
LATEX2ε for class and package writers

Copyright c© 1995–2006 The LATEX3 Project
All rights reserved

15 February 2006

Contents

1 Introduction 2
1.1 Writing classes and packages for LATEX2ε 2
1.2 Overview . 2
1.3 Further information . 3
1.4 Policy on standard classes . 3

2 Writing classes and packages 4
2.1 Old versions . 4
2.2 Using ‘docstrip’ and ‘doc’ . 4
2.3 Is it a class or a package? . 4
2.4 Command names . 5
2.5 Box commands and colour . 5
2.6 Defining text and math characters 6
2.7 General style . 6

3 The structure of a class or package 8
3.1 Identification . 8
3.2 Using classes and packages . 9
3.3 Declaring options . 10
3.4 A minimal class file . 11
3.5 Example: a local letter class . 12
3.6 Example: a newsletter class . 12

4 Commands for class and package writers 13
4.1 Identification . 13
4.2 Loading files . 14
4.3 Option declaration . 15
4.4 Commands within option code 15
4.5 Moving options around . 16
4.6 Delaying code . 17
4.7 Option processing . 17
4.8 Safe file commands . 19
4.9 Reporting errors, etc . 20
4.10 Defining commands . 21
4.11 Moving arguments . 21

5 Miscellaneous commands, etc 22
5.1 Layout parameters . 22
5.2 Case changing . 22
5.3 The ‘openany’ option in the ‘book’ class 23
5.4 Better user-defined math display environments 23
5.5 Normalising spacing . 23

1

6 Upgrading LATEX 2.09 classes and packages 23
6.1 Try it first! . 24
6.2 Troubleshooting . 24
6.3 Accommodating compatibility mode 24
6.4 Font commands . 25
6.5 Obsolete commands . 26

1 Introduction

This document is an introduction to writing classes and packages for LATEX, with
special attention given to upgrading existing LATEX 2.09 packages to LATEX2ε.
The latter subject is also covered in an article by Johannes Braams published
in TUGboat 15.3.

1.1 Writing classes and packages for LATEX2ε

LATEX is a document preparation system that enables the document writer to
concentrate on the contents of their text, without bothering too much about the
formatting of it. For example, chapters are indicated by \chapter{<title>}
rather than by selecting 18pt bold.

The file that contains the information about how to turn logical structure (like
‘\chapter’) into formatting (like ‘18pt bold ragged right’) is a document class.
In addition, some features (such as colour or included graphics) are independent
of the document class and these are contained in packages.

One of the largest differences between LATEX 2.09 and LATEX2ε is in the com-
mands used to write packages and classes. In LATEX 2.09, there was very little
support for writing .sty files, and so writers had to resort to using low-level
commands.

LATEX2ε provides high-level commands for structuring packages. It is also much
easier to build classes and packages on top of each other, for example writing a
local technical report class cetechr (for the Chemical Engineering department)
based on article.

1.2 Overview

This document contains an overview of how to write classes and packages for
LATEX. It does not introduce all of the commands necessary to write packages:
these can be found in either LATEX: A Document Preparation System or The
LATEX Companion. But it does describe the new commands for structuring
classes and packages.

Section 2.7 contains some general advice about writing classes and packages.
It describes the difference between classes and packages, the command
naming conventions, the use of doc and docstrip, how TEX’s primitive
file and box commands interact with LATEX. It also contains some hints
about general LATEX style.

Section 3 describes the structure of classes and packages. This includes build-
ing classes and packages on top of other classes and packages, declaring
options and declaring commands. It also contains example classes.

Section 4 lists the new class and package commands.

Section 6 gives detailed advice on how to upgrade existing LATEX 2.09 classes
and packages to LATEX2ε.

2

1.3 Further information

For a general introduction to LATEX, including the new features of LATEX2ε, you
should read LATEX: A Document Preparation System by Leslie Lamport [2].

A more detailed description of the new features of LATEX, including an overview
of more than 200 packages and nearly 1000 ready to run examples, is to be
found in The LATEX Companionsecond edition by Frank Mittelbach and Michel
Goossens [3].

The LATEX system is based on TEX, which is described in The TEXbook by
Donald E. Knuth [1].

There are a number of documentation files which accompany every copy of
LATEX. A copy of LATEX News will come out with each six-monthly release of
LATEX, and is found in the files ltnews*.tex. The author’s guide LATEX2ε for
Authors describes the new LATEX document features; it is in usrguide.tex.
The guide LATEX2ε Font Selection describes the LATEX font selection scheme for
class- and package-writers; it is in fntguide.tex. Configuring LATEX is covered
by the guide Configuration options for LATEX2ε in cfgguide.tex whilst the
philosophy behind our policy on modifying LATEX is described in Modifying
LATEX in modguide.tex.

The documented source code (from the files used to produce the kernel format
via latex.ltx) is now available as The LATEX2ε Sources. This very large doc-
ument also includes an index of LATEX commands. It can be typeset from the
LATEX file source2e.tex in the base directory, using the source files and the
class file ltxdoc.cls from this directory.

For more information about TEX and LATEX, please contact your local TEX Users
Group, or the international TEX Users Group. Addresses and other details can
be found at:

http://www.tug.org/lugs.html

1.4 Policy on standard classes

Many of the problem reports we receive concerning the standard classes are not
concerned with bugs but are suggesting, more or less politely, that the design
decisions embodied in them are ‘not optimal’ and asking us to modify them.

There are several reasons why we should not make such changes to these files.

• However misguided, the current behaviour is clearly what was intended
when these classes were designed.

• It is not good practice to change such aspects of ‘standard classes’ because
many people will be relying on them.

We have therefore decided not to even consider making such modifications, nor
to spend time justifying that decision. This does not mean that we do not agree
that there are many deficiencies in the design of these classes, but we have many
tasks with higher priority than continually explaining why the standard classes
for LATEX cannot be changed.

We would, of course, welcome the production of better classes, or of packages
that can be used to enhance these classes. So your first thought when you
consider such a deficiency will, we hope, be “what can I do to improve this?”

Similar considerations apply to those parts of the kernel that are implementing
design decisions, many of which should be left to the class file but are not in

3

the current system. We realise that in such cases it is much more difficult for
you to rectify the problem yourself but it is also the case that making such
changes in the kernel would probably be a major project for us; therefore such
enhancements will have to wait for LATEX3.

2 Writing classes and packages

This section covers some general points concerned with writing LATEX classes
and packages.

2.1 Old versions

If you are upgrading an existing LATEX 2.09 style file then we recommend freezing
the 2.09 version and no longer maintaining it. Experience with the various
dialects of LATEX which existed in the early 1990’s suggests that maintaining
packages for different versions of LATEX is almost impossible. It will, of course,
be necessary for some organisations to maintain both versions in parallel for
some time but this is not essential for those packages and classes supported by
individuals: they should support only the new standard LATEX2ε, not obsolete
versions of LATEX.

2.2 Using ‘docstrip’ and ‘doc’

If you are going to write a large class or package for LATEX then you should
consider using the doc software which comes with LATEX. LATEX classes and
packages written using this can be processed in two ways: they can be run
through LATEX, to produce documentation; and they can be processed with
docstrip, to produce the .cls or .sty file.

The doc software can automatically generate indexes of definitions, indexes
of command use, and change-log lists. It is very useful for maintaining and
documenting large TEX sources.

The documented sources of the LATEX kernel itself, and of the standard classes,
etc, are doc documents; they are in the .dtx files in the distribution. You can,
in fact, typeset the source code of the kernel as one long document, complete
with index, by running LATEX on source2e.tex. Typesetting these documents
uses the class file ltxdoc.cls.

For more information on doc and docstrip, consult the files docstrip.dtx,
doc.dtx, and The LATEX Companion. For examples of its use, look at the .dtx
files.

2.3 Is it a class or a package?

The first thing to do when you want to put some new LATEX commands in a file
is to decide whether it should be a document class or a package. The rule of
thumb is:

If the commands could be used with any document class, then make
them a package; and if not, then make them a class.

There are two major types of class: those like article, report or letter,
which are free-standing; and those which are extensions or variations of other

4

classes—for example, the proc document class, which is built on the article
document class.

Thus, a company might have a local ownlet class for printing letters with
their own headed note-paper. Such a class would build on top of the exist-
ing letter class but it cannot be used with any other document class, so we
have ownlet.cls rather than ownlet.sty.

The graphics package, in contrast, provides commands for including images
into a LATEX document. Since these commands can be used with any document
class, we have graphics.sty rather than graphics.cls.

2.4 Command names

LATEX has three types of command.

There are the author commands, such as \section, \emph and \times: most
of these have short names, all in lower case.

There are also the class and package writer commands: most of these have long
mixed-case names such as the following.

\InputIfFileExists \RequirePackage \PassOptionsToClass

Finally, there are the internal commands used in the LATEX implementation, such
as \@tempcnta, \@ifnextchar and \@eha: most of these commands contain @
in their name, which means they cannot be used in documents, only in class
and package files.

Unfortunately, for historical reasons the distinction between these commands is
often blurred. For example, \hbox is an internal command which should only
be used in the LATEX kernel, whereas \m@ne is the constant −1 and could have
been \MinusOne.

However, this rule of thumb is still useful: if a command has @ in its name then
it is not part of the supported LATEX language—and its behaviour may change
in future releases! If a command is mixed-case, or is described in LATEX: A
Document Preparation System, then you can rely on future releases of LATEX2ε
supporting the command.

2.5 Box commands and colour

Even if you do not intend to use colour in your own documents, by taking note of
the points in this section you can ensure that your class or package is compatible
with the color package. This may benefit people using your class or package
who have access to colour printers.

The simplest way to ensure ‘colour safety’ is to always use LATEX box commands
rather than TEX primitives, that is use \sbox rather than \setbox, \mbox rather
than \hbox and \parbox or the minipage environment rather than \vbox. The
LATEX box commands have new options which mean that they are now as pow-
erful as the TEX primitives.

As an example of what can go wrong, consider that in {\ttfamily <text>} the
font is restored just before the }, whereas in the similar looking construction
{\color{green} <text>} the colour is restored just after the final }. Nor-
mally this distinction does not matter at all; but consider a primitive TEX box
assignment such as:

\setbox0=\hbox{\color{green} <text>}

5

Now the colour-restore occurs after the } and so is not stored in the box. Exactly
what bad effects this can have depends on how colour is implemented: it can
range from getting the wrong colours in the rest of the document, to causing
errors in the dvi-driver used to print the document.

Also of interest is the command \normalcolor. This is normally just \relax
(i.e., does nothing) but you can use it rather like \normalfont to set regions of
the page such as captions or section headings to the ‘main document colour’.

2.6 Defining text and math characters

Because LATEX2ε supports different encodings, definitions of commands for pro-
ducing symbols, accents, composite glyphs, etc. must be defined using the com-
mands provided for this purpose and described in LATEX2ε Font Selection. This
part of the system is still under development so such tasks should be undertaken
with great caution.

Also, \DeclareRobustCommand should be used for encoding-independent com-
mands of this type.

Note that it is no longer possible to refer to the math font set-up outside math
mode: for example, neither \textfont 1 nor \scriptfont 2 are guaranteed to
be defined in other modes.

2.7 General style

The new system provides many commands designed to help you produce well-
structured class and package files that are both robust and portable. This
section outlines some ways to make intelligent use of these.

2.7.1 Loading other files

LATEX provides these commands:New description
1995/12/01

\LoadClass \LoadClassWithOptions

\RequirePackage \RequirePackageWithOptions

for using classes or packages inside other classes or packages. We recommend
strongly that you use them, rather than the primitive \input command, for a
number of reasons.

Files loaded with \input <filename> will not be listed in the \listfiles list.

If a package is always loaded with \RequirePackage... or \usepackage then,
even if its loading is requested several times, it will be loaded only once. By
contrast, if it is loaded with \input then it can be loaded more than once;
such an extra loading may waste time and memory and it may produce strange
results.

If a package provides option-processing then, again, strange results are possi-
ble if the package is \input rather than loaded by means of \usepackage or
\RequirePackage....

If the package foo.sty loads the package baz.sty by use of \input baz.sty
then the user will get a warning:

LaTeX Warning: You have requested package ‘foo’,

but the package provides ‘baz’.

6

Thus, for several reasons, using \input to load packages is not a good idea.

Unfortunately, if you are upgrading the file myclass.sty to a class file then you
have to make sure that any old files which contain \input myclass.sty still
work.

This was also true for the standard classes (article, book and report), since a
lot of existing LATEX 2.09 document styles contain \input article.sty. The
approach which we use to solve this is to provide minimal files article.sty,
book.sty and report.sty, which simply load the appropriate class files.

For example, article.sty contains just the following lines:

\NeedsTeXFormat{LaTeX2e}

\@obsoletefile{article.cls}{article.sty}

\LoadClass{article}

You may wish to do the same or, if you think that it is safe to do so, you may
decide to just remove myclass.sty.

2.7.2 Make it robust

We consider it good practice, when writing packages and classes, to use LATEX
commands as much as possible.

Thus, instead of using \def... we recommend using one of \newcommand,
\renewcommand or \providecommand; \CheckCommand is also useful. Doing this
makes it less likely that you will inadvertently redefine a command, giving un-
expected results.

When you define an environment, use \newenvironment or \renewenvironment
instead \def\foo{...} and \def\endfoo{...}.

If you need to set or change the value of a 〈dimen〉 or 〈skip〉 register, use
\setlength.

To manipulate boxes, use LATEX commands such as \sbox, \mbox and \parbox
rather than \setbox, \hbox and \vbox.

Use \PackageError, \PackageWarning or \PackageInfo (or the equivalent
class commands) rather than \@latexerr, \@warning or \wlog.

It is still possible to declare options by defining \ds@<option> and calling
\@options; but we recommend the \DeclareOption and \ProcessOptions
commands instead. These are more powerful and use less memory. So rather
than using:

\def\ds@draft{\overfullrule 5pt}

\@options

you should use:

\DeclareOption{draft}{\setlength{\overfullrule}{5pt}}

\ProcessOptions\relax

The advantage of this kind of practice is that your code is more readable and,
more important, that it is less likely to break when used with future versions of
LATEX.

7

2.7.3 Make it portable

It is also sensible to make your files are as portable as possible. To ensure this;
they should contain only visible 7-bit text; and the filenames should contain at
most eight characters (plus the three letter extension). Also, of course, it must
not have the same name as a file in the standard LATEX distribution, however
similar its contents may be to one of these files.

It is also useful if local classes or packages have a common prefix, for example
the University of Nowhere classes might begin with unw. This helps to avoid
every University having its own thesis class, all called thesis.cls.

If you rely on some features of the LATEX kernel, or on a package, please specify
the release-date you need. For example, the package error commands were
introduced in the June 1994 release so, if you use them then you should put:

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

2.7.4 Useful hooks

Some packages and document styles had to redefine the command \document
or \enddocument to achieve their goal. This is no longer necessary. You can
now use the ‘hooks’ \AtBeginDocument and \AtEndDocument (see Section 4.6).
Again, using these hooks makes it less likely that your code breaks with future
versions of LATEX. It also makes it more likely that your package can work
together with someone else’s.

However, note that code in the \AtBeginDocument hook is part of the pream-New description
1996/12/01 ble. Thus there are restrictions on what can be put there; in particular, no

typesetting can be done.

3 The structure of a class or package

LATEX2ε classes and packages have more structure than LATEX 2.09 style files
did. The outline of a class or package file is:

Identification The file says that it is a LATEX2ε package or class, and gives a
short description of itself.

Preliminary declarations Here the file declares some commands and can also
load other files. Usually these commands will be just those needed for the
code used in the declared options.

Options The file declares and processes its options.

More declarations This is where the file does most of its work: declaring new
variables, commands and fonts; and loading other files.

3.1 Identification

The first thing a class or package file does is identify itself. Package files do this
as follows:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{<package>}[<date> <other information>]

8

For example:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{latexsym}[1994/06/01 Standard LaTeX package]

Class files do this as follows:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{<class-name>}[<date> <other information>]

For example:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{article}[1994/06/01 Standard LaTeX class]

The 〈date〉 should be given in the form ‘yyyy/mm/dd’ and must be presentNew description
1998/06/19 if the optional argument is used (this is also true for the \NeedsTeXFormat

command). Any derivation from this syntax will result in low-level TEX errors—
the commands expect a valid syntax to speed up the daily usage of the package
or class and make no provision for the case that the developer made a mistake!

This date is checked whenever a user specifies a date in their \documentclass
or \usepackage command. For example, if you wrote:

\documentclass{article}[1995/12/23]

then users at a different location would get a warning that their copy of article
was out of date.

The description of a class is displayed when the class is used. The description
of a package is put into the log file. These descriptions are also displayed by
the \listfiles command. The phrase Standard LaTeX must not be used
in the identification banner of any file other than those in the standard LATEX
distribution.

3.2 Using classes and packages

The first major difference between LATEX 2.09 style files and LATEX2ε packages
and classes is that LATEX2ε supports modularity, in the sense of building files
from small building-blocks rather than using large single files.

A LATEX package or class can load a package as follows:

\RequirePackage[<options>]{<package>}[<date>]

For example:

\RequirePackage{ifthen}[1994/06/01]

This command has the same syntax as the author command \usepackage. It al-
lows packages or classes to use features provided by other packages. For example,
by loading the ifthen package, a package writer can use the ‘if. . . then. . . else. . . ’
commands provided by that package.

A LATEX class can load one other class as follows:

\LoadClass[<options>]{<class-name>}[<date>]

9

For example:

\LoadClass[twocolumn]{article}

This command has the same syntax as the author command \documentclass.
It allows classes to be based on the syntax and appearance of another class. For
example, by loading the article class, a class writer only has to change the
bits of article they don’t like, rather than writing a new class from scratch.

The following commands can be used in the common case that you want toNew feature
1995/12/01 simply load a class or package file with exactly those options that are being

used by the current class.

\LoadClassWithOptions{<class-name>}[<date>]

\RequirePackageWithOptions{<package>}[<date>]

For example:

\LoadClassWithOptions{article}

\RequirePackageWithOptions{graphics}[1995/12/01]

3.3 Declaring options

The other major difference between LATEX 2.09 styles and LATEX2ε packagesNew description
1998/12/01 and classes is in option handling. Packages and classes can now declare options

and these can be specified by authors; for example, the twocolumn option is
declared by the article class. Note that the name of an option should contain
only those characters allowed in a ‘LATEX name’; in particular it must not contain
any control sequences.

An option is declared as follows:

\DeclareOption{<option>}{<code>}

For example, the dvips option (slightly simplified) to the graphics package is
implemented as:

\DeclareOption{dvips}{\input{dvips.def}}

This means that when an author writes \usepackage[dvips]{graphics}, the
file dvips.def is loaded. As another example, the a4paper option is declared
in the article class to set the \paperheight and \paperwidth lengths:

\DeclareOption{a4paper}{%

\setlength{\paperheight}{297mm}%

\setlength{\paperwidth}{210mm}%

}

Sometimes a user will request an option which the class or package has not
explicitly declared. By default this will produce a warning (for classes) or error
(for packages); this behaviour can be altered as follows:

\DeclareOption*{<code>}

For example, to make the package fred produce a warning rather than an error
for unknown options, you could specify:

\DeclareOption*{%

\PackageWarning{fred}{Unknown option ‘\CurrentOption’}%

}

10

Then, if an author writes \usepackage[foo]{fred}, they will get a warning
Package fred Warning: Unknown option ‘foo’. As another example, the
fontenc package tries to load a file <ENC>enc.def whenever the 〈ENC 〉 option
is used. This can be done by writing:

\DeclareOption*{%

\input{\CurrentOption enc.def}%

}

It is possible to pass options on to another package or class, using the com-New description
1998/12/01 mand \PassOptionsToPackage or \PassOptionsToClass (note that this is a

specialised operation that works only for option names). For example, to pass
every unknown option on to the article class, you can use:

\DeclareOption*{%

\PassOptionsToClass{\CurrentOption}{article}%

}

If you do this then you should make sure you load the class at some later point,
otherwise the options will never be processed!

So far, we have explained only how to declare options, not how to execute them.
To process the options with which the file was called, you should use:

\ProcessOptions\relax

This executes the 〈code〉 for each option that was both specified and declared
(see Section 4.7 for details of how this is done).

For example, if the jane package file contains:

\DeclareOption{foo}{\typeout{Saw foo.}}

\DeclareOption{baz}{\typeout{Saw baz.}}

\DeclareOption*{\typeout{What’s \CurrentOption?}}

\ProcessOptions\relax

and an author writes \usepackage[foo,bar]{jane}, then they will see the
messages Saw foo. and What’s bar?

3.4 A minimal class file

Most of the work of a class or package is in defining new commands, or changing
the appearance of documents. This is done in the body of the package, using
commands such as \newcommand or \setlength.

LATEX2ε provides several new commands to help class and package writers; these
are described in detail in Section 4.

There are four things that every class file must contain: these are a definition of
\normalsize, values for \textwidth and \textheight and a specification for
page-numbering. So a minimal document class file1 looks like this:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{minimal}[1995/10/30 Standard LaTeX minimal class]

\renewcommand{\normalsize}{\fontsize{10pt}{12pt}\selectfont}

\setlength{\textwidth}{6.5in}

\setlength{\textheight}{8in}

\pagenumbering{arabic} % needed even though this class will

% not show page numbers

However, this class file will not support footnotes, marginals, floats, etc., nor
will it provide any of the 2-letter font commands such as \rm; thus most classes
will contain more than this minimum!

1This class is now in the standard distribution, as minimal.cls.

11

3.5 Example: a local letter class

A company may have its own letter class, for setting letters in the company
style. This section shows a simple implementation of such a class, although a
real class would need more structure.

The class begins by announcing itself as neplet.cls.

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{neplet}[1995/04/01 NonExistent Press letter class]

Then this next bit passes any options on to the letter class, which is loaded
with the a4paper option.

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{letter}}

\ProcessOptions\relax

\LoadClass[a4paper]{letter}

In order to use the company letter head, it redefines the firstpage page style:
this is the page style that is used on the first page of letters.

\renewcommand{\ps@firstpage}{%

\renewcommand{\@oddhead}{<letterhead goes here>}%

\renewcommand{\@oddfoot}{<letterfoot goes here>}%

}

And that’s it!

3.6 Example: a newsletter class

A simple newsletter can be typeset with LATEX, using a variant of the article
class. The class begins by announcing itself as smplnews.cls.

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{smplnews}[1995/04/01 The Simple News newsletter class]

\newcommand{\headlinecolor}{\normalcolor}

It passes most specified options on to the article class: apart from the
onecolumn option, which is switched off, and the green option, which sets the
headline in green.

\DeclareOption{onecolumn}{\OptionNotUsed}

\DeclareOption{green}{\renewcommand{\headlinecolor}{\color{green}}}

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}

\ProcessOptions\relax

It then loads the class article with the option twocolumn.

\LoadClass[twocolumn]{article}

Since the newsletter is to be printed in colour, it now loads the color package.
The class does not specify a device driver option since this should be specified
by the user of the smplnews class.

\RequirePackage{color}

12

The class then redefines \maketitle to produce the title in 72pt Helvetica bold
oblique, in the appropriate colour.

\renewcommand{\maketitle}{%

\twocolumn[%

\fontsize{72}{80}\fontfamily{phv}\fontseries{b}%

\fontshape{sl}\selectfont\headlinecolor

\@title

]%

}

It redefines \section and switches off section numbering.

\renewcommand{\section}{%

\@startsection

{section}{1}{0pt}{-1.5ex plus -1ex minus -.2ex}%

{1ex plus .2ex}{\large\sffamily\slshape\headlinecolor}%

}

\setcounter{secnumdepth}{0}

It also sets the three essential things.

\renewcommand{\normalsize}{\fontsize{9}{10}\selectfont}

\setlength{\textwidth}{17.5cm}

\setlength{\textheight}{25cm}

In practice, a class would need more than this: it would provide commands for
issue numbers, authors of articles, page styles and so on; but this skeleton gives
a start. The ltnews class file is not much more complex than this one.

4 Commands for class and package writers

This section describes briefly each of the new commands for class and package
writers. To find out about other aspects of the new system, you should also read
LATEX: A Document Preparation System, The LATEX Companion and LATEX2ε
for Authors.

4.1 Identification

The first group of commands discussed here are those used to identify your class
or package file.

\NeedsTeXFormat {〈format-name〉} [〈release-date〉]

This command tells TEX that this file should be processed using a format with
name 〈format-name〉. You can use the optional argument 〈release-date〉 to
further specify the earliest release date of the format that is needed. When
the release date of the format is older than the one specified a warning will be
generated. The standard 〈format-name〉 is LaTeX2e. The date, if present, must
be in the form yyyy/mm/dd.

Example:

\NeedsTeXFormat{LaTeX2e}[1994/06/01]

13

\ProvidesClass {〈class-name〉} [〈release-info〉]
\ProvidesPackage {〈package-name〉} [〈release-info〉]

This declares that the current file contains the definitions for the document class
〈class-name〉 or package 〈package-name〉.

The optional 〈release-info〉, if used, must contain:

• the release date of this version of the file, in the form yyyy/mm/dd;

• optionally followed by a space and a short description, possibly including
a version number.

The above syntax must be followed exactly so that this information can be
used by \LoadClass or \documentclass (for classes) or \RequirePackage or
\usepackage (for packages) to test that the release is not too old.

The whole of this 〈release-info〉 information is displayed by \listfiles and
should therefore not be too long.

Example:

\ProvidesClass{article}[1994/06/01 v1.0 Standard LaTeX class]

\ProvidesPackage{ifthen}[1994/06/01 v1.0 Standard LaTeX package]

\ProvidesFile {〈file-name〉} [〈release-info〉]

This is similar to the two previous commands except that here the full filename,
including the extension, must be given. It is used for declaring any files other
than main class and package files.

Example:

\ProvidesFile{T1enc.def}[1994/06/01 v1.0 Standard LaTeX file]

Note that the phrase Standard LaTeX must not be used in the identification
banner of any file other than those in the standard LATEX distribution.

4.2 Loading files

This group of commands can be used to create your own document class orNew feature
1995/12/01 package by building on existing classes or packages.

\RequirePackage [〈options-list〉] {〈package-name〉} [〈release-info〉]
\RequirePackageWithOptions {〈package-name〉} [〈release-info〉]

Packages and classes should use these commands to load other packages.

The use of \RequirePackage is the same as the author command \usepackage.

Examples:

\RequirePackage{ifthen}[1994/06/01]

\RequirePackageWithOptions{graphics}[1995/12/01]

\LoadClass [〈options-list〉] {〈class-name〉} [〈release-info〉]
\LoadClassWithOptions {〈class-name〉} [〈release-info〉]

These commands are for use only in class files, they cannot be used in packagesNew feature
1995/12/01 files; they can be used at most once within a class file.

14

The use of\LoadClass is the same as the use of \documentclass to load a class
file.

Examples:

\LoadClass{article}[1994/06/01]

\LoadClassWithOptions{article}[1995/12/01]

The two WithOptions versions simply load the class (or package) file with ex-New feature
1995/12/01 actly those options that are being used by the current file (class or package).

See below, in 4.5, for further discussion of their use.

4.3 Option declaration

The following commands deal with the declaration and handling of options toNew description
1998/12/01 document classes and packages. Every option name must be a ‘LATEX name’.

There are some commands designed especially for use within the 〈code〉 argu-
ment of these commands (see below).

\DeclareOption {〈option-name〉} {〈code〉}

This makes 〈option-name〉 a ‘declared option’ of the class or package in which
it is put.

The 〈code〉 argument contains the code to be executed if that option is specified
for the class or package; it can contain any valid LATEX2ε construct.

Example:

\DeclareOption{twoside}{\@twosidetrue}

\DeclareOption* {〈code〉}

This declares the 〈code〉 to be executed for every option which is specified for,
but otherwise not explicitly declared by, the class or package; this code is called
the ‘default option code’ and it can contain any valid LATEX2ε construct.

If a class file contains no \DeclareOption* then, by default, all specified but
undeclared options for that class will be silently passed to all packages (as will
the specified and declared options for that class).

If a package file contains no \DeclareOption* then, by default, each specified
but undeclared option for that package will produce an error.

4.4 Commands within option code

These two commands can be used only within the 〈code〉 argument of ei-
ther \DeclareOption or \DeclareOption*. Other commands commonly used
within these arguments can be found in the next few subsections.

\CurrentOption

This expands to the name of the current option.

\OptionNotUsed

This causes the current option to be added to the list of ‘unused options’.

You can now include hash marks (#) within these 〈code〉 arguments withoutNew feature
1995/06/01 special treatment (formerly, it had been necessary to double them).

15

4.5 Moving options around

These two commands are also very useful within the 〈code〉 argument of
\DeclareOption or \DeclareOption*:

\PassOptionsToPackage {〈options-list〉} {〈package-name〉}
\PassOptionsToClass {〈options-list〉} {〈class-name〉}

The command \PassOptionsToPackage passes the option names in 〈options-list〉
to package 〈package-name〉. This means that it adds the 〈option-list〉 to the list
of options used by any future \RequirePackage or \usepackage command for
package 〈package-name〉.
Example:

\PassOptionsToPackage{foo,bar}{fred}

\RequirePackage[baz]{fred}

is the same as:

\RequirePackage[foo,bar,baz]{fred}

Similarly, \PassOptionsToClass may be used in a class file to pass options to
another class to be loaded with \LoadClass.

The effects and use of these two commands should be contrasted with those ofNew description
1995/12/01 the following two (documented above, in 4.2):

\LoadClassWithOptions

\RequirePackageWithOptions

The command\RequirePackageWithOptions is similar to \RequirePackage,
but it always loads the required package with exactly the same option list as
that being used by the current class or package, rather than with any option
explicitly supplied or passed on by \PassOptionsToPackage.

The main purpose of \LoadClassWithOptions is to allow one class to simply
build on another, for example:

\LoadClassWithOptions{article}

This should be compared with the slightly different construction

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}

\ProcessOptions\relax

\LoadClass{article}

As used above, the effects are more or less the same, but the first is a lot less
to type; also the \LoadClassWithOptions method runs slightly quicker.

If, however, the class declares options of its own then the two constructions are
different. Compare, for example:

\DeclareOption{landscape}{\@landscapetrue}

\ProcessOptions\relax

\LoadClassWithOptions{article}

with:

\DeclareOption{landscape}{\@landscapetrue}

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}

\ProcessOptions\relax

\LoadClass{article}

16

In the first example, the article class will be loaded with option landscape
precisely when the current class is called with this option. By contrast, in the
second example it will never be called with option landscape as in that case
article is passed options only by the default option handler, but this handler is
not used for landscape because that option is explicitly declared.

4.6 Delaying code

These first two commands are also intended primarily for use within the 〈code〉
argument of \DeclareOption or \DeclareOption*.

\AtEndOfClass {〈code〉}
\AtEndOfPackage {〈code〉}

These commands declare 〈code〉 that is saved away internally and then executed
after processing the whole of the current class or package file.

Repeated use of these commands is permitted: the code in the arguments is
stored (and later executed) in the order of their declarations.

\AtBeginDocument {〈code〉}
\AtEndDocument {〈code〉}

These commands declare 〈code〉 to be saved internally and executed while LATEX
is executing \begin{document} or \end{document}.

The 〈code〉 specified in the argument to \AtBeginDocument is executed near the
end of the \begin{document} code, after the font selection tables have been set
up. It is therefore a useful place to put code which needs to be executed after
everything has been prepared for typesetting and when the normal font for the
document is the current font.

The \AtBeginDocument hook should not be used for code that does any type-New description
1995/12/01 setting since the typeset result would be unpredictable.

The 〈code〉 specified in the argument to \AtEndDocument is executed at the
beginning of the \end{document} code, before the final page is finished and
before any leftover floating environments are processed. If some of the 〈code〉 is
to be executed after these two processes, you should include a \clearpage at
the appropriate point in 〈code〉.

Repeated use of these commands is permitted: the code in the arguments is
stored (and later executed) in the order of their declarations.

\AtBeginDvi {〈specials〉}New feature
1994/12/01

These commands save in a box register things which are written to the .dvi file
at the beginning of the ‘shipout’ of the first page of the document.

This should not be used for anything that will add any typeset material to the
.dvi file.

Repeated use of this command is permitted.

4.7 Option processing

\ProcessOptions

This command executes the 〈code〉 for each selected option.

17

We shall first describe how \ProcessOptions works in a package file, and then
how this differs in a class file.

To understand in detail what \ProcessOptions does in a package file, you have
to know the difference between local and global options.

• Local options are those which have been explicitly specified for this
particular package in the 〈options〉 argument of any of these:

\PassOptionsToPackage{<options>} \usepackage[<options>]
\RequirePackage[<options>]

• Global options are any other options that are specified by the author in
the 〈options〉 argument of \documentclass[<options>].

For example, suppose that a document begins:

\documentclass[german,twocolumn]{article}

\usepackage{gerhardt}

whilst package gerhardt calls package fred with:

\PassOptionsToPackage{german,dvips,a4paper}{fred}

\RequirePackage[errorshow]{fred}

then:

• fred’s local options are german, dvips, a4paper and errorshow;

• fred’s only global option is twocolumn.

When \ProcessOptions is called, the following happen.

• First, for each option so far declared in fred.sty by \DeclareOption, it
looks to see if that option is either a global or a local option for fred: if
it is then the corresponding code is executed.

This is done in the order in which these options were declared in fred.sty.

• Then, for each remaining local option, the command \ds@<option> is exe-
cuted if it has been defined somewhere (other than by a \DeclareOption);
otherwise, the ‘default option code’ is executed. If no default option code
has been declared then an error message is produced.

This is done in the order in which these options were specified.

Throughout this process, the system ensures that the code declared for an option
is executed at most once.

Returning to the example, if fred.sty contains:

\DeclareOption{dvips}{\typeout{DVIPS}}

\DeclareOption{german}{\typeout{GERMAN}}

\DeclareOption{french}{\typeout{FRENCH}}

\DeclareOption*{\PackageWarning{fred}{Unknown ‘\CurrentOption’}}

\ProcessOptions\relax

then the result of processing this document will be:

DVIPS

GERMAN

Package fred Warning: Unknown ‘a4paper’.

Package fred Warning: Unknown ‘errorshow’.

18

Note the following:

• the code for the dvips option is executed before that for the german
option, because that is the order in which they are declared in fred.sty;

• the code for the german option is executed only once, when the declared
options are being processed;

• the a4paper and errorshow options produce the warning from the code
declared by \DeclareOption* (in the order in which they were specified),
whilst the twocolumn option does not: this is because twocolumn is a
global option.

In a class file, \ProcessOptions works in the same way, except that: all options
are local; and the default value for \DeclareOption* is \OptionNotUsed rather
than an error.

Note that, because \ProcessOptions has a *-form, it is wise to follow theNew description
1995/12/01 non-star form with \relax, as in the previous examples, since this prevents

unnecessary look ahead and possibly misleading error messages being issued.

\ProcessOptions*

\@options

This is like \ProcessOptions but it executes the options in the order specified
in the calling commands, rather than in the order of declaration in the class or
package. For a package this means that the global options are processed first.

The \@options command from LATEX 2.09 has been made equivalent to this in
order to ease the task of updating old document styles to LATEX2ε class files.

\ExecuteOptions {〈options-list〉}

For each option in the 〈options-list〉, in order, this command simply executes
the command \ds@<option> (if this command is not defined, then that option
is silently ignored).

It can be used to provide a ‘default option list’ just before \ProcessOptions.
For example, suppose that in a class file you want to set up the default design
to be: two-sided printing; 11pt fonts; in two columns. Then it could specify:

\ExecuteOptions{11pt,twoside,twocolumn}

4.8 Safe file commands

These commands deal with file input; they ensure that the non-existence of a
requested file can be handled in a user-friendly way.

\IfFileExists {〈file-name〉} {〈true〉} {〈false〉}

If the file exists then the code specified in 〈true〉 is executed.

If the file does not exist then the code specified in 〈false〉 is executed.

This command does not input the file.

\InputIfFileExists {〈file-name〉} {〈true〉} {〈false〉}

This inputs the file 〈file-name〉 if it exists and, immediately before the input,
the code specified in 〈true〉 is executed.

19

If the file does not exist then the code specified in 〈false〉 is executed.

It is implemented using \IfFileExists.

4.9 Reporting errors, etc

These commands should be used by third party classes and packages to report
errors, or to provide information to authors.

\ClassError {〈class-name〉} {〈error-text〉} {〈help-text〉}
\PackageError {〈package-name〉} {〈error-text〉} {〈help-text〉}

These produce an error message. The 〈error-text〉 is displayed and the ? error
prompt is shown. If the user types h, they will be shown the 〈help-text〉.

Within the 〈error-text〉 and 〈help-text〉: \protect can be used to stop a com-
mand from expanding; \MessageBreak causes a line-break; and \space prints
a space.

Note that the 〈error-text〉 will have a full stop added to it, so do not put one
into the argument.

For example:

\newcommand{\foo}{FOO}

\PackageError{ethel}{%

Your hovercraft is full of eels,\MessageBreak

and \protect\foo\space is \foo

}{%

Oh dear! Something’s gone wrong.\MessageBreak

\space \space Try typing \space <<return>>

\space to proceed, ignoring \protect\foo.

}

produces this display:

! Package ethel Error: Your hovercraft is full of eels,

(ethel) and \foo is FOO.

See the ethel package documentation for explanation.

If the user types h, this will be shown:

Oh dear! Something’s gone wrong.

Try typing <<return>> to proceed, ignoring \foo.

\ClassWarning {〈class-name〉} {〈warning-text〉}
\PackageWarning {〈package-name〉} {〈warning-text〉}
\ClassWarningNoLine {〈class-name〉} {〈warning-text〉}
\PackageWarningNoLine {〈package-name〉} {〈warning-text〉}
\ClassInfo {〈class-name〉} {〈info-text〉}
\PackageInfo {〈package-name〉} {〈info-text〉}

The four Warning commands are similar to the error commands, except that
they produce only a warning on the screen, with no error prompt.

The first two, Warning versions, also show the line number where the warning
occurred, whilst the second two, WarningNoLine versions, do not.

The two Info commands are similar except that they log the information only
in the transcript file, including the line number. There are no NoLine versions
of these two.

20

Within the 〈warning-text〉 and 〈info-text〉: \protect can be used to stop a
command from expanding; \MessageBreak causes a line-break; and \space
prints a space. Also, these should not end with a full stop as one is automatically
added.

4.10 Defining commands

LATEX2ε provides some extra methods of (re)defining commands that are in-
tended for use in class and package files.

The *-forms of these commands should be used to define commands that areNew feature
1994/12/01 not, in TEX terms, long. This can be useful for error-trapping with commands

whose arguments are not intended to contain whole paragraphs of text.

\DeclareRobustCommand {〈cmd〉} [〈num〉] [〈default〉] {〈definition〉}
\DeclareRobustCommand* {〈cmd〉} [〈num〉] [〈default〉] {〈definition〉}

This command takes the same arguments as \newcommand but it declares a
robust command, even if some code within the〈definition〉 is fragile. You can use
this command to define new robust commands, or to redefine existing commands
and make them robust. A log is put into the transcript file if a command is
redefined.

For example, if \seq is defined as follows:

\DeclareRobustCommand{\seq}[2][n]{%

\ifmmode

#1_{1}\ldots#1_{#2}%

\else

\PackageWarning{fred}{You can’t use \protect\seq\space in text}%

\fi

}

Then the command \seq can be used in moving arguments, even though
\ifmmode cannot, for example:

\section{Stuff about sequences \seq{x}}

Note also that there is no need to put a \relax before the \ifmmode at the
beginning of the definition; this is because the protection given by this \relax
against expansion at the wrong time will be provided internally.

\CheckCommand {〈cmd〉} [〈num〉] [〈default〉] {〈definition〉}
\CheckCommand* {〈cmd〉} [〈num〉] [〈default〉] {〈definition〉}

This takes the same arguments as \newcommand but, rather than define 〈cmd〉,
it just checks that the current definition of 〈cmd〉 is exactly as given by
〈definition〉. An error is raised if these definitions differ.

This command is useful for checking the state of the system before your package
starts altering the definitions of commands. It allows you to check, in particular,
that no other package has redefined the same command.

4.11 Moving arguments

The setting of protect whilst processing (i.e. moving) moving arguments hasNew description
1994/12/01 been reimplemented, as has the method of writing information from the .aux file

to other files such as the .toc file. Details can be found in the file ltdefns.dtx.

We hope that these changes will not affect many packages.

21

5 Miscellaneous commands, etc

5.1 Layout parameters

\paperheight

\paperwidth

These two parameters are usually set by the class to be the size of the paper be-
ing used. This should be actual paper size, unlike \textwidth and \textheight
which are the size of the main text body within the margins.

5.2 Case changing

\MakeUppercase {〈text〉}
\MakeLowercase {〈text〉}

TEX provides two primitives \uppercase and \lowercase for changing the caseNew feature
1995/06/01 of text. These are sometimes used in document classes, for example to set

information in running heads in all capitals.

Unfortunately, these TEX primitives do not change the case of characters ac-
cessed by commands like \ae or \aa. To overcome this problem, LATEX provides
two new commands \MakeUppercase and \MakeLowercase to do this.

For example:

\uppercase{aBcD\ae\AA\ss\OE} ABCDæÅßŒ
\lowercase{aBcD\ae\AA\ss\OE} abcdæÅßŒ

\MakeUppercase{aBcD\ae\AA\ss\OE} ABCDÆÅSSŒ
\MakeLowercase{aBcD\ae\AA\ss\OE} abcdæ̊aßœ

The commands \MakeUppercase and \MakeLowercase themselves are robust,
but they have moving arguments.

The commands use the TEX primitives \uppercase and \lowercase, and so
have a number of unexpected ‘features’. In particular, they change the case of
everything (except characters in the names of control-sequences) in their text
argument: this includes mathematics, environment names, and label names.

For example:

\MakeUppercase{$x+y$ in \ref{foo}}

produces X + Y and the warning:

LaTeX Warning: Reference ‘FOO’ on page ... undefined on ...

In the long run, we would like to use all-caps fonts rather than any command
like \MakeUppercase but this is not possible at the moment because such fonts
do not exist.

In order that upper/lower-casing will work reasonably well, and in order toNew description
1995/12/01 provide any correct hyphenation, LATEX2ε must use, throughout a document,

the same fixed table for changing case. The table used is designed for the font
encoding T1; this works well with the standard TEX fonts for all Latin alphabets
but will cause problems when using other alphabets.

22

5.3 The ‘openany’ option in the ‘book’ class

The openany option allows chapter and similar openings to occur on left handNew description
1996/06/01 pages. Previously this option affected only \chapter and \backmatter. It now

also affects \part, \frontmatter and \mainmatter.

5.4 Better user-defined math display environments

\ignorespacesafterend

Suppose that you want to define an environment for displaying text that isNew feature
1996/12/01
New description
2003/12/01

numbered as an equation. A straightforward way to do this is as follows:

\newenvironment{texteqn}

{\begin{equation}

\begin{minipage}{0.9\linewidth}}

{\end{minipage}

\end{equation}}

However, if you have tried this then you will probably have noticed that it does
not work perfectly when used in the middle of a paragraph because an inter-word
space appears at the beginning of the first line after the environment.

There is now an extra command (with a very long name) available that you can
use to avoid this problem; it should be inserted as shown here:

\newenvironment{texteqn}

{\begin{equation}

\begin{minipage}{0.9\linewidth}}

{\end{minipage}

\end{equation}

\ignorespacesafterend}

This command may also have other uses.

5.5 Normalising spacing

\normalsfcodes

This command should be used to restore the normal settings of the parametersNew feature
1997/06/01 that affect spacing between words, sentences, etc.

An important use of this feature is to correct a problem, reported by Donald Ar-
seneau, that punctuation in page headers has always (in all known TEX formats)
been potentially wrong whenever a page break happens while a local setting of
the space codes is in effect. These space codes are changed by, for example, the
command \frenchspacing) and the verbatim environment.

It is normally given the correct definition automatically in \begin{document}
and so need not be explicitly set; however, if it is explicitly made nonempty in
a class file then automatic default setting will be over-ridden.

6 Upgrading LATEX 2.09 classes and packages

This section describes the changes you may need to make when you upgrade an
existing LATEX style to a package or class but we shall start in optimistic mode.

23

Many existing style files will run with LATEX2ε without any modification to
the file itself. When everything is running OK, please put a note in the newly
created package or class file to record that it runs with the new standard LATEX;
then distribute it to your users.

6.1 Try it first!

The first thing you should do is to test your style in ‘compatibility mode’. The
only change you need to make in order to do this is, possibly, to change the
extension of the file to .cls: you should make this change only if your file
was used as a main document style. Now, without any other modifications,
run LATEX2ε on a document that uses your file. This assumes that you have a
suitable collection of files that tests all the functionality provided by your style
file. (If you haven’t, now is the time to make one!)

You now need to change the test document files so that they are LATEX2ε
documents: see LATEX2ε for Authors for details of how to do this and then try
them again. You have now tried the test documents in both LATEX2ε native
mode and LATEX 2.09 compatibility mode.

6.2 Troubleshooting

If your file does not work with LATEX2ε, there are two likely reasons.

• LATEX now has a robust, well-defined designer’s interface for selecting fonts,
which is very different from the LATEX 2.09 internals.

• Your style file may have used some LATEX 2.09 internal commands which
have changed, or which have been removed.

When you are debugging your file, you will probably need more information
than is normally displayed by LATEX2ε. This is achieved by resetting the
counter errorcontextlines from its default value of −1 to a much higher
value, e.g. 999.

6.3 Accommodating compatibility mode

Sometimes an existing collection of LATEX 2.09 documents makes it inconvenient
or impossible to abandon the old commands entirely. If this is the case, then
it is possible to accommodate both conventions by making special provision for
documents processed in compatibility mode.

\if@compatibility

This switch is set when a document begins with \documentstyle rather than
\documentclass. Appropriate code can be supplied for either condition, as
follows:

\if@compatibility

<code emulating LaTeX 2.09 behavior>

\else

<code suitable for LaTeX2e>

\fi

24

6.4 Font commands

Some font and size commands are now defined by the document class rather
than by the LATEX kernel. If you are upgrading a LATEX 2.09 document style to
a class that does not load one of the standard classes, then you will probably
need to add definitions for these commands.

\rm \sf \tt \bf \it \sl \sc

None of these short-form font selection commands are defined in the LATEX2ε
kernel. They are defined by all the standard class files.

If you want to define them in your class file, there are several reasonable ways
to do this.

One possible definition is:

\newcommand{\rm}{\rmfamily}

...

\newcommand{\sc}{\scshape}

This would make the font commands orthogonal; for example {\bf\it text}
would produce bold italic, thus: text . It will also make them produce an error
if used in math mode.

Another possible definition is:

\DeclareOldFontCommand{\rm}{\rmfamily}{\mathrm}

...

\DeclareOldFontCommand{\sc}{\scshape}{\mathsc}

This will make \rm act like \rmfamily in text mode (see above) and it will make
\rm select the \mathrm math alphabet in math mode.

Thus ${\rm math} = X + 1$ will produce ‘math = X + 1’.

If you do not want font selection to be orthogonal then you can follow the
standard classes and define:

\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}

...

\DeclareOldFontCommand{\sc}{\normalfont\scshape}{\mathsc}

This means, for example, that {\bf\it text} will produce medium weight
(rather than bold) italic, thus: text.

\normalsize

\@normalsize

The command \@normalsize is retained for compatibility with LATEX 2.09 pack-
ages which may have used its value; but redefining it in a class file will have no
effect since it is always reset to have the same meaning as \normalsize.

This means that classes must now redefine \normalsize rather than redefining
\@normalsize; for example (a rather incomplete one):

\renewcommand{\normalsize}{\fontsize{10}{12}\selectfont}

25

Note that \normalsize is defined by the LATEX kernel to be an error message.

\tiny \footnotesize \small \large

\Large \LARGE \huge \Huge

None of these other ‘standard’ size-changing commands are defined in the kernel:
each needs to be defined in a class file if you need it. They are all defined by
the standard classes.

This means you should use \renewcommand for \normalsize and \newcommand
for the other size-changing commands.

6.5 Obsolete commands

Some packages will not work with LATEX2ε, normally because they relied on an
internal LATEX command which was never supported and has now changed, or
been removed.

In many cases there will now be a robust, high-level means of achieving what
previously required low-level commands. Please consult Section 4 to see if you
can now use the LATEX2ε class and package writers commands.

Also, of course, if your package or class redefined any of the kernel com-
mands (i.e. those defined in the files latex.tex, slitex.tex, lfonts.tex,
sfonts.tex) then you will need to check it very carefully against the new kernel
in case the implementation has changed or the command no longer exists in the
LATEX2e kernel.

Too many of the internal commands of LATEX 2.09 have been re-implemented
or removed to be able to list them all here. You must check any that you have
used or changed.

We shall, however, list some of the more important commands which are no
longer supported.

\tenrm \elvrm \twlrm . . .
\tenbf \elvbf \twlbf . . .
\tensf \elvsf \twlsf . . .

...

The (approximately) seventy internal commands of this form are no longer de-
fined. If your class or package uses them then please replace them with new
font commands described in LATEX2ε Font Selection.

For example, the command \twlsf should be replaced by:

\fontsize{12}{14}\normalfont\sffamily\selectfont

Another possibility is to use the rawfonts package, described in LATEX2ε for
Authors.

Also, remember that many of the fonts preloaded by LATEX 2.09 are no longer
preloaded.

\vpt \vipt \viipt . . .

These were the internal size-selecting commands in LATEX 2.09. (They can still
be used in LATEX 2.09 compatibility mode.) Please use the command \fontsize
instead: see LATEX2ε Font Selection for details.

26

For example, \vpt should be replaced by:

\fontsize{5}{6}\normalfont\selectfont

\prm, \pbf, \ppounds, \pLaTeX . . .

LATEX 2.09 used several commands beginning with \p in order to provide ‘pro-
tected’ commands. For example, \LaTeX was defined to be \protect\pLaTeX,
and \pLaTeX was defined to produce the LATEX logo. This made \LaTeX robust,
even though \pLaTeX was not.

These commands have now been reimplemented using \DeclareRobustCommand
(described in Section 4.10). If your package redefined one of the \p-commands
then you must remove the redefinition and use \DeclareRobustCommand to re-
define the non-\p command.

\footheight

\@maxsep

\@dblmaxsep

These parameters are not used by LATEX2ε so they have been removed, except
in LATEX 2.09 compatibility mode. Classes should no longer set them.

References

[1] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts,
1986. Revised to cover TEX3, 1991.

[2] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, second edition, 1994.

[3] Frank Mittelbach and Michel Goossens. The LATEX Companion second edi-
tion. With Johannes Braams, David Carlisle, and Chris Rowley. Addison-
Wesley, Reading, Massachusetts, 2004.

27

LATEX2ε Summary sheet: updating old styles

Section references below are to LATEX2ε for Class and Package Writers.

1. Should it become a class or a package? See Section 2.3 for how to answer
this question.

2. If it uses another style file, then you will need to obtain an updated version
of this other file. Look at Section 2.7.1 for information on how to load
other class and package files.

3. Try it: see Section 6.1.

4. It worked? Excellent, but there are probably still some things you should
change in order to make your file into a well-structured LATEX2ε file that is
both robust and portable. So you should now read Section 2, especially 2.7.
You will also find some useful examples in Section 3.

If your file sets up new fonts, font-changing commands or symbols, you
should also read LATEX2ε Font Selection.

5. It did not work? There are three possibilities here:

• error messages are produced whilst reading your file;

• error messages are produced whilst processing test documents;

• there are no errors but the output is not as it should be.

Don’t forget to check carefully for this last possibility.

If you have got to this stage then you will need to read Section 6 to find
the solutions that will make your file work.

	Contents
	1 Introduction
	1.1 Writing classes and packages for LaTeX2e
	1.2 Overview
	1.3 Further information
	1.4 Policy on standard classes

	2 Writing classes and packages
	2.1 Old versions
	2.2 Using `docstrip' and `doc'
	2.3 Is it a class or a package?
	2.4 Command names
	2.5 Box commands and colour
	2.6 Defining text and math characters
	2.7 General style

	3 The structure of a class or package
	3.1 Identification
	3.2 Using classes and packages
	3.3 Declaring options
	3.4 A minimal class file
	3.5 Example: a local letter class
	3.6 Example: a newsletter class

	4 Commands for class and package writers
	4.1 Identification
	4.2 Loading files
	4.3 Option declaration
	4.4 Commands within option code
	4.5 Moving options around
	4.6 Delaying code
	4.7 Option processing
	4.8 Safe file commands
	4.9 Reporting errors, etc
	4.10 Defining commands
	4.11 Moving arguments

	5 Miscellaneous commands, etc
	5.1 Layout parameters
	5.2 Case changing
	5.3 The `openany' option in the `book' class
	5.4 Better user-defined math display environments
	5.5 Normalising spacing

	6 Upgrading LaTeX 2.09 classes and packages
	6.1 Try it first!
	6.2 Troubleshooting
	6.3 Accommodating compatibility mode
	6.4 Font commands
	6.5 Obsolete commands

	References

