Version 3.31
2019/05/04

Original author
Johannes L. Braams

Current maintainer
Javier Bezos

Babel

The standard distribution of BIgX contains a number of
document classes that are meant to be used, but also
serve as examples for other users to create their own
document classes. These document classes have become
very popular among BTgX users. But it should be kept in
mind that they were designed for American tastes and
typography. At one time they even contained a number
of hard-wired texts.

This manual describes babel, a package that makes use
of the capabilities of TgX, xetex and luatex to provide an
environment in which documents can be typesetin a
language other than US English, or in more than one
language or script.

Current development is focused on Unicode engines
(XeTpX and LuaTpX) and the so-called complex scripts. New
features related to font selection, bidi writing, line
breaking and so on are being added incrementally.

Babel provides support (total or partial) for about 200
languages, either as a “classical” package option or as an
ini file. Furthermore, new languages can be created
from scratch easily.

Contents

I User guide

1

II

The user interface

1.1 Monolingual documents
1.2 Multilingual documents
1.3 Modifiers|o
1.4 xelatexandlualatex
1.5 Troubleshooting e
1.6 Plain e
1.7 Basiclanguage selectors|
1.8 Auxiliary language selectors oo
1.9 Moreonselection e
1.10 Shorthands'.
1.11 Packageoptions|
1.12 Thebaseoption it
113 dnifiles/. o o
1.14 Selectingfonts| e e
1.15 Modifyingalanguage
1.16 Creatingalanguage
1.17 DIgIts . . . o oo e e e e e
1.18 Getting the current languagename|
1.19 Hyphenation and line breaking
1.20 Selecting SCripts v v v v i it e e e e e e e e
1.21 Selecting directions| i e e
1.22 Language attributes
1.23 HOOKS o e
1.24 Languages supported by babel with Idffiles
1.25 Tips, workarounds, know issues and notes
1.26 Currentand futurework
1.27 Tentative and experimentalcode

Loading languages with language.dat
21 Format

The interface between the core of babel and the language definition files

3.1 Guidelines for contributed languages
3.2 BaSICINACIOS v v v v v et e e e e e e e e e e e
3.3 Skeleton
3.4 Support for active characters
3.5 Support for saving macro definitions L.
3.6 Support for extending macroso
3.7 Macros common to a number of languages
3.8 Encoding-dependent strings,
Changes

4.1 Changesinbabelversion3.9

Source code
Identification and loading of required files

locale directory

»h

© © 0 JJO U R

40
41

41
43
43
44
45
46
46
46
47

50
50
51
51

51

7 Tools 52
7.1 Multiplelanguages| o o oL, 35

8 The Package File (EIgX, babel.sty) 56
81 basel. e 57

8.2 key=value options and other generaloption 39

8.3 Conditional loading of shorthands/. 60

8.4 Language OptioNS« ¢ v v v v vt e e e e e e e e e e 61

9 The kernel of Babel (babel.def, common) 64
9.1 Toolsl 64

9.2 HOOKS oo e 67

9.3 Setting up languagefiles| L. 69

9.4 Shorthands 70

9.5 Languageattributes o o o oo 80

9.6 Support for saving macro definitions 0oL L. 82

9.7 Shorttags. e 83

9.8 Hyphens 83

9.9 Multiencoding Strings| oo e e 85
9.10 Macros common to a number of languages 91
9.11 Making glyphsavailable 0. 91
9.11.1 Quotationmarks 91

9.11.2 Letters o v v v i e e 92

9.11.3 Shorthands for quotationmarks 93

9.11.4 Umlautsandtremas 94

912 Layout] e 95
9.13 Load engine specificmacrosot e e 96
9.14 Creatinglanguages| e 96

10 The kernel of Babel (babel.def, only ETEX) 106
10.1 The redefinition of the stylecommands. 106
10.2 CrossreferenCing MacroS v v v v v v v v v e e e e e 107
10.3 Marks/. 110
10.4 Preventing clashes with other packages 111
1041 ifthen 111

10.4.2 variorefl 112

10.4.3 hhline e 112

10.4.4 hyperref 113

1045 fancyhdr 113

10.5 Encodingandfonts o 113
10.6 Basic bidisupport 115
10.7 Local Language Configuration 118

11 Multiple languages (switch.def) 119
11.1 Selecting the language oo 120
11.2 EITOTS|. . . o o e e e e 128

12 Loading hyphenation patterns 130
13 Font handling with fontspec 135

14 Hooks for XeTeX and LuaTeX 139
141 XeTeX e e e e e e 139
14.2 Layout e e e e e 141
14.3 LuaTeX e e e e 144
14.4 Southeast ASIan SCrIpPts| v v v i v i e e 149
145 CJKlinebreaking 152
14.6 Layout e 152
14.7 Auto bidi with basic and basic-r|. o oo, 154

15 Data for CJK 165

16 The ‘nil’ language 165

17 Support for Plain TgX (plain.def) 165
17.1 Notrenaming hyphen.tex 165
17.2 Emulating some KIgX features L. 167
17.3 Generaltools/. e 167
17.4 Encodingrelated macros oo, 171

18 Acknowledgements 173

Troubleshoooting

Paragraph ended before \UTFviii@three@octets was complete 4
No hyphenation patterns were preloaded for (babel) the language ‘LANG’ into the
format 5
You are loading directly a languagestyle 7
Unknown language ‘LANG’ e e e 8
Argument of \language@active@arg” hasanextra} 11
Package fontspec Warning: ’Language 'LANG’ not available for font ’'FONT’ with
script ’SCRIPT’ *Default’ language used instead’| 25

Partl
User guide

¢ This user guide focuses on KIpX. There are also some notes on its use with Plain TgX.

¢ Changes and new features with relation to version 3.8 are highlighted with New X.XX .
The most recent features could be still unstable. Please, report any issues you find on
https://github.com/latex3/babel/issues, which is better than just complaining on
an e-mail list or a web forum.

* If you are interested in the TgX multilingual support, please join the kadingira list on
http://tug.org/mailman/listinfo/kadingira. You can follow the development of
babel on https://github.com/latex3/babel (which provides some sample files, too).

* See section 3.1 for contributing a language.

+ The first sections describe the traditional way of loading a language (with 1df files). The
alternative way based on ini files, which complements the previous one (it will not
replace it), is described below.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in ETgX is to load the
package using its standand mechanism for this purpose, namely, passing that language as
an optional argument. In addition, you may want to set the font and input encodings.

EXAMPLE Here is a simple full example for “traditional” TgX engines (see below for xetex
and luatex). The packages fontenc and inputenc do not belong to babel, but they are
included in the example because typically you will need them (however, the package
inputenc may be omitted with KTpX > 2018-04-01 if the encoding is UTF-8):

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[french]{babel}
\begin{document}

Plus ca change, plus c'est la méme chose!
\end{document}

TROUBLESHOOTING A common source of trouble is a wrong setting of the input
encoding. Very often you will get the following somewhat cryptic error:

! Paragraph ended before \UTFviii@three@octets was complete.

Make sure you set the encoding actually used by your editor.

Another approach is making the language (french in the example) a global option in order
to let other packages detect and use it:

\documentclass[french]{article}
\usepackage{babel}
\usepackage{varioref}

In this last example, the package varioref will also see the option and will be able to use it.

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of
hyphenation patterns as preloaded into the format, (2) a package option, (3) an 1df file,
and (4) a name used in the document to select a language or dialect. So, a package
option refers to a language in a generic way — sometimes it is the actual language name
used to select it, sometimes it is a file name loading a language with a different name,
sometimes it is a file name loading several languages. Please, read the documentation
for specific languages for further info.

TROUBLESHOOTING The following warning is about hyphenation patterns, which are not
under the direct control of babel:

Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language "LANG' into the format.

(babel) Please, configure your TeX system to add them and
(babel) rebuild the format. Now I will use the patterns
(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated.
Some languages may be raising this warning wrongly (because they are not
hyphenated); it is a bug to be fixed — just ignore it. See the manual of your distribution
(MacTgX, MIkTgX, TgXLive, etc.) for further info about how to configure it.

1.2 Multilingual documents

In multilingual documents, just use several options. The last one is considered the main
language, activated by default. Sometimes, the main language changes the document
layout (eg, spanish and french).

EXAMPLE In ETgX, the preamble of the document:

\documentclass{article}
\usepackage[dutch,english]{babel}

would tell ETgX that the document would be written in two languages, Dutch and
English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly:

\documentclass{article}
\usepackage[main=english,dutch]{babel}

NOTE Some classes load babel with a hardcoded language option. Sometimes, the main
language could be overridden with something like that before \documentclass:

\PassOptionsToPackage{main=english}{babel}

WARNING Languages may be set as global and as package option at the same time, but in
such a case you should set explicitly the main language with the package option main:

\documentclass[italian]{book}
\usepackage[ngerman,main=italian]{babel}

WARNING In the preamble the main language has not been selected, except hyphenation
patterns and the name assigned to \languagename (in particular, shorthands, captions
and date are not activated). If you need to define boxes and the like in the preamble,
you might want to use some of the language selectors described below.

To switch the language there are two basic macros, described below in detail:
\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text
inside paragraphs.

EXAMPLE A full bilingual document follows. The main language is french, which is
activated when the document begins. The package inputenc may be omitted with ETgX
> 2018-04-01 if the encoding is UTF-8.

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage[english, french]{babel}
\begin{document}

Plus ca change, plus c'est la méme chose!
\selectlanguage{english}

And an English paragraph, with a short text in
\foreignlanguage{french}{francais}.

\end{document}

1.3 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by
means of modifiers. They are set after the language name, and are prefixed with a dot (only
when the language is set as package option — neither global options nor the main key accept
them). An example is (spaces are not significant and they can be added or removed):!

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by
including it in the list of modifiers. However, modifiers is a more general mechanism.

INo predefined “axis” for modifiers are provided because languages and their scripts have quite different needs.

1.4 xelatex and lualatex

Many languages are compatible with xetex and luatex. With them you can use babel to
localize the documents.

The Latin script is covered by default in current ETgX (provided the document encoding is
UTF-8), because the font loader is preloaded and the font is switched to Imroman. Other
scripts require loading fontspec. You may want to set the font attributes with fontspec, too.

EXAMPLE The following bilingual, single script document in UTF-8 encoding just prints a
couple of ‘captions’ and \today in Danish and Vietnamese. No additional packages are
required.

\documentclass{article}
\usepackage[vietnamese,danish]{babel}
\begin{document}

\prefacename{} -- \alsoname{} -- \today
\selectlanguage{vietnamese}
\prefacename{} -- \alsoname{} -- \today

\end{document}

EXAMPLE Here is a simple monolingual document in Russian (text from the Wikipedia).
Note neither fontenc nor inputenc are necessary, but the document should be encoded
in UTF-8 and a so-called Unicode font must be loaded (in this example \babelfont is
used, described below).

\documentclass{article}

\usepackage[russian]{babel}

\babelfont{rm}{DejaVu Serif}

\begin{document}

Poccusi, HaxoAAWascs Ha rMepeceyeHUN MHOXECTBA KynbTyp, a Takxe

C Y4YETOM MHOFOHALMOHANbHOrO XapakTepa e€ HacefeHWs, — OT/AMYaeTcs
BbICOKOW CTeneHbl 3THOKY/bTYPHOrO0 MHOro0o6pasns U CMOCOBHOCTbI K

MEXKYNbTYPHOMY Auanory.

\end{document}

1.5 Troubleshooting

* Loading directly sty files in KIiX (ie, \usepackage{(language)}) is deprecated and you
will get the error:?

! Package babel Error: You are loading directly a language style.
(babel) This syntax is deprecated and you must use
(babel) \usepackage[language]l{babel}.

2In old versions the error read “You have used an old interface to call babel”, not very helpful.

\selectlanguage

«+ Another typical error when using babel is the following:*

! Package babel Error: Unknown language “#1'. Either you have

(babel) misspelled its name, it has not been installed,
(babel) or you requested it in a previous run. Fix its name,
(babel) install it or just rerun the file, respectively. In
(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but
you realized this language is not used after all, and therefore you removed it from the
option list). In most cases, the error vanishes when the document is typeset again, but
in more severe ones you will need to remove the aux file.

1.6 Plain

In Plain, load languages styles with \input and then use \begindocument (the latter is
defined by babel):

\input estonian.sty
\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with
Plain.*

1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in
multilingual documents. In most cases, only the two basic macros \selectlanguage and
\foreignlanguage are necessary. The environments otherlanguage, otherlanguage*
and hyphenrules are auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

{(language)}

When a user wants to switch from one language to another he can do so using the macro
\selectlanguage. This macro takes the language, defined previously by a language
definition file, as its argument. It calls several macros that should be defined in the
language definition files to activate the special definitions for the language chosen:

\selectlanguage{german}

This command can be used as environment, too.

NOTE For “historical reasons”, a macro name is converted to a language name without the
leading \; in other words, \selectlanguage{\german} is equivalent to
\selectlanguage{german}. Using a macro instead of a “real” name is deprecated.

WARNING If used inside braces there might be some non-local changes, as this would be
roughly equivalent to:

3In old versions the error read “You haven’t loaded the language LANG yet”.
4Even in the babel kernel there were some macros not compatible with plain. Hopefully these issues have been
fixed.

\foreignlanguage

\begin{otherlanguage}

\begin{otherlanguage*}

\begin{hyphenrules}

{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an
additional grouping level.

{{language) 4 (text)}

The command \foreignlanguage takes two arguments; the second argument is a phrase
to be typeset according to the rules of the language named in its first one. This command
(1) only switches the extra definitions and the hyphenation rules for the language, not the
names and dates, (2) does not send information about the language to auxiliary files (i.e.,
the surrounding language is still in force), and (3) it works even if the language has not
been set as package option (but in such a case it only sets the hyphenation patterns and a
warning is shown). With the bidi option, it also enters in horizontal mode (this is not done
always for backwards compatibility).

1.8 Auxiliary language selectors

{(language)} ... \end{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except the
language change is (mostly) local to the environment.

Actually, there might be some non-local changes, as this environment is roughly equivalent
to:

\begingroup
\selectlanguage{<inner-language>}
\endgroup
\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with an
additional grouping, like braces {}.
Spaces after the environment are ignored.

{(language)} ... \end{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not
ignored.

This environment was originally intended for intermixing left-to-right typesetting with
right-to-left typesetting in engines not supporting a change in the writing direction inside a
line. However, by default it never complied with the documented behavior and it is just a
version as environment of \foreignlanguage, except when the option bidi is set —in this
case, \foreignlanguage emits a \1leavevmode, while otherlanguage* does not.

{(language)} ... \end{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be used
(it can be used as command, too). This can for instance be used to select ‘nohyphenation’,
provided that in 1anguage.dat the language’ nohyphenation is defined by loading
zerohyph. tex. It deactivates language shorthands, too (but not user shorthands).

Except for these simple uses, hyphenrules is discouraged and otherlanguage* (the
starred version) is preferred, as the former does not take into account possible changes in

\babeltags

\babelensure

encodings of characters like, say, ' done by some languages (eg, italian, french, ukraineb).
To set hyphenation exceptions, use \babelhyphenation (see below).

1.9 More on selection

{(tagl) = (languagel), (tag2) = (language2), ...}

New 3.9 In multilingual documents with many language switches the commands above
can be cumbersome. With this tool shorter names can be defined. It adds nothing really
new - it is just syntactical sugar.

It defines \text(tag1){(text)} to be \foreignlanguage{(languagel)}{(text)}, and
\begin{(tag1)} to be \begin{otherlanguage*}{(languagel)}, and so on. Note \(tagl) is
also allowed, but remember to set it locally inside a group.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}
German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} islegitimate - it defines
\textfinnish and \finnish (and, of course, \begin{finnish}).

NOTE Actually, there may be another advantage in the ‘short’ syntax \text(tag), namely,
it is not affected by \MakeUppercase (while \foreignlanguage is).

[include=(commands),exclude=(commands), fontenc=(encoding)]{{language)}

New 3.91 Exceptin a few languages, like russian, captions and dates are just strings, and
do not switch the language. That means you should set it explicitly if you want to use them,
or hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TgX can do it for you. To avoid switching the language all the while,
\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

10

\shorthandon

By default only the basic captions and \today are redefined, but you can add further
macros with the key include in the optional argument (without commas). Macros not to
be modified are listed in exclude. You can also enforce a font encoding with fontenc.’ A
couple of examples:

\babelensure[include=\Today]{spanish}
\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it makes
some assumptions which could not be fulfilled in some languages. Note also you should
include only macros defined by the language, not global macros (eg, \TeX of \dag).

With ini files (see below), captions are ensured by default.

1.10 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TgX code.
Shorthands can be used for different kinds of things, as for example: (1) in some languages
shorthands such as "a are defined to be able to hyphenate the word if the encoding is 0T1;
(2) in some languages shorthands such as ! are used to insert the right amount of white
space; (3) several kinds of discretionaries and breaks can be inserted easily with " -, "=, etc.
The package inputenc as well as xetex an luatex have alleviated entering non-ASCII
characters, but minority languages and some kinds of text can still require characters not
directly available on the keyboards (and sometimes not even as separated or precomposed
Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can
manipulate the glyph list. Tools for point 3 can be still very useful in general.

There are three levels of shorthands: user, language, and system (by order of precedence).
Version 3.9 introduces the language user level on top of the user level, as described below.
In most cases, you will use only shorthands provided by languages.

NOTE Note the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace
} and the spaces following are gobbled. With one-char shorthands (eg, :), they are
preserved.

2. If on a certain level (system, language, user) there is a one-char shorthand, two-char
ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition
(except if it is deactivated with, eg, string).

A typical error when using shorthands is the following:
! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}). Just
add {} after (eg, "{}}).

{(shorthands-list) }

11

\shorthandoff

\useshorthands

\defineshorthand

* {{shorthands-list)}

It is sometimes necessary to switch a shorthand character off temporarily, because it must
be used in an entirely different way. For this purpose, the user commands \shorthandoff
and \shorthandon are provided. They each take a list of characters as their arguments.
The command \shorthandoff sets the \catcode for each of the characters in its argument
to other (12); the command \shorthandon sets the \catcode to active (13). Both commands
only work on known’ shorthand characters.

New 3.9a However, \shorthandoff does not behave as you would expect with
characters like ~ or A, because they usually are not “other”. For them \shorthandoff* is
provided, so that with

\shorthandoff*{~A}

~ is still active, very likely with the meaning of a non-breaking space, and A is the
superscript character. The catcodes used are those when the shorthands are defined,
usually when language files are loaded.

*{{(char)}

The command \useshorthands initiates the definition of user-defined shorthand
sequences. It has one argument, the character that starts these personal shorthands.

New 3.9a User shorthands are not always alive, as they may be deactivated by languages
(for example, if you use " for your user shorthands and switch from german to french, they
stop working). Therefore, a starred version \useshorthands*{{(char)} is provided, which
makes sure shorthands are always activated.

Currently, if the package option shorthands is used, you must include any character to be
activated with \useshorthands. This restriction will be lifted in a future release.

[(language), (language),...1{(shorthand) }{{code) }

The command \defineshorthand takes two arguments: the first is a one- or two-character
shorthand sequence, and the second is the code the shorthand should expand to.

New 3.9a An optional argument allows to (re)define language and system shorthands
(some languages do not activate shorthands, so you may want to add
\languageshorthands{(lang)} to the corresponding \extras(lang), as explained below).
By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.
Language-dependent user shorthands (new in 3.9) take precedence over “normal” user
shorthands.

EXAMPLE Let’s assume you want a unified set of shorthand for discretionaries (languages
do not define shorthands consistently, and "-, \ -, "= have different meanings). You
could start with, say:

\useshorthands*{"}
\defineshorthand{"*}{\babelhyphen{soft}}
\defineshorthand{"-}{\babelhyphen{hard}}

However, behavior of hyphens is language dependent. For example, in languages like
Polish and Portuguese, a hard hyphen inside compound words are repeated at the
beginning of the next line. You could then set:

SWith it encoded string may not work as expected.

12

\aliasshorthand

\languageshorthands

\defineshorthand[*polish, *portugese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the
generic one above only applies for the rest of languages; without * they would
(re)define the language shorthands instead, which are overriden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning
(‘compound word hyphen’) whose visual behavior is that expected in each context.

{(original) }{{alias)}

The command \aliasshorthand can be used to let another character perform the same
functions as the default shorthand character. If one prefers for example to use the
character / over " in typing Polish texts, this can be achieved by entering
\aliasshorthand{"}{/}.

NOTE The substitute character must not have been declared before as shorthand (in such
a case, \aliashorthands is ignored).

EXAMPLE The following example shows how to replace a shorthand by another

\aliasshorthand{~}{"}
\AtBeginDocument{\shorthandoff*{~}}

WARNING Shorthands remember somehow the original character, and the fallback value
is that of the latter. So, in this example, if no shorthand if found, » expands to a
non-breaking space, because this is the value of ~ (internally, A still calls \active@char~
or \normal@char~). Furthermore, if you change the system value of A with
\defineshorthand nothing happens.

{(language)}

The command \languageshorthands can be used to switch the shorthands on the
language level. It takes one argument, the name of a language or none (the latter does what
its name suggests).® Note that for this to work the language should have been specified as
an option when loading the babel package. For example, you can use in english the
shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them with, for example, \useshorthands.)
Very often, this is a more convenient way to deactivate shorthands than \shorthandoff, as
for example if you want to define a macro to easy typing phonetic characters with tipa:

\newcommand{\myipa}[1]{{\1languageshorthands{none}\tipaencoding#1}}

13

\babelshorthand

\ifbabelshorthand

KeepShorthandsActive

activeacute

{(shorthand)}

With this command you can use a shorthand even if (1) not activated in shorthands (in
this case only shorthands for the current language are taken into account, ie, not user
shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal
\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can
conveniently define your own macros, or even you own user shorthands provided they do
not ovelap.)

For your records, here is a list of shorthands, but you must double check them, as they may
change:’

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,
Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,
Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,
Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),
Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

Catalan " '

Czech " -

Esperanto #

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ < >

Greek ~

Hungarian °

Kurmanji A

Latin " A =

Slovak " A ' -

Spanish " . < > '

Turkish : | =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the
standard ~, to a non breaking space.®

{(character)}{(true)}{(false)}

New 3.23 Tests if a character has been made a shorthand.

1.11 Package options

New 3.9a These package options are processed before language options, so that they are
taken into account irrespective of its order. The first three options have been available in
previous versions.

Tells babel not to deactivate shorthands after loading a language file, so that they are also
available in the preamble.

For some languages babel supports this options to set ' as a shorthand in case it is not done
by default.

6 Actually, any name not corresponding to a language group does the same as none. However, follow this con-
vention because it might be enforced in future releases of babel to catch possible errors.

"Thanks to Enrico Gregorio

8This declaration serves to nothing, but it is preserved for backward compatibility.

14

activegrave

shorthands=

safe=

math=

config=

main=

headfoot=

noconfigs

showlanguages

Same for °.

(char){char)... | of f

The only language shorthands activated are those given, like, eg:
\usepackage[esperanto, french,shorthands=:; !?]{babel}

If ' isincluded, activeacute is set; if " isincluded, activegrave is set. Active characters
(like ~) should be preceded by \string (otherwise they will be expanded by EIgX before
they are passed to the package and therefore they will not be recognized); however, t is
provided for the common case of ~ (as well as ¢ for not so common case of the comma).
With shorthands=off no language shorthands are defined, As some languages use this
mechanism for tools not available otherwise, a macro \babelshorthand is defined, which
allows using them; see above.

none | ref | bib

Some KTEX macros are redefined so that using shorthands is safe. With safe=bib only
\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and
\pageref are redefined (as well as a few macros from varioref and ifthen). With safe=none
no macro is redefined. This option is strongly recommended, because a good deal of
incompatibilities and errors are related to these redefinitions — of course, in such a case
you cannot use shorthands in these macros, but this is not a real problem (just use
“allowed” characters).

active | normal

Shorthands are mainly intended for text, not for math. By setting this option with the
value normal they are deactivated in math mode (default is active) and things like ${a'}$
(a closing brace after a shorthand) are not a source of trouble any more.

(file)
Load (file) . cfg instead of the default config file bblopts.cfg (the file is loaded even with
noconfigs).

(language)
Sets the main language, as explained above, ie, this language is always loaded last. If it is
not given as package or global option, it is added to the list of requested languages.

(language)

By default, headlines and footlines are not touched (only marks), and if they contain
language dependent macros (which is not usual) there may be unexpected results. With
this option you may set the language in heads and foots.

Global and language default config files are not loaded, so you can make sure your
document is not spoilt by an unexpected . cfg file. However, if the key config is set, this
file is loaded.

Prints to the log the list of languages loaded when the format was created: number
(remember dialects can share it), name, hyphenation file and exceptions file.

15

nocase

silent

strings=

hyphenmap=

bidi=

layout=

\AfterBabellLanguage

New 3.91 Language settings for uppercase and lowercase mapping (as set by \SetCase)
are ignored. Use only if there are incompatibilities with other packages.

New 3.91 No warnings and no infos are written to the log file.’

generic | unicode | encoded | (label) | (font encoding)

Selects the encoding of strings in languages supporting this feature. Predefined labels are
generic (for traditional TgX, LICR and ASCII strings), unicode (for engines like xetex and
luatex) and encoded (for special cases requiring mixed encodings). Other allowed values
are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be
aware with encoded captions are protected, but they work in \MakeUppercase and the like
(this feature misuses some internal EIgX tools, so use it only as a last resort).

off |main | select | other | other*

New 3.9g Sets the behavior of case mapping for hyphenation, provided the language
defines it/'° It can take the following values:

off deactivates this feature and no case mapping is applied;

first sets it at the first switching commands in the current or parent scope (typically,
when the aux file is first read and at \begin{document}, but also the first
\selectlanguage in the preamble), and it’s the default if a single language option has
been stated;!!

select setsitonly at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot
is used) and in auxiliary files (ie, at \select@language), and it’s the default if several
language options have been stated. The option first can be regarded as an optimized
version of other* for monolingual documents,*?

default | basic | basic-r|bidi-1|bidi-r

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.21.

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.21.

1.12 The base option

With this package option babel just loads some basic macros (those in switch.def),
defines \AfterBabellLanguage and exits. It also selects the hyphenations patterns for the
last language passed as option (by its name in language.dat). There are two main uses:
classes and packages, and as a last resort in case there are, for some reason, incompatible
languages. It can be used if you just want to select the hyphenations patterns of a single
language, too.

{(option-name)}{(code)}

9You can use alternatively the package silence.
0Turned off in plain.
H"puplicated options count as several ones.
2providing foreign is pointless, because the case mapping applied is that at the end of paragraph, but if either
xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL] think
it isn’t really useful, but who knows.

16

This command is currently the only provided by base. Executes (code) when the file loaded
by the corresponding package option is finished (at \1df@finish). The setting is global. So

\AfterBabellLanguage{french}{...}

does ... at the end of french.1df. It can be used in 1df files, too, but in such a case the code
is executed only if (option-name) is the same as \CurrentOption (which could not be the
same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with
\newcommand. An error is raised if you attempt to load both. Here is a way to overcome
this problem:

\usepackage[base]{babel}

\AfterBabellLanguage{foo}{%
\let\macroFoo\macro
\let\macro\relax}

\usepackage[foo,bar]{babel}

1.13 ini files

An alternative approach to define a language is by means of an ini file. Currently babel
provides about 200 of these files containing the basic data required for a language.

Most of them set the date, and many also the captions (Unicode and LICR). They will be
evolving with the time to add more features (something to keep in mind if backward
compatibility is important). The following section shows how to make use of them
currently (by means of \babelprovide), but a higher interface, based on package options,
in under development (in other words, \babelprovide is mainly intended for auxiliary
tasks).

EXAMPLE Although Georgian has its own 1df file, here is how to declare this language
with an ini file in Unicode engines.

\documentclass{book}

\usepackage{babel}
\babelprovide[import, main]{georgian}

\babelfont{rm}{DejaVu Sans}
\begin{document}
\tableofcontents
\chapter{loddobgyom o Lyzhol EGOOEOE0gd0}
Jobogeo Bhhopoioygo Loddohgyem gho-ghmo Pdpophgboo dmge dbogeomdo.
\end{document}
NOTE The ini files just define and set some parameters, but the corresponding behavior is

not always implemented. Also, there are some limitations in the engines. A few
remarks follows:

17

Arabic Monolingual documents mostly work in luatex, but it must be fine tuned, and a
recent version of fontspec/loaotfload is required. In xetex babel resorts to the bidi
package, which seems to work.

Hebrew Nigqud marks seem to work in both engines, but cantillation marks are
misplaced (xetex seems better, but still problematic).

Devanagari In luatex many fonts work, but some others do not, the main issue being
the ‘ra’. It is advisable to set explicitly the script to either deva or dev2, eg:

\newfontscript{Devanagari}{deva}

Other Indic scripts are still under development in luatex. On the other hand, xetex is
better.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules
can be modified in luatex; they are hardcoded in xetex). Lao seems to work, too, but
there are no patterns for the latter in luatex. Some quick patterns could help, with
something similar to:

\babelprovide[import, hyphenrules=+]{lao}
\babelpatterns[lao]{1ln 1u 1 18 19 1n 1a} % Random

Khemer clusters are rendered wrongly.

East Asia scripts Internal inconsistencies in script and language names must be sorted
out, so you may need to set them explicitly in \babelfont, as well as CJKShape.
luatex does basic line breaking, but currently xetex does not (you may load
zhspacing). Anyway, CJK texts are are best set with a dedicated framework (CJK,
luatexja, kotex, CTeX...), although for a few words and shorts texts babel should be
fine.

Here is the list (u means Unicode captions, and 1 means LICR captions):

af Afrikaans®! bo Tibetan®
agq Aghem brx Bodo

ak Akan bs-Cyrl Bosnian
am Amharic®! bs-Latn Bosnian"!
ar Arabic! bs Bosnian"!
ar-DZ Arabic"! ca Catalan®!
ar-MA Arabic"! ce Chechen
ar-SY Arabic®! cgg Chiga

as Assamese chr Cherokee
asa Asu ckb Central Kurdish
ast Asturian®! cs Czech"!
az-Cyrl Azerbaijani cy Welsh®!
az-Latn Azerbaijani da Danish™
az Azerbaijani®! dav Taita

bas Basaa de-AT German"!
be Belarusian"! de-CH German"!
bem Bemba de German"!
bez Bena dje Zarma

bg Bulgarian®! dsb Lower Sorbian™
bm Bambara dua Duala

bn Bangla®! dyo Jola-Fonyi

18

dz
ebu
ee

el
en-AU
en-CA
en-GB
en-NZ
en-US
en

eo
es-MX
es

et

eu
ewo
fa

fil

fo

fr
fr-BE
fr-CA
fr-CH
fr-LU
fur
fy

ga

gd

gl
gsw
gu
guz
gv
ha-GH
ha-NE
ha
haw
he

hi

hr
hsb
hu
hy

ia

id

ig

ii

is

it

ja

jgo
jmc

Dzongkha
Embu

Ewe

Greek™
English®!
English®!
English®!
English®!
English®!
English®!
Esperanto®!
Spanish®!
Spanish®!
Estonian®!
Basque™
Ewondo
Persian®!
Fulah
Finnish®
Filipino
Faroese
French"!
French"!
French™
French™
French™
Friulian"!
Western Frisian
Irish™
Scottish Gaelic™
Galician"!
Swiss German
Gujarati
Gusii

Manx

Hausa
Hausa'
Hausa
Hawaiian
Hebrew!
Hindi"
Croatian™
Upper Sorbian"!
Hungarian®!
Armenian
Interlingua™
Indonesian"!
Igho
Sichuan Yi
Icelandic®!
Italian®!
Japanese
Ngomba
Machame

19

ka
kab
kam
kde
kea

kok
ks
ksh
ksf
ksh
kw
ky
lag
Ib
Ig
1kt
In
lo
Irc
It

Iu
luo
luy
Iv
mas
mer
mfe
mg
mgh
mgo

mzn
naq
nb
nd
ne

Georgian®!
Kabyle
Kamba
Makonde
Kabuverdianu
Koyra Chiini
Kikuyu
Kazakh

Kako
Kalaallisut
Kalenjin
Khmer
Kannada™
Korean
Konkani
Kashmiri
Shambala
Bafia
Colognian
Cornish
Kyrgyz

Langi
Luxembourgish
Ganda

Lakota
Lingala

Lao%
Northern Luri
Lithuanian®!
Luba-Katanga
Luo

Luyia
Latvian!
Masai

Meru
Morisyen
Malagasy
Makhuwa-Meetto
Meta’
Macedonian®!
Malayalam"!
Mongolian
Marathi%!
Malay!

Malay'
Malay"!
Maltese
Mundang
Burmese
Mazanderani
Nama
Norwegian Bokmal"!
North Ndebele
Nepali

nl

nmg

nn

nnh
nus

nyn

om

or

0s
pa-Arab
pa-Guru
pa

pl

pms

ps
pt-BR
pt-PT

pt

qu

rm

rn

ro

rof

ru

™w

rwk
sa-Beng
sa-Deva
sa-Gujr
sa-Knda
sa-Mlym
sa-Telu
sa

sah

saq

sbp

se

seh

ses

sg
shi-Latn
shi-Tfng
shi

si

sk

sl

smn

sn

SO

sq

Dutch"!
Kwasio
Norwegian Nynorsk™
Ngiemboon
Nuer
Nyankole
Oromo

Odia

Ossetic
Punjabi
Punjabi
Punjabi
Polish®!
Piedmontese®!
Pashto
Portuguese™
Portuguese™
Portuguese™!
Quechua
Romansh"!
Rundi
Romanian"!
Rombo
Russian™
Kinyarwanda
Rwa

Sanskrit
Sanskrit
Sanskrit
Sanskrit
Sanskrit
Sanskrit
Sanskrit
Sakha
Samburu
Sangu
Northern Sami®!
Sena
Koyraboro Senni
Sango
Tachelhit
Tachelhit
Tachelhit
Sinhala
Slovak"!
Slovenian®!
Inari Sami
Shona
Somali
Albanian"!

sr-Cyrl-BA
sr-Cyrl-ME
sr-Cyrl-XK
sr-Cyrl
sr-Latn-BA
sr-Latn-ME
sr-Latn-XK
sr-Latn

ST

sV

SW

ta

te

teo

th

ti

tk

to

tr

twq

tzm

ug

uk

ur
uz-Arab
uz-Cyrl
uz-Latn

uz
vai-Latn
vai-Vaii
vai

vi

vun

wae

X0g

yav

yi

yo

yue

zgh

zh-Hans-HK
zh-Hans-MO
zh-Hans-SG
zh-Hans
zh-Hant-HK
zh-Hant-MO
zh-Hant

zh

Zu

Serbian“!
Serbian“!
Serbian“!
Serbian“!
Serbian“!
Serbian“!
Serbian“!
Serbian“!
Serbian“!
Swedish™
Swabhili
Tamil*
Telugu“!
Teso
Thai®!
Tigrinya
Turkmen™
Tongan
Turkish®!
Tasawaq
Central Atlas Tamazight
Uyghur
Ukrainian®!
Urdu®!
Uzbek
Uzbek
Uzbek
Uzbek

Vai

Vai

Vai
Vietnamese"!
Vunjo
Walser
Soga
Yangben
Yiddish
Yoruba
Cantonese
Standard Moroccan
Tamazight
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Zulu

In some contexts (currently \babelfont) an ini file may be loaded by its name. Here is the
list of the names currently supported. With these languages, \babelfont loads (if not done
before) the language and script names (even if the language is defined as a package option

with an |df file). These are also the names recognized by \babelprovide with a valueless

import.

aghem chinese-hans-hk

akan chinese-hans-mo

albanian chinese-hans-sg

american chinese-hans

amharic chinese-hant-hk

arabic chinese-hant-mo

arabic-algeria chinese-hant

arabic-DZ chinese-simplified-hongkongsarchina
arabic-morocco chinese-simplified-macausarchina
arabic-MA chinese-simplified-singapore
arabic-syria chinese-simplified

arabic-SY chinese-traditional-hongkongsarchina
armenian chinese-traditional-macausarchina
assamese chinese-traditional

asturian chinese

asu colognian

australian cornish

austrian croatian

azerbaijani-cyrillic czech

azerbaijani-cyrl danish

azerbaijani-latin duala

azerbaijani-latn dutch

azerbaijani dzongkha

bafia embu

bambara english-au

basaa english-australia

basque english-ca

belarusian english-canada

bemba english-gh

bena english-newzealand

bengali english-nz

bodo english-unitedkingdom

bosnian-cyrillic
bosnian-cyrl
bosnian-latin
bosnian-latn
bosnian
brazilian
breton
british
bulgarian
burmese
canadian
cantonese
catalan

centralatlastamazight

centralkurdish
chechen
cherokee
chiga

english-unitedstates
english-us

english

esperanto

estonian

ewe

ewondo

faroese

filipino

finnish

french-be
french-belgium
french-ca
french-canada
french-ch

french-lu
french-luxembourg
french-switzerland

french
friulian
fulah
galician
ganda
georgian
german-at
german-austria
german-ch
german-switzerland
german
greek
gujarati
gusii
hausa-gh
hausa-ghana
hausa-ne
hausa-niger
hausa
hawaiian
hebrew
hindi
hungarian
icelandic
igho
inarisami
indonesian
interlingua
irish

italian
japanese
jolafonyi
kabuverdianu
kabyle

kako
kalaallisut
kalenjin
kamba
kannada
kashmiri
kazakh
khmer
kikuyu
kinyarwanda
konkani
korean
koyraborosenni
koyrachiini
kwasio
kyrgyz
lakota

langi

lao

latvian

lingala
lithuanian
lowersorbian
Isorbian
lubakatanga
luo
luxembourgish
luyia
macedonian
machame
makhuwameetto
makonde
malagasy
malay-bn
malay-brunei
malay-sg
malay-singapore
malay
malayalam
maltese

manx

marathi
masai
mazanderani
meru

meta

mexican
mongolian
morisyen
mundang
nama

nepali
newzealand
ngiemboon
ngomba

norsk
northernluri
northernsami
northndebele
norwegianbokmal
norwegiannynorsk
nswissgerman
nuer
nyankole
nynorsk
occitan

oriya

oromo

ossetic

pashto
persian
piedmontese
polish
portuguese-br

22

portuguese-brazil
portuguese-portugal
portuguese-pt
portuguese
punjabi-arab
punjabi-arabic
punjabi-gurmukhi
punjabi-guru
punjabi

quechua

romanian

romansh

rombo

rundi

russian

rwa

sakha

samburu

samin

sango

sangu

sanskrit-beng
sanskrit-bengali
sanskrit-deva
sanskrit-devanagari
sanskrit-gujarati
sanskrit-gujr
sanskrit-kannada
sanskrit-knda
sanskrit-malayalam
sanskrit-mlym
sanskrit-telu
sanskrit-telugu
sanskrit
scottishgaelic

sena
serbian-cyrillic-bosniaherzegovina
serbian-cyrillic-kosovo
serbian-cyrillic-montenegro
serbian-cyrillic
serbian-cyrl-ba
serbian-cyrl-me
serbian-cyrl-xk
serbian-cyrl
serbian-latin-bosniaherzegovina
serbian-latin-kosovo
serbian-latin-montenegro
serbian-latin
serbian-latn-ba
serbian-latn-me
serbian-latn-xk
serbian-latn

serbian

shambala

shona
sichuanyi
sinhala
slovak
slovene
slovenian
soga

somali
spanish-mexico
spanish-mx
spanish
standardmoroccantamazight
swahili
swedish
swissgerman
tachelhit-latin
tachelhit-latn
tachelhit-tfng
tachelhit-tifinagh
tachelhit
taita

tamil
tasawaq
telugu

teso

thai

tibetan
tigrinya
tongan
turkish
turkmen
ukenglish
ukrainian
uppersorbian
urdu
usenglish
usorbian
uyghur
uzbek-arab
uzbek-arabic
uzbek-cyrillic
uzbek-cyrl
uzbek-latin
uzbek-latn
uzbek
vai-latin
vai-latn
vai-vai
vai-vaii

vai

vietnam
vietnamese
vunjo

walser

\babelfont

welsh yoruba

westernfrisian

zarma
yangben
yiddish zulu afrikaans

1.14 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There
is no need to load fontspec explicitly — babel does it for you with the first \babelfont.3

[(language-list) 1{{font-family)} [(font-options)1{(font-name)}

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and font-name
is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family, activated when
alanguage is selected. On the other hand, if there is one or more languages in the optional
argument, the font will be assigned to them, overriding the default. Alternatively, you may
set a font for a script — just precede its name (lowercase) with a star (eg, *devanagari).
Babel takes care of the font language and the font script when languages are selected (as
well as the writing direction); see the recognized languages above. In most cases, you will
not need font-options, which is the same as in fontspec, but you may add further key/value
pairs if necessary.

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document
in Swedish, with some words in Hebrew, with a font suited for both languages.

\documentclass{article}

\usepackage[swedish, bidi=default]{babel}
\babelprovide[import]{hebrew}
\babelfont{rm}{FreeSerif}

\begin{document}

Svenska \foreignlanguage{hebrew}{n'12v} svenska.
\end{document}

If on the other hand you have to resort to different fonts, you could replace the red line
above with, say:

\babelfont{rm}{Iwona}
\babelfont[hebrew]{rm}{FreeSerif}

\babelfont can be used to implicitly define a new font family. Just write its name instead
of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic
families.

EXAMPLE Here is how to do it:

13gee also the package combofont for a complementary approach.

24

\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

\usepackage{fontspec}
\newfontscript{Devanagari}{deva}
\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2 (luatex does
not detect automatically the correct script'*). You may also pass some options to
fontspec: with silent, the warnings about unavailable scripts or languages are not
shown (they are only really useful when the document format is being set up).

NOTE Directionality is a property affecting margins, indentation, column order, etc., not
just text. Therefore, it is under the direct control of the language, which applies both
the script and the direction to the text. As a consequence, there is no need to set Script
when declaring a font (nor Language). In fact, it is even discouraged.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the
like). If a language is switched when an ad hoc font is active, or you select the font with
this command, neither the script nor the language are passed. You must add them by
hand. This is by design, for several reasons (for example, each font has its own set of
features and a generic setting for several of them could be problematic, and also a
“lower level” font selection is useful).

NOTE The keys Language and Script just pass these values to the font, and do not set the
script for the language (and therefore the writing direction). In other words, the ini file
or \babelprovide provides default values for \babelfont if omitted, but the opposite
is not true. See the note above for the reasons of this behavior.

WARNING Do not use \setxxxxfont and \babelfont at the same time. \babelfont
follows the standard IIEX conventions to set the basic families — define \xxdefault,
and activate it with \xxfamily. On the other hand, \setxxxxfont in fontspec takes a
different approach, because \xxfamily is redefined with the family name hardcoded
(so that \xxdefault becomes no-op). Of course, both methods are incompatible, and if
you use \setxxxxfont, font switching with \babelfont just does not work (nor the
standard \xxdefault, for that matter).

TROUBLESHOOTING Package fontspec Warning: ’Language ’LANG’ not available for font
’FONT’ with script 'SCRIPT’ ’Default’ language used instead’. This warning is shown by
fontspec, not by babel. It could be irrelevant for English, but not for many other
languages, including Urdu and Turkish. This is a useful and harmless warning, and if
everything is fine with your document the best thing you can do is just to ignore it
altogether.

1.15 Modifying a language

Modifying the behavior of a language (say, the chapter “caption”), is sometimes necessary,
but not always trivial.

14And even with the correct code some fonts could be rendered incorrectly by fontspec, so double check the
results. xetex fares better, but some font are still problematic.

25

\babelprovide

* The old way, still valid for many languages, to redefine a caption is the following:

\addto\captionsenglish{%
\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is
advisable to do it.

¢ The new way, which is found in bulgarian, azerbaijani, spanish, french, turkish,
icelandic, vietnamese and a few more, as well as in languages created with
\babelprovide and its key import, is:

\renewcommand\spanishchaptername{Foo}

* Macros to be run when a language is selected can be add to \extras(lang):

\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected:
\noextras(lang).

NOTE These macros (\captions(lang), \extras(lang)) may be redefined, but must not be
used as such - they just pass information to babel, which executes them in the proper
context.

Another way to modify a language loaded as a package or class option is by means of
\babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}
\babelprovide[captions=da,hyphenrules=nohyphenation]{danish}

first loads danish.1df, and then redefines the captions for danish (as provided by the ini
file) and prevents hyphenation. The rest of the language definitions are not touched.

1.16 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You
may then define quickly a language with the help of the following macro in the preamble
(which may be used to modify an existing language, too, as explained in the previous
subsection).

[{options)1{(language-name)}

Defines the internal structure of the language with some defaults: the hyphen rules, if not
available, are set to the current ones, left and right hyphen mins are set to 2 and 3, but
captions and date are not defined. Conveniently, babel warns you about what to do. Very
likely you will find alerts like that in the log file:

Package babel Warning: \mylangchaptername not set. Please, define

(babel) it in the preamble with something like:
(babel) \renewcommand\maylangchaptername{..}
(babel) Reported on input line 18.

26

import=

captions=

hyphenrules=

In most cases, you will only need to define a few macros.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}
\babelprovide{arhinish}
\renewcommand\arhinishchaptername{Chapitula}
\renewcommand\arhinishrefname{Refirenke}
\renewcommand\arhinishhyphenmins{22}

The main language is not changed (danish in this example). So, you must add
\selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage, then
\babelprovide redefines the requested data.

(language-tag)
New 3.13 Imports data from an ini file, including captions, date, and hyphenmins. For
example:

\babelprovide[import=hu]{hungarian}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros
like \' or \sss) ones.

New 3.23 It may be used without a value. In such a case, the ini file set in the
corresponding babel-<language>.tex (where <language> is the last argument in
\babelprovide) is imported. See the list of recognized languages above. So, the previous
example could be written:

\babelprovide[import]{hungarian}

There are about 200 ini files, with data taken from the 1df files and the CLDR provided by
Unicode. Not all languages in the latter are complete, and therefore neither are the ini
files. A few languages will show a warning about the current lack of suitability of the date
format (hindi, french, breton, and occitan).

Besides \today, this option defines an additional command for dates: \<language>date,
which takes three arguments, namely, year, month and day numbers. In fact, \today calls
\<language>today, which in turn calls
\<language>date{\the\year}{\the\month}{\the\day}.

(language-tag)
Loads only the strings. For example:

\babelprovide[captions=hu]{hungarian}

(language-list)

With this option, with a space-separated list of hyphenation rules, babel assigns to the
language the first valid hyphenation rules in the list. For example:

27

main

script=

language=

mapfont=

intraspace=

intrapenalty=

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example
we set chavacano as first option — without it, it would select spanish even if chavacano
exists.

A special value is +, which allocates a new language (in the TgX sense). It only makes sense
as the last value (or the only one; the subsequent ones are silently ignored). It is mostly
useful with luatex, because you can add some patterns with \babelpatterns, as for
example:

\babelprovide[hyphenrules=+]{neo}
\babelpatterns[neo]{al el i1 o1 ul}

In other engines it just suppresses hyphenation (because the pattern list is empty).
This valueless option makes the language the main one. Only in newly defined languages.

(script-name)

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the
value in the ini file. If fontspec does not define it, then babel sets its tag to that provided
by the ini file. This value is particularly important because it sets the writing direction, so
you must use it if for some reason the default value is wrong.

(language-name)

New 3.15 Sets the language name to be used by fontspec (eg, Hind1i). Overrides the value
in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the
ini file. Not so important, but sometimes still relevant.

A few options (only luatex) set some properties of the writing system used by the language.
These properties are always applied to the script, no matter which language is active.
Although somewhat inconsistent, this makes setting a language up easier in most typical
cases.

direction

Assigns the font for the writing direction of this language (only with bidi=basic).’>| More
precisely, what mapfont=direction means is, ‘wWhen a character has the same direction as
the script for the “provided” language, then change its font to that set for this language’.
There are 3 directions, following the bidi Unicode algorithm, namely, Arabic-like,
Hebrew-like and left to right.16 So, there should be at most 3 directives of this kind.

(base) (shrink) (stretch)

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0is
Oem plus .1em). Like \spaceskip, the em unit applied is that of the current text (more
precisely, the previous glyph). Currently used only in Southeast Asian scrips, like Thai.
Requires import.

(penalty)

5There will be another value, 1anguage, not yet implemented.
161n future releases an new value (script) will be added.

28

\languagename

\iflanguage

Sets the interword penalty for the writing system of this language. Currently used only in
Southeast Asian scrips, like Thai. Ignored if 0 (which is the default value). Requires import.

NOTE (1) If you need shorthands, you can define them with \useshorthands and
\defineshorthand as described above. (2) Captions and \today are “ensured” with
\babelensure (this is the default in ini-based languages).

1.17 Digits

New 3.20 About thirty ini files define a field named digits.native. When it is present,
two macros are created: \<language>digits and \<language>counter (only xetex and
luatex). With the first, a string of ‘Latin’ digits are converted to the native digits of that
language; the second takes a counter name as argument. With the option maparabic in
\babelprovide, \arabic is redefined to produce the native digits (this is done globally, to
avoid inconsistencies in, for example, page numbering, and note as well dates do not rely
on \arabic.)

For example:

\babelprovide[import]{telugu} % Telugu better with XeTeX
% Or also, if you want:
% \babelprovide[import, maparabic]{telugu}

\babelfont{rm}{Gautami}

\begin{document}

\telugudigits{1234}

\telugucounter{section}

\end{document}

Languages providing native digits in all or some variants are ar, as, bn, bo, brx, ckb, dz, fa,
gu, hi, km, kn, kok, ks, lo, lrc, ml, mr, my, mzn, ne, or, pa, ps, ta, te, th, ug, ur, uz, vai, yue, zh.

New 3.30 With luatex there is an alternative approach for mapping digits, namely,
mapdigits. Conversion is based on the language and it is applied to the typeset text (not
math, PDF bookmarks, etc.) before bidi and fonts are processed (ie, to the node list as
generated by the TgX code). This means the local digits have the correct bidirectional
behavior (unlike Numbers=Arabic in fontspec, which is not recommended).

1.18 Getting the current language name

The control sequence \languagename contains the name of the current language.

WARNING Due to some internal inconsistencies in catcodes, it should not be used to test
its value. Use iflang, by Heiko Oberdiek.

{(language) }{ (true)}{(false)}

If more than one language is used, it might be necessary to know which language is active
at a specific time. This can be checked by a call to \iflanguage, but note here “language” is
used in the TgX sense, as a set of hyphenation patterns, and not as its babel name. This
macro takes three arguments. The first argument is the name of a language; the second and
third arguments are the actions to take if the result of the test is true or false respectively.

WARNING The advice about \1languagename also applies here — use iflang instead of
\iflanguage if possible.

1.19 Hyphenation and line breaking

29

\babelhyphen
\babelhyphen

\babelhyphenation

*{({type)}
* {(text)}

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens,
which in TgX are entered as -, and (2) optional or soft hyphens, which are entered as \-.
Strictly, a soft hyphen is not a hyphen, but just a breaking opportunity or, in TgX terms, a
“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further
type is a non-breaking hyphen, a hyphen without a breaking opportunity.

In TgX, - and \ - forbid further breaking opportunities in the word. This is the desired
behavior very often, but not always, and therefore many languages provide shorthands for
these cases. Unfortunately, this has not been done consistently: for example, " - in Dutch,
Portugese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,
Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \ -, so that
you cannot insert a soft hyphen without breaking opportunities in the rest of the word.
Therefore, some macros are provide with a set of basic “hyphens” which can be used by
themselves, to define a user shorthand, or even in language files.

* \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

* \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the
next line, as done in languages like Polish, Portugese and Spanish.

* \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space
follows).

* \babelhyphen{empty} inserts a break oportunity without a hyphen at all.

* \babelhyphen{(text)} is a hard “hyphen” using (text) instead. A typical case is
\babelhyphen{/}.

With all of them hyphenation in the rest of the word is enabled. If you don’t want enabling
it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is equivalent
to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes (eg,
-ism), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with EIgX: (1) the character used is that set for the current
font, while in EIgX it is hardwired to - (a typical value); (2) the hyphen to be used in fonts
with a negative \hyphenchar is -, like in KIgX, but it can be changed to another value by
redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if preceded by a
glue >0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a
parenthesis).

[(language) , (language) , ...]1{{exceptions) }

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional
argument, for all languages (eg, proper nouns or common loan words, and of course
monolingual documents). Language exceptions take precedence over global ones.

It can be used only in the preamble, and exceptions are set when the language is first
selected, thus taking into account changes of \1ccodes’s done in \extras(lang) as well as
the language specific encoding (not set in the preamble by default). Multiple

\babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

30

\babelpatterns

\ensureascii

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with
\babelpatterns (below) you may fine-tune line breaking (only luatex). Even if there
are no pattern for the language, you can add at least some typical cases.

[(language) , (language), ...1{(patterns)}

New 3.9m In luatex only,'” adds or replaces patterns for the languages given or, without
the optional argument, for all languages. If a pattern for a certain combination already
exists, it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first
selected, thus taking into account changes of \1ccodes’s done in \extras(lang) as well as
the language specific encoding (not set in the preamble by default). Multiple
\babelpatterns’s are allowed.

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

New 3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple
generic line breaking algorithm (push-out-first) is applied, based on a selection of the
Unicode rules.

New 3.27 Interword spacing for Thai, Lao and Khemer is activated automatically if a
language with one of those scripts are loaded with \babelprovide. See the sample on the
babel repository. With both Unicode engines, spacing is based on the “current” em unit (the
size of the previous char in luatex, and the font size set by the last \selectfont in xetex).

1.20 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best
selected with either \fontencoding (low level) or a language name (high level). Even the
Latin script may require different encodings (ie, sets of glyphs) depending on the language,
and therefore such a switch would be in a sense incomplete.'®

Some languages sharing the same script define macros to switch it (eg, \textcyrillic),
but be aware they may also set the language to a certain default. Even the babel core
defined \textlatin, but is was somewhat buggy because in some cases it messed up
encodings and fonts (for example, if the main Latin encoding was LY1), and therefore it has
been deprecated.’

{(text)}

New 3.9i This macro makes sure (text) is typeset with a LICR-savvy encoding in the ASCII
range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with
LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, X2, 0T2,
0T3, 0T6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the
bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and

\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the
beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For
example, if you load LY1, LGR, then itis set to LY1, but if youload LY1,T2A it is set to T2A.
The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used

17With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a
separate package and babel only provides the most basic tools.

18The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not neces-
sarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does
not mean it includes them for Classic Greek.

19But still defined for backwards compatibility.

31

bidi=

for “ordinary” text (they are stored in \BabelNonText, used in some special cases when no
Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of cases. No
assumption is made on characters above 127, which may not follow the LICR conventions —
the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.21 Selecting directions

No macros to select the writing direction are provided, either — writing direction is
intrinsic to each script and therefore it is best set by the language (which could be a
dummy one). Furthermore, there are in fact two right-to-left modes, depending on the
language, which differ in the way ‘weak’ numeric characters are ordered (eg, Arabic %123
vs Hebrew 123%).

WARNING The current code for text in luatex should be considered essentially stable, but,
of course, it is not bug free and there could be improvements in the future, because
setting bidi text has many subtleties (see for example
<https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must wait
very likely until (Northern) Winter. This applies to text, but graphical elements,
including the picture environment and PDF or PS based graphics, are not yet correctly
handled (far from trivial). Also, indexes and the like are under study, as well as math.

An effort is being made to avoid incompatibilities in the future (this one of the reason
currently bidi must be explicitly requested as a package option, with a certain bidi
model, and also the layout options described below).

There are some package options controlling bidi writing.

default | basic|basic-r|bidi-1|bidi-1

New 3.14 Selects the bidi algorithm to be used. With default the bidi mechanism is just
activated (by default it is not), but every change must by marked up. In xetex and pdftex
this is the only option.

In luatex, basic-r provides a simple and fast method for R text, which handles numbers
and unmarked L text within an R context in typical cases. New 3.19 Finally, basic
supports both L and R text and it is the preferred method (support for basic-r is now
limited). (They are named basic mainly because they only consider the intrinsic direction
of scripts and weak directionality.)

New 3.29 In xetex, bidi-r and bidi-1 resort to the package bidi (by Vafa Khalighi).
Integration is still somewhat tentative, but it mostly works. For RL documents use the
former, and for LR ones use the latter.

There are samples on GitHub, under /required/babel/samples. See particularly
lua-bidibasic.tex and lua-secenum. tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia).
Copy-pasting some text from the Wikipedia is a good way to test this feature.
Remember basic-r is available in luatex only.?

\documentclass{article}

\usepackage[bidi=basic-r]{babel}

20t the time of this writing some Arabic fonts are not rendered correctly by the default luatex font loader, with
misplaced kerns inside some words, so double check the resulting text. Have a look at the workaround available
on GitHub, under /required/babel/samples

32

\babelprovide[import, main]{arabic}

EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the
latter will be only necessary in some special cases where the Unicode algorithm fails). It
is used much like bidi=basic-r, but with R text inside L text you may want to map the
font so that the correct features are in force. This is accomplished with an option in
\babelprovide, as illustrated:

\documentclass{book}
\usepackage[english, bidi=basic]{babel}
\babelprovide[mapfont=direction]{arabic}

\babelfont{rm}{Crimson}
\babelfont[*arabic]{rm}{FreeSerif}

\begin{document}

Most Arabic speakers consider the two varieties to be two registers
of one language, although the two registers can be referred to in
Arabic as =]l L=es \textit{fusha l-‘asr} (MSA) and

oladl e \textit{fusha t-turath} (CA).

\end{document}

In this example, and thanks to mapfont=direction, any Arabic letter (because the
language is arabic) changes its font to that set for this language (here defined via
*arabic, because Crimson does not provide Arabic letters).

NOTE Boxes are “black boxes”. Numbers inside an \hbox (as for example in a \ref) do not
know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in
the visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the
digits inside the \hbox’es). If you need \ref ranges, the best option is to define a
dedicated macro like this (to avoid explicit direction changes in the body; here \texthe
must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In a future a more complete method, reading recursively boxed text, may be added.

33

layout=

\babelsublr

sectioning | counters | lists | contents | footnotes | captions | columns | extras

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents,
including some text elements (except with options loading the bidi package, which
provides its own mechanism to control these elements). You may use several options with
a dot-separated list (eg, layout=counters.contents.sectioning). This list will be
expanded in future releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with
the title text in the current language (see below \BabelPatchSection for further
details).

counters required in all engines (except luatex with bidi=basic) to reorder section
numbers and the like (eg, (subsection).(section)); required in xetex and pdftex for
counters in general, as well as in luatex with bidi=default; required in luatex for
numeric footnote marks >9 with bidi=basic-r (but not with bidi=basic); note,
however, it could depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see
below), but also an “isolated” block which does not interact with the surrounding chars.
So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal
number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may
always adjust the order by changing the language, if necessary*!

lists required in xetex and pdftex, but only in bidirectional (with both R and L
paragraphs) documents in luatex.

WARNING As of April 2019 there is a bug with \parshape in luatex (a TgX primitive)
which makes lists to be horizontally misplaced if they are inside a \vbox (like
minipage) and the current direction is different from the main one. A workaround
is to restore the main language before the box and then set the local one inside.

contents required in xetex and pdftex; in luatex toc entries are R by default if the main
language is R.

columns required in xetex and pdftex to reverse the column order (currently only the
standard two column mode); in luatex they are R by default if the main language is R
(including multicol).

footnotes not required in monolingual documents, but it may be useful in bidirectional
documents (with both R and L paragraphs) in all engines; you may use alternatively
\BabelFootnote described below (what this options does exactly is also explained
there).

captions issimilar to sectioning, but for \caption; not required in monolingual
documents with luatex, but may be required in xetex and pdftex in some styles (support
for the latter two engines is still experimental) New 3.18

tabular required in luatex for R tabular (it has been tested only with simple tables, so
expect some readjustments in the future); ignored in pdftex or xetex (which will not
support a similar option in the short term). It patches an internal command, so it might
be ignored by some packages and classes (or even raise an error). New 3.18

extras isused for miscellaneous readjustments which do not fit into the previous groups.
Currently redefines in luatex \underline and \LaTeX2e New 3.19

EXAMPLE Typically, in an Arabic document you would need:

\usepackage[bidi=basic,
layout=counters.tabular]{babel}

{(Ir-text)}

21Next on the roadmap are counters and numeral systems in general. Expect some minor readjustments.

34

\BabelPatchSection

\BabelFootnote

Digits in pdftex must be marked up explicitly (unlike luatex with bidi=basic or
bidi=basic-r and, usually, xetex). This command is provided to set {(lr-text)} in L mode
if necessary. It’s intended for what Unicode calls weak characters, because words are best
set with the corresponding language. For this reason, there is no rl counterpart.

Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,
it first returns to R and then switches to explicit L. To clarify this point, consider, in an R
context:

RTL A 1tr text \thechapter{} and still ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still ltr 1 ltr text RTL
A. This is by design to provide the proper behavior in the most usual cases — but if you
need to use \ref in an L text inside R, the L text must be marked up explictly; for example:

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still 1ltr} RTL B

{(section-name)}

Mainly for bidi text, but it could be useful in other cases. \BabelPatchSection and the
corresponding option layout=sectioning takes a more logical approach (at least in many
cases) because it applies the global language to the section format (including the
\chaptername in \chapter), while the section text is still the current language. The latter
is passed to tocs and marks, too, and with sectioning in layout they both reset the
“global” language to the main one, while the text uses the “local” language.

With layout=sectioning all the standard sectioning commands are redefined (it also
“isolates” the page number in heads, for a proper bidi behavior), but with this command
you can set them individually if necessary (but note then tocs and marks are not touched).

{(cmd)}{(local-language)}{(before)}{(after)}
New 3.17 Something like:

\BabelFootnote{\parsfootnote}{\languagename}{(}{)}
defines \parsfootnote so that \parsfootnote{note} is equivalent to:
\footnote{(\foreignlanguage{\languagename}{note})}

but the footnote itself is typeset in the main language (to unify its direction). In addition,
\parsfootnotetext is defined. The option footnotes just does the following:

\BabelFootnote{\footnote}{\languagename}{}{}%
\BabelFootnote{\localfootnote}{\languagename}{}{}%
\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and
\mainfootnotetext). If the language argument is empty, then no language is selected
inside the argument of the footnote. Note this command is available always in bidi
documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes
entirely in English, you can define:

35

\languageattribute

\AddBabelHook

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line.
This means the dot the end of the footnote text should be omitted.

1.22 Language attributes

This is a user-level command, to be used in the preamble of a document (after
\usepackage[...]{babel}), that declares which attributes are to be used for a given
language. It takes two arguments: the first is the name of the language; the second, a (list
of) attribute(s) to be used. Attributes must be set in the preamble and only once - they
cannot be turned on and off. The command checks whether the language is known in this
document and whether the attribute(s) are known for this language.

Very often, using a modifier in a package option is better.

Several language definition files use their own methods to set options. For example, french
uses \frenchsetup, magyar (1.5) uses \magyarOptio