
Babel, a multilingual package for use with LATEX’s

standard document classes∗

Johannes Braams
Kersengaarde 33

2723 BP Zoetermeer
The Netherlands

For version 3.9, Javier Bezos

www.tex-tipografia.com

Typeset May 16, 2013

Abstract

The standard distribution of LATEX contains a number of document classes
that are meant to be used, but also serve as examples for other users to create
their own document classes. These document classes have become very popular
among LATEX users. But it should be kept in mind that they were designed for
American tastes and typography. At one time they even contained a number of
hard-wired texts.

This report describes babel, a package that makes use of the capabilities of
TEX version 3 and, to some extent, xetex and luatex, to provide an environment
in which documents can be typeset in a language other than US English, or in
more than one language. However, no attempt has been done to take full
advantage of the features provided by the latter, which would require a
completely new core (as for example polyglossia or as part of LATEX3).

Contents

1 The user interface 3
1.1 Selecting languages . 5
1.2 Shorthands . 6
1.3 Package options . 10
1.4 The base option . 11
1.5 Hooks . 12
1.6 Hyphen tools . 13
1.7 Language attributes . 14

∗During the development ideas from Nico Poppelier, Piet van Oostrum and many others have been
used. Bernd Raichle has provided many helpful suggestions.

1

1.8 Languages supported by babel . 14
1.9 Tips, workarounds and know issues . 16

2 Preloading languages with language.dat 17

3 The interface between the core of babel and the language definition
files 18
3.1 Basic macros . 19
3.2 Skeleton . 21
3.3 Support for active characters . 21
3.4 Support for saving macro definitions . 22
3.5 Support for extending macros . 22
3.6 Macros common to a number of languages 22
3.7 Encoding-dependent strings . 23

4 Compatibility and changes 26
4.1 Compatibility with german.sty . 26
4.2 Compatibility with ngerman.sty . 27
4.3 Compatibility with the french package 27
4.4 Changes in babel version 3.9 . 27
4.5 Changes in babel version 3.7 . 27
4.6 Changes in babel version 3.6 . 28
4.7 Changes in babel version 3.5 . 30

5 Identification and loading of required files 30

6 The Package File 33
6.1 base . 33
6.2 key=value options and other general option 33
6.3 Conditional loading of shorthands . 35
6.4 Language options . 37

7 The Kernel of Babel 40
7.1 Tools . 40
7.2 Encoding issues . 42
7.3 Support for active characters . 44
7.4 Shorthands . 45
7.5 Conditional loading of shorthands . 54
7.6 Language attributes . 55
7.7 Support for saving macro definitions . 58
7.8 Support for extending macros . 59
7.9 Hyphens . 60
7.10 Macros common to a number of languages 62
7.11 Making glyphs available . 62
7.12 Quotation marks . 62
7.13 Letters . 64

2

7.14 Shorthands for quotation marks . 65
7.15 Umlauts and trema’s . 66
7.16 Multiencoding strings . 68
7.17 Hooks . 71
7.18 The redefinition of the style commands 72
7.19 Cross referencing macros . 73
7.20 Marks . 76
7.21 Preventing clashes with other packages 78

7.21.1 ifthen . 78
7.21.2 varioref . 79
7.21.3 hhline . 80
7.21.4 hyperref . 80
7.21.5 fancyhdr . 80

7.22 Encoding issues (part 2) . 81
7.23 Local Language Configuration . 81

7.23.1 Redefinition of macros . 83
7.24 Multiple languages . 87

8 The ‘nil’ language 101

9 Support for Plain TEX 102
9.1 Not renaming hyphen.tex . 102
9.2 Emulating some LATEX features . 104

10 Hooks for XeTeX and LuaTeX 112
10.1 XeTeX . 112
10.2 LuaTeX . 113

11 Conclusion 114

12 Acknowledgements 115

1 The user interface

The user interface of this package is quite simple. It consists of a set of commands
that switch from one language to another, and a set of commands that deal with
shorthands. It is also possible to find out what the current language is.
In LATEX2e the preamble of the document:

\documentclass{article}

\usepackage[dutch,english]{babel}

would tell LATEX that the document would be written in two languages, Dutch and
English, and that English would be the first language in use, and the main one. You
can also set the main language explicitly:

3

\documentclass{article}

\usepackage[main=english,dutch]{babel}

Another approach is making dutch and english global options in order to let other
packages detect and use them:

\documentclass[dutch,english]{article}

\usepackage{babel}

\usepackage{varioref}

In this last example, the package varioref will also see the options and will be able to
use them.
Languages may be set as global and as package option at the same time, but in such a
case you should set explicitly the main language with the package option main:

\documentclass[italian]{babel}

\usepackage[ngerman,main=italian]{babel}

New 3.9c The basic behaviour of some languages can be modified when loading babel.
Modifiers are set after the language name, and are prefixed with a dot (only when the
language is set as package option – neither global options nor the main key accept
them). An example is (spaces are not significant and it can be written closed, too):

\usepackage[latin .medieval, spanish .notilde .lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by
including it in the modifiers list. However, modifiers is a more general mechanism.
Currently babel provides no standard interface for scripts. Languages sharing the same
non-Latin script may define macros to switch them (eg, \textcyrillic), but be aware
they may also set the language to a certain default. (Future versions might add such
an interface.)
Because of the way babel has evolved, “language” can refer to (1) a set of hyphenation
patters as preloaded into the format, (2) a package option, (3) an ldf file, and (4) a
name used in the document to select a language or dialect. So, a package option refers
to a language in a generic way – sometimes it is the actual language name used to
select it, sometimes it is a file name loading a language with a different name,
sometimes it is a file name loading several languages. Please, read the documentation
for specific languages for further info.
Loading directly sty files in LATEX (ie, \usepackage{〈language〉}) is deprected and
you will get the error “You have used an old interface to call babel”.
In Plain, load languages styles with \input and then use \begindocument (the latter
is defined by babel):

\input estonian.sty

\begindocument

Note not all languages provide a sty file and some of them are not compatible with
Plain.

4

1.1 Selecting languages

The main language is selected automatically when the document environment begins.

{〈language〉}\selectlanguage

When a user wants to switch from one language to another he can do so using the
macro \selectlanguage. This macro takes the language, defined previously by a
language definition file, as its argument. It calls several macros that should be defined
in the language definition files to activate the special definitions for the language
chosen.
If used inside braces there might be some non-local changes, as this would be roughly
equivalent to:

{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an
additional grouping, like braces {}.
This command can be used as environment, too.

{〈language〉} . . . \end{otherlanguage}\begin{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except
the language change is (mostly) local to the environment. This environment is
required for intermixing left-to-right typesetting with right-to-left typesetting. The
language to switch to is specified as an argument to \begin{otherlanguage}.
Actually, there might be some non-local changes, as this environment is roughly
equivalent to:

\begingroup

\selectlanguage{<inner-language>}

...

\endgroup

\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with and
additional grouping, like braces {}.
Spaces after the environment are ignored.

[〈language〉]{〈text〉}\foreignlanguage

The command \foreignlanguage takes two arguments; the second argument is a
phrase to be typeset according to the rules of the language named in its first
argument. This command (1) only switches the extra definitions and the hyphenation
rules for the language, not the names and dates, (2) does not send information about
the language to auxiliary files (i.e., the surrounding language is still in force), and (3)
it works even if the language has not been set as package option (but in such a case it
only sets the hyphenation patterns).

5

{〈language〉} . . . \end{otherlanguage*}\begin{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not
ignored.

The control sequence \languagename contains the name of the current language.\languagename

However, due to some internal inconsistencies in catcodes it should not be used to test
its value (use iflang, by Heiko Oberdiek).

{〈language〉}{〈true〉}{〈false〉}\iflanguage

If more than one language is used, it might be necessary to know which language is
active at a specific time. This can be checked by a call to \iflanguage, but note here
“language” is used in the TEX sense, as a set of hyphenation patterns, and not as its
babel name. This macro takes three arguments. The first argument is the name of a
language; the second and third arguments are the actions to take if the result of the
test is true or false respectively. The advice about \languagename also applies here –
use iflang instead of \iflanguage if possible.

{〈language〉} . . . \end{hyphenrules}\begin{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be
used (it can be used as command, too). This can for instance be used to select
‘nohyphenation’, provided that in language.dat the ‘language’ nohyphenation is
defined by loading zerohyph.tex. It deactivates language shorthands, too (but not
user shorthands).
Except for these simple uses, hyphenrules is discouraged and otherlanguage* (the
starred version) is preferred, as the former does not take into account possible changes
in encodings or characters like, say, ’ done by some languages (eg, italian, frenchb,
ukraineb). To set hyphenation exceptions, use \babelhyphenation (see below).

1.2 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX code.
Shorthands can be used for different kinds of things, as for example: (1) in some
languages shorthands such as "a are defined to be able to hyphenate the word if the
encoding is OT1; (2) in some languages shorthands such as ! are used to insert the
right amount of white space; (3) several kinds of discretionaries and breaks can be
inserted easily with "-, "=, etc.
The package inputenc as well as xetex an luatex have alleviated entering non-ASCII
characters, but minority languages and some texts can still require characters not
directly available in the keyboards (and sometimes not even as separated or
precomposed Unicode characters). As to the point 2, now pdfTeX provides \knbccode.
Tools of point 3 can be still very useful in general.
There are three levels of shorthands: user, language, and system (by order of
precedence). Version 3.9 introduces the language user level on top of the user level, as
described below. In most cases, you will use only shorthands provided by languages.

6

Please, note the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing
brace } and the spaces following are gobbled. With one-char shorthands (eg, :),
they are preserved.

2. If on a certain level (system, language, user) there is a one-char shorthand,
two-char ones starting with that char and on the same level are ignored.

{〈shorthands-list〉}\shorthandon

*{〈shorthands-list〉}\shorthandoff

It is sometimes necessary to switch a shorthand character off temporarily, because it
must be used in an entirely different way. For this purpose, the user commands
\shorthandoff and \shorthandon are provided. They each take a list of characters as
their arguments.
The command \shorthandoff sets the \catcode for each of the characters in its
argument to other (12); the command \shorthandon sets the \catcode to active (13).
Both commands only work on ‘known’ shorthand characters. If a character is not
known to be a shorthand character its category code will be left unchanged.

New 3.9 Note however, \shorthandoff does not behave as you would expect with
characters like ~ or ^, because they usually are not “other”. For them
\shorthandoff* is provided, so that with

\shorthandoff*{~^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the
superscript character. The catcodes used are those when the shorthands are defined,
usually when language files are loaded.

*{〈char〉}\useshorthands

The command \useshorthands initiates the definition of user-defined shorthand
sequences. It has one argument, the character that starts these personal shorthands.

New 3.9 However, user shorthands are not always alive, as they may be deactivated
by languages (for example, if you use " for your user shorthands and switch from
german to french, they stop working). Therefore, a starred version
\useshorthands*{〈char〉} is provided, which makes sure shorthands are always
activated.
Currently, if the option shorthands is used, you must include any character to be
activated with \useshorthands. This restriction will be lifted in a future release.

[〈language〉,〈language〉,...]{〈shorthand〉}{〈code〉}\defineshorthand

The command \defineshorthand takes two arguments: the first is a one- or
two-character shorthand sequence, and the second is the code the shorthand should
expand to.

7

New 3.9 An optional argument allows to (re)define language and system shorthands
(some languages do not activate shorthands, so you may want to add
\languageshorthands{〈lang〉} to the corresponding \extras〈lang〉). By default, user
shorthands are (re)defined.
User shorthands override language ones, which in turn override system shorthands.
Language-dependent user shorthands (new in 3.9) take precedence over “normal” user
shorthands.
As an example of their applications, let’s assume you want a unified set of shorthand
for discretionaries (languages do not define shorthands consistently, and "-, \-, "=
have different meanings). You could start with, say:

\useshorthands*{"}

\defineshorthand{"*}{\babelhyphen{soft}}

\defineshorthand{"-}{\babelhyphen{hard}}

However, behaviour of hyphens is language dependent. For example, in languages like
Polish and Portugese, a hard hyphen inside compound words are repeated at the
beginning of the next line. You could set:

\defineshorthand[*polish,*portugese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the
generic one above only applies for the rest of languages; without * they would
(re)define the language shorthands instead, which are overriden by user ones.
Now, you have a single unified shorthand ("-), with a content-based meaning
(‘compound word hyphen’) whose visual behavior is that expected in each context.

{〈original〉}{〈alias〉}\aliasshorthand

The command \aliasshorthand can be used to let another character perform the
same functions as the default shorthand character. If one prefers for example to use
the character / over " in typing Polish texts, this can be achieved by entering
\aliasshorthand{"}{/}. Please note the substitute character must not have been
declared before as shorthand (in such case, \aliashorthands is ignored).
The following example shows how to replace a shorthand by another

\aliasshorthand{~}{^}

\AtBeginDocument{\shorthandoff*{~}}

However, shorthands remember somehow the original character, and the fallback value
is that of the latter. So, in this example, if no shorthand if found, ^ expands to a
non-breaking space, because this is the value of ~ (internally, ^ calls \active@char~ or
\normal@char~). Furthermore, if you change the system value of ^ with
\defineshorthand nothing happens.

{〈language〉}\languageshorthands

The command \languageshorthands can be used to switch the shorthands on the
language level. It takes one argument, the name of a language or none (the latter does

8

what its name suggests).1 Note that for this to work the language should have been
specified as an option when loading the babel package. For example, you can use in
english the shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

Very often, this is a more convenient way to deactivate shorthands than
\shorthandoff, as for example if you want to define a macro to easy typing phonetic
characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

{〈shorthand〉}\babelshorthand

With this command you can use shorthands even if (1) not activated in shorthands

(in this case only shorthands for the current language are taken into account, ie, not
user shorthands), (2) turned off with \shorthandoff or (3) deactivated with
\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You
can conveniently define your own macros, or even you own user shorthands provided
they do not ovelap.)
For your records, here is a list of shorthands, but you must check them, as they may
change:2

Languages with no shorthands Croatian, English (any variety), Indonesian,
Hebrew, Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian,
Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian,
Danish, Dutch, Finnish, German (old and new orthography, also Austrian),
Icelandic, Italian, Norwegian, Polish, Portuguese (also Brazilian), Russian,
Serbian (with Latin script), Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ’ ~

Breton : ; ? !

Catalan " ’ ‘

Czech " -

Esperanto ^

Estonian " ~

French (all varieties) : ; ? !

Galician " . ’ ~ < >

Greek ~

Hungarian ‘

Kurmanji ^

Latin " ^ =

Slovak " ^ ’ -

Spanish " . < > ’

1Actually, any name not corresponding to a language group does the same as none. However, follow
this convention because it might be enforced in future releases of babel to catch possible errors.

2Thanks to Enrico Gregorio

9

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the
standard ~, to a non breaking space.3

1.3 Package options

New 3.9 These package options are processed before language options, so that they
are taken into account irrespective of its order.

〈char〉〈char〉... | offshorthands=

The only language shorthands activated are those given, like, eg:

\usepackage[esperanto,frenchb,shorthands=:;!?]{babel}

If ’ is included, activeacute is set; if ‘ is included, activegrave is set. Active
characters (like ~) should be preceded by \string (otherwise they will be expanded by
LATEX before they are passed to the package and therefore they will not be recognized);
however, t is provided for the common case of ~ (as well as c for the comma).
With shorthands=off no language shorthands are defined, As some languages use
this mechanism for tools not available otherwise, a macro \babelshorthand is defined,
which allows using them; see above.

none | ref | bibsafe=

Some LATEX macros are redefined so that using shorthands is safe. With safe=bib

only \nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel,
\ref and \pageref are redefined (as well as a few macros from varioref and ifthen).
With safe=none no macro is redefined. Of course, in such a case you cannot use
shorthands in these macros.

active | normalmath=

Shorthands are mainly intended for text, not for math. By setting this option with the
value normal they are deactivated in math mode (default is active) and things like
${a’}$ (a closing brace after a shorthand) are not a source of trouble any more.

〈file〉config=

Instead of loading bblopts.cfg, the file 〈file〉.cfg is loaded.

〈language〉main=

Sets the main language, as explained above, ie, this language is always the last loaded.
The language may be also given as package or global option or not.

10

〈language〉headfoot=

By default, headlines and footlines are not touched (only marks), and if they contain
language dependent macros (which is not usual) there may be unexpected results.
With this option you may set the language in heads and foots.

Global and language default config files are not loaded, so you can make sure yournoconfigs

document is not spoilt by an unexpected .cfg file. The key config still works.

Prints to the log the list of languages loaded when the format was created: numbershowlanguages

(remember dialects can share it), name, hyphenation file and exceptions file.

generic | unicode | encoded | 〈label〉 | 〈font encoding〉strings=

Selects the encoding of strings in languages supporting this feature. Predefined labels
are generic (for traditional TEX), unicode (for engines like xetex and luatex) and
encoded (for special cases requiring mixed encodings). Other allowed values are font
encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them.

(The following three options have been available in previous versions of babel.)

Tells babel not to deactivate shorthands after loading a language file, so that they areKeepShorthandsActive

also availabe in the preamble.

For some languages babel supports this options to set ’ as a shorthand in case it is notactiveacute

done by default.

Same for ‘.activegrave

1.4 The base option

With this package option babel just loads some basic macros (those in switch.def),
defines \AfterBabelLanguage and exits. It also selects the hyphenations patterns for
the last language passed as option (by its name in language.dat). There are two
main uses: classes and packages, and as a last resort in case there are, for some reason,
incompatible languages. It can be used if you just want to select the hyphenations
patterns of a single language.

{〈option-name〉}{〈code〉}\AfterBabelLanguage

This command is currently the only provided by base. Executes 〈code〉 when the file
loaded by the corresponding package option is finished (at \ldf@finish). The setting
is global. So

\AfterBabelLanguage{frenchb}{...}

3This declaration serves to nothing, but it is preserved for backward compatibility.

11

does ... at the end of frenchb.ldf. It can be used in ldf files, too, but in such a case
the code is executed only if 〈option-name〉 is the same as \CurrentOption (which
could not be the same as the option name as set in \usepackage!).
For example, consider two languages foo and bar defining the same \macro with
\newcommand. An error is raised if you attempt to load both. Here is a way to
overcome this problem:

\usepackage[base]{babel}

\AfterBabelLanguage{foo}{%

\let\macroFoo\macro

\let\macro\relax}

\usepackage[foo,bar]{babel}

1.5 Hooks

New 3.9 A hook is code to be executed at certain events. Some hooks are predefined
when luatex and xetex are used.

{〈name〉}{〈event〉}{〈code〉}\AddBabelHook

The same name can be applied to several events. Hooks may be enabled and disabled
for all defined events with \EnableBabelHook{〈name〉}, \DisableBabelHook{〈name〉}
Current events are: adddialect, write, beforeextras, afterextras, patterns,
hyphenation, defaultcommands, encodedcommands, stopcommands and
stringprocess. Four events are used in hyphen.cfg, which are handled in a quite
different way for efficiency reasons – these are everylanguage, loadkernel,
loadpatterns and loadexceptions, which, unlike the precedent ones, only have a
single hook and replace a default definition. (Names containing the string babel are
reserved; they are used, for example, by \useshortands* to add a hook for the event
afterextras.)
In some of them you can use one or two TEX parameters (#1, #2), with the meaning
given below:

everylanguage (language) Executed before patterns are loaded.
loadkernel (file) By default loads switch.def. It can be used to load a different

version of this files or to load nothing.
loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.
loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.
adddialect (language name, dialect name) Used by luababel.def to load the

patterns if not preloaded.
patterns (language name, language with encoding) Executed just after the

\language has been set. The second argument has the patterns name actually
selected (in the form of either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before
exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

12

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands.
Both xetex and luatex make sure the encoded text is read correctly.

stopcommands Used to reset the the above, if necessary.
write This event comes just after the switching commands are written to the aux file.
beforeextras Just before executing \extras〈language〉. This event and the next one

should not contain language-dependent code (for that, add it to
\extras〈language〉).

afterextras Just after executing \extras〈language〉. For example, the following
deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Intead of a parameter, you can manipulate the macro \BabelString

containing the string to be defined with \SetString. For example, to use an
expanded version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%

\protected@edef\BabelString{\BabelString}}

1.6 Hyphen tools

*{〈type〉}\babelhyphen

*{〈text〉}\babelhyphen

New 3.9 It is customary to classify hyphens in two types: (1) explicit or hard hyphens,
which in TEX are entered as -, and (2) optional or soft hyphens, which are entered as
\-. Strictly, a soft hyphen is not a hyphen, but just a breaking oportunity or, in TEX
terms, a “discretionary”; a hard hyphen is a hyphen with a breaking oportunity after
it. A further type is a non-breaking hyphen, a hyphen without a breaking oportunity.
In TEX, - and \- forbid further breaking oportunities in the word. This is the desired
behaviour very often, but not always, and therefore many languages provide
shorthands for these cases. Unfortunately, this has not been done consistently: for
example, in Dutch, Portugese, Catalan or Danish, "- is a hard hyphen, while in
German, Spanish, Norwegian, Slovak or Russian, it is a soft hyphen. Furthermore,
some of them even redefine \-, so that you cannot insert a soft hyphen without
breaking oportunities in the rest of the word.
Therefore, some macros are provide with a set of basic “hyphens” which can be used
by themselves, to define a user shorthand, or even in language files.

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning
of the next line, as done in languages like Polish, Portugese and Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if
a space follows).

• \babelhyphen{empty} inserts a break oportunity without a hyphen at all.

13

• \babelhyphen{〈text〉} is a hard “hyphen” using 〈text〉 instead. A typical case is
\babelhyphen{/}.

With all of them hyphenation in the rest of the word is enabled. If you don’t want
enabling it, there is a starred counterpart: \babelhyphen*{soft} (which in most
cases is equivalent to the original \-), \babelhyphen*{hard}, etc.
Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes
(eg, -ism), but in both cases \babelhyphen*{nobreak} is usually better.
There are also some differences with LATEX: (1) the character used is that set for the
current font, while in LATEX it is hardwired to - (a typical value); (2) the hyphen to be
used in fonts with a negative \hyphenchar is -, like in LATEX, but it can be changed to
another value by redefining \babelnullhyphen; (3) a break after the hyphen is
forbidden if preceded by a glue >0 pt (at the beginning of a word, provided it is not
immediately preceded by, say, a parenthesis).

[〈language〉,〈language〉,...]{〈exceptions〉}\babelhyphenation

New 3.9 Sets hyphenation exceptions for the languages given or, without the optional
argument, for all languages (eg, proper nouns or common loan words, and of course
monolingual documents). Language exceptions take precedence over global ones.
It can be used only in the preamble, and exceptions are set when the language is first
selected, thus taking into account changes of \lccodes’s done in \extras〈lang〉 as well
as the script specific encoding (not set in the preamble by default). Multiple
\babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encondings are the same, like in
Unicode based engines.

1.7 Language attributes

This is a user-level command, to be used in the preamble of a document (after\languageattribute

\usepackage[...]{babel}), that declares which attributes are to be used for a given
language. It takes two arguments: the first is the name of the language; the second, a
(list of) attribute(s) to be used. Attributes must be set in the preamble and only once
– they cannot be turned on and off. The command checks whether the language is
known in this document and whether the attribute(s) are known for this language.
Several language definition files use their own methods to set options. For example,
frenchb uses \frenchbsetup, magyar (1.5) uses \magyarOptions and spanish a set of
package options (eg, es-nolayout). Macros settting options are also used (eg,
\ProsodicMarksOn in latin).

1.8 Languages supported by babel

In the following table most of the languages supported by babel are listed, together
with the names of the options which you can load babel with for each language. Note

14

this list is open and the current options may be different.

Afrikaans afrikaans
Bahasa bahasa, indonesian, indon, bahasai, bahasam, malay, meyalu
Basque basque
Breton breton
Bulgarian bulgarian
Catalan catalan
Croatian croatian
Czech czech
Danish danish
Dutch dutch
English english, USenglish, american, UKenglish, british, canadian, australian,

newzealand
Esperanto esperanto
Estonian estonian
Finnish finnish
French french, francais, canadien, acadian
Galician galician
German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Icelandic icelandic
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

There are more languages not listed above, including hindi, thai, thaicjk, latvian,
turkmen, magyar, mongolian, romansh, lithuanian, spanglish, vietnamese, japanese, pinyin,

15

arabic, farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and friulan.
Most of them work out of the box, but some may require extra fonts, encoding files, a
preprocessor or even a complete framework (like CJK). For example, if your have the
velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}

\usepackage[hindi]{babel}

\begin{document}

{\dn devaanaa.m priya.h}

\end{document}

Then you preprocess it with devnag 〈file〉, which creates 〈file〉.tex; you can then
typeset the latter with LATEX.

1.9 Tips, workarounds and know issues

• If you use the document class book and you use \ref inside the argument of
\chapter (or just use \ref inside \MakeUppercase), LATEX will keep
complaining about an undefined label. To prevent such problems, you could
revert to using uppercase labels, you can use \lowercase{\ref{foo}} inside the
argument of \chapter, or, if you will not use shorthands in labels, set the safe

option to none or bib.

• Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and
babel reloads hhline to make sure : has the right one, so if you want to change the
catcode of | it has to be done using the same method at the proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1)
make | active (ltxdoc); (2) make it unactive (your settings); (3) make babel
shorthands active (babel); (4) reload hhline (babel, now with the correct catcodes
for | and :).

• Documents with several input encodings are not frequent, but sometimes are
useful. You can set different encodings for different languages as the following
example shows:

\addto\extrasfrench{\inputencoding{latin1}}

\addto\extrasrussian{\inputencoding{koi8-r}}

(A recent version of inputenc is required.)

• For the hyphenation to work correctly, lccodes cannot change, because TEX only
takes into account the values when the paragraph is hyphenated, i.e., when it has
been finished.4 So, if you write a chunk of French text with \foreinglanguage,

4This explains why LATEX assumes the lowercase mapping of T1 and does not provide a tool for
multiple mappings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for
hyphenation are frozen in the format and cannot be changed.

16

the apostrophes might not be taken into account. This is a limitation of TEX,
not of babel. Alternatively, you may use \useshorthands to activate ’ and
\defineshorthand, or redefine \textquoteright (the latter is called by the
non-ASCII right quote).

• \bibitem is out of sync with \selectlanguage in the .aux file. The reason is
\bibitem uses \immediate (and others, in fact), while \selectlanguage

doesn’t. There is no known workaround.

• Babel does not take into account \normalsfcodes and (non-)French spacing is
not always properly (un)set by languages. However, problems are unlikely to
happen and therefore this part remains untouched in version 3.9 (but it is in the
‘to do’ list).

• Using a character mathematically active (ie, with math code "8000) as a
shorthand can make TEX enter in an infinite loop. (Another issue in the ‘to do’
list, although there is a partial solution.)

• Also in the ‘to do’ list is a common interface to switch scripts, to avoid the
current problem of languages trying to define \text〈script〉 in different ways.

2 Preloading languages with language.dat

TEX and most engines based on it (pdfTEX, xetex, ε-TEX, the main exception being
luatex) require hyphenation patterns to be loaded when a format is created (eg, LATEX,
XeLATEX, pdfLATEX). babel provides a tool which has become standand in many
distributions and based on a “configuration file” named language.dat. The exact way
this file is used depends on the distribution, so please, read the documentation for the
latter (note also some distributions generate the file with some tool).
In that file the person who maintains a TEX environment has to record for which
languages he has hyphenation patterns and in which files these are stored5. When
hyphenation exceptions are stored in a separate file this can be indicated by naming
that file after the file with the hyphenation patterns.
The file can contain empty lines and comments, as well as lines which start with an
equals (=) sign. Such a line will instruct LATEX that the hyphenation patterns just
processed have to be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.

english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands

german hyphen.ger

5This is because different operating systems sometimes use very different file-naming conventions.

17

You may also set the font encoding the patterns are intended for by following the
language name by a colon and the encoding code.6 For example:

german:T1 hyphenT1.ger

german hyphen.ger

With the previous settings, if the enconding when the language is selected is T1 then
the patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note
the encoding could be set in \extras〈lang〉).
A typical error when using babel is the following:

No hyphenation patterns were preloaded for

the language ‘<lang>’ into the format.

Please, configure your TeX system to add them and

rebuild the format. Now I will use the patterns

preloaded for english instead}}

It simply means you must reconfigure language.dat, either by hand or with the tools
provided by your distribution.

3 The interface between the core of babel and the
language definition files

The language definition files (ldf) must conform to a number of conventions, because
these files have to fill in the gaps left by the common code in babel.def, i. e., the
definitions of the macros that produce texts. Also the language-switching possibility
which has been built into the babel system has its implications.
The following assumptions are made:

• Some of the language-specific definitions might be used by plain TEX users, so
the files have to be coded so that they can be read by both LATEX and plain TEX.
The current format can be checked by looking at the value of the macro
\fmtname.

• The common part of the babel system redefines a number of macros and
environments (defined previously in the document style) to put in the names of
macros that replace the previously hard-wired texts. These macros have to be
defined in the language definition files.

• The language definition files must define five macros, used to activate and
deactivate the language-specific definitions. These macros are
\〈lang〉hyphenmins, \captions〈lang〉, \date〈lang〉, \extras〈lang〉 and
\noextras〈lang〉(the last two may be left empty); where 〈lang〉 is either the
name of the language definition file or the name of the LATEX option that is to be
used. These macros and their functions are discussed below. You must define all
or none for a language (or a dialect); defining, say, \date〈lang〉 but not
\captions〈lang〉 does not raise an error but can lead to unexpected results.

6This in not a new feature, but in former versions it didn’t work correctly.

18

• When a language definition file is loaded, it can define \l@〈lang〉 to be a dialect
of \language0 when \l@〈lang〉 is undefined.

• Language names must be all lowercase. If an unknow language is selected, babel
will attempt setting it after lowercasing its name.

Some recommendations:

• The preferred shorthand is ", which is not used in LATEX (quotes are entered as
‘‘ and ’’). Other good choices are characters which are not used in a certain
context (eg, = in an ancient language). Note however =, <, >, : and the like can
be dangerous, because they may be used as part of the syntax of some elements
(numeric expressions, key/value pairs, etc.).

• Captions should not contain shorthands or encoding dependent commands (the
latter is not always possible, but should be clearly documented). They should be
defined using the LICR. You may also use the new tools for encoded strings,
described below.

• Avoid adding things to \noextras〈lang〉 except for umlauthigh and friends,
\bbl@deactivate, \bbl@(non)frenchspacing, and language specific macros.
Use always, if possible, \bbl@save and \bbl@savevariable (except if you still
want to have access to the previous value).

There are no special requirements for documenting your language files. Now they are
not included in the base babel manual, so provide a standalone document suited for
your needs (and the corresponding PDF, if you like), as well as other files you think
can be useful (eg, samples, readme).

3.1 Basic macros

In the core of the babel system, several macros are defined for use in language
definition files. Their purpose is to make a new language known. The first two are
related to hyphenation patterns.
The macro \addlanguage is a non-outer version of the macro \newlanguage, defined\addlanguage

in plain.tex version 3.x. For older versions of plain.tex and lplain.tex a
substitute definition is used. Here “language” is used in the TEX sense of set of
hyphenation patterns.
The macro \adddialect can be used when two languages can (or must) use the same\adddialect

hyphenation patterns. This can also be useful for languages for which no patterns are
preloaded in the format. In such cases the default behaviour of the babel system is to
define this language as a ‘dialect’ of the language for which the patterns were loaded as
\language0. Here “language” is used in the TEX sense of set of hyphenation patterns.
The macro \〈lang〉hyphenmins is used to store the values of the \lefthyphenmin and\<lang>hyphenmins

\righthyphenmin. Redefine this macro to set your own values, with two numbers
corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

19

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang> has no
effect.)
The macro \providehyphenmins should be used in the language definition files to set\providehyphenmins

\lefthyphenmin and \righthyphenmin. This macro will check whether these
parameters were provided by the hyphenation file before it takes any action. If these
values have been already set, this command is ignored (currenty, default pattern files
do not set them).
The macro \captions〈lang〉 defines the macros that hold the texts to replace the\captions<lang>

original hard-wired texts.
The macro \date〈lang〉 defines \today.\date<lang>

The macro \extras〈lang〉 contains all the extra definitions needed for a specific\extras<lang>

language. This macro, like the following, is a hook – you can add thing to it, but it
must not be used directly.
Because we want to let the user switch between languages, but we do not know what\noextras<lang>

state TEX might be in after the execution of \extras〈lang〉, a macro that brings TEX
into a predefined state is needed. It will be no surprise that the name of this macro is
\noextras〈lang〉.
This is a command to be used in the language definition files for declaring a language\bbl@declare@ttribute

attribute. It takes three arguments: the name of the language, the attribute to be
defined, and the code to be executed when the attribute is to be used.
To postpone the activation of the definitions needed for a language until the beginning\main@language

of a document, all language definition files should use \main@language instead of
\selectlanguage. This will just store the name of the language, and the proper
language will be activated at the start of the document.
The macro \ProvidesLanguage should be used to identify the language definition\ProvidesLanguage

files. Its syntax is similar to the syntax of the LATEX command \ProvidesPackage.
The macro \LdfInit performs a couple of standard checks that must be made at the\LdfInit

beginning of a language definition file, such as checking the category code of the
@-sign, preventing the .ldf file from being processed twice, etc.
The macro \ldf@quit does work needed if a .ldf file was processed earlier. This\ldf@quit

includes resetting the category code of the @-sign, preparing the language to be
activated at \begin{document} time, and ending the input stream.
The macro \ldf@finish does work needed at the end of each .ldf file. This includes\ldf@finish

resetting the category code of the @-sign, loading a local configuration file, and
preparing the language to be activated at \begin{document} time.
After processing a language definition file, LATEX can be instructed to load a local\loadlocalcfg

configuration file. This file can, for instance, be used to add strings to
\captions〈lang〉 to support local document classes. The user will be informed that
this configuration file has been loaded. This macro is called by \ldf@finish.
(Deprecated.) This command takes three arguments, a font encoding and two font\substitutefontfamily

family names. It creates a font description file for the first font in the given encoding.
This .fd file will instruct LATEX to use a font from the second family when a font from
the first family in the given encoding seems to be needed.

20

3.2 Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an attribute.

\ProvidesLanguage{<language>}

[0000/00/00 v0.0 <Language> support from the babel system]

\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>

\@nopatterns{<Language>}

\adddialect\l@<language>0

\fi

\adddialect\l@<dialect>\l@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%

\expandafter\addto\expandafter\extras<language>

\expandafter{\extras<attrib><language>}%

\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\thr@@}

\def\captions<language>{}

\let\captions<dialect>\captions<language>

\def\date<language>{}

\def\date<dialect>{}

\addto\extras<language>{}

\addto\noextras<language>{}

\let\extras<dialect>\extras<language>

\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

3.3 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.
The internal macro \initiate@active@char is used in language definition files to\initiate@active@char

instruct LATEX to give a character the category code ‘active’. When a character has
been made active it will remain that way until the end of the document. Its definition
may vary.
The command \bbl@activate is used to change the way an active character expands.\bbl@activate

\bbl@deactivate \bbl@activate ‘switches on’ the active behaviour of the character. \bbl@deactivate
lets the active character expand to its former (mostly) non-active self.
The macro \declare@shorthand is used to define the various shorthands. It takes\declare@shorthand

three arguments: the name for the collection of shorthands this definition belongs to;

21

the character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be
executed when the shorthand is encountered. (It does not raise an error if the
shorthand character has not been “initiated”.)
The TEXbook states: “Plain TEX includes a macro called \dospecials that is\bbl@add@special

\bbl@remove@special essentially a set macro, representing the set of all characters that have a special
category code.” [1, p. 380] It is used to set text ‘verbatim’. To make this work if more
characters get a special category code, you have to add this character to the macro
\dospecial. LATEX adds another macro called \@sanitize representing the same
character set, but without the curly braces. The macros \bbl@add@special〈char〉 and
\bbl@remove@special〈char〉 add and remove the character 〈char〉 to these two sets.

3.4 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefor a
mechanism for saving (and restoring) the original definition of those macros is
provided. We provide two macros for this7.
To save the current meaning of any control sequence, the macro \babel@save is\babel@save

provided. It takes one argument, 〈csname〉, the control sequence for which the
meaning has to be saved.
A second macro is provided to save the current value of a variable. In this context,\babel@savevariable

anything that is allowed after the \the primitive is considered to be a variable. The
macro takes one argument, the 〈variable〉.
The effect of the preceding macros is to append a piece of code to the current
definition of \originalTeX. When \originalTeX is expanded, this code restores the
previous definition of the control sequence or the previous value of the variable.

3.5 Support for extending macros

The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the\addto

definition of a macro. The macro need not be defined (ie, it can be undefined or
\relax). This macro can, for instance, be used in adding instructions to a macro like
\extrasenglish.
Be careful when using this macro, because depending on the case the assignment could
be either global (usually) or local (sometimes). That does not seems very consistent,
but this behaviour is preserved for backward compatibility. If you are using etoolbox,
by Philipp Lehman, consider using the tools provided by this package instead of
\addto.

3.6 Macros common to a number of languages

In several languages compound words are used. This means that when TEX has to\bbl@allowhyphens

hyphenate such a compound word, it only does so at the ‘-’ that is used in such words.
To allow hyphenation in the rest of such a compound word, the macro
\bbl@allowhyphens can be used.
Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended\allowhyphens

7This mechanism was introduced by Bernd Raichle.

22

mainly for characters provided as real glyphs by this encoding but constructed with
\accent in OT1.
Note the previous command (\bbl@allowhyphens) has different applications (hyphens
and discretionaries) than this one (composite chars). Note also prior to version 3.7,
\allowhyphens had the behaviour of \bbl@allowhyphens.
For some languages, quotes need to be lowered to the baseline. For this purpose the\set@low@box

macro \set@low@box is available. It takes one argument and puts that argument in an
\hbox, at the baseline. The result is available in \box0 for further processing.
Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro\save@sf@q

\save@sf@q is available. It takes one argument, saves the current spacefactor, executes
the argument, and restores the spacefactor.
The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to\bbl@frenchspacing

\bbl@nonfrenchspacing properly switch French spacing on and off.

3.7 Encoding-dependent strings

New 3.9 Babel 3.9 provides a way of defining strings in several encodings, intended
mainly for luatex and xetex. This is the only new feature requiring changes in language
files if you want to make use of it.
Furthermore, it must be activated explicitly, with the package option strings. If there
is no strings, these blocks are ignored, except \SetCases (and except if forced with
\UseStrings, see below). In other words, the old way of defining/switching strings
still works and it’s used by default.
It consist is a series of blocks started with \StartBabelCommands. The last block is
closed with \EndBabelCommands. Each block is a single group (ie, local declarations
apply until the next \StartBabelCommands or \EndBabelCommands). An ldf may
contain several series of this kind.
Thanks to this new feature, string values and string language switching are not mixed
any more. No need of \addto. If the language is german, just redefine
\germanchaptername.

{〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The 〈language-list〉 specifies which languages the block is intended for. A block is
taken into account only if the \CurrentOption is listed here.
A “selector” is a name to be used as value in package option strings, optionally
followed by extra info about the encodings to be used. The name unicode must be
used for xetex and luatex (the key strings has also other two special values: generic
and encoded).
If a string is set several times (because several blocks are read), the first one take
precedence (ie, it works much like \providecommand).
Encoding info is charset= followed by a charset, which if given sets how the strings
should be traslated to the internal representation used by the engine, typically utf8,
which is the only value supported currently (default is no traslations).
A list of font encodings which the strings are expected to work with can be given after
fontenc= (separated with spaces, if two or more) – recommended, but not mandatory,

23

although blocks without this key are not taken into account if you have requested
strings=encoded.
Blocks without a selector are read always if the key strings has been used. They
provide fallback values, and therefore must be the last blocks; they should be provided
always if possible and all strings should be defined somehow inside it; they can be the
only blocks (mainly LGC scripts using the LICR). Blocks without a selector can be
activated explicitly with strings=generic (no block is taken into account except
those). With strings=encoded, strings in those blocks are set as default (internally,
?). If there is no key strings, string definitions are ignored, but \SetCases are still
honoured (an a encoded way).
The 〈category〉 is either captions, date or extras. You must stick to these three
categories, even if no error is raised when using other name.8 It may be empty, too,
but in such a case using \SetString is an error (but not \SetCase).

\StartBabelCommands\CurrentOption{captions}

[unicode, fontenc=EU1 EU2, charset=utf8]

\SetString{\chaptername}{utf8-string}

\StartBabelCommands\CurrentOption{captions}

\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands

A real example is:

\StartBabelCommands{austrian}{date}

[unicode, fontenc=EU1 EU2, charset=utf8]

\SetString\monthiname{Jänner}

\StartBabelCommands{german,austrian}{date}

[unicode, fontenc=EU1 EU2, charset=utf8]

\SetString\monthiiiname{März}

\StartBabelCommands{austrian}{date}

\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}

\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}

\SetString\monthiiname{Februar}

\SetString\monthiiiname{M\"{a}rz}

\SetString\monthivname{April}

\SetString\monthvname{Mai}

\SetString\monthviname{Juni}

\SetString\monthviiname{Juli}

\SetString\monthviiiname{August}

\SetString\monthixname{September}

8In future releases further categories may be added.

24

\SetString\monthxname{Oktober}

\SetString\monthxiname{November}

\SetString\monthxiiname{Dezenber}

\SetString\today{\number\day.~%

\csname month\romannumeral\month name\endcsname\space

\number\year}

\StartBabelCommands{german,austrian}{captions}

\SetString\prefacename{Vorwort}

[etc.]

\EndBabelCommands

When used in ldf files, previous values of \〈category〉〈language〉 are overriden, which
means the old way to define strings still works and used by default (to be precise, is
first set to undefined and then strings are added). However, when used in the
preamble or in a package, new settings are added to the previous ones, if the language
exists (in the babel sense, ie, if \date〈language〉 exists).

Marks the end of the series of blocks.\EndBabelCommands

You may also want to omit the old way of defining define strings altogether. Just add\UseStrings

\UseStrings after the first \StartBabelCommands and the generic branchs will be
taken into account even if there is no strings key. This directive applies to all
subsequent blocks, until \EndBabelCommands.

{〈macro-name〉}{〈string〉}\SetString

Adds 〈macro-name〉 to the current category, and defines globally 〈lang-macro-name〉
to 〈code〉 (after applying the transformation corresponding to the current charset or
defined with the hook stringprocess).
Use this command to define strings, without including any “logic” if possible, which
should be a separated macro. See the example above for the date.

{〈macro-name〉}{〈string-list〉}\SetStringLoop

A convenient way to define several ordered names at once. For example, to define
\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}

\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

[〈map-list〉]{〈toupper-code〉}{〈tolower-code〉}\SetCase

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The code
would be typically things like \let\BB\bb and \uccode or \lccode (although for the
reasons explained above, changes in lc/uc codes may not work). A 〈map-list〉 is a

25

series of macros using the internal format of \@uclclist (eg, \bb\BB\cc\CC). The
mandatory arguments take precedence over the optional one. This command, unlike
\SetString, is executed always (even without strings), and it is intented for minor
readjustments only.
For example, as T1 is the default case mapping in LATEX, we could set for Turkish:

\StartBabelCommands{turkish}{}[ot1enc, fontenc=OT1]

\SetCase

{\uccode"10=‘I\relax}

{\lccode‘I="10\relax}

\StartBabelCommands{turkish}{}[unicode, fontenc=EU1 EU2, charset=utf8]

\SetCase

{\uccode‘i=‘İ\relax

\uccode‘ı=‘I\relax}

{\lccode‘İ=‘i\relax

\lccode‘I=‘ı\relax}

\StartBabelCommands{turkish}{}

\SetCase

{\uccode‘i="9D\relax

\uccode"19=‘I\relax}

{\lccode"9D=‘i\relax

\lccode‘I="19\relax}

\EndBabelCommands

(Note the mapping for OT1 is not complete.)

4 Compatibility and changes

4.1 Compatibility with german.sty

The file german.sty has been one of the sources of inspiration for the babel system.
Because of this I wanted to include german.sty in the babel system. To be able to do
that I had to allow for one incompatibility: in the definition of the macro
\selectlanguage in german.sty the argument is used as the 〈number〉 for an
\ifcase. So in this case a call to \selectlanguage might look like
\selectlanguage{\german}.
In the definition of the macro \selectlanguage in babel.def the argument is used as
a part of other macronames, so a call to \selectlanguage now looks like
\selectlanguage{german}. Notice the absence of the escape character. As of
version 3.1a of babel both syntaxes are allowed.
All other features of the original german.sty have been copied into a new file, called
germanb.sty9.

9The ‘b’ is added to the name to distinguish the file from Partls’ file.

26

Although the babel system was developed to be used with LATEX, some of the features
implemented in the language definition files might be needed by plain TEX users. Care
has been taken that all files in the system can be processed by plain TEX.

4.2 Compatibility with ngerman.sty

When used with the options ngerman or naustrian, babel will provide all features of the
package ngerman. There is however one exception: The commands for special
hyphenation of double consonants ("ff etc.) and ck ("ck), which are no longer
required with the new German orthography, are undefined. With the ngerman

package, however, these commands will generate appropriate warning messages only.

4.3 Compatibility with the french package

It has been reported to me that the package french by Bernard Gaulle
(gaulle@idris.fr) works together with babel. On the other hand, it seems not to
work well together with a lot of other packages. Therefore I have decided to no longer
load french.ldf by default. Instead, when you want to use the package by Bernard
Gaulle, you will have to request it specifically, by passing either frenchle or frenchpro as
an option to babel.

4.4 Changes in babel version 3.9

Most of changes in version 3.9 are related to bugs, either to fix them (there were lots),
or to provide some alternatives. Even new features like \babelhyphen are intended to
solve a certain problem (in this case, the lacking of a uniform syntax and behaviour for
shorthands across languages). These changes are described in this manual in the
correspondin place.

4.5 Changes in babel version 3.7

In babel version 3.7 a number of bugs that were found in version 3.6 are fixed. Also a
number of changes and additions have occurred:

• Shorthands are expandable again. The disadvantage is that one has to type ’{}a

when the acute accent is used as a shorthand character. The advantage is that a
number of other problems (such as the breaking of ligatures, etc.) have vanished.

• Two new commands, \shorthandon and \shorthandoff have been introduced
to enable to temporarily switch off one or more shorthands.

• Support for typesetting Greek has been enhanced. Code from the kdgreek

package (suggested by the author) was added and \greeknumeral has been
added.

• Support for typesetting Basque is now available thanks to Juan Aguirregabiria.

27

• Support for typesetting Serbian with Latin script is now available thanks to
Dejan Muhamedagić and Jankovic Slobodan.

• Support for typesetting Hebrew (and potential support for typesetting other
right-to-left written languages) is now available thanks to Rama Porrat and
Boris Lavva.

• Support for typesetting Bulgarian is now available thanks to Georgi Boshnakov.

• Support for typesetting Latin is now available, thanks to Claudio Beccari and
Krzysztof Konrad Żelechowski.

• Support for typesetting North Sami is now available, thanks to Regnor
Jernsletten.

• The options canadian, canadien and acadien have been added for Canadian
English and French use.

• A language attribute has been added to the \mark... commands in order to
make sure that a Greek header line comes out right on the last page before a
language switch.

• Hyphenation pattern files are now read inside a group; therefore any changes a
pattern file needs to make to lowercase codes, uppercase codes, and category
codes are kept local to that group. If they are needed for the language, these
changes will need to be repeated and stored in \extras...

• The concept of language attributes is introduced. It is intended to give the user
some control over the features a language-definition file provides. Its first use is
for the Greek language, where the user can choose the πoλυτoνκó (“Polutoniko”
or multi-accented) Greek way of typesetting texts. These attributes will possibly
find wider use in future releases.

• The environment hyphenrules is introduced.

• The syntax of the file language.dat has been extended to allow (optionally)
specifying the font encoding to be used while processing the patterns file.

• The command \providehyphenmins should now be used in language definition
files in order to be able to keep any settings provided by the pattern file.

4.6 Changes in babel version 3.6

In babel version 3.6 a number of bugs that were found in version 3.5 are fixed. Also a
number of changes and additions have occurred:

• A new environment otherlanguage* is introduced. it only switches the ‘specials’,
but leaves the ‘captions’ untouched.

28

• The shorthands are no longer fully expandable. Some problems could only be
solved by peeking at the token following an active character. The advantage is
that ’{}a works as expected for languages that have the ’ active.

• Support for typesetting french texts is much enhanced; the file francais.ldf is
now replaced by frenchb.ldf which is maintained by Daniel Flipo.

• Support for typesetting the russian language is again available. The language
definition file was originally developed by Olga Lapko from CyrTUG. The fonts
needed to typeset the russian language are now part of the babel distribution.
The support is not yet up to the level which is needed according to Olga, but
this is a start.

• Support for typesetting greek texts is now also available. What is offered in this
release is a first attempt; it will be enhanced later on by Yannis Haralambous.

• in babel 3.6j some hooks have been added for the development of support for
Hebrew typesetting.

• Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in South
Africa) has been added to dutch.ldf.

• Support for typesetting Welsh texts is now available.

• A new command \aliasshorthand is introduced. It seems that in Poland
various conventions are used to type the necessary Polish letters. It is now
possible to use the character / as a shorthand character instead of the
character ", by issuing the command \aliasshorthand{"}{/}.

• The shorthand mechanism now deals correctly with characters that are already
active.

• Shorthand characters are made active at \begin{document}, not earlier. This is
to prevent problems with other packages.

• A preambleonly command \substitutefontfamily has been added to create
.fd files on the fly when the font families of the Latin text differ from the
families used for the Cyrillic or Greek parts of the text.

• Three new commands \LdfInit, \ldf@quit and \ldf@finish are introduced
that perform a number of standard tasks.

• In babel 3.6k the language Ukrainian has been added and the support for
Russian typesetting has been adapted to the package ’cyrillic’ to be released with
the December 1998 release of LATEX 2ε.

29

4.7 Changes in babel version 3.5

In babel version 3.5 a lot of changes have been made when compared with the previous
release. Here is a list of the most important ones:

• the selection of the language is delayed until \begin{document}, which means
you must add appropriate \selectlanguage commands if you include
\hyphenation lists in the preamble of your document.

• babel now has a language environment and a new command \foreignlanguage;

• the way active characters are dealt with is completely changed. They are called
‘shorthands’; one can have three levels of shorthands: on the user level, the
language level, and on ‘system level’. A consequence of the new way of handling
active characters is that they are now written to auxiliary files ‘verbatim’;

• A language change now also writes information in the .aux file, as the change
might also affect typesetting the table of contents. The consequence is that an
.aux file generated by a LaTeX format with babel preloaded gives errors when
read with a LaTeX format without babel; but I think this probably doesn’t
occur;

• babel is now compatible with the inputenc and fontenc packages;

• the language definition files now have a new extension, ldf;

• the syntax of the file language.dat is extended to be compatible with the
french package by Bernard Gaulle;

• each language definition file looks for a configuration file which has the same
name, but the extension .cfg. It can contain any valid LATEX code.

5 Identification and loading of required files

Code documentation is still under revision.
The file babel.sty10 is meant for LATEX 2ε, therefor we make sure that the format file
used is the right one.

\ProvidesLanguage The identification code for each file is something that was introduced in LATEX 2ε.
When the command \ProvidesFile does not exist, a dummy definition is provided
temporarily. For use in the language definition file the command \ProvidesLanguage

is defined by babel.

1 〈∗kernel〉
2 \def\bbl@version{3.9f}

3 \def\bbl@date{2013/05/16}

4 〈/kernel〉
10The file described in this section is called babel.dtx, has version number v3.9f and was last revised

on 2013/05/16.

30

5 〈∗patterns〉
6 \xdef\bbl@format{\jobname}

7 〈/patterns〉
8 〈∗core | kernel | patterns〉
9 \ifx\ProvidesFile\@undefined

10 \def\ProvidesFile#1[#2 #3 #4]{%

11 \wlog{File: #1 #4 #3 <#2>}%

12 \let\ProvidesFile\@undefined

13 }

14 〈/core | kernel | patterns〉
As an alternative for \ProvidesFile we define \ProvidesLanguage here to be used in
the language definition files.

15 〈∗kernel〉
16 \def\ProvidesLanguage#1[#2 #3 #4]{%

17 \wlog{Language: #1 #4 #3 <#2>}%

18 }

19 \else

When \ProvidesFile is defined we give \ProvidesLanguage a similar definition.

20 \def\ProvidesLanguage#1{%

21 \begingroup

22 \catcode‘\ 10 %

23 \@makeother\/%

24 \@ifnextchar[%]

25 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}

26 \def\@provideslanguage#1[#2]{%

27 \wlog{Language: #1 #2}%

28 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%

29 \endgroup}

30 〈/kernel〉
31 〈∗core | kernel | patterns〉
32 \fi

33 〈/core | kernel | patterns〉

Identify each file that is produced from this source file.

34 〈package〉\ProvidesPackage{babel}
35 〈core〉\ProvidesFile{babel.def}
36 〈patterns〉\ProvidesFile{hyphen.cfg}
37 〈kernel〉\ProvidesFile{switch.def}
38 〈nil〉\ProvidesLanguage{nil}
39 〈driver&!user〉\ProvidesFile{babel.drv}
40 〈driver & user〉\ProvidesFile{user.drv}
41 [2013/05/16 v3.9f %

42 〈package〉 The Babel package]

43 〈core〉 Babel common definitions]

44 〈kernel | patterns〉 Babel language switching mechanism]

45 〈nil〉 Nil language]

46 〈driver〉]

31

Now we make sure all required files are loaded. When the command
\AtBeginDocument doesn’t exist we assume that we are dealing with a plain-based
format or LATEX2.09. In that case the file plain.def is needed (which also defines
\AtBeginDocument, and therefore it is not loaded twice). We need the first part when
the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the
second part, so \orig@dump is not defined (plain.def undefines it).

47 〈∗core | kernel | patterns〉
48 \ifx\AtBeginDocument\@undefined

49 〈/core | kernel | patterns〉
50 〈∗patterns〉
51 \let\orig@dump\dump

52 〈/patterns〉
53 〈∗core | kernel | patterns〉
54 \input plain.def\relax

55 \fi

56 〈/core | kernel | patterns〉

Check if the current version of switch.def has been previously loaded (mainly,
hyphen.cfg). If not, load it now. We cannot load babel.def here because we first
need to declare and process the package options.

57 〈∗package〉
58 \@ifpackagewith{babel}{debug}

59 {\let\bbl@tempa\relax}

60 {\def\bbl@tempa{3.9f}}%

61 〈/package〉
62 〈∗core〉
63 \def\bbl@tempa{3.9f}

64 〈/core〉
65 〈∗core | package〉
66 \ifx\bbl@version\bbl@tempa\else

67 \input switch.def\relax

68 \fi

The following macros just make the code cleaner. \bbl@add is now used internally
instead of \addto because of the unpredictable behaviour of the latter. (There are
some duplications, but, you know, I [JBL] never rememer where the code ends up
when intermingled with docstrip.)

69 \def\bbl@for#1#2#3{\@for#1:=#2\do{\ifx#1\@empty\else#3\fi}}

70 \def\bbl@add#1#2{%

71 \@ifundefined{\expandafter\@gobble\string#1}%

72 {\def#1{#2}}%

73 {\expandafter\def\expandafter#1\expandafter{#1#2}}}

74 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%

75 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}

76 \long\def\bbl@afterfi#1\fi{\fi#1}

77 〈/core | package〉

32

6 The Package File

In order to make use of the features of LATEX 2ε, the babel system contains a package
file, babel.sty. This file is loaded by the \usepackage command and defines all the
language options whose name is different from that of the .ldf file (like variant
spellings). It also takes care of a number of compatibility issues with other packages
an defines a few aditional package options.
Apart from all the language options below we also have a few options that influence
the behaviour of language definition files.
Many of the following options don’t do anything themselves, they are just defined in
order to make it possible for babel and language definition files to check if one of them
was specified by the user.

6.1 base

The first option to be processed is base, which set the hyphenation patterns then
resets ver@babel.sty so that LaTeX forgets about the first loading. After
switch.def has been loaded (above) and \AfterBabelLanguage defined, exits.

78 〈∗package〉
79 \def\AfterBabelLanguage#1{%

80 \global\expandafter\bbl@add\csname#1.ldf-h@@k\endcsname}%

81 \@ifpackagewith{babel}{base}{%

82 \DeclareOption*{\bbl@patterns{\CurrentOption}}%

83 \DeclareOption{base}{}%

84 \ProcessOptions

85 \global\expandafter\let\csname opt@babel.sty\endcsname\relax

86 \global\expandafter\let\csname ver@babel.sty\endcsname\relax

87 \global\let\@ifl@ter@@\@ifl@ter

88 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%

89 \endinput}{}%

6.2 key=value options and other general option

The following macros extract language modifiers, and only real package options are
kept in the option list. Modifiers are saved and assigned to \BabelModifiers at
\bbl@load@language; when no modifiers have been given, the former is \relax. How
modifiers are handled are left to language styles; they can use \in@, loop them with
\@for o load keyval).

90 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname

91 \def\bbl@tempb#1.#2{%

92 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%

93 \def\bbl@tempd#1.#2\@nnil{%

94 \ifx\@empty#2%

95 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

96 \else

97 \in@{=}{#1}\ifin@

98 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%

33

99 \else

100 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

101 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%

102 \fi

103 \fi}

104 \let\bbl@tempc\@empty

105 \bbl@for\bbl@tempa\bbl@tempa{%

106 \expandafter\bbl@tempd\bbl@tempa.\@empty\@nnil}

107 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

108 \DeclareOption{activeacute}{}

109 \DeclareOption{activegrave}{}

The next option tells babel to leave shorthand characters active at the end of
processing the package. This is not the default as it can cause problems with other
packages, but for those who want to use the shorthand characters in the preamble of
their documents this can help.

110 \DeclareOption{KeepShorthandsActive}{}

111 \DeclareOption{debug}{}

112 \DeclareOption{noconfigs}{}

113 \DeclareOption{showlanguages}{}

114 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}

115 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}

116 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}

117 \DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}

118 \DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}

119 \DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}

120 \DeclareOption{math=active}{}

121 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}

122 \def\BabelStringsDefault{generic}

Handling of package options is done in three passes. (I [JBL] am not very happy with
the idea, anyway.) The first one processes options which has been declared above or
follow the syntax <key>=<value>, the second one loads the requested languages,
except the main one if set with the key main, and the third one loads the latter. First,
we “flag” valid keys with a nil value.

123 \let\bbl@opt@shorthands\@nnil

124 \let\bbl@opt@config\@nnil

125 \let\bbl@opt@main\@nnil

126 \let\bbl@opt@strings\@nnil

127 \let\bbl@opt@headfoot\@nnil

The following tool is defined temporarily to store the values of options.

128 \def\bbl@tempa#1=#2\bbl@tempa{%

129 \expandafter\ifx\csname bbl@opt@#1\endcsname\@nnil

130 \expandafter\edef\csname bbl@opt@#1\endcsname{#2}%

131 \else

132 \bbl@error{%

133 Bad option ‘#1=#2’. Either you have misspelled the\\%

134 key or there is a previous setting of ‘#1’}{%

34

135 Valid keys are ‘shorthands’, ‘config’, ‘strings’, ‘main’,\\%

136 ‘headfoot’, ‘safe’, ‘math’}

137 \fi}

Now the option list is processed, taking into account only currently declared options
(including those declared with a =), and <key>=<value> options (the former take
precedence). Unrecognized options are saved in \bbl@language@opts, because they
are language options.

138 \let\bbl@language@opts\@empty

139 \DeclareOption*{%

140 \@expandtwoargs\in@{\string=}{\CurrentOption}%

141 \ifin@

142 \expandafter\bbl@tempa\CurrentOption\bbl@tempa

143 \else

144 \edef\bbl@language@opts{%

145 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi

146 \CurrentOption}%

147 \fi}

Now we finish the first pass (and start over).

148 \ProcessOptions*

6.3 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babel macros are left untouched, but
if there is, these macros are wrapped (in babel.def) to define only those given.
A bit of optimization: if there is no shorthands=, then \bbl@ifshorthands is always
true, and it is always false if shorthands is empty. Also, some code makes sense only
with shorthands=....

149 \def\bbl@sh@string#1{%

150 \ifx#1\@empty\else

151 \ifx#1t\string~%

152 \else\ifx#1c\string,%

153 \else\string#1%

154 \fi\fi

155 \expandafter\bbl@sh@string

156 \fi}

157 \ifx\bbl@opt@shorthands\@nnil

158 \def\bbl@ifshorthand#1#2#3{#2}%

159 \else\ifx\bbl@opt@shorthands\@empty

160 \def\bbl@ifshorthand#1#2#3{#3}%

161 \else

The following macro tests if a shortand is one of the allowed ones.

162 \def\bbl@ifshorthand#1{%

163 \@expandtwoargs\in@{\string#1}{\bbl@opt@shorthands}%

164 \ifin@

165 \expandafter\@firstoftwo

166 \else

167 \expandafter\@secondoftwo

35

168 \fi}

We make sure all chars in the string are ‘other’, with the help of an auxiliary macro
defined above (which also zaps spaces).

169 \edef\bbl@opt@shorthands{%

170 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%

The following is ignored with shorthands=off, since it is intended to take some
aditional actions for certain chars.

171 \bbl@ifshorthand{’}%

172 {\PassOptionsToPackage{activeacute}{babel}}{}

173 \bbl@ifshorthand{‘}%

174 {\PassOptionsToPackage{activegrave}{babel}}{}

175 \fi\fi

With headfoot=lang we can set the language used in heads/foots. For example, in
babel/3796 just adds headfoot=english. It misuses \@resetactivechars but seems
to work.

176 \ifx\bbl@opt@headfoot\@nnil\else

177 \g@addto@macro\@resetactivechars{%

178 \set@typeset@protect

179 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%

180 \let\protect\noexpand}

181 \fi

For the option safe we use a different approach – \bbl@opt@safe says which macros
are redefined (B for bibs and R for refs). By default, both are set.

182 \@ifundefined{bbl@opt@safe}{\def\bbl@opt@safe{BR}}{}

183 \ifx\bbl@opt@main\@nnil\else

184 \edef\bbl@language@opts{%

185 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi

186 \bbl@opt@main}

187 \fi

If the format created a list of loaded languages (in \bbl@languages), get the name of
the 0-th to show the actual language used.

188 \ifx\bbl@languages\@undefined\else

189 \begingroup

190 \catcode‘\^^I=12

191 \@ifpackagewith{babel}{showlanguages}{%

192 \begingroup

193 \def\bbl@elt#1#2#3#4{\wlog{#2^^I#1^^I#3^^I#4}}%

194 \wlog{<*languages>}%

195 \bbl@languages

196 \wlog{</languages>}%

197 \endgroup}{}

198 \endgroup

199 \def\bbl@elt#1#2#3#4{%

200 \ifnum#2=\z@

201 \gdef\bbl@nulllanguage{#1}%

202 \def\bbl@elt##1##2##3##4{}%

36

203 \fi}%

204 \bbl@languages

205 \fi

6.4 Language options

Languages are loaded when processing the corresponding option except if a main

language has been set. In such a case, it is not loaded until all options has been
processed. The following macro inputs the ldf file and does some additional checks
(\input works, too, but possible errors are not catched).

206 \let\bbl@afterlang\relax

207 \let\BabelModifiers\relax

208 \let\bbl@loaded\@empty

209 \def\bbl@load@language#1{%

210 \InputIfFileExists{#1.ldf}%

211 {\edef\bbl@loaded{\CurrentOption

212 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%

213 \expandafter\let\expandafter\bbl@afterlang

214 \csname\CurrentOption.ldf-h@@k\endcsname

215 \expandafter\let\expandafter\BabelModifiers

216 \csname bbl@mod@\CurrentOption\endcsname}%

217 {\bbl@error{%

218 Unknow option ‘\CurrentOption’. Either you misspelled it\\%

219 or the language definition file \CurrentOption.ldf was not found}{%

220 Valid options are: shorthands=..., KeepShorthandsActive,\\%

221 activeacute, activegrave, noconfigs, safe=, main=, math=\\%

222 headfoot=, strings=, config=, or a language name.}}}

Now, we set language options whose names are different from ldf files.

223 \DeclareOption{acadian}{\bbl@load@language{frenchb}}

224 \DeclareOption{afrikaans}{\bbl@load@language{dutch}}

225 \DeclareOption{american}{\bbl@load@language{english}}

226 \DeclareOption{australian}{\bbl@load@language{english}}

227 \DeclareOption{austrian}{\bbl@load@language{germanb}}

228 \DeclareOption{bahasa}{\bbl@load@language{bahasai}}

229 \DeclareOption{bahasai}{\bbl@load@language{bahasai}}

230 \DeclareOption{bahasam}{\bbl@load@language{bahasam}}

231 \DeclareOption{brazil}{\bbl@load@language{portuges}}

232 \DeclareOption{brazilian}{\bbl@load@language{portuges}}

233 \DeclareOption{british}{\bbl@load@language{english}}

234 \DeclareOption{canadian}{\bbl@load@language{english}}

235 \DeclareOption{canadien}{\bbl@load@language{frenchb}}

236 \DeclareOption{francais}{\bbl@load@language{frenchb}}

237 \DeclareOption{french}{\bbl@load@language{frenchb}}%

238 \DeclareOption{german}{\bbl@load@language{germanb}}

239 \DeclareOption{hebrew}{%

240 \input{rlbabel.def}%

241 \bbl@load@language{hebrew}}

242 \DeclareOption{hungarian}{\bbl@load@language{magyar}}

37

243 \DeclareOption{indon}{\bbl@load@language{bahasai}}

244 \DeclareOption{indonesian}{\bbl@load@language{bahasai}}

245 \DeclareOption{lowersorbian}{\bbl@load@language{lsorbian}}

246 \DeclareOption{malay}{\bbl@load@language{bahasam}}

247 \DeclareOption{meyalu}{\bbl@load@language{bahasam}}

248 \DeclareOption{naustrian}{\bbl@load@language{ngermanb}}

249 \DeclareOption{newzealand}{\bbl@load@language{english}}

250 \DeclareOption{ngerman}{\bbl@load@language{ngermanb}}

251 \DeclareOption{nynorsk}{\bbl@load@language{norsk}}

252 \DeclareOption{polutonikogreek}{%

253 \bbl@load@language{greek}%

254 \languageattribute{greek}{polutoniko}}

255 \DeclareOption{portuguese}{\bbl@load@language{portuges}}

256 \DeclareOption{russian}{\bbl@load@language{russianb}}

257 \DeclareOption{UKenglish}{\bbl@load@language{english}}

258 \DeclareOption{ukrainian}{\bbl@load@language{ukraineb}}

259 \DeclareOption{uppersorbian}{\bbl@load@language{usorbian}}

260 \DeclareOption{USenglish}{\bbl@load@language{english}}

Another way to extend the list of ‘known’ options for babel is to create the file
bblopts.cfg in which one can add option declarations. However, this mechanism is
deprecated – if you want an alternative name for a language, just create a new .ldf

file loading the actual one. You can also set the name of the file with the package
option config=<name>, which will load <name>.cfg instead.

261 \ifx\bbl@opt@config\@nnil

262 \@ifpackagewith{babel}{noconfigs}{}%

263 {\InputIfFileExists{bblopts.cfg}%

264 {\typeout{*************************************^^J%

265 * Local config file bblopts.cfg used^^J%

266 *}}%

267 {}}%

268 \else

269 \InputIfFileExists{\bbl@opt@config.cfg}%

270 {\typeout{*************************************^^J%

271 * Local config file \bbl@opt@config.cfg used^^J%

272 *}}%

273 {\bbl@error{%

274 Local config file ‘\bbl@opt@config.cfg’ not found}{%

275 Perhaps you misspelled it.}}%

276 \fi

Recognizing global options in packages not having a closed set of them is not trivial, as
for them to be processed they must be defined explicitly. So, package options not yet
taken into account and stored in bbl@language@opts are assumed to be languages
(note this list also contains the language given with main). If not declared above, the
name of the option and the file are the same.

277 \bbl@for\bbl@tempa\bbl@language@opts{%

278 \@ifundefined{ds@\bbl@tempa}%

279 {\edef\bbl@tempb{%

280 \noexpand\DeclareOption

38

281 {\bbl@tempa}%

282 {\noexpand\bbl@load@language{\bbl@tempa}}}%

283 \bbl@tempb}%

284 \@empty}

Now, we make sure an option is explicitly declared for any language set as global
option, by checking if an ldf exists. The previous step was, in fact, somewhat
redundant, but that way we minimize accesing the file system just to see if the option
could be a language.

285 \bbl@for\bbl@tempa\@classoptionslist{%

286 \@ifundefined{ds@\bbl@tempa}%

287 {\IfFileExists{\bbl@tempa.ldf}%

288 {\edef\bbl@tempb{%

289 \noexpand\DeclareOption

290 {\bbl@tempa}%

291 {\noexpand\bbl@load@language{\bbl@tempa}}}%

292 \bbl@tempb}%

293 \@empty}%

294 \@empty}

If a main language has been set, store it for the third pass.

295 \ifx\bbl@opt@main\@nnil\else

296 \expandafter

297 \let\expandafter\bbl@loadmain\csname ds@\bbl@opt@main\endcsname

298 \DeclareOption{\bbl@opt@main}{}

299 \fi

And we are done, because all options for this pass has been declared. Those already
processed in the first pass are just ignored.
The options have to be processed in the order in which the user specified them
(except, of course, global options, which LATEX processes before):

300 \def\AfterBabelLanguage#1{%

301 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}

302 \DeclareOption*{}

303 \ProcessOptions*

This finished the second pass. Now the third one begins, which loads the main
language set with the key main. A warning is raised if the main language is not the
same as the last named one, or if the value of the key main is not a language. Then
execute directly the option (because it could be used only in main). After loading all
languages, we deactivate \AfterBabelLanguage.

304 \ifx\bbl@opt@main\@nnil

305 \edef\bbl@tempa{\@classoptionslist,\bbl@language@opts}

306 \let\bbl@tempc\@empty

307 \bbl@for\bbl@tempb\bbl@tempa{%

308 \@expandtwoargs\in@{,\bbl@tempb,}{,\bbl@loaded,}%

309 \ifin@\edef\bbl@tempc{\bbl@tempb}\fi}

310 \def\bbl@tempa#1,#2\@nnil{\def\bbl@tempb{#1}}

311 \expandafter\bbl@tempa\bbl@loaded,\@nnil

312 \ifx\bbl@tempb\bbl@tempc\else

39

313 \bbl@warning{%

314 Last declared language option is ‘\bbl@tempc,\\%

315 but the last processed one was ‘\bbl@tempb’.\\%

316 The main language cannot be set as both a global\\%

317 and a package option. Use ‘main=\bbl@tempc’ as\\%

318 option. Reported}%

319 \fi

320 \else

321 \DeclareOption{\bbl@opt@main}{\bbl@loadmain}

322 \ExecuteOptions{\bbl@opt@main}

323 \DeclareOption*{}

324 \ProcessOptions*

325 \fi

326 \def\AfterBabelLanguage{%

327 \bbl@error

328 {Too late for \string\AfterBabelLanguage}%

329 {Languages have been loaded, so I can do nothing}}

In order to catch the case where the user forgot to specify a language we check
whether \bbl@main@language, has become defined. If not, no language has been
loaded and an error message is displayed.

330 \ifx\bbl@main@language\@undefined

331 \bbl@error{%

332 You haven’t specified a language option}{%

333 You need to specify a language, either as a global option\\%

334 or as an optional argument to the \string\usepackage\space

335 command;\\%

336 You shouldn’t try to proceed from here, type x to quit.}

337 \fi

338 〈/package〉

7 The Kernel of Babel

The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file babel.def contains most of the code, while switch.def defines
the language switching commands; both can be read at run time. The file hyphen.cfg

is a file that can be loaded into the format, which is necessary when you want to be
able to switch hyphenation patterns (by default, it also inputs switch.def, for
“historical reasons”, but it is not necessary). When babel.def is loaded it checks if
the current version of switch.def is in the format; if not it is loaded. A further file,
babel.sty, contains LATEX-specific stuff.
Because plain TEX users might want to use some of the features of the babel system
too, care has to be taken that plain TEX can process the files. For this reason the
current format will have to be checked in a number of places. Some of the code below
is common to plain TEX and LATEX, some of it is for the LATEX case only.

7.1 Tools

40

339 〈∗core〉
340 \ifx\bbl@opt@strings\@undefined

341 \def\bbl@opt@safe{BR}

342 \let\bbl@opt@strings\@nnil

343 \let\bbl@opt@shorthands\@nnil

344 \fi

345 \ifx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi

346 \ifx\bbl@afterlang\@undefined\let\bbl@afterlang\relax\fi

347 \providecommand\AfterBabelLanguage[2]{}

348 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%

\bbl@afterelse

\bbl@afterfi

Because the code that is used in the handling of active characters may need to look
ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an
\if-statement11. These macros will break if another \if...\fi statement appears in
one of the arguments and it is not enclosed in braces.

349 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}

350 \long\def\bbl@afterfi#1\fi{\fi#1}

The macro \initiate@active@char takes all the necessary actions to make its
argument a shorthand character. The real work is performed once for each character.

351 \def\bbl@withactive#1#2{%

352 \begingroup

353 \lccode‘~=‘#2\relax

354 \lowercase{\endgroup#1~}}

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine it to
call the original macro with the ‘sanitized’ argument. The reason why we do it this
way is that we don’t want to redefine the LATEX macros completely in case their
definitions change (they have changed in the past).
Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence, \org@...

355 \def\bbl@redefine#1{%

356 \edef\bbl@tempa{\expandafter\@gobble\string#1}%

357 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

358 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.

359 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such as
\ifthenelse.

360 \def\bbl@redefine@long#1{%

361 \edef\bbl@tempa{\expandafter\@gobble\string#1}%

362 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

363 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}

364 \@onlypreamble\bbl@redefine@long

11This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power
Lemma” by Sonja Maus.

41

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly more
intelligent macro. A robust command foo is defined to expand to \protect\foo . So
it is necessary to check whether \foo exists. The result is that the command that is
being redefined is always robust afterwards. Therefor all we need to do now is define
\foo .

365 \def\bbl@redefinerobust#1{%

366 \edef\bbl@tempa{\expandafter\@gobble\string#1}%

367 \expandafter\ifx\csname\bbl@tempa\space\endcsname\relax

368 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

369 \expandafter\edef\csname\bbl@tempa\endcsname{\noexpand\protect

370 \expandafter\noexpand\csname\bbl@tempa\space\endcsname}%

371 \else

372 \expandafter\let\csname org@\bbl@tempa\expandafter\endcsname

373 \csname\bbl@tempa\space\endcsname

374 \fi

375 \expandafter\def\csname\bbl@tempa\space\endcsname}

This command should only be used in the preamble of the document.

376 \@onlypreamble\bbl@redefinerobust

7.2 Encoding issues

The first thing we need to do is to determine, at \begin{document}, which latin
fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be
nice to still have Roman numerals come out in the Latin encoding. So we first assume
that the current encoding at the end of processing the package is the Latin encoding.

377 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefor we
check at the execution of \begin{document} whether it was loaded with the T1
option. The normal way to do this (using \@ifpackageloaded) is disabled for this
package. Now we have to revert to parsing the internal macro \@filelist which
contains all the filenames loaded.

378 \AtBeginDocument{%

379 \gdef\latinencoding{OT1}%

380 \ifx\cf@encoding\bbl@t@one

381 \xdef\latinencoding{\bbl@t@one}%

382 \else

383 \@ifl@aded{def}{t1enc}{\xdef\latinencoding{\bbl@t@one}}{}%

384 \fi

385 }

\latintext Then we can define the command \latintext which is a declarative switch to a latin
font-encoding.

386 \DeclareRobustCommand{\latintext}{%

387 \fontencoding{\latinencoding}\selectfont

388 \def\encodingdefault{\latinencoding}}

42

\textlatin This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

389 \ifx\@undefined\DeclareTextFontCommand

390 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

391 \else

392 \DeclareTextFontCommand{\textlatin}{\latintext}

393 \fi

The second version of this macro takes two arguments. The first argument is the name
of the language that will be defined in the language definition file; the second
argument is either a control sequence or a string from which a control sequence should
be constructed. The existence of the control sequence indicates that the file has been
processed before.
At the start of processing a language definition file we always check the category code
of the at-sign. We make sure that it is a ‘letter’ during the processing of the file. We
also save its name as the last called option, even if not loaded.
Another character that needs to have the correct category code during processing of
language definition files is the equals sign, ‘=’, because it is sometimes used in
constructions with the \let primitive. Therefor we store its current catcode and
restore it later on.
Now we check whether we should perhaps stop the processing of this file. To do this
we first need to check whether the second argument that is passed to \LdfInit is a
control sequence. We do that by looking at the first token after passing #2 through
string. When it is equal to \@backslashchar we are dealing with a control sequence
which we can compare with \@undefined.
If so, we call \ldf@quit to set the main language, restore the category code of the
@-sign and call \endinput
When #2 was not a control sequence we construct one and compare it with \relax.
Finally we check \originalTeX.

394 \def\LdfInit#1#2{%

395 \chardef\atcatcode=\catcode‘\@

396 \catcode‘\@=11\relax

397 \chardef\eqcatcode=\catcode‘\=

398 \catcode‘\==12\relax

399 \expandafter\if\expandafter\@backslashchar

400 \expandafter\@car\string#2\@nil

401 \ifx#2\@undefined\else

402 \ldf@quit{#1}%

403 \fi

404 \else

405 \expandafter\ifx\csname#2\endcsname\relax\else

406 \ldf@quit{#1}%

407 \fi

408 \fi

409 \let\bbl@screset\@empty

410 \ifx\originalTeX\@undefined

411 \let\originalTeX\@empty

412 \else

43

413 \originalTeX

414 \fi}

\ldf@quit This macro interrupts the processing of a language definition file.

415 \def\ldf@quit#1{%

416 \expandafter\main@language\expandafter{#1}%

417 \catcode‘\@=\atcatcode \let\atcatcode\relax

418 \catcode‘\==\eqcatcode \let\eqcatcode\relax

419 \endinput}

\ldf@finish This macro takes one argument. It is the name of the language that was defined in the
language definition file.
We load the local configuration file if one is present, we set the main language (taking
into account that the argument might be a control sequence that needs to be
expanded) and reset the category code of the @-sign.

420 \def\ldf@finish#1{%

421 \loadlocalcfg{#1}%

422 \bbl@afterlang

423 \let\bbl@afterlang\relax

424 \let\BabelModifiers\relax

425 \let\bbl@screset\relax

426 \expandafter\main@language\expandafter{#1}%

427 \catcode‘\@=\atcatcode \let\atcatcode\relax

428 \catcode‘\==\eqcatcode \let\eqcatcode\relax}

After the preamble of the document the commands \LdfInit, \ldf@quit and
\ldf@finish are no longer needed. Therefor they are turned into warning messages in
LATEX.

429 \@onlypreamble\LdfInit

430 \@onlypreamble\ldf@quit

431 \@onlypreamble\ldf@finish

\main@language

\bbl@main@language

This command should be used in the various language definition files. It stores its
argument in \bbl@main@language; to be used to switch to the correct language at the
beginning of the document.

432 \def\main@language#1{%

433 \def\bbl@main@language{#1}%

434 \let\languagename\bbl@main@language

435 \bbl@patterns{\languagename}}

We also have to make sure that some code gets executed at the beginning of the
document.

436 \AtBeginDocument{%

437 \expandafter\selectlanguage\expandafter{\bbl@main@language}}

7.3 Support for active characters

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character
control sequence) to the macro \dospecials (and \@sanitize if LATEX is used).

44

To keep all changes local, we begin a new group. Then we redefine the macros \do and
\@makeother to add themselves and the given character without expansion.
To add the character to the macros, we expand the original macros with the additional
character inside the redefinition of the macros. Because \@sanitize can be undefined,
we put the definition inside a conditional.

438 \def\bbl@add@special#1{%

439 \begingroup

440 \def\do{\noexpand\do\noexpand}%

441 \def\@makeother{\noexpand\@makeother\noexpand}%

442 \edef\x{\endgroup

443 \def\noexpand\dospecials{\dospecials\do#1}%

444 \expandafter\ifx\csname @sanitize\endcsname\relax \else

445 \def\noexpand\@sanitize{\@sanitize\@makeother#1}%

446 \fi}%

447 \x}

The macro \x contains at this moment the following:
\endgroup\def\dospecials{old contents \do〈char〉}.
If \@sanitize is defined, it contains an additional definition of this macro. The last
thing we have to do, is the expansion of \x. Then \endgroup is executed, which
restores the old meaning of \x, \do and \@makeother. After the group is closed, the
new definition of \dospecials (and \@sanitize) is assigned.

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It is used to remove a
character from the set macros \dospecials and \@sanitize.
To keep all changes local, we begin a new group. Then we define a help macro \x,
which expands to empty if the characters match, otherwise it expands to its
nonexpandable input. Because TEX inserts a \relax, if the corresponding \else or
\fi is scanned before the comparison is evaluated, we provide a ‘stop sign’ which
should expand to nothing.
With the help of this macro we define \do and \make@other.
The rest of the work is similar to \bbl@add@special.

448 \def\bbl@remove@special#1{%

449 \begingroup

450 \def\x##1##2{\ifnum‘#1=‘##2\noexpand\@empty

451 \else\noexpand##1\noexpand##2\fi}%

452 \def\do{\x\do}%

453 \def\@makeother{\x\@makeother}%

454 \edef\x{\endgroup

455 \def\noexpand\dospecials{\dospecials}%

456 \expandafter\ifx\csname @sanitize\endcsname\relax \else

457 \def\noexpand\@sanitize{\@sanitize}%

458 \fi}%

459 \x}

7.4 Shorthands

\initiate@active@char A language definition file can call this macro to make a character active. This macro
takes one argument, the character that is to be made active. When the character was

45

already active this macro does nothing. Otherwise, this macro defines the control
sequence \normal@char〈char〉 to expand to the character in its ‘normal state’ and it
defines the active character to expand to \normal@char〈char〉 by default (〈char〉
being the character to be made active). Later its definition can be changed to expand
to \active@char〈char〉 by calling \bbl@activate{〈char〉}.
For example, to make the double quote character active one could have
\initiate@active@char{"} in a language definition file. This defines " as
\active@prefix "\active@char" (where the first " is the character with its original
catcode, when the shorthand is created, and \active@char" is a single token). In
protected contexts, it expands to \protect " or \noexpand " (ie, with the original ");
otherwise \active@char" is executed. This macro in turn expands to \normal@char"

in “safe” contexts (eg, \label), but \user@active" in normal “unsafe” ones. The
latter search a definition in the user, language and system levels, in this order, but if
none is found, \normal@char" is used. However, a deactivated shorthand (with
\bbl@deactivate is defined as \active@prefix "\normal@char".
The following macro is used to define shorthands in the three levels. It takes 4
arguments: the (string’ed) character, \<level>@group, <level>@active and
<next-level>@active (except in system).

460 \def\bbl@active@def#1#2#3#4{%

461 \@namedef{#3#1}{%

462 \expandafter\ifx\csname#2@sh@#1@\endcsname\relax

463 \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%

464 \else

465 \bbl@afterfi\csname#2@sh@#1@\endcsname

466 \fi}%

When there is also no current-level shorthand with an argument we will check whether
there is a next-level defined shorthand for this active character.

467 \long\@namedef{#3@arg#1}##1{%

468 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax

469 \bbl@afterelse\csname#4#1\endcsname##1%

470 \else

471 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname

472 \fi}}%

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of
them are the same character with different catcodes: active, other (string’ed) and the
original one.

473 \def\initiate@active@char#1{%

474 \expandafter\ifx\csname active@char\string#1\endcsname\relax

475 \bbl@withactive

476 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1%

477 \fi}

The very first thing to do is saving the original catcode and the original definition,
even if not active, which is possible (undefined characters require a special treatement
to avoid making them \relax).

478 \def\@initiate@active@char#1#2#3{%

479 \expandafter\edef\csname bbl@oricat@#2\endcsname{%

46

480 \catcode‘#2=\the\catcode‘#2\relax}%

481 \ifx#1\@undefined

482 \expandafter\edef\csname bbl@oridef@#2\endcsname{%

483 \let\noexpand#1\noexpand\@undefined}%

484 \else

485 \expandafter\let\csname bbl@oridef@@#2\endcsname#1%

486 \expandafter\edef\csname bbl@oridef@#2\endcsname{%

487 \let\noexpand#1%

488 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%

489 \fi

If the character is already active we provide the default expansion under this
shorthand mechanism. Otherwise we write a message in the transcript file, and define
\normal@char〈char〉 to expand to the character in its default state. If the character is
mathematically active when babel is loaded (for example ’) the normal expansion is
somewhat different to avoid an infinite loop (but it does not prevent the loop if the
mathcode is set to "8000 a posteriori).

490 \ifx#1#3\relax

491 \expandafter\let\csname normal@char#2\endcsname#3%

492 \else

493 \bbl@info{Making #2 an active character}%

494 \ifnum\mathcode‘#2="8000

495 \@namedef{normal@char#2}{%

496 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%

497 \else

498 \@namedef{normal@char#2}{#3}%

499 \fi

To prevent problems with the loading of other packages after babel we reset the catcode
of the character to the original one at the end of the package and of each language file
(except with KeepShorthandsActive). It is re-activate again at \begin{document}. We
also need to make sure that the shorthands are active during the processing of the
.aux file. Otherwise some citations may give unexpected results in the printout when
a shorthand was used in the optional argument of \bibitem for example. . Then we
make it active (not strictly necessary, but done for backward compatibility).

500 \bbl@restoreactive{#2}%

501 \AtBeginDocument{%

502 \catcode‘#2\active

503 \if@filesw

504 \immediate\write\@mainaux{\catcode‘\string#2\active}%

505 \fi}%

506 \expandafter\bbl@add@special\csname#2\endcsname

507 \catcode‘#2\active

508 \fi

Now we have set \normal@char〈char〉, we must define \active@char〈char〉, to be
executed when the character is activated. We define the first level expansion of
\active@char〈char〉 to check the status of the @safe@actives flag. If it is set to true
we expand to the ‘normal’ version of this character, otherwise we call
\user@active〈char〉 to start the search of a definition in the user, language and

47

system levels (or eventually normal@char〈char〉).
509 \let\bbl@tempa\@firstoftwo

510 \if\string^#2%

511 \def\bbl@tempa{\noexpand\textormath}%

512 \else

513 \ifx\bbl@mathnormal\@undefined\else

514 \let\bbl@tempa\bbl@mathnormal

515 \fi

516 \fi

517 \expandafter\edef\csname active@char#2\endcsname{%

518 \bbl@tempa

519 {\noexpand\if@safe@actives

520 \noexpand\expandafter

521 \expandafter\noexpand\csname normal@char#2\endcsname

522 \noexpand\else

523 \noexpand\expandafter

524 \expandafter\noexpand\csname user@active#2\endcsname

525 \noexpand\fi}%

526 {\expandafter\noexpand\csname normal@char#2\endcsname}}%

We now define the default values which the shorthand is set to when activated or
deactivated. It is set to the deactivated form (globally), so that the character expands
to

\active@prefix 〈char〉 \normal@char〈char〉

(where \active@char〈char〉 is one control sequence!).

527 \bbl@csarg\edef{active@#2}{%

528 \noexpand\active@prefix\noexpand#1%

529 \expandafter\noexpand\csname active@char#2\endcsname}%

530 \bbl@csarg\edef{normal@#2}{%

531 \noexpand\active@prefix\noexpand#1%

532 \expandafter\noexpand\csname normal@char#2\endcsname}%

533 \expandafter\let\expandafter#1\csname bbl@normal@#2\endcsname

The next level of the code checks whether a user has defined a shorthand for himself
with this character. First we check for a single character shorthand. If that doesn’t
exist we check for a shorthand with an argument.

534 \bbl@active@def#2\user@group{user@active}{language@active}%

535 \bbl@active@def#2\language@group{language@active}{system@active}%

536 \bbl@active@def#2\system@group{system@active}{normal@char}%

In order to do the right thing when a shorthand with an argument is used by itself at
the end of the line we provide a definition for the case of an empty argument. For that
case we let the shorthand character expand to its non-active self. Also, When a
shorthand combination such as ’’ ends up in a heading TEX would see
\protect’\protect’. To prevent this from happening a couple of shorthand needs to
be defined at user level.

537 \expandafter\edef\csname\user@group @sh@#2@@\endcsname

538 {\expandafter\noexpand\csname normal@char#2\endcsname}%

48

539 \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname

540 {\expandafter\noexpand\csname user@active#2\endcsname}%

Finally, a couple of special cases are taken care of. (1) If we are making the right
quote (’) active we need to change \pr@m@s as well. Also, make sure that a single ’ in
math mode ‘does the right thing’. (2) If we are using the caret (^) as a shorthand
character special care should be taken to make sure math still works. Therefor an
extra level of expansion is introduced with a check for math mode on the upper level.

541 \if\string’#2%

542 \let\prim@s\bbl@prim@s

543 \let\active@math@prime#1%

544 \fi}

Initiating a shorthand makes active the char. That is not strictly necessary but it is
still done for backward compatibility. So we need to restore the original catcode at the
end of package and and the end of the ldf.

545 \@ifpackagewith{babel}{KeepShorthandsActive}%

546 {\let\bbl@restoreactive\@gobble}%

547 {\def\bbl@restoreactive#1{%

548 \edef\bbl@tempa{%

549 \noexpand\AfterBabelLanguage\noexpand\CurrentOption

550 {\catcode‘#1=\the\catcode‘#1\relax}%

551 \noexpand\AtEndOfPackage{\catcode‘#1=\the\catcode‘#1\relax}}%

552 \bbl@tempa}%

553 \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed. Note
that this macro needs to be expandable as do all the shorthand macros in order for
them to work in expansion-only environments such as the argument of \hyphenation.
This macro expects the name of a group of shorthands in its first argument and a
shorthand character in its second argument. It will expand to either \bbl@firstcs or
\bbl@scndcs. Hence two more arguments need to follow it.

554 \def\bbl@sh@select#1#2{%

555 \expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax

556 \bbl@afterelse\bbl@scndcs

557 \else

558 \bbl@afterfi\csname#1@sh@#2@sel\endcsname

559 \fi}

\active@prefix The command \active@prefix which is used in the expansion of active characters has
a function similar to \OT1-cmd in that it \protects the active character whenever
\protect is not \@typeset@protect.

560 \def\active@prefix#1{%

561 \ifx\protect\@typeset@protect

562 \else

When \protect is set to \@unexpandable@protect we make sure that the active
character is als not expanded by inserting \noexpand in front of it. The \@gobble is

49

needed to remove a token such as \activechar: (when the double colon was the
active character to be dealt with).

563 \ifx\protect\@unexpandable@protect

564 \noexpand#1%

565 \else

566 \protect#1%

567 \fi

568 \expandafter\@gobble

569 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an active
character on the fly. For this purpose the switch @safe@actives is available. The
setting of this switch should be checked in the first level expansion of
\active@char〈char〉.

570 \newif\if@safe@actives

571 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this
must be undone in the headers to prevent unexpected typeset results. For this
situation we define a command to make them “unsafe” again.

572 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbl@activate

\bbl@deactivate

Both macros take one argument, like \initiate@active@char. The macro is used to
change the definition of an active character to expand to \active@char〈char〉 in the
case of \bbl@activate, or \normal@char〈char〉 in the case of \bbl@deactivate.

573 \def\bbl@activate#1{%

574 \bbl@withactive{\expandafter\let\expandafter}#1%

575 \csname bbl@active@\string#1\endcsname}

576 \def\bbl@deactivate#1{%

577 \bbl@withactive{\expandafter\let\expandafter}#1%

578 \csname bbl@normal@\string#1\endcsname}

\bbl@firstcs

\bbl@scndcs

These macros have two arguments. They use one of their arguments to build a control
sequence from.

579 \def\bbl@firstcs#1#2{\csname#1\endcsname}

580 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain level.
It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

581 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}

582 \def\@decl@short#1#2#3\@nil#4{%

583 \def\bbl@tempa{#3}%

50

584 \ifx\bbl@tempa\@empty

585 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs

586 \@ifundefined{#1@sh@\string#2@}{}%

587 {\def\bbl@tempa{#4}%

588 \expandafter\ifx\csname#1@sh@\string#2@\endcsname\bbl@tempa

589 \else

590 \bbl@info

591 {Redefining #1 shorthand \string#2\\%

592 in language \CurrentOption}%

593 \fi}%

594 \@namedef{#1@sh@\string#2@}{#4}%

595 \else

596 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs

597 \@ifundefined{#1@sh@\string#2@\string#3@}{}%

598 {\def\bbl@tempa{#4}%

599 \expandafter\ifx\csname#1@sh@\string#2@\string#3@\endcsname\bbl@tempa

600 \else

601 \bbl@info

602 {Redefining #1 shorthand \string#2\string#3\\%

603 in language \CurrentOption}%

604 \fi}%

605 \@namedef{#1@sh@\string#2@\string#3@}{#4}%

606 \fi}

\textormath Some of the shorthands that will be declared by the language definition files have to
be usable in both text and mathmode. To achieve this the helper macro \textormath

is provided.

607 \def\textormath{%

608 \ifmmode

609 \expandafter\@secondoftwo

610 \else

611 \expandafter\@firstoftwo

612 \fi}

\user@group

\language@group

\system@group

The current concept of ‘shorthands’ supports three levels or groups of shorthands. For
each level the name of the level or group is stored in a macro. The default is to have a
user group; use language group ‘english’ and have a system group called ‘system’.

613 \def\user@group{user}

614 \def\language@group{english}

615 \def\system@group{system}

\useshorthands This is the user level command to tell LATEX that user level shorthands will be used in
the document. It takes one argument, the character that starts a shorthand. First
note that this is user level, and then initialize and activate the character for use as a
shorthand character (ie, it’s active in the preamble). Languages can deactivate
shorthands, so a starred version is also provided which activates them always after the
language has been switched.

616 \def\useshorthands{%

51

617 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}

618 \def\bbl@usesh@s#1{%

619 \bbl@usesh@x

620 {\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}%

621 {#1}}

622 \def\bbl@usesh@x#1#2{%

623 \bbl@ifshorthand{#2}%

624 {\def\user@group{user}%

625 \initiate@active@char{#2}%

626 #1%

627 \bbl@activate{#2}}%

628 {\bbl@error

629 {Cannot declare a shorthand turned off (\string#2)}

630 {Sorry, but you cannot use shorthands which have been\\%

631 turned off in the package options}}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally user

and user@<lang> (language-dependent user shorthands). By default, only the first one
is taken into account, but if the former is also used (in the optional argument of
\defineshorthand) a new level is inserted for it (user@generic, done by
\bbl@set@user@generic); we make also sure {} and \protect are taken into account
in this new top level.

632 \def\user@language@group{user@\language@group}

633 \def\bbl@set@user@generic#1#2{%

634 \@ifundefined{user@generic@active#1}%

635 {\bbl@active@def#1\user@language@group{user@active}{user@generic@active}%

636 \bbl@active@def#1\user@group{user@generic@active}{language@active}%

637 \expandafter\edef\csname#2@sh@#1@@\endcsname{%

638 \expandafter\noexpand\csname normal@char#1\endcsname}%

639 \expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{%

640 \expandafter\noexpand\csname user@active#1\endcsname}}%

641 \@empty}

642 \newcommand\defineshorthand[3][user]{%

643 \edef\bbl@tempa{\zap@space#1 \@empty}%

644 \bbl@for\bbl@tempb\bbl@tempa{%

645 \if*\expandafter\@car\bbl@tempb\@nil

646 \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%

647 \@expandtwoargs

648 \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb

649 \fi

650 \declare@shorthand{\bbl@tempb}{#2}{#3}}}

\languageshorthands A user level command to change the language from which shorthands are used.
Unfortunately, babel currently does not keep track of defined groups, and therefore
there is no way to catch a possible change in casing.

651 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand First the new shorthand needs to be initialized,

652 \def\aliasshorthand#1#2{%

52

653 \bbl@ifshorthand{#2}%

654 {\expandafter\ifx\csname active@char\string#2\endcsname\relax

655 \ifx\document\@notprerr

656 \@notshorthand{#2}%

657 \else

658 \initiate@active@char{#2}%

Then, we define the new shorthand in terms of the original one, but note with
\aliasshorthands{"}{/} is \active@prefix /\active@char/, so we still need to let
the lattest to \active@char".

659 \expandafter\let\csname active@char\string#2\expandafter\endcsname

660 \csname active@char\string#1\endcsname

661 \expandafter\let\csname normal@char\string#2\expandafter\endcsname

662 \csname normal@char\string#1\endcsname

663 \bbl@activate{#2}%

664 \fi

665 \fi}%

666 {\bbl@error

667 {Cannot declare a shorthand turned off (\string#2)}

668 {Sorry, but you cannot use shorthands which have been\\%

669 turned off in the package options}}}

\@notshorthand

670 \def\@notshorthand#1{%

671 \bbl@error{%

672 The character ‘\string #1’ should be made a shorthand character;\\%

673 add the command \string\useshorthands\string{#1\string} to

674 the preamble.\\%

675 I will ignore your instruction}{}}

\shorthandon

\shorthandoff

The first level definition of these macros just passes the argument on to
\bbl@switch@sh, adding \@nil at the end to denote the end of the list of characters.

676 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}

677 \DeclareRobustCommand*\shorthandoff{%

678 \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}

679 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to the
first argument of \bbl@switch@sh.
But before any of this switching takes place we make sure that the character we are
dealing with is known as a shorthand character. If it is, a macro such as
\active@char" should exist.
Switching off and on is easy – we just set the category code to ‘other’ (12) and
\active. With the starred version, the original catcode and the original definition,
saved in @initiate@active@char, are restored.

680 \def\bbl@switch@sh#1#2{%

681 \ifx#2\@nnil\else

682 \@ifundefined{bbl@active@\string#2}%

53

683 {\bbl@error

684 {I cannot switch ‘\string#2’ on or off--not a shorthand}%

685 {This character is not a shorthand. Maybe you made\\%

686 a typing mistake? I will ignore your instruction}}%

687 {\ifcase#1%

688 \catcode‘#212\relax

689 \or

690 \catcode‘#2\active

691 \or

692 \csname bbl@oricat@\string#2\endcsname

693 \csname bbl@oridef@\string#2\endcsname

694 \fi}%

695 \bbl@afterfi\bbl@switch@sh#1%

696 \fi}

7.5 Conditional loading of shorthands

Note the value is that at the expansion time, eg, in the preample shorhands are
usually deactivated.

697 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}

698 \def\bbl@putsh#1{%

699 \@ifundefined{bbl@active@\string#1}%

700 {\bbl@putsh@i#1\@empty\@nnil}%

701 {\csname bbl@active@\string#1\endcsname}}

702 \def\bbl@putsh@i#1#2\@nnil{%

703 \csname\languagename @sh@\string#1@%

704 \ifx\@empty#2\else\string#2@\fi\endcsname}

705 \ifx\bbl@opt@shorthands\@nnil\else

706 \let\bbl@s@initiate@active@char\initiate@active@char

707 \def\initiate@active@char#1{%

708 \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}

709 \let\bbl@s@switch@sh\bbl@switch@sh

710 \def\bbl@switch@sh#1#2{%

711 \ifx#2\@nnil\else

712 \bbl@afterfi

713 \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%

714 \fi}

715 \let\bbl@s@activate\bbl@activate

716 \def\bbl@activate#1{%

717 \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}

718 \let\bbl@s@deactivate\bbl@deactivate

719 \def\bbl@deactivate#1{%

720 \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}

721 \fi

\bbl@prim@s

\bbl@pr@m@s

One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted to
look also for an active right quote; the hat could be active, too.

54

722 \def\bbl@prim@s{%

723 \prime\futurelet\@let@token\bbl@pr@m@s}

724 \def\bbl@if@primes#1#2{%

725 \ifx#1\@let@token

726 \expandafter\@firstoftwo

727 \else\ifx#2\@let@token

728 \bbl@afterelse\expandafter\@firstoftwo

729 \else

730 \bbl@afterfi\expandafter\@secondoftwo

731 \fi\fi}

732 \begingroup

733 \catcode‘\^=7 \catcode‘*=\active \lccode‘*=‘\^

734 \catcode‘\’=12 \catcode‘\"=\active \lccode‘\"=‘\’

735 \lowercase{%

736 \gdef\bbl@pr@m@s{%

737 \bbl@if@primes"’%

738 \pr@@@s

739 {\bbl@if@primes*^\pr@@@t\egroup}}}

740 \endgroup

Usually the ~ is active and expands to \penalty\@M\ . When it is written to the .aux

file it is written expanded. To prevent that and to be able to use the character ~ as a
start character for a shorthand, it is redefined here as a one character shorthand on
system level. The system declaration is in most cases redundant (when ~ is still a
non-break space), and in some cases is inconvenient (if ~ has been redefined); however,
for backward compatibility it is maintained (some existing documents may rely on the
babel value).

741 \initiate@active@char{~}

742 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }

743 \bbl@activate{~}

\OT1dqpos

\T1dqpos

The position of the double quote character is different for the OT1 and T1 encodings.
It will later be selected using the \f@encoding macro. Therefor we define two macros
here to store the position of the character in these encodings.

744 \expandafter\def\csname OT1dqpos\endcsname{127}

745 \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here to
expand to OT1

746 \ifx\f@encoding\@undefined

747 \def\f@encoding{OT1}

748 \fi

7.6 Language attributes

Language attributes provide a means to give the user control over which features of
the language definition files he wants to enable.

55

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute. First check whether the language is known,
and then process each attribute in the list.

749 \newcommand\languageattribute[2]{%

750 \def\bbl@tempc{#1}%

751 \bbl@fixname\bbl@tempc

752 \bbl@iflanguage\bbl@tempc{%

753 \@for\bbl@attr:=#2\do{%

We want to make sure that each attribute is selected only once; therefor we store the
already selected attributes in \bbl@known@attribs. When that control sequence is
not yet defined this attribute is certainly not selected before.

754 \ifx\bbl@known@attribs\@undefined

755 \in@false

756 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

757 \@expandtwoargs\in@{,\bbl@tempc-\bbl@attr,}{,\bbl@known@attribs,}%

758 \fi

When the attribute was in the list we issue a warning; this might not be the users
intention.

759 \ifin@

760 \bbl@warning{%

761 You have more than once selected the attribute ’\bbl@attr’\\%

762 for language #1}%

763 \else

When we end up here the attribute is not selected before. So, we add it to the list of
selected attributes and execute the associated TEX-code.

764 \edef\bbl@tempa{%

765 \noexpand\bbl@add@list

766 \noexpand\bbl@known@attribs{\bbl@tempc-\bbl@attr}}%

767 \bbl@tempa

768 \edef\bbl@tempa{\bbl@tempc-\bbl@attr}%

769 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%

770 {\csname\bbl@tempc @attr@\bbl@attr\endcsname}%

771 {\@attrerr{\bbl@tempc}{\bbl@attr}}%

772 \fi}}}

This command should only be used in the preamble of a document.

773 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.

774 \newcommand*{\@attrerr}[2]{%

775 \bbl@error

776 {The attribute #2 is unknown for language #1.}%

777 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known
attributes.

56

Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras... for the current
language is extended, otherwise the attribute will not work as its code is removed from
memory at \begin{document}.

778 \def\bbl@declare@ttribute#1#2#3{%

779 \@expandtwoargs\in@{,#2,}{,\BabelModifiers,}%

780 \ifin@

781 \AfterBabelLanguage{#1}{\languageattribute{#1}{#2}}%

782 \fi

783 \bbl@add@list\bbl@attributes{#1-#2}%

784 \expandafter\def\csname#1@attr@#2\endcsname{#3}}

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based on
whether a certain attribute was set. This command should appear inside the argument
to \AtBeginDocument because the attributes are set in the document preamble, after
babel is loaded.
The first argument is the language, the second argument the attribute being checked,
and the third and fourth arguments are the true and false clauses.

785 \def\bbl@ifattributeset#1#2#3#4{%

First we need to find out if any attributes were set; if not we’re done.

786 \ifx\bbl@known@attribs\@undefined

787 \in@false

788 \else

The we need to check the list of known attributes.

789 \@expandtwoargs\in@{,#1-#2,}{,\bbl@known@attribs,}%

790 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was set
or not. Just to be safe the code to be executed is ‘thrown over the \fi’.

791 \ifin@

792 \bbl@afterelse#3%

793 \else

794 \bbl@afterfi#4%

795 \fi

796 }

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first
argument. When the list is not defined yet (or empty), it will be initiated

797 \def\bbl@add@list#1#2{%

798 \ifx#1\@undefined

799 \def#1{#2}%

800 \else

801 \ifx#1\@empty

802 \def#1{#2}%

803 \else

804 \edef#1{#1,#2}%

805 \fi

57

806 \fi

807 }

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The macro
takes 4 arguments, the language/attribute, the attribute list, the TEX-code to be
executed when the attribute is known and the TEX-code to be executed otherwise.

808 \def\bbl@ifknown@ttrib#1#2{%

We first assume the attribute is unknown.

809 \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.

810 \@for\bbl@tempb:=#2\do{%

811 \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%

812 \ifin@

When a match is found the definition of \bbl@tempa is changed.

813 \let\bbl@tempa\@firstoftwo

814 \else

815 \fi}%

Finally we execute \bbl@tempa.

816 \bbl@tempa

817 }

\bbl@clear@ttribs This macro removes all the attribute code from LATEX’s memory at \begin{document}
time (if any is present).

818 \def\bbl@clear@ttribs{%

819 \ifx\bbl@attributes\@undefined\else

820 \@for\bbl@tempa:=\bbl@attributes\do{%

821 \expandafter\bbl@clear@ttrib\bbl@tempa.

822 }%

823 \let\bbl@attributes\@undefined

824 \fi

825 }

826 \def\bbl@clear@ttrib#1-#2.{%

827 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}

828 \AtBeginDocument{\bbl@clear@ttribs}

7.7 Support for saving macro definitions

To save the meaning of control sequences using \babel@save, we use temporary
control sequences. To save hash table entries for these control sequences, we don’t use
the name of the control sequence to be saved to construct the temporary name.
Instead we simply use the value of a counter, which is reset to zero each time we begin
to save new values. This works well because we release the saved meanings before we
begin to save a new set of control sequence meanings (see \selectlanguage and
\originalTeX). Note undefined macros are not undefined any more when saved – they
are \relax’ed.

58

\babel@savecnt

\babel@beginsave

The initialization of a new save cycle: reset the counter to zero.

829 \def\babel@beginsave{\babel@savecnt\z@}

Before it’s forgotten, allocate the counter and initialize all.

830 \newcount\babel@savecnt

831 \babel@beginsave

\babel@save The macro \babel@save〈csname〉 saves the current meaning of the control sequence
〈csname〉 to \originalTeX12. To do this, we let the current meaning to a temporary
control sequence, the restore commands are appended to \originalTeX and the
counter is incremented.

832 \def\babel@save#1{%

833 \expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax

834 \begingroup

835 \toks@\expandafter{\originalTeX\let#1=}%

836 \edef\x{\endgroup

837 \def\noexpand\originalTeX{\the\toks@ \expandafter\noexpand

838 \csname babel@\number\babel@savecnt\endcsname\relax}}%

839 \x

840 \advance\babel@savecnt\@ne}

\babel@savevariable The macro \babel@savevariable〈variable〉 saves the value of the variable. 〈variable〉
can be anything allowed after the \the primitive.

841 \def\babel@savevariable#1{\begingroup

842 \toks@\expandafter{\originalTeX #1=}%

843 \edef\x{\endgroup

844 \def\noexpand\originalTeX{\the\toks@ \the#1\relax}}%

845 \x}

\bbl@frenchspacing

\bbl@nonfrenchspacing

Some languages need to have \frenchspacing in effect. Others don’t want that. The
command \bbl@frenchspacing switches it on when it isn’t already in effect and
\bbl@nonfrenchspacing switches it off if necessary.

846 \def\bbl@frenchspacing{%

847 \ifnum\the\sfcode‘\.=\@m

848 \let\bbl@nonfrenchspacing\relax

849 \else

850 \frenchspacing

851 \let\bbl@nonfrenchspacing\nonfrenchspacing

852 \fi}

853 \let\bbl@nonfrenchspacing\nonfrenchspacing

7.8 Support for extending macros

\addto For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once they
have been defined the macro \addto is introduced. It takes two arguments, a 〈control
sequence〉 and TEX-code to be added to the 〈control sequence〉.

12\originalTeX has to be expandable, i. e. you shouldn’t let it to \relax.

59

If the 〈control sequence〉 has not been defined before it is defined now. The control
sequence could also expand to \relax, in which case a circular definition results. The
net result is a stack overflow. Otherwise the replacement text for the 〈control sequence〉
is expanded and stored in a token register, together with the TEX-code to be added.
Finally the 〈control sequence〉 is redefined, using the contents of the token register.

854 \def\addto#1#2{%

855 \ifx#1\@undefined

856 \def#1{#2}%

857 \else

858 \ifx#1\relax

859 \def#1{#2}%

860 \else

861 {\toks@\expandafter{#1#2}%

862 \xdef#1{\the\toks@}}%

863 \fi

864 \fi}

7.9 Hyphens

\babelhyphenation This macro saves hyphenation exceptions. Two macros are used to store them:
\bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for language
ones. See \bbl@patterns above for further details. We make sure there is a space
between words when multiple commands are used.

865 \@onlypreamble\babelhyphenation

866 \AtEndOfPackage{%

867 \newcommand\babelhyphenation[2][\@empty]{%

868 \ifx\bbl@hyphenation@\relax

869 \let\bbl@hyphenation@\@empty

870 \fi

871 \ifx\bbl@hyphlist\@empty\else

872 \bbl@warning{%

873 You must not intermingle \string\selectlanguage\space and\\%

874 \string\babelhyphenation\space or some exception will not\\%

875 be taken into account. Reported}%

876 \fi

877 \ifx\@empty#1%

878 \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%

879 \else

880 \edef\bbl@tempb{\zap@space#1 \@empty}%

881 \bbl@for\bbl@tempa\bbl@tempb{%

882 \bbl@fixname\bbl@tempa

883 \bbl@iflanguage\bbl@tempa{%

884 \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%

885 \@ifundefined{bbl@hyphenation@\bbl@tempa}%

886 \@empty

887 {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%

888 #2}}}%

889 \fi}}

60

\bbl@allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more than
\nobreak \hskip 0pt plus 0pt13.

890 \def\bbl@allowhyphens{\nobreak\hskip\z@skip}

891 \def\bbl@t@one{T1}

892 \def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\babelhyphen Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead
of protecting it with \DeclareRobustCommand, which could insert a \relax, we use
the same procedure as shorthands.

893 \newcommand\babelnullhyphen{\char\hyphenchar\font}

894 \def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}

895 \def\bbl@hyphen{%

896 \@ifstar{\bbl@hyphen@i @}{\bbl@hyphen@i\@empty}}

897 \def\bbl@hyphen@i#1#2{%

898 \@ifundefined{bbl@hy@#1#2\@empty}%

899 {\csname bbl@#1usehyphen\endcsname{\discretionary{#2}{}{#2}}}%

900 {\csname bbl@hy@#1#2\@empty\endcsname}}

The following two commands are used to wrap the “hyphen” and set the behaviour of
the rest of the word – the version with a single @ is used when further hyphenation is
allowed, while that with @@ if no more hyphen are allowed. In both cases, if the
hyphen is preceded by a positive space, breaking after the hyphen is disallowed.
There should not be a discretionaty after a hyphen at the beginning of a word, so it is
prevented if preceded by a skip. Unfortunately, this does handle cases like “(-suffix)”.
\nobreak is always preceded by \leavevmode, in case the shorthand starts a
paragraph.

901 \def\bbl@usehyphen#1{%

902 \leavevmode

903 \ifdim\lastskip>\z@\mbox{#1}\nobreak\else\nobreak#1\fi

904 \hskip\z@skip}

905 \def\bbl@@usehyphen#1{%

906 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}

The following macro inserts the hyphen char.

907 \def\bbl@hyphenchar{%

908 \ifnum\hyphenchar\font=\m@ne

909 \babelnullhyphen

910 \else

911 \char\hyphenchar\font

912 \fi}

Finally, we define the hyphen “types”. Their names will not change, so you may use
them in ldf’s.

913 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

914 \def\bbl@hy@@soft{\bbl@@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

915 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}

916 \def\bbl@hy@@hard{\bbl@@usehyphen\bbl@hyphenchar}

13TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at
this glue node.

61

917 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}\nobreak}}

918 \def\bbl@hy@@nobreak{\mbox{\bbl@hyphenchar}}

919 \def\bbl@hy@repeat{%

920 \bbl@usehyphen{%

921 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}%

922 \nobreak}}

923 \def\bbl@hy@@repeat{%

924 \bbl@@usehyphen{%

925 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

926 \def\bbl@hy@empty{\hskip\z@skip}

927 \def\bbl@hy@@empty{\discretionary{}{}{}}

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of
discretionaries for letters that behave ‘abnormally’ at a breakpoint.

928 \def\bbl@disc#1#2{\nobreak\discretionary{#2-}{}{#1}\bbl@allowhyphens}

7.10 Macros common to a number of languages

\set@low@box The following macro is used to lower quotes to the same level as the comma. It
prepares its argument in box register 0.

929 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%

930 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%

931 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

932 \def\save@sf@q#1{\leavevmode

933 \begingroup

934 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF

935 \endgroup}

7.11 Making glyphs available

The file babel.dtx14 makes a number of glyphs available that either do not exist in
the OT1 encoding and have to be ‘faked’, or that are not accessible through T1enc.def.

7.12 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a separate
character, accessible via \quotedblbase. In the OT1 encoding it is not available,
therefor we make it available by lowering the normal open quote character to the
baseline.

936 \ProvideTextCommand{\quotedblbase}{OT1}{%

937 \save@sf@q{\set@low@box{\textquotedblright\/}%

938 \box\z@\kern-.04em\bbl@allowhyphens}}

14The file described in this section has version number v3.9f, and was last revised on 2013/05/16.

62

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be
typeset.

939 \ProvideTextCommandDefault{\quotedblbase}{%

940 \UseTextSymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

941 \ProvideTextCommand{\quotesinglbase}{OT1}{%

942 \save@sf@q{\set@low@box{\textquoteright\/}%

943 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be
typeset.

944 \ProvideTextCommandDefault{\quotesinglbase}{%

945 \UseTextSymbol{OT1}{\quotesinglbase}}

\guillemotleft

\guillemotright

The guillemet characters are not available in OT1 encoding. They are faked.

946 \ProvideTextCommand{\guillemotleft}{OT1}{%

947 \ifmmode

948 \ll

949 \else

950 \save@sf@q{\nobreak

951 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%

952 \fi}

953 \ProvideTextCommand{\guillemotright}{OT1}{%

954 \ifmmode

955 \gg

956 \else

957 \save@sf@q{\nobreak

958 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%

959 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still
be typeset.

960 \ProvideTextCommandDefault{\guillemotleft}{%

961 \UseTextSymbol{OT1}{\guillemotleft}}

962 \ProvideTextCommandDefault{\guillemotright}{%

963 \UseTextSymbol{OT1}{\guillemotright}}

\guilsinglleft

\guilsinglright

The single guillemets are not available in OT1 encoding. They are faked.

964 \ProvideTextCommand{\guilsinglleft}{OT1}{%

965 \ifmmode

966 <%

967 \else

968 \save@sf@q{\nobreak

969 \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%

970 \fi}

971 \ProvideTextCommand{\guilsinglright}{OT1}{%

972 \ifmmode

973 >%

974 \else

63

975 \save@sf@q{\nobreak

976 \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%

977 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still
be typeset.

978 \ProvideTextCommandDefault{\guilsinglleft}{%

979 \UseTextSymbol{OT1}{\guilsinglleft}}

980 \ProvideTextCommandDefault{\guilsinglright}{%

981 \UseTextSymbol{OT1}{\guilsinglright}}

7.13 Letters

\ij

\IJ

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in
the OT1 encoded fonts. Therefor we fake it for the OT1 encoding.

982 \DeclareTextCommand{\ij}{OT1}{%

983 i\kern-0.02em\bbl@allowhyphens j}

984 \DeclareTextCommand{\IJ}{OT1}{%

985 I\kern-0.02em\bbl@allowhyphens J}

986 \DeclareTextCommand{\ij}{T1}{\char188}

987 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still
be typeset.

988 \ProvideTextCommandDefault{\ij}{%

989 \UseTextSymbol{OT1}{\ij}}

990 \ProvideTextCommandDefault{\IJ}{%

991 \UseTextSymbol{OT1}{\IJ}}

\dj

\DJ

The croatian language needs the letters \dj and \DJ; they are available in the T1

encoding, but not in the OT1 encoding by default.
Some code to construct these glyphs for the OT1 encoding was made available to me by
Stipcevic Mario, (stipcevic@olimp.irb.hr).

992 \def\crrtic@{\hrule height0.1ex width0.3em}

993 \def\crttic@{\hrule height0.1ex width0.33em}

994 \def\ddj@{%

995 \setbox0\hbox{d}\dimen@=\ht0

996 \advance\dimen@1ex

997 \dimen@.45\dimen@

998 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

999 \advance\dimen@ii.5ex

1000 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}

1001 \def\DDJ@{%

1002 \setbox0\hbox{D}\dimen@=.55\ht0

1003 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

1004 \advance\dimen@ii.15ex % correction for the dash position

1005 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font

1006 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@

1007 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}

64

1008 %

1009 \DeclareTextCommand{\dj}{OT1}{\ddj@ d}

1010 \DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still
be typeset.

1011 \ProvideTextCommandDefault{\dj}{%

1012 \UseTextSymbol{OT1}{\dj}}

1013 \ProvideTextCommandDefault{\DJ}{%

1014 \UseTextSymbol{OT1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for
other encodings it is not available. Therefor we make it available here.

1015 \DeclareTextCommand{\SS}{OT1}{SS}

1016 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

7.14 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them
usable both outside and inside mathmode.

\glq

\grq

The ‘german’ single quotes.

1017 \ProvideTextCommand{\glq}{OT1}{%

1018 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}

1019 \ProvideTextCommand{\glq}{T1}{%

1020 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}

1021 \ProvideTextCommandDefault{\glq}{\UseTextSymbol{OT1}\glq}

The definition of \grq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

1022 \ProvideTextCommand{\grq}{T1}{%

1023 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}

1024 \ProvideTextCommand{\grq}{OT1}{%

1025 \save@sf@q{\kern-.0125em%

1026 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%

1027 \kern.07em\relax}}

1028 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

\glqq

\grqq

The ‘german’ double quotes.

1029 \ProvideTextCommand{\glqq}{OT1}{%

1030 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

1031 \ProvideTextCommand{\glqq}{T1}{%

1032 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

1033 \ProvideTextCommandDefault{\glqq}{\UseTextSymbol{OT1}\glqq}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

1034 \ProvideTextCommand{\grqq}{T1}{%

1035 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

1036 \ProvideTextCommand{\grqq}{OT1}{%

65

1037 \save@sf@q{\kern-.07em%

1038 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%

1039 \kern.07em\relax}}

1040 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq

\frq

The ‘french’ single guillemets.

1041 \ProvideTextCommand{\flq}{OT1}{%

1042 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}

1043 \ProvideTextCommand{\flq}{T1}{%

1044 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}

1045 \ProvideTextCommandDefault{\flq}{\UseTextSymbol{OT1}\flq}

1046 \ProvideTextCommand{\frq}{OT1}{%

1047 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

1048 \ProvideTextCommand{\frq}{T1}{%

1049 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

1050 \ProvideTextCommandDefault{\frq}{\UseTextSymbol{OT1}\frq}

\flqq

\frqq

The ‘french’ double guillemets.

1051 \ProvideTextCommand{\flqq}{OT1}{%

1052 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

1053 \ProvideTextCommand{\flqq}{T1}{%

1054 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

1055 \ProvideTextCommandDefault{\flqq}{\UseTextSymbol{OT1}\flqq}

1056 \ProvideTextCommand{\frqq}{OT1}{%

1057 \textormath{\guillemotright}{\mbox{\guillemotright}}}

1058 \ProvideTextCommand{\frqq}{T1}{%

1059 \textormath{\guillemotright}{\mbox{\guillemotright}}}

1060 \ProvideTextCommandDefault{\frqq}{\UseTextSymbol{OT1}\frqq}

7.15 Umlauts and trema’s

The command \" needs to have a different effect for different languages. For German
for instance, the ‘umlaut’ should be positioned lower than the default position for
placing it over the letters a, o, u, A, O and U. When placed over an e, i, E or I it can
retain its normal position. For Dutch the same glyph is always placed in the lower
position.

\umlauthigh

\umlautlow

To be able to provide both positions of \" we provide two commands to switch the
positioning, the default will be \umlauthigh (the normal positioning).

1061 \def\umlauthigh{%

1062 \def\bbl@umlauta##1{\leavevmode\bgroup%

1063 \expandafter\accent\csname\f@encoding dqpos\endcsname

1064 ##1\bbl@allowhyphens\egroup}%

1065 \let\bbl@umlaute\bbl@umlauta}

1066 \def\umlautlow{%

1067 \def\bbl@umlauta{\protect\lower@umlaut}}

1068 \def\umlautelow{%

1069 \def\bbl@umlaute{\protect\lower@umlaut}}

1070 \umlauthigh

66

\lower@umlaut The command \lower@umlaut is used to position the \" closer the the letter.
We want the umlaut character lowered, nearer to the letter. To do this we need an
extra 〈dimen〉 register.

1071 \expandafter\ifx\csname U@D\endcsname\relax

1072 \csname newdimen\endcsname\U@D

1073 \fi

The following code fools TEX’s make accent procedure about the current x-height of
the font to force another placement of the umlaut character. First we have to save the
current x-height of the font, because we’ll change this font dimension and this is
always done globally.
Then we compute the new x-height in such a way that the umlaut character is lowered
to the base character. The value of .45ex depends on the METAFONT parameters with
which the fonts were built. (Just try out, which value will look best.) If the new
x-height is too low, it is not changed. Finally we call the \accent primitive, reset the
old x-height and insert the base character in the argument.

1074 \def\lower@umlaut#1{%

1075 \leavevmode\bgroup

1076 \U@D 1ex%

1077 {\setbox\z@\hbox{%

1078 \expandafter\char\csname\f@encoding dqpos\endcsname}%

1079 \dimen@ -.45ex\advance\dimen@\ht\z@

1080 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%

1081 \expandafter\accent\csname\f@encoding dqpos\endcsname

1082 \fontdimen5\font\U@D #1%

1083 \egroup}

For all vowels we declare \" to be a composite command which uses \bbl@umlauta or
\bbl@umlaute to position the umlaut character. We need to be sure that these
definitions override the ones that are provided when the package fontenc with option
OT1 is used. Therefor these declarations are postponed until the beginning of the
document. Note these definitions only apply to some languages, but babel sets them
for all languages – you may want to redefine \bbl@umlauta and/or \bbl@umlaute for
a language in the corresponding ldf (using the babel switching mechanism, of course).

1084 \AtBeginDocument{%

1085 \DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%

1086 \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%

1087 \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%

1088 \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%

1089 \DeclareTextCompositeCommand{\"}{OT1}{o}{\bbl@umlauta{o}}%

1090 \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%

1091 \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%

1092 \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%

1093 \DeclareTextCompositeCommand{\"}{OT1}{I}{\bbl@umlaute{I}}%

1094 \DeclareTextCompositeCommand{\"}{OT1}{O}{\bbl@umlauta{O}}%

1095 \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}%

1096 }

67

7.16 Multiencoding strings

The aim following commands is to provide a commom interface for strings in several
encodings. They also contains several hooks which can be ued by luatex and xetex.
This is the main command. With the first use it is redefined to omit the basic setup in
subsequent blocks. We make sure strings contain actual letters in the range 128-255,
not active characters.

1097 \def\bbl@recatcode#1{%

1098 \@tempcnta="7F

1099 \def\bbl@tempa{%

1100 \ifnum\@tempcnta>"FF\else

1101 \catcode\@tempcnta=#1\relax

1102 \advance\@tempcnta\@ne

1103 \expandafter\bbl@tempa

1104 \fi}%

1105 \bbl@tempa}

1106 \@onlypreamble\StartBabelCommands

1107 \def\StartBabelCommands{%

1108 \begingroup

1109 \bbl@recatcode{11}%

1110 \def\bbl@scuse{%

1111 \ifx\bbl@opt@strings\@nnil\def\bbl@opt@strings{generic}\fi}%

1112 \def\UseStrings{\bbl@scuse\aftergroup\bbl@scuse}%

1113 \def\SetStringLoop{\afterassignment\bbl@sclp\def\bbl@templ####1}%

1114 \def\bbl@sclp##1{%

1115 \count@\z@ % dangerous if a hook is used

1116 \@for\bbl@tempm:=##1\do{%

1117 \advance\count@\@ne

1118 \toks@\expandafter{\bbl@tempm}%

1119 \edef\bbl@tempn{%

1120 \expandafter\noexpand

1121 \csname\bbl@templ{\romannumeral\count@}\endcsname%

1122 {\the\toks@}}%

1123 \expandafter\SetString\bbl@tempn}}%

1124 \def\SetCase{%

1125 \@ifundefined{bbl@tolower}{%

1126 \g@addto@macro\@uclclist{%

1127 \reserved@b{\reserved@b\@gobble}% stops processing the list

1128 \@ifundefined{\languagename @bbl@uclc}% and resumes it

1129 {\reserved@a}%

1130 {\csname\languagename @bbl@uclc\endcsname}%

1131 {\bbl@tolower\@empty}{\bbl@toupper\@empty}}%

1132 \gdef\bbl@tolower{\csname\languagename @bbl@lc\endcsname}%

1133 \gdef\bbl@toupper{\csname\languagename @bbl@uc\endcsname}}{}%

1134 \let\SetCase\bbl@setcase

1135 \SetCase}%

1136 \def\bbl@provstring##1{%

1137 \@ifundefined{\expandafter\@gobble\string##1}{\gdef##1}\@gobble}%

1138 \def\bbl@dftstring##1##2{%

68

1139 \@dec@text@cmd\gdef##1?{##2}%

1140 \global\let##1##1}%

1141 \def\bbl@encstring##1##2{%

1142 \bbl@for\bbl@tempc\bbl@sc@fontenc{%

1143 \@ifundefined{T@\bbl@tempc}%

1144 \@empty

1145 {\@dec@text@cmd\gdef##1\bbl@tempc{##2}%

1146 \global\let##1##1}}}%

1147 \let\StartBabelCommands\bbl@startcmds

1148 \begingroup

1149 \let\bbl@screset\@nnil % local flag - disable 1st stopcommands

1150 \StartBabelCommands}

1151 \def\bbl@startcmds#1#2{%

1152 \ifx\bbl@screset\@nnil\else

1153 \bbl@usehooks{stopcommands}{}%

1154 \fi

1155 \endgroup

1156 \begingroup

1157 \edef\bbl@L{\zap@space#1 \@empty}%

1158 \edef\bbl@G{\zap@space#2 \@empty}%

1159 \let\bbl@sc@charset\space

1160 \let\bbl@sc@fontenc\space

1161 \let\SetString\@gobbletwo

1162 \let\bbl@stringdef\@gobbletwo

1163 \bbl@startcmds@i}

Parse the encoding info to get the label, input, and font parts.
Select the behaviour of \SetString. Thre are two main cases: * blocks, which are
always taken into account, and labelled blocks, which are not always taken into
account. With * and strings set to encoded or generic, strings are defined always;
otherwise, they are set only if they are still undefined (ie, fallback values). With
labelled blocks and strings=encoded, define the strings, but with another value,
define strings only if the current label or font encoding is the value of strings;
otherwise (ie, no strings or a block whose label is not in strings=) do nothing.
We presume the current block is not loaded, and therefore set (above) a couple of
default values to gobble the arguments. Then, these macros are redefined if necessary
according to several parameters.

1164 \newcommand\bbl@startcmds@i[1][\@empty]{%

1165 \ifx\@empty#1%

1166 \def\bbl@sc@label{generic}%

1167 \bbl@scswitch{%

1168 \ifx\bbl@opt@strings\@nnil

1169 \let\bbl@stringdef\bbl@dftstring

1170 \else\ifx\bbl@opt@strings\relax

1171 \let\SetString\bbl@setstring

1172 \let\bbl@stringdef\bbl@dftstring

1173 \else

1174 \let\SetString\bbl@setstring

1175 \let\bbl@stringdef\bbl@provstring

69

1176 \fi\fi}%

1177 \@expandtwoargs

1178 \bbl@usehooks{defaultcommands}{}%

1179 \else

1180 \def\bbl@tempa##1=##2\@nil{%

1181 \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%

1182 \bbl@for\bbl@tempb{label=#1}{\expandafter\bbl@tempa\bbl@tempb\@nil}%

1183 \def\bbl@tempa##1 ##2{%

1184 ##1%

1185 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%

1186 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%

1187 \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%

1188 \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%

1189 \bbl@scswitch{%

1190 \ifx\bbl@opt@strings\@nnil

1191 \let\bbl@stringdef\bbl@encstring

1192 \else\ifx\bbl@opt@strings\relax

1193 \let\SetString\bbl@setstring

1194 \let\bbl@stringdef\bbl@encstring

1195 \else

1196 \@expandtwoargs

1197 \in@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}%

1198 \ifin@

1199 \let\SetString\bbl@setstring

1200 \let\bbl@stringdef\bbl@provstring

1201 \fi\fi\fi}%

1202 \@expandtwoargs

1203 \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%

1204 \fi}

There are two versions of \bbl@scswitch. The first version is used when ldfs are
read, and with it blocks not intented for the current language (as set in
\CurrentOption) are ignored; it also makes sure \〈group〉〈language〉 is reset, but only
once (\bbl@screset is used to keep track of this). The second version is used in the
preamble and packages loaded after babel and defines strings for all known languages.

1205 \def\bbl@scswitch#1{%

1206 \@expandtwoargs\in@{,\CurrentOption,}{,\bbl@L,}%

1207 \ifin@

1208 \let\bbl@L\CurrentOption

1209 #1\relax

1210 \bbl@scswitch@i

1211 \ifx\bbl@G\@empty\else

1212 \ifx\SetString\@gobbletwo\else

1213 \edef\bbl@GL{\bbl@G\bbl@L}%

1214 \@expandtwoargs\in@{,\bbl@GL,}{,\bbl@screset,}%

1215 \ifin@\else

1216 \global\expandafter\let\csname\bbl@GL\endcsname\@undefined

1217 \xdef\bbl@screset{\bbl@screset,\bbl@GL}%

1218 \fi

1219 \fi

70

1220 \fi

1221 \fi}

1222 \def\bbl@scswitch@i{%

1223 \ifx\bbl@G\@empty

1224 \def\SetString##1##2{%

1225 \bbl@error{Missing group for string \string##1}%

1226 {You must assign strings to some category, typically\\%

1227 captions or extras, but you set none}}%

1228 \fi}

1229 \AtEndOfPackage{\def\bbl@scswitch#1{#1\relax\bbl@scswitch@i}}

1230 \@onlypreamble\EndBabelCommands

1231 \def\EndBabelCommands{%

1232 \bbl@usehooks{stopcommands}{}%

1233 \endgroup

1234 \endgroup}

First save the “switcher”. Create it if undefined. Strings are defined only if undefined
(ie, like \providescommmand). With the event stringprocess you can preprocess the
string by manipulating the value of \BabelString. If there are several hooks assigned
to this event, preprocessing is done in the same order as defined. Finally, the string is
set.

1235 \def\bbl@scset#1#2{\def#1{#2}}

1236 \def\bbl@setstring#1#2{%

1237 \bbl@for\bbl@tempa\bbl@L{%

1238 \edef\bbl@LC{\bbl@tempa\expandafter\@gobble\string#1}%

1239 \@ifundefined{\bbl@LC}% eg, \germanchaptername

1240 {\global\expandafter

1241 \bbl@add\csname\bbl@G\bbl@tempa\expandafter\endcsname\expandafter

1242 {\expandafter\bbl@scset\expandafter#1\csname\bbl@LC\endcsname}}%

1243 {}%

1244 \def\BabelString{#2}%

1245 \bbl@usehooks{stringprocess}{}%

1246 \expandafter\bbl@stringdef

1247 \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}

1248 \newcommand\bbl@setcase[3][]{%

1249 \bbl@for\bbl@tempa\bbl@L{%

1250 \expandafter\bbl@stringdef

1251 \csname\bbl@tempa @bbl@uclc\endcsname{\reserved@a#1}%

1252 \expandafter\bbl@stringdef

1253 \csname\bbl@tempa @bbl@uc\endcsname{#2}%

1254 \expandafter\bbl@stringdef

1255 \csname\bbl@tempa @bbl@lc\endcsname{#3}}}

7.17 Hooks

Note they are loaded in babel.def. switch.def only provides a “hook” for hooks (with a
default value which is a no-op, below). Admittedly, the current implementation is a
somewhat simplistic and does vety little to catch errors, but it is intended for

71

developpers, after all. \bbl@usehooks is the commands used by babel to execute
hooks defined for an event.

1256 \def\AddBabelHook#1#2{%

1257 \@ifundefined{bbl@hk@#1}{\EnableBabelHook{#1}}{}%

1258 \def\bbl@tempa##1,#2=##2,##3\@empty{\def\bbl@tempb{##2}}%

1259 \expandafter\bbl@tempa\bbl@evargs,#2=,\@empty

1260 \@ifundefined{bbl@ev@#1@#2}%

1261 {\bbl@csarg\bbl@add{ev@#2}{\bbl@elt{#1}}%

1262 \bbl@csarg\newcommand}%

1263 {\bbl@csarg\renewcommand}%

1264 {ev@#1@#2}[\bbl@tempb]}

1265 \def\EnableBabelHook#1{\bbl@csarg\let{hk@#1}\@firstofone}

1266 \def\DisableBabelHook#1{\bbl@csarg\let{hk@#1}\@gobble}

1267 \def\bbl@usehooks#1#2{%

1268 \def\bbl@elt##1{%

1269 \@nameuse{bbl@hk@##1}{\@nameuse{bbl@ev@##1@#1}#2}}%

1270 \@nameuse{bbl@ev@#1}}

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further
argument is added in the future, there is no need to change the existing code. Note
events intended for hyphen.cfg are also loaded (just in case you need them).

1271 \def\bbl@evargs{,% don’t delete the comma

1272 everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%

1273 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%

1274 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%

1275 hyphenation=2}

1276 \ifx\directlua\@undefined

1277 \ifx\XeTeXinputencoding\@undefined\else

1278 \input xebabel.def

1279 \fi

1280 \else

1281 \input luababel.def

1282 \fi

7.18 The redefinition of the style commands

The rest of the code in this file can only be processed by LATEX, so we check the
current format. If it is plain TEX, processing should stop here. But, because of the
need to limit the scope of the definition of \format, a macro that is used locally in the
following \if statement, this comparison is done inside a group. To prevent TEX from
complaining about an unclosed group, the processing of the command \endinput is
deferred until after the group is closed. This is accomplished by the command
\aftergroup.

1283 {\def\format{lplain}

1284 \ifx\fmtname\format

1285 \else

1286 \def\format{LaTeX2e}

1287 \ifx\fmtname\format

72

1288 \else

1289 \aftergroup\endinput

1290 \fi

1291 \fi}

7.19 Cross referencing macros

The LATEX book states:

The key argument is any sequence of letters, digits, and punctuation
symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a language
that has active characters, special care has to be taken of the category codes of these
characters when they appear in an argument of the cross referencing macros.
When a cross referencing command processes its argument, all tokens in this argument
should be character tokens with category ‘letter’ or ‘other’.
The only way to accomplish this in most cases is to use the trick described in the
TEXbook [1] (Appendix D, page 382). The primitive \meaning applied to a token
expands to the current meaning of this token. For example, ‘\meaning\A’ with \A

defined as ‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with all category
codes set to ‘other’ or ‘space’.

\newlabel The macro \label writes a line with a \newlabel command into the .aux file to
define labels.

1292 %\bbl@redefine\newlabel#1#2{%

1293 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

\@newl@bel We need to change the definition of the LATEX-internal macro \@newl@bel. This is
needed because we need to make sure that shorthand characters expand to their
non-active version.
First we open a new group to keep the changed setting of \protect local and then we
set the @safe@actives switch to true to make sure that any shorthand that appears
in any of the arguments immediately expands to its non-active self.

1294 \ifx\bbl@opt@safe\@empty\else

1295 \def\@newl@bel#1#2#3{%

1296 {\@safe@activestrue

1297 \@ifundefined{#1@#2}%

1298 \relax

1299 {\gdef\@multiplelabels{%

1300 \@latex@warning@no@line{There were multiply-defined labels}}%

1301 \@latex@warning@no@line{Label ‘#2’ multiply defined}}%

1302 \global\@namedef{#1@#2}{#3}}}

\@testdef An internal LATEX macro used to test if the labels that have been written on the .aux

file have changed. It is called by the \enddocument macro. This macro needs to be
completely rewritten, using \meaning. The reason for this is that in some cases the

73

expansion of \#1@#2 contains the same characters as the #3; but the character codes
differ. Therefor LATEX keeps reporting that the labels may have changed.

1303 \CheckCommand*\@testdef[3]{%

1304 \def\reserved@a{#3}%

1305 \expandafter\ifx\csname#1@#2\endcsname\reserved@a

1306 \else

1307 \@tempswatrue

1308 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite it.
First we make the shorthands ‘safe’.

1309 \def\@testdef#1#2#3{%

1310 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which is
being checked.

1311 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname

Then we define \bbl@tempb just as \@newl@bel does it.

1312 \def\bbl@tempb{#3}%

1313 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.

1314 \ifx\bbl@tempa\relax

1315 \else

1316 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%

1317 \fi

We do the same for \bbl@tempb.

1318 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.

1319 \ifx\bbl@tempa\bbl@tempb

1320 \else

1321 \@tempswatrue

1322 \fi}

1323 \fi

\ref

\pageref

The same holds for the macro \ref that references a label and \pageref to reference a
page. So we redefine \ref and \pageref. While we change these macros, we make
them robust as well (if they weren’t already) to prevent problems if they should
become expanded at the wrong moment.

1324 \@expandtwoargs\in@{R}\bbl@opt@safe

1325 \ifin@

1326 \bbl@redefinerobust\ref#1{%

1327 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}

1328 \bbl@redefinerobust\pageref#1{%

1329 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}

1330 \else

1331 \let\org@ref\ref

1332 \let\org@pageref\pageref

1333 \fi

74

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex.
It is this internal macro that picks up the argument(s), so we redefine this internal
macro and leave \cite alone. The first argument is used for typesetting, so the
shorthands need only be deactivated in the second argument.

1334 \@expandtwoargs\in@{B}\bbl@opt@safe

1335 \ifin@

1336 \bbl@redefine\@citex[#1]#2{%

1337 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse

1338 \org@@citex[#1]{\@tempa}}

Unfortunately, the packages natbib and cite need a different definition of \@citex...
To begin with, natbib has a definition for \@citex with three arguments... We only
know that a package is loaded when \begin{document} is executed, so we need to
postpone the different redefinition.

1339 \AtBeginDocument{%

1340 \@ifpackageloaded{natbib}{%

Notice that we use \def here instead of \bbl@redefine because \org@@citex is
already defined and we don’t want to overwrite that definition (it would result in
parameter stack overflow because of a circular definition).
(Recent versions of natbib change dynamically \@citex, so PR4087 doesn’t seem
fixable in a simple way. Just load natbib before.)

1341 \def\@citex[#1][#2]#3{%

1342 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse

1343 \org@@citex[#1][#2]{\@tempa}}%

1344 }{}}

The package cite has a definition of \@citex where the shorthands need to be turned
off in both arguments.

1345 \AtBeginDocument{%

1346 \@ifpackageloaded{cite}{%

1347 \def\@citex[#1]#2{%

1348 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%

1349 }{}}

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references
from the database.

1350 \bbl@redefine\nocite#1{%

1351 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages such
as natbib or cite are not loaded its second argument is used to typeset the citation
label. In that case, this second argument can contain active characters but is used in
an environment where \@safe@activestrue is in effect. This switch needs to be reset
inside the \hbox which contains the citation label. In order to determine during .aux

file processing which definition of \bibcite is needed we define \bibcite in such a
way that it redefines itself with the proper definition.

1352 \bbl@redefine\bibcite{%

75

We call \bbl@cite@choice to select the proper definition for \bibcite. This new
definition is then activated.

1353 \bbl@cite@choice

1354 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither
natbib nor cite is loaded.

1355 \def\bbl@bibcite#1#2{%

1356 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.

1357 \def\bbl@cite@choice{%

First we give \bibcite its default definition.

1358 \global\let\bibcite\bbl@bibcite

Then, when natbib is loaded we restore the original definition of \bibcite .

1359 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

For cite we do the same.

1360 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%

Make sure this only happens once.

1361 \global\let\bbl@cite@choice\relax}

When a document is run for the first time, no .aux file is available, and \bibcite will
not yet be properly defined. In this case, this has to happen before the document
starts.

1362 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal LATEX macros called by \bibitem that write the citation label
on the .aux file.

1363 \bbl@redefine\@bibitem#1{%

1364 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

1365 \else

1366 \let\org@nocite\nocite

1367 \let\org@@citex\@citex

1368 \let\org@bibcite\bibcite

1369 \let\org@@bibitem\@bibitem

1370 \fi

7.20 Marks

\markright Because the output routine is asynchronous, we must pass the current language
attribute to the head lines, together with the text that is put into them. To achieve
this we need to adapt the definition of \markright and \markboth somewhat.

1371 \bbl@redefine\markright#1{%

76

First of all we temporarily store the language switching command, using an expanded
definition in order to get the current value of \languagename.

1372 \edef\bbl@tempb{\noexpand\protect

1373 \noexpand\foreignlanguage{\languagename}}%

Then, we check whether the argument is empty; if it is, we just make sure the scratch
token register is empty.

1374 \def\bbl@arg{#1}%

1375 \ifx\bbl@arg\@empty

1376 \toks@{}%

1377 \else

Next, we store the argument to \markright in the scratch token register, together
with the expansion of \bbl@tempb (containing the language switching command) as
defined before. This way these commands will not be expanded by using \edef later
on, and we make sure that the text is typeset using the correct language settings.
While doing so, we make sure that active characters that may end up in the mark are
not disabled by the output routine kicking in while \@safe@activestrue is in effect.

1378 \expandafter\toks@\expandafter{%

1379 \bbl@tempb{\protect\bbl@restore@actives#1}}%

1380 \fi

Then we define a temporary control sequence using \edef.

1381 \edef\bbl@tempa{%

When \bbl@tempa is executed, only \languagename will be expanded, because of the
way the token register was filled.

1382 \noexpand\org@markright{\the\toks@}}%

1383 \bbl@tempa

1384 }

\markboth

\@mkboth

The definition of \markboth is equivalent to that of \markright, except that we need
two token registers. The documentclasses report and book define and set the
headings for the page. While doing so they also store a copy of \markboth in
\@mkboth. Therefor we need to check whether \@mkboth has already been set. If so we
neeed to do that again with the new definition of \makrboth.

1385 \ifx\@mkboth\markboth

1386 \def\bbl@tempc{\let\@mkboth\markboth}

1387 \else

1388 \def\bbl@tempc{}

1389 \fi

Now we can start the new definition of \markboth

1390 \bbl@redefine\markboth#1#2{%

1391 \edef\bbl@tempb{\noexpand\protect

1392 \noexpand\foreignlanguage{\languagename}}%

1393 \def\bbl@arg{#1}%

1394 \ifx\bbl@arg\@empty

1395 \toks@{}%

1396 \else

77

1397 \expandafter\toks@\expandafter{%

1398 \bbl@tempb{\protect\bbl@restore@actives#1}}%

1399 \fi

1400 \def\bbl@arg{#2}%

1401 \ifx\bbl@arg\@empty

1402 \toks8{}%

1403 \else

1404 \expandafter\toks8\expandafter{%

1405 \bbl@tempb{\protect\bbl@restore@actives#2}}%

1406 \fi

1407 \edef\bbl@tempa{%

1408 \noexpand\org@markboth{\the\toks@}{\the\toks8}}%

1409 \bbl@tempa

1410 }

and copy it to \@mkboth if necesary.

1411 \bbl@tempc

7.21 Preventing clashes with other packages

7.21.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the page a
certain fragment of text appears on. This can be achieved by the following piece of
code:

% \ifthenelse{\isodd{\pageref{some:label}}}

% {code for odd pages}

% {code for even pages}

%

In order for this to work the argument of \isodd needs to be fully expandable. With
the above redefinition of \pageref it is not in the case of this example. To overcome
that, we add some code to the definition of \ifthenelse to make things work.
The first thing we need to do is check if the package ifthen is loaded. This should be
done at \begin{document} time.

1412 \@expandtwoargs\in@{R}\bbl@opt@safe

1413 \ifin@

1414 \AtBeginDocument{%

1415 \@ifpackageloaded{ifthen}{%

Then we can redefine \ifthenelse:

1416 \bbl@redefine@long\ifthenelse#1#2#3{%

We want to revert the definition of \pageref and \ref to their original definition for
the duration of \ifthenelse, so we first need to store their current meanings.

1417 \let\bbl@tempa\pageref

1418 \let\pageref\org@pageref

1419 \let\bbl@tempb\ref

1420 \let\ref\org@ref

78

Then we can set the \@safe@actives switch and call the original \ifthenelse. In
order to be able to use shorthands in the second and third arguments of \ifthenelse
the resetting of the switch and the definition of \pageref happens inside those
arguments. When the package wasn’t loaded we do nothing.

1421 \@safe@activestrue

1422 \org@ifthenelse{#1}{%

1423 \let\pageref\bbl@tempa

1424 \let\ref\bbl@tempb

1425 \@safe@activesfalse

1426 #2}{%

1427 \let\pageref\bbl@tempa

1428 \let\ref\bbl@tempb

1429 \@safe@activesfalse

1430 #3}%

1431 }%

1432 }{}%

1433 }

7.21.2 varioref

\@@vpageref

\vrefpagenum

\Ref

When the package varioref is in use we need to modify its internal command
\@@vpageref in order to prevent problems when an active character ends up in the
argument of \vref.

1434 \AtBeginDocument{%

1435 \@ifpackageloaded{varioref}{%

1436 \bbl@redefine\@@vpageref#1[#2]#3{%

1437 \@safe@activestrue

1438 \org@@@vpageref{#1}[#2]{#3}%

1439 \@safe@activesfalse}%

The same needs to happen for \vrefpagenum.

1440 \bbl@redefine\vrefpagenum#1#2{%

1441 \@safe@activestrue

1442 \org@vrefpagenum{#1}{#2}%

1443 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command wich uppercases the first
character of the reference text. In order to be able to do that it needs to access the
exandable form of \ref. So we employ a little trick here. We redefine the (internal)
command \Ref to call \org@ref instead of \ref. The disadvantgage of this solution
is that whenever the derfinition of \Ref changes, this definition needs to be updated as
well.

1444 \expandafter\def\csname Ref \endcsname#1{%

1445 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}

1446 }{}%

1447 }

1448 \fi

79

7.21.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with the
hhline package. The reason is that it uses the ‘:’ character which is made active by
the french support in babel. Therefor we need to reload the package when the ‘:’ is an
active character.
So at \begin{document} we check whether hhline is loaded.

1449 \AtEndOfPackage{%

1450 \AtBeginDocument{%

1451 \@ifpackageloaded{hhline}%

Then we check whether the expansion of \normal@char: is not equal to \relax.

1452 {\expandafter\ifx\csname normal@char\string:\endcsname\relax

1453 \else

In that case we simply reload the package. Note that this happens after the category
code of the @-sign has been changed to other, so we need to temporarily change it to
letter again.

1454 \makeatletter

1455 \def\@currname{hhline}\input{hhline.sty}\makeatother

1456 \fi}%

1457 {}}}

7.21.4 hyperref

\pdfstringdefDisableCommands A number of interworking problems between babel and hyperref are tackled by
hyperref itself. The following code was introduced to prevent some annoying
warnings but it broke bookmarks. This was quickly fixed in hyperref, which
essentially made it no-op. However, it will not removed for the moment because
hyperref is expecting it, .

1458 \AtBeginDocument{%

1459 \@ifundefined{pdfstringdefDisableCommands}%

1460 {}%

1461 {\pdfstringdefDisableCommands{%

1462 \languageshorthands{system}}%

1463 }%

1464 }

7.21.5 fancyhdr

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat differently as
the standard classes. A symptom of this is that the command \foreignlanguage

which babel adds to the marks can end up inside the argument of \MakeUppercase. To
prevent unexpected results we need to define \FOREIGNLANGUAGE here.

1465 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%

1466 \lowercase{\foreignlanguage{#1}}}

80

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first
argument is an encoding mnemonic, the second and third arguments are font family
names.

1467 \def\substitutefontfamily#1#2#3{%

1468 \lowercase{\immediate\openout15=#1#2.fd\relax}%

1469 \immediate\write15{%

1470 \string\ProvidesFile{#1#2.fd}%

1471 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}

1472 \space generated font description file]^^J

1473 \string\DeclareFontFamily{#1}{#2}{}^^J

1474 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J

1475 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J

1476 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J

1477 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J

1478 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J

1479 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J

1480 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J

1481 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J

1482 }%

1483 \closeout15

1484 }

This command should only be used in the preamble of a document.

1485 \@onlypreamble\substitutefontfamily

7.22 Encoding issues (part 2)

\TeX

\LaTeX

Because documents may use font encodings other than one of the latin encodings, we
make sure that the logos of TEX and LATEX always come out in the right encoding.

1486 \bbl@redefine\TeX{\textlatin{\org@TeX}}

1487 \bbl@redefine\LaTeX{\textlatin{\org@LaTeX}}

\nfss@catcodes LATEX’s font selection scheme sometimes wants to read font definition files in the
middle of processing the document. In order to guard against any characters having
the wrong \catcodes it always calls \nfss@catcodes before loading a file.
Unfortunately, the characters " and ’ are not dealt with. Therefor we have to add
them until LATEX does that itself.

1488 \bbl@add\nfss@catcodes{%

1489 \@makeother\’%

1490 \@makeother\"}

7.23 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition
file. This can be done by creating a file with the same name as the language definition
file, but with the extension .cfg. For instance the file norsk.cfg will be loaded when
the language definition file norsk.ldf is loaded.

81

For plain-based formats we don’t want to override the definition of \loadlocalcfg
from plain.def.

1491 \ifx\loadlocalcfg\@undefined

1492 \@ifpackagewith{babel}{noconfigs}%

1493 {\let\loadlocalcfg\@gobble}%

1494 {\def\loadlocalcfg#1{%

1495 \InputIfFileExists{#1.cfg}%

1496 {\typeout{*************************************^^J%

1497 * Local config file #1.cfg used^^J%

1498 *}}%

1499 \@empty}}

1500 \fi

Just to be compatible with LATEX 2.09 we add a few more lines of code:

1501 \ifx\@unexpandable@protect\@undefined

1502 \def\@unexpandable@protect{\noexpand\protect\noexpand}

1503 \long\def\protected@write#1#2#3{%

1504 \begingroup

1505 \let\thepage\relax

1506 #2%

1507 \let\protect\@unexpandable@protect

1508 \edef\reserved@a{\write#1{#3}}%

1509 \reserved@a

1510 \endgroup

1511 \if@nobreak\ifvmode\nobreak\fi\fi}

1512 \fi

Finally, the default is to use English as the main language.

1513 \ifx\l@english\@undefined

1514 \chardef\l@english\z@

1515 \fi

1516 \main@language{english}

1517 〈/core〉

Now that we’re sure that the code is seen by LATEX only, we have to find out what the
main (primary) document style is because we want to redefine some macros. This is
only necessary for releases of LATEX dated before December 1991. Therefor this part of
the code can optionally be included in babel.def by specifying the docstrip option
names.

1518 〈∗names〉
The standard styles can be distinguished by checking whether some macros are defined.
In table 1 an overview is given of the macros that can be used for this purpose.
The macros that have to be redefined for the report and book document styles
happen to be the same, so there is no need to distinguish between those two styles.

\doc@style First a parameter \doc@style is defined to identify the current document style. This
parameter might have been defined by a document style that already uses macros
instead of hard-wired texts, such as artikel1.sty [6], so the existence of \doc@style

82

article : both the \chapter and \opening macros are unde-
fined

report and book : the \chapter macro is defined and the \opening is
undefined

letter : the \chapter macro is undefined and the \opening

is defined

Table 1: How to determine the main document style

is checked. If this macro is undefined, i. e., if the document style is unknown and could
therefore contain hard-wired texts, \doc@style is defined to the default value ‘0’.

1519 \ifx\@undefined\doc@style

1520 \def\doc@style{0}%

This parameter is defined in the following if construction (see table 1):

1521 \ifx\@undefined\opening

1522 \ifx\@undefined\chapter

1523 \def\doc@style{1}%

1524 \else

1525 \def\doc@style{2}%

1526 \fi

1527 \else

1528 \def\doc@style{3}%

1529 \fi%

1530 \fi%

7.23.1 Redefinition of macros

Now here comes the real work: we start to redefine things and replace hard-wired
texts by macros. These redefinitions should be carried out conditionally, in case it has
already been done.
For the figure and table environments we have in all styles:

1531 \@ifundefined{figurename}{\def\fnum@figure{\figurename{} \thefigure}}{}

1532 \@ifundefined{tablename}{\def\fnum@table{\tablename{} \thetable}}{}

The rest of the macros have to be treated differently for each style. When \doc@style

still has its default value nothing needs to be done.

1533 \ifcase \doc@style\relax

1534 \or

This means that babel.def is read after the article style, where no \chapter and
\opening commands are defined15.
First we have the \tableofcontents, \listoffigures and \listoftables:

1535 \@ifundefined{contentsname}%

1536 {\def\tableofcontents{\section*{\contentsname\@mkboth

15A fact that was pointed out to me by Nico Poppelier and was already used in Piet van Oostrum’s
document style option nl.

83

1537 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}%

1538 \@starttoc{toc}}}{}

1539 \@ifundefined{listfigurename}%

1540 {\def\listoffigures{\section*{\listfigurename\@mkboth

1541 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}%

1542 \@starttoc{lof}}}{}

1543 \@ifundefined{listtablename}%

1544 {\def\listoftables{\section*{\listtablename\@mkboth

1545 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}%

1546 \@starttoc{lot}}}{}

Then the \thebibliography and \theindex environments.

1547 \@ifundefined{refname}%

1548 {\def\thebibliography#1{\section*{\refname

1549 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}}%

1550 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}%

1551 \leftmargin\labelwidth

1552 \advance\leftmargin\labelsep

1553 \usecounter{enumi}}%

1554 \def\newblock{\hskip.11em plus.33em minus.07em}%

1555 \sloppy\clubpenalty4000\widowpenalty\clubpenalty

1556 \sfcode‘\.=1000\relax}}{}

1557 \@ifundefined{indexname}%

1558 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi

1559 \columnseprule \z@

1560 \columnsep 35pt\twocolumn[\section*{\indexname}]%

1561 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}%

1562 \thispagestyle{plain}%

1563 \parskip\z@ plus.3pt\parindent\z@\let\item\@idxitem}}{}

The abstract environment:

1564 \@ifundefined{abstractname}%

1565 {\def\abstract{\if@twocolumn

1566 \section*{\abstractname}%

1567 \else \small

1568 \begin{center}%

1569 {\bf \abstractname\vspace{-.5em}\vspace{\z@}}%

1570 \end{center}%

1571 \quotation

1572 \fi}}{}

And last but not least, the macro \part:

1573 \@ifundefined{partname}%

1574 {\def\@part[#1]#2{\ifnum \c@secnumdepth >\m@ne

1575 \refstepcounter{part}%

1576 \addcontentsline{toc}{part}{\thepart

1577 \hspace{1em}#1}\else

1578 \addcontentsline{toc}{part}{#1}\fi

1579 {\parindent\z@ \raggedright

1580 \ifnum \c@secnumdepth >\m@ne

84

1581 \Large \bf \partname{} \thepart

1582 \par \nobreak

1583 \fi

1584 \huge \bf

1585 #2\markboth{}{}\par}%

1586 \nobreak

1587 \vskip 3ex\@afterheading}%

1588 }{}

This is all that needs to be done for the article style.

1589 \or

The next case is formed by the two styles book and report. Basically we have to do
the same as for the article style, except now we must also change the \chapter

command.
The tables of contents, figures and tables:

1590 \@ifundefined{contentsname}%

1591 {\def\tableofcontents{\@restonecolfalse

1592 \if@twocolumn\@restonecoltrue\onecolumn

1593 \fi\chapter*{\contentsname\@mkboth

1594 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}%

1595 \@starttoc{toc}%

1596 \csname if@restonecol\endcsname\twocolumn

1597 \csname fi\endcsname}}{}

1598 \@ifundefined{listfigurename}%

1599 {\def\listoffigures{\@restonecolfalse

1600 \if@twocolumn\@restonecoltrue\onecolumn

1601 \fi\chapter*{\listfigurename\@mkboth

1602 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}%

1603 \@starttoc{lof}%

1604 \csname if@restonecol\endcsname\twocolumn

1605 \csname fi\endcsname}}{}

1606 \@ifundefined{listtablename}%

1607 {\def\listoftables{\@restonecolfalse

1608 \if@twocolumn\@restonecoltrue\onecolumn

1609 \fi\chapter*{\listtablename\@mkboth

1610 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}%

1611 \@starttoc{lot}%

1612 \csname if@restonecol\endcsname\twocolumn

1613 \csname fi\endcsname}}{}

Again, the bibliography and index environments; notice that in this case we use
\bibname instead of \refname as in the definitions for the article style. The reason
for this is that in the article document style the term ‘References’ is used in the
definition of \thebibliography. In the report and book document styles the term
‘Bibliography’ is used.

1614 \@ifundefined{bibname}%

1615 {\def\thebibliography#1{\chapter*{\bibname

1616 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}}%

1617 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}%

85

1618 \leftmargin\labelwidth \advance\leftmargin\labelsep

1619 \usecounter{enumi}}%

1620 \def\newblock{\hskip.11em plus.33em minus.07em}%

1621 \sloppy\clubpenalty4000\widowpenalty\clubpenalty

1622 \sfcode‘\.=1000\relax}}{}

1623 \@ifundefined{indexname}%

1624 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi

1625 \columnseprule \z@

1626 \columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}]%

1627 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}%

1628 \thispagestyle{plain}%

1629 \parskip\z@ plus.3pt\parindent\z@ \let\item\@idxitem}}{}

Here is the abstract environment:

1630 \@ifundefined{abstractname}%

1631 {\def\abstract{\titlepage

1632 \null\vfil

1633 \begin{center}%

1634 {\bf \abstractname}%

1635 \end{center}}}{}

And last but not least the \chapter, \appendix and \part macros.

1636 \@ifundefined{chaptername}{\def\@chapapp{\chaptername}}{}

1637 %

1638 \@ifundefined{appendixname}%

1639 {\def\appendix{\par

1640 \setcounter{chapter}{0}%

1641 \setcounter{section}{0}%

1642 \def\@chapapp{\appendixname}%

1643 \def\thechapter{\Alph{chapter}}}}{}

1644 %

1645 \@ifundefined{partname}%

1646 {\def\@part[#1]#2{\ifnum \c@secnumdepth >-2\relax

1647 \refstepcounter{part}%

1648 \addcontentsline{toc}{part}{\thepart

1649 \hspace{1em}#1}\else

1650 \addcontentsline{toc}{part}{#1}\fi

1651 \markboth{}{}%

1652 {\centering

1653 \ifnum \c@secnumdepth >-2\relax

1654 \huge\bf \partname{} \thepart

1655 \par

1656 \vskip 20pt \fi

1657 \Huge \bf

1658 #1\par}\@endpart}}{}%

1659 \or

Now we address the case where babel.def is read after the letter style. The letter

document style defines the macro \opening and some other macros that are specific to
letter. This means that we have to redefine other macros, compared to the previous
two cases.

86

First two macros for the material at the end of a letter, the \cc and \encl macros.

1660 \@ifundefined{ccname}%

1661 {\def\cc#1{\par\noindent

1662 \parbox[t]{\textwidth}%

1663 {\@hangfrom{\rm \ccname : }\ignorespaces #1\strut}\par}}{}

1664 \@ifundefined{enclname}%

1665 {\def\encl#1{\par\noindent

1666 \parbox[t]{\textwidth}%

1667 {\@hangfrom{\rm \enclname : }\ignorespaces #1\strut}\par}}{}

The last thing we have to do here is to redefine the headings pagestyle:

1668 \@ifundefined{headtoname}%

1669 {\def\ps@headings{%

1670 \def\@oddhead{\sl \headtoname{} \ignorespaces\toname \hfil

1671 \@date \hfil \pagename{} \thepage}%

1672 \def\@oddfoot{}}}{}

This was the last of the four standard document styles, so if \doc@style has another
value we do nothing and just close the if construction.

1673 \fi

1674 〈/names〉
Here ends the code that can be optionally included when a version of LATEX is in use
that is dated before December 1991.
We also need to redefine a number of commands to ensure that the right font encoding
is used, but this can’t be done before babel.def is loaded.

7.24 Multiple languages

\language Plain TEX version 3.0 provides the primitive \language that is used to store the
current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter.

1675 〈∗kernel | patterns〉
1676 \ifx\language\@undefined

1677 \csname newcount\endcsname\language

1678 \fi

\last@language Another counter is used to store the last language defined. For pre-3.0 formats an
extra counter has to be allocated.

\addlanguage To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage, in a
pre-3.0 environment a similar macro has to be provided. For both cases a new macro
is defined here, because the original \newlanguage was defined to be \outer.
For a format based on plain version 2.x, the definition of \newlanguage can not be
copied because \count 19 is used for other purposes in these formats. Therefor
\addlanguage is defined using a definition based on the macros used to define
\newlanguage in plain TEX version 3.0.
For formats based on plain version 3.0 the definition of \newlanguage can be simply
copied, removing \outer.

87

1679 \ifx\newlanguage\@undefined

1680 \csname newcount\endcsname\last@language

1681 \def\addlanguage#1{%

1682 \global\advance\last@language\@ne

1683 \ifnum\last@language<\@cclvi

1684 \else

1685 \errmessage{No room for a new \string\language!}%

1686 \fi

1687 \global\chardef#1\last@language

1688 \wlog{\string#1 = \string\language\the\last@language}}

plain TEX version 3.0 uses \count 19 for this purpose.

1689 \else

1690 \countdef\last@language=19

1691 \def\addlanguage{\alloc@9\language\chardef\@cclvi}

1692 \fi

1693 〈/kernel | patterns〉

\adddialect The macro \adddialect can be used to add the name of a dialect or variant language,
for which an already defined hyphenation table can be used.

1694 〈∗kernel〉
1695 \def\adddialect#1#2{%

1696 \global\chardef#1#2\relax

1697 \bbl@usehooks{adddialect}{{#1}{#2}}%

1698 \wlog{\string#1 = a dialect from \string\language#2}}

\bbl@iflanguage executes code only of the language exists. Otherwise raises and
error.
The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if
casing (lc/uc) is wrong. It’s intented to fix a long-standing bug when
\foreignlanguage and the like appear in a \MakeXXXcase. However, a lowercase form
is not imposed to improve backward compatibility (perhaps you defined a language
named MYLANG, but unfortunately mixed case names cannot be trapped).

1699 \def\bbl@fixname#1{%

1700 \begingroup

1701 \def\bbl@tempe{l@}%

1702 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%

1703 \bbl@tempd

1704 {\lowercase\expandafter{\bbl@tempd}%

1705 {\uppercase\expandafter{\bbl@tempd}%

1706 \@empty

1707 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

1708 \uppercase\expandafter{\bbl@tempd}}}%

1709 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

1710 \lowercase\expandafter{\bbl@tempd}}}%

1711 \@empty

1712 \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%

1713 \bbl@tempd}

1714 \def\bbl@iflanguage#1{%

1715 \@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

88

\iflanguage Users might want to test (in a private package for instance) which language is
currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on the
result of the comparison, it executes either the second or the third argument.

1716 \def\iflanguage#1{%

1717 \bbl@iflanguage{#1}{%

1718 \ifnum\csname l@#1\endcsname=\language

1719 \expandafter\@firstoftwo

1720 \else

1721 \expandafter\@secondoftwo

1722 \fi}}

\selectlanguage The macro \selectlanguage checks whether the language is already defined before it
performs its actual task, which is to update \language and activate language-specific
definitions.
To allow the call of \selectlanguage either with a control sequence name or with a
simple string as argument, we have to use a trick to delete the optional escape
character.
To convert a control sequence to a string, we use the \string primitive. Next we have
to look at the first character of this string and compare it with the escape character.
Because this escape character can be changed by setting the internal integer
\escapechar to a character number, we have to compare this number with the
character of the string. To do this we have to use TEX’s backquote notation to specify
the character as a number.
If the first character of the \string’ed argument is the current escape character, the
comparison has stripped this character and the rest in the ‘then’ part consists of the
rest of the control sequence name. Otherwise we know that either the argument is not
a control sequence or \escapechar is set to a value outside of the character
range 0–255.
If the user gives an empty argument, we provide a default argument for \string. This
argument should expand to nothing.

1723 \let\bbl@select@type\z@

1724 \edef\selectlanguage{%

1725 \noexpand\protect

1726 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it
expands to \protect\selectlanguage . Therefor, we have to make sure that a macro
\protect exists. If it doesn’t it is \let to \relax.

1727 \ifx\@undefined\protect\let\protect\relax\fi

As LATEX 2.09 writes to files expanded whereas LATEX 2ε takes care not to expand the
arguments of \write statements we need to be a bit clever about the way we add
information to .aux files. Therefor we introduce the macro \xstring which should
expand to the right amount of \string’s.

1728 \ifx\documentclass\@undefined

89

1729 \def\xstring{\string\string\string}

1730 \else

1731 \let\xstring\string

1732 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of
contents etc. in the correct language environment.

\bbl@pop@language But when the language change happens inside a group the end of the group doesn’t
write anything to the auxiliary files. Therefor we need TEX’s aftergroup mechanism
to help us. The command \aftergroup stores the token immediately following it to
be executed when the current group is closed. So we define a temporary control
sequence \bbl@pop@language to be executed at the end of the group. It calls
\bbl@set@language with the name of the current language as its argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as more levels
are used it is no longer adequate. For that case we need to keep track of the nested
languages using a stack mechanism. This stack is called \bbl@language@stack and
initially empty.

1733 \def\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to
retrieve the information afterwards.

\bbl@push@language

\bbl@pop@language

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

1734 \def\bbl@push@language{%

1735 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}}

Retrieving information from the stack is a little bit less simple, as we need to remove
the element from the stack while storing it in the macro \languagename. For this we
first define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string (delimited by ‘-’) in its third
argument.

1736 \def\bbl@pop@lang#1+#2-#3{%

1737 \edef\languagename{#1}\xdef#3{#2}}

The reason for the somewhat weird arrangement of arguments to the helper function is
the fact it is called in the following way. This means that before \bbl@pop@lang is
executed TEX first expands the stack, stored in \bbl@language@stack. The result of
that is that the argument string of \bbl@pop@lang contains one or more language
names, each followed by a ‘+’-sign (zero language names won’t occur as this macro
will only be called after something has been pushed on the stack) followed by the
‘-’-sign and finally the reference to the stack.

1738 \def\bbl@pop@language{%

1739 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack

1740 \expandafter\bbl@set@language\expandafter{\languagename}}

90

Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs
switching.

1741 \expandafter\def\csname selectlanguage \endcsname#1{%

1742 \bbl@push@language

1743 \aftergroup\bbl@pop@language

1744 \bbl@set@language{#1}}

\bbl@set@language The macro \bbl@set@language takes care of switching the language environment and
of writing entries on the auxiliary files. For historial reasons, language names can be
either language of \language. To catch either form a trick is used, but unfortunately
as a side effect the catcodes of letters in \languagename are not well defined. The list
of auxiliary files can be extended by redefining \BabelContentsFiles, but make sure
they are loaded inside a group (as aux, toc, lof, and lot do) or the last language of
the document will remain active afterwards.
We also write a command to change the current language in the auxiliary files.

1745 \def\BabelContentsFiles{toc,lof,lot}%

1746 \def\bbl@set@language#1{%

1747 \edef\languagename{%

1748 \ifnum\escapechar=\expandafter‘\string#1\@empty

1749 \else\string#1\@empty\fi}%

1750 \select@language{\languagename}%

1751 \expandafter\ifx\csname date\languagename\endcsname\relax\else

1752 \if@filesw

1753 \protected@write\@auxout{}{\string\select@language{\languagename}}%

1754 \bbl@for\bbl@tempa\BabelContentsFiles{%

1755 \addtocontents{\bbl@tempa}{\xstring\select@language{\languagename}}}%

1756 \bbl@usehooks{write}{}%

1757 \fi

1758 \fi}

1759 \def\select@language#1{%

1760 \edef\languagename{#1}%

1761 \bbl@fixname\languagename

1762 \bbl@iflanguage\languagename{%

1763 \expandafter\ifx\csname date\languagename\endcsname\relax

1764 \bbl@error

1765 {You haven’t loaded the language #1\space yet}%

1766 {You may proceed, but expect unexpected results}%

1767 \else

1768 \let\bbl@select@type\z@

1769 \expandafter\bbl@switch\expandafter{\languagename}%

1770 \fi}}

1771 % A bit of optmization:

1772 \def\select@language@x#1{%

1773 \ifcase\bbl@select@type

1774 \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%

1775 \else

1776 \select@language{#1}%

91

1777 \fi}

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring TEX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.
Then we have to redefine \originalTeX to compensate for the things that have been
activated. To save memory space for the macro definition of \originalTeX, we
construct the control sequence name for the \noextras〈lang〉 command at definition
time by expanding the \csname primitive.
Now activate the language-specific definitions. This is done by constructing the names
of three macros by concatenating three words with the argument of \selectlanguage,
and calling these macros.
The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat
different. First we save their current values, then we check if \〈lang〉hyphenmins is
defined. If it is not, we set default values (2 and 3), otherwise the values in
\〈lang〉hyphenmins will be used.

1778 \def\bbl@switch#1{%

1779 \originalTeX

1780 \expandafter\def\expandafter\originalTeX\expandafter{%

1781 \csname noextras#1\endcsname

1782 \let\originalTeX\@empty

1783 \babel@beginsave}%

1784 \languageshorthands{none}%

1785 \ifcase\bbl@select@type

1786 \csname captions#1\endcsname

1787 \csname date#1\endcsname

1788 \fi

1789 \bbl@usehooks{beforeextras}{}%

1790 \csname extras#1\endcsname\relax

1791 \bbl@usehooks{afterextras}{}%

1792 \bbl@patterns{#1}%

1793 \babel@savevariable\lefthyphenmin

1794 \babel@savevariable\righthyphenmin

1795 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

1796 \set@hyphenmins\tw@\thr@@\relax

1797 \else

1798 \expandafter\expandafter\expandafter\set@hyphenmins

1799 \csname #1hyphenmins\endcsname\relax

1800 \fi}

1801 \def\bbl@ifsamestring#1#2{%

1802 \protected@edef\bbl@tempb{#1}%

1803 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

1804 \protected@edef\bbl@tempc{#2}%

1805 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%

1806 \ifx\bbl@tempb\bbl@tempc

1807 \expandafter\@firstoftwo

1808 \else

1809 \expandafter\@secondoftwo

92

1810 \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document which
mixes left-to-right and right-to-left typesetting you have to use this environment in
order to let things work as you expect them to.
The first thing this environment does is store the name of the language in
\languagename; it then calls \selectlanguage to switch on everything that is
needed for this language The \ignorespaces command is necessary to hide the
environment when it is entered in horizontal mode.

1811 \long\def\otherlanguage#1{%

1812 \csname selectlanguage \endcsname{#1}%

1813 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called
in horizontal mode.

1814 \long\def\endotherlanguage{%

1815 \global\@ignoretrue\ignorespaces}

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from a
different language needs to be typeset, but without changing the translation of words
such as ‘figure’. This environment makes use of \foreign@language.

1816 \expandafter\def\csname otherlanguage*\endcsname#1{%

1817 \foreign@language{#1}}

At the end of the environment we need to switch off the extra definitions. The
grouping mechanism of the environment will take care of resetting the correct
hyphenation rules and “extras”.

1818 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage

command. This command takes two arguments, the first argument is the name of the
language to use for typesetting the text specified in the second argument.
Unlike \selectlanguage this command doesn’t switch everything, it only switches the
hyphenation rules and the extra definitions for the language specified. It does this
within a group and assumes the \extras〈lang〉 command doesn’t make any \global

changes. The coding is very similar to part of \selectlanguage.

1819 \edef\foreignlanguage{%

1820 \noexpand\protect

1821 \expandafter\noexpand\csname foreignlanguage \endcsname}

1822 \expandafter\def\csname foreignlanguage \endcsname#1#2{%

1823 \begingroup

1824 \foreign@language{#1}%

1825 #2%

1826 \endgroup}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environment.
First we need to store the name of the language and check that it is a known language.
Then it just calls bbl@switch.

93

1827 \def\foreign@language#1{%

1828 \edef\languagename{#1}%

1829 \bbl@fixname\languagename

1830 \bbl@iflanguage\languagename{%

1831 \expandafter\ifx\csname date\languagename\endcsname\relax

1832 \bbl@warning

1833 {You haven’t loaded the language #1\space yet\\%

1834 I’ll proceed, but expect unexpected results.\\%

1835 Reported}%

1836 \fi

1837 \let\bbl@select@type\@ne

1838 \expandafter\bbl@switch\expandafter{\languagename}}}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If
special hyphenation patterns are available specifically for the current font encoding,
use them instead of the default.
It also sets hyphenation exceptions, but only once, because they are global (here
language \lccode’s has been set, too). \bbl@hyphenation@ is set to relax until the
very first \babelhyphenation, so do nothing with this value. If the exceptions for a
language (by its number, not its name, so that :ENC is taken into account) has been
set, then use \hyphenation with both global and language exceptions and empty the
latter to mark they must not be set again.

1839 \let\bbl@hyphlist\@empty

1840 \let\bbl@hyphenation@\relax

1841 \def\bbl@patterns#1{%

1842 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

1843 \csname l@#1\endcsname

1844 \edef\bbl@tempa{#1}%

1845 \else

1846 \csname l@#1:\f@encoding\endcsname

1847 \edef\bbl@tempa{#1:\f@encoding}%

1848 \fi\relax

1849 \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%

1850 \@ifundefined{bbl@hyphenation@}{}{%

1851 \begingroup

1852 \@expandtwoargs\in@{,\number\language,}{,\bbl@hyphlist}%

1853 \ifin@\else

1854 \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%

1855 \hyphenation{%

1856 \bbl@hyphenation@

1857 \@ifundefined{bbl@hyphenation@#1}%

1858 \@empty

1859 {\space\csname bbl@hyphenation@#1\endcsname}}%

1860 \xdef\bbl@hyphlist{\bbl@hyphlist\number\language,}%

1861 \fi

1862 \endgroup}}

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules. This
environment does not change \languagename and when the hyphenation rules

94

specified were not loaded it has no effect. Note however, \lccode’s and font encodings
are not set at all, so in most cases you should use otherlanguage*.

1863 \def\hyphenrules#1{%

1864 \edef\languagename{#1}%

1865 \bbl@fixname\languagename

1866 \bbl@iflanguage\languagename{%

1867 \expandafter\bbl@patterns\expandafter{\languagename}%

1868 \languageshorthands{none}%

1869 \expandafter\ifx\csname\languagename hyphenmins\endcsname\relax

1870 \set@hyphenmins\tw@\thr@@\relax

1871 \else

1872 \expandafter\expandafter\expandafter\set@hyphenmins

1873 \csname\languagename hyphenmins\endcsname\relax

1874 \fi}}

1875 \let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to
provide a default setting for the hyphenation parameters \lefthyphenmin and
\righthyphenmin. If the macro \〈lang〉hyphenmins is already defined this command
has no effect.

1876 \def\providehyphenmins#1#2{%

1877 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

1878 \@namedef{#1hyphenmins}{#2}%

1879 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects two
values as its argument.

1880 \def\set@hyphenmins#1#2{\lefthyphenmin#1\relax\righthyphenmin#2\relax}

\LdfInit This macro is defined in two versions. The first version is to be part of the ‘kernel’ of
babel, ie. the part that is loaded in the format; the second version is defined in
babel.def. The version in the format just checks the category code of the ampersand
and then loads babel.def.
The category code of the ampersand is restored and the macro calls itself again with
the new definition from babel.def

1881 \def\LdfInit{%

1882 \chardef\atcatcode=\catcode‘\@

1883 \catcode‘\@=11\relax

1884 \input babel.def\relax

1885 \catcode‘\@=\atcatcode \let\atcatcode\relax

1886 \LdfInit}

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to be
expandable we \let it to \@empty instead of \relax.

1887 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the
macro which initialises the save mechanism, \babel@beginsave, is not considered to
be undefined.

95

1888 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

\@nolanerr

\@nopatterns

The babel package will signal an error when a documents tries to select a language
that hasn’t been defined earlier. When a user selects a language for which no
hyphenation patterns were loaded into the format he will be given a warning about
that fact. We revert to the patterns for \language=0 in that case. In most formats
that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as expected.
An error message is issued in that case.
When the format knows about \PackageError it must be LATEX 2ε, so we can safely
use its error handling interface. Otherwise we’ll have to ‘keep it simple’.

1889 \edef\bbl@nulllanguage{\string\language=0}

1890 \ifx\PackageError\@undefined

1891 \def\bbl@error#1#2{%

1892 \begingroup

1893 \newlinechar=‘\^^J

1894 \def\\{^^J(babel) }%

1895 \errhelp{#2}\errmessage{\\#1}%

1896 \endgroup}

1897 \def\bbl@warning#1{%

1898 \begingroup

1899 \newlinechar=‘\^^J

1900 \def\\{^^J(babel) }%

1901 \message{\\#1}%

1902 \endgroup}

1903 \def\bbl@info#1{%

1904 \begingroup

1905 \newlinechar=‘\^^J

1906 \def\\{^^J}%

1907 \wlog{#1}%

1908 \endgroup}

1909 \else

1910 \def\bbl@error#1#2{%

1911 \begingroup

1912 \def\\{\MessageBreak}%

1913 \PackageError{babel}{#1}{#2}%

1914 \endgroup}

1915 \def\bbl@warning#1{%

1916 \begingroup

1917 \def\\{\MessageBreak}%

1918 \PackageWarning{babel}{#1}%

1919 \endgroup}

1920 \def\bbl@info#1{%

1921 \begingroup

1922 \def\\{\MessageBreak}%

1923 \PackageInfo{babel}{#1}%

1924 \endgroup}

1925 \fi

96

1926 \def\@nolanerr#1{%

1927 \bbl@error

1928 {You haven’t defined the language #1\space yet}%

1929 {Your command will be ignored, type <return> to proceed}}

1930 \def\@nopatterns#1{%

1931 \bbl@warning

1932 {No hyphenation patterns were preloaded for\\%

1933 the language ‘#1’ into the format.\\%

1934 Please, configure your TeX system to add them and\\%

1935 rebuild the format. Now I will use the patterns\\%

1936 preloaded for \bbl@nulllanguage\space instead}}

1937 \let\bbl@usehooks\@gobbletwo

1938 〈/kernel〉

The following code is meant to be read by iniTEX because it should instruct TEX to
read hyphenation patterns. To this end the docstrip option patterns can be used to
include this code in the file hyphen.cfg. Code is at lower level than the rest.
toks8 stores info to be shown when the program is run.

1939 〈∗patterns〉
1940 \toks8{Babel <3.9f> and hyphenation patterns for }%

\process@line Each line in the file language.dat is processed by \process@line after it is read. The
first thing this macro does is to check whether the line starts with =. When the first
token of a line is an =, the macro \process@synonym is called; otherwise the macro
\process@language will continue.

1941 \def\process@line#1#2 #3 #4 {%

1942 \ifx=#1%

1943 \process@synonym{#2}%

1944 \else

1945 \process@language{#1#2}{#3}{#4}%

1946 \fi

1947 \ignorespaces}

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token
register to begin with. \bbl@languages is also set to empty.

1948 \toks@{}

1949 \def\bbl@languages{}

When no languages have been loaded yet, the name following the = will be a synonym
for hyphenation register 0. So, it is stored in a token register and executed when the
first pattern file has been processed. (The \relax just helps to the \if below catching
synonyms without a language.)
Otherwise the name will be a synonym for the language loaded last.
We also need to copy the hyphenmin parameters for the synonym.

1950 \def\process@synonym#1{%

1951 \ifnum\last@language=\m@ne

1952 \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%

1953 \else

1954 \expandafter\chardef\csname l@#1\endcsname\last@language

97

1955 \wlog{\string\l@#1=\string\language\the\last@language}%

1956 \expandafter\let\csname #1hyphenmins\expandafter\endcsname

1957 \csname\languagename hyphenmins\endcsname

1958 \let\bbl@elt\relax

1959 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}%

1960 \fi}

\process@language The macro \process@language is used to process a non-empty line from the
‘configuration file’. It has three arguments, each delimited by white space. The first
argument is the ‘name’ of a language; the second is the name of the file that contains
the patterns. The optional third argument is the name of a file containing hyphenation
exceptions.
The first thing to do is call \addlanguage to allocate a pattern register and to make
that register ‘active’. Then the ‘name’ of the language that will be loaded now is
added to the token register \toks8. and finally the pattern file is read.
For some hyphenation patterns it is needed to load them with a specific font encoding
selected. This can be specified in the file language.dat by adding for instance ‘:T1’ to
the name of the language. The macro \bbl@get@enc extracts the font encoding from
the language name and stores it in \bbl@hyph@enc. The latter can be used in
hyphenation files if you need to set a behaviour depending on the given encoding (it is
set to empty if no encoding is given).
Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefor we try to detect such
assignments and store them in the \〈lang〉hyphenmins macro. When no assignments
were made we provide a default setting.
Some pattern files contain changes to the \lccode en \uccode arrays. Such changes
should remain local to the language; therefor we process the pattern file in a group;
the \patterns command acts globally so its effect will be remembered.
Then we globally store the settings of \lefthyphenmin and \righthyphenmin and
close the group.
When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third argument is
not empty and when it does not contain a space token. (Note however there is no need
to save hyphenation exceptions into the format.)
\bbl@languages saves a snapshot of the loaded languagues in the form
\bbl@elt{〈language-name〉}{〈number〉} {〈patterns-file〉}{〈exceptions-file〉}. Note the
last 2 arguments are empty in ‘dialects’ defined in language.dat with =. Note also the
language name can have encoding info.
Finally, if the counter \language is equal to zero we execute the synonyms stored.

1961 \def\process@language#1#2#3{%

1962 \expandafter\addlanguage\csname l@#1\endcsname

1963 \expandafter\language\csname l@#1\endcsname

1964 \edef\languagename{#1}%

1965 \bbl@hook@everylanguage{#1}%

1966 \bbl@get@enc#1::\@@@

1967 \begingroup

1968 \lefthyphenmin\m@ne

98

1969 \bbl@hook@loadpatterns{#2}%

1970 \ifnum\lefthyphenmin=\m@ne

1971 \else

1972 \expandafter\xdef\csname #1hyphenmins\endcsname{%

1973 \the\lefthyphenmin\the\righthyphenmin}%

1974 \fi

1975 \endgroup

1976 \def\bbl@tempa{#3}%

1977 \ifx\bbl@tempa\@empty\else

1978 \bbl@hook@loadexceptions{#3}%

1979 \fi

1980 \let\bbl@elt\relax

1981 \edef\bbl@languages{%

1982 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa}}%

1983 \ifnum\the\language=\z@

1984 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

1985 \set@hyphenmins\tw@\thr@@\relax

1986 \else

1987 \expandafter\expandafter\expandafter\set@hyphenmins

1988 \csname #1hyphenmins\endcsname

1989 \fi

1990 \the\toks@

1991 \toks@{}%

1992 \fi}

\bbl@get@enc

\bbl@hyph@enc

The macro \bbl@get@enc extracts the font encoding from the language name and
stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

1993 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way.
Besides luatex, format specific configuration files are taken into account.

1994 \def\bbl@hook@everylanguage#1{}

1995 \def\bbl@hook@loadpatterns#1{\input #1\relax}

1996 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns

1997 \let\bbl@hook@loadkernel\bbl@hook@loadpatterns

1998 \begingroup

1999 \def\AddBabelHook#1#2{%

2000 \expandafter\ifx\csname bbl@hook@#2\endcsname\relax

2001 \def\next{\toks1}%

2002 \else

2003 \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%

2004 \fi

2005 \next}

2006 \ifx\directlua\@undefined

2007 \ifx\XeTeXinputencoding\@undefined\else

2008 \input xebabel.def

2009 \fi

2010 \else

2011 \input luababel.def

99

2012 \fi

2013 \openin1 = babel-\bbl@format.cfg

2014 \ifeof1

2015 \else

2016 \input babel-\bbl@format.cfg\relax

2017 \fi

2018 \closein1

2019 \endgroup

2020 \bbl@hook@loadkernel{switch.def}

\readconfigfile The configuration file can now be opened for reading.

2021 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will
be informed about this.

2022 \def\languagename{english}%

2023 \ifeof1

2024 \message{I couldn’t find the file language.dat,\space

2025 I will try the file hyphen.tex}

2026 \input hyphen.tex\relax

2027 \chardef\l@english\z@

2028 \else

Pattern registers are allocated using count register \last@language. Its initial value
is 0. The definition of the macro \newlanguage is such that it first increments the
count register and then defines the language. In order to have the first patterns loaded
in pattern register number 0 we initialize \last@language with the value −1.

2029 \last@language\m@ne

We now read lines from the file until the end is found

2030 \loop

While reading from the input, it is useful to switch off recognition of the end-of-line
character. This saves us stripping off spaces from the contents of the control sequence.

2031 \endlinechar\m@ne

2032 \read1 to \bbl@line

2033 \endlinechar‘\^^M

If the file has reached its end, exit from the loop here. If not, empty lines are skipped.
Add 3 space characters to the end of \bbl@line. This is needed to be able to
recognize the arguments of \process@line later on. The default language should be
the very first one.

2034 \if T\ifeof1F\fi T\relax

2035 \ifx\bbl@line\@empty\else

2036 \edef\bbl@line{\bbl@line\space\space\space}%

2037 \expandafter\process@line\bbl@line\relax

2038 \fi

2039 \repeat

100

Check for the end of the file. We must reverse the test for \ifeof without \else.
Then reactivate the default patterns,

2040 \begingroup

2041 \def\bbl@elt#1#2#3#4{%

2042 \global\language=#2\relax

2043 \gdef\languagename{#1}%

2044 \def\bbl@elt##1##2##3##4{}}%

2045 \bbl@languages

2046 \endgroup

2047 \fi

and close the configuration file.

2048 \closein1

We add a message about the fact that babel is loaded in the format and with which
language patterns to the \everyjob register.

2049 \if/\the\toks@/\else

2050 \errhelp{language.dat loads no language, only synonyms}

2051 \errmessage{Orphan language synonym}

2052 \fi

2053 \ifx\addto@hook\@undefined

2054 \else

2055 \edef\bbl@tempa{%

2056 \noexpand\typeout{\the\toks8 \the\last@language\space languages

2057 loaded.}}%

2058 \expandafter\addto@hook\expandafter\everyjob\expandafter{\bbl@tempa}

2059 \fi

Also remove some macros from memory and raise an error if \toks@ is not empty.
Finally load switch.def, but the letter is not required and the line inputting it may
be commented out.

2060 \let\bbl@line\@undefined

2061 \let\process@line\@undefined

2062 \let\process@synonym\@undefined

2063 \let\process@language\@undefined

2064 \let\bbl@get@enc\@undefined

2065 \let\bbl@hyph@enc\@undefined

2066 \let\bbl@tempa\@undefined

2067 \let\bbl@hook@loadkernel\@undefined

2068 \let\bbl@hook@everylanguage\@undefined

2069 \let\bbl@hook@loadpatterns\@undefined

2070 \let\bbl@hook@loadexceptions\@undefined

2071 〈/patterns〉
Here the code for iniTEX ends.

8 The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to
nohyphenation.

101

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than once,
checking the category code of the @ sign, etc.

2072 〈∗nil〉
2073 \LdfInit{nil}{datenil}

When this file is read as an option, i.e. by the \usepackage command, nil could be
an ‘unknown’ language in which case we have to make it known.

2074 \ifx\l@nohyphenation\@undefined

2075 \@nopatterns{nil}

2076 \adddialect\l@nil0

2077 \else

2078 \let\l@nil\l@nohyphenation

2079 \fi

This macro is used to store the values of the hyphenation parameters \lefthyphenmin
and \righthyphenmin.

2080 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’ language.

\captionnil

\datenil 2081 \let\captionsnil\@empty

2082 \let\datenil\@empty

The macro \ldf@finish takes care of looking for a configuration file, setting the main
language to be switched on at \begin{document} and resetting the category code of @
to its original value.

2083 \ldf@finish{nil}

2084 〈/nil〉

9 Support for Plain TEX

9.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to
designate his version of the american English hyphenation patterns, a new solution
has to be found in order to be able to load hyphenation patterns for other languages in
a plain-based TEX-format. When asked he responded:

That file name is ”sacred”, and if anybody changes it they will cause severe
upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they
mustn’t diddle with hyphen.tex (or plain.tex except to preload additional
fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around
plain.tex and lplain.tex to acheive the desired effect, based on the babel package.

102

If you load each of them with iniTEX, you will get a file called either bplain.fmt or
blplain.fmt, which you can use as replacements for plain.fmt and lplain.fmt.
As these files are going to be read as the first thing iniTEX sees, we need to set some
category codes just to be able to change the definition of \input

2085 〈∗bplain | blplain〉
2086 \catcode‘\{=1 % left brace is begin-group character

2087 \catcode‘\}=2 % right brace is end-group character

2088 \catcode‘\#=6 % hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on TEX’s input path
by trying to open it for reading...

2089 \openin 0 hyphen.cfg

If the file wasn’t found the following test turns out true.

2090 \ifeof0

2091 \else

When hyphen.cfg could be opened we make sure that it will be read instead of the
file hyphen.tex which should (according to Don Knuth’s ruling) contain the american
English hyphenation patterns and nothing else.
We do this by first saving the original meaning of \input (and I use a one letter
control sequence for that so as not to waste multi-letter control sequence on this in the
format).

2092 \let\a\input

Then \input is defined to forget about its argument and load hyphen.cfg instead.

2093 \def\input #1 {%

2094 \let\input\a

2095 \a hyphen.cfg

Once that’s done the original meaning of \input can be restored and the definition of
\a can be forgotten.

2096 \let\a\undefined

2097 }

2098 \fi

2099 〈/bplain | blplain〉
Now that we have made sure that hyphen.cfg will be loaded at the right moment it is
time to load plain.tex.

2100 〈bplain〉\a plain.tex

2101 〈blplain〉\a lplain.tex

Finally we change the contents of \fmtname to indicate that this is not the plain
format, but a format based on plain with the babel package preloaded.

2102 〈bplain〉\def\fmtname{babel-plain}
2103 〈blplain〉\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy of
blplain.tex, rename it and replace plain.tex with the name of your format file.

103

9.2 Emulating some LATEX features

The following code duplicates or emulates parts of LATEX 2ε that are needed for babel.
When \adddialect is still undefined we are making a format. In that case only the
first part of this file is needed.

2104 〈∗code〉
2105 \def\@empty{}

2106 \ifx\orig@dump\@undefined\else

We want to add a message to the message LATEX 2.09 puts in the \everyjob register.
This could be done by the following code:

% \let\orgeveryjob\everyjob

% \def\everyjob#1{%

% \orgeveryjob{#1}%

% \orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{%

% hyphenation patterns for \the\loaded@patterns loaded.}}%

% \let\everyjob\orgeveryjob\let\orgeveryjob\@undefined}

%

The code above redefines the control sequence \everyjob in order to be able to add
something to the current contents of the register. This is necessary because the
processing of hyphenation patterns happens long before LATEX fills the register.
There are some problems with this approach though.

• When someone wants to use several hyphenation patterns with SLiTEX the above
scheme won’t work. The reason is that SLiTEX overwrites the contents of the
\everyjob register with its own message.

• Plain TEX does not use the \everyjob register so the message would not be
displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed when
creating a new format file there is one command that is sure to be used, \dump.
Therefore the original \dump is saved in \org@dump and a new definition is supplied.
To make sure that LATEX 2.09 executes the \@begindocumenthook we would want to
alter \begin{document}, but as this done too often already, we add the new code at
the front of \@preamblecmds. But we can only do that after it has been defined, so we
add this piece of code to \dump.

2107 \def\dump{%

2108 \ifx\@ztryfc\@undefined

2109 \else

2110 \toks0=\expandafter{\@preamblecmds}

2111 \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}

2112 \def\@begindocumenthook{}

2113 \fi

This new definition starts by adding an instruction to write a message on the terminal
and in the transcript file to inform the user of the preloaded hyphenation patterns.

2114 \everyjob\expandafter{\the\everyjob%

2115 \immediate\write16{\the\toks8 loaded.}}%

104

Then everything is restored to the old situation and the format is dumped.

2116 \let\dump\orig@dump\let\orig@dump\@undefined\dump}

2117 \expandafter\endinput

2118 \fi

The rest of this file is not processed by iniTEX but during the normal document run.
We need to define \loadlocalcfg for plain users as the LATEX definition uses
\InputIfFileExists. We have to execute \@endofldf in this case.

2119 \def\loadlocalcfg#1{%

2120 \openin0#1.cfg

2121 \ifeof0

2122 \closein0

2123 \else

2124 \closein0

2125 {\immediate\write16{*************************************}%

2126 \immediate\write16{* Local config file #1.cfg used}%

2127 \immediate\write16{*}%

2128 }

2129 \input #1.cfg\relax

2130 \fi

2131 \@endofldf}

A number of LATEX macro’s that are needed later on.

2132 \long\def\@firstofone#1{#1}

2133 \long\def\@firstoftwo#1#2{#1}

2134 \long\def\@secondoftwo#1#2{#2}

2135 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

2136 \def\@star@or@long#1{%

2137 \@ifstar

2138 {\let\l@ngrel@x\relax#1}%

2139 {\let\l@ngrel@x\long#1}}

2140 \let\l@ngrel@x\relax

2141 \def\@car#1#2\@nil{#1}

2142 \def\@cdr#1#2\@nil{#2}

2143 \let\@typeset@protect\relax

2144 \long\def\@gobble#1{}

2145 \edef\@backslashchar{\expandafter\@gobble\string\\}

2146 \def\strip@prefix#1>{}

2147 \def\g@addto@macro#1#2{{%

2148 \toks@\expandafter{#1#2}%

2149 \xdef#1{\the\toks@}}}

2150 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

2151 \def\@nameuse#1{\csname #1\endcsname}

2152 \def\@ifundefined#1{%

2153 \expandafter\ifx\csname#1\endcsname\relax

2154 \expandafter\@firstoftwo

2155 \else

2156 \expandafter\@secondoftwo

2157 \fi}

2158 \def\@expandtwoargs#1#2#3{%

105

2159 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}

LATEX 2ε has the command \@onlypreamble which adds commands to a list of
commands that are no longer needed after \begin{document}.

2160 \ifx\@preamblecmds\@undefined

2161 \def\@preamblecmds{}

2162 \fi

2163 \def\@onlypreamble#1{%

2164 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%

2165 \@preamblecmds\do#1}}

2166 \@onlypreamble\@onlypreamble

Mimick LATEX’s \AtBeginDocument; for this to work the user needs to add
\begindocument to his file.

2167 \def\begindocument{%

2168 \@begindocumenthook

2169 \global\let\@begindocumenthook\@undefined

2170 \def\do##1{\global\let ##1\@undefined}%

2171 \@preamblecmds

2172 \global\let\do\noexpand

2173 }

2174 \ifx\@begindocumenthook\@undefined

2175 \def\@begindocumenthook{}

2176 \fi

2177 \@onlypreamble\@begindocumenthook

2178 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimick LATEX’s \AtEndOfPackage. Our replacement macro is much
simpler; it stores its argument in \@endofldf.

2179 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}

2180 \@onlypreamble\AtEndOfPackage

2181 \def\@endofldf{}

2182 \@onlypreamble\@endofldf

2183 \let\bbl@afterlang\@empty

LATEX needs to be able to switch off writing to its auxiliary files; plain doesn’t have
them by default.

2184 \ifx\if@filesw\@undefined

2185 \expandafter\let\csname if@filesw\expandafter\endcsname

2186 \csname iffalse\endcsname

2187 \fi

Mimick LATEX’s commands to define control sequences.

2188 \def\newcommand{\@star@or@long\new@command}

2189 \def\new@command#1{%

2190 \@testopt{\@newcommand#1}0}

2191 \def\@newcommand#1[#2]{%

2192 \@ifnextchar [{\@xargdef#1[#2]}%

2193 {\@argdef#1[#2]}}

2194 \long\def\@argdef#1[#2]#3{%

2195 \@yargdef#1\@ne{#2}{#3}}

106

2196 \long\def\@xargdef#1[#2][#3]#4{%

2197 \expandafter\def\expandafter#1\expandafter{%

2198 \expandafter\@protected@testopt\expandafter #1%

2199 \csname\string#1\expandafter\endcsname{#3}}%

2200 \expandafter\@yargdef \csname\string#1\endcsname

2201 \tw@{#2}{#4}}

2202 \long\def\@yargdef#1#2#3{%

2203 \@tempcnta#3\relax

2204 \advance \@tempcnta \@ne

2205 \let\@hash@\relax

2206 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fi}%

2207 \@tempcntb #2%

2208 \@whilenum\@tempcntb <\@tempcnta

2209 \do{%

2210 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%

2211 \advance\@tempcntb \@ne}%

2212 \let\@hash@##%

2213 \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}

2214 \let\providecommand\newcommand

2215 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

2216 \def\declare@robustcommand#1{%

2217 \edef\reserved@a{\string#1}%

2218 \def\reserved@b{#1}%

2219 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%

2220 \edef#1{%

2221 \ifx\reserved@a\reserved@b

2222 \noexpand\x@protect

2223 \noexpand#1%

2224 \fi

2225 \noexpand\protect

2226 \expandafter\noexpand\csname

2227 \expandafter\@gobble\string#1 \endcsname

2228 }%

2229 \expandafter\new@command\csname

2230 \expandafter\@gobble\string#1 \endcsname

2231 }

2232 \def\x@protect#1{%

2233 \ifx\protect\@typeset@protect\else

2234 \@x@protect#1%

2235 \fi

2236 }

2237 \def\@x@protect#1\fi#2#3{%

2238 \fi\protect#1%

2239 }

The following little macro \in@ is taken from latex.ltx; it checks whether its first
argument is part of its second argument. It uses the boolean \in@; allocating a new
boolean inside conditionally executed code is not possible, hence the construct with
the temporary definition of \bbl@tempa.

107

2240 \def\bbl@tempa{\csname newif\endcsname\ifin@}

2241 \ifx\in@\@undefined

2242 \def\in@#1#2{%

2243 \def\in@@##1#1##2##3\in@@{%

2244 \ifx\in@##2\in@false\else\in@true\fi}%

2245 \in@@#2#1\in@\in@@}

2246 \else

2247 \let\bbl@tempa\@empty

2248 \fi

2249 \bbl@tempa

LATEX has a macro to check whether a certain package was loaded with specific
options. The command has two extra arguments which are code to be executed in
either the true or false case. This is used to detect whether the document needs one of
the accents to be activated (activegrave and activeacute). For plain TEX we assume
that the user wants them to be active by default. Therefore the only thing we do is
execute the third argument (the code for the true case).

2250 \def\@ifpackagewith#1#2#3#4{%

2251 #3}

The LATEX macro \@ifl@aded checks whether a file was loaded. This functionality is
not needed for plain TEX but we need the macro to be defined as a no-op.

2252 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and
\providecommand exist with some sensible definition. They are not fully equivalent to
their LATEX 2ε versions; just enough to make things work in plain TEXenvironments.

2253 \ifx\@tempcnta\@undefined

2254 \csname newcount\endcsname\@tempcnta\relax

2255 \fi

2256 \ifx\@tempcntb\@undefined

2257 \csname newcount\endcsname\@tempcntb\relax

2258 \fi

To prevent wasting two counters in LATEX 2.09 (because counters with the same name
are allocated later by it) we reset the counter that holds the next free counter
(\count10).

2259 \ifx\bye\@undefined

2260 \advance\count10 by -2\relax

2261 \fi

2262 \ifx\@ifnextchar\@undefined

2263 \def\@ifnextchar#1#2#3{%

2264 \let\reserved@d=#1%

2265 \def\reserved@a{#2}\def\reserved@b{#3}%

2266 \futurelet\@let@token\@ifnch}

2267 \def\@ifnch{%

2268 \ifx\@let@token\@sptoken

2269 \let\reserved@c\@xifnch

2270 \else

2271 \ifx\@let@token\reserved@d

108

2272 \let\reserved@c\reserved@a

2273 \else

2274 \let\reserved@c\reserved@b

2275 \fi

2276 \fi

2277 \reserved@c}

2278 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token

2279 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

2280 \fi

2281 \def\@testopt#1#2{%

2282 \@ifnextchar[{#1}{#1[#2]}}

2283 \def\@protected@testopt#1{%%

2284 \ifx\protect\@typeset@protect

2285 \expandafter\@testopt

2286 \else

2287 \@x@protect#1%

2288 \fi}

2289 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax

2290 #2\relax}\fi}

2291 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum

2292 \else\expandafter\@gobble\fi{#1}}

Code from ltoutenc.dtx, adapted for use in the plain TEX environment.

2293 \def\DeclareTextCommand{%

2294 \@dec@text@cmd\providecommand

2295 }

2296 \def\ProvideTextCommand{%

2297 \@dec@text@cmd\providecommand

2298 }

2299 \def\DeclareTextSymbol#1#2#3{%

2300 \@dec@text@cmd\chardef#1{#2}#3\relax

2301 }

2302 \def\@dec@text@cmd#1#2#3{%

2303 \expandafter\def\expandafter#2%

2304 \expandafter{%

2305 \csname#3-cmd\expandafter\endcsname

2306 \expandafter#2%

2307 \csname#3\string#2\endcsname

2308 }%

2309 % \let\@ifdefinable\@rc@ifdefinable

2310 \expandafter#1\csname#3\string#2\endcsname

2311 }

2312 \def\@current@cmd#1{%

2313 \ifx\protect\@typeset@protect\else

2314 \noexpand#1\expandafter\@gobble

2315 \fi

2316 }

2317 \def\@changed@cmd#1#2{%

2318 \ifx\protect\@typeset@protect

2319 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax

109

2320 \expandafter\ifx\csname ?\string#1\endcsname\relax

2321 \expandafter\def\csname ?\string#1\endcsname{%

2322 \@changed@x@err{#1}%

2323 }%

2324 \fi

2325 \global\expandafter\let

2326 \csname\cf@encoding \string#1\expandafter\endcsname

2327 \csname ?\string#1\endcsname

2328 \fi

2329 \csname\cf@encoding\string#1%

2330 \expandafter\endcsname

2331 \else

2332 \noexpand#1%

2333 \fi

2334 }

2335 \def\@changed@x@err#1{%

2336 \errhelp{Your command will be ignored, type <return> to proceed}%

2337 \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}

2338 \def\DeclareTextCommandDefault#1{%

2339 \DeclareTextCommand#1?%

2340 }

2341 \def\ProvideTextCommandDefault#1{%

2342 \ProvideTextCommand#1?%

2343 }

2344 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd

2345 \expandafter\let\csname?-cmd\endcsname\@changed@cmd

2346 \def\DeclareTextAccent#1#2#3{%

2347 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}

2348 }

2349 \def\DeclareTextCompositeCommand#1#2#3#4{%

2350 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname

2351 \edef\reserved@b{\string##1}%

2352 \edef\reserved@c{%

2353 \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%

2354 \ifx\reserved@b\reserved@c

2355 \expandafter\expandafter\expandafter\ifx

2356 \expandafter\@car\reserved@a\relax\relax\@nil

2357 \@text@composite

2358 \else

2359 \edef\reserved@b##1{%

2360 \def\expandafter\noexpand

2361 \csname#2\string#1\endcsname####1{%

2362 \noexpand\@text@composite

2363 \expandafter\noexpand\csname#2\string#1\endcsname

2364 ####1\noexpand\@empty\noexpand\@text@composite

2365 {##1}%

2366 }%

2367 }%

2368 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%

2369 \fi

110

2370 \expandafter\def\csname\expandafter\string\csname

2371 #2\endcsname\string#1-\string#3\endcsname{#4}

2372 \else

2373 \errhelp{Your command will be ignored, type <return> to proceed}%

2374 \errmessage{\string\DeclareTextCompositeCommand\space used on

2375 inappropriate command \protect#1}

2376 \fi

2377 }

2378 \def\@text@composite#1#2#3\@text@composite{%

2379 \expandafter\@text@composite@x

2380 \csname\string#1-\string#2\endcsname

2381 }

2382 \def\@text@composite@x#1#2{%

2383 \ifx#1\relax

2384 #2%

2385 \else

2386 #1%

2387 \fi

2388 }

2389 %

2390 \def\@strip@args#1:#2-#3\@strip@args{#2}

2391 \def\DeclareTextComposite#1#2#3#4{%

2392 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%

2393 \bgroup

2394 \lccode‘\@=#4%

2395 \lowercase{%

2396 \egroup

2397 \reserved@a @%

2398 }%

2399 }

2400 %

2401 \def\UseTextSymbol#1#2{%

2402 % \let\@curr@enc\cf@encoding

2403 % \@use@text@encoding{#1}%

2404 #2%

2405 % \@use@text@encoding\@curr@enc

2406 }

2407 \def\UseTextAccent#1#2#3{%

2408 % \let\@curr@enc\cf@encoding

2409 % \@use@text@encoding{#1}%

2410 % #2{\@use@text@encoding\@curr@enc\selectfont#3}%

2411 % \@use@text@encoding\@curr@enc

2412 }

2413 \def\@use@text@encoding#1{%

2414 % \edef\f@encoding{#1}%

2415 % \xdef\font@name{%

2416 % \csname\curr@fontshape/\f@size\endcsname

2417 % }%

2418 % \pickup@font

2419 % \font@name

111

2420 % \@@enc@update

2421 }

2422 \def\DeclareTextSymbolDefault#1#2{%

2423 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%

2424 }

2425 \def\DeclareTextAccentDefault#1#2{%

2426 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%

2427 }

2428 \def\cf@encoding{OT1}

Currently we only use the LATEX 2ε method for accents for those that are known to be
made active in some language definition file.

2429 \DeclareTextAccent{\"}{OT1}{127}

2430 \DeclareTextAccent{\’}{OT1}{19}

2431 \DeclareTextAccent{\^}{OT1}{94}

2432 \DeclareTextAccent{\‘}{OT1}{18}

2433 \DeclareTextAccent{\~}{OT1}{126}

The following control sequences are used in babel.def but are not defined for plain
TEX.

2434 \DeclareTextSymbol{\textquotedblleft}{OT1}{92}

2435 \DeclareTextSymbol{\textquotedblright}{OT1}{‘\"}

2436 \DeclareTextSymbol{\textquoteleft}{OT1}{‘\‘}

2437 \DeclareTextSymbol{\textquoteright}{OT1}{‘\’}

2438 \DeclareTextSymbol{\i}{OT1}{16}

2439 \DeclareTextSymbol{\ss}{OT1}{25}

For a couple of languages we need the LATEX-control sequence \scriptsize to be
available. Because plain TEX doesn’t have such a sofisticated font mechanism as LATEX
has, we just \let it to \sevenrm.

2440 \ifx\scriptsize\@undefined

2441 \let\scriptsize\sevenrm

2442 \fi

2443 〈/code〉

10 Hooks for XeTeX and LuaTeX

10.1 XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset
always to utf8, which seems a sensible default.

2444 〈∗xetex〉
2445 \def\BabelStringsDefault{unicode}

2446 \let\xebbl@stop\relax

2447 \AddBabelHook{xetex}{encodedcommands}{%

2448 \def\bbl@tempa{#1}%

2449 \ifx\bbl@tempa\@empty

2450 \XeTeXinputencoding"bytes"%

2451 \else

112

2452 \XeTeXinputencoding"#1"%

2453 \fi

2454 \def\xebbl@stop{\XeTeXinputencoding"utf8"}}

2455 \AddBabelHook{xetex}{stopcommands}{%

2456 \xebbl@stop

2457 \let\xebbl@stop\relax}

2458 〈/xetex〉

10.2 LuaTeX

This part relies on the lua stripts in luatex-hyphen by Khaled Hosny, Élie Roux, and
Manuel Pégourié-Gonnard. Élie also improved the code below.

2459 〈∗luatex〉
2460 \directlua{%

2461 require("luatex-hyphen")

2462 Babel = {}

2463 function Babel.bytes(line)

2464 return line:gsub("(.)",

2465 function (chr) return unicode.utf8.char(string.byte(chr)) end)

2466 end

2467 function Babel.begin_process_input()

2468 if luatexbase and luatexbase.add_to_callback then

2469 luatexbase.add_to_callback(’process_input_buffer’,Babel.bytes,’Babel.bytes’)

2470 else

2471 Babel.callback = callback.find(’process_input_buffer’)

2472 callback.register(’process_input_buffer’,Babel.bytes)

2473 end

2474 end

2475 function Babel.end_process_input ()

2476 if luatexbase and luatexbase.remove_from_callback then

2477 luatexbase.remove_from_callback(’process_input_buffer’,’Babel.bytes’)

2478 else

2479 callback.register(’process_input_buffer’,Babel.callback)

2480 end

2481 end

2482 }

2483 \def\BabelStringsDefault{unicode}

2484 \let\luabbl@stop\relax

2485 \AddBabelHook{luatex}{encodedcommands}{%

2486 \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%

2487 \ifx\bbl@tempa\bbl@tempb\else

2488 \directlua{Babel.begin_process_input()}%

2489 \def\luabbl@stop{%

2490 \directlua{Babel.end_process_input()}}%

2491 \fi}%

2492 \AddBabelHook{luatex}{stopcommands}{%

2493 \luabbl@stop

2494 \let\luabbl@stop\relax}

2495 \AddBabelHook{luatex}{patterns}{%

113

2496 \ifx\directlua\relax\else

2497 \ifcsname lu@texhyphen@loaded@\the\language\endcsname \else

2498 \global\@namedef{lu@texhyphen@loaded@\the\language}{}%

2499 \directlua{

2500 luatexhyphen.loadlanguage(’\luatexluaescapestring{\string#1}’,

2501 ’\the\language’)}%

2502 \fi

2503 \fi}

2504 \AddBabelHook{luatex}{adddialect}{%

2505 \ifx\directlua\relax\else

2506 \directlua{

2507 luatexhyphen.adddialect(’\luatexluaescapestring{\string#1}’,

2508 ’\luatexluaescapestring{\string#2}’)

2509 }%

2510 \fi}

2511 \AddBabelHook{luatex}{everylanguage}{%

2512 \directlua{

2513 processnow = (tex.language == 0) or

2514 (luatexhyphen.lookupname(’\luatexluaescapestring{\string#1}’) == nil)}%

2515 \ifnum0=\directlua{tex.sprint(processnow and "0" or "1")}\relax

2516 \global\@namedef{lu@texhyphen@loaded@\the\language}{}%

2517 \fi}

2518 \AddBabelHook{luatex}{loadpatterns}{%

2519 \ifnum0=\directlua{tex.sprint(processnow and "0" or "1")}\relax

2520 \input #1\relax

2521 \fi}

2522 \AddBabelHook{luatex}{loadexceptions}{%

2523 \ifnum0=\directlua{tex.sprint(processnow and "0" or "1")}\relax

2524 \input #1\relax

2525 \fi

2526 \directlua{processnow = nil}}

2527 〈/luatex〉

11 Conclusion

A system of document options has been presented that enable the user of LATEX to
adapt the standard document classes of LATEX to the language he or she prefers to use.
These options offer the possibility of switching between languages in one document.
The basic interface consists of using one option, which is the same for all standard
document classes.
In some cases the language definition files provide macros that can be useful to plain
TEX users as well as to LATEX users. The babel system has been implemented so that it
can be used by both groups of users.

114

12 Acknowledgements

I would like to thank all who volunteered as β-testers for their time. I would like to
mention Julio Sanchez who supplied the option file for the Spanish language and
Maurizio Codogno who supplied the option file for the Italian language. Michel
Goossens supplied contributions for most of the other languages. Nico Poppelier
helped polish the text of the documentation and supplied parts of the macros for the
Dutch language. Paul Wackers and Werenfried Spit helped find and repair bugs.
During the further development of the babel system I received much help from Bernd
Raichle, for which I am grateful.

References

[1] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

[2] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[3] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst. SDU
Uitgeverij (’s-Gravenhage, 1988). A Dutch book on layout design and typography.

[4] Hubert Partl, German TEX, TUGboat 9 (1988) #1, p. 70–72.

[5] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[6] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of
national LATEX styles, TUGboat 10 (1989) #3, p. 401–406.

[7] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1,
p. 87–90.

115

