
The backnaur package
Adrian P. Robson∗

Version 2.0
14 April 2019

1 Introduction
The backnaur package typesets Backus-Naur Form (BNF) definitions. It creates
aligned lists of productions, with numbers if required. It can also print in line
BNF expressions using math mode.

Backus-Naur Form is a notation for defining context free grammars. It is used
to describe such things as programming languages, communication protocols and
command syntaxes, but it can be useful whenever a rigorous definition of language
is needed.

2 BNF Definitions
The following is a BNF definition of a semicolon separated list:

〈list〉 |= 〈listitems〉 | λ
〈listitems〉 |= 〈item〉 | 〈item〉 ; 〈listitems〉
〈item〉 |= description of item

Here, |= signifies produces, | is an or operator, 〈...〉 are production names, and λ
represents the empty string. However, some BNF users prefer alternative termi-
nologies, where |= stands for is defined as, 〈...〉 is a category name or nonterminal,
and λ is refered to as null or empty.

The above definition was created with the following code:

\usepackage{backnaur}
...
\begin{bnf*}

\bnfprod{list}
{\bnfpn{listitems} \bnfor \bnfes}\\

\bnfprod{listitems}
{\bnfpn{item} \bnfor \bnfpn{item}
\bnfsp \bnfts{;} \bnfsp \bnfpn{listitems}}\\

\bnfprod{item}
{\bnftd{description of item}}

\end{bnf*}

∗adrian.robson@nepsweb.co.uk

1

Each BNF production is defined by a \bnfprod command, which has two argu-
ments giving its left and right sides. The right hand side of each production is
specified with the commands described in §3.4 below. Terminal (\bnfts{;}) and
nonterminal (\bnfpn{item}), elements are separated by spaces (\bnfsp) and OR
symbols (\bnfor). The \bnfes command gives the symbol for the empty string.

3 Package Commands
3.1 Loading and options
The package is loaded with

\usepackage{backnaur}
or

\usepackage[<options>]{backnaur}

Possible options are
perp The empty string symbol is ⊥
epsilon The empty string symbol is ε
tsrm Terminal string typeface is roman
tstt Terminal string typeface is typewriter (default)

The defaults are: the empty string symbol is λ, and the terminal string typeface
is typewriter.

3.2 Environments
BNF productions are defined in a bnf or bnf* environment, which respectivelybnf
give numbered and unnumbered lists of productions.bnf*

\begin{bnf}
<list of productions>

\end{bnf}

\begin{bnf*}
<list of productions>

\end{bnf*}

3.3 Productions
A production is defined by \bnfprod, which takes two arguments:\bnfprod

\bnfprod{<production name>}{<production definition>}

A production can be continued on addition lines by \bnfmore, which takes one\bnfmore
argument:

\bnfmore{<production definition>}

3.4 Production definitions
The following commands are used to compose the right hand side of a production.
They are deployed in the second argument of the \bnfprod command.

The \bnfpn command generates a production name. It takes a single argument\bnfpn
that is the name. It is used as follows:

\bnfpn{list item} 〈list item〉

2

There are three types of terminal item: a literal string, a descriptive phrase and
an empty string. A literal terminal string is specified by the \bnftm command,\bnftm
which takes a single argument. By default literal terminal strings are printed in
typewriter font, but this can be changed as a package option (see §3.1). The\bnftd
\bnftd command generates a descriptive phrase, as an alternative to a literal
string. The \bnfes command generates a token that represents the empty string.\bnfes
This is normally λ, but it can be changed as a package option (see §3.1).

\bnfts{terminal}
\bnftd{description}
\bnfes

terminal
description
λ

Some literal terminal strings can be abbreviated with the ‘skip’ token, which\bnfsk
is generated by the \bnfsk command. This substitutes for a sequence of terminal
characters. It is used like this:

\bnfts{A} \bnfsk \bnfts{Z} A . . . Z

All items are separated by an OR or a space. The \bnfor command generates\bnfor
the OR symbol, and the \bnfsp command introduces a space. A space can be\bnfsp
considered equivalent to an AND operator.

\bnfpn{abc} \bnfor \bnfts{xzy}
\bnfpn{abc} \bnfsp \bnfts{xzy}

〈abc〉 | xzy
〈abc〉 xzy

3.5 Inline expressions
The package’s definition commands can be typeset inline using maths mode, so\bnfpn
the expression \bnfpn{name} will give 〈name〉.

The \bnfpo command is provided so that the production operator |= can\bnfpo
be printed independently from the bnf environment if required. The \bnfprod
command cannot be used inline.

3.6 Command summary
The commands that can be used to define a BNF production in a bnf or bnf*
environment are as follows:

Command Operator Outcome
\bnfpn{} production name 〈name〉
\bnfor OR operator |
\bnfsk skip . . .
\bnfsp space/AND operator
\bnfes empty string λ
\bnfts{} terminal string terminal
\bnftd{} terminal description description
\bnfpo production operator |=

3

4 Example
Amore significant example is the following definition of a 〈sentence〉, where 〈cchar〉
are countable characters, and 〈ichar〉 are characters that should be ignored:

\begin{bnf*}
\bnfprod{sentence}

{\bnfpn{start} \bnfsp \bnfpn{rest} \bnfsp \bnfts{.}}\\
\bnfprod{start}

{\bnfpn{space} \bnfor \bnfes}\\
\bnfprod{rest}

{\bnfpn{word} \bnfsp \bnfpn{space} \bnfsp \bnfpn{rest}
\bnfor \bnfpn{word} \bnfor \bnfes}\\

\bnfprod{word}
{\bnfpn{wchar} \bnfsp \bnfpn{word} \bnfor \bnfpn{wchar}}\\

\bnfprod{space}
{\bnfpn{schar} \bnfsp \bnfpn{space} \bnfor \bnfpn{schar}}\\

\bnfprod{wchar}
{\bnfpn{cchar} \bnfor \bnfpn{ichar} }\\

\bnfprod{cchar}
{\bnfts{A} \bnfsk \bnfts{Z} \bnfor \bnfts{a} \bnfsk
\bnfts{z} \bnfor \bnfts{0} \bnfsk \bnfts{9} \bnfor
\bnfts{\textquotesingle}}\\

\bnfprod{ichar}
{-}\\

\bnfprod{schar}
{\bnfts{‘\hspace{1em}’} \bnfor \bnfts{!} \bnfor \bnfts{"}
\bnfor \bnfts{(} \bnfor \bnfts{)} \bnfor \bnfts{\{}
\bnfor \bnfts{\}} \bnfor }\\

\bnfmore{\bnfts{:} \bnfor \bnfts{;} \bnfor \bnfts{?} \bnfor
\bnfts{,} }

\end{bnf*}

This creates the following BNF definition:

〈sentence〉 |= 〈start〉 〈rest〉 .
〈start〉 |= 〈space〉 | λ
〈rest〉 |= 〈word〉 〈space〉 〈rest〉 | 〈word〉 | λ
〈word〉 |= 〈wchar〉 〈word〉 | 〈wchar〉
〈space〉 |= 〈schar〉 〈space〉 | 〈schar〉
〈wchar〉 |= 〈cchar〉 | 〈ichar〉
〈cchar〉 |= A . . . Z | a . . . z | 0 . . . 9 | '
〈ichar〉 |= −
〈schar〉 |= ‘ ’ | ! | " | (|) | { | } |

: | ; | ? | ,

4

