

\CheckSum oped two macros which should detect corrupted files. If one places the lines

%%\CharacterTable

%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

%% Digits \0\1\2\3\4\5\6\7\8\9

%% Exclamation \! Double quote \" Hash (number) \#

%% Dollar \$ Percent \% Ampersand \&

%% Acute accent \’ Left paren \(Right paren \)

%% Asterisk * Plus \+ Comma \,

%% Minus \- Point \. Solidus \/

%% Colon \: Semicolon \; Less than \<

%% Equals \= Greater than \> Question mark \?

%% Commercial at \@ Left bracket \[Backslash \\

%% Right bracket \] Circumflex \^ Underscore _

%% Grave accent \‘ Left brace \{ Vertical bar \|

%% Right brace \} Tilde \~}

%%

12It took quite a long time and the resulting .idx file was longer than the .dvi file. Actually
too long to be handled by the makeindex program directly (on our MicroVAX) but the final result
was worth the trouble.

13Before 2.6.

10

at the beginning of the file then character translation failures will be detected,
provided of course, that the used doc package has a correct default table. The
percent signs14 at the beginning of the lines should be typed in, since only the doc
package should look at this command.

Another problem of mailing files is possible truncation. To detect these sort of
errors we provide a \CheckSum macro. The check-sum of a file is simply the number
of backslashes in the code, i.e. all lines between the macrocode environments. But
don’t be afraid: you don’t have count the code-lines yourself; this is done by the
doc package for you. You simply have to use the \StopEventually (which starts
looking for backslashes) and the \Finale command. The latter will inform you
either that your file has no check-sum (telling you the right number) or that your
number is incorrect (this time telling you both the correct and the incorrect one).
Then you go to the top of your file inserting the line

%% \CheckSum{〈number〉}

and that’s all. If you precede it only with one percent then the line will not show
up in docstrip versions of the file. You should do so whenever you are using
conditional code (see docstrip documentation) since then the check-sum will not
reflect the number of backslashes in the stripped of versions.

From time to time, it is necessary to print a \ without being able to use\bslash

the \verb command because the \catcode s of the symbols are already firmly
established. In this instance we can use the command \bslash presupposing, of
course, that the actual font in use at this point contains a ‘backslash’ as a symbol.
Note that this definition of \bslash is expandable; it inserts a \12. This means
that you have to \protect it if it is used in ‘moving arguments’.

If your macros \catcode anything other than @ to ‘letter’, you should redefine\MakePrivateLetters

\MakePrivateLetters so that it also makes the relevant characters ‘letters’ for
the benefit of the indexing. The default definition is just \makeatletter.

The ‘module’ directives of the docstrip system [6] are normally recognised and\DontCheckModules

\CheckModules

\Module

\AltMacroFont

invoke special formatting. This can be turned on and off in the .dtx file or the
driver file using \CheckModules and \DontCheckModules. If checking for module
directives is on (the default) then code in the scope of the directives is set as
determined by the hook \AltMacroFont, which gives small italic typewriter

by default in the New Font Selection Scheme but just ordinary small typewriter

in the old one, where a font such as italic typewriter can’t be used portably (plug
for NFSS); you will need to override this if you don’t have the italic typewriter
font available. Code is in such a scope if it’s on a line beginning with %< or is
between lines starting with %<*〈name list〉> and %</〈name list〉>. The directive is
formatted by the macro \Module whose single argument is the text of the directive
between, but not including, the angle brackets; this macro may be re-defined in
the driver or package file and by default produces results like 〈+foo | bar〉 with no
following space.

Sometimes (as in this file) the whole code is surrounded by modules to pro-StandardModuleDepth

duce several files from a single source. In this case it is clearly not appropriate
to format all code lines in a special \AltMacroFont. For this reason a counter
StandardModuleDepth is provided which defines the level of module nesting which
is still supposed to be formatted in \MacroFont rather then \AltMacroFont. The
default setting is 0, for this documentation it was set to

\setcounter{StandardModuleDepth}{1}

at the beginning of the file.

2.13 Basic usage summary

To sum up, the basic structure of a .dtx file without any refinements is like this:
14There are two percent signs in each line. This has the effect that these lines are not removed

by the docstrip.tex program.

11

% 〈waffle〉. . .
. . .

% \DescribeMacro{\fred}

% 〈description of fred’s use〉
. . .

% \StopEventually{〈finale code〉}
. . .

% \begin{macro}{\fred}

% 〈commentary on macro fred〉
% \begin{macrocode}

〈code for macro fred〉
% \end{macrocode}

% \end{macro}

. . .
% \Finale \PrintIndex \PrintChanges

For examples of the use of most—if not all—of the features described above consult
the doc.dtx source itself.

2.14 Acknowledgements

I would like to thank all folks at Mainz and at the Royal Military College of Science
for their help in this project. Especially Brian and Rainer who pushed everything
with their suggestions, bug fixes, etc.

A big thank you to David Love who brought the documentation up-to-date
again, after I neglected this file for more than two years. This was most certainly
a tough job as many features added to doc.dtx after its publication in TUGboat
have been never properly described. Beside this splendid work he kindly provided
additional code (like “docstrip” module formatting) which I think every doc.dtx
user will be grateful for.

3 The Description of Macros

Most of the following code is destined for doc.sty after processing with docstrip
to include the module style indicated here. (All code in this file not appropriate
to doc.sty has to be included explicitly by docstrip so that this .dtx file can be
used as directly as a package file rather than the stripped version.) The usual
font change for the conditionally-included lines between the 〈∗style〉 and 〈/style〉
directives is suppressed since only the lines with an explicit directive are special
in this file.
15 〈∗package〉

Under LATEX 2ε the test to avoid reading doc in twice is normally unnecessary. It
was kept to only to stay compatible with LATEX209 styles that \input doc directly.

16 \@ifundefined{macro@cnt}{}{\endinput}

As you can see I used macros like \fileversion to denote the version number\fileversion

\filedate

\docdate

and the date. They are defined at the very beginning of the package file (without
a surrounding macrocode environment), so I don’t have to search for this place
here when I change the version number. You can see their actual outcome in a
footnote to the title.

The first thing that we do next is to get ourselves a new comment sign. Because
all sensible signs are already occupied, we will choose one that can only be entered
indirectly:
17 \catcode‘\^^A=14

We repeat this statement at the beginning of the document in case the inputenc
package is used disabling it again.
18 \AtBeginDocument{\catcode‘\^^A=14\relax}

12

3.1 Options supported by doc

Not options available at the moment

3.2 Macros surrounding the ‘definition parts’

\macrocode Parts of the macro definition will be surrounded by the environment macrocode.
Put more precisely, they will be enclosed by a macro whose argument (the text to
be set ‘verbatim’) is terminated by the string % \end{macrocode}. Carefully
note the number of spaces. \macrocode is defined completely analogously to
\verbatim, but because a few small changes were carried out, almost all internal
macros have got new names. We start by calling the macro \macro@code, the
macro which bears the brunt of most of the work, such as \catcode reassignments,
etc.
19 \def\macrocode{\macro@code

Then we take care that all spaces have the same width, and that they are not
discarded.
20 \frenchspacing \@vobeyspaces

Before closing, we need to call \xmacro@code. It is this macro that expects an
argument which is terminated by the above string. This way it is possible to keep
the \catcode changes local.
21 \xmacro@code}

\macro@code We will now begin with the macro that does the actual work:

22 \def\macro@code{%

In theory it should consist of a trivlist environment, but the empty space before
and after the environment should not be too large.
23 \topsep \MacrocodeTopsep

The next parameter we set is \@beginparpenalty, in order to prevent a page
break before such an environment.
24 \@beginparpenalty \predisplaypenalty

We then start a \trivlist, set \parskip back to zero and start an empty \item.

25 \if@inlabel\leavevmode\fi

26 \trivlist \parskip \z@ \item[]%

Additionally, everything should be set in typewriter font. Some people might
prefer it somewhat differently; because of this the font choice is macro-driven.15

27 \macro@font

Because \item sets various parameters, we have found it necessary to alter some
of these retrospectively.
28 \leftskip\@totalleftmargin \advance\leftskip\MacroIndent

29 \rightskip\z@ \parindent\z@ \parfillskip\@flushglue

The next line consists of the LATEX definition of \par used in \verbatim and
should result in blank lines being shown as blank lines.
30 \blank@linefalse \def\par{\ifblank@line

31 \leavevmode\fi

32 \blank@linetrue\@@par

33 \penalty\interlinepenalty}

What use is this definition of \par ? We use the macro \obeylines of [3] which
changes all ^^M to \par so that each can control its own indentation. Next we
must also ensure that all special signs are normalized; that is, they must be given
\catcode 12.

15The font change has to be placed after the \item. Otherwise a change to \baselineskip

will affect the paragraph above.

13

34 \obeylines

35 \let\do\do@noligs \verbatim@nolig@list

36 \let\do\@makeother \dospecials

If indexing by code lines is switched on the line number is incremented and set ap-
propriately. We also check whether the start of the next line indicates a docstrip
module directive and process it appropriately if so using \check@module.
37 \global\@newlistfalse

38 \global\@minipagefalse

39 \ifcodeline@index

40 \everypar{\global\advance\c@CodelineNo\@ne

41 \llap{\theCodelineNo\ \hskip\@totalleftmargin}%

42 \check@module}%

43 \else \everypar{\check@module}%

44 \fi

We also initialize the cross-referencing feature by calling \init@crossref. This
will start the scanning mechanism when encountering an escape character.
45 \init@crossref}

\ifblank@line

\blank@linetrue

\blank@linefalse

\ifblank@line is the switch used in the definition above. In the original verbatim
environment the \if@tempswa switch is used. This is dangerous because its value
may change while processing lines in the macrocode environment.
46 \newif\ifblank@line

\endmacrocode Because we have begun a trivlist environment in the macrocode environment, we
must also end it. We must also act on the value of the pm@module flag (see below)
and empty \everypar.
47 \def\endmacrocode{%

48 \ifpm@module \endgroup \pm@modulefalse \fi

49 \everypar{}%

50 \global\@inlabelfalse

51 \endtrivlist

Additionally \close@crossref is used to do anything needed to end the cross-
referencing mechanism.
52 \close@crossref}

\MacroFont Here is the default definition for the \MacroFont macro. With the new math font
handling in NFSS2 it isn’t any longer correct to suppress the math font setup since
this is now handled differently. But to keep the font change fast we use only a
single \selectfont (in \small) and do the rest by hand.
53 \@ifundefined{MacroFont}{%

54 \if@compatibility

Despite the above statement we will call \small first if somebody is using a
LATEX2.09 document with doc. I wouldn’t have bothered since doc-sources should
be up-to-date but since the request came from someone called David Carlisle . . . :-)

55 \def\MacroFont{\small

56 \usefont\encodingdefault

57 \ttdefault

58 \mddefault

59 \updefault

60 }%

61 \else

62 \def\MacroFont{\fontencoding\encodingdefault

63 \fontfamily\ttdefault

64 \fontseries\mddefault

65 \fontshape\updefault

66 \small}%

67 \fi

68 }{}

14

\AltMacroFont

\macro@font

Although most of the macro code is set in \MacroFont we want to be able to
switch to indicate module code set in \AltMacroFont. \macro@font keeps track
of which one we’re using. We can’t do the same thing sensibly in OFSS as in
NFSS.
69 \@ifundefined{AltMacroFont}{%

70 \if@compatibility

Again have \small first if we are in compat mode.
71 \def\AltMacroFont{\small

72 \usefont\encodingdefault

73 \ttdefault

74 \mddefault

75 \sldefault

76 }%

77 \else

78 \def\AltMacroFont{\fontencoding\encodingdefault

79 \fontfamily\ttdefault

80 \fontseries\mddefault

81 \fontshape\sldefault

82 \small

83 }%

84 \fi

85 }{}

To allow changing the \MacroFont in the preamble we defer defining the internally
used \macro@font until after the preamble.
86 \AtBeginDocument{\let\macro@font\MacroFont}

\check@module

\ifpm@module

This is inserted by \everypar at the start of each macrocode line to check whether
it starts with module information. (Such information is of the form %<〈switch〉>,
where the % must be at the start of the line and 〈switch〉 comprises names with
various possible separators and a possible leading +, -, * or / [6]. All that concerns
us here is what the first character of 〈switch〉 is.) First it checks the pm@module flag
in case the previous line had a non-block module directive i.e., not %<* or %</; if it
did we need to close the group it started and unset the flag. \check@module looks
ahead at the next token and then calls \ch@percent to take action depending on
whether or not it’s a %; we don’t want to expand the token at this stage. This is
all done conditionally so it can be turned off if it causes problems with code that
wasn’t designed to be docstripped.
87 \def\check@module{%

88 \ifcheck@modules

89 \ifpm@module \endgroup \pm@modulefalse \fi

90 \expandafter\futurelet\expandafter\next\expandafter\ch@percent

91 \fi}

92 \newif\ifpm@module

\DontCheckModules

\CheckModules

\ifcheck@modules

Here are two driver-file interface macros for turning the module checking on and
off using the check@modules switch.
93 \def\DontCheckModules{\check@modulesfalse}

94 \def\CheckModules{\check@modulestrue}

95 \newif\ifcheck@modules \check@modulestrue

\ch@percent If the lookahead token in \next is %12 we go on to check whether the following
one is < and otherwise do nothing. Note the \expandafter to get past the \fi.
96 \def\ch@percent{%

97 \if \percentchar\next

98 \expandafter\check@angle

99 \fi}

\check@angle Before looking ahead for the < the % is gobbled by the argument here.

100 \def\check@angle#1{\futurelet\next\ch@angle}

15

\ch@angle If the current lookahead token is < we are defined to be processing a module
directive can go on to look for + etc.; otherwise we must put back the gobbled %.
With LATEX 2ε < is active so we have to be a bit careful.
101 \begingroup

102 \catcode‘\<\active

103 \gdef\ch@angle{\ifx<\next

104 \expandafter\ch@plus@etc

105 \else \percentchar \fi}

\ch@plus@etc

\check@plus@etc

We now have to decide what sort of a directive we’re dealing with and do the right
thing with it.
106 \gdef\ch@plus@etc<{\futurelet\next\check@plus@etc}

107 \gdef\check@plus@etc{%

108 \if +\next

109 \let\next\pm@module

110 \else\if -\next

111 \let\next\pm@module

112 \else\if *\next

113 \let\next\star@module

114 \else\if /\next

115 \let\next\slash@module

At some point in the past the docstrip program was partly rewritten and at that
time it also got support for a very special directive of the form %<< followed by an
arbitrary string. This is used for “verbatim” inclusion in case of certain problem.
We do not really attempt to pretty print that case but we need at least account
for it since otherwise we get an error message since this is the only case where we
will not have a closing >.
116 \else\ifx <\next

117 \percentchar

118 \else

119 \let\next\pm@module

120 \fi\fi\fi\fi\fi

121 \next}

122 \endgroup

\pm@module If we’re not dealing with a block directive (* or /) i.e., it’s a single special line,
we set everything up to the next > appropriately and then change to the special
macro font inside a group which will be ended at the start of the next line. If
the apparent module directive is missing the terminating > this will lose, but then
so will the docstrip implementation. An alternative strategy would be to have
\pm@module make > active and clear a flag set here to indicate processing the
directive. Appropriate action could then be taken if the flag was found still to be
set when processing the next line.
123 \begingroup

124 \catcode‘\~=\active

125 \lccode‘\~=‘\>

126 \lowercase{\gdef\pm@module#1~}{\pm@moduletrue

127 \Module{#1}\begingroup

We switch to a special font as soon the nesting is higher than the current value
of \c@StandardModuleDepth. We do a local update to the \guard@level here
which will be restored after the current input line.
128 \advance\guard@level\@ne

129 \ifnum\guard@level>\c@StandardModuleDepth\AltMacroFont\fi

130 }

\star@module

\slash@module

If the start or end of a module block is indicated, after setting the guard we have
to check whether a change in the macrocode font should be done. This will be
the case if we are already inside a block or are ending the outermost block. If so,

16

we globally toggle the font for subsequent macrocode sections between the normal
and special form, switching to the new one immediately.
131 \lowercase{\gdef\star@module#1~}{%

132 \Module{#1}%

133 \global \advance \guard@level\@ne

134 \ifnum \guard@level>\c@StandardModuleDepth

135 \global\let\macro@font=\AltMacroFont \macro@font

136 \fi}

137 \catcode‘\>=\active

138 \gdef\slash@module#1>{%

139 \Module{#1}%

140 \global \advance \guard@level\m@ne

141 \ifnum \guard@level=\c@StandardModuleDepth

142 \global\let\macro@font\MacroFont \macro@font

143 \fi

144 }

145 \endgroup

\c@StandardModuleDepth Counter defining up to which level modules are considered part of the main code.
If, for example, the whole code is surrounded by a %<*package> module we better
set this counter to 1 to avoid getting the whole code be displayed in typewriter
italic.
146 \newcounter{StandardModuleDepth}

\guard@level We need a counter to keep track of the guard nesting.

147 \newcount \guard@level

\Module This provides a hook to determine the way the module directive is set. It gets as
argument everything between the angle brackets. The default is to set the contents
in sans serif text between 〈 〉 with the special characters suitably \mathcoded by
\mod@math@codes. (You can’t just set it in a sans text font because normally | will
print as an em-dash.) This is done differently depending on whether we have the
NFSS or the old one. In the latter case we can easily change \fam appropriately.
148 \@ifundefined{Module}{%

With NFSS what we probably should do is change to a new \mathversion but I
(Dave Love) haven’t spotted an easy way to do so correctly if the document uses
a version other than normal. (We need to know in what font to set the other
groups.) This uses a new math alphabet rather than version and consequently
has to worry about whether we’re using oldlfnt or not. I expect there’s a better
way. . .
149 \def\Module#1{\mod@math@codes$\langle\mathsf{#1}\rangle$}

150 }{}

\mod@math@codes As well as ‘words’, the module directive text might contain any of the characters
*/+-,&|!() for the current version of docstrip. We only need special action for
two of them in the math code changing required above: | is changed to a \mathop
(it’s normally "026A) and & is also made a \mathop, but in family 0. Remember
that & will not have a special catcode when it’s encountered.
151 \def\mod@math@codes{\mathcode‘\|="226A \mathcode‘\&="2026}

\mathsf If NFSS is in use we need a new math alphabet which uses a sans serif font.
To support both the release one and two of NFSS the alphabet was renamed to
\mathsf which is defined in NFSS2.
152 %\ifx\selectfont\undefined

153 %\else

154 % \ifx\mathsf\undefined

155 % \newmathalphabet*{\mathsf}{\sfdefault}{m}{n}\fi

156 %\fi

17

\MacrocodeTopsep

\MacroIndent

In the code above, we have used two registers. Therefore we have to allocate them.
The default values might be overwritten with the help of the \DocstyleParms
macro.
157 \newskip\MacrocodeTopsep \MacrocodeTopsep = 3pt plus 1.2pt minus 1pt

158 \newdimen\MacroIndent

159 \settowidth\MacroIndent{\rmfamily\scriptsize 00\ }

\macrocode*

\endmacrocode*

Just as in the verbatim environment, there is also a ‘star’ variant of the macrocode
environment in which a space is shown by the symbol . Until this moment,
I have not yet used it (it will be used in the description of the definition of
\xmacro@code below) but it’s exactly on this one occasion here that you can’t
use it (cf. Münchhausens Marsh problem)16 directly. Because of this, on this one
occasion we’ll cheat around the problem with an additional comment character.
But now back to \macrocode*. We start with the macro \macro@code which
prepares everything and then call the macro \sxmacro@code whose argument is
terminated by the string % \end{macrocode*}.
160 \@namedef{macrocode*}{\macro@code\sxmacro@code}

As we know, \sxmacro@code and then \end{macrocode*} (the macro, not the
string), will be executed, so that for a happy ending we still need to define the
macro \endmacrocode*.
161 \expandafter\let\csname endmacrocode*\endcsname = \endmacrocode

\xmacro@code As already mentioned, the macro \xmacro@code expects an argument delimited
by the string % \end{macrocode}. At the moment that this macro is called,
the \catcode of TEX’s special characters are 12 (‘other’) or 13 (‘active’). Because
of this we need to utilize a different escape character during the definition. This
happens locally.
162 \begingroup

163 \catcode‘\|=\z@ \catcode‘\[=\@ne \catcode‘\]=\tw@

Additionally, we need to ensure that the symbols in the above string contain the
\catcode s which are available within the macrocode environment.
164 \catcode‘\{=12 \catcode‘\}=12

165 \catcode‘\%=12 \catcode‘\ =\active \catcode‘\\=\active

Next follows the actual definition of \macro@code; notice the use of the new
escape character. We manage to get the argument surrounded by the string
\end{macrocode}, but at the end however, in spite of the actual characters used
during the definition of this macro, \end with the argument {macrocode} will be
executed, to ensure a balanced environment.
166 |gdef|xmacro@code#1% \end{macrocode}[#1|end[macrocode]]

\sxmacro@code The definition of \sxmacro@code is completely analogous, only here a slightly
different terminating string will be used. Note that the space is not active in this
environment.
167 |catcode‘| =12

168 |gdef|sxmacro@code#1% \end{macrocode*}[#1|end[macrocode*]]

because the \catcode changes have been made local by commencing a new group,
there now follows the matching \endgroup in a rather unusual style of writing.
169 |endgroup

3.3 Macros for the ‘documentation parts’

\DescribeMacro

\Describe@Macro

\DescribeEnv

\Describe@Env

The \DescribeMacro and \DescribeEnv macros should print their arguments in
the margin and produce an index entry. We simply use \marginpar to get the
desired result. This is however not the best solution because the labels might be

16Karl Friedrich Hieronymus Frhr. v. Münchhausen (*1720, †1797). Several books were written
about fantastic adventures supposedly told by him (see [7] or [1]). In one story he escaped from
the marsh by pulling himself out by his hair.

18

slightly misplaced. One also might get a lot of ‘marginpar moved’ messages which
are hard-wired into the LATEX output routine.17 First we change to horizontal
mode if necessary. The LATEX macros \@bsphack and \@esphack are used to
make those commands invisible (i.e. to normalize the surrounding space and to
make the \spacefactor transparent).
170 \def\DescribeMacro{\leavevmode\@bsphack

When documenting the code for the amstex.sty option we encountered a bug:
the \catcode of @ was active and therefore couldn’t be used in command
names. So we first have to make sure that we get all \catcodes right by call-
ing \MakePrivateLetters inside a group. Then we call \Describe@Macro to do
the work.
171 \begingroup\MakePrivateLetters\Describe@Macro}

172 \def\Describe@Macro#1{\endgroup

173 \marginpar{\raggedleft\PrintDescribeMacro{#1}}%

Note the use of \raggedleft to place the output flushed right. Finally we call a
macro which produces the actual index entry and finish with \@esphack to leave
no trace.18

174 \SpecialUsageIndex{#1}\@esphack\ignorespaces}

The \DescribeEnv macro is completely analogous.
175 \def\DescribeEnv{\leavevmode\@bsphack\begingroup\MakePrivateLetters

176 \Describe@Env}

177 \def\Describe@Env#1{\endgroup

178 \marginpar{\raggedleft\PrintDescribeEnv{#1}}%

179 \SpecialEnvIndex{#1}\@esphack\ignorespaces}

To put the labels in the left margin we have to use the \reversemarginpar decla-
ration. (This means that the doc.sty can’t be used with all classes or packages.)
We also make the \marginparpush zero and \marginparwidth suitably wide.
180 \reversemarginpar

181 \setlength\marginparpush{0pt} \setlength\marginparwidth{8pc}

\bslash We start a new group in which to hide the alteration of \catcode s, and make |
introduce commands, whilst \ becomes an ‘other’ character.

182 {\catcode‘\|=\z@ \catcode‘\\=12

Now we are able to define \bslash (globally) to generate a backslash of \catcode
‘other’. We then close this group, restoring original \catcode s.
183 |gdef|bslash{\}}

\verbatim

\verbatim*

The verbatim environment holds no secrets; it consists of the normal LATEX envi-
ronment. We also set the \@beginparpenalty and change to the font given by
\MacroFont.
184 \def\verbatim{\@beginparpenalty \predisplaypenalty \@verbatim

185 \MacroFont \frenchspacing \@vobeyspaces \@xverbatim}

We deal in a similar way with the star form of this environment.
186 \@namedef{verbatim*}{\@beginparpenalty \predisplaypenalty \@verbatim

187 \MacroFont \@sxverbatim}

\@verbatim Additionally we redefine the \@verbatim macro so that it suppresses % characters
at the beginning of the line. The first lines are copied literally from latex.tex.
188 \def\@verbatim{\trivlist \item[]\if@minipage\else\vskip\parskip\fi

189 \leftskip\@totalleftmargin\rightskip\z@

190 \parindent\z@\parfillskip\@flushglue\parskip\z@

191 \@@par

192 \@tempswafalse

17It might be better to change these macros into environments like the macro environment.
18The whole mechanism won’t work because of the \leavevmode in front. As a temporary

change \ignorespaces is added.

19

\@verbatim sets ^^M, the end of line character, to be equal to \par. This control
sequence is redefined here; \@@par is the paragraph primitive of TEX.
193 \def\par{\if@tempswa\hbox{}\fi\@tempswatrue\@@par

194 \penalty\interlinepenalty

We add a control sequence \check@percent to the definition of \par whose task
it is to check for a percent character.
195 \check@percent}%

The rest is again copied literally from latex.tex (less \tt).
196 \obeylines

197 \let\do\do@noligs \verbatim@nolig@list

198 \let\do\@makeother \dospecials}

\check@percent Finally we define \check@percent. Since this must compare a character with a
percent sign we must first (locally) change percent’s \catcode so that it is seen by
TEX. The definition itself is nearly trivial: grab the following character, check if it
is a %, and insert it again if not. At the end of the verbatim environment this macro
will peek at the next input line. In that case the argument to \check@percent
might be a \par or a macro with arguments. Therefore we make the definition
\long (\par allowed) and use the normal \next mechanism to reinsert the argu-
ment after the \fi if necessary. There is a subtle problem here, the equal sign
between \next and #1 is actually necessary. Do you see why? The omission of
this token once caused a funny error.
199 {\catcode‘\%=12

200 \long\gdef\check@percent#1{\ifx #1%\let\next\@empty \else

201 \let\next=#1\fi \next}}

\verb We re-define \verb to check for newlines in its argument since a missing delimiter is
difficult to detect in doc source. The code is the saem as in latex.tex of September
19, 1993. Perhaps there should be a font-changing hook rather than just using
\tt, but if so it probably should be different from \MacroFont since that normally
includes \small and would look wrong inline.
202 \def\verb{\relax\ifmmode\hbox\else\leavevmode\null\fi

203 \bgroup \let\do\do@noligs \verbatim@nolig@list

204 \ttfamily \verb@eol@error \let\do\@makeother \dospecials

205 \@ifstar{\@sverb}{\@vobeyspaces \frenchspacing \@sverb}}

\verb@balance@group

\verb@egroup

\verb@eol@error

206 \let\verb@balance@group\@empty

207

208 \def\verb@egroup{\global\let\verb@balance@group\@empty\egroup}

209

210 \begingroup

211 \obeylines%

212 \gdef\verb@eol@error{\obeylines%

213 \def^^M{\verb@egroup\@latex@error{%

214 Text for \noexpand\verb command ended by end of line}\@ehc}}%

215 \endgroup

\@sverb See [8] for commentary.

216 \def\@sverb#1{%

217 \catcode‘#1\active \lccode‘\~‘#1%

218 \gdef\verb@balance@group{\verb@egroup

219 \@latex@error{Illegal use of \noexpand\verb command}\@ehc}%

220 \aftergroup\verb@balance@group

221 \lowercase{\let~\verb@egroup}}

\verbatim@nolig@list

\do@noligs

These macros replace the old \@noligs mechanism by an extensible version to
allow more ligatures to be added.
222 \def\verbatim@nolig@list{\do\‘\do\<\do\>\do\,\do\’\do\-}

20

223 \def\do@noligs#1{%

224 \catcode‘#1\active

225 \begingroup

226 \lccode‘\~=‘#1\relax

227 \lowercase{\endgroup\def~{\leavevmode\kern\z@\char‘#1}}}

\macro

\m@cro@

\macro@cnt

The macro environment is implemented as a trivlist environment, whereby in order
that the macro names can be placed under one another in the margin (corre-
sponding to the macro’s nesting depth), the macro \makelabel must be altered.
In order to store the nesting depth, we use a counter. We also need a counter to
count the number of nested macro environments.
228 \newcount\macro@cnt \macro@cnt=0

The environment takes an argument—the macro name to be described. Since this
name may contain special ‘letters’ we have to re-\catcode them before scanning
the argument. This is done by the \MakePrivateLetters macro.
229 \def\macro{\begingroup

230 \catcode‘\\12

231 \MakePrivateLetters \m@cro@ \iftrue}

\environment The “environment” envrionment will be implemented just like the “macro” envi-
ronment flagging any differences in the code by passing \iffalse or \iftrue to
the \m@cro@ environment doing the actual work.
232 \def\environment{\begingroup

233 \catcode‘\\12

234 \MakePrivateLetters \m@cro@ \iffalse}

After scanning the argument we close the group to get the normal \catcode s
back. Then we assign a special value to \topsep and start a trivlist environment.

235 \long\def\m@cro@#1#2{\endgroup \topsep\MacroTopsep \trivlist

We also save the name being described in \saved@macroname for use in conjunction
with the \changes macro.
236 \edef\saved@macroname{\string#2}%

Now there follows a variation of \makelabel which is used should the environment
not be nested, or should it lie between two successive \begin{macro} instructions
or explanatory text. One can recognize this with the switch \if@inlabel which
will be true in the case of successive \item commands.
237 \def\makelabel##1{\llap{##1}}%

If @inlabel is true and if \macro@cnt > 0 then the above definition needs to be
changed, because in this case LATEX would otherwise put the labels all on the same
line and this would lead to them being overprinted on top of each other. Because
of this \makelabel needs to be redefined in this case.
238 \if@inlabel

If \macro@cnt has the value 1, then we redefine \makelabel so that the label will
be positioned in the second line of the margin. As a result of this, two macro
names appear correctly, one under the other. It’s important whilst doing this that
the generated label box is not allowed to have more depth than a normal line since
otherwise the distance between the first two text lines of TEX will be incorrectly
calculated. The definition should then look like:

\def\makelabel##1{\llap{\vtop to \baselineskip

{\hbox{\strut}\hbox{##1}\vss}}}

Completely analogous to this is the case where labels need to be placed one under
the other. The lines above are only an example typeset with the verbatim environ-
ment. To produce the real definition we save the value of \macro@cnt in \count@
and empty the temp macro \@tempa for later use.
239 \let\@tempa\@empty \count@\macro@cnt

21

In the following loop we append for every already typeset label an \hbox{\strut}
to the definition of \@tempa.
240 \loop \ifnum\count@>\z@

241 \edef\@tempa{\@tempa\hbox{\strut}}\advance\count@\m@ne \repeat

Now be put the definition of \makelabel together.
242 \edef\makelabel##1{\llap{\vtop to\baselineskip

243 {\@tempa\hbox{##1}\vss}}}%

Next we increment the value of the nesting depth counter. This value inside the
macro environment is always at least one after this point, but its toplevel definition
is zero. Provided this environment has been used correctly, \macro@cnt = 0 should
not occur when @inlabel=true. It is however possible if this environment is used
within other list environments (but this would have little point).
244 \advance \macro@cnt \@ne

If @inlabel is false we reset \macro@cnt assuming that there is enough room to
print the macro name without shifting.
245 \else \macro@cnt\@ne \fi

Now the label will be produced using \item. The following line is only a hack sav-
ing the day until a better solution is implemented. We have to face two problems:
the argument might be a \par which is forbidden in the argument of other macros
if they are not defined as \long, or it is something like \iffalse or \else, i.e.
something which will be misinterpreted when TEX is skipping conditional text. In
both cases \item will bomb, so we protect the argument by using \string.
246 \edef\@tempa{\noexpand\item[%

Depending on whether we are inside a “macro” or “environment” environment we
use \PrintMacroName or \PrintEnvName to display the name.
247 #1%

248 \noexpand\PrintMacroName

249 \else

250 \noexpand\PrintEnvName

251 \fi

252 {\string#2}]}%

253 \@tempa

At this point we also produce an index entry. Because it is not known which
index sorting program will be used, we do not use the command \index, but
rather a command \SpecialMainIndex after advancing the counter for indexing
by line number. This may be redefined by the user in order to generate an index
entry which will be understood by the index program in use (note the definition
of \SpecialMainIndex for our installation). We advance the current codeline
number and after producing an index entry revert to the original value
254 \global\advance\c@CodelineNo\@ne

Again the macro to call depends on the environment we are actually in.
255 #1%

256 \SpecialMainIndex{#2}\nobreak

257 \DoNotIndex{#2}%

258 \else

259 \SpecialMainEnvIndex{#2}\nobreak

260 \fi

261 \global\advance\c@CodelineNo\m@ne

The \nobreak is needed to prevent a page break after the \write produced by the
\SpecialMainIndex macro. We exclude the new macro in the cross-referencing
feature, to prevent spurious non-main entry references. Regarding possibly prob-
lematic arguments, the implementation takes care of \par and the conditionals
are uncritical.

Because the space symbol should be ignored between the \begin{macro}{...}
and the following text we must take care of this with \ignorespaces.
262 \ignorespaces}

22

\endmacro

\endenvironment

Older releases of this environment omit the \endgroup token, when being nested.
This was done to avoid unnessary stack usage. However it does not work if macro
and environment environments are mixed, therefore we now use a simpler approach.

263 \let\endmacro \endtrivlist

264 \let\endenvironment\endmacro

\MacroTopsep Here is the default value for the \MacroTopsep parameter used above.

265 \newskip\MacroTopsep \MacroTopsep = 7pt plus 2pt minus 2pt

3.4 Formatting the margin

The following three macros should be user definable. Therefore we define those
macros only if they have not already been defined.

\PrintMacroName

\PrintEnvName

\PrintDescribeMacro

\PrintDescribeEnv

The formatting of the macro name in the left margin is done by these macros. We
first set a \strut to get the height and depth of the normal lines. Then we change
to the \MacroFont using \string to \catcode the argument to other (assuming
that it is a macro name). Finally we print a space. The font change remains local
since this macro will be called inside an \hbox.
266 \@ifundefined{PrintMacroName}

267 {\def\PrintMacroName#1{\strut \MacroFont \string #1\ }}{}

We use the same formatting conventions when describing a macro.
268 \@ifundefined{PrintDescribeMacro}

269 {\def\PrintDescribeMacro#1{\strut \MacroFont \string #1\ }}{}

To format the name of a new environment there is no need to use \string.
270 \@ifundefined{PrintDescribeEnv}

271 {\def\PrintDescribeEnv#1{\strut \MacroFont #1\ }}{}

272 \@ifundefined{PrintEnvName}

273 {\def\PrintEnvName#1{\strut \MacroFont #1\ }}{}

3.5 Creating index entries by scanning ‘macrocode’

The following macros ensure that index entries are created for each occurrence of
a TEX-like command (something starting with ‘\’) providing indexing has been
turned on with \PageIndex or \CodelineIndex. With the default definitions of
\SpecialMainIndex, etc., the index file generated is intended to be processed by
Chen’s makeindex program [4].

Of course, in this package file itself we’ve sometimes had to make | take the
rôle of TEX’s escape character to introduce command names at places where \
has to belong to some other category. Therefore, we may also need to recognize
| as the introducer for a command when setting the text inside the macrocode
environment. Other users may have the need to make similar reassignments for
their macros.

\SpecialEscapechar

\active@escape@char

\special@escape@char

The macro \SpecialEscapechar is used to denote a special escape character for
the next macrocode environment. It has one argument—the new escape char-
acter given as a ‘single-letter’ control sequence. Its main purpose is defining
\special@escape@char to produce the chosen escape character \catcoded to
12 and \active@escape@char to produce the same character but with \catcode
13.

The macro \special@escape@char is used to print the escape character while
\active@escape@char is needed in the definition of \init@crossref to start the
scanning mechanism.

In the definition of \SpecialEscapechar we need an arbitrary character with
\catcode 13. We use ‘˜’ and ensure that it is active. The \begingroup is used
to make a possible change local to the expansion of \SpecialEscapechar.

23

274 \begingroup

275 \catcode‘\~\active

276 \gdef\SpecialEscapechar#1{%

277 \begingroup

Now we are ready for the definition of \active@escape@char. It’s a little tricky:
we first define locally the uppercase code of ‘˜’ to be the new escape character.
278 \uccode‘\~‘#1%

Around the definition of \active@escape@char we place an \uppercase com-
mand. Recall that the expansion of \uppercase changes characters according to
their \uccode, but leaves their \catcode s untouched (cf. TEXbook page 41).
279 \uppercase{\gdef\active@escape@char{~}}%

The definition of \special@escape@char is easier, we use \string to \catcode
the argument of \SpecialEscapechar to 12 and suppress the preceding \escapechar.
280 \escapechar\m@ne \xdef\special@escape@char{\string#1}%

Now we close the group and end the definition: the value of \escapechar as well
as the \uccode and \catcode of ‘˜’ will be restored.
281 \endgroup}

282 \endgroup

\init@crossref The replacement text of \init@crossref should fulfill the following tasks:

1) \catcode all characters used in macro names to 11 (i.e. ‘letter’).

2) \catcode the ‘\’ character to 13 (i.e. ‘active’).

3a) \let the ‘\’ equal \scan@macro (i.e. start the macro scanning mechanism) if
there is no special escape character (i.e. the \special@escape@char is ‘\’).

3b) Otherwise \let it equal \bslash, i.e. produce a printable \.

4) Make the 〈special escape character〉 active.

5) \let the active version of the special escape character (i.e. the expansion of
\active@escape@char) equal \scan@macro.

The reader might ask why we bother to \catcode the ‘\’ first to 12 (at the end
of \macro@code) then re-\catcode it to 13 in order to produce a \12 in case
3b) above. This is done because we have to ensure that ‘\’ has \catcode 13
within the macrocode environment. Otherwise the delimiter for the argument of
\xmacro@code would not be found (parameter matching depends on \catcode s).

Therefore we first re-\catcode some characters.
283 \begingroup \catcode‘\|=\z@ \catcode‘\\=\active

We carry out tasks 2) and 3b) first.
284 |gdef|init@crossref{|catcode‘|\|active |let\|bslash

Because of the popularity of the ‘@’ character as a ‘letter’ in macros, we normally
have to change its \catcode here, and thus fulfill task 1). But the macro designer
might use other characters as private letters as well, so we use a macro to do the
\catcode switching.
285 |MakePrivateLetters

Now we \catcode the special escape character to 13 and \let it equal \scan@macro,
i.e. fulfill tasks 4) and 5). Note the use of \expandafter to insert the chosen escape
character saved in \special@escape@char and \active@escape@char.
286 |catcode|expandafter‘|special@escape@char|active

287 |expandafter|let|active@escape@char|scan@macro}

288 |endgroup

24

If there is no special escape character, i.e. if \SpecialEscapechar is \\, the second
last line will overwrite the previous definition of \13. In this way all tasks are
fulfilled.

For happy documenting we give default values to \special@escape@char and
\active@escape@char with the following line:
289 \SpecialEscapechar{\\}

\MakePrivateLetters Here is the default definition of this command, which makes just the @ into a letter.
The user may change it if he/she needs more or other characters masquerading as
letters.
290 \@ifundefined{MakePrivateLetters}

291 {\let\MakePrivateLetters\makeatletter}{}

\close@crossref At the end of a cross-referencing part we prepare ourselves for the next one by
setting the escape character to ‘\’.
292 \def\close@crossref{\SpecialEscapechar\\}

3.6 Macros for scanning macro names

\scan@macro

\macro@namepart

The \init@crossref will have made \active our \special@escape@char, so
that each \active@escape@char will invoke \scan@macro when within the
macrocode environment. By this means, we can automatically add index entries
for every TEX-like command which is met whilst setting (in verbatim) the contents
of macrocode environments.
293 \def\scan@macro{%

First we output the character which triggered this macro. Its version \catcoded to
12 is saved in \special@escape@char. We also call \step@checksum to generate
later on a proper check-sum (see section 2.12 for details).
294 \special@escape@char

295 \step@checksum

If the macrocode environment contains, for example, the command \\, the second
\ should not start the scanning mechanism. Therefore we use a switch to decide
if scanning of macro names is allowed.
296 \ifscan@allowed

The macro assembles the letters forming a TEX command in \macro@namepart
so this is initially cleared; we then set \next to the first character following the \
and call \macro@switch to determine whether that character is a letter or not.
297 \let\macro@namepart\@empty

298 \def\next{\futurelet\next\macro@switch}%

As you recognize, we actually did something else, because we have to defer the
\futurelet call until after the final \fi. If, on the other hand, the scanning is
disabled we simply \let \next equal ‘empty’.
299 \else \let\next\@empty \fi

Now we invoke \next to carry out what’s needed.
300 \next}

\ifscan@allowed

\scan@allowedtrue

\scan@allowedfalse

\ifscan@allowed is the switch used above to determine if the \active@escape@char
should start the macro scanning mechanism.
301 \newif\ifscan@allowed \scan@allowedtrue

\EnableCrossrefs

\DisableCrossrefs

At this point we might define two macros which allow the user to disable or
enable the cross-referencing mechanism. Processing of files will be faster if only
main index entries are generated (i.e., if \DisableCrossrefs is in force).
302 \def\DisableCrossrefs{\@bsphack\scan@allowedfalse\@esphack}

25

The macro \EnableCrossrefs will also disable any \DisableCrossrefs com-
mand encountered afterwards.
303 \def\EnableCrossrefs{\@bsphack\scan@allowedtrue

304 \def\DisableCrossrefs{\@bsphack\@esphack}\@esphack}

\macro@switch Now that we have the character which follows the escape character (in \next), we
can determine whether it’s a ‘letter’ (which probably includes @).

If it is, we let \next invoke a macro which assembles the full command name.
305 \def\macro@switch{\ifcat\noexpand\next a%

306 \let\next\macro@name

Otherwise, we have a ‘single-character’ command name. For all those single-
character names, we use \short@macro to process them into suitable index entries.
307 \else \let\next\short@macro \fi

Now that we know what macro to use to process the macro name, we invoke it . . .
308 \next}

\short@macro This macro will be invoked (with a single character as parameter) when a single-
character macro name has been spotted whilst scanning within the macrocode
environment.

First we take a look at the \index@excludelist to see whether this macro
name should produce an index entry. This is done by the \ifnot@excluded macro
which assumes that the macro name is saved in \macro@namepart. The character
mustn’t be stored with a special category code or exclusion from the index won’t
work, so we employ the case-changing trick used elsewhere. Since the argument
might be an active character, \string is used to normalize it.
309 \begingroup

310 \catcode‘\&=12

311 \gdef\short@macro#1{\begingroup

312 \uccode‘\&=\expandafter‘\string#1%

313 \uppercase{\def\x{\def\macro@namepart{&}}}%

314 \expandafter\endgroup\x

315 \ifnot@excluded

If necessary the index entry is produced by the macro \produce@index. Depend-
ing on the actual character seen, this macro has to do different things, so we pass
the character as an argument.
316 \produce@index{#1}\fi

Then we disable the cross-referencing mechanism with \scan@allowedfalse and
print the actual character. The index entry was generated first to ensure that no
page break intervenes (recall that a ^^M will start a new line).
317 \scan@allowedfalse#1%

After typesetting the character we can safely enable the cross-referencing feature
again. Note that this macro won’t be called (since \macro@switch won’t be called)
if cross-referencing is globally disabled.
318 \scan@allowedtrue }

319 \endgroup

\produce@index This macro is supposed to generate a suitable \SortIndex command for a given
single-letter control sequence. We test first for the cases which involve active
characters (i.e. the backslash, the special escape character (if any), the space and
the ^^M). Using the \if test (testing for character codes), we have to ensure that
the argument isn’t expanded.
320 \def\produce@index#1{%

321 \if\noexpand#1\special@escape@char

If the character is the special escape character (or the ‘\’ in case there was none)
the \it@is@a macro is used to produce the actual \SortIndex call.
322 \scan@allowedfalse \it@is@a\special@escape@char \else

26

Next comes the test for a ‘\’ which must be the \13 expanding to \bslash.
323 \if\noexpand#1\bslash \it@is@a\bslash \else

Another possibility is 13. Recall that \space produces a 10.
324 \if\noexpand#1\space \it@is@a\space \else

The last19 possibility of an active character is ^^M. In this case we don’t test for
character codes, since it is easier to look if the character is equal to \par. (We are
inside the macrocode environment.)
325 \ifx#1\par

If we end up here we have just scanned a \^^M or something similar. Since this
will be treated like \ by TEX we produce a corresponding index entry.
326 \it@is@a\space \else

If it is the token \relax we do nothing. This can’t happen when the ‘doc’ package
is used in the way described here, but was added to allow extensions like the
idxverb option.
327 \ifx#1\relax \else

The next three branches are needed because of bugs in our makeindex program.
You can’t produce unbalanced index entries20 and you have to double a percent
character. To get around these restrictions we use special macros to produce the
\index calls.21

328 \if\noexpand#1\bgroup \LeftBraceIndex \else

329 \if\noexpand#1\egroup \RightBraceIndex \else

330 \if\noexpand#1\percentchar \PercentIndex \else

All remaining characters are used directly to produce their index entries. This is
possible even for the characters which have special meanings in the index program,
provided we quote the characters. (This is correctly done in \it@is@a.)
331 \it@is@a{\string#1}%

We now need a whole pile of \fi s to match up with the \if s.
332 \fi \fi \fi \fi \fi \fi \fi \fi}

\macro@name We now come to the macro which assembles command names which consist of one
or more ‘letters’ (which might well include @ symbols, or anything else which has
a \catcode of 11).

To do this we add the ‘letter’ to the existing definition of \macro@namepart
(which you will recall was originally set to \@empty).
333 \def\macro@name#1{\edef\macro@namepart{\macro@namepart#1}%

Then we grab hold of the next single character and let \more@macroname determine
whether it belongs to the letter string forming the command name or is a ‘non-
letter’.
334 \futurelet\next\more@macroname}

\more@macroname This causes another call of \macro@name to add in the next character, if it is
indeed a ‘letter’.
335 \def\more@macroname{\ifcat\noexpand\next a%

336 \let\next\macro@name

Otherwise, it finishes off the index entry by invoking \macro@finish.
337 \else \let\next\macro@finish \fi

Here’s where we invoke whatever macro was \let equal to \next.
338 \next}

19Well, it isn’t the last active character after all. I added \@noligs some days ago and now ‘

too is active. So we have to make sure that such characters don’t get expanded in the index.
20This is possible for TEX if you use {12 or }12, but makeindex will complain.
21Brian Hamilton Kelly has written fixes for all three bugs. When they’ve found their way

through all installations, the lines above will be removed. See page 33 if you already have them.
(I’m not sure which versions incorporate these, but 2.11 is OK. See also 8.)

27

\macro@finish When we’ve assembled the full ‘letter’-string which forms the command name, we
set the characters forming the entire command name, and generate an appropriate
\index command (provided the command name is not on the list of exclusions).
The ‘\’ is already typeset; therefore we only have to output all ‘letters’ saved in
\macro@namepart.
339 \def\macro@finish{%

340 \macro@namepart

Then we call \ifnot@excluded to decide whether we have to produce an index
entry. The construction with \@tempa is needed because we want the expansion
of \macro@namepart in the \index command.22

341 \ifnot@excluded

342 \edef\@tempa{\noexpand\SpecialIndex{\bslash\macro@namepart}}%

343 \@tempa \fi}

3.7 The index exclude list23

The internal form of the index exclude list is

〈macro name〉,〈macro name〉, . . . ,

where 〈macro name〉 is a macro name like \12p11@11 or \12$11. Note that the \
has category ‘other’ and the other characters in the name are all ‘letter’, regardless
of their normal category.

\DoNotIndex This macro is used to suppress macro names in the index. It starts off with a new
group because we have to change the \catcode s of all characters which belong to
‘letters’ while macros are defined.
344 \def\DoNotIndex{\begingroup \MakePrivateLetters

345 \catcode‘\\12

Then we call the macro which actually reads the argument given by the user.
346 \do@not@index}

\do@not@index We make the \do@not@index macro \long since the user might want to exclude
the \par macro.
347 \long\def\do@not@index#1{%

It just adds to a token list after finishing the group in which the catcodes were
changed.
348 \endgroup

349 \addto@hook\index@excludelist{#1,}}

\addto@hook The code for adding tokens (the second argument) to a token list (the first ar-
gument) is taken from [8], but it needs to be \long in case \par is amongst the
tokens.
350 \long\def\addto@hook#1#2{#1\expandafter{\the#1#2}}

\index@excludelist We need an initially-empty register for the excluded list.

351 \newtoks\index@excludelist

352 \index@excludelist{}

\ifnot@excluded

\expanded@notin

Now we take a look at the \index@excludelist to see whether a macro name
saved in \macro@namepart should produce an index entry. This macro is a pseudo
\if; it should expand to \iftrue or \iffalse depending on the contents of
\index@excludelist.
353 \begingroup

22The \index command will expand its argument in the \output routine. At this time
\macro@namepart might have a new value.

23Warning: the incomplete commentary on \DoNotIndex and the macros it calls was written
by Dave Love.

28

First we change \catcodes so that \ is ‘other’ and | a temporary for the escape
character. This is necessary since our macro names are stored that way in the
\index@excludelist.
354 \catcode‘\|=0%

355 \catcode‘\\=12

Then we define \ifnot@excluded to call \expanded@notin with two arguments:
the first is the string \ followed by the contents of \macro@namepart followed
by a , and the second is \the followed by \index@excludelist. To achieve the
expansion of \macro@namepart, i.e. to pass its contents, we need a suitable number
of \expandafters.
356 |gdef|ifnot@excluded{|expandafter

357 |expanded@notin|expandafter{|expandafter

358 \|macro@namepart,}{|the|index@excludelist}}

359 |endgroup

The macro \expanded@notin now does the dirty work. It first defines a macro
\in@@ with a very special parameter text. If you look closely \in@@ has three
arguments, the first one is delimited by the first argument of \expanded@notin
(i.e. by the string starting with a \ and ending with a , above), the second is
undelimited (which means that it will get the next token after our string, and the
third is delimited again and will get the rest up to the token \in@@. In other
words the token \in@@ is also used as a delimiter.
360 \def\expanded@notin#1#2{%

361 \def\in@@##1#1##2##3\in@@{%

Now the replacement text simply compares the second argument (i.e. the unde-
limited one after our string) to the token \expanded@notin. This is an unclosed
\ifx statement which means that this macro behaves similar to a normal TEX
conditional.
362 \ifx\expanded@notin##2}%

After all these preparations we call \in@@. First we expand the token after \in@@
(which is \the from the second argument to \expanded@notin). As a result we get
the contents of the \index@excludelist inserted after \in@@. After this contents
we add once more the string we are looking for, then the token \expanded@notin
and finally the token \in@@.
363 \expandafter\in@@#2#1\expanded@notin\in@@}

Now what happens when the macro \in@@ above gets called? The first argument
to \in@@ is delimited by our string. In other words it will get everything from
the contents of \index@excludelist before this string. If the string is not in
\index@excludelist then it gets the whole contents, since after it we had inserted
the string one more. In this case the next token is \expanded@notin which gets
assigned to the second argument and the third argument will be empty. If, on the
other hand, the string was inside \index@excludelist then the second argument
will not be the token \expanded@notin and the third argument will be all the
garbage up to \in@@. Therefore testing the seconded argument, as done in the
definition of \in@@ will tell us whether or not the string is in \index@includelist
and this was exactly what we wanted. (Deep breath.) You got that?24

3.8 Macros for generating index entries

Here we provide default definitions for the macros invoked to create index entries;
these are either invoked explicitly, or automatically by \scan@macro. As already
mentioned, the definitions given here presuppose that the .idx file will be pro-
cessed by Chen’s makeindex program — they may be redefined for use with the
user’s favourite such program.

24TEXbook page 125. The code described above is originally due to Michael Spivak who used
a similar method within the AMS-TEX macros.

29

To assist the reader in locating items in the index, all such entries are sorted
alphabetically ignoring the initial ‘\’; this is achieved by issuing an \index com-
mand which contains the ‘actual’ operator for makeindex. The default value for the
latter operator is ‘@’, but the latter character is so popular in LATEX package files
that it is necessary to substitute another character. This is indicated to makeindex
by means of an ‘index style file’; the character selected for this function is =, and
therefore this character too must be specially treated when it is met in a TEX
command. A suitable index style file is provided amongst the supporting files for
this style file in gind.ist and is generated from this source by processing with
docstrip to extract the module gind. A similar style file gglo.ist is supplied
for sorting the change information in the glossary file and is extracted as module
gglo. First of all we add some information to the front of the .ist files.
364 〈/package〉
365 〈+gind | gglo〉%% This is a MAKEINDEX style file which should be used to

366 〈+gind〉%% generate the formatted index for use with the doc

367 〈+gglo〉%% generate the formatted change history for use with the doc

368 〈+gind | gglo〉%% package. The TeX commands used below are defined in

369 〈+gind | gglo〉%% doc.sty. The commands for MAKEINDEX like ‘level’

370 〈+gind | gglo〉%% ‘item_x1’ are described in ‘‘ Makeindex, A General

371 〈+gind | gglo〉%% Purpose, Formatter-Independent Index Processor’’ by

372 〈+gind | gglo〉%% Pehong Chen.

373 〈+gind | gglo〉

\actualchar

\quotechar

\levelchar

First come the definitions of \actualchar, \quotechar and \levelchar. Note,
that our defaults are not the ones used by the makeindex program without a style
file.
374 〈∗package〉
375 \@ifundefined{actualchar}{\def\actualchar{=}}{}

376 \@ifundefined{quotechar}{\def\quotechar{!}}{}

377 \@ifundefined{levelchar}{\def\levelchar{>}}{}

378 〈/package〉
379 〈+gind | gglo〉actual ’=’

380 〈+gind | gglo〉quote ’!’

381 〈+gind | gglo〉level ’>’

382 〈∗package〉

\encapchar The makeindex default for the \encapchar isn’t changed.

383 \@ifundefined{encapchar}{\def\encapchar{|}}{}

\verbatimchar We also need a special character to be used as a delimiter for the \verb* command
used in the definitions below.
384 \@ifundefined{verbatimchar}{\def\verbatimchar{+}}{}

\SpecialIndex The \SpecialIndex command creates index entries for macros. If the argument is
\xyz, the command produces \indexentry{xyz=\verb!*+\xyz+}{n} given the
above defined defaults for \actualchar, \quotechar and \verbatimchar. We
first remove the initial ‘\’ to get a better index.
385 \def\SpecialIndex#1{\@bsphack\special@index{\expandafter\@gobble

386 \string#1\actualchar

Then follows the actual entry. A \quotechar is placed before the * to allow its
use as a special makeindex character. Again \@bsphack and \@esphack are used
to make the macros invisible.
387 \string\verb\quotechar*\verbatimchar\string#1\verbatimchar}%

388 \@esphack}

\SpecialMainIndex

\SpecialMainEnvIndex

\SpecialUsageIndex

The \SpecialMainIndex macro is used to cross-reference the names introduced
by the macro environment. The action is as for \SpecialIndex, except that
makeindex is instructed to ‘encap’sulate the entry with the string |main to cause
it to generate a call of the \main macro.

30

\SpecialMainIndex passes the macro name to be indexed on to the macro
\SpecialIndex@.
389 \def\SpecialMainIndex#1{\@bsphack\SpecialIndex@{#1}{\encapchar main}%

390 \@esphack}

\SpecialIndex@ The macro \SpecialIndex@ does the real work for \SpecialMainIndex and
\SpecialUsageIndex. It takes two arguments: the macro to be indexed (as a
control sequence or list of character tokens) and the additional text for the index.

391 \begingroup

392 \catcode‘\|=0

393 \catcode‘\\=12

394 |gdef|@SpecialIndexHelper@#1#2|@nil{%

395 |if |noexpand#1\%

396 |gdef|@gtempa{#2}%

397 |else

398 |begingroup

399 |escapechar|m@ne

400 |expandafter|gdef|expandafter|@gtempa|expandafter{|string#1#2}%

401 |endgroup

402 |fi}

403 |endgroup

404 \def\SpecialIndex@#1#2{%

The first thing it does is to convert the macro into a list of characters. Note that
a character token list remains (mostly) unchanged.
405 \@SpecialIndexHelper@#1\@nil

The macro name \ has to handled in a special way. The reason is that the space
token is skipped when TEX is scanning macro parameters, so that the trick used
below will not work. So, we check whether the replacement text of \@tempa starts
with a space token and write the appropriate index entry.
406 \def\@tempb{ }%

407 \ifcat \@tempb\@gtempa

408 \special@index{\quotechar\space\actualchar

409 \string\verb\quotechar*\verbatimchar

410 \quotechar\bslash\quotechar\space\verbatimchar#2}%

411 \else

Having handled this special case we have to distinguish control sequences consist-
ing of one or more letters and those that consists of exactly one nonletter. As
character tokens in the replacement text of the macro \@gtempa have all category
code 12 (other), this is difficult. For simplicity, we treat all single character control
sequences alike, irregardless of whether the character is a letter or not. This has
the advantage that it works even for strange settings of the category codes.

We define a utility macro \@tempb with two arguments, the second delimited
by \relax. It will be called later so that the first argument is the first character
of the macro name, and the second argument receives the rest of the characters.
So we distinguish the two cases above by checking whether the second argument
is empty.
412 \def\@tempb##1##2\relax{\ifx\relax##2\relax

If so, we define the helper macro \@tempc in a way that it adds quotechars in
critical places.
413 \def\@tempc{\special@index{\quotechar##1\actualchar

414 \string\verb\quotechar*\verbatimchar

415 \quotechar\bslash\quotechar##1\verbatimchar#2}}%

Otherwise we write the characters as in \SpecialIndex.
416 \else

417 \def\@tempc{\special@index{##1##2\actualchar

418 \string\verb\quotechar*\verbatimchar

31

419 \bslash##1##2\verbatimchar#2}}%

420 \fi}%

Now pass the list of characters to tempb and call tempc to do the work.
421 \expandafter\@tempb\@gtempa\relax

422 \@tempc

423 \fi}

Slightly simpler is the main entry for environments
424 \def\SpecialMainEnvIndex#1{\@bsphack\special@index{%

425 #1\actualchar

426 {\string\ttfamily\space#1}

427 (environment)%

428 \encapchar main}%

429 \special@index{environments:\levelchar#1\actualchar{%

430 \string\ttfamily\space#1}\encapchar

431 main}\@esphack}

The \SpecialUsageIndex is similar to \SpecialMainIndex, except that it uses
the standard \index command. usage instead of main.
432 \def\SpecialUsageIndex#1{\@bsphack

433 {\let\special@index\index\SpecialIndex@{#1}{\encapchar usage}}%

434 \@esphack}

\SpecialEnvIndex Indexing environments is done a little bit differently; we produce two index entries
with the \SpecialEnvIndex macro:
435 \def\SpecialEnvIndex#1{\@bsphack

First we sort the environment under its own name stating in the actual entry that
this is an environment.
436 \index{#1\actualchar{\protect\ttfamily#1}

437 (environment)\encapchar usage}%

The second entry is sorted as a subitem under the key ‘environments:’.
438 \index{environments:\levelchar#1\actualchar{\protect\ttfamily#1}\encapchar

439 usage}\@esphack}

Because both entries correspond to ‘descriptions’ of the environment, we encap-
sulate the page numbers with the \usage macro.

\SortIndex This macro is used to generate the index entries for any single-character command
that \scan@macro encounters. The first parameter specifies the lexical order for
the character, whilst the second gives the actual characters to be printed in the
entry. It can also be used directly to generate index entries which differ in sort
key and actual entry.
440 \def\SortIndex#1#2{\index{#1\actualchar#2}}

\it@is@a This macro is supposed to produce a correct \SortIndex entry for a given char-
acter. Since this character might be recognised as a ‘command’ character by the
index program used, all characters are quoted with the \quotechar.
441 \def\it@is@a#1{\special@index{\quotechar #1\actualchar

442 \string\verb\quotechar*\verbatimchar

443 \quotechar\bslash\quotechar#1\verbatimchar}}

\LeftBraceIndex

\RightBraceIndex

These two macros fix the problems with makeindex. Note the ‘hack’ with
\iffalse}\fi to satisfy both TEX and the makeindex program. When this is
written to the .idx file TEX will see both braces (so we get a balanced text).
makeindex will also see balanced braces but when the actual index entry is again
processed by TEX the brace in between \iffalse \fi will vanish.
444 \@ifundefined{LeftBraceIndex}{\def\LeftBraceIndex{%

445 \special@index{\bgroup\actualchar\string\verb\quotechar*\verbatimchar

446 \quotechar\bslash{\verbatimchar\string\iffalse}\string\fi}}}{}

447

32

448 \@ifundefined{RightBraceIndex}{\def\RightBraceIndex{%

449 \special@index{\egroup\actualchar\string\iffalse{\string\fi\string\verb

450 \quotechar*\verbatimchar\quotechar\bslash}\verbatimchar}}}{}

\PercentIndex By default we assume a version of makeindex without the percent bug is being
used.
451 \@ifundefined{PercentIndex}

452 {\def\PercentIndex{\it@is@a\percentchar}}{}

\OldMakeindex

\percentchar

Here is one solution for the percent bug in makeindex. The macro \percentchar
denotes a %12. Calling this from a package or the driver file sets things up appro-
priately.
453 \def\OldMakeindex{\def\PercentIndex{%

454 \special@index{\quotechar\percentchar\actualchar\string\verb

455 \quotechar*\verbatimchar\quotechar\bslash

456 \percentchar\percentchar\verbatimchar}}}

457 {\catcode‘\%=12 \gdef\percentchar{%}}

3.9 Redefining the index environment

\ifhave@multicol By default the index is set in three columns, and will start on the same page
as, and underneath, the last part of the text of the documented package file, if
possible. The last page will be reformatted with balanced columns. This re-
quires the multicols environment which is described elsewhere. So that doc can
be run independently of multicol.sty we first check for its existence and set the
have@multicol flag appropriately for use below.
458 \newif\ifhave@multicol

If we found multicol.sty we use it. It would be nice to delay this (and the
re-definition of theindex) until we knew whether an index was actually required
. . .
459 \IfFileExists{multicol.sty}{\have@multicoltrue

460 \RequirePackage{multicol}%

461 }{}

\IndexMin

\c@IndexColumns

If multicol is in use, when the index is started we compute the remaining space on
the current page; if it is greater than \IndexMin, the first part of the index will then
be placed in the available space. The number of columns set is controlled by the
counter \c@IndexColumns which can be changed with a \setcounter declaration.
462 \newdimen\IndexMin \IndexMin = 80pt

463 \newcount\c@IndexColumns \c@IndexColumns = 3

\theindex Now we start the multi-column mechanism, if appropriate. We use the LATEX
counter \c@IndexColumns declared above to denote the number of columns and
insert the ‘index prologue’ text (which might contain a \section call, etc.). See
the default definition for an example.
464 \ifhave@multicol

465 \renewenvironment{theindex}

466 {\begin{multicols}\c@IndexColumns[\index@prologue][\IndexMin]%

Then we make a few last minute assignments to read the individual index \item s
and finish off by ignoring any initial space.
467 \IndexParms \let\item\@idxitem \ignorespaces}%

\endtheindex At the end of the index, we have only to end the multicols environment.

468 {\end{multicols}}

If we can’t use multicols we warn the user and use an environment that’s basically
the one from article.sty.
469 \else

470 \typeout{Can’t find multicol.sty -- will use normal index layout if

33

471 necessary.}

472 \def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi

473 \columnseprule \z@ \columnsep 35\p@

474 \twocolumn[\index@prologue]%

475 \IndexParms \let\item\@idxitem \ignorespaces}

476 \def\endtheindex{\if@restonecol\onecolumn\else\clearpage\fi}

477 \fi

Here are the necessary makeindex declarations. We disable scanning of macro
names inside the index with \scan@allowedfalse\n to avoid recursion.
478 〈/package〉
479 〈+gind〉preamble
480 〈+gind〉"\n \\begin{theindex} \n \\makeatletter\\scan@allowedfalse\n"

481 〈+gind〉postamble
482 〈+gind〉"\n\n \\end{theindex}\n"

483 〈∗package〉

\IndexPrologue

\index@prologue

The \IndexPrologue macro is used to place a short message into the document
above the index. It is implemented by redefining \index@prologue, a macro
which holds the default text. We’d better make it a \long macro to allow \par
commands in its argument.
484 \long\def\IndexPrologue#1{\@bsphack\def\index@prologue{#1}\@esphack}

Now we test whether the default is already defined by another package file. If not
we define it.
485 \@ifundefined{index@prologue}

486 {\def\index@prologue{\section*{Index}%

487 \markboth{Index}{Index}%

488 Numbers written in italic refer to the page

489 where the corresponding entry is described;

490 numbers underlined refer to the

491 \ifcodeline@index

492 code line of the

493 \fi

494 definition; numbers in roman refer to the

495 \ifcodeline@index

496 code lines

497 \else

498 pages

499 \fi

500 where the entry is used.

501 }}{}

\IndexParms These are some last-minute assignments for formatting the index entries. They
are defined in a separate macro so that a user can substitute different definitions.
We start by defining the various parameters controlling leading and the separation
between the two columns. The entire index is set in \small size.
502 \@ifundefined{IndexParms}

503 {\def\IndexParms{%

504 \parindent \z@

505 \columnsep 15pt

506 \parskip 0pt plus 1pt

507 \rightskip 15pt

508 \mathsurround \z@

509 \parfillskip=-15pt

510 \small

\@idxitem

\subitem

\subsubitem

Index items are formatted with hanging indentation for any items which may
require more than one line.
511 \def\@idxitem{\par\hangindent 30pt}%

34

Any sub-item in the index is formatted with a 15pt indentation under its main
heading.
512 \def\subitem{\@idxitem\hspace*{15pt}}%

Whilst sub-sub-items go in a further 10pt.
513 \def\subsubitem{\@idxitem\hspace*{25pt}}%

\indexspace The makeindex program generates an \indexspace before each new alphabetic
section commences. After this final definition we end the \@ifundefined and the
definition of \IndexParms.
514 \def\indexspace{\par\vspace{10pt plus 2pt minus 3pt}}%

515 }}{}

\efill This definition of \efill is intended to be used after index items which have no
following text (for example, “ see” entries). It just ensures that the current line
is filled, preventing “Underfull \hbox” messages.
516 \def\efill{\hfill\nopagebreak}%

517 〈/package〉
518 〈+gind | gglo〉item_x1 "\\efill \n \\subitem "

519 〈+gglo〉item_x2 "\\ "

520 〈+gind〉item_x2 "\\efill \n \\subsubitem "

521 〈∗package〉

\pfill

\dotfil

\dotfill

The following definitions provide the \pfill command; if this is specified in the
index style file to makeindex as the delimiter to appear after index items, then the
intervening space before the referenced page numbers will be filled with dots, with
a little white space interpolated at each end of the dots. If the line is broken the
dots will show up on both lines.
522 \def\dotfill{\leaders\hbox to.6em{\hss .\hss}\hskip\z@ plus 1fill}%

523 \def\dotfil{\leaders\hbox to.6em{\hss .\hss}\hfil}%

524 \def\pfill{\unskip~\dotfill\penalty500\strut\nobreak

525 \dotfil~\ignorespaces}%

526 〈/package〉
527 〈+gind | gglo〉delim_0 "\\pfill "

528 〈+gind | gglo〉delim_1 "\\pfill "

529 〈+gind | gglo〉delim_2 "\\pfill "

530 〈∗package〉

* Here is the definition for the * macro. It isn’t used in this set of macros.

531 \def*{\leavevmode\lower.8ex\hbox{$\,\widetilde{\ }\,$}}

\main The defining entry for a macro name is flagged with the string |main25 in the
\index command; makeindex processes this so that the \main macro will be in-
voked to underline the page number(s) on which the definition of the macro will
be found.
532 \@ifundefined{main}{\def\main#1{\underline{#1}}}{}

\usage The \usage macro is used to indicate entries describing the usage of a macro. The
corresponding page number(s) will be set in italics.
533 \@ifundefined{usage}{\def\usage#1{\textit{#1}}}{}

\PrintIndex This is the same as \printindex in the makeidx package.

534 \def\PrintIndex{\@input@{\jobname.ind}%

535 \global\let\PrintIndex\@empty}

\printindex Since the above macro was called \printindex in older versions of doc.sty the
following definition was provided up to version 1.9y.
536 %\def\printindex{\typeout{\string\printindex\space is obsolete!}%

25With the current definition of \encapchar substituted for |

35

537 % \typeout{Please use \string\PrintIndex\space

538 % if you are a macro implementor^^J

539 % or get a newer version of the documented

540 % software if you are a user}%

541 % \PrintIndex}

We want headings in the index (and changes list) according to the initial char-
acter of the next block of entries and have to instruct makeindex appropriately.
Unfortunately the specification for this changed sometime between versions 2.4
and 2.11 of makeindex. We provide both ways of doing it but unfortunately this
will always produce a warning message from makeindex. This is for older versions:

542 〈/package〉
543 〈+gind, gglo〉% The next lines will produce some warnings when

544 〈+gind, gglo〉% running Makeindex as they try to cover two different

545 〈+gind, gglo〉% versions of the program:

546 〈+gind, gglo〉lethead_prefix "{\\bfseries\\hfil "

547 〈+gind, gglo〉lethead_suffix "\\hfil}\\nopagebreak\n"

548 〈+gind〉lethead_flag 1

549 〈+gglo〉lethead_flag 0

This works for newer ones:
550 〈+gind, gglo〉heading_prefix "{\\bfseries\\hfil "

551 〈+gind, gglo〉heading_suffix "\\hfil}\\nopagebreak\n"

552 〈+gind〉headings_flag 1

553 〈+gglo〉headings_flag 0

554 〈∗package〉

3.10 Dealing with the change history26

To provide a change history log, the \changes command has been introduced.
This takes three arguments, respectively, the version number of the file, the date
of the change, and some detail regarding what change has been made. The second
of these arguments is otherwise ignored, but the others are written out and may be
used to generate a history of changes, to be printed at the end of the document.
However, note that older versions of Chen’s standard makeindex program limit
any textual field to just 64 characters; therefore, is important that the number of
characters in the second and third parameters should not exceed 61 altogether (to
allow for the parentheses placed around the date).

\changes The output of the \changes command goes into the 〈Glossary File〉 and therefore
uses the normal \glossaryentry commands.27 Thus makeindex or a similar pro-
gram can be used to process the output into a sorted “glossary”. The \changes
command commences by taking the usual measures to hide its spacing, and then
redefines \protect for use within the argument of the generated \indexentry
command.

We re-code nearly all chars found in \sanitize to letter since the use of special
package which make some characters active might upset the \changes command
when writing its entries to the file. However we have to leave % as comment and
as 〈space〉 otherwise chaos will happen. And, of course the \ should be available
as escape character.
555 \def\changes{\@bsphack\begingroup\@sanitize

556 \catcode‘\\\z@ \catcode‘\ 10 \MakePercentIgnore

557 \changes@}

558 \def\changes@#1#2#3{%

559 \protected@edef\@tempa{\noexpand\glossary{#1\levelchar

26The whole section was proposed by Brian Hamilton Kelly. He also documented and
debugged the macros as well as many other parts of this package.

27Note that a recent change in LATEX 2.09 changed the command name in the .glo file from
\indexentry to \glossaryentry. It is therefore necessary to have a special makeindex style file
called gglo.ist to process this file correctly.

36

If the macro \saved@macroname doesn’t contain any macro name (ie is empty)
the current changes entry was done at top-level. In this case we preceed it by
\generalname.
560 \ifx\saved@macroname\@empty

561 \space

562 \actualchar

563 \generalname

564 \else

565 \expandafter\@gobble

566 \saved@macroname

567 \actualchar

568 \string\verb\quotechar*%

569 \verbatimchar\saved@macroname

570 \verbatimchar

571 \fi

572 :\levelchar #3}}%

573 \@tempa\endgroup\@esphack}

\saved@macroname The entries are sorted for convenience by the name of the most recently introduced
macroname (i.e., that in the most recent \begin{macro} command). We there-
fore provide \saved@macroname to record that argument, and provide a default
definition in case \changes is used outside a macro environment. (This is a wicked
hack to get such entries at the beginning of the sorted list! It works providing no
macro names start with ! or ".)
574 \def\saved@macroname{}

\generalname This macro holds the string placed before changes entries on top-level.

575 \def\generalname{General}

\RecordChanges To cause the changes to be written (to a .glo) file, we define \RecordChanges to
invoke LATEX’s usual \makeglossary command.
576 \let\RecordChanges\makeglossary

\GlossaryMin

\c@GlossaryColumns

The remaining macros are all analogues of those used for the theindex environment.
When the glossary is started we compute the space which remains at the bottom
of the current page; if this is greater than \GlossaryMin then the first part of
the glossary will be placed in the available space. The number of columns set
are controlled by the counter \c@GlossaryColumns which can be changed with a
\setcounter declaration.
577 \newdimen\GlossaryMin \GlossaryMin = 80pt

578 \newcount\c@GlossaryColumns \c@GlossaryColumns = 2

\theglossary

\endglossary

The environment theglossary is defined in the same manner as the theindex envi-
ronment.
579 \ifhave@multicol

580 \newenvironment{theglossary}{%

581 \begin{multicols}\c@GlossaryColumns

582 [\glossary@prologue][\GlossaryMin]%

583 \GlossaryParms \let\item\@idxitem \ignorespaces}%

584 {\end{multicols}}

585 \else

586 \newenvironment{theglossary}{%

587 \@restonecoltrue\if@twocolumn\@restonecolfalse\fi

588 \columnseprule \z@ \columnsep 35\p@

589 \twocolumn[\glossary@prologue]%

590 \GlossaryParms \let\item\@idxitem \ignorespaces}

591 {\if@restonecol\onecolumn\else\clearpage\fi}

592 \fi

37

Here are the necessary makeindex declarations with scanning disabled as for the
index.
593 〈/package〉
594 〈+gglo〉preamble
595 〈+gglo〉"\n \\begin{theglossary} \n

596 〈+gglo〉 \\makeatletter\\scan@allowedfalse\n"

597 〈+gglo〉postamble
598 〈+gglo〉"\n\n \\end{theglossary}\n"

This difference from gind.ist is necessary if you have an up-to-date LATEX.
599 〈+gglo〉keyword "\\glossaryentry"

600 〈∗package〉

\GlossaryPrologue

\glossary@prologue

The \GlossaryPrologue macro is used to place a short message above the glossary
into the document. It is implemented by redefining \glossary@prologue, a macro
which holds the default text. We better make it a long macro to allow \par
commands in its argument.
601 \long\def\GlossaryPrologue#1{\@bsphack

602 \def\glossary@prologue{#1}%

603 \@esphack}

Now we test whether the default is already defined by another package file. If not
we define it.
604 \@ifundefined{glossary@prologue}

605 {\def\glossary@prologue{\section*{{Change History}}%

606 \markboth{{Change History}}{{Change History}}%

607 }}{}

\GlossaryParms Unless the user specifies otherwise, we set the change history using the same
parameters as for the index.
608 \@ifundefined{GlossaryParms}{\let\GlossaryParms\IndexParms}{}

\PrintChanges To read in and print the sorted change history, just put the \PrintChanges com-
mand as the last (commented-out, and thus executed during the documentation
pass through the file) command in your package file. Alternatively, this command
may form one of the arguments of the \StopEventually command, although a
change history is probably not required if only the description is being printed.

The command assumes that makeindex or some other program has processed
the .glo file to generate a sorted .gls file.
609 \def\PrintChanges{\@input@{\jobname.gls}%

610 \global\let\PrintChanges\@empty}

3.11 Bells and whistles

\StopEventually

\Finale

\AlsoImplementation

\OnlyDescription

If \AlsoImplementation is in force the whole documentation including the code
part will be typeset. This is the default.
611 \newcommand\AlsoImplementation{%

To make this happen we have to define \StopEventually in a way that its argu-
ment is typeset at the very end or more exactly at \Finale. For this we save its
argument in the macro \Finale.
612 \long\def\StopEventually##1{\@bsphack\gdef\Finale{##1%

But \Finale will be called at the very end of a file. This is exactly the point were
we want to know if the file is uncorrupted. Therefore we also call \check@checksum
at this point.
613 \check@checksum}%

On the other hand: \StopEventually is more or less a dividing point between
description and code. So we start to look for the check-sum of the documented
file by calling \init@checksum.
614 \init@checksum

38

615 \@esphack}%

616 }

Since \AlsoImplementation should be the default we execute it and thus
\StopEventually gets the desired meaning.
617 \AlsoImplementation

When the user places an \OnlyDescription declaration in the driver file the
document should only be typeset up to \StopEventually. We therefore have to
redefine this macro.
618 \def\OnlyDescription{\@bsphack\long\def\StopEventually##1{%

In this case the argument of \StopEventually should be set and afterwards TEX
should stop reading from this file. Therefore we finish this macro with
619 ##1\endinput}\@esphack}

If no \StopEventually command is given we silently ignore a \Finale issued.
620 \let\Finale\relax

\meta The \meta macro is a bit tricky. We want to allow line breaks at blanks in the
argument but we don’t want a break in between. In the past this was done by
defining \meta in a way that a is active when the argument is scanned. Words
are then scanned into \hboxes. The active will end the preceding \hbox add
an ordinary space and open a new \hbox. In this way breaks are only possible at
spaces. The disadvantage of this method was that \meta was neither robust nor
could it be \protected. The new implementation fixes this problem by defining
\meta in a radically different way: we prevent hypenation by defining a \language
which has no patterns associated with it and use this to typeset the words within
the angle brackets.
621 \ifx\l@nohyphenation\undefined

622 \newlanguage\l@nohyphenation

623 \fi

624 \DeclareRobustCommand\meta[1]{%

Since the old implementation of \meta could be used in math we better ensure
that this is possible with the new one as well. So we use \ensuremath around
\langle and \rangle. However this is not enough: if \meta@font@select below
expands to \itshape it will fail if used in math mode. For this reason we hide
the whole thing inside an \nfss@text box in that case.
625 \ensuremath\langle

626 \ifmmode \expandafter \nfss@text \fi

627 {%

628 \meta@font@select

Need to keep track of what we changed just in case the user changes font inside
the argument so we store the font explicitly.
629 \edef\meta@hyphen@restore

630 {\hyphenchar\the\font\the\hyphenchar\font}%

631 \hyphenchar\font\m@ne

632 \language\l@nohyphenation

633 #1\/%

634 \meta@hyphen@restore

635 }\ensuremath\rangle

636 }

\meta@font@select Maske font used inside \meta customizable.
637 \def\meta@font@select{\itshape}

\IndexInput This next macro may be used to read in a separate file (possibly a package file that
is not documented by this means) and set it verbatim, whilst scanning for macro
names and indexing the latter. This could be a useful first pass in preparing to
generate documentation for the file read.
638 \def\IndexInput#1{%

39

We commence by setting up a group, and initializing a \trivlist as is normally
done by a \begin{macrocode} command.
639 \begingroup \macro@code

We also make spacing behave as in the macrocode environment, because otherwise
all the spaces will be shown explicitly.
640 \frenchspacing \@vobeyspaces

Then it only remains to read in the specified file, and finish off the \trivlist.
641 \input{#1}\endmacrocode

Of course, we need to finish off the group as well.
642 \endgroup}

\maketitle The macro to generate titles is easily altered in order that it can be used more than
once (an article with many titles). In the original, diverse macros were concealed
after use with \relax. We must cancel anything that may have been put into
\@thanks, etc., otherwise all titles will carry forward any earlier such setting!
643 \def\maketitle{\par

644 \begingroup \def \thefootnote {\fnsymbol {footnote}}%

645 \setcounter {footnote}\z@

646 \def\@makefnmark{\hbox to\z@{$\m@th^{\@thefnmark}$\hss}}%

647 \long\def\@makefntext##1{\parindent 1em\noindent

648 \hbox to1.8em{\hss$\m@th^{\@thefnmark}$}##1}%

649 \if@twocolumn \twocolumn [\@maketitle]%

650 \else \newpage \global \@topnum \z@ \@maketitle \fi

For special formatting requirements (such as in TUGboat), we use pagestyle
titlepage for this; this is later defined to be plain, unless already defined, as,
for example, by ltugboat.sty.
651 \thispagestyle{titlepage}\@thanks \endgroup

If the driver file documents many files, we don’t want parts of a title of one to
propagate to the next, so we have to cancel these:
652 \setcounter {footnote}\z@

653 \gdef\@date{\today}\gdef\@thanks{}%

654 \gdef\@author{}\gdef\@title{}}

\ps@titlepage When a number of articles are concatenated into a journal, for example, it is not
usual for the title pages of such documents to be formatted differently. Therefore,
a class such as ltugboat can define this macro in advance. However, if no such
definition exists, we use pagestyle plain for title pages.
655 \@ifundefined{ps@titlepage}

656 {\let\ps@titlepage=\ps@plain}{}

\MakeShortVerb This arranges an abbreviation for \verb such that if you say \MakeShortVerb{\〈c〉}
subsequently using 〈c〉〈text〉〈c〉 is equivalent to \verb〈c〉〈text〉〈c〉.28 In addition,
the fact that 〈c〉 is made active is recorded for the benefit of the verbatim and
macrocode environments. Note particularly that the definitions below are global.
The first thing we do (it needn’t be first) is to record the—presumably new—
special character in \dospecials and \@sanitize using \add@special.

Some unwary user might issue \MakeShortVerb for a second time, we better
protect against this. We assume that this happened if a control sequence \cc\〈c〉
is bound, the probability that this name is used by another module is low. We
will output a warning below, so that a possible error might be noticed by the
programmer if he reads the LOG file. (Should have used module internal names,
’though.)

\MakeShortVerb* This arranges an abbreviation for \verb* such that if you say \MakeShortVerb*{\〈c〉}
subsequently using 〈c〉〈text〉〈c〉 is equivalent to \verb*〈c〉〈text〉〈c〉.

28Warning: the commentary in the rest of this section was written by Dave Love.

40

657 〈/package〉
658 〈∗package | shortvrb〉
659 \def\MakeShortVerb{%

660 \@ifstar

661 {\def\@shortvrbdef{\verb*}\@MakeShortVerb}%

662 {\def\@shortvrbdef{\verb}\@MakeShortVerb}}

663 \def\@MakeShortVerb#1{%

664 \expandafter\ifx\csname cc\string#1\endcsname\relax

665 \@shortvrbinfo{Made }{#1}\@shortvrbdef

666 \add@special{#1}%

Then the character’s current catcode is stored in \cc\〈c〉.
667 \expandafter

668 \xdef\csname cc\string#1\endcsname{\the\catcode‘#1}%

The character is spliced into the definition using the same trick as used in \verb
(for instance), having activated ~ in a group.
669 \begingroup

670 \catcode‘\~\active \lccode‘\~‘#1%

671 \lowercase{%

The character’s old meaning is recorded in \ac\〈c〉 prior to assigning it a new one.
672 \global\expandafter\let

673 \csname ac\string#1\endcsname~%

674 \expandafter\gdef\expandafter~\expandafter{\@shortvrbdef~}}%

675 \endgroup

Finally the character is made active.
676 \global\catcode‘#1\active

If we suspect that 〈c〉 is already a short reference, we tell the user. Now he or she
is responsible if anything goes wrong . . .
677 \else

678 \@shortvrbinfo\@empty{#1 already}{\@empty\verb(*)}%

679 \fi}

\DeleteShortVerb Here’s the means of undoing a \MakeShortVerb, for instance in a region where
you need to use the character outside a verbatim environment. It arranges for
\dospecials and \@sanitize to be altered appropriately, restores the saved cat-
code and, if necessary, the character’s meaning (as stored by \MakeShortVerb).
If the catcode wasn’t stored in \cc\〈c〉 (by \MakeShortVerb) the command is
silently ignored.
680 \def\DeleteShortVerb#1{%

681 \expandafter\ifx\csname cc\string#1\endcsname\relax

682 \@shortvrbinfo\@empty{#1 not}{\@empty\verb(*)}%

683 \else

684 \@shortvrbinfo{Deleted }{#1 as}{\@empty\verb(*)}%

685 \rem@special{#1}%

686 \global\catcode‘#1\csname cc\string#1\endcsname

We must not forget to reset \cc\〈c〉, otherwise the check in \MakeShortVerb for
a repeated definition will not work.
687 \global \expandafter\let \csname cc\string#1\endcsname \relax

688 \ifnum\catcode‘#1=\active

689 \begingroup

690 \catcode‘\~\active \lccode‘\~‘#1%

691 \lowercase{%

692 \global\expandafter\let\expandafter~%

693 \csname ac\string#1\endcsname}%

694 \endgroup \fi \fi}

41

\@shortvrbinfo Helper function for info messages.

695 \def\@shortvrbinfo#1#2#3{%

696 〈shortvrb〉 \PackageInfo{shortvrb}{%

697 〈!shortvrb〉 \PackageInfo{doc}{%

698 #1\expandafter\@gobble\string#2 a short reference

699 for \expandafter\string#3}}

\add@special This helper macro adds its argument to the \dospecials macro which is con-
ventionally used by verbatim macros to alter the catcodes of the currently active
characters. We need to add \do\〈c〉 to the expansion of \dospecials after re-
moving the character if it was already there to avoid multiple copies building up
should \MakeShortVerb not be balanced by \DeleteShortVerb (in case anything
that uses \dospecials cares about repetitions).
700 \def\add@special#1{%

701 \rem@special{#1}%

702 \expandafter\gdef\expandafter\dospecials\expandafter

703 {\dospecials \do #1}%

Similarly we have to add \@makeother\〈c〉 to \@sanitize (which is used in things
like \index to re-catcode all special characters except braces).
704 \expandafter\gdef\expandafter\@sanitize\expandafter

705 {\@sanitize \@makeother #1}}

\rem@special The inverse of \add@special is slightly trickier. \do is re-defined to expand to
nothing if its argument is the character of interest, otherwise to expand simply to
the argument. We can then re-define \dospecials to be the expansion of itself.
The space after =‘##1 prevents an expansion to \relax!
706 \def\rem@special#1{%

707 \def\do##1{%

708 \ifnum‘#1=‘##1 \else \noexpand\do\noexpand##1\fi}%

709 \xdef\dospecials{\dospecials}%

Fixing \@sanitize is the same except that we need to re-define \@makeother
which obviously needs to be done in a group.
710 \begingroup

711 \def\@makeother##1{%

712 \ifnum‘#1=‘##1 \else \noexpand\@makeother\noexpand##1\fi}%

713 \xdef\@sanitize{\@sanitize}%

714 \endgroup}

715 〈/package | shortvrb〉
716 〈∗package〉

\MakeShortverb

\DeleteShortverb

These commands from newdoc are now obsolete.

717 \def\MakeShortverb{\typeout{*** Switch to \noexpand\MakeShortVerb

718 syntax, this is obsolete ***}\MakeShortVerb}

719 \def\DeleteShortverb{\typeout{*** Switch to \noexpand\DeleteShortVerb

720 syntax, this is obsolete ***}\DeleteShortVerb}

3.12 Providing a checksum and character table29

\init@checksum The checksum mechanism works by counting backslashes in the macrocode. This
initialises the count (when called from \StopEventually).
721 \def\init@checksum{\relax

722 \global\bslash@cnt\z@}

\check@checksum This reports the sum compared with the value (\bslash@cnt) the file advertises.
It’s called from \Finale (if that hasn’t been re-defined).
723 \def\check@checksum{\relax

724 \ifnum\check@sum=\z@

29Warning: the commentary in this section was written by Dave Love.

42

725 \typeout{**********************************}%

726 \typeout{* This macro file has no checksum!}%

727 \typeout{* The checksum should be \the\bslash@cnt!}%

728 \typeout{**********************************}%

729 \else

730 \ifnum\check@sum=\bslash@cnt

731 \typeout{*******************}%

732 \typeout{* Checksum passed *}%

733 \typeout{*******************}%

734 \else

735 \PackageError{doc}{Checksum not passed

736 (\the\check@sum<>\the\bslash@cnt)}%

737 {The file currently documented seems to be wrong.^^J%

738 Try to get a correct version.}%

739 \fi

740 \fi

741 \global\check@sum\z@}

\check@sum

\bslash@cnt

We need to define counters, \bslash@cnt for the number of backslashes counted
and \check@sum for the value advertised by the file.
742 \newcount\check@sum \check@sum = \z@

743 \newcount\bslash@cnt \bslash@cnt = \z@

\CheckSum This is the interface to setting \check@sum.

744 \def\CheckSum#1{\@bsphack\global\check@sum#1\relax\@esphack}

\step@checksum This advances the count when a backslash is encountered in the macrocode.

745 \def\step@checksum{\global\advance\bslash@cnt\@ne}

\CharacterTable The user interface to the character table-checking does some \catcodeing and
then compares the following table with the stored version. We need to have @
of type “other” within the table since this is the way it is usually returned when
reading in a normal document. To nevertheless have a private letter we use ~
for this purpose. ~ does no harm as a “letter” as it comes last in the table and
therefore will not gobble following space.
746 \def\CharacterTable{\begingroup \CharTableChanges \character@table}

\character@table This does the work of comparing the tables and reporting the result. Note that
the following code is enclosed in a group with ~ catcoded to letter.
747 \begingroup

748 \catcode‘\~=11

749 \gdef\character@table#1{\def\used~table{#1}%

750 \ifx\used~table\default~table

751 \typeout{***************************}%

752 \typeout{* Character table correct *}%

753 \typeout{***************************}%

754 \else

755 \PackageError{doc}{Character table corrupted}

756 {\the\wrong@table}

757 \show\default~table

758 \show\used~table

759 \fi

760 \endgroup}

\CharTableChanges When the character table is read in we need to scan it with a fixed set of \catcodes.
The reference table below was defined by assuming the normal \catcodes of TEX,
i.e. @ is of type other and the only token of type “letter” are the usual letters of
the alphabet. If, for some reason, other characters are made “letters” then their
\catcodes need to be restored before checking the table. Otherwise spaces in the
table are gobbled and we get the information that the tables are different, even

43

if they are actually equal. For this reason \CharTableChanges can be set up to
locally restore the \catcodes of such “letters” to “other”.
761 \global\let\CharTableChanges\@empty

\default~table Here’s what the table should look like (modulo spaces).

762 \makeatother

763 \gdef\default~table

764 {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z

765 Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z

766 Digits \0\1\2\3\4\5\6\7\8\9

767 Exclamation \! Double quote \" Hash (number) \#

768 Dollar \$ Percent \% Ampersand \&

769 Acute accent \’ Left paren \(Right paren \)

770 Asterisk * Plus \+ Comma \,

771 Minus \- Point \. Solidus \/

772 Colon \: Semicolon \; Less than \<

773 Equals \= Greater than \> Question mark \?

774 Commercial at \@ Left bracket \[Backslash \\

775 Right bracket \] Circumflex \^ Underscore _

776 Grave accent \‘ Left brace \{ Vertical bar \|

777 Right brace \} Tilde \~}

778 \endgroup

\wrong@table We need a help message in case of problems.

779 \newhelp\wrong@table{Some of the ASCII characters are corrupted.^^J

780 I now \string\show\space you both tables for comparison.}

3.13 Attaching line numbers to code lines30

The code in this section allows index entries to refer to code line numbers—the
number of the first line of macrocode in the macro environment.

\codeline@index Indexing by code line is controlled by the codeline@index switch.

\CodelineNumbered

781 \newif\ifcodeline@index \codeline@indexfalse

782 \let\CodelineNumbered\codeline@indextrue

\codeline@wrindex The code index entries are written out by \special@index. If indexing is by code
line this is \let to \codeline@wrindex; if indexing is by page it is just \index.
However, if \nofiles is given, we omit writing such an index entry at all.
783 \def\codeline@wrindex#1{\if@filesw

784 \immediate\write\@indexfile

785 {\string\indexentry{#1}%

786 {\number\c@CodelineNo}}\fi}

\special@index By default no index entries are written out.

787 \let\special@index = \@gobble

\CodelineIndex This switches on use of the index file with \makeindex, sets the switch to indicate
code line numbering and defines \special@index appropriately.
788 \def\CodelineIndex{\makeindex

789 \codeline@indextrue

790 \let\special@index\codeline@wrindex}

\PageIndex \PageIndex is similar.

791 \def\PageIndex{\makeindex

792 \codeline@indexfalse

793 \let\special@index\index}

30Warning: the commentary was written by Dave Love.

44

\c@CodelineNo We need a counter to keep track of the line number.

794 \newcount\c@CodelineNo \c@CodelineNo\z@

\theCodelineNo This provides a hook to control the format of line numbers which may be defined
in a class file.
795 \@ifundefined{theCodelineNo}

796 {\ifx\selectfont\undefined

797 \def\theCodelineNo{\rmfamily\scriptsize\arabic{CodelineNo}}%

798 \else

799 \def\theCodelineNo{\reset@font\scriptsize\arabic{CodelineNo}}%

800 \fi}

801 {}

3.14 Layout Parameters for documenting package files

\tolerance People documenting package files would probably rather have things “sticking
out” in overfull \hboxes and poorish spacing, because they probably don’t want
to spend a lot of time on making all the line breaks perfect!
802 \tolerance=1000\relax

The following \mathcode definitions allow the characters ‘\’ and ‘@’ to appear
in \ttfamily font when invoked in math mode;31 particularly for something like
\@abc = 1.

If an old version of the german package is in force, then the ‘"’ character is
active and would upset the definition of the 〈16-bit number〉 quantities below,
therefore we change the \catcode of " inside a group, and use \global.
803 { \catcode‘\"=12

804 \global\mathcode‘\\="705C \global\mathcode‘\@="7040 }

\DocstyleParms This macro can be used, for example, to assign new values to \MacrocodeTopsep
and \MacroIndent and some other internal registers. If it is already defined, the
default definition won’t be carried out. Note that it is necessary to assign new
values via this macro if it should be done in a class file (like ltugboat.cls for
example) since the registers are undefined before doc.sty is read in. The default
values for the internal registers are scattered over this file.
805 \@ifundefined{DocstyleParms}{}{}

Now we allow overwriting the values by calling \DocstyleParms.
806 \DocstyleParms \let\DocstyleParms\relax

\AmSTeX

\BibTeX

\SliTeX

Here are a few definitions which can usefully be employed when documenting
package files: now we can readily refer to AMS-TEX, BibTEX and SLiTEX, as well
as the usual TEX and LATEX.
807 \@ifundefined{AmSTeX}

808 {\def\AmSTeX{\leavevmode\hbox{$\mathcal A\kern-.2em\lower.376ex%

809 \hbox{$\mathcal M$}\kern-.2em\mathcal S$-\TeX}}}{}

810 \@ifundefined{BibTeX}

811 {\def\BibTeX{{\rmfamily B\kern-.05em%

812 \textsc{i\kern-.025em b}\kern-.08em%

813 T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}}{}

814 \@ifundefined{SliTeX}

815 {\def\SliTeX{{\rmfamily S\kern-.06emL\kern-.18em\raise.32ex\hbox

816 {\scshape i}\kern -.03em\TeX}}}{}

31You may wonder why the definitions state that both characters belong to the variable family
(i.e. the number 7 in front). The reason is this: Originally the \mathcode of \ was defined to
be "075C, i.e. ordinary character number 92 (hex 5C) in math family number 7 which is the
typewriter family in standard LATEX. But this file should not depend on this specific setting, so I
changed these \mathcode s to work with any family assignments. For an example see the article
about the new font selection scheme.

45

\PlainTeX

\Web

There’s even a Plain TEX and a Web.

817 \@ifundefined{PlainTeX}{\def\PlainTeX{\textsc{Plain}\kern2pt\TeX}}{}

818 \@ifundefined{Web}{\def\Web{\textsc{Web}}}{}

3.15 Changing the \catcode of %

\MakePercentIgnore

\MakePercentComment

And finally the most important bit: we change the \catcode of ‘%’ so that it is
ignored (which is how we are able to produce this document!). We provide two
commands to do the actual switching.
819 \def\MakePercentIgnore{\catcode‘\%9\relax}

820 \def\MakePercentComment{\catcode‘\%14\relax}

\DocInput The two macros above are now used to define the \DocInput macro which
was introduced in version v1.5l (or so) of the doc package. In older versions
\MakePercentIgnore was placed at the very end of doc.sty.
821 \def\DocInput#1{\MakePercentIgnore\input{#1}\MakePercentComment}

3.16 GetFileInfo

\GetFileInfo Define \filedate and friends from info in the \ProvidesPackage etc. commands.

822 \def\GetFileInfo#1{%

823 \def\filename{#1}%

824 \def\@tempb##1 ##2 ##3\relax##4\relax{%

825 \def\filedate{##1}%

826 \def\fileversion{##2}%

827 \def\fileinfo{##3}}%

828 \edef\@tempa{\csname ver@#1\endcsname}%

829 \expandafter\@tempb\@tempa\relax? ? \relax\relax}

We can now finish the docstrip main module.
830 〈/package〉

References

[1] G. A. Bürger. Wunderbare Reisen zu Wasser und zu Lande, Feldzüge und
lustige Abenteuer des Freyherrn v. Münchhausen. London, 1786 & 1788.

[2] D. E. Knuth. Literate Programming. Computer Journal, Vol. 27, pp. 97–111,
May 1984.

[3] D. E. Knuth. Computers & Typesetting (The TEXbook). Addison-Wesley,
Vol. A, 1986.

[4] L. Lamport. MakeIndex: An Index Processor for LATEX. 17 February 1987.
(Taken from the file makeindex.tex provided with the program source code.)

[5] Frank Mittelbach. The doc-option. TUGboat, Vol. 10(2), pp. 245–273,
July 1989.

[6] Frank Mittelbach, Denys Duchier and Johannes Braams.
docstrip.dtx (to appear). The file is part of the DOC package.

[7] R. E. Raspe (*1737, †1797). Baron Münchhausens narrative of his marvellous
travels and campaigns in Russia. Oxford, 1785.

[8] Rainer Schöpf. A New Implementation of LATEX’s verbatim and verbatim*
Environments. File verbatim.doc, version 1.4i.

46

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\# 767
\$ 768
\% . . . 165, 199, 395,

457, 768, 819, 820
\& . . . 151, 310, 312, 768
* 7, 531, 770
\- 222, 771
\@MakeShortVerb . . .

. . . . 661, 662, 663
\@SpecialIndexHelper@

. 405
\@idxitem . . . 8, 467,

475, 511, 583, 590
\@indexfile 784
\@input@ 534, 609
\@latex@error . 213, 219
\@makefntext 647
\@minipagefalse . . . 38
\@newlistfalse 37
\@restonecolfalse .

. 472, 587
\@restonecoltrue . .

. 472, 587
\@shortvrbdef

. 661, 662, 665, 674
\@shortvrbinfo 665,

678, 682, 684, 695
\@sverb 205, 216
\@sxverbatim 187
\@tempc . . . 413, 417, 422
\@verbatim 188
\{ 164, 776
\} 164, 777
\^ 17, 18, 775
^^A 4, 12
_ 775
\| . . . 151, 163, 182,

283, 354, 392, 776
\~ . . . 124, 125, 217,

226, 275, 278,
670, 690, 748, 777

\ 41, 159,
165, 267, 269,
271, 273, 531, 556

A
\active@escape@char

. . . . 274, 287, 300
\actualchar

7, 374, 386, 408,
413, 417, 425,
429, 436, 438,
440, 441, 445,
449, 454, 562, 567

\add@special . . 666, 700
\addto@hook . . . 349, 350
\AlsoImplementation

. 9, 611
\AltMacroFont

. . 11, 69, 129, 135
\AmSTeX 807
\AtBeginDocument 18, 86

B
\BibTeX 807
\blank@linefalse 30, 46
\blank@linetrue . 32, 46
\bslash 11, 182,

284, 323, 342,
410, 415, 419,
443, 446, 450, 455

\bslash@cnt 722, 727,
730, 736, 742, 745

C
\c@CodelineNo . . 40,

254, 261, 786, 794
\c@GlossaryColumns .

. 577, 581
\c@IndexColumns 462, 466
\c@StandardModuleDepth

. 129, 134, 141, 146
\ch@angle 100, 101
\ch@percent 90, 96
\ch@plus@etc . . 104, 106
\changes 10, 555
\changes@ 557, 558
\char 227
\character@table . .

. 746, 747
\CharacterTable 10, 746
\CharTableChanges .

. 746, 761
\check@angle . . . 98, 100
\check@checksum 613, 723
\check@module 42, 43, 87
\check@modulesfalse 93
\check@modulestrue .

. 94, 95
\check@percent 195, 199
\check@plus@etc . . . 106
\check@sum 724, 730,

736, 741, 742, 744
\CheckModules . . . 11, 93
\CheckSum 10, 744
\close@crossref 52, 292
\codeline@index . . . 781
\codeline@indexfalse

. 781, 792
\codeline@indextrue

. 782, 789

\codeline@wrindex .
. 783, 790

\CodelineIndex 5, 6, 788
\CodelineNumbered 6, 781
\columnsep

. . 8, 473, 505, 588
\columnseprule 473, 588

D
\DeclareRobustCommand

. 624
\default~table

. . . . 750, 757, 762
\DeleteShortVerb . .

. . 9, 680, 719, 720
\DeleteShortverb . . 717
\Describe@Env 170
\Describe@Macro . . . 170
\DescribeEnv 5, 170
\DescribeMacro . . 5, 170
\DisableCrossrefs .

. 4, 6, 302
\do@noligs

. 35, 197, 203, 222
\do@not@index . 346, 347
\docdate 12
\DocInput . . . 4, 12, 821
\DocstyleParms . . 8, 805
\documentclass 2
\DoNotIndex . 6, 257, 344
\DontCheckModules 11, 93
\dotfil 522
\dotfill 522

E
\efill 516
\EnableCrossrefs . .

. 3, 6, 302
\encapchar

7, 383, 389, 428,
430, 433, 437, 438

\encodingdefault . .
. . . . 56, 62, 72, 78

\endenvironment . . . 263
\endglossary 579
\endmacro 263
\endmacrocode

. 47, 161, 641
\endmacrocode* 160
\endtheindex 468
\ensuremath . . . 625, 635
\environment 232
environments:

macro 5
macrocode 5
macrocode* 5

47

theindex 8
verbatim 5
verbatim* 5

\expanded@notin . . . 353

F
\filedate 12, 825
\fileinfo 827
\filename 823
\fileversion . . . 12, 826
\Finale 9, 611
\font 630, 631
\fontencoding . . . 62, 78
\fontfamily 63, 79
\fontseries 64, 80
\fontshape 65, 81

G
\generalname . . 563, 575
\GetFileInfo 822
\glossary@prologue .

. . . . 582, 589, 601
\GlossaryMin 10, 577, 582
\GlossaryParms

. 10, 583, 590, 608
\GlossaryPrologue .

. 10, 601
\guard@level

. 128, 129, 133,
134, 140, 141, 147

H
\have@multicoltrue . 459
\hbadness 10
\hfuzz 9
\hyphenchar . . . 630, 631

I
\if@compatibility 54, 70
\if@filesw 783
\ifblank@line . . . 30, 46
\ifcheck@modules 88, 93
\ifcodeline@index .

. 39, 491, 495, 781
\IfFileExists 459
\ifhave@multicol . .

. . . . 458, 464, 579
\ifnot@excluded . . .

. . . . 315, 341, 353
\ifpm@module 48, 87
\ifscan@allowed 296, 301
\iftrue 231
\in@@ 361, 363
\index@excludelist .

. . . . 349, 351, 358
\index@prologue . . .

. . . . 466, 474, 484
\indexentry 785
\IndexInput . . 4, 10, 638
\IndexMin 8, 8, 462, 466
\IndexParms 8,

467, 475, 502, 608
\IndexPrologue . . 8, 484

\indexspace 514
\init@checksum 614, 721
\init@crossref . 45, 283
\interlinepenalty .

. 33, 194
\it@is@a 322, 323, 324,

326, 331, 441, 452
\itshape 637

L
\l@nohyphenation . .

. . . . 621, 622, 632
\language 632
\LeftBraceIndex 328, 444
\levelchar . . 7, 374,

429, 438, 559, 572

M
\m@cro@ 228
\m@th 646, 648
\macro 228
macro (environment) . . 5
\macro@cnt 228
\macro@code

. . 19, 22, 160, 639
\macro@finish . 337, 339
\macro@font

. . 27, 69, 135, 142
\macro@name 306, 333, 336
\macro@namepart . . .

. . . . 293, 313,
333, 340, 342, 358

\macro@switch . 298, 305
\macrocode 19
macrocode (environ-

ment) 5
\macrocode* 160
macrocode* (environ-

ment) 5
\MacrocodeTopsep . .

. 5, 8, 23, 157
\MacroFont 5, 53, 86,

142, 185, 187,
267, 269, 271, 273

\MacroIndent 5, 8, 28, 157
\MacroTopsep

. . . . 5, 8, 235, 265
\main 8, 532
\makeglossary 576
\MakePercentComment

. 819, 821
\MakePercentIgnore .

. . . . 556, 819, 821
\MakePrivateLetters

. 11,
171, 175, 231,
234, 285, 290, 344

\MakeShortVerb
. . 9, 657, 717, 718

\MakeShortverb 717
\MakeShortVerb* . 9, 657
\maketitle 9, 643
\marginparpush . . 8, 181

\marginparwidth . 8, 181
\mathsf 149, 152
\mathsurround 8
\mddefault 58, 64, 74, 80
\meta 9, 621
\meta@font@select .

. 628, 637
\meta@hyphen@restore

. 629, 634
\mod@math@codes 149, 151
\Module 11,

127, 132, 139, 148
\more@macroname 334, 335

N
\newcommand 611
\newcounter 146
\newhelp 779
\newif 46,

92, 95, 301, 458, 781
\newlanguage 622
\nfss@text 626
\noindent 647

O
\OldMakeindex . 7, 8, 453
\OnlyDescription . .

. 7, 9, 611

P
\PackageError . 735, 755
\PackageInfo . . 696, 697
\PageIndex 6, 791
\parfillskip 8
\parindent 8
\parskip 8
\percentchar 97, 105,

117, 330, 452, 453
\PercentIndex

. . . . 330, 451, 453
\pfill 522
\PlainTeX 817
\pm@module

. 109, 111, 119, 123
\pm@modulefalse . 48, 89
\pm@moduletrue 126
\predisplaypenalty .

. 24, 184, 186
\PrintChanges . . 10, 609
\PrintDescribeEnv .

. 6, 178, 266
\PrintDescribeMacro

. 6, 173, 266
\PrintEnvName 6, 250, 266
\PrintIndex

. . 8, 534, 537, 541
\printindex 536
\PrintMacroName . . .

. 6, 248, 266
\produce@index 316, 320
\protected@edef . . . 559
\ps@plain 656
\ps@titlepage . . . 9, 655

48

Q

\quotechar 7, 374, 387,
408, 409, 410,
413, 414, 415,
418, 441, 442,
443, 445, 446,
450, 454, 455, 568

R

\RecordChanges 6, 10, 576

\rem@special
. . . . 685, 701, 706

\RequirePackage . . . 460

\reset@font 799

\reversemarginpar . 180

\RightBraceIndex . .
. 329, 444

\rightskip 8

\rmfamily
. 159, 797, 811, 815

S

\saved@macroname 236,
560, 566, 569, 574

\scan@allowedfalse .
. 301, 302, 317, 322

\scan@allowedtrue .
. . . . 301, 303, 318

\scan@macro . . . 287, 293

\scshape 816

\sfdefault 155

\short@macro . . 307, 309

\slash@module . 115, 131

\sldefault 75, 81

\SliTeX 807

\SortIndex 7, 440

\special@escape@char

. 274,
286, 294, 321, 322

\special@index 385,
408, 413, 417,
424, 429, 433,
441, 445, 449,
454, 787, 790, 793

\SpecialEnvIndex . .
. 7, 179, 435

\SpecialEscapechar .
. . 6, 274, 289, 292

\SpecialIndex 7, 342, 385
\SpecialIndex@

. . . . 389, 391, 433
\SpecialMainEnvIndex

. 7, 259, 389
\SpecialMainIndex .

. 7, 256, 389
\SpecialUsageIndex .

. 7, 174, 389
\StandardModuleDepth 11
\star@module . . 113, 131
\step@checksum 295, 745
\StopEventually . 9, 611
\subitem 511
\subsubitem 511
\sxmacro@code . 160, 167

T
\textit 533
\textsc . . . 812, 817, 818
\theCodelineNo 6, 41, 795
\theglossary 579
\theindex 464, 472
theindex (environ-

ment) 8
\tolerance 8, 802

\ttdefault 57, 63, 73, 79
\ttfamily 204,

426, 430, 436, 438

U
\updefault 59, 65
\usage 8, 533
\used~table 749, 750, 758
\usefont 56, 72

V
\verb 5, 202
\verb@balance@group

. . . . 206, 218, 220
\verb@egroup

. . . . 206, 218, 221
\verb@eol@error 204, 206
\verbatim 184
verbatim (environ-

ment) 5
\verbatim* 184
verbatim* (environ-

ment) 5
\verbatim@nolig@list

. 35, 197, 203, 222
\verbatimchar 7, 384,

387, 409, 410,
414, 415, 418,
419, 442, 443,
445, 446, 450,
455, 456, 569, 570

W
\Web 817
\wrong@table . . 756, 779

X
\xmacro@code . . . 21, 162

Change History

BHK

\c@GlossaryColumns: Added to
support \changes. 37

\changes: Changed definition of
\protect. 36

Documented \changes com-
mand. 36

\endglossary: Added to support
\changes. 37

\glossary@prologue: Added to
support \changes. 38

\GlossaryMin: Added to support
\changes. 37

\GlossaryParms: Added to support
\changes. 38

\GlossaryPrologue: Added to sup-
port \changes. 38

\PrintChanges: Added to support

\changes. 38

\RecordChanges: Renames former
\PrintChanges command. . . . 37

\saved@macroname: Provided for
sorting outside macro environ-
ment 37

\theglossary: Added to support
\changes. 37

v1.0p

General: Use new error commands 1

v1.4?

General: changes to the index env. 33

use DEK’s algorithm and imple-
ment a twocols env. 33

v1.4r

General: twocols env. placed into
separate file 33

49

v1.4s

\produce@index: Added noexpand
to all \if tests to avoid garbage
produced by new active chars 26

Used \string for the same rea-
son. 26

v1.4t

\c@IndexColumns: Counter added. 33

\endtheindex: Incorporated new
multicols env. 33

\meta: Macro added. 39

\theindex: Incorporated new mul-
ticols env. 33

v1.5a

General: Now input multicol.sty in-
stead of multcols.sty 33

\theindex: Call multicols first . . 33

v1.5b

\macro@cnt: vbox to vtop changed
in makelabel (test) 22

v1.5c

\produce@index: Corrected
bad bug by placing the
scan@allowedfalse macro into
short@macro 26

\short@macro: Corrected bad
bug by putting the
scan@allowedfalse macro before
printing the argument. 26

v1.5d

\Describe@Env: \marginparwidth

setting added. 19

v1.5e

\macro@cnt: ht strutbox changed to
baselineskip (test) 22

v1.5f

General: Thanks to Brian who doc-
umented the \changes macro
feature. 1

\macro@cnt: MacroTopsep parame-
ter added. 21

v1.5g

General: MacroTopsep now called
MacrocodeTopsep and new
MacroTopsep added 1

\PlainTeX: space between plain
and TeX changed. 46

v1.5h

General: All lines shortened to ¡72
characters 1

v1.5i

General: Avoid reading the file
twice. 12

\check@percent: Definition
changed to ‘long’ 20

Macro \next used to guard
against macro with arguments 20

v1.5j

General: Corrections by Ron Whit-
ney added 1

\AmSTeX: Macro AmsTeX renamed
to AmSTeX 45

\Describe@Env: \ignorespaces

added as a temporary fix 18

\Describe@Macro: \ignorespaces

added as a temporary fix 18

\maketitle: thispagestyle plain re-
moved 40

v1.5k

\bslash@cnt: Macro added to sup-
port checksum. 43

\check@checksum: Macro added to
support checksum. 42

\check@sum: Macro added to sup-
port checksum. 43

\CheckSum: Macro added to support
checksum. 43

\endenvironment: Fix for save
stack problem. 23

\Finale: Support for checksum. . 38

\init@checksum: Macro added to
support checksum. 42

\macro@cnt: Fix for save stack
problem. 21

\maketitle: Added \ps@titlepage

. 40

\PrintIndex: \printindex

changed to \PrintIndex 35

\ps@titlepage: Added \ps@titlepage

. 40

\scan@macro: Support for check-
sum added. 25

\step@checksum: Macro added to
support checksum. 43

\StopEventually: Support for
checksum. 38

v1.5l

\c@CodelineNo: Counter added to
support code line numbers . . . 45

\macro@code: Code line numbers
supported. 13

v1.5m

\changes: \actualchar in second
level removed. 36

\CharacterTable: Macro added
to check character translation
problems. 43

v1.5o

\changes: New sorting. 36

v1.5p

\theglossary: Now call
\multicols first. 37

v1.5q

General: ‘. . . Listing macros re-
named to ‘. . . Input. Suggested
by R. Wonneberger 1

\CharacterTable: Made character
table more readable. 43

v1.5r

\endmacrocode: Support for code
line no. (Undoc) 14

\macrocode: Support for code line
no. (Undoc) 13

50

v1.5s

\codeline@index: Support for code
line no. (Undoc) 44

\it@is@a: Support for code line no.
(Undoc) 32

\LeftBraceIndex: Support for code
line no. (Undoc) 32

\macro@cnt: Support for code line
no. (Undoc) 22

\MacroIndent: Support for code
line no. (Undoc) 18

\PercentIndex: Support for code
line no. (Undoc) 33

\RightBraceIndex: Support for
code line no. (Undoc) 32

\SpecialIndex: Support for code
line no. (Undoc) 30

\SpecialUsageIndex: Support for
code line no. (Undoc) 30

v1.5t

\CharacterTable: Make ˜ letter in
chartable macros. 43

\IndexInput: Call \endmacrocode

instead of \endtrivlist. . . . 40

\macro@code: Call \leavevmode to
get \everypar on blank lines. 13

Common code added. 14

\macrocode: Common code moved
to \macro@code. 13

\produce@index: Added \relax as
a possible token to allow exten-
sions. 27

v1.5u

\CharacterTable: Made @ other in
default table. 43

\check@percent: equal sign added. 20

\CodelineIndex: Added \PageIndex

and \CodelineIndex (Undoc) 44

\DocstyleParms: \DocStyleParms

now empty 45

v1.5v

\changes: ‘Re-code a lot of chars. 36

\Describe@Env: \MakePrivateLetters
added. 19

Macro added. 18

\Describe@Macro: Macro added. 18

\m@cro@: \macro@ renamed to
\m@cro@ since AmSTeX de-
fines another macro of the same
name. 21

v1.5w

General: Counter codelineno re-
named to CodelineNo 1

\macro@code: Skip of \@totalleftmargin
added. 14

\meta: Breaks at space allowed. . 39

v1.5x

\MacroFont: \math@fontsfalse

added for NFSS. 14

v1.5y

\c@CodelineNo: Default changed. 45

\MacroIndent: Default changed. . 18

v1.5z

\Finale: Define \Finale globally. 38

v1.6a

\meta: Extra space bug corrected. 39

v1.6b

\c@CodelineNo: \rm moved before
\scriptsize to avoid unneces-
sary fontwarning. 45

\MacroIndent: \rm moved before
\scriptsize to avoid unneces-
sary fontwarning. 18

v1.6c

\changes: Again new sorting. . . . 36

v1.6e

\theglossary: Turned into env def-
inition. 37

\theindex: Turned into env defini-
tion. 33

v1.7a

\@sverb: Added for \verb change. 20

Now same as in verbatim.sty. . 20

\@verbatim: Removed redundant
\tt. 20

General: Added basic usage sum-
mary to spell it out. 11

Added docstrip-derivable driver
file as example. 4

Altered usage info 3

Description of \RecordChanges

etc. added to interface section. 10

Documented \MakePrivateLetters

in interface section 11

Documented \verb change. 5

glo.ist and gind.ist now derivable
from doc.dtx with docstrip. . . 30

Miscellaneous small changes to
the text 2

Note on need for some text in
macro env. 5

Usage note on gind.ist. 8

\add@special: Added for short
verb facility. 42

\bslash: Moved \bslash documen-
tation to ‘user interface’ part . 19

\ch@angle: Added. 16

\ch@percent: Added. 15

\check@angle: Added. 15

\check@plus@etc: Added. 16

\CheckModules: Added. 15

\codeline@index: Documented
code line no. support. 44

\DeleteShortVerb: Added (from
newdoc but now alters
\dospecials, \@sanitize). . . 41

Check for previous matched
\MakeShortVerb to avoid error. 41

\DeleteShortverb: Added (from
newdoc). 42

\do@not@index: Replaced with
newdoc version. 28

\ifhave@multicol: Added to sup-
port avoiding multicol.sty . . . 33

51

\ifnot@excluded: Replaced with
newdoc version. 28

\ifpm@module: Added. 15

\macro@cnt: Catcode backslash to
other (from newdoc). 21

Removed redundant code check-
ing for \par. 22

\macro@font: Added to support
distinction of modules. 15

\MacroFont: Added \reset@font

for NFSS. 14

\MakeShortVerb: Added (from
newdoc but now alters
\dospecials, \@sanitize). . . 40

\Module: Added. 17

\pm@module: Added. 16

\PrintIndex: Documentation
moved to interface section. . . 35

\rem@special: Added for short
verb facility. 42

\saved@macroname: Changed string
used for better sorting. 37

\short@macro: Ensure character
stored in \macro@namepart

as ‘letter’ so index exclusion
works. 26

\slash@module: Added. 16

\theCodelineNo: Existing defini-
tion not overwritten. 45

Use \reset@font for NFSS. . . 45

\theglossary: Changed to work
without multicols if necessary. 37

\theindex: Include test for multi-
cols. 33

\verb: Added math mode check
(from verbatim.sty) 20

Now warns about newlines (from
newdoc with ‘@noligs added). 20

\wrong@table: Moved to where the
catcodes are right so it works. 44

v1.7c

\@verbatim: Added \interlinepenalty

to \par from verbatim.sty . . . 20

General: Expurgated ltugboat.sty
from driver. 4

\macro@code: Added \interlinepenalty

to \par from verbatim.sty . . . 13

\macro@font: Altered font change
for OFSS. 15

\mathsf: Added. 17

\mod@math@codes: Added. 17

\OldMakeindex: Replaced
\NewMakeIndex. 33

\PercentIndex: Default now for
bug-fixed makeindex 33

v1.7d

\mathsf: Use sans font for mod-
ules. 17

\Module: Use sans font for mod-
ules. 17

v1.7f

\guard@level: Added. 17

\slash@module: Take account of
nested guards. 16

v1.7g

\special@escape@char: Making
tilde active moved outside defi-
nition 23

v1.7h

General: Turn off headings in gls
file . 36

v1.7i

\@verbatim: Added \@@par to clear
possible \parshape. 19

\c@StandardModuleDepth: Counter
added. 17

\pm@module: Support for fonts de-
pending on nesting. 16

\slash@module: Add counter to de-
termine when to switch to spe-
cial font. 16

Support for fonts depending on
module nesting 17

\verbatim*: Added changed defini-
tion for verbatim*. 19

v1.7j

\codeline@wrindex: Added
\if@filesw. 44

v1.7m

\macro@font: Use sltt as default. 15

v1.7n

\mathsf: \sfmath Renamed to
\mathsf. 17

v1.8a

\CodelineNumbered: Macro added 44

v1.8b

\@sverb: Changed to conform to
new LaTeX verbatim, which has
better error trapping. 20

\@verbatim: Changed to conform
to new LaTeX verbatim, which
handles more ligatures. 20

\macro@code: Changed to conform
to new LaTeX verbatim, which
handles more ligatures. 13

\verb: Changed to conform to new
LaTeX \verb 20

\verb@eol@error: Renamed
\verb@err to \verb@eol@error,
as in new LaTeX verbatim. . . 20

v1.8c

\environment: Environment added 21

\macro@cnt: Support “environ-
ment” env 21

\macro@font: NFSS standard . . . 15

\MacroFont: NFSS standard 14

\mathsf: NFSS standard 17

\Module: NFSS standard 17

v1.9a

General: Upgrade for LaTeX2e . . . 1

\ifhave@multicol: Use \IfFileExists
. 33

52

v1.9b

\macro@code: Forcing any label
from macro env. 13

v1.9d

General: Protected changes entry. . 1

v1.9e

\SpecialEnvIndex: The index
needs protecting 32

\SpecialUsageIndex: use
\ttfamily with \string 32

v1.9e.2

\DeleteShortVerb: -js: Reset
‘cc‘〈c〉 in in \DeleteShortVerb 41

\MakeShortVerb: -js: Check if 〈c〉
is already an abbreviation for
\verb. 40

v1.9f

\SpecialUsageIndex: should have
used \noexpand, sigh 32

v1.9g

\SpecialEnvIndex: should have
used \noexpand, sigh 32

v1.9h

\PrintChanges: Use \@input@ in-
stead of \@input. 38

\PrintIndex: Use \@input@ instead
of \@input. 35

v1.9i

\SpecialEnvIndex: should have
used \protect 32

\SpecialUsageIndex: should have
used \protect 32

v1.9j

\SpecialUsageIndex: Back to
string:-) 32

v1.9k

\ch@angle: Have < active 16

\endenvironment: Don’t checkfor
nesting 23

\macro@cnt: Don’t omit extra
group 21

Fix probably no longer necessary 21

Remove \macro@level 21

v1.9m

\ifhave@multicol: Use \RequirePackage
to load multicol 33

v1.9n

\OnlyDescription: Ignore \Finale

if no \StopEventually is given 39

v1.9o

\GetFileInfo: Macro added 46

v1.9r

\maketitle: Added new defini-
tions of \@makefnmark and
\@makefntext 40

v1.9s

\SpecialUsageIndex: Added miss-
ing percent and changed to
\ttfamily 32

v1.9t

General: Use \GetFileInfo 1

\macro@font: Removed \math@fontsfalse

(different math setup /pr1622 15

\MacroFont: Removed \math@fontsfalse

(different math setup /pr1622 14

v1.9u

\changes: Use \protected@edef 36

Use value of \saved@macroname

to find out about change entries
at outer level 37

\generalname: Macro added 37

\macro@cnt: Removed brace group
which killed \DoNotIndex . . . 22

\saved@macroname: Now empty by
default 37

v1.9v

\@shortvrbinfo: (DPC) Macro
added 42

\DeleteShortVerb: (DPC) Use
\@shortvrbinfo 41

\MakeShortVerb: (DPC) Use
\@shortvrbinfo 41

v1.9w

\AlsoImplementation: Macro
added 38

\index@prologue: Text changed . 34

\PrintChanges: Turn the cmd into
a noop after use. 38

\PrintIndex: Turn the cmd into a
noop after use. 35

v1.9x

\index@prologue: Text depends on
code lines used 34

v1.9y

\macro@font: Support compat
mode 15

\MacroFont: Support compat mode 14

v1.9z

\GetFileInfo: Missing percent la-
tex/2404 46

\printindex: Commented out . . 35

v2.0a

\macro@font: Support changing
\MacroFont in preamble 15

v2.0b

General: Init docs private comment
char at begin of document again
(pr2581) 12

v2.0c

\SpecialIndex@: Macro added. . 31

\SpecialUsageIndex: Correctly
handle single character control
sequences like \<. 30

v2.0d

\SpecialUsageIndex: Correctly
handle second index entry
by using \special@index not
\index (PR/2928). 32

v2.0e

\short@macro: Correctly use the
case-changing trick. 26

53

\SpecialUsageIndex: Use \string,
not \protect in argument to
\special@index. 32

v2.0f
\SpecialIndex@: Temp fix to allow

strange code in arg 1 (PR 2968) 31
v2.0g

\Describe@Env: Parse backslash
as letter in argument to
\DescribeMacro. 19

\SpecialIndex@: Correct so-called
temp fix. I’m not going to ex-
plain this. 31

v2.0h
\Describe@Env: Correct errors in-

troduced in v2.0g. 19
v2.0i

\meta: New implementation
(pr/3170) 39

v2.0j
\index@prologue: Less obscure

wording? (CAR pr/3202) . . . 34
v2.0k

\meta@font@select: Macro added
(pr/3170) 39

v2.0l
\meta: Fixing changes for

(pr/3170) 39

v2.0m

\meta: More fixing changes for
(pr/3170) 39

v2.0n

\check@plus@etc: Partly support
docstrip’s “verbatim” directive
(pr/3331) 16

v2.1a

\@shortvrbinfo: (HjG) Third ar-
gument added on behalf of
\MakeShortVerb* 42

\DeleteShortVerb: (HjG) Notify
user if it’s not a short verb char-
acter 41

\MakeShortVerb*: (HjG) Added *

form 40

v2.1b

\SpecialEnvIndex: environment
names incorrectly sorted in in-
dex (pr/3615) 32

v2.1c

\SpecialUsageIndex: environment
names incorrectly sorted in in-
dex (pr/3615) 32

v2.1d

General: Corrected description of
\changes macro. 10

54

	Contents
	1 Introduction
	1.1 Using the doc package

	2 The User Interface
	2.1 The driver file
	2.2 General conventions
	2.3 Describing the usage of new macros
	2.4 Describing the definition of new macros
	2.5 Formatting the margins
	2.6 Using a special escape character
	2.7 Cross-referencing all macros used
	2.8 Producing the actual index entries
	2.9 Setting the index entries
	2.10 Changing the default values of style parameters
	2.11 Short input of verbatim text pieces
	2.12 Additional bells and whistles
	2.13 Basic usage summary
	2.14 Acknowledgements

	3 The Description of Macros
	3.1 Options supported by doc
	3.2 Macros surrounding the `definition parts'
	3.3 Macros for the `documentation parts'
	3.4 Formatting the margin
	3.5 Creating index entries by scanning `macrocode'
	3.6 Macros for scanning macro names
	3.7 The index exclude list
	3.8 Macros for generating index entries
	3.9 Redefining the index environment
	3.10 Dealing with the change history
	3.11 Bells and whistles
	3.12 Providing a checksum and character table
	3.13 Attaching line numbers to code lines
	3.14 Layout Parameters for documenting package files
	3.15 Changing the \catcode of %
	3.16 GetFileInfo

	References
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Change History

