
Babel

Version 3.35

2019/10/15

Original author

Johannes L. Braams

Current maintainer

Javier Bezos

The standard distribution of LATEX contains a number of

document classes that are meant to be used, but also

serve as examples for other users to create their own

document classes. These document classes have become

very popular among LATEX users. But it should be kept in

mind that they were designed for American tastes and

typography. At one time they even contained a number

of hard-wired texts.

This manual describes babel, a package that makes use

of the capabilities of TEX, xetex and luatex to provide an

environment in which documents can be typeset in a

language other than US English, or in more than one

language or script.

Current development is focused on Unicode engines

(XeTEX and LuaTEX) and the so-called complex scripts. New

features related to font selection, bidi writing, line

breaking and so on are being added incrementally.

Babel provides support (total or partial) for about 200

languages, either as a “classical” package option or as an

ini file. Furthermore, new languages can be created

from scratch easily.

Contents

I User guide 4

1 The user interface 4

1.1 Monolingual documents . 4

1.2 Multilingual documents . 5

1.3 Modifiers . 6

1.4 xelatex and lualatex . 7

1.5 Troubleshooting . 8

1.6 Plain . 8

1.7 Basic language selectors . 8

1.8 Auxiliary language selectors . 9

1.9 More on selection . 10

1.10 Shorthands . 11

1.11 Package options . 14

1.12 The base option . 16

1.13 ini files . 17

1.14 Selecting fonts . 24

1.15 Modifying a language . 26

1.16 Creating a language . 27

1.17 Digits . 29

1.18 Getting the current language name . 29

1.19 Hyphenation and line breaking . 30

1.20 Selecting scripts . 31

1.21 Selecting directions . 32

1.22 Language attributes . 36

1.23 Hooks . 36

1.24 Languages supported by babel with ldf files 38

1.25 Unicode character properties in luatex . 39

1.26 Tips, workarounds, known issues and notes 39

1.27 Current and future work . 40

1.28 Tentative and experimental code . 41

2 Loading languages with language.dat 41

2.1 Format . 42

3 The interface between the core of babel and the language definition files 42

3.1 Guidelines for contributed languages . 44

3.2 Basic macros . 44

3.3 Skeleton . 45

3.4 Support for active characters . 46

3.5 Support for saving macro definitions . 47

3.6 Support for extending macros . 47

3.7 Macros common to a number of languages 47

3.8 Encoding-dependent strings . 48

4 Changes 51

4.1 Changes in babel version 3.9 . 51

II Source code 52

5 Identification and loading of required files 52

1

6 locale directory 52

7 Tools 53

7.1 Multiple languages . 57

8 The Package File (LATEX, babel.sty) 58

8.1 base . 58

8.2 key=value options and other general option 60

8.3 Conditional loading of shorthands . 62

8.4 Language options . 63

9 The kernel of Babel (babel.def, common) 66

9.1 Tools . 66

9.2 Hooks . 68

9.3 Setting up language files . 70

9.4 Shorthands . 73

9.5 Language attributes . 82

9.6 Support for saving macro definitions . 84

9.7 Short tags . 85

9.8 Hyphens . 85

9.9 Multiencoding strings . 87

9.10 Macros common to a number of languages 93

9.11 Making glyphs available . 93

9.11.1 Quotation marks . 93

9.11.2 Letters . 94

9.11.3 Shorthands for quotation marks 95

9.11.4 Umlauts and tremas . 96

9.12 Layout . 97

9.13 Load engine specific macros . 98

9.14 Creating languages . 98

10 The kernel of Babel (babel.def, only LATEX) 109

10.1 The redefinition of the style commands . 109

10.2 Cross referencing macros . 109

10.3 Marks . 112

10.4 Preventing clashes with other packages 114

10.4.1 ifthen . 114

10.4.2 varioref . 114

10.4.3 hhline . 115

10.4.4 hyperref . 115

10.4.5 fancyhdr . 116

10.5 Encoding and fonts . 116

10.6 Basic bidi support . 118

10.7 Local Language Configuration . 121

11 Multiple languages (switch.def) 122

11.1 Selecting the language . 123

11.2 Errors . 131

12 Loading hyphenation patterns 133

13 Font handling with fontspec 137

2

14 Hooks for XeTeX and LuaTeX 142

14.1 XeTeX . 142

14.2 Layout . 144

14.3 LuaTeX . 146

14.4 Southeast Asian scripts . 151

14.5 CJK line breaking . 154

14.6 Layout . 155

14.7 Auto bidi with basic and basic-r . 157

15 Data for CJK 168

16 The ‘nil’ language 168

17 Support for Plain TEX (plain.def) 169

17.1 Not renaming hyphen.tex . 169

17.2 Emulating some LATEX features . 170

17.3 General tools . 170

17.4 Encoding related macros . 174

18 Acknowledgements 177

Troubleshoooting

Paragraph ended before \UTFviii@three@octets was complete 4

No hyphenation patterns were preloaded for (babel) the language ‘LANG’ into the

format . 5

You are loading directly a language style . 8

Unknown language ‘LANG’ . 8

Argument of \language@active@arg” has an extra } 12

Package fontspec Warning: ’Language ’LANG’ not available for font ’FONT’ with

script ’SCRIPT’ ’Default’ language used instead’ 26

3

Part I

User guide

• This user guide focuses on LATEX. There are also some notes on its use with Plain TEX.

• Changes and new features with relation to version 3.8 are highlighted with New X.XX .

The most recent features could be still unstable. Please, report any issues you find in

https://github.com/latex3/babel/issues, which is better than just complaining on

an e-mail list or a web forum.

• If you are interested in the TEX multilingual support, please join the kadingira list on

http://tug.org/mailman/listinfo/kadingira. You can follow the development of

babel in https://github.com/latex3/babel (which provides some sample files, too).

• See section 3.1 for contributing a language.

• The first sections describe the traditional way of loading a language (with ldf files). The

alternative way based on ini files, which complements the previous one (it will not

replace it), is described below.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in LATEX is to load the

package using its standard mechanism for this purpose, namely, passing that language as

an optional argument. In addition, you may want to set the font and input encodings.

EXAMPLE Here is a simple full example for “traditional” TEX engines (see below for xetex

and luatex). The packages fontenc and inputenc do not belong to babel, but they are

included in the example because typically you will need them (however, the package

inputencmay be omitted with LATEX≥ 2018-04-01 if the encoding is UTF-8):

\documentclass{article}

\usepackage[T1]{fontenc}

% \usepackage[utf8]{inputenc} % Uncomment if LaTeX < 2018-04-01

\usepackage[french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\end{document}

TROUBLESHOOTING A common source of trouble is a wrong setting of the input

encoding. Very often you will get the following somewhat cryptic error:

! Paragraph ended before \UTFviii@three@octets was complete.

Make sure you set the encoding actually used by your editor.

4

Another approach is making the language (french in the example) a global option in order

to let other packages detect and use it:

\documentclass[french]{article}

\usepackage{babel}

\usepackage{varioref}

In this last example, the package varioref will also see the option and will be able to use it.

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of

hyphenation patterns as preloaded into the format, (2) a package option, (3) an ldf file,

and (4) a name used in the document to select a language or dialect. So, a package

option refers to a language in a generic way – sometimes it is the actual language name

used to select it, sometimes it is a file name loading a language with a different name,

sometimes it is a file name loading several languages. Please, read the documentation

for specific languages for further info.

TROUBLESHOOTING The following warning is about hyphenation patterns, which are not

under the direct control of babel:

Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language `LANG' into the format.

(babel) Please, configure your TeX system to add them and

(babel) rebuild the format. Now I will use the patterns

(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated.

Some languages may be raising this warning wrongly (because they are not

hyphenated); it is a bug to be fixed – just ignore it. See the manual of your distribution

(MacTEX, MikTEX, TEXLive, etc.) for further info about how to configure it.

1.2 Multilingual documents

In multilingual documents, just use a list of the required languages as package or class

options. The last language is considered the main one, activated by default. Sometimes, the

main language changes the document layout (eg, spanish and french).

EXAMPLE In LATEX, the preamble of the document:

\documentclass{article}

\usepackage[dutch,english]{babel}

would tell LATEX that the document would be written in two languages, Dutch and

English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly, but it is discouraged except if there a real

reason to do so:

\documentclass{article}

\usepackage[main=english,dutch]{babel}

Examples of cases where main is useful are the following.

5

NOTE Some classes load babel with a hardcoded language option. Sometimes, the main

language could be overridden with something like that before \documentclass:

\PassOptionsToPackage{main=english}{babel}

WARNING Languages may be set as global and as package option at the same time, but in

such a case you should set explicitly the main language with the package option main:

\documentclass[italian]{book}

\usepackage[ngerman,main=italian]{babel}

WARNING In the preamble the main language has not been selected, except hyphenation

patterns and the name assigned to \languagename (in particular, shorthands, captions

and date are not activated). If you need to define boxes and the like in the preamble,

you might want to use some of the language selectors described below.

To switch the language there are two basic macros, described below in detail:

\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text

inside paragraphs.

EXAMPLE A full bilingual document follows. The main language is french, which is

activated when the document begins. The package inputencmay be omitted with LATEX

≥ 2018-04-01 if the encoding is UTF-8.

\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[utf8]{inputenc}

\usepackage[english,french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\selectlanguage{english}

And an English paragraph, with a short text in

\foreignlanguage{french}{français}.

\end{document}

1.3 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by

means ofmodifiers. They are set after the language name, and are prefixed with a dot (only

when the language is set as package option – neither global options nor the main key

accepts them). An example is (spaces are not significant and they can be added or

removed):1

1No predefined “axis” formodifiers are provided because languages and their scripts have quite different needs.

6

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by

including it in the list of modifiers. However, modifiers are a more general mechanism.

1.4 xelatex and lualatex

Many languages are compatible with xetex and luatex. With them you can use babel to

localize the documents.

The Latin script is covered by default in current LATEX (provided the document encoding is

UTF-8), because the font loader is preloaded and the font is switched to lmroman. Other

scripts require loading fontspec. You may want to set the font attributes with fontspec, too.

EXAMPLE The following bilingual, single script document in UTF-8 encoding just prints a

couple of ‘captions’ and \today in Danish and Vietnamese. No additional packages are

required.

\documentclass{article}

\usepackage[vietnamese,danish]{babel}

\begin{document}

\prefacename{} -- \alsoname{} -- \today

\selectlanguage{vietnamese}

\prefacename{} -- \alsoname{} -- \today

\end{document}

EXAMPLE Here is a simple monolingual document in Russian (text from the Wikipedia).

Note neither fontenc nor inputenc are necessary, but the document should be encoded

in UTF-8 and a so-called Unicode font must be loaded (in this example \babelfont is

used, described below).

\documentclass{article}

\usepackage[russian]{babel}

\babelfont{rm}{DejaVu Serif}

\begin{document}

Россия, находящаяся на пересечении множества культур, а также

с учётом многонационального характера её населения, — отличается

высокой степенью этнокультурного многообразия и способностью к

межкультурному диалогу.

\end{document}

7

1.5 Troubleshooting

• Loading directly sty files in LATEX (ie, \usepackage{〈language〉}) is deprecated and you

will get the error:2

! Package babel Error: You are loading directly a language style.

(babel) This syntax is deprecated and you must use

(babel) \usepackage[language]{babel}.

• Another typical error when using babel is the following:3

! Package babel Error: Unknown language `#1'. Either you have

(babel) misspelled its name, it has not been installed,

(babel) or you requested it in a previous run. Fix its name,

(babel) install it or just rerun the file, respectively. In

(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but

you realized this language is not used after all, and therefore you removed it from the

option list). In most cases, the error vanishes when the document is typeset again, but

in more severe ones you will need to remove the aux file.

1.6 Plain

In Plain, load languages styles with \input and then use \begindocument (the latter is

defined by babel):

\input estonian.sty

\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with

Plain.4

1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in

multilingual documents. In most cases, only the two basic macros \selectlanguage and

\foreignlanguage are necessary. The environments otherlanguage, otherlanguage*

and hyphenrules are auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

{〈language〉}\selectlanguage

When a user wants to switch from one language to another he can do so using the macro

\selectlanguage. This macro takes the language, defined previously by a language

definition file, as its argument. It calls several macros that should be defined in the

language definition files to activate the special definitions for the language chosen:

2In old versions the error read “You have used an old interface to call babel”, not very helpful.
3In old versions the error read “You haven’t loaded the language LANG yet”.
4Even in the babel kernel there were some macros not compatible with plain. Hopefully these issues have been

fixed.

8

\selectlanguage{german}

This command can be used as environment, too.

NOTE For “historical reasons”, a macro name is converted to a language name without the

leading \; in other words, \selectlanguage{\german} is equivalent to

\selectlanguage{german}. Using a macro instead of a “real” name is deprecated.

WARNING If used inside braces there might be some non-local changes, as this would be

roughly equivalent to:

{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an

additional grouping level.

{〈language〉}{〈text〉}\foreignlanguage

The command \foreignlanguage takes two arguments; the second argument is a phrase

to be typeset according to the rules of the language named in its first one. This command

(1) only switches the extra definitions and the hyphenation rules for the language, not the

names and dates, (2) does not send information about the language to auxiliary files (i.e.,

the surrounding language is still in force), and (3) it works even if the language has not

been set as package option (but in such a case it only sets the hyphenation patterns and a

warning is shown). With the bidi option, it also enters in horizontal mode (this is not done

always for backwards compatibility).

1.8 Auxiliary language selectors

{〈language〉} … \end{otherlanguage}\begin{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except that

language change is (mostly) local to the environment.

Actually, there might be some non-local changes, as this environment is roughly equivalent

to:

\begingroup

\selectlanguage{<inner-language>}

...

\endgroup

\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with an

additional grouping, like braces {}.

Spaces after the environment are ignored.

{〈language〉} … \end{otherlanguage*}\begin{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not

ignored.

This environment was originally intended for intermixing left-to-right typesetting with

right-to-left typesetting in engines not supporting a change in the writing direction inside a

9

line. However, by default it never complied with the documented behavior and it is just a

version as environment of \foreignlanguage, except when the option bidi is set – in this

case, \foreignlanguage emits a \leavevmode, while otherlanguage* does not.

{〈language〉} … \end{hyphenrules}\begin{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be used

(it can be used as command, too). This can for instance be used to select ‘nohyphenation’,

provided that in language.dat the ‘language’ nohyphenation is defined by loading

zerohyph.tex. It deactivates language shorthands, too (but not user shorthands).

Except for these simple uses, hyphenrules is discouraged and otherlanguage* (the

starred version) is preferred, as the former does not take into account possible changes in

encodings of characters like, say, ' done by some languages (eg, italian, french, ukraineb).

To set hyphenation exceptions, use \babelhyphenation (see below).

1.9 More on selection

{〈tag1〉 = 〈language1〉, 〈tag2〉 = 〈language2〉, …}\babeltags

New 3.9i In multilingual documents with many language-switches the commands above

can be cumbersome. With this tool shorter names can be defined. It adds nothing really

new – it is just syntactical sugar.

It defines \text〈tag1〉{〈text〉} to be \foreignlanguage{〈language1〉}{〈text〉}, and
\begin{〈tag1〉} to be \begin{otherlanguage*}{〈language1〉}, and so on. Note \〈tag1〉 is
also allowed, but remember to set it locally inside a group.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}

German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} is legitimate – it defines

\textfinnish and \finnish (and, of course, \begin{finnish}).

NOTE Actually, there may be another advantage in the ‘short’ syntax \text〈tag〉, namely,

it is not affected by \MakeUppercase (while \foreignlanguage is).

10

[include=〈commands〉,exclude=〈commands〉,fontenc=〈encoding〉]{〈language〉}\babelensure

New 3.9i Except in a few languages, like russian, captions and dates are just strings, and

do not switch the language. That means you should set it explicitly if you want to use them,

or hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TEX can do it for you. To avoid switching the language all the while,

\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

By default only the basic captions and \today are redefined, but you can add further

macros with the key include in the optional argument (without commas). Macros not to

be modified are listed in exclude. You can also enforce a font encoding with fontenc.5 A

couple of examples:

\babelensure[include=\Today]{spanish}

\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it makes

some assumptions which could not be fulfilled in some languages. Note also you should

include only macros defined by the language, not global macros (eg, \TeX of \dag).

With ini files (see below), captions are ensured by default.

1.10 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX code.

Shorthands can be used for different kinds of things, for example: (1) in some languages

shorthands such as "a are defined to be able to hyphenate the word if the encoding is OT1;

(2) in some languages shorthands such as ! are used to insert the right amount of white

space; (3) several kinds of discretionaries and breaks can be inserted easily with "-, "=, etc.

The package inputenc as well as xetex and luatex have alleviated entering non-ASCII

characters, but minority languages and some kinds of text can still require characters not

directly available on the keyboards (and sometimes not even as separated or precomposed

Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can

manipulate the glyph list. Tools for point 3 can be still very useful in general.

There are three levels of shorthands: user, language, and system (by order of precedence).

Version 3.9 introduces the language user level on top of the user level, as described below.

In most cases, you will use only shorthands provided by languages.

NOTE Note the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace

} and the spaces following are gobbled. With one-char shorthands (eg, :), they are

preserved.

2. If on a certain level (system, language, user) there is a one-char shorthand, two-char

ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition

(except if it is deactivated with, eg, string).

5With it encoded string may not work as expected.

11

A typical error when using shorthands is the following:

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}). Just

add {} after (eg, "{}}).

{〈shorthands-list〉}\shorthandon

* {〈shorthands-list〉}\shorthandoff

It is sometimes necessary to switch a shorthand character off temporarily, because it must

be used in an entirely different way. For this purpose, the user commands \shorthandoff

and \shorthandon are provided. They each take a list of characters as their arguments.

The command \shorthandoff sets the \catcode for each of the characters in its argument

to other (12); the command \shorthandon sets the \catcode to active (13). Both commands

only work on ‘known’ shorthand characters.

New 3.9a However, \shorthandoff does not behave as you would expect with

characters like ~ or ^, because they usually are not “other”. For them \shorthandoff* is

provided, so that with

\shorthandoff*{~^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the

superscript character. The catcodes used are those when the shorthands are defined,

usually when language files are loaded.

* {〈char〉}\useshorthands

The command \useshorthands initiates the definition of user-defined shorthand

sequences. It has one argument, the character that starts these personal shorthands.

New 3.9a User shorthands are not always alive, as they may be deactivated by languages

(for example, if you use " for your user shorthands and switch from german to french, they

stop working). Therefore, a starred version \useshorthands*{〈char〉} is provided, which

makes sure shorthands are always activated.

Currently, if the package option shorthands is used, you must include any character to be

activated with \useshorthands. This restriction will be lifted in a future release.

[〈language〉,〈language〉,...]{〈shorthand〉}{〈code〉}\defineshorthand

The command \defineshorthand takes two arguments: the first is a one- or two-character

shorthand sequence, and the second is the code the shorthand should expand to.

New 3.9a An optional argument allows to (re)define language and system shorthands

(some languages do not activate shorthands, so you may want to add

\languageshorthands{〈lang〉} to the corresponding \extras〈lang〉, as explained below).

By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.

Language-dependent user shorthands (new in 3.9) take precedence over “normal” user

shorthands.

EXAMPLE Let’s assume you want a unified set of shorthand for discretionaries (languages

do not define shorthands consistently, and "-, \-, "= have different meanings). You

could start with, say:

12

\useshorthands*{"}

\defineshorthand{"*}{\babelhyphen{soft}}

\defineshorthand{"-}{\babelhyphen{hard}}

However, the behavior of hyphens is language-dependent. For example, in languages

like Polish and Portuguese, a hard hyphen inside compound words are repeated at the

beginning of the next line. You could then set:

\defineshorthand[*polish,*portugese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the

generic one above only applies for the rest of languages; without * they would

(re)define the language shorthands instead, which are overridden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning

(‘compound word hyphen’) whose visual behavior is that expected in each context.

{〈original〉}{〈alias〉}\aliasshorthand

The command \aliasshorthand can be used to let another character perform the same

functions as the default shorthand character. If one prefers for example to use the

character / over " in typing Polish texts, this can be achieved by entering

\aliasshorthand{"}{/}.

NOTE The substitute character must not have been declared before as shorthand (in such

a case, \aliashorthands is ignored).

EXAMPLE The following example shows how to replace a shorthand by another

\aliasshorthand{~}{^}

\AtBeginDocument{\shorthandoff*{~}}

WARNING Shorthands remember somehow the original character, and the fallback value

is that of the latter. So, in this example, if no shorthand if found, ^ expands to a

non-breaking space, because this is the value of ~ (internally, ^ still calls \active@char~

or \normal@char~). Furthermore, if you change the system value of ^ with

\defineshorthand nothing happens.

{〈language〉}\languageshorthands

The command \languageshorthands can be used to switch the shorthands on the

language level. It takes one argument, the name of a language or none (the latter does what

its name suggests).6 Note that for this to work the language should have been specified as

an option when loading the babel package. For example, you can use in english the

shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

6Actually, any name not corresponding to a language group does the same as none. However, follow this con-

vention because it might be enforced in future releases of babel to catch possible errors.

13

(You may also need to activate them as user shorthands in the preamble with, for example,

\useshorthands or \useshorthands*.)

Very often, this is a more convenient way to deactivate shorthands than \shorthandoff,

for example if you want to define a macro to easy typing phonetic characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

{〈shorthand〉}\babelshorthand

With this command you can use a shorthand even if (1) not activated in shorthands (in

this case only shorthands for the current language are taken into account, ie, not user

shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal

\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can

conveniently define your own macros, or even your own user shorthands provided they

do not overlap.)

For your records, here is a list of shorthands, but you must double check them, as they may

change:7

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,

Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,

Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,

Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),

Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

Catalan " ' `

Czech " -

Esperanto ^

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ < >

Greek ~

Hungarian `

Kurmanji ^

Latin " ^ =

Slovak " ^ ' -

Spanish " . < > '

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the

standard ~, to a non breaking space.8

{〈character〉}{〈true〉}{〈false〉}\ifbabelshorthand

New 3.23 Tests if a character has been made a shorthand.

1.11 Package options

New 3.9a These package options are processed before language options, so that they are

taken into account irrespective of its order. The first three options have been available in

previous versions.

7Thanks to Enrico Gregorio
8This declaration serves to nothing, but it is preserved for backward compatibility.

14

Tells babel not to deactivate shorthands after loading a language file, so that they are alsoKeepShorthandsActive

available in the preamble.

For some languages babel supports this options to set ' as a shorthand in case it is not doneactiveacute

by default.

Same for `.activegrave

〈char〉〈char〉... | offshorthands=

The only language shorthands activated are those given, like, eg:

\usepackage[esperanto,french,shorthands=:;!?]{babel}

If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters

(like ~) should be preceded by \string (otherwise they will be expanded by LATEX before

they are passed to the package and therefore they will not be recognized); however, t is

provided for the common case of ~ (as well as c for not so common case of the comma).

With shorthands=off no language shorthands are defined, As some languages use this

mechanism for tools not available otherwise, a macro \babelshorthand is defined, which

allows using them; see above.

none | ref | bibsafe=

Some LATEX macros are redefined so that using shorthands is safe. With safe=bib only

\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and

\pageref are redefined (as well as a few macros from varioref and ifthen).

With safe=none no macro is redefined. This option is strongly recommended, because a

good deal of incompatibilities and errors are related to these redefinitions. As of

New 3.34 , in εTEX based engines (ie, almost every engine except the oldest ones)

shorthands can be used in these macros (formerly you could not).

active | normalmath=

Shorthands are mainly intended for text, not for math. By setting this option with the

value normal they are deactivated in math mode (default is active) and things like ${a'}$

(a closing brace after a shorthand) are not a source of trouble anymore.

〈file〉config=

Load 〈file〉.cfg instead of the default config file bblopts.cfg (the file is loaded even with

noconfigs).

〈language〉main=

Sets the main language, as explained above, ie, this language is always loaded last. If it is

not given as package or global option, it is added to the list of requested languages.

〈language〉headfoot=

By default, headlines and footlines are not touched (only marks), and if they contain

language-dependent macros (which is not usual) there may be unexpected results. With

this option you may set the language in heads and foots.

15

Global and language default config files are not loaded, so you can make sure yournoconfigs

document is not spoilt by an unexpected .cfg file. However, if the key config is set, this

file is loaded.

Prints to the log the list of languages loaded when the format was created: numbershowlanguages

(remember dialects can share it), name, hyphenation file and exceptions file.

New 3.9l Language settings for uppercase and lowercase mapping (as set by \SetCase)nocase

are ignored. Use only if there are incompatibilities with other packages.

New 3.9l No warnings and no infos are written to the log file.9silent

generic | unicode | encoded | 〈label〉 | 〈font encoding〉strings=

Selects the encoding of strings in languages supporting this feature. Predefined labels are

generic (for traditional TEX, LICR and ASCII strings), unicode (for engines like xetex and

luatex) and encoded (for special cases requiring mixed encodings). Other allowed values

are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be

aware with encoded captions are protected, but they work in \MakeUppercase and the like

(this feature misuses some internal LATEX tools, so use it only as a last resort).

off | main | select | other | other*hyphenmap=

New 3.9g Sets the behavior of case mapping for hyphenation, provided the language

defines it.10 It can take the following values:

off deactivates this feature and no case mapping is applied;

first sets it at the first switching commands in the current or parent scope (typically,

when the aux file is first read and at \begin{document}, but also the first

\selectlanguage in the preamble), and it’s the default if a single language option has

been stated;11

select sets it only at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot

is used) and in auxiliary files (ie, at \select@language), and it’s the default if several

language options have been stated. The option first can be regarded as an optimized

version of other* for monolingual documents.12

default | basic | basic-r | bidi-l | bidi-rbidi=

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.21.

layout=

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.21.

1.12 The base option

With this package option babel just loads some basic macros (those in switch.def),

defines \AfterBabelLanguage and exits. It also selects the hyphenation patterns for the

9You can use alternatively the package silence.
10Turned off in plain.
11Duplicated options count as several ones.
12Providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if

either xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL]

think it isn’t really useful, but who knows.

16

last language passed as option (by its name in language.dat). There are two main uses:

classes and packages, and as a last resort in case there are, for some reason, incompatible

languages. It can be used if you just want to select the hyphenation patterns of a single

language, too.

{〈option-name〉}{〈code〉}\AfterBabelLanguage

This command is currently the only provided by base. Executes 〈code〉when the file loaded

by the corresponding package option is finished (at \ldf@finish). The setting is global. So

\AfterBabelLanguage{french}{...}

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the code

is executed only if 〈option-name〉 is the same as \CurrentOption (which could not be the

same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with

\newcommand. An error is raised if you attempt to load both. Here is a way to overcome

this problem:

\usepackage[base]{babel}

\AfterBabelLanguage{foo}{%

\let\macroFoo\macro

\let\macro\relax}

\usepackage[foo,bar]{babel}

1.13 ini files

An alternative approach to define a language is by means of an ini file. Currently babel

provides about 200 of these files containing the basic data required for a language.

Most of them set the date, and many also the captions (Unicode and LICR). They will be

evolving with the time to add more features (something to keep in mind if backward

compatibility is important). The following section shows how to make use of them

currently (by means of \babelprovide), but a higher interface, based on package options,

in under development (in other words, \babelprovide is mainly intended for auxiliary

tasks).

EXAMPLE Although Georgian has its own ldf file, here is how to declare this language

with an ini file in Unicode engines.

\documentclass{book}

\usepackage{babel}

\babelprovide[import, main]{georgian}

\babelfont{rm}{DejaVu Sans}

\begin{document}

\tableofcontents

\chapter{სამზარეულო და სუფრის ტრადიციები}

ქართული ტრადიციული სამზარეულო ერთ-ერთი უმდიდრესია მთელ მსოფლიოში.

17

\end{document}

NOTE The ini files just define and set some parameters, but the corresponding behavior is

not always implemented. Also, there are some limitations in the engines. A few

remarks follows:

Arabic Monolingual documents mostly work in luatex, but it must be fine tuned, and a

recent version of fontspec/loaotfload is required. In xetex babel resorts to the bidi

package, which seems to work.

Hebrew Niqqud marks seem to work in both engines, but cantillation marks are

misplaced (xetex seems better, but still problematic).

Devanagari In luatexmany fonts work, but some others do not, the main issue being

the ‘ra’. It is advisable to set explicitly the script to either deva or dev2, eg:

\newfontscript{Devanagari}{deva}

Other Indic scripts are still under development in luatex. On the other hand, xetex is

better.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules

can be modified in luatex; they are hardcoded in xetex). Lao seems to work, too, but

there are no patterns for the latter in luatex. Some quick patterns could help, with

something similar to:

\babelprovide[import,hyphenrules=+]{lao}

\babelpatterns[lao]{1ດ 1ມ 1� 1ອ 1ງ 1ກ 1າ} % Random

Khemer clusters are rendered wrongly.

East Asia scripts Internal inconsistencies in script and language names must be sorted

out, so you may need to set them explicitly in \babelfont, as well as CJKShape.

luatex does basic line breaking, but currently xetex does not (you may load

zhspacing). Although for a few words and shorts texts the ini files should be fine,

CJK texts are are best set with a dedicated framework (CJK, luatexja, kotex, CTeX...), .

Actually, this is what the ldf does in japanese with luatex, because the following

piece of code loads luatexja:

\documentclass{ltjbook}

\usepackage[japanese]{babel}

Here is the list (u means Unicode captions, and l means LICR captions):

af Afrikaansul

agq Aghem

ak Akan

am Amharicul

ar Arabicul

ar-DZ Arabicul

ar-MA Arabicul

ar-SY Arabicul

as Assamese

asa Asu

ast Asturianul

az-Cyrl Azerbaijani

az-Latn Azerbaijani

az Azerbaijaniul

bas Basaa

be Belarusianul

18

bem Bemba

bez Bena

bg Bulgarianul

bm Bambara

bn Banglaul

bo Tibetanu

brx Bodo

bs-Cyrl Bosnian

bs-Latn Bosnianul

bs Bosnianul

ca Catalanul

ce Chechen

cgg Chiga

chr Cherokee

ckb Central Kurdish

cs Czechul

cy Welshul

da Danishul

dav Taita

de-AT Germanul

de-CH Germanul

de Germanul

dje Zarma

dsb Lower Sorbianul

dua Duala

dyo Jola-Fonyi

dz Dzongkha

ebu Embu

ee Ewe

el Greekul

en-AU Englishul

en-CA Englishul

en-GB Englishul

en-NZ Englishul

en-US Englishul

en Englishul

eo Esperantoul

es-MX Spanishul

es Spanishul

et Estonianul

eu Basqueul

ewo Ewondo

fa Persianul

ff Fulah

fi Finnishul

fil Filipino

fo Faroese

fr Frenchul

fr-BE Frenchul

fr-CA Frenchul

fr-CH Frenchul

fr-LU Frenchul

fur Friulianul

fy Western Frisian

ga Irishul

gd Scottish Gaelicul

gl Galicianul

gsw Swiss German

gu Gujarati

guz Gusii

gv Manx

ha-GH Hausa

ha-NE Hausal

ha Hausa

haw Hawaiian

he Hebrewul

hi Hindiu

hr Croatianul

hsb Upper Sorbianul

hu Hungarianul

hy Armenian

ia Interlinguaul

id Indonesianul

ig Igbo

ii Sichuan Yi

is Icelandicul

it Italianul

ja Japanese

jgo Ngomba

jmc Machame

ka Georgianul

kab Kabyle

kam Kamba

kde Makonde

kea Kabuverdianu

khq Koyra Chiini

ki Kikuyu

kk Kazakh

kkj Kako

kl Kalaallisut

kln Kalenjin

km Khmer

kn Kannadaul

ko Korean

kok Konkani

ks Kashmiri

ksb Shambala

ksf Bafia

ksh Colognian

kw Cornish

ky Kyrgyz

lag Langi

lb Luxembourgish

lg Ganda

lkt Lakota

ln Lingala

lo Laoul

lrc Northern Luri

19

lt Lithuanianul

lu Luba-Katanga

luo Luo

luy Luyia

lv Latvianul

mas Masai

mer Meru

mfe Morisyen

mg Malagasy

mgh Makhuwa-Meetto

mgo Metaʼ

mk Macedonianul

ml Malayalamul

mn Mongolian

mr Marathiul

ms-BN Malayl

ms-SG Malayl

ms Malayul

mt Maltese

mua Mundang

my Burmese

mzn Mazanderani

naq Nama

nb Norwegian Bokmålul

nd North Ndebele

ne Nepali

nl Dutchul

nmg Kwasio

nn Norwegian Nynorskul

nnh Ngiemboon

nus Nuer

nyn Nyankole

om Oromo

or Odia

os Ossetic

pa-Arab Punjabi

pa-Guru Punjabi

pa Punjabi

pl Polishul

pms Piedmonteseul

ps Pashto

pt-BR Portugueseul

pt-PT Portugueseul

pt Portugueseul

qu Quechua

rm Romanshul

rn Rundi

ro Romanianul

rof Rombo

ru Russianul

rw Kinyarwanda

rwk Rwa

sa-Beng Sanskrit

sa-Deva Sanskrit

sa-Gujr Sanskrit

sa-Knda Sanskrit

sa-Mlym Sanskrit

sa-Telu Sanskrit

sa Sanskrit

sah Sakha

saq Samburu

sbp Sangu

se Northern Samiul

seh Sena

ses Koyraboro Senni

sg Sango

shi-Latn Tachelhit

shi-Tfng Tachelhit

shi Tachelhit

si Sinhala

sk Slovakul

sl Slovenianul

smn Inari Sami

sn Shona

so Somali

sq Albanianul

sr-Cyrl-BA Serbianul

sr-Cyrl-ME Serbianul

sr-Cyrl-XK Serbianul

sr-Cyrl Serbianul

sr-Latn-BA Serbianul

sr-Latn-ME Serbianul

sr-Latn-XK Serbianul

sr-Latn Serbianul

sr Serbianul

sv Swedishul

sw Swahili

ta Tamilu

te Teluguul

teo Teso

th Thaiul

ti Tigrinya

tk Turkmenul

to Tongan

tr Turkishul

twq Tasawaq

tzm Central Atlas Tamazight

ug Uyghur

uk Ukrainianul

ur Urduul

uz-Arab Uzbek

uz-Cyrl Uzbek

uz-Latn Uzbek

uz Uzbek

vai-Latn Vai

vai-Vaii Vai

vai Vai

vi Vietnameseul

20

vun Vunjo

wae Walser

xog Soga

yav Yangben

yi Yiddish

yo Yoruba

yue Cantonese

zgh Standard Moroccan

Tamazight

zh-Hans-HK Chinese

zh-Hans-MO Chinese

zh-Hans-SG Chinese

zh-Hans Chinese

zh-Hant-HK Chinese

zh-Hant-MO Chinese

zh-Hant Chinese

zh Chinese

zu Zulu

In some contexts (currently \babelfont) an ini file may be loaded by its name. Here is the

list of the names currently supported. With these languages, \babelfont loads (if not done

before) the language and script names (even if the language is defined as a package option

with an ldf file). These are also the names recognized by \babelprovide with a valueless

import.

aghem

akan

albanian

american

amharic

arabic

arabic-algeria

arabic-DZ

arabic-morocco

arabic-MA

arabic-syria

arabic-SY

armenian

assamese

asturian

asu

australian

austrian

azerbaijani-cyrillic

azerbaijani-cyrl

azerbaijani-latin

azerbaijani-latn

azerbaijani

bafia

bambara

basaa

basque

belarusian

bemba

bena

bengali

bodo

bosnian-cyrillic

bosnian-cyrl

bosnian-latin

bosnian-latn

bosnian

brazilian

breton

british

bulgarian

burmese

canadian

cantonese

catalan

centralatlastamazight

centralkurdish

chechen

cherokee

chiga

chinese-hans-hk

chinese-hans-mo

chinese-hans-sg

chinese-hans

chinese-hant-hk

chinese-hant-mo

chinese-hant

chinese-simplified-hongkongsarchina

chinese-simplified-macausarchina

chinese-simplified-singapore

chinese-simplified

chinese-traditional-hongkongsarchina

chinese-traditional-macausarchina

chinese-traditional

chinese

colognian

cornish

croatian

czech

danish

duala

dutch

21

dzongkha

embu

english-au

english-australia

english-ca

english-canada

english-gb

english-newzealand

english-nz

english-unitedkingdom

english-unitedstates

english-us

english

esperanto

estonian

ewe

ewondo

faroese

filipino

finnish

french-be

french-belgium

french-ca

french-canada

french-ch

french-lu

french-luxembourg

french-switzerland

french

friulian

fulah

galician

ganda

georgian

german-at

german-austria

german-ch

german-switzerland

german

greek

gujarati

gusii

hausa-gh

hausa-ghana

hausa-ne

hausa-niger

hausa

hawaiian

hebrew

hindi

hungarian

icelandic

igbo

inarisami

indonesian

interlingua

irish

italian

japanese

jolafonyi

kabuverdianu

kabyle

kako

kalaallisut

kalenjin

kamba

kannada

kashmiri

kazakh

khmer

kikuyu

kinyarwanda

konkani

korean

koyraborosenni

koyrachiini

kwasio

kyrgyz

lakota

langi

lao

latvian

lingala

lithuanian

lowersorbian

lsorbian

lubakatanga

luo

luxembourgish

luyia

macedonian

machame

makhuwameetto

makonde

malagasy

malay-bn

malay-brunei

malay-sg

malay-singapore

malay

malayalam

maltese

manx

marathi

masai

mazanderani

meru

meta

22

mexican

mongolian

morisyen

mundang

nama

nepali

newzealand

ngiemboon

ngomba

norsk

northernluri

northernsami

northndebele

norwegianbokmal

norwegiannynorsk

nswissgerman

nuer

nyankole

nynorsk

occitan

oriya

oromo

ossetic

pashto

persian

piedmontese

polish

portuguese-br

portuguese-brazil

portuguese-portugal

portuguese-pt

portuguese

punjabi-arab

punjabi-arabic

punjabi-gurmukhi

punjabi-guru

punjabi

quechua

romanian

romansh

rombo

rundi

russian

rwa

sakha

samburu

samin

sango

sangu

sanskrit-beng

sanskrit-bengali

sanskrit-deva

sanskrit-devanagari

sanskrit-gujarati

sanskrit-gujr

sanskrit-kannada

sanskrit-knda

sanskrit-malayalam

sanskrit-mlym

sanskrit-telu

sanskrit-telugu

sanskrit

scottishgaelic

sena

serbian-cyrillic-bosniaherzegovina

serbian-cyrillic-kosovo

serbian-cyrillic-montenegro

serbian-cyrillic

serbian-cyrl-ba

serbian-cyrl-me

serbian-cyrl-xk

serbian-cyrl

serbian-latin-bosniaherzegovina

serbian-latin-kosovo

serbian-latin-montenegro

serbian-latin

serbian-latn-ba

serbian-latn-me

serbian-latn-xk

serbian-latn

serbian

shambala

shona

sichuanyi

sinhala

slovak

slovene

slovenian

soga

somali

spanish-mexico

spanish-mx

spanish

standardmoroccantamazight

swahili

swedish

swissgerman

tachelhit-latin

tachelhit-latn

tachelhit-tfng

tachelhit-tifinagh

tachelhit

taita

tamil

tasawaq

telugu

teso

thai

23

tibetan

tigrinya

tongan

turkish

turkmen

ukenglish

ukrainian

uppersorbian

urdu

usenglish

usorbian

uyghur

uzbek-arab

uzbek-arabic

uzbek-cyrillic

uzbek-cyrl

uzbek-latin

uzbek-latn

uzbek

vai-latin

vai-latn

vai-vai

vai-vaii

vai

vietnam

vietnamese

vunjo

walser

welsh

westernfrisian

yangben

yiddish

yoruba

zarma

zulu afrikaans

1.14 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There

is no need to load fontspec explicitly – babel does it for you with the first \babelfont.13

[〈language-list〉]{〈font-family〉}[〈font-options〉]{〈font-name〉}\babelfont

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and font-name

is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family, activated when

a language is selected. On the other hand, if there is one or more languages in the optional

argument, the font will be assigned to them, overriding the default. Alternatively, you may

set a font for a script – just precede its name (lowercase) with a star (eg, *devanagari).

Babel takes care of the font language and the font script when languages are selected (as

well as the writing direction); see the recognized languages above. In most cases, you will

not need font-options, which is the same as in fontspec, but you may add further key/value

pairs if necessary.

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document

in Swedish, with some words in Hebrew, with a font suited for both languages.

\documentclass{article}

\usepackage[swedish, bidi=default]{babel}

\babelprovide[import]{hebrew}

\babelfont{rm}{FreeSerif}

\begin{document}

Svenska \foreignlanguage{hebrew}{ תירְִבעִ } svenska.

\end{document}

13See also the package combofont for a complementary approach.

24

If on the other hand you have to resort to different fonts, you could replace the red line

above with, say:

\babelfont{rm}{Iwona}

\babelfont[hebrew]{rm}{FreeSerif}

\babelfont can be used to implicitly define a new font family. Just write its name instead

of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic

families.

EXAMPLE Here is how to do it:

\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

\usepackage{fontspec}

\newfontscript{Devanagari}{deva}

\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2 (luatex does

not detect automatically the correct script14). You may also pass some options to

fontspec: with silent, the warnings about unavailable scripts or languages are not

shown (they are only really useful when the document format is being set up).

NOTE Directionality is a property affecting margins, indentation, column order, etc., not

just text. Therefore, it is under the direct control of the language, which applies both

the script and the direction to the text. As a consequence, there is no need to set Script

when declaring a font (nor Language). In fact, it is even discouraged.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the

like). If a language is switched when an ad hoc font is active, or you select the font with

this command, neither the script nor the language is passed. You must add them by

hand. This is by design, for several reasons (for example, each font has its own set of

features and a generic setting for several of them could be problematic, and also a

“lower-level” font selection is useful).

NOTE The keys Language and Script just pass these values to the font, and do not set the

script for the language (and therefore the writing direction). In other words, the ini file

or \babelprovide provides default values for \babelfont if omitted, but the opposite

is not true. See the note above for the reasons of this behavior.

WARNING Do not use \setxxxxfont and \babelfont at the same time. \babelfont

follows the standard LATEX conventions to set the basic families – define \xxdefault,

and activate it with \xxfamily. On the other hand, \setxxxxfont in fontspec takes a

different approach, because \xxfamily is redefined with the family name hardcoded

(so that \xxdefault becomes no-op). Of course, both methods are incompatible, and if

you use \setxxxxfont, font switching with \babelfont just does not work (nor the

standard \xxdefault, for that matter). As of New 3.34 there is an attempt to make

them compatible, but the language system will not be set by babeland should be set

with fontspec if necessary.

14And even with the correct code some fonts could be rendered incorrectly by fontspec, so double-check the

results. xetex fares better, but some fonts are still problematic.

25

TROUBLESHOOTING Package fontspec Warning: ’Language ’LANG’ not available for font

’FONT’ with script ’SCRIPT’ ’Default’ language used instead’. This warning is shown by

fontspec, not by babel. It could be irrelevant for English, but not for many other

languages, including Urdu and Turkish. This is a useful and harmless warning, and if

everything is fine with your document the best thing you can do is just to ignore it

altogether.

1.15 Modifying a language

Modifying the behavior of a language (say, the chapter “caption”), is sometimes necessary,

but not always trivial.

• The old way, still valid for many languages, to redefine a caption is the following:

\addto\captionsenglish{%

\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is

advisable to do it.

• The new way, which is found in bulgarian, azerbaijani, spanish, french, turkish,

icelandic, vietnamese and a few more, as well as in languages created with

\babelprovide and its key import, is:

\renewcommand\spanishchaptername{Foo}

• Macros to be run when a language is selected can be add to \extras〈lang〉:

\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected:

\noextras〈lang〉.

NOTE Do not redefine a caption in the following way:

\AtBeginDocument{\renewcommand\contentsname{Foo}}

The changes may be discarded with a language selector, and the original value restored.

NOTE These macros (\captions〈lang〉, \extras〈lang〉) may be redefined, butmust not be

used as such – they just pass information to babel, which executes them in the proper

context.

Another way to modify a language loaded as a package or class option is by means of

\babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}

\babelprovide[captions=da,hyphenrules=nohyphenation]{danish}

first loads danish.ldf, and then redefines the captions for danish (as provided by the ini

file) and prevents hyphenation. The rest of the language definitions are not touched.

26

1.16 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You

may then define quickly a language with the help of the following macro in the preamble

(which may be used to modify an existing language, too, as explained in the previous

subsection).

[〈options〉]{〈language-name〉}\babelprovide

If the language \marg{language-name} has not been defined and there are no options, it

creates an “empty” one in the following way: defines the internal structure of the language

with some defaults: the hyphen rules, if not available, are set to the current ones, left and

right hyphen mins are set to 2 and 3, but captions and date are not defined. Conveniently,

some options allow to fill the language, and babel warns you about what to do if there is a

missing string. Very likely you will find alerts like that in the log file:

Package babel Warning: \mylangchaptername not set. Please, define

(babel) it in the preamble with something like:

(babel) \renewcommand\maylangchaptername{..}

(babel) Reported on input line 18.

In most cases, you will only need to define a few macros.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}

\babelprovide{arhinish}

\renewcommand\arhinishchaptername{Chapitula}

\renewcommand\arhinishrefname{Refirenke}

\renewcommand\arhinishhyphenmins{22}

The main language is not changed (danish in this example). So, you must add

\selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage, then

\babelprovide redefines the requested data.

〈language-tag〉import=

New 3.13 Imports data from an ini file, including captions, date, and hyphenmins. For

example:

\babelprovide[import=hu]{hungarian}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros

like \' or \ss) ones.

New 3.23 It may be used without a value. In such a case, the ini file set in the

corresponding babel-<language>.tex (where <language> is the last argument in

\babelprovide) is imported. See the list of recognized languages above. So, the previous

example could be written:

\babelprovide[import]{hungarian}

There are about 200 ini files, with data taken from the ldf files and the CLDR provided by

Unicode. Not all languages in the latter are complete, and therefore neither are the ini

27

files. A few languages will show a warning about the current lack of suitability of the date

format (hindi, french, breton, and occitan).

Besides \today, this option defines an additional command for dates: \<language>date,

which takes three arguments, namely, year, month and day numbers. In fact, \today calls

\<language>today, which in turn calls

\<language>date{\the\year}{\the\month}{\the\day}.

〈language-tag〉captions=

Loads only the strings. For example:

\babelprovide[captions=hu]{hungarian}

〈language-list〉hyphenrules=

With this option, with a space-separated list of hyphenation rules, babel assigns to the

language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example

we set chavacano as first option – without it, it would select spanish even if chavacano

exists.

A special value is +, which allocates a new language (in the TEX sense). It only makes sense

as the last value (or the only one; the subsequent ones are silently ignored). It is mostly

useful with luatex, because you can add some patterns with \babelpatterns, as for

example:

\babelprovide[hyphenrules=+]{neo}

\babelpatterns[neo]{a1 e1 i1 o1 u1}

In other engines it just suppresses hyphenation (because the pattern list is empty).

This valueless option makes the language the main one. Only in newly defined languages.main

〈script-name〉script=

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the

value in the ini file. If fontspec does not define it, then babel sets its tag to that provided

by the ini file. This value is particularly important because it sets the writing direction, so

you must use it if for some reason the default value is wrong.

〈language-name〉language=

New 3.15 Sets the language name to be used by fontspec (eg, Hindi). Overrides the value

in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the

ini file. Not so important, but sometimes still relevant.

A few options (only luatex) set some properties of the writing system used by the language.

These properties are always applied to the script, no matter which language is active.

Although somewhat inconsistent, this makes setting a language up easier in most typical

cases.

28

directionmapfont=

Assigns the font for the writing direction of this language (only with bidi=basic).15 More

precisely, what mapfont=direction means is, ‘when a character has the same direction as

the script for the “provided” language, then change its font to that set for this language’.

There are 3 directions, following the bidi Unicode algorithm, namely, Arabic-like,

Hebrew-like and left to right.16 So, there should be at most 3 directives of this kind.

〈base〉 〈shrink〉 〈stretch〉intraspace=

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0 is

0em plus .1em). Like \spaceskip, the em unit applied is that of the current text (more

precisely, the previous glyph). Currently used only in Southeast Asian scrips, like Thai.

Requires import.

〈penalty〉intrapenalty=

Sets the interword penalty for the writing system of this language. Currently used only in

Southeast Asian scrips, like Thai. Ignored if 0 (which is the default value). Requires import.

NOTE (1) If you need shorthands, you can define them with \useshorthands and

\defineshorthand as described above. (2) Captions and \today are “ensured” with

\babelensure (this is the default in ini-based languages).

1.17 Digits

New 3.20 About thirty ini files define a field named digits.native. When it is present,

two macros are created: \<language>digits and \<language>counter (only xetex and

luatex). With the first, a string of ‘Latin’ digits are converted to the native digits of that

language; the second takes a counter name as argument. With the option maparabic in

\babelprovide, \arabic is redefined to produce the native digits (this is done globally, to

avoid inconsistencies in, for example, page numbering, and note as well dates do not rely

on \arabic.)

For example:

\babelprovide[import]{telugu} % Telugu better with XeTeX

% Or also, if you want:

% \babelprovide[import, maparabic]{telugu}

\babelfont{rm}{Gautami}

\begin{document}

\telugudigits{1234}

\telugucounter{section}

\end{document}

Languages providing native digits in all or some variants are ar, as, bn, bo, brx, ckb, dz, fa,

gu, hi, km, kn, kok, ks, lo, lrc, ml, mr, my, mzn, ne, or, pa, ps, ta, te, th, ug, ur, uz, vai, yue, zh.

New 3.30 With luatex there is an alternative approach for mapping digits, namely,

mapdigits. Conversion is based on the language and it is applied to the typeset text (not

math, PDF bookmarks, etc.) before bidi and fonts are processed (ie, to the node list as

generated by the TEX code). This means the local digits have the correct bidirectional

behavior (unlike Numbers=Arabic in fontspec, which is not recommended).

1.18 Getting the current language name

15There will be another value, language, not yet implemented.
16In future releases a new value (script) will be added.

29

The control sequence \languagename contains the name of the current language.\languagename

WARNING Due to some internal inconsistencies in catcodes, it should not be used to test

its value. Use iflang, by Heiko Oberdiek.

{〈language〉}{〈true〉}{〈false〉}\iflanguage

If more than one language is used, it might be necessary to know which language is active

at a specific time. This can be checked by a call to \iflanguage, but note here “language” is

used in the TEX sense, as a set of hyphenation patterns, and not as its babel name. This

macro takes three arguments. The first argument is the name of a language; the second and

third arguments are the actions to take if the result of the test is true or false respectively.

WARNING The advice about \languagename also applies here – use iflang instead of

\iflanguage if possible.

1.19 Hyphenation and line breaking

* {〈type〉}\babelhyphen

* {〈text〉}\babelhyphen

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens,

which in TEX are entered as -, and (2) optional or soft hyphens, which are entered as \-.

Strictly, a soft hyphen is not a hyphen, but just a breaking opportunity or, in TEX terms, a

“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further

type is a non-breaking hyphen, a hyphen without a breaking opportunity.

In TEX, - and \- forbid further breaking opportunities in the word. This is the desired

behavior very often, but not always, and therefore many languages provide shorthands for

these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch,

Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,

Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \-, so that

you cannot insert a soft hyphen without breaking opportunities in the rest of the word.

Therefore, some macros are provided with a set of basic “hyphens” which can be used by

themselves, to define a user shorthand, or even in language files.

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the

next line, as done in languages like Polish, Portuguese and Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space

follows).

• \babelhyphen{empty} inserts a break opportunity without a hyphen at all.

• \babelhyphen{〈text〉} is a hard “hyphen” using 〈text〉 instead. A typical case is

\babelhyphen{/}.

With all of them, hyphenation in the rest of the word is enabled. If you don’t want to

enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is

equivalent to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes (eg,

-ism), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with LATEX: (1) the character used is that set for the current

font, while in LATEX it is hardwired to - (a typical value); (2) the hyphen to be used in fonts

30

with a negative \hyphenchar is -, like in LATEX, but it can be changed to another value by

redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if preceded by a

glue>0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a

parenthesis).

[〈language〉,〈language〉,...]{〈exceptions〉}\babelhyphenation

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional

argument, for all languages (eg, proper nouns or common loan words, and of course

monolingual documents). Language exceptions take precedence over global ones.

It can be used only in the preamble, and exceptions are set when the language is first

selected, thus taking into account changes of \lccodes’s done in \extras〈lang〉 as well as

the language-specific encoding (not set in the preamble by default). Multiple

\babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode

based engines.

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with

\babelpatterns (below) you may fine-tune line breaking (only luatex). Even if there

are no patterns for the language, you can add at least some typical cases.

[〈language〉,〈language〉,...]{〈patterns〉}\babelpatterns

New 3.9m In luatex only,17 adds or replaces patterns for the languages given or, without

the optional argument, for all languages. If a pattern for a certain combination already

exists, it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first

selected, thus taking into account changes of \lccodes’s done in \extras〈lang〉 as well as

the language-specific encoding (not set in the preamble by default). Multiple

\babelpatterns’s are allowed.

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode

based engines.

New 3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple

generic line breaking algorithm (push-out-first) is applied, based on a selection of the

Unicode rules (New 3.32 it is disabled in verbatim mode, or more precisely when the

hyphenrules are set to nohyphenation). It can be activated alternatively by setting

explicitly the intraspace.

New 3.27 Interword spacing for Thai, Lao and Khemer is activated automatically if a

language with one of those scripts are loaded with \babelprovide. See the sample on the

babel repository. With both Unicode engines, spacing is based on the “current” em unit (the

size of the previous char in luatex, and the font size set by the last \selectfont in xetex).

1.20 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best

selected with either \fontencoding (low-level) or a language name (high-level). Even the

17With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a

separate package and babel only provides the most basic tools.

31

Latin script may require different encodings (ie, sets of glyphs) depending on the language,

and therefore such a switch would be in a sense incomplete.18

Some languages sharing the same script define macros to switch it (eg, \textcyrillic),

but be aware they may also set the language to a certain default. Even the babel core

defined \textlatin, but is was somewhat buggy because in some cases it messed up

encodings and fonts (for example, if the main Latin encoding was LY1), and therefore it has

been deprecated.19

{〈text〉}\ensureascii

New 3.9i This macro makes sure 〈text〉 is typeset with a LICR-savvy encoding in the ASCII

range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with

LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, X2, OT2,

OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the

bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and

\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the

beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For

example, if you load LY1,LGR, then it is set to LY1, but if you load LY1,T2A it is set to T2A.

The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used

for “ordinary” text (they are stored in \BabelNonText, used in some special cases when no

Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of the cases. No

assumption is made on characters above 127, which may not follow the LICR conventions –

the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.21 Selecting directions

No macros to select the writing direction are provided, either – writing direction is

intrinsic to each script and therefore it is best set by the language (which could be a

dummy one). Furthermore, there are in fact two right-to-left modes, depending on the

language, which differ in the way ‘weak’ numeric characters are ordered (eg, Arabic %123

vs Hebrew 123%).

WARNING The current code for text in luatex should be considered essentially stable, but,

of course, it is not bug-free and there could be improvements in the future, because

setting bidi text has many subtleties (see for example

<https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must

wait. This applies to text; there is a basic support for graphical elements, including the

picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under

study, as well as math (there is progress in the latter, too, but for example cases may

fail).

An effort is being made to avoid incompatibilities in the future (this one of the reason

currently bidi must be explicitly requested as a package option, with a certain bidi

model, and also the layout options described below).

There are some package options controlling bidi writing.

default | basic | basic-r | bidi-l | bidi-rbidi=

18The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not neces-

sarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does

not mean it includes them for Classic Greek.
19But still defined for backwards compatibility.

32

New 3.14 Selects the bidi algorithm to be used. With default the bidi mechanism is just

activated (by default it is not), but every change must be marked up. In xetex and pdftex

this is the only option.

In luatex, basic-r provides a simple and fast method for R text, which handles numbers

and unmarked L text within an R context many in typical cases. New 3.19 Finally, basic

supports both L and R text, and it is the preferred method (support for basic-r is

currently limited). (They are named basic mainly because they only consider the intrinsic

direction of scripts and weak directionality.)

New 3.29 In xetex, bidi-r and bidi-l resort to the package bidi (by Vafa Khalighi).

Integration is still somewhat tentative, but it mostly works. For RL documents use the

former, and for LR ones use the latter.

New 3.32 There is some experimental support for harftex. Since it is based on luatex, the

option basic mostly works. You may need to deactivate the rtlm or the rtla font features

(besides loading harfload before babeland activating mode=harf; there is a sample in the

GitHub repository).

There are samples on GitHub, under /required/babel/samples. See particularly

lua-bidibasic.tex and lua-secenum.tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia).

Copy-pasting some text from the Wikipedia is a good way to test this feature.

Remember basic-r is available in luatex only.

\documentclass{article}

\usepackage[bidi=basic-r]{babel}

\babelprovide[import, main]{arabic}

\babelfont{rm}{FreeSerif}

\begin{document}

ـب)يقيرغلاا(ينيليهلارصعلاةليطبرعلاةريزجهبشتفرعدقو

ArabiaوأAravia)ةيقيرغلاابΑραβία(،ثلاثنامورلامدختسا

اهنألاإ،ةيبرعلاةريزجلاهبشنمقطانمثلاثىلع”Arabia“ـبتائداب

.مويلاهيلعفرعتاممربكأتناكًةقيقح

\end{document}

EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the

latter will be only necessary in some special cases where the Unicode algorithm fails). It

is used much like bidi=basic-r, but with R text inside L text you may want to map the

font so that the correct features are in force. This is accomplished with an option in

\babelprovide, as illustrated:

\documentclass{book}

\usepackage[english, bidi=basic]{babel}

\babelprovide[mapfont=direction]{arabic}

\babelfont{rm}{Crimson}

\babelfont[*arabic]{rm}{FreeSerif}

33

\begin{document}

Most Arabic speakers consider the two varieties to be two registers

of one language, although the two registers can be referred to in

Arabic as رصعلاىحصف \textit{fuṣḥā l-ʻaṣr} (MSA) and

ثارتلاىحصف \textit{fuṣḥā t-turāth} (CA).

\end{document}

In this example, and thanks to mapfont=direction, any Arabic letter (because the

language is arabic) changes its font to that set for this language (here defined via

*arabic, because Crimson does not provide Arabic letters).

NOTE Boxes are “black boxes”. Numbers inside an \hbox (for example in a \ref) do not

know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in

the visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the

digits inside the \hbox’es). If you need \ref ranges, the best option is to define a

dedicated macro like this (to avoid explicit direction changes in the body; here \texthe

must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In the future a more complete method, reading recursively boxed text, may be added.

sectioning | counters | lists | contents | footnotes | captions | columns | graphics |layout=

extras

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents,

including some text elements (except with options loading the bidi package, which

provides its own mechanism to control these elements). You may use several options with

a dot-separated list (eg, layout=counters.contents.sectioning). This list will be

expanded in future releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with

the title text in the current language (see below \BabelPatchSection for further

details).

counters required in all engines (except luatex with bidi=basic) to reorder section

numbers and the like (eg, 〈subsection〉.〈section〉); required in xetex and pdftex for

counters in general, as well as in luatex with bidi=default; required in luatex for

numeric footnote marks>9 with bidi=basic-r (but not with bidi=basic); note,

however, it could depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see

below), but also an “isolated” block which does not interact with the surrounding chars.

So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal

number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may

always adjust the order by changing the language, if necessary.20

lists required in xetex and pdftex, but only in bidirectional (with both R and L

paragraphs) documents in luatex.

WARNING As of April 2019 there is a bug with \parshape in luatex (a TEX primitive)

which makes lists to be horizontally misplaced if they are inside a \vbox (like

minipage) and the current direction is different from the main one. A workaround

is to restore the main language before the box and then set the local one inside.

20Next on the roadmap are counters and numeral systems in general. Expect some minor readjustments.

34

contents required in xetex and pdftex; in luatex toc entries are R by default if the main

language is R.

columns required in xetex and pdftex to reverse the column order (currently only the

standard two-column mode); in luatex they are R by default if the main language is R

(includingmulticol).

footnotes not required in monolingual documents, but it may be useful in bidirectional

documents (with both R and L paragraphs) in all engines; you may use alternatively

\BabelFootnote described below (what this option does exactly is also explained

there).

captions is similar to sectioning, but for \caption; not required in monolingual

documents with luatex, but may be required in xetex and pdftex in some styles (support

for the latter two engines is still experimental) New 3.18 .

tabular required in luatex for R tabular (it has been tested only with simple tables, so

expect some readjustments in the future); ignored in pdftex or xetex (which will not

support a similar option in the short term). It patches an internal command, so it might

be ignored by some packages and classes (or even raise an error). New 3.18 .

graphics modifies the picture environment so that the whole figure is L but the text is R.

It does not work with the standard picture, and pict2e is required if you want sloped

lines. It attempts to do the same for pgf/tikz. Somewhat experimental. New 3.32 .

extras is used for miscellaneous readjustments which do not fit into the previous groups.

Currently redefines in luatex \underline and \LaTeX2e New 3.19 .

EXAMPLE Typically, in an Arabic document you would need:

\usepackage[bidi=basic,

layout=counters.tabular]{babel}

{〈lr-text〉}\babelsublr

Digits in pdftexmust be marked up explicitly (unlike luatex with bidi=basic or

bidi=basic-r and, usually, xetex). This command is provided to set {〈lr-text〉} in L mode

if necessary. It’s intended for what Unicode calls weak characters, because words are best

set with the corresponding language. For this reason, there is no rl counterpart.

Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,

it first returns to R and then switches to explicit L. To clarify this point, consider, in an R

context:

RTL A ltr text \thechapter{} and still ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still ltr 1 ltr text RTL

A. This is by design to provide the proper behavior in the most usual cases — but if you

need to use \ref in an L text inside R, the L text must be marked up explictly; for example:

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B

{〈section-name〉}\BabelPatchSection

Mainly for bidi text, but it could be useful in other cases. \BabelPatchSection and the

corresponding option layout=sectioning takes a more logical approach (at least in many

cases) because it applies the global language to the section format (including the

\chaptername in \chapter), while the section text is still the current language. The latter

35

is passed to tocs and marks, too, and with sectioning in layout they both reset the

“global” language to the main one, while the text uses the “local” language.

With layout=sectioning all the standard sectioning commands are redefined (it also

“isolates” the page number in heads, for a proper bidi behavior), but with this command

you can set them individually if necessary (but note then tocs and marks are not touched).

{〈cmd〉}{〈local-language〉}{〈before〉}{〈after〉}\BabelFootnote

New 3.17 Something like:

\BabelFootnote{\parsfootnote}{\languagename}{(}{)}

defines \parsfootnote so that \parsfootnote{note} is equivalent to:

\footnote{(\foreignlanguage{\languagename}{note})}

but the footnote itself is typeset in the main language (to unify its direction). In addition,

\parsfootnotetext is defined. The option footnotes just does the following:

\BabelFootnote{\footnote}{\languagename}{}{}%

\BabelFootnote{\localfootnote}{\languagename}{}{}%

\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and

\mainfootnotetext). If the language argument is empty, then no language is selected

inside the argument of the footnote. Note this command is available always in bidi

documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes

entirely in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line.

This means the dot the end of the footnote text should be omitted.

1.22 Language attributes

This is a user-level command, to be used in the preamble of a document (after\languageattribute

\usepackage[...]{babel}), that declares which attributes are to be used for a given

language. It takes two arguments: the first is the name of the language; the second, a (list

of) attribute(s) to be used. Attributes must be set in the preamble and only once – they

cannot be turned on and off. The command checks whether the language is known in this

document and whether the attribute(s) are known for this language.

Very often, using amodifier in a package option is better.

Several language definition files use their own methods to set options. For example, french

uses \frenchsetup,magyar (1.5) uses \magyarOptions; modifiers provided by spanish

have no attribute counterparts. Macros setting options are also used (eg,

\ProsodicMarksOn in latin).

1.23 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are

predefined when luatex and xetex are used.

36

[〈lang〉]{〈name〉}{〈event〉}{〈code〉}\AddBabelHook

The same name can be applied to several events. Hooks may be enabled and disabled for

all defined events with \EnableBabelHook{〈name〉}, \DisableBabelHook{〈name〉}.
Names containing the string babel are reserved (they are used, for example, by

\useshortands* to add a hook for the event afterextras). New 3.33 They may be also

applied to a specific language with the optional argument; language-specific settings are

executed after global ones.

Current events are the following; in some of them you can use one to three TEX parameters

(#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if

not preloaded.

patterns (language name, language with encoding) Executed just after the \language has

been set. The second argument has the patterns name actually selected (in the form of

either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before

exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both

xetex and luatexmake sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

beforeextras Just before executing \extras〈language〉. This event and the next one

should not contain language-dependent code (for that, add it to \extras〈language〉).
afterextras Just after executing \extras〈language〉. For example, the following

deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString

containing the string to be defined with \SetString. For example, to use an expanded

version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%

\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) New 3.9i Executed just

after a shorthand has been ‘initiated’. The three parameters are the same character

with different catcodes: active, other (\string’ed) and the original one.

afterreset New 3.9i Executed when selecting a language just after \originalTeX is

run and reset to its base value, before executing \captions〈language〉 and
\date〈language〉.

Four events are used in hyphen.cfg, which are handled in a quite different way for

efficiency reasons – unlike the precedent ones, they only have a single hook and replace a

default definition.

everylanguage (language) Executed before every language patterns are loaded.

loadkernel (file) By default loads switch.def. It can be used to load a different version of

this file or to load nothing.

loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.

loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.

37

New 3.9a This macro contains a list of “toc” types requiring a command to switch the\BabelContentsFiles

language. Its default value is toc,lof,lot, but you may redefine it with \renewcommand

(it’s up to you to make sure no toc type is duplicated).

1.24 Languages supported by babel with ldf files

In the following table most of the languages supported by babel with and .ldf file are

listed, together with the names of the option which you can load babel with for each

language. Note this list is open and the current options may be different. It does not

include ini files.

Afrikaans afrikaans

Azerbaijani azerbaijani

Basque basque

Breton breton

Bulgarian bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, USenglish, american, UKenglish, british, canadian, australian, newzealand

Esperanto esperanto

Estonian estonian

Finnish finnish

French french, francais, canadien, acadian

Galician galician

German austrian, german, germanb, ngerman, naustrian

Greek greek, polutonikogreek

Hebrew hebrew

Icelandic icelandic

Indonesian bahasa, indonesian, indon, bahasai

Interlingua interlingua

Irish Gaelic irish

Italian italian

Latin latin

Lower Sorbian lowersorbian

Malay bahasam, malay, melayu

North Sami samin

Norwegian norsk, nynorsk

Polish polish

Portuguese portuges, portuguese, brazilian, brazil

Romanian romanian

Russian russian

Scottish Gaelic scottish

Spanish spanish

Slovakian slovak

Slovenian slovene

Swedish swedish

Serbian serbian

Turkish turkish

Ukrainian ukrainian

Upper Sorbian uppersorbian

Welsh welsh

38

There are more languages not listed above, including hindi, thai, thaicjk, latvian, turkmen,

magyar, mongolian, romansh, lithuanian, spanglish, vietnamese, japanese, pinyin, arabic,

farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and friulan.

Most of them work out of the box, but some may require extra fonts, encoding files, a

preprocessor or even a complete framework (like CJK or luatexja). For example, if you have

got the velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}

\usepackage[hindi]{babel}

\begin{document}

{\dn devaanaa.m priya.h}

\end{document}

Then you preprocess it with devnag 〈file〉, which creates 〈file〉.tex; you can then typeset

the latter with LATEX.

1.25 Unicode character properties in luatex

New 3.32 Part of the babel job is to apply Unicode rules to some script-specific features

based on some properties. Currently, they are 3, namely, direction (ie, bidi class), mirroring

glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which

you can modify with the following macro (for example, to set them for glyphs in the PUA).

{〈char-code〉}[〈to-char-code〉]{〈propertry〉}{〈value〉}\babelcharproperty

New 3.32 Here, {〈char-code〉} is a number (with TEX syntax). With the optional argument,

you can set a range of values. There are three properties (with a short name, taken from

Unicode): direction (bc), mirror (bmg), linebreak (lb). The settings are global.

For example:

\babelcharproperty{`¿}{mirror}{`?}

\babelcharproperty{`-}{direction}{l} % or al, r, en, an, on, et, cs

\babelcharproperty{`)}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy

This command is allowed only in vertical mode (the preamble or between paragraphs).

1.26 Tips, workarounds, known issues and notes

• If you use the document class book and you use \ref inside the argument of \chapter

(or just use \ref inside \MakeUppercase), LATEX will keep complaining about an

undefined label. To prevent such problems, you could revert to using uppercase labels,

you can use \lowercase{\ref{foo}} inside the argument of \chapter, or, if you will

not use shorthands in labels, set the safe option to none or bib.

• Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and babel

reloads hhline to make sure : has the right one, so if you want to change the catcode of

| it has to be done using the same method at the proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1) make |

active (ltxdoc); (2) make it unactive (your settings); (3) make babel shorthands active

(babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

39

• Documents with several input encodings are not frequent, but sometimes are useful.

You can set different encodings for different languages as the following example shows:

\addto\extrasfrench{\inputencoding{latin1}}

\addto\extrasrussian{\inputencoding{koi8-r}}

(A recent version of inputenc is required.)

• For the hyphenation to work correctly, lccodes cannot change, because TEX only takes

into account the values when the paragraph is hyphenated, i.e., when it has been

finished.21 So, if you write a chunk of French text with \foreinglanguage, the

apostrophes might not be taken into account. This is a limitation of TEX, not of babel.

Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or

redefine \textquoteright (the latter is called by the non-ASCII right quote).

• \bibitem is out of sync with \selectlanguage in the .aux file. The reason is \bibitem

uses \immediate (and others, in fact), while \selectlanguage doesn’t. There is no

known workaround.

• Babel does not take into account \normalsfcodes and (non-)French spacing is not

always properly (un)set by languages. However, problems are unlikely to happen and

therefore this part remains untouched in version 3.9 (but it is in the ‘to do’ list).

• Using a character mathematically active (ie, with math code "8000) as a shorthand can

make TEX enter in an infinite loop in some rare cases. (Another issue in the ‘to do’ list,

although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

csquotes Logical markup for quotes.

iflang Tests correctly the current language.

hyphsubst Selects a different set of patterns for a language.

translator An open platform for packages that need to be localized.

siunitx Typesetting of numbers and physical quantities.

biblatex Programmable bibliographies and citations.

bicaption Bilingual captions.

babelbib Multilingual bibliographies.

microtype Adjusts the typesetting according to some languages (kerning and spacing).

Ligatures can be disabled.

substitutefont Combines fonts in several encodings.

mkpattern Generates hyphenation patterns.

tracklang Tracks which languages have been requested.

ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another.

zhspacing Spacing for CJK documents in xetex.

1.27 Current and future work

The current work is focused on the so-called complex scripts in luatex. In 8-bit engines,

babel provided a basic support for bidi text as part of the style for Hebrew, but it is

somewhat unsatisfactory and internally replaces some hardwired commands by other

hardwired commands (generic changes would be much better).

21This explains why LATEX assumes the lowercase mapping of T1 and does not provide a tool for multiple map-

pings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in

the format and cannot be changed.

40

Useful additions would be, for example, time, currency, addresses and personal names.22.

But that is the easy part, because they don’t require modifying the LATEX internals.

Calendars (Arabic, Persian, Indic, etc.) are under study.

Also interesting are differences in the sentence structure or related to it. For example, in

Basque the number precedes the name (including chapters), in Hungarian “from (1)” is

“(1)-ből”, but “from (3)” is “(3)-ból”, in Spanish an item labelled “3.o” may be referred to as

either “ítem 3.o” or “3.er ítem”, and so on.

An option to manage bidirectional document layout in luatex (lists, footnotes, etc.) is

almost finished, but xetex required more work. Unfortunately, proper support for xetex

requires patching somehow lots of macros and packages (and some issues related to

\specials remain, like color and hyperlinks), so babel resorts to the bidi package (by Vafa

Khalighi). See the babel repository for a small example (xe-bidi).

1.28 Tentative and experimental code

See the code section for \foreignlanguage* (a new starred version of \foreignlanguage).

Old stuff

A couple of tentative macros were provided by babel (≥3.9g) with a partial solution for

“Unicode” fonts. These macros are now deprecated — use \babelfont. A short description

follows, for reference:

• \babelFSstore{〈babel-language〉} sets the current three basic families (rm, sf, tt) as the

default for the language given.

• \babelFSdefault{〈babel-language〉}{〈fontspec-features〉} patches \fontspec so that
the given features are always passed as the optional argument or added to it (not an

ideal solution).

So, for example:

\setmainfont[Language=Turkish]{Minion Pro}

\babelFSstore{turkish}

\setmainfont{Minion Pro}

\babelFSfeatures{turkish}{Language=Turkish}

2 Loading languages with language.dat

TEX and most engines based on it (pdfTEX, xetex, ε-TEX, the main exception being luatex)

require hyphenation patterns to be preloaded when a format is created (eg, LATEX, XeLATEX,

pdfLATEX). babel provides a tool which has become standard in many distributions and

based on a “configuration file” named language.dat. The exact way this file is used

depends on the distribution, so please, read the documentation for the latter (note also

some distributions generate the file with some tool).

New 3.9q With luatex, however, patterns are loaded on the fly when requested by the

language (except the “0th” language, typically english, which is preloaded always).23 Until

3.9n, this task was delegated to the package luatex-hyphen, by Khaled Hosny, Élie Roux,

and Manuel Pégourié-Gonnard, and required an extra file named language.dat.lua, but

now a newmechanism has been devised based solely on language.dat. Youmust rebuild

22See for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR). Those systems,

however, have limited application to TEX because their aim is just to display information and not fine typesetting.
23This feature was added to 3.9o, but it was buggy. Both 3.9o and 3.9p are deprecated.

41

the formats if upgrading from a previous version. You may want to have a local

language.dat for a particular project (for example, a book on Chemistry).24

2.1 Format

In that file the person who maintains a TEX environment has to record for which languages

he has hyphenation patterns and in which files these are stored25. When hyphenation

exceptions are stored in a separate file this can be indicated by naming that file after the

file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an equals

(=) sign. Such a line will instruct LATEX that the hyphenation patterns just processed have to

be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.

english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands

german hyphen.ger

You may also set the font encoding the patterns are intended for by following the language

name by a colon and the encoding code.26 For example:

german:T1 hyphenT1.ger

german hyphen.ger

With the previous settings, if the encoding when the language is selected is T1 then the

patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the

encoding could be set in \extras〈lang〉).
A typical error when using babel is the following:

No hyphenation patterns were preloaded for

the language `<lang>' into the format.

Please, configure your TeX system to add them and

rebuild the format. Now I will use the patterns

preloaded for english instead}}

It simply means you must reconfigure language.dat, either by hand or with the tools

provided by your distribution.

3 The interface between the core of babel and the

language definition files

The language definition files (ldf) must conform to a number of conventions, because these

files have to fill in the gaps left by the common code in babel.def, i. e., the definitions of

the macros that produce texts. Also the language-switching possibility which has been

built into the babel system has its implications.

The following assumptions are made:

24The loader for lua(e)tex is slightly different as it’s not based on babel but on etex.src. Until 3.9p it just didn’t

work, but thanks to the new code it works by reloading the data in the babel way, i.e., with language.dat.
25This is because different operating systems sometimes use very different file-naming conventions.
26This is not a new feature, but in former versions it didn’t work correctly.

42

• Some of the language-specific definitions might be used by plain TEX users, so the files

have to be coded so that they can be read by both LATEX and plain TEX. The current

format can be checked by looking at the value of the macro \fmtname.

• The common part of the babel system redefines a number of macros and environments

(defined previously in the document style) to put in the names of macros that replace

the previously hard-wired texts. These macros have to be defined in the language

definition files.

• The language definition files must define five macros, used to activate and deactivate

the language-specific definitions. These macros are \〈lang〉hyphenmins,
\captions〈lang〉, \date〈lang〉, \extras〈lang〉 and \noextras〈lang〉(the last two may

be left empty); where 〈lang〉 is either the name of the language definition file or the

name of the LATEX option that is to be used. These macros and their functions are

discussed below. You must define all or none for a language (or a dialect); defining, say,

\date〈lang〉 but not \captions〈lang〉 does not raise an error but can lead to

unexpected results.

• When a language definition file is loaded, it can define \l@〈lang〉 to be a dialect of
\language0 when \l@〈lang〉 is undefined.

• Language names must be all lowercase. If an unknown language is selected, babel will

attempt setting it after lowercasing its name.

• The semantics of modifiers is not defined (on purpose). In most cases, they will just be

simple separated options (eg, spanish), but a language might require, say, a set of

options organized as a tree with suboptions (in such a case, the recommended

separator is /).

Some recommendations:

• The preferred shorthand is ", which is not used in LATEX (quotes are entered as `` and

''). Other good choices are characters which are not used in a certain context (eg, = in

an ancient language). Note however =, <, >, : and the like can be dangerous, because

they may be used as part of the syntax of some elements (numeric expressions,

key/value pairs, etc.).

• Captions should not contain shorthands or encoding-dependent commands (the latter is

not always possible, but should be clearly documented). They should be defined using

the LICR. You may also use the new tools for encoded strings, described below.

• Avoid adding things to \noextras〈lang〉 except for umlauthigh and friends,

\bbl@deactivate, \bbl@(non)frenchspacing, and language-specific macros. Use

always, if possible, \bbl@save and \bbl@savevariable (except if you still want to have

access to the previous value). Do not reset a macro or a setting to a hardcoded value.

Never. Instead save its value in \extras〈lang〉.

• Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the

font encoding (low-level) or the language (high-level, which in turn may switch the font

encoding). Usage of things like \latintext is deprecated.27

• Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and

it can lead to incompatibilities.

There are no special requirements for documenting your language files. Now they are not

included in the base babelmanual, so provide a standalone document suited for your

needs, as well as other files you think can be useful. A PDF and a “readme” are strongly

recommended.

27But not removed, for backward compatibility.

43

3.1 Guidelines for contributed languages

Now language files are “outsourced” and are located in a separate directory

(/macros/latex/contrib/babel-contrib), so that they are contributed directly to CTAN

(please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do

it, here are a few guidelines.

• Do not hesitate stating on the file heads you are the author and the maintainer, if you

actually are. There is no need to state the babel maintainer(s) as authors if they have

not contributed significantly to your language files.

• Fonts are not strictly part of a language, so they are best placed in the corresponding

TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.

• Font and input encodings are usually best placed in the corresponding tree, too, but

sometimes they belong more naturally to the babel style. Note you may also need to

define a LICR.

• Babel ldf files may just interface a framework, as it happens often with Oriental

languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point: http://www.texnia.com/incubator.html.

If you need further assistance and technical advice in the development of language styles, I

am willing to help you. And of course, you can make any suggestion you like.

3.2 Basic macros

In the core of the babel system, several macros are defined for use in language definition

files. Their purpose is to make a new language known. The first two are related to

hyphenation patterns.

The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in\addlanguage

plain.tex version 3.x. For older versions of plain.tex and lplain.tex a substitute

definition is used. Here “language” is used in the TEX sense of set of hyphenation patterns.

The macro \adddialect can be used when two languages can (or must) use the same\adddialect

hyphenation patterns. This can also be useful for languages for which no patterns are

preloaded in the format. In such cases the default behavior of the babel system is to define

this language as a ‘dialect’ of the language for which the patterns were loaded as

\language0. Here “language” is used in the TEX sense of set of hyphenation patterns.

The macro \〈lang〉hyphenmins is used to store the values of the \lefthyphenmin and\<lang>hyphenmins

\righthyphenmin. Redefine this macro to set your own values, with two numbers

corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang> has no

effect.)

The macro \providehyphenmins should be used in the language definition files to set\providehyphenmins

\lefthyphenmin and \righthyphenmin. This macro will check whether these parameters

were provided by the hyphenation file before it takes any action. If these values have been

already set, this command is ignored (currently, default pattern files do not set them).

The macro \captions〈lang〉 defines the macros that hold the texts to replace the original\captions〈lang〉
hard-wired texts.

The macro \date〈lang〉 defines \today.\date〈lang〉
The macro \extras〈lang〉 contains all the extra definitions needed for a specific language.\extras〈lang〉

44

This macro, like the following, is a hook – you can add things to it, but it must not be used

directly.

Because we want to let the user switch between languages, but we do not know what state\noextras〈lang〉
TEX might be in after the execution of \extras〈lang〉, a macro that brings TEX into a

predefined state is needed. It will be no surprise that the name of this macro is

\noextras〈lang〉.
This is a command to be used in the language definition files for declaring a language\bbl@declare@ttribute

attribute. It takes three arguments: the name of the language, the attribute to be defined,

and the code to be executed when the attribute is to be used.

To postpone the activation of the definitions needed for a language until the beginning of a\main@language

document, all language definition files should use \main@language instead of

\selectlanguage. This will just store the name of the language, and the proper language

will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language definition files. Its\ProvidesLanguage

syntax is similar to the syntax of the LATEX command \ProvidesPackage.

The macro \LdfInit performs a couple of standard checks that must be made at the\LdfInit

beginning of a language definition file, such as checking the category code of the @-sign,

preventing the .ldf file from being processed twice, etc.

The macro \ldf@quit does work needed if a .ldf file was processed earlier. This includes\ldf@quit

resetting the category code of the @-sign, preparing the language to be activated at

\begin{document} time, and ending the input stream.

The macro \ldf@finish does work needed at the end of each .ldf file. This includes\ldf@finish

resetting the category code of the @-sign, loading a local configuration file, and preparing

the language to be activated at \begin{document} time.

After processing a language definition file, LATEX can be instructed to load a local\loadlocalcfg

configuration file. This file can, for instance, be used to add strings to \captions〈lang〉 to
support local document classes. The user will be informed that this configuration file has

been loaded. This macro is called by \ldf@finish.

(Deprecated.) This command takes three arguments, a font encoding and two font family\substitutefontfamily

names. It creates a font description file for the first font in the given encoding. This .fd file

will instruct LATEX to use a font from the second family when a font from the first family in

the given encoding seems to be needed.

3.3 Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an attribute.

Strings are best defined using the method explained in sec. 3.8 (babel 3.9 and later).

\ProvidesLanguage{<language>}

[2016/04/23 v0.0 <Language> support from the babel system]

\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>

\@nopatterns{<Language>}

\adddialect\l@<language>0

\fi

\adddialect\l@<dialect>\l@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%

\expandafter\addto\expandafter\extras<language>

\expandafter{\extras<attrib><language>}%

\let\captions<language>\captions<attrib><language>}

45

\providehyphenmins{<language>}{\tw@\thr@@}

\StartBabelCommands*{<language>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<language>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\StartBabelCommands*{<dialect>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<dialect>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\EndBabelCommands

\addto\extras<language>{}

\addto\noextras<language>{}

\let\extras<dialect>\extras<language>

\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

NOTE If for some reason you want to load a package in your style, you should be aware it

cannot be done directly in the ldf file, but it can be delayed with \AtEndOfPackage.

Macros from external packages can be used inside definitions in the ldf itself (for

example, \extras<language>), but if executed directly, the code must be placed inside

\AtEndOfPackage. A trivial example illustrating these points is:

\AtEndOfPackage{%

\RequirePackage{dingbat}% Delay package

\savebox{\myeye}{\eye}}% And direct usage

\newsavebox{\myeye}

\newcommand\myanchor{\anchor}% But OK inside command

3.4 Support for active characters

In quite a number of language definition files, active characters are introduced. To

facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files to instruct\initiate@active@char

LATEX to give a character the category code ‘active’. When a character has been made active

it will remain that way until the end of the document. Its definition may vary.

The command \bbl@activate is used to change the way an active character expands.\bbl@activate

\bbl@deactivate \bbl@activate ‘switches on’ the active behavior of the character. \bbl@deactivate lets

the active character expand to its former (mostly) non-active self.

The macro \declare@shorthand is used to define the various shorthands. It takes three\declare@shorthand

arguments: the name for the collection of shorthands this definition belongs to; the

character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be executed

when the shorthand is encountered. (It does not raise an error if the shorthand character

has not been “initiated”.)

46

The TEXbook states: “Plain TEX includes a macro called \dospecials that is essentially a set\bbl@add@special

\bbl@remove@special macro, representing the set of all characters that have a special category code.” [2, p. 380]

It is used to set text ‘verbatim’. To make this work if more characters get a special category

code, you have to add this character to the macro \dospecial. LATEX adds another macro

called \@sanitize representing the same character set, but without the curly braces. The

macros \bbl@add@special〈char〉 and \bbl@remove@special〈char〉 add and remove the

character 〈char〉 to these two sets.

3.5 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a

mechanism for saving (and restoring) the original definition of those macros is provided.

We provide two macros for this28.

To save the current meaning of any control sequence, the macro \babel@save is provided.\babel@save

It takes one argument, 〈csname〉, the control sequence for which the meaning has to be

saved.

A second macro is provided to save the current value of a variable. In this context,\babel@savevariable

anything that is allowed after the \the primitive is considered to be a variable. The macro

takes one argument, the 〈variable〉.
The effect of the preceding macros is to append a piece of code to the current definition of

\originalTeX. When \originalTeX is expanded, this code restores the previous definition

of the control sequence or the previous value of the variable.

3.6 Support for extending macros

The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the definition of\addto

a macro. The macro need not be defined (ie, it can be undefined or \relax). This macro

can, for instance, be used in adding instructions to a macro like \extrasenglish.

Be careful when using this macro, because depending on the case the assignment could be

either global (usually) or local (sometimes). That does not seem very consistent, but this

behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp

Lehman, consider using the tools provided by this package instead of \addto.

3.7 Macros common to a number of languages

In several languages compound words are used. This means that when TEX has to\bbl@allowhyphens

hyphenate such a compound word, it only does so at the ‘-’ that is used in such words. To

allow hyphenation in the rest of such a compound word, the macro \bbl@allowhyphens

can be used.

Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended mainly\allowhyphens

for characters provided as real glyphs by this encoding but constructed with \accent in

OT1.

Note the previous command (\bbl@allowhyphens) has different applications (hyphens and

discretionaries) than this one (composite chars). Note also prior to version 3.7,

\allowhyphens had the behavior of \bbl@allowhyphens.

For some languages, quotes need to be lowered to the baseline. For this purpose the macro\set@low@box

\set@low@box is available. It takes one argument and puts that argument in an \hbox, at

the baseline. The result is available in \box0 for further processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro\save@sf@q

\save@sf@q is available. It takes one argument, saves the current spacefactor, executes the

argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to\bbl@frenchspacing

\bbl@nonfrenchspacing properly switch French spacing on and off.

28This mechanism was introduced by Bernd Raichle.

47

3.8 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings, intended

mainly for luatex and xetex. This is the only new feature requiring changes in language

files if you want to make use of it.

Furthermore, it must be activated explicitly, with the package option strings. If there is

no strings, these blocks are ignored, except \SetCases (and except if forced as described

below). In other words, the old way of defining/switching strings still works and it’s used

by default.

It consist is a series of blocks started with \StartBabelCommands. The last block is closed

with \EndBabelCommands. Each block is a single group (ie, local declarations apply until

the next \StartBabelCommands or \EndBabelCommands). An ldf may contain several

series of this kind.

Thanks to this new feature, string values and string language switching are not mixed any

more. No need of \addto. If the language is french, just redefine \frenchchaptername.

{〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The 〈language-list〉 specifies which languages the block is intended for. A block is taken

into account only if the \CurrentOption is listed here. Alternatively, you can define

\BabelLanguages to a comma-separated list of languages to be defined (if undefined,

\StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the

language, but this is discouraged – a explicit name (or names) is much better and clearer.

A “selector” is a name to be used as value in package option strings, optionally followed

by extra info about the encodings to be used. The name unicode must be used for xetex

and luatex (the key strings has also other two special values: generic and encoded).

If a string is set several times (because several blocks are read), the first one takes

precedence (ie, it works much like \providecommand).

Encoding info is charset= followed by a charset, which if given sets how the strings should

be translated to the internal representation used by the engine, typically utf8, which is the

only value supported currently (default is no translations). Note charset is applied by

luatex and xetex when reading the file, not when the macro or string is used in the

document.

A list of font encodings which the strings are expected to work with can be given after

fontenc= (separated with spaces, if two or more) – recommended, but not mandatory,

although blocks without this key are not taken into account if you have requested

strings=encoded.

Blocks without a selector are read always if the key strings has been used. They provide

fallback values, and therefore must be the last blocks; they should be provided always if

possible and all strings should be defined somehow inside it; they can be the only blocks

(mainly LGC scripts using the LICR). Blocks without a selector can be activated explicitly

with strings=generic (no block is taken into account except those). With

strings=encoded, strings in those blocks are set as default (internally, ?). With

strings=encoded strings are protected, but they are correctly expanded in

\MakeUppercase and the like. If there is no key strings, string definitions are ignored, but

\SetCases are still honored (in a encoded way).

The 〈category〉 is either captions, date or extras. You must stick to these three categories,

even if no error is raised when using other name.29 It may be empty, too, but in such a case

using \SetString is an error (but not \SetCase).

\StartBabelCommands{language}{captions}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

29In future releases further categories may be added.

48

\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}

\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands

A real example is:

\StartBabelCommands{austrian}{date}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString\monthiname{Jänner}

\StartBabelCommands{german,austrian}{date}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString\monthiiiname{März}

\StartBabelCommands{austrian}{date}

\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}

\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}

\SetString\monthiiname{Februar}

\SetString\monthiiiname{M\"{a}rz}

\SetString\monthivname{April}

\SetString\monthvname{Mai}

\SetString\monthviname{Juni}

\SetString\monthviiname{Juli}

\SetString\monthviiiname{August}

\SetString\monthixname{September}

\SetString\monthxname{Oktober}

\SetString\monthxiname{November}

\SetString\monthxiiname{Dezenber}

\SetString\today{\number\day.~%

\csname month\romannumeral\month name\endcsname\space

\number\year}

\StartBabelCommands{german,austrian}{captions}

\SetString\prefacename{Vorwort}

[etc.]

\EndBabelCommands

When used in ldf files, previous values of \〈category〉〈language〉 are overridden, which

means the old way to define strings still works and used by default (to be precise, is first set

to undefined and then strings are added). However, when used in the preamble or in a

package, new settings are added to the previous ones, if the language exists (in the babel

sense, ie, if \date〈language〉 exists).

* {〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The starred version just forces strings to take a value – if not set as package option, then

the default for the engine is used. This is not done by default to prevent backward

incompatibilities, but if you are creating a new language this version is better. It’s up to the

49

maintainers of the current languages to decide if using it is appropriate.30

Marks the end of the series of blocks.\EndBabelCommands

{〈code〉}\AfterBabelCommands

The code is delayed and executed at the global scope just after \EndBabelCommands.

{〈macro-name〉}{〈string〉}\SetString

Adds 〈macro-name〉 to the current category, and defines globally 〈lang-macro-name〉 to
〈code〉 (after applying the transformation corresponding to the current charset or defined

with the hook stringprocess).

Use this command to define strings, without including any “logic” if possible, which should

be a separated macro. See the example above for the date.

{〈macro-name〉}{〈string-list〉}\SetStringLoop

A convenient way to define several ordered names at once. For example, to define

\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}

\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

[〈map-list〉]{〈toupper-code〉}{〈tolower-code〉}\SetCase

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The code

would typically be things like \let\BB\bb and \uccode or \lccode (although for the

reasons explained above, changes in lc/uc codes may not work). A 〈map-list〉 is a series of
macros using the internal format of \@uclclist (eg, \bb\BB\cc\CC). The mandatory

arguments take precedence over the optional one. This command, unlike \SetString, is

executed always (even without strings), and it is intended for minor readjustments only.

For example, as T1 is the default case mapping in LATEX, we could set for Turkish:

\StartBabelCommands{turkish}{}[ot1enc, fontenc=OT1]

\SetCase

{\uccode"10=`I\relax}

{\lccode`I="10\relax}

\StartBabelCommands{turkish}{}[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetCase

{\uccode`i=`İ\relax

\uccode`ı=`I\relax}

{\lccode`İ=`i\relax

\lccode`I=`ı\relax}

\StartBabelCommands{turkish}{}

\SetCase

{\uccode`i="9D\relax

\uccode"19=`I\relax}

{\lccode"9D=`i\relax

\lccode`I="19\relax}

30This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.

50

\EndBabelCommands

(Note the mapping for OT1 is not complete.)

{〈to-lower-macros〉}\SetHyphenMap

New 3.9g Case mapping serves in TEX for two unrelated purposes: case transforms

(upper/lower) and hyphenation. \SetCase handles the former, while hyphenation is

handled by \SetHyphenMap and controlled with the package option hyphenmap. So, even if

internally they are based on the same TEX primitive (\lccode), babel sets them separately.

There are three helper macros to be used inside \SetHyphenMap:

• \BabelLower{〈uccode〉}{〈lccode〉} is similar to \lccode but it’s ignored if the char has

been set and saves the original lccode to restore it when switching the language (except

with hyphenmap=first).

• \BabelLowerMM{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode-from〉} loops though the

given uppercase codes, using the step, and assigns them the lccode, which is also

increased (MM stands formany-to-many).

• \BabelLowerMO{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode〉} loops though the given

uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands

formany-to-one).

An example is (which is redundant, because these assignments are done by both luatex

and xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

This macro is not intended to fix wrong mappings done by Unicode (which are the default

in both xetex and luatex) – if an assignment is wrong, fix it directly.

4 Changes

4.1 Changes in babel version 3.9

Most of the changes in version 3.9 were related to bugs, either to fix them (there were lots),

or to provide some alternatives. Even new features like \babelhyphen are intended to

solve a certain problem (in this case, the lacking of a uniform syntax and behavior for

shorthands across languages). These changes are described in this manual in the

corresponding place. A selective list follows:

• \select@language did not set \languagename. This meant the language in force when

auxiliary files were loaded was the one used in, for example, shorthands – if the

language was german, a \select@language{spanish} had no effect.

• \foreignlanguage and otherlanguage* messed up \extras<language>. Scripts,

encodings and many other things were not switched correctly.

• The :ENC mechanism for hyphenation patterns used the encoding of the previous

language, not that of the language being selected.

• ' (with activeacute) had the original value when writing to an auxiliary file, and

things like an infinite loop could happen. It worked incorrectly with ^ (if activated) and

also if deactivated.

51

• Active chars where not reset at the end of language options, and that lead to

incompatibilities between languages.

• \textormath raised and error with a conditional.

• \aliasshorthand didn’t work (or only in a few and very specific cases).

• \l@english was defined incorrectly (using \let instead of \chardef).

• ldf files not bundled with babel were not recognized when called as global options.

Part II

Source code

babel is being developed incrementally, which means parts of the code are under

development and therefore incomplete. Only documented features are considered

complete. In other words, use babel only as documented (except, of course, if you want to

explore and test them – you can post suggestions about multilingual issues to

kadingira@tug.org on http://tug.org/mailman/listinfo/kadingira).

5 Identification and loading of required files

Code documentation is still under revision.

The babel package after unpacking consists of the following files:

switch.def defines macros to set and switch languages.

babel.def defines the rest of macros. It has tow parts: a generic one and a second one

only for LaTeX.

babel.sty is the LATEX package, which set options and load language styles.

plain.def defines some LATEX macros required by babel.def and provides a few tools for

Plain.

hyphen.cfg is the file to be used when generating the formats to load hyphenation

patterns. By default it also loads switch.def.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at

installation time. They are used with <@name@> at the appropiated places in the source

code and shown below with 〈〈name〉〉. That brings a little bit of literate programming.

6 locale directory

A required component of babel is a set of ini files with basic definitions for about 200

languages. They are distributed as a separate zip file, not packed as dtx. With them, babel

will fully support Unicode engines.

Most of them are essentially finished (except bugs and mistakes, of course). Some of them

are still incomplete (but they will be usable), and there are some omissions (eg, Latin and

polytonic Greek, and there are no geographic areas in Spanish). Hindi, French, Occitan and

Breton will show a warning related to dates. Not all include LICR variants.

This is a preliminary documentation.

ini files contain the actual data; tex files are currently just proxies to the corresponding

ini files.

Most keys are self-explanatory.

charset the encoding used in the ini file.

52

version of the ini file

level “version” of the ini specification . which keys are available (they may grow in a

compatible way) and how they should be read.

encodings a descriptive list of font encondings.

[captions] section of captions in the file charset

[captions.licr] same, but in pure ASCII using the LICR

date.long fields are as in the CLDR, but the syntax is different. Anything inside brackets is

a date field (eg, MMMM for the month name) and anything outside is text. In addition, []

is a non breakable space and [.] is an abbreviation dot.

Keys may be further qualified in a particular language with a suffix starting with a

uppercase letter. It can be just a letter (eg, babel.name.A, babel.name.B) or a name (eg,

date.long.Nominative, date.long.Formal, but no language is currently using the latter).

Multi-letter qualifiers are forward compatible in the sense they won’t conflict with new

“global” keys (all lowercase).

7 Tools

1 〈〈version=3.35〉〉
2 〈〈date=2019/10/15〉〉

Do not use the following macros in ldf files. They may change in the future. This

applies mainly to those recently added for replacing, trimming and looping. The older

ones, like \bbl@afterfi, will not change.

We define some basic macros which just make the code cleaner. \bbl@add is now used

internally instead of \addto because of the unpredictable behavior of the latter. Used in

babel.def and in babel.sty, which means in LATEX is executed twice, but we need them

when defining options and babel.def cannot be load until options have been defined.

This does not hurt, but should be fixed somehow.

3 〈〈∗Basic macros〉〉 ≡
4 \bbl@trace{Basic macros}

5 \def\bbl@stripslash{\expandafter\@gobble\string}

6 \def\bbl@add#1#2{%

7 \bbl@ifunset{\bbl@stripslash#1}%

8 {\def#1{#2}}%

9 {\expandafter\def\expandafter#1\expandafter{#1#2}}}

10 \def\bbl@xin@{\@expandtwoargs\in@}

11 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%

12 \def\bbl@cs#1{\csname bbl@#1\endcsname}

13 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil,}

14 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#1\expandafter{#2}}

15 \def\bbl@@loop#1#2#3,{%

16 \ifx\@nnil#3\relax\else

17 \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%

18 \fi}

19 \def\bbl@for#1#2#3{\bbl@loopx#1{#2}{\ifx#1\@empty\else#3\fi}}

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first

argument. When the list is not defined yet (or empty), it will be initiated. It presumes

expandable character strings.

20 \def\bbl@add@list#1#2{%

21 \edef#1{%

22 \bbl@ifunset{\bbl@stripslash#1}%

23 {}%

24 {\ifx#1\@empty\else#1,\fi}%

25 #2}}

53

\bbl@afterelse

\bbl@afterfi

Because the code that is used in the handling of active characters may need to look ahead,

we take extra care to ‘throw’ it over the \else and \fi parts of an \if-statement31. These

macros will break if another \if...\fi statement appears in one of the arguments and it

is not enclosed in braces.

26 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}

27 \long\def\bbl@afterfi#1\fi{\fi#1}

\bbl@exp Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple

and readable. Here \\ stands for \noexpand and \<..> for \noexpand applied to a built

macro name (the latter does not define the macro if undefined to \relax, because it is

created locally). The result may be followed by extra arguments, if necessary.

28 \def\bbl@exp#1{%

29 \begingroup

30 \let\\\noexpand

31 \def\<##1>{\expandafter\noexpand\csname##1\endcsname}%

32 \edef\bbl@exp@aux{\endgroup#1}%

33 \bbl@exp@aux}

\bbl@trim The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It

defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and

trailing spaces from the second argument and then applies the first argument (a macro,

\toks@ and the like). The second one, as its name suggests, defines the first argument as

the stripped second argument.

34 \def\bbl@tempa#1{%

35 \long\def\bbl@trim##1##2{%

36 \futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}%

37 \def\bbl@trim@c{%

38 \ifx\bbl@trim@a\@sptoken

39 \expandafter\bbl@trim@b

40 \else

41 \expandafter\bbl@trim@b\expandafter#1%

42 \fi}%

43 \long\def\bbl@trim@b#1##1 \@nil{\bbl@trim@i##1}}

44 \bbl@tempa{ }

45 \long\def\bbl@trim@i#1\@nil#2\relax#3{#3{#1}}

46 \long\def\bbl@trim@def#1{\bbl@trim{\def#1}}

\bbl@ifunset To check if a macro is defined, we create a new macro, which does the same as

\@ifundefined. However, in an ε-tex engine, it is based on \ifcsname, which is more

efficient, and do not waste memory.

47 \begingroup

48 \gdef\bbl@ifunset#1{%

49 \expandafter\ifx\csname#1\endcsname\relax

50 \expandafter\@firstoftwo

51 \else

52 \expandafter\@secondoftwo

53 \fi}

54 \bbl@ifunset{ifcsname}%

55 {}%

56 {\gdef\bbl@ifunset#1{%

57 \ifcsname#1\endcsname

58 \expandafter\ifx\csname#1\endcsname\relax

59 \bbl@afterelse\expandafter\@firstoftwo

60 \else

31This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by

Sonja Maus.

54

61 \bbl@afterfi\expandafter\@secondoftwo

62 \fi

63 \else

64 \expandafter\@firstoftwo

65 \fi}}

66 \endgroup

\bbl@ifblank A tool from url, by Donald Arseneau, which tests if a string is empty or space.

67 \def\bbl@ifblank#1{%

68 \bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}

69 \long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}

For each element in the comma separated <key>=<value> list, execute <code> with #1 and

#2 as the key and the value of current item (trimmed). In addition, the item is passed

verbatim as #3. With the <key> alone, it passes \@empty (ie, the macro thus named, not an

empty argument, which is what you get with <key>= and no value).

70 \def\bbl@forkv#1#2{%

71 \def\bbl@kvcmd##1##2##3{#2}%

72 \bbl@kvnext#1,\@nil,}

73 \def\bbl@kvnext#1,{%

74 \ifx\@nil#1\relax\else

75 \bbl@ifblank{#1}{}{\bbl@forkv@eq#1=\@empty=\@nil{#1}}%

76 \expandafter\bbl@kvnext

77 \fi}

78 \def\bbl@forkv@eq#1=#2=#3\@nil#4{%

79 \bbl@trim@def\bbl@forkv@a{#1}%

80 \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}

A for loop. Each item (trimmed), is #1. It cannot be nested (it’s doable, but we don’t need it).

81 \def\bbl@vforeach#1#2{%

82 \def\bbl@forcmd##1{#2}%

83 \bbl@fornext#1,\@nil,}

84 \def\bbl@fornext#1,{%

85 \ifx\@nil#1\relax\else

86 \bbl@ifblank{#1}{}{\bbl@trim\bbl@forcmd{#1}}%

87 \expandafter\bbl@fornext

88 \fi}

89 \def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}

\bbl@replace

90 \def\bbl@replace#1#2#3{% in #1 -> repl #2 by #3

91 \toks@{}%

92 \def\bbl@replace@aux##1#2##2#2{%

93 \ifx\bbl@nil##2%

94 \toks@\expandafter{\the\toks@##1}%

95 \else

96 \toks@\expandafter{\the\toks@##1#3}%

97 \bbl@afterfi

98 \bbl@replace@aux##2#2%

99 \fi}%

100 \expandafter\bbl@replace@aux#1#2\bbl@nil#2%

101 \edef#1{\the\toks@}}

An extensison to the previous macro. It takes into account the parameters, and it is string

based (ie, if you replace elax by ho, then \relax becomes \rho). No checking is done at all,

because it is not a general purpose macro, and it is used by babel only when it works (an

example where it does not work is in \bbl@TG@@date, and also fails if there are macros

55

with spaces, because they retokenized). It may change! (or even merged with

\bbl@replace; I’m not sure ckecking the replacement is really necessary or just paranoia).

102 \bbl@exp{\def\\\bbl@parsedef##1\detokenize{macro:}}#2->#3\relax{%

103 \def\bbl@tempa{#1}%

104 \def\bbl@tempb{#2}%

105 \def\bbl@tempe{#3}}

106 \def\bbl@sreplace#1#2#3{%

107 \begingroup

108 \expandafter\bbl@parsedef\meaning#1\relax

109 \def\bbl@tempc{#2}%

110 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%

111 \def\bbl@tempd{#3}%

112 \edef\bbl@tempd{\expandafter\strip@prefix\meaning\bbl@tempd}%

113 \bbl@xin@{\bbl@tempc}{\bbl@tempe}% If not in macro, do nothing

114 \ifin@

115 \bbl@exp{\\\bbl@replace\\\bbl@tempe{\bbl@tempc}{\bbl@tempd}}%

116 \def\bbl@tempc{% Expanded an executed below as 'uplevel'

117 \\\makeatletter % "internal" macros with @ are assumed

118 \\\scantokens{%

119 \bbl@tempa\\\@namedef{\bbl@stripslash#1}\bbl@tempb{\bbl@tempe}}%

120 \catcode64=\the\catcode64\relax}% Restore @

121 \else

122 \let\bbl@tempc\@empty % Not \relax

123 \fi

124 \bbl@exp{% For the 'uplevel' assignments

125 \endgroup

126 \bbl@tempc}} % empty or expand to set #1 with changes

Two further tools. \bbl@samestring first expand its arguments and then compare their

expansion (sanitized, so that the catcodes do not matter). \bbl@engine takes the following

values: 0 is pdfTEX, 1 is luatex, and 2 is xetex. You may use the latter it in your language

style if you want.

127 \def\bbl@ifsamestring#1#2{%

128 \begingroup

129 \protected@edef\bbl@tempb{#1}%

130 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

131 \protected@edef\bbl@tempc{#2}%

132 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%

133 \ifx\bbl@tempb\bbl@tempc

134 \aftergroup\@firstoftwo

135 \else

136 \aftergroup\@secondoftwo

137 \fi

138 \endgroup}

139 \chardef\bbl@engine=%

140 \ifx\directlua\@undefined

141 \ifx\XeTeXinputencoding\@undefined

142 \z@

143 \else

144 \tw@

145 \fi

146 \else

147 \@ne

148 \fi

149 〈〈/Basic macros〉〉

Some files identify themselves with a LATEX macro. The following code is placed before

them to define (and then undefine) if not in LATEX.

56

150 〈〈∗Make sure ProvidesFile is defined〉〉 ≡
151 \ifx\ProvidesFile\@undefined

152 \def\ProvidesFile#1[#2 #3 #4]{%

153 \wlog{File: #1 #4 #3 <#2>}%

154 \let\ProvidesFile\@undefined}

155 \fi

156 〈〈/Make sure ProvidesFile is defined〉〉

The following code is used in babel.sty and babel.def, and loads (only once) the data in

language.dat.

157 〈〈∗Load patterns in luatex〉〉 ≡
158 \ifx\directlua\@undefined\else

159 \ifx\bbl@luapatterns\@undefined

160 \input luababel.def

161 \fi

162 \fi

163 〈〈/Load patterns in luatex〉〉

The following code is used in babel.def and switch.def.

164 〈〈∗Load macros for plain if not LaTeX〉〉 ≡
165 \ifx\AtBeginDocument\@undefined

166 \input plain.def\relax

167 \fi

168 〈〈/Load macros for plain if not LaTeX〉〉

7.1 Multiple languages

\language Plain TEX version 3.0 provides the primitive \language that is used to store the current

language. When used with a pre-3.0 version this function has to be implemented by

allocating a counter. The following block is used in switch.def and hyphen.cfg; the latter

may seem redundant, but remember babel doesn’t requires loading switch.def in the

format.

169 〈〈∗Define core switching macros〉〉 ≡
170 \ifx\language\@undefined

171 \csname newcount\endcsname\language

172 \fi

173 〈〈/Define core switching macros〉〉

\last@language Another counter is used to store the last language defined. For pre-3.0 formats an extra

counter has to be allocated.

\addlanguage To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage, in a

pre-3.0 environment a similar macro has to be provided. For both cases a new macro is

defined here, because the original \newlanguage was defined to be \outer.

For a format based on plain version 2.x, the definition of \newlanguage can not be copied

because \count 19 is used for other purposes in these formats. Therefore \addlanguage is

defined using a definition based on the macros used to define \newlanguage in plain TEX

version 3.0.

For formats based on plain version 3.0 the definition of \newlanguage can be simply

copied, removing \outer. Plain TEX version 3.0 uses \count 19 for this purpose.

174 〈〈∗Define core switching macros〉〉 ≡
175 \ifx\newlanguage\@undefined

176 \csname newcount\endcsname\last@language

177 \def\addlanguage#1{%

178 \global\advance\last@language\@ne

179 \ifnum\last@language<\@cclvi

180 \else

57

181 \errmessage{No room for a new \string\language!}%

182 \fi

183 \global\chardef#1\last@language

184 \wlog{\string#1 = \string\language\the\last@language}}

185 \else

186 \countdef\last@language=19

187 \def\addlanguage{\alloc@9\language\chardef\@cclvi}

188 \fi

189 〈〈/Define core switching macros〉〉

Now we make sure all required files are loaded. When the command \AtBeginDocument

doesn’t exist we assume that we are dealing with a plain-based format or LATEX2.09. In that

case the file plain.def is needed (which also defines \AtBeginDocument, and therefore it

is not loaded twice). We need the first part when the format is created, and \orig@dump is

used as a flag. Otherwise, we need to use the second part, so \orig@dump is not defined

(plain.def undefines it).

Check if the current version of switch.def has been previously loaded (mainly,

hyphen.cfg). If not, load it now. We cannot load babel.def here because we first need to

declare and process the package options.

8 The Package File (LATEX, babel.sty)

In order to make use of the features of LATEX2ε, the babel system contains a package file,

babel.sty. This file is loaded by the \usepackage command and defines all the language

options whose name is different from that of the .ldf file (like variant spellings). It also

takes care of a number of compatibility issues with other packages an defines a few

aditional package options.

Apart from all the language options below we also have a few options that influence the

behavior of language definition files.

Many of the following options don’t do anything themselves, they are just defined in order

to make it possible for babel and language definition files to check if one of them was

specified by the user.

8.1 base

The first option to be processed is base, which set the hyphenation patterns then resets

ver@babel.sty so that LATEXforgets about the first loading. After switch.def has been

loaded (above) and \AfterBabelLanguage defined, exits.

190 〈∗package〉
191 \NeedsTeXFormat{LaTeX2e}[2005/12/01]

192 \ProvidesPackage{babel}[〈〈date〉〉 〈〈version〉〉 The Babel package]

193 \@ifpackagewith{babel}{debug}

194 {\providecommand\bbl@trace[1]{\message{^^J[#1]}}%

195 \let\bbl@debug\@firstofone}

196 {\providecommand\bbl@trace[1]{}%

197 \let\bbl@debug\@gobble}

198 \ifx\bbl@switchflag\@undefined % Prevent double input

199 \let\bbl@switchflag\relax

200 \input switch.def\relax

201 \fi

202 〈〈Load patterns in luatex〉〉
203 〈〈Basic macros〉〉
204 \def\AfterBabelLanguage#1{%

205 \global\expandafter\bbl@add\csname#1.ldf-h@@k\endcsname}%

58

If the format created a list of loaded languages (in \bbl@languages), get the name of the

0-th to show the actual language used.

206 \ifx\bbl@languages\@undefined\else

207 \begingroup

208 \catcode`\^^I=12

209 \@ifpackagewith{babel}{showlanguages}{%

210 \begingroup

211 \def\bbl@elt#1#2#3#4{\wlog{#2^^I#1^^I#3^^I#4}}%

212 \wlog{<*languages>}%

213 \bbl@languages

214 \wlog{</languages>}%

215 \endgroup}{}

216 \endgroup

217 \def\bbl@elt#1#2#3#4{%

218 \ifnum#2=\z@

219 \gdef\bbl@nulllanguage{#1}%

220 \def\bbl@elt##1##2##3##4{}%

221 \fi}%

222 \bbl@languages

223 \fi

224 \ifodd\bbl@engine

225 % Harftex is evolving, so the callback is not harcoded, just in case

226 \def\bbl@harfpreline{Harf pre_linebreak_filter callback}%

227 \def\bbl@activate@preotf{%

228 \let\bbl@activate@preotf\relax % only once

229 \directlua{

230 Babel = Babel or {}

231 %

232 function Babel.pre_otfload_v(head)

233 if Babel.numbers and Babel.digits_mapped then

234 head = Babel.numbers(head)

235 end

236 if Babel.bidi_enabled then

237 head = Babel.bidi(head, false, dir)

238 end

239 return head

240 end

241 %

242 function Babel.pre_otfload_h(head, gc, sz, pt, dir)

243 if Babel.numbers and Babel.digits_mapped then

244 head = Babel.numbers(head)

245 end

246 if Babel.fixboxdirs then % Temporary!

247 head = Babel.fixboxdirs(head)

248 end

249 if Babel.bidi_enabled then

250 head = Babel.bidi(head, false, dir)

251 end

252 return head

253 end

254 %

255 luatexbase.add_to_callback('pre_linebreak_filter',

256 Babel.pre_otfload_v,

257 'Babel.pre_otfload_v',

258 luatexbase.priority_in_callback('pre_linebreak_filter',

259 '\bbl@harfpreline')

260 or luatexbase.priority_in_callback('pre_linebreak_filter',

261 'luaotfload.node_processor')

59

262 or nil)

263 %

264 luatexbase.add_to_callback('hpack_filter',

265 Babel.pre_otfload_h,

266 'Babel.pre_otfload_h',

267 luatexbase.priority_in_callback('hpack_filter',

268 '\bbl@harfpreline')

269 or luatexbase.priority_in_callback('hpack_filter',

270 'luaotfload.node_processor')

271 or nil)

272 }%

273 \@ifpackageloaded{harfload}%

274 {\directlua{ Babel.mirroring_enabled = false }}%

275 {}}

276 \let\bbl@tempa\relax

277 \@ifpackagewith{babel}{bidi=basic}%

278 {\def\bbl@tempa{basic}}%

279 {\@ifpackagewith{babel}{bidi=basic-r}%

280 {\def\bbl@tempa{basic-r}}%

281 {}}

282 \ifx\bbl@tempa\relax\else

283 \let\bbl@beforeforeign\leavevmode

284 \AtEndOfPackage{\EnableBabelHook{babel-bidi}}%

285 \RequirePackage{luatexbase}%

286 \directlua{

287 require('babel-data-bidi.lua')

288 require('babel-bidi-\bbl@tempa.lua')

289 }

290 \bbl@activate@preotf

291 \fi

292 \fi

Now the base option. With it we can define (and load, with luatex) hyphenation patterns,

even if we are not interesed in the rest of babel. Useful for old versions of polyglossia, too.

293 \bbl@trace{Defining option 'base'}

294 \@ifpackagewith{babel}{base}{%

295 \ifx\directlua\@undefined

296 \DeclareOption*{\bbl@patterns{\CurrentOption}}%

297 \else

298 \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%

299 \fi

300 \DeclareOption{base}{}%

301 \DeclareOption{showlanguages}{}%

302 \ProcessOptions

303 \global\expandafter\let\csname opt@babel.sty\endcsname\relax

304 \global\expandafter\let\csname ver@babel.sty\endcsname\relax

305 \global\let\@ifl@ter@@\@ifl@ter

306 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%

307 \endinput}{}%

8.2 key=value options and other general option

The following macros extract language modifiers, and only real package options are kept

in the option list. Modifiers are saved and assigned to \BabelModifiers at

\bbl@load@language; when no modifiers have been given, the former is \relax. How

modifiers are handled are left to language styles; they can use \in@, loop them with \@for

or load keyval, for example.

308 \bbl@trace{key=value and another general options}

60

309 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname

310 \def\bbl@tempb#1.#2{%

311 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%

312 \def\bbl@tempd#1.#2\@nnil{%

313 \ifx\@empty#2%

314 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

315 \else

316 \in@{=}{#1}\ifin@

317 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%

318 \else

319 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

320 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%

321 \fi

322 \fi}

323 \let\bbl@tempc\@empty

324 \bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}

325 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

The next option tells babel to leave shorthand characters active at the end of processing

the package. This is not the default as it can cause problems with other packages, but for

those who want to use the shorthand characters in the preamble of their documents this

can help.

326 \DeclareOption{KeepShorthandsActive}{}

327 \DeclareOption{activeacute}{}

328 \DeclareOption{activegrave}{}

329 \DeclareOption{debug}{}

330 \DeclareOption{noconfigs}{}

331 \DeclareOption{showlanguages}{}

332 \DeclareOption{silent}{}

333 \DeclareOption{mono}{}

334 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}

335 % Don't use. Experimental:

336 \newif\ifbbl@single

337 \DeclareOption{selectors=off}{\bbl@singletrue}

338 〈〈More package options〉〉

Handling of package options is done in three passes. (I [JBL] am not very happy with the

idea, anyway.) The first one processes options which has been declared above or follow the

syntax <key>=<value>, the second one loads the requested languages, except the main one

if set with the key main, and the third one loads the latter. First, we “flag” valid keys with a

nil value.

339 \let\bbl@opt@shorthands\@nnil

340 \let\bbl@opt@config\@nnil

341 \let\bbl@opt@main\@nnil

342 \let\bbl@opt@headfoot\@nnil

343 \let\bbl@opt@layout\@nnil

The following tool is defined temporarily to store the values of options.

344 \def\bbl@tempa#1=#2\bbl@tempa{%

345 \bbl@csarg\ifx{opt@#1}\@nnil

346 \bbl@csarg\edef{opt@#1}{#2}%

347 \else

348 \bbl@error{%

349 Bad option `#1=#2'. Either you have misspelled the\\%

350 key or there is a previous setting of `#1'}{%

351 Valid keys are `shorthands', `config', `strings', `main',\\%

352 `headfoot', `safe', `math', among others.}

353 \fi}

61

Now the option list is processed, taking into account only currently declared options

(including those declared with a =), and <key>=<value> options (the former take

precedence). Unrecognized options are saved in \bbl@language@opts, because they are

language options.

354 \let\bbl@language@opts\@empty

355 \DeclareOption*{%

356 \bbl@xin@{\string=}{\CurrentOption}%

357 \ifin@

358 \expandafter\bbl@tempa\CurrentOption\bbl@tempa

359 \else

360 \bbl@add@list\bbl@language@opts{\CurrentOption}%

361 \fi}

Now we finish the first pass (and start over).

362 \ProcessOptions*

8.3 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babelmacros are left untouched, but if

there is, these macros are wrapped (in babel.def) to define only those given.

A bit of optimization: if there is no shorthands=, then \bbl@ifshorthand is always true,

and it is always false if shorthands is empty. Also, some code makes sense only with

shorthands=....

363 \bbl@trace{Conditional loading of shorthands}

364 \def\bbl@sh@string#1{%

365 \ifx#1\@empty\else

366 \ifx#1t\string~%

367 \else\ifx#1c\string,%

368 \else\string#1%

369 \fi\fi

370 \expandafter\bbl@sh@string

371 \fi}

372 \ifx\bbl@opt@shorthands\@nnil

373 \def\bbl@ifshorthand#1#2#3{#2}%

374 \else\ifx\bbl@opt@shorthands\@empty

375 \def\bbl@ifshorthand#1#2#3{#3}%

376 \else

The following macro tests if a shorthand is one of the allowed ones.

377 \def\bbl@ifshorthand#1{%

378 \bbl@xin@{\string#1}{\bbl@opt@shorthands}%

379 \ifin@

380 \expandafter\@firstoftwo

381 \else

382 \expandafter\@secondoftwo

383 \fi}

Wemake sure all chars in the string are ‘other’, with the help of an auxiliary macro

defined above (which also zaps spaces).

384 \edef\bbl@opt@shorthands{%

385 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%

The following is ignored with shorthands=off, since it is intended to take some aditional

actions for certain chars.

386 \bbl@ifshorthand{'}%

387 {\PassOptionsToPackage{activeacute}{babel}}{}

388 \bbl@ifshorthand{`}%

62

389 {\PassOptionsToPackage{activegrave}{babel}}{}

390 \fi\fi

With headfoot=lang we can set the language used in heads/foots. For example, in

babel/3796 just adds headfoot=english. It misuses \@resetactivechars but seems to

work.

391 \ifx\bbl@opt@headfoot\@nnil\else

392 \g@addto@macro\@resetactivechars{%

393 \set@typeset@protect

394 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%

395 \let\protect\noexpand}

396 \fi

For the option safe we use a different approach – \bbl@opt@safe says which macros are

redefined (B for bibs and R for refs). By default, both are set.

397 \ifx\bbl@opt@safe\@undefined

398 \def\bbl@opt@safe{BR}

399 \fi

400 \ifx\bbl@opt@main\@nnil\else

401 \edef\bbl@language@opts{%

402 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi

403 \bbl@opt@main}

404 \fi

For layout an auxiliary macro is provided, available for packages and language styles.

405 \bbl@trace{Defining IfBabelLayout}

406 \ifx\bbl@opt@layout\@nnil

407 \newcommand\IfBabelLayout[3]{#3}%

408 \else

409 \newcommand\IfBabelLayout[1]{%

410 \@expandtwoargs\in@{.#1.}{.\bbl@opt@layout.}%

411 \ifin@

412 \expandafter\@firstoftwo

413 \else

414 \expandafter\@secondoftwo

415 \fi}

416 \fi

8.4 Language options

Languages are loaded when processing the corresponding option except if a main language

has been set. In such a case, it is not loaded until all options has been processed. The

following macro inputs the ldf file and does some additional checks (\input works, too,

but possible errors are not catched).

417 \bbl@trace{Language options}

418 \let\bbl@afterlang\relax

419 \let\BabelModifiers\relax

420 \let\bbl@loaded\@empty

421 \def\bbl@load@language#1{%

422 \InputIfFileExists{#1.ldf}%

423 {\edef\bbl@loaded{\CurrentOption

424 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%

425 \expandafter\let\expandafter\bbl@afterlang

426 \csname\CurrentOption.ldf-h@@k\endcsname

427 \expandafter\let\expandafter\BabelModifiers

428 \csname bbl@mod@\CurrentOption\endcsname}%

429 {\bbl@error{%

430 Unknown option `\CurrentOption'. Either you misspelled it\\%

63

431 or the language definition file \CurrentOption.ldf was not found}{%

432 Valid options are: shorthands=, KeepShorthandsActive,\\%

433 activeacute, activegrave, noconfigs, safe=, main=, math=\\%

434 headfoot=, strings=, config=, hyphenmap=, or a language name.}}}

Now, we set language options whose names are different from ldf files.

435 \def\bbl@try@load@lang#1#2#3{%

436 \IfFileExists{\CurrentOption.ldf}%

437 {\bbl@load@language{\CurrentOption}}%

438 {#1\bbl@load@language{#2}#3}}

439 \DeclareOption{afrikaans}{\bbl@try@load@lang{}{dutch}{}}

440 \DeclareOption{brazil}{\bbl@try@load@lang{}{portuges}{}}

441 \DeclareOption{brazilian}{\bbl@try@load@lang{}{portuges}{}}

442 \DeclareOption{hebrew}{%

443 \input{rlbabel.def}%

444 \bbl@load@language{hebrew}}

445 \DeclareOption{hungarian}{\bbl@try@load@lang{}{magyar}{}}

446 \DeclareOption{lowersorbian}{\bbl@try@load@lang{}{lsorbian}{}}

447 \DeclareOption{nynorsk}{\bbl@try@load@lang{}{norsk}{}}

448 \DeclareOption{polutonikogreek}{%

449 \bbl@try@load@lang{}{greek}{\languageattribute{greek}{polutoniko}}}

450 \DeclareOption{portuguese}{\bbl@try@load@lang{}{portuges}{}}

451 \DeclareOption{russian}{\bbl@try@load@lang{}{russianb}{}}

452 \DeclareOption{ukrainian}{\bbl@try@load@lang{}{ukraineb}{}}

453 \DeclareOption{uppersorbian}{\bbl@try@load@lang{}{usorbian}{}}

Another way to extend the list of ‘known’ options for babel was to create the file

bblopts.cfg in which one can add option declarations. However, this mechanism is

deprecated – if you want an alternative name for a language, just create a new .ldf file

loading the actual one. You can also set the name of the file with the package option

config=<name>, which will load <name>.cfg instead.

454 \ifx\bbl@opt@config\@nnil

455 \@ifpackagewith{babel}{noconfigs}{}%

456 {\InputIfFileExists{bblopts.cfg}%

457 {\typeout{*************************************^^J%

458 * Local config file bblopts.cfg used^^J%

459 *}}%

460 {}}%

461 \else

462 \InputIfFileExists{\bbl@opt@config.cfg}%

463 {\typeout{*************************************^^J%

464 * Local config file \bbl@opt@config.cfg used^^J%

465 *}}%

466 {\bbl@error{%

467 Local config file `\bbl@opt@config.cfg' not found}{%

468 Perhaps you misspelled it.}}%

469 \fi

Recognizing global options in packages not having a closed set of them is not trivial, as for

them to be processed they must be defined explicitly. So, package options not yet taken

into account and stored in bbl@language@opts are assumed to be languages (note this list

also contains the language given with main). If not declared above, the names of the option

and the file are the same.

470 \bbl@for\bbl@tempa\bbl@language@opts{%

471 \bbl@ifunset{ds@\bbl@tempa}%

472 {\edef\bbl@tempb{%

473 \noexpand\DeclareOption

474 {\bbl@tempa}%

64

475 {\noexpand\bbl@load@language{\bbl@tempa}}}%

476 \bbl@tempb}%

477 \@empty}

Now, we make sure an option is explicitly declared for any language set as global option,

by checking if an ldf exists. The previous step was, in fact, somewhat redundant, but that

way we minimize accesing the file system just to see if the option could be a language.

478 \bbl@foreach\@classoptionslist{%

479 \bbl@ifunset{ds@#1}%

480 {\IfFileExists{#1.ldf}%

481 {\DeclareOption{#1}{\bbl@load@language{#1}}}%

482 {}}%

483 {}}

If a main language has been set, store it for the third pass.

484 \ifx\bbl@opt@main\@nnil\else

485 \expandafter

486 \let\expandafter\bbl@loadmain\csname ds@\bbl@opt@main\endcsname

487 \DeclareOption{\bbl@opt@main}{}

488 \fi

And we are done, because all options for this pass has been declared. Those already

processed in the first pass are just ignored.

The options have to be processed in the order in which the user specified them (except, of

course, global options, which LATEX processes before):

489 \def\AfterBabelLanguage#1{%

490 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}

491 \DeclareOption*{}

492 \ProcessOptions*

This finished the second pass. Now the third one begins, which loads the main language set

with the key main. A warning is raised if the main language is not the same as the last

named one, or if the value of the key main is not a language. Then execute directly the

option (because it could be used only in main). After loading all languages, we deactivate

\AfterBabelLanguage.

493 \ifx\bbl@opt@main\@nnil

494 \edef\bbl@tempa{\@classoptionslist,\bbl@language@opts}

495 \let\bbl@tempc\@empty

496 \bbl@for\bbl@tempb\bbl@tempa{%

497 \bbl@xin@{,\bbl@tempb,}{,\bbl@loaded,}%

498 \ifin@\edef\bbl@tempc{\bbl@tempb}\fi}

499 \def\bbl@tempa#1,#2\@nnil{\def\bbl@tempb{#1}}

500 \expandafter\bbl@tempa\bbl@loaded,\@nnil

501 \ifx\bbl@tempb\bbl@tempc\else

502 \bbl@warning{%

503 Last declared language option is `\bbl@tempc',\\%

504 but the last processed one was `\bbl@tempb'.\\%

505 The main language cannot be set as both a global\\%

506 and a package option. Use `main=\bbl@tempc' as\\%

507 option. Reported}%

508 \fi

509 \else

510 \DeclareOption{\bbl@opt@main}{\bbl@loadmain}

511 \ExecuteOptions{\bbl@opt@main}

512 \DeclareOption*{}

513 \ProcessOptions*

514 \fi

515 \def\AfterBabelLanguage{%

65

516 \bbl@error

517 {Too late for \string\AfterBabelLanguage}%

518 {Languages have been loaded, so I can do nothing}}

In order to catch the case where the user forgot to specify a language we check whether

\bbl@main@language, has become defined. If not, no language has been loaded and an

error message is displayed.

519 \ifx\bbl@main@language\@undefined

520 \bbl@info{%

521 You haven't specified a language. I'll use 'nil'\\%

522 as the main language. Reported}

523 \bbl@load@language{nil}

524 \fi

525 〈/package〉
526 〈∗core〉

9 The kernel of Babel (babel.def, common)

The kernel of the babel system is stored in either hyphen.cfg or switch.def and

babel.def. The file babel.def contains most of the code, while switch.def defines the

language-switching commands; both can be read at run time. The file hyphen.cfg is a file

that can be loaded into the format, which is necessary when you want to be able to switch

hyphenation patterns (by default, it also inputs switch.def, for “historical reasons”, but it

is not necessary). When babel.def is loaded it checks if the current version of switch.def

is in the format; if not, it is loaded. A further file, babel.sty, contains LATEX-specific stuff.

Because plain TEX users might want to use some of the features of the babel system too,

care has to be taken that plain TEX can process the files. For this reason the current format

will have to be checked in a number of places. Some of the code below is common to plain

TEX and LATEX, some of it is for the LATEX case only.

Plain formats based on etex (etex, xetex, luatex) don’t load hyphen.cfg but etex.src,

which follows a different naming convention, so we need to define the babel names. It

presumes language.def exists and it is the same file used when formats were created.

9.1 Tools

527 \ifx\ldf@quit\@undefined

528 \else

529 \expandafter\endinput

530 \fi

531 〈〈Make sure ProvidesFile is defined〉〉
532 \ProvidesFile{babel.def}[〈〈date〉〉 〈〈version〉〉 Babel common definitions]

533 〈〈Load macros for plain if not LaTeX〉〉

The file babel.def expects some definitions made in the LATEX2ε style file. So, In LATEX2.09

and Plain we must provide at least some predefined values as well some tools to set them

(even if not all options are available). There in no package options, and therefore and

alternative mechanism is provided. For the moment, only \babeloptionstrings and

\babeloptionmath are provided, which can be defined before loading babel.

\BabelModifiers can be set too (but not sure it works).

534 \ifx\bbl@ifshorthand\@undefined

535 \let\bbl@opt@shorthands\@nnil

536 \def\bbl@ifshorthand#1#2#3{#2}%

537 \let\bbl@language@opts\@empty

538 \ifx\babeloptionstrings\@undefined

539 \let\bbl@opt@strings\@nnil

540 \else

66

541 \let\bbl@opt@strings\babeloptionstrings

542 \fi

543 \def\BabelStringsDefault{generic}

544 \def\bbl@tempa{normal}

545 \ifx\babeloptionmath\bbl@tempa

546 \def\bbl@mathnormal{\noexpand\textormath}

547 \fi

548 \def\AfterBabelLanguage#1#2{}

549 \ifx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi

550 \let\bbl@afterlang\relax

551 \def\bbl@opt@safe{BR}

552 \ifx\@uclclist\@undefined\let\@uclclist\@empty\fi

553 \ifx\bbl@trace\@undefined\def\bbl@trace#1{}\fi

554 \expandafter\newif\csname ifbbl@single\endcsname

555 \fi

And continue.
556 \ifx\bbl@switchflag\@undefined % Prevent double input

557 \let\bbl@switchflag\relax

558 \input switch.def\relax

559 \fi

560 \bbl@trace{Compatibility with language.def}

561 \ifx\bbl@languages\@undefined

562 \ifx\directlua\@undefined

563 \openin1 = language.def

564 \ifeof1

565 \closein1

566 \message{I couldn't find the file language.def}

567 \else

568 \closein1

569 \begingroup

570 \def\addlanguage#1#2#3#4#5{%

571 \expandafter\ifx\csname lang@#1\endcsname\relax\else

572 \global\expandafter\let\csname l@#1\expandafter\endcsname

573 \csname lang@#1\endcsname

574 \fi}%

575 \def\uselanguage#1{}%

576 \input language.def

577 \endgroup

578 \fi

579 \fi

580 \chardef\l@english\z@

581 \fi

582 〈〈Load patterns in luatex〉〉
583 〈〈Basic macros〉〉

\addto For each language four control sequences have to be defined that control the

language-specific definitions. To be able to add something to these macro once they have

been defined the macro \addto is introduced. It takes two arguments, a 〈control sequence〉
and TEX-code to be added to the 〈control sequence〉.
If the 〈control sequence〉 has not been defined before it is defined now. The control

sequence could also expand to \relax, in which case a circular definition results. The net

result is a stack overflow. Otherwise the replacement text for the 〈control sequence〉 is
expanded and stored in a token register, together with the TEX-code to be added. Finally

the 〈control sequence〉 is redefined, using the contents of the token register.

584 \def\addto#1#2{%

585 \ifx#1\@undefined

586 \def#1{#2}%

587 \else

67

588 \ifx#1\relax

589 \def#1{#2}%

590 \else

591 {\toks@\expandafter{#1#2}%

592 \xdef#1{\the\toks@}}%

593 \fi

594 \fi}

The macro \initiate@active@char takes all the necessary actions to make its argument a

shorthand character. The real work is performed once for each character.

595 \def\bbl@withactive#1#2{%

596 \begingroup

597 \lccode`~=`#2\relax

598 \lowercase{\endgroup#1~}}

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine it to call

the original macro with the ‘sanitized’ argument. The reason why we do it this way is that

we don’t want to redefine the LATEX macros completely in case their definitions change

(they have changed in the past).

Because we need to redefine a number of commands we define the command

\bbl@redefine which takes care of this. It creates a new control sequence, \org@...

599 \def\bbl@redefine#1{%

600 \edef\bbl@tempa{\bbl@stripslash#1}%

601 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

602 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.

603 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such as

\ifthenelse.

604 \def\bbl@redefine@long#1{%

605 \edef\bbl@tempa{\bbl@stripslash#1}%

606 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

607 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}

608 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but whichmight be robust we need a slightly more

intelligent macro. A robust command foo is defined to expand to \protect\foo . So it is

necessary to check whether \foo exists. The result is that the command that is being

redefined is always robust afterwards. Therefore all we need to do now is define \foo .

609 \def\bbl@redefinerobust#1{%

610 \edef\bbl@tempa{\bbl@stripslash#1}%

611 \bbl@ifunset{\bbl@tempa\space}%

612 {\expandafter\let\csname org@\bbl@tempa\endcsname#1%

613 \bbl@exp{\def\\#1{\\\protect\<\bbl@tempa\space>}}}%

614 {\bbl@exp{\let\<org@\bbl@tempa>\<\bbl@tempa\space>}}%

615 \@namedef{\bbl@tempa\space}}

This command should only be used in the preamble of the document.

616 \@onlypreamble\bbl@redefinerobust

9.2 Hooks

Note they are loaded in babel.def. switch.def only provides a “hook” for hooks (with a

default value which is a no-op, below). Admittedly, the current implementation is a

68

somewhat simplistic and does vety little to catch errors, but it is intended for developpers,

after all. \bbl@usehooks is the commands used by babel to execute hooks defined for an

event.

617 \bbl@trace{Hooks}

618 \newcommand\AddBabelHook[3][]{%

619 \bbl@ifunset{bbl@hk@#2}{\EnableBabelHook{#2}}{}%

620 \def\bbl@tempa##1,#3=##2,##3\@empty{\def\bbl@tempb{##2}}%

621 \expandafter\bbl@tempa\bbl@evargs,#3=,\@empty

622 \bbl@ifunset{bbl@ev@#2@#3@#1}%

623 {\bbl@csarg\bbl@add{ev@#3@#1}{\bbl@elt{#2}}}%

624 {\bbl@csarg\let{ev@#2@#3@#1}\relax}%

625 \bbl@csarg\newcommand{ev@#2@#3@#1}[\bbl@tempb]}

626 \newcommand\EnableBabelHook[1]{\bbl@csarg\let{hk@#1}\@firstofone}

627 \newcommand\DisableBabelHook[1]{\bbl@csarg\let{hk@#1}\@gobble}

628 \def\bbl@usehooks#1#2{%

629 \def\bbl@elt##1{%

630 \@nameuse{bbl@hk@##1}{\@nameuse{bbl@ev@##1@#1@}#2}}%

631 \@nameuse{bbl@ev@#1@}%

632 \ifx\languagename\@undefined\else % Test required for Plain (?)

633 \def\bbl@elt##1{%

634 \@nameuse{bbl@hk@##1}{\@nameuse{bbl@ev@##1@#1@\languagename}#2}}%

635 \@nameuse{bbl@ev@#1@\languagename}%

636 \fi}

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further

argument is added in the future, there is no need to change the existing code. Note events

intended for hyphen.cfg are also loaded (just in case you need them for some reason).

637 \def\bbl@evargs{,% <- don't delete this comma

638 everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%

639 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%

640 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%

641 hyphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0,%

642 beforestart=0}

\babelensure The user command just parses the optional argument and creates a new macro named

\bbl@e@〈language〉. We register a hook at the afterextras event which just executes this

macro in a “complete” selection (which, if undefined, is \relax and does nothing). This

part is somewhat involved because we have to make sure things are expanded the correct

number of times.

The macro \bbl@e@〈language〉 contains \bbl@ensure{〈include〉}{〈exclude〉}{〈fontenc〉},
which in in turn loops over the macros names in \bbl@captionslist, excluding (with the

help of \in@) those in the exclude list. If the fontenc is given (and not \relax), the

\fontencoding is also added. Then we loop over the include list, but if the macro already

contains \foreignlanguage, nothing is done. Note this macro (1) is not restricted to the

preamble, and (2) changes are local.

643 \bbl@trace{Defining babelensure}

644 \newcommand\babelensure[2][]{% TODO - revise test files

645 \AddBabelHook{babel-ensure}{afterextras}{%

646 \ifcase\bbl@select@type

647 \@nameuse{bbl@e@\languagename}%

648 \fi}%

649 \begingroup

650 \let\bbl@ens@include\@empty

651 \let\bbl@ens@exclude\@empty

652 \def\bbl@ens@fontenc{\relax}%

653 \def\bbl@tempb##1{%

654 \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%

69

655 \edef\bbl@tempa{\bbl@tempb#1\@empty}%

656 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ens@##1}{##2}}%

657 \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%

658 \def\bbl@tempc{\bbl@ensure}%

659 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

660 \expandafter{\bbl@ens@include}}%

661 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

662 \expandafter{\bbl@ens@exclude}}%

663 \toks@\expandafter{\bbl@tempc}%

664 \bbl@exp{%

665 \endgroup

666 \def\<bbl@e@#2>{\the\toks@{\bbl@ens@fontenc}}}}

667 \def\bbl@ensure#1#2#3{% 1: include 2: exclude 3: fontenc

668 \def\bbl@tempb##1{% elt for (excluding) \bbl@captionslist list

669 \ifx##1\@undefined % 3.32 - Don't assume the macros exists

670 \edef##1{\noexpand\bbl@nocaption

671 {\bbl@stripslash##1}{\languagename\bbl@stripslash##1}}%

672 \fi

673 \ifx##1\@empty\else

674 \in@{##1}{#2}%

675 \ifin@\else

676 \bbl@ifunset{bbl@ensure@\languagename}%

677 {\bbl@exp{%

678 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%

679 \\\foreignlanguage{\languagename}%

680 {\ifx\relax#3\else

681 \\\fontencoding{#3}\\\selectfont

682 \fi

683 ########1}}}}%

684 {}%

685 \toks@\expandafter{##1}%

686 \edef##1{%

687 \bbl@csarg\noexpand{ensure@\languagename}%

688 {\the\toks@}}%

689 \fi

690 \expandafter\bbl@tempb

691 \fi}%

692 \expandafter\bbl@tempb\bbl@captionslist\today\@empty

693 \def\bbl@tempa##1{% elt for include list

694 \ifx##1\@empty\else

695 \bbl@csarg\in@{ensure@\languagename\expandafter}\expandafter{##1}%

696 \ifin@\else

697 \bbl@tempb##1\@empty

698 \fi

699 \expandafter\bbl@tempa

700 \fi}%

701 \bbl@tempa#1\@empty}

702 \def\bbl@captionslist{%

703 \prefacename\refname\abstractname\bibname\chaptername\appendixname

704 \contentsname\listfigurename\listtablename\indexname\figurename

705 \tablename\partname\enclname\ccname\headtoname\pagename\seename

706 \alsoname\proofname\glossaryname}

9.3 Setting up language files

\LdfInit The second version of \LdfInit macro takes two arguments. The first argument is the

name of the language that will be defined in the language definition file; the second

argument is either a control sequence or a string from which a control sequence should be

70

constructed. The existence of the control sequence indicates that the file has been

processed before.

At the start of processing a language definition file we always check the category code of

the at-sign. We make sure that it is a ‘letter’ during the processing of the file. We also save

its name as the last called option, even if not loaded.

Another character that needs to have the correct category code during processing of

language definition files is the equals sign, ‘=’, because it is sometimes used in constructions

with the \let primitive. Therefore we store its current catcode and restore it later on.

Now we check whether we should perhaps stop the processing of this file. To do this we

first need to check whether the second argument that is passed to \LdfInit is a control

sequence. We do that by looking at the first token after passing #2 through string. When

it is equal to \@backslashchar we are dealing with a control sequence which we can

compare with \@undefined.

If so, we call \ldf@quit to set the main language, restore the category code of the @-sign

and call \endinput

When #2 was not a control sequence we construct one and compare it with \relax.

Finally we check \originalTeX.

707 \bbl@trace{Macros for setting language files up}

708 \def\bbl@ldfinit{%

709 \let\bbl@screset\@empty

710 \let\BabelStrings\bbl@opt@string

711 \let\BabelOptions\@empty

712 \let\BabelLanguages\relax

713 \ifx\originalTeX\@undefined

714 \let\originalTeX\@empty

715 \else

716 \originalTeX

717 \fi}

718 \def\LdfInit#1#2{%

719 \chardef\atcatcode=\catcode`\@

720 \catcode`\@=11\relax

721 \chardef\eqcatcode=\catcode`\=

722 \catcode`\==12\relax

723 \expandafter\if\expandafter\@backslashchar

724 \expandafter\@car\string#2\@nil

725 \ifx#2\@undefined\else

726 \ldf@quit{#1}%

727 \fi

728 \else

729 \expandafter\ifx\csname#2\endcsname\relax\else

730 \ldf@quit{#1}%

731 \fi

732 \fi

733 \bbl@ldfinit}

\ldf@quit This macro interrupts the processing of a language definition file.

734 \def\ldf@quit#1{%

735 \expandafter\main@language\expandafter{#1}%

736 \catcode`\@=\atcatcode \let\atcatcode\relax

737 \catcode`\==\eqcatcode \let\eqcatcode\relax

738 \endinput}

\ldf@finish This macro takes one argument. It is the name of the language that was defined in the

language definition file.

We load the local configuration file if one is present, we set the main language (taking into

account that the argument might be a control sequence that needs to be expanded) and

reset the category code of the @-sign.

71

739 \def\bbl@afterldf#1{%

740 \bbl@afterlang

741 \let\bbl@afterlang\relax

742 \let\BabelModifiers\relax

743 \let\bbl@screset\relax}%

744 \def\ldf@finish#1{%

745 \loadlocalcfg{#1}%

746 \bbl@afterldf{#1}%

747 \expandafter\main@language\expandafter{#1}%

748 \catcode`\@=\atcatcode \let\atcatcode\relax

749 \catcode`\==\eqcatcode \let\eqcatcode\relax}

After the preamble of the document the commands \LdfInit, \ldf@quit and \ldf@finish

are no longer needed. Therefore they are turned into warning messages in LATEX.

750 \@onlypreamble\LdfInit

751 \@onlypreamble\ldf@quit

752 \@onlypreamble\ldf@finish

\main@language

\bbl@main@language

This command should be used in the various language definition files. It stores its

argument in \bbl@main@language; to be used to switch to the correct language at the

beginning of the document.

753 \def\main@language#1{%

754 \def\bbl@main@language{#1}%

755 \let\languagename\bbl@main@language

756 \bbl@id@assign

757 \chardef\localeid\@nameuse{bbl@id@@\languagename}%

758 \bbl@patterns{\languagename}}

We also have to make sure that some code gets executed at the beginning of the document.

Languages do not set \pagedir, so we set here for the whole document to the main

\bodydir.

759 \def\bbl@beforestart{%

760 \bbl@usehooks{beforestart}{}%

761 \global\let\bbl@beforestart\relax}

762 \AtBeginDocument{%

763 \bbl@beforestart

764 \if@filesw

765 \immediate\write\@mainaux{%

766 % \let\string\bbl@nostdfont\string\@gobble

767 \string\bbl@beforestart}%

768 \fi

769 \expandafter\selectlanguage\expandafter{\bbl@main@language}%

770 \ifbbl@single % must go after the line above

771 \renewcommand\selectlanguage[1]{}%

772 \renewcommand\foreignlanguage[2]{#2}%

773 \global\let\babel@aux\@gobbletwo % Also as flag

774 \fi

775 \ifcase\bbl@engine\or\pagedir\bodydir\fi} % TODO - a better place

A bit of optimization. Select in heads/foots the language only if necessary.

776 \def\select@language@x#1{%

777 \ifcase\bbl@select@type

778 \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%

779 \else

780 \select@language{#1}%

781 \fi}

72

9.4 Shorthands

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character control

sequence) to the macro \dospecials (and \@sanitize if LATEX is used). It is used only at

one place, namely when \initiate@active@char is called (which is ignored if the char

has been made active before). Because \@sanitize can be undefined, we put the

definition inside a conditional.

Items are added to the lists without checking its existence or the original catcode. It does

not hurt, but should be fixed. It’s already done with \nfss@catcodes, added in 3.10.

782 \bbl@trace{Shorhands}

783 \def\bbl@add@special#1{% 1:a macro like \", \?, etc.

784 \bbl@add\dospecials{\do#1}% test @sanitize = \relax, for back. compat.

785 \bbl@ifunset{@sanitize}{}{\bbl@add\@sanitize{\@makeother#1}}%

786 \ifx\nfss@catcodes\@undefined\else % TODO - same for above

787 \begingroup

788 \catcode`#1\active

789 \nfss@catcodes

790 \ifnum\catcode`#1=\active

791 \endgroup

792 \bbl@add\nfss@catcodes{\@makeother#1}%

793 \else

794 \endgroup

795 \fi

796 \fi}

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It removes a character from

the set macros \dospecials and \@sanitize, but it is not used at all in the babel core.

797 \def\bbl@remove@special#1{%

798 \begingroup

799 \def\x##1##2{\ifnum`#1=`##2\noexpand\@empty

800 \else\noexpand##1\noexpand##2\fi}%

801 \def\do{\x\do}%

802 \def\@makeother{\x\@makeother}%

803 \edef\x{\endgroup

804 \def\noexpand\dospecials{\dospecials}%

805 \expandafter\ifx\csname @sanitize\endcsname\relax\else

806 \def\noexpand\@sanitize{\@sanitize}%

807 \fi}%

808 \x}

\initiate@active@char A language definition file can call this macro to make a character active. This macro takes

one argument, the character that is to be made active. When the character was already

active this macro does nothing. Otherwise, this macro defines the control sequence

\normal@char〈char〉 to expand to the character in its ‘normal state’ and it defines the

active character to expand to \normal@char〈char〉 by default (〈char〉 being the character
to be made active). Later its definition can be changed to expand to \active@char〈char〉
by calling \bbl@activate{〈char〉}.
For example, to make the double quote character active one could have

\initiate@active@char{"} in a language definition file. This defines " as

\active@prefix "\active@char" (where the first " is the character with its original

catcode, when the shorthand is created, and \active@char" is a single token). In protected

contexts, it expands to \protect " or \noexpand " (ie, with the original "); otherwise

\active@char" is executed. This macro in turn expands to \normal@char" in “safe”

contexts (eg, \label), but \user@active" in normal “unsafe” ones. The latter search a

definition in the user, language and system levels, in this order, but if none is found,

\normal@char" is used. However, a deactivated shorthand (with \bbl@deactivate is

defined as \active@prefix "\normal@char".

73

The following macro is used to define shorthands in the three levels. It takes 4 arguments:

the (string’ed) character, \<level>@group, <level>@active and <next-level>@active

(except in system).

809 \def\bbl@active@def#1#2#3#4{%

810 \@namedef{#3#1}{%

811 \expandafter\ifx\csname#2@sh@#1@\endcsname\relax

812 \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%

813 \else

814 \bbl@afterfi\csname#2@sh@#1@\endcsname

815 \fi}%

When there is also no current-level shorthand with an argument we will check whether

there is a next-level defined shorthand for this active character.

816 \long\@namedef{#3@arg#1}##1{%

817 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax

818 \bbl@afterelse\csname#4#1\endcsname##1%

819 \else

820 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname

821 \fi}}%

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of them

are the same character with different catcodes: active, other (\string’ed) and the original

one. This trick simplifies the code a lot.

822 \def\initiate@active@char#1{%

823 \bbl@ifunset{active@char\string#1}%

824 {\bbl@withactive

825 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1}%

826 {}}

The very first thing to do is saving the original catcode and the original definition, even if

not active, which is possible (undefined characters require a special treatement to avoid

making them \relax).

827 \def\@initiate@active@char#1#2#3{%

828 \bbl@csarg\edef{oricat@#2}{\catcode`#2=\the\catcode`#2\relax}%

829 \ifx#1\@undefined

830 \bbl@csarg\edef{oridef@#2}{\let\noexpand#1\noexpand\@undefined}%

831 \else

832 \bbl@csarg\let{oridef@@#2}#1%

833 \bbl@csarg\edef{oridef@#2}{%

834 \let\noexpand#1%

835 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%

836 \fi

If the character is already active we provide the default expansion under this shorthand

mechanism. Otherwise we write a message in the transcript file, and define

\normal@char〈char〉 to expand to the character in its default state. If the character is

mathematically active when babel is loaded (for example ') the normal expansion is

somewhat different to avoid an infinite loop (but it does not prevent the loop if the

mathcode is set to "8000 a posteriori).

837 \ifx#1#3\relax

838 \expandafter\let\csname normal@char#2\endcsname#3%

839 \else

840 \bbl@info{Making #2 an active character}%

841 \ifnum\mathcode`#2=\ifodd\bbl@engine"1000000 \else"8000 \fi

842 \@namedef{normal@char#2}{%

843 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%

844 \else

845 \@namedef{normal@char#2}{#3}%

74

846 \fi

To prevent problems with the loading of other packages after babel we reset the catcode of

the character to the original one at the end of the package and of each language file (except

with KeepShorthandsActive). It is re-activate again at \begin{document}. We also need to

make sure that the shorthands are active during the processing of the .aux file. Otherwise

some citations may give unexpected results in the printout when a shorthand was used in

the optional argument of \bibitem for example. Then we make it active (not strictly

necessary, but done for backward compatibility).

847 \bbl@restoreactive{#2}%

848 \AtBeginDocument{%

849 \catcode`#2\active

850 \if@filesw

851 \immediate\write\@mainaux{\catcode`\string#2\active}%

852 \fi}%

853 \expandafter\bbl@add@special\csname#2\endcsname

854 \catcode`#2\active

855 \fi

Nowwe have set \normal@char〈char〉, we must define \active@char〈char〉, to be executed
when the character is activated. We define the first level expansion of \active@char〈char〉
to check the status of the @safe@actives flag. If it is set to true we expand to the ‘normal’

version of this character, otherwise we call \user@active〈char〉 to start the search of a

definition in the user, language and system levels (or eventually normal@char〈char〉).
856 \let\bbl@tempa\@firstoftwo

857 \if\string^#2%

858 \def\bbl@tempa{\noexpand\textormath}%

859 \else

860 \ifx\bbl@mathnormal\@undefined\else

861 \let\bbl@tempa\bbl@mathnormal

862 \fi

863 \fi

864 \expandafter\edef\csname active@char#2\endcsname{%

865 \bbl@tempa

866 {\noexpand\if@safe@actives

867 \noexpand\expandafter

868 \expandafter\noexpand\csname normal@char#2\endcsname

869 \noexpand\else

870 \noexpand\expandafter

871 \expandafter\noexpand\csname bbl@doactive#2\endcsname

872 \noexpand\fi}%

873 {\expandafter\noexpand\csname normal@char#2\endcsname}}%

874 \bbl@csarg\edef{doactive#2}{%

875 \expandafter\noexpand\csname user@active#2\endcsname}%

We now define the default values which the shorthand is set to when activated or

deactivated. It is set to the deactivated form (globally), so that the character expands to

\active@prefix 〈char〉 \normal@char〈char〉

(where \active@char〈char〉 is one control sequence!).
876 \bbl@csarg\edef{active@#2}{%

877 \noexpand\active@prefix\noexpand#1%

878 \expandafter\noexpand\csname active@char#2\endcsname}%

879 \bbl@csarg\edef{normal@#2}{%

880 \noexpand\active@prefix\noexpand#1%

881 \expandafter\noexpand\csname normal@char#2\endcsname}%

882 \expandafter\let\expandafter#1\csname bbl@normal@#2\endcsname

75

The next level of the code checks whether a user has defined a shorthand for himself with

this character. First we check for a single character shorthand. If that doesn’t exist we

check for a shorthand with an argument.

883 \bbl@active@def#2\user@group{user@active}{language@active}%

884 \bbl@active@def#2\language@group{language@active}{system@active}%

885 \bbl@active@def#2\system@group{system@active}{normal@char}%

In order to do the right thing when a shorthand with an argument is used by itself at the

end of the line we provide a definition for the case of an empty argument. For that case we

let the shorthand character expand to its non-active self. Also, When a shorthand

combination such as '' ends up in a heading TEX would see \protect'\protect'. To

prevent this from happening a couple of shorthand needs to be defined at user level.

886 \expandafter\edef\csname\user@group @sh@#2@@\endcsname

887 {\expandafter\noexpand\csname normal@char#2\endcsname}%

888 \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname

889 {\expandafter\noexpand\csname user@active#2\endcsname}%

Finally, a couple of special cases are taken care of. (1) If we are making the right quote (')

active we need to change \pr@m@s as well. Also, make sure that a single ' in math mode

‘does the right thing’. (2) If we are using the caret (^) as a shorthand character special care

should be taken to make sure math still works. Therefore an extra level of expansion is

introduced with a check for math mode on the upper level.

890 \if\string'#2%

891 \let\prim@s\bbl@prim@s

892 \let\active@math@prime#1%

893 \fi

894 \bbl@usehooks{initiateactive}{{#1}{#2}{#3}}}

The following package options control the behavior of shorthands in math mode.

895 〈〈∗More package options〉〉 ≡
896 \DeclareOption{math=active}{}

897 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}

898 〈〈/More package options〉〉

Initiating a shorthand makes active the char. That is not strictly necessary but it is still

done for backward compatibility. So we need to restore the original catcode at the end of

package and and the end of the ldf.

899 \@ifpackagewith{babel}{KeepShorthandsActive}%

900 {\let\bbl@restoreactive\@gobble}%

901 {\def\bbl@restoreactive#1{%

902 \bbl@exp{%

903 \\\AfterBabelLanguage\\\CurrentOption

904 {\catcode`#1=\the\catcode`#1\relax}%

905 \\\AtEndOfPackage

906 {\catcode`#1=\the\catcode`#1\relax}}}%

907 \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed. Note that

this macro needs to be expandable as do all the shorthand macros in order for them to

work in expansion-only environments such as the argument of \hyphenation.

This macro expects the name of a group of shorthands in its first argument and a

shorthand character in its second argument. It will expand to either \bbl@firstcs or

\bbl@scndcs. Hence two more arguments need to follow it.

908 \def\bbl@sh@select#1#2{%

909 \expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax

910 \bbl@afterelse\bbl@scndcs

911 \else

76

912 \bbl@afterfi\csname#1@sh@#2@sel\endcsname

913 \fi}

\active@prefix The command \active@prefix which is used in the expansion of active characters has a

function similar to \OT1-cmd in that it \protects the active character whenever \protect

is not \@typeset@protect. The \@gobble is needed to remove a token such as

\activechar: (when the double colon was the active character to be dealt with). There are

two definitions, depending of \ifincsname is available. If there is, the expansion will be

more robust.

914 \begingroup

915 \bbl@ifunset{ifincsname}%

916 {\gdef\active@prefix#1{%

917 \ifx\protect\@typeset@protect

918 \else

919 \ifx\protect\@unexpandable@protect

920 \noexpand#1%

921 \else

922 \protect#1%

923 \fi

924 \expandafter\@gobble

925 \fi}}

926 {\gdef\active@prefix#1{%

927 \ifincsname

928 \string#1%

929 \expandafter\@gobble

930 \else

931 \ifx\protect\@typeset@protect

932 \else

933 \ifx\protect\@unexpandable@protect

934 \noexpand#1%

935 \else

936 \protect#1%

937 \fi

938 \expandafter\expandafter\expandafter\@gobble

939 \fi

940 \fi}}

941 \endgroup

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an active

character on the fly. For this purpose the switch @safe@actives is available. The setting of

this switch should be checked in the first level expansion of \active@char〈char〉.
942 \newif\if@safe@actives

943 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this must

be undone in the headers to prevent unexpected typeset results. For this situation we

define a command to make them “unsafe” again.

944 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbl@activate

\bbl@deactivate

Both macros take one argument, like \initiate@active@char. The macro is used to

change the definition of an active character to expand to \active@char〈char〉 in the case

of \bbl@activate, or \normal@char〈char〉 in the case of \bbl@deactivate.

945 \def\bbl@activate#1{%

946 \bbl@withactive{\expandafter\let\expandafter}#1%

947 \csname bbl@active@\string#1\endcsname}

948 \def\bbl@deactivate#1{%

949 \bbl@withactive{\expandafter\let\expandafter}#1%

950 \csname bbl@normal@\string#1\endcsname}

77

\bbl@firstcs

\bbl@scndcs

These macros have two arguments. They use one of their arguments to build a control

sequence from.

951 \def\bbl@firstcs#1#2{\csname#1\endcsname}

952 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain level. It

takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

953 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}

954 \def\@decl@short#1#2#3\@nil#4{%

955 \def\bbl@tempa{#3}%

956 \ifx\bbl@tempa\@empty

957 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs

958 \bbl@ifunset{#1@sh@\string#2@}{}%

959 {\def\bbl@tempa{#4}%

960 \expandafter\ifx\csname#1@sh@\string#2@\endcsname\bbl@tempa

961 \else

962 \bbl@info

963 {Redefining #1 shorthand \string#2\\%

964 in language \CurrentOption}%

965 \fi}%

966 \@namedef{#1@sh@\string#2@}{#4}%

967 \else

968 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs

969 \bbl@ifunset{#1@sh@\string#2@\string#3@}{}%

970 {\def\bbl@tempa{#4}%

971 \expandafter\ifx\csname#1@sh@\string#2@\string#3@\endcsname\bbl@tempa

972 \else

973 \bbl@info

974 {Redefining #1 shorthand \string#2\string#3\\%

975 in language \CurrentOption}%

976 \fi}%

977 \@namedef{#1@sh@\string#2@\string#3@}{#4}%

978 \fi}

\textormath Some of the shorthands that will be declared by the language definition files have to be

usable in both text and mathmode. To achieve this the helper macro \textormath is

provided.

979 \def\textormath{%

980 \ifmmode

981 \expandafter\@secondoftwo

982 \else

983 \expandafter\@firstoftwo

984 \fi}

\user@group

\language@group

\system@group

The current concept of ‘shorthands’ supports three levels or groups of shorthands. For

each level the name of the level or group is stored in a macro. The default is to have a user

group; use language group ‘english’ and have a system group called ‘system’.

985 \def\user@group{user}

986 \def\language@group{english}

987 \def\system@group{system}

78

\useshorthands This is the user level command to tell LATEX that user level shorthands will be used in the

document. It takes one argument, the character that starts a shorthand. First note that this

is user level, and then initialize and activate the character for use as a shorthand character

(ie, it’s active in the preamble). Languages can deactivate shorthands, so a starred version

is also provided which activates them always after the language has been switched.

988 \def\useshorthands{%

989 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}

990 \def\bbl@usesh@s#1{%

991 \bbl@usesh@x

992 {\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}%

993 {#1}}

994 \def\bbl@usesh@x#1#2{%

995 \bbl@ifshorthand{#2}%

996 {\def\user@group{user}%

997 \initiate@active@char{#2}%

998 #1%

999 \bbl@activate{#2}}%

1000 {\bbl@error

1001 {Cannot declare a shorthand turned off (\string#2)}

1002 {Sorry, but you cannot use shorthands which have been\\%

1003 turned off in the package options}}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally user and

user@<lang> (language-dependent user shorthands). By default, only the first one is taken

into account, but if the former is also used (in the optional argument of \defineshorthand)

a new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make

also sure {} and \protect are taken into account in this new top level.

1004 \def\user@language@group{user@\language@group}

1005 \def\bbl@set@user@generic#1#2{%

1006 \bbl@ifunset{user@generic@active#1}%

1007 {\bbl@active@def#1\user@language@group{user@active}{user@generic@active}%

1008 \bbl@active@def#1\user@group{user@generic@active}{language@active}%

1009 \expandafter\edef\csname#2@sh@#1@@\endcsname{%

1010 \expandafter\noexpand\csname normal@char#1\endcsname}%

1011 \expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{%

1012 \expandafter\noexpand\csname user@active#1\endcsname}}%

1013 \@empty}

1014 \newcommand\defineshorthand[3][user]{%

1015 \edef\bbl@tempa{\zap@space#1 \@empty}%

1016 \bbl@for\bbl@tempb\bbl@tempa{%

1017 \if*\expandafter\@car\bbl@tempb\@nil

1018 \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%

1019 \@expandtwoargs

1020 \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb

1021 \fi

1022 \declare@shorthand{\bbl@tempb}{#2}{#3}}}

\languageshorthands A user level command to change the language from which shorthands are used.

Unfortunately, babel currently does not keep track of defined groups, and therefore there

is no way to catch a possible change in casing.

1023 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand First the new shorthand needs to be initialized,

1024 \def\aliasshorthand#1#2{%

1025 \bbl@ifshorthand{#2}%

1026 {\expandafter\ifx\csname active@char\string#2\endcsname\relax

1027 \ifx\document\@notprerr

79

1028 \@notshorthand{#2}%

1029 \else

1030 \initiate@active@char{#2}%

Then, we define the new shorthand in terms of the original one, but note with

\aliasshorthands{"}{/} is \active@prefix /\active@char/, so we still need to let the

lattest to \active@char".

1031 \expandafter\let\csname active@char\string#2\expandafter\endcsname

1032 \csname active@char\string#1\endcsname

1033 \expandafter\let\csname normal@char\string#2\expandafter\endcsname

1034 \csname normal@char\string#1\endcsname

1035 \bbl@activate{#2}%

1036 \fi

1037 \fi}%

1038 {\bbl@error

1039 {Cannot declare a shorthand turned off (\string#2)}

1040 {Sorry, but you cannot use shorthands which have been\\%

1041 turned off in the package options}}}

\@notshorthand

1042 \def\@notshorthand#1{%

1043 \bbl@error{%

1044 The character `\string #1' should be made a shorthand character;\\%

1045 add the command \string\useshorthands\string{#1\string} to

1046 the preamble.\\%

1047 I will ignore your instruction}%

1048 {You may proceed, but expect unexpected results}}

\shorthandon

\shorthandoff

The first level definition of these macros just passes the argument on to \bbl@switch@sh,

adding \@nil at the end to denote the end of the list of characters.

1049 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}

1050 \DeclareRobustCommand*\shorthandoff{%

1051 \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}

1052 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and subsequently

switches the category code of the shorthand character according to the first argument of

\bbl@switch@sh.

But before any of this switching takes place we make sure that the character we are

dealing with is known as a shorthand character. If it is, a macro such as \active@char"

should exist.

Switching off and on is easy – we just set the category code to ‘other’ (12) and \active.

With the starred version, the original catcode and the original definition, saved in

@initiate@active@char, are restored.

1053 \def\bbl@switch@sh#1#2{%

1054 \ifx#2\@nnil\else

1055 \bbl@ifunset{bbl@active@\string#2}%

1056 {\bbl@error

1057 {I cannot switch `\string#2' on or off--not a shorthand}%

1058 {This character is not a shorthand. Maybe you made\\%

1059 a typing mistake? I will ignore your instruction}}%

1060 {\ifcase#1%

1061 \catcode`#212\relax

1062 \or

1063 \catcode`#2\active

1064 \or

1065 \csname bbl@oricat@\string#2\endcsname

80

1066 \csname bbl@oridef@\string#2\endcsname

1067 \fi}%

1068 \bbl@afterfi\bbl@switch@sh#1%

1069 \fi}

Note the value is that at the expansion time, eg, in the preample shorhands are usually

deactivated.

1070 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}

1071 \def\bbl@putsh#1{%

1072 \bbl@ifunset{bbl@active@\string#1}%

1073 {\bbl@putsh@i#1\@empty\@nnil}%

1074 {\csname bbl@active@\string#1\endcsname}}

1075 \def\bbl@putsh@i#1#2\@nnil{%

1076 \csname\languagename @sh@\string#1@%

1077 \ifx\@empty#2\else\string#2@\fi\endcsname}

1078 \ifx\bbl@opt@shorthands\@nnil\else

1079 \let\bbl@s@initiate@active@char\initiate@active@char

1080 \def\initiate@active@char#1{%

1081 \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}

1082 \let\bbl@s@switch@sh\bbl@switch@sh

1083 \def\bbl@switch@sh#1#2{%

1084 \ifx#2\@nnil\else

1085 \bbl@afterfi

1086 \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%

1087 \fi}

1088 \let\bbl@s@activate\bbl@activate

1089 \def\bbl@activate#1{%

1090 \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}

1091 \let\bbl@s@deactivate\bbl@deactivate

1092 \def\bbl@deactivate#1{%

1093 \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}

1094 \fi

You may want to test if a character is a shorthand. Note it does not test whether the

shorthand is on or off.

1095 \newcommand\ifbabelshorthand[3]{\bbl@ifunset{bbl@active@\string#1}{#3}{#2}}

\bbl@prim@s

\bbl@pr@m@s

One of the internal macros that are involved in substituting \prime for each right quote in

mathmode is \prim@s. This checks if the next character is a right quote. When the right

quote is active, the definition of this macro needs to be adapted to look also for an active

right quote; the hat could be active, too.

1096 \def\bbl@prim@s{%

1097 \prime\futurelet\@let@token\bbl@pr@m@s}

1098 \def\bbl@if@primes#1#2{%

1099 \ifx#1\@let@token

1100 \expandafter\@firstoftwo

1101 \else\ifx#2\@let@token

1102 \bbl@afterelse\expandafter\@firstoftwo

1103 \else

1104 \bbl@afterfi\expandafter\@secondoftwo

1105 \fi\fi}

1106 \begingroup

1107 \catcode`\^=7 \catcode`*=\active \lccode`*=`\^

1108 \catcode`\'=12 \catcode`\"=\active \lccode`\"=`\'

1109 \lowercase{%

1110 \gdef\bbl@pr@m@s{%

1111 \bbl@if@primes"'%

1112 \pr@@@s

81

1113 {\bbl@if@primes*^\pr@@@t\egroup}}}

1114 \endgroup

Usually the ~ is active and expands to \penalty\@M\ . When it is written to the .aux file it

is written expanded. To prevent that and to be able to use the character ~ as a start

character for a shorthand, it is redefined here as a one character shorthand on system

level. The system declaration is in most cases redundant (when ~ is still a non-break

space), and in some cases is inconvenient (if ~ has been redefined); however, for backward

compatibility it is maintained (some existing documents may rely on the babel value).

1115 \initiate@active@char{~}

1116 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }

1117 \bbl@activate{~}

\OT1dqpos

\T1dqpos

The position of the double quote character is different for the OT1 and T1 encodings. It will

later be selected using the \f@encoding macro. Therefore we define two macros here to

store the position of the character in these encodings.

1118 \expandafter\def\csname OT1dqpos\endcsname{127}

1119 \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here to

expand to OT1

1120 \ifx\f@encoding\@undefined

1121 \def\f@encoding{OT1}

1122 \fi

9.5 Language attributes

Language attributes provide a means to give the user control over which features of the

language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then

activates the selected language attribute. First check whether the language is known, and

then process each attribute in the list.

1123 \bbl@trace{Language attributes}

1124 \newcommand\languageattribute[2]{%

1125 \def\bbl@tempc{#1}%

1126 \bbl@fixname\bbl@tempc

1127 \bbl@iflanguage\bbl@tempc{%

1128 \bbl@vforeach{#2}{%

We want to make sure that each attribute is selected only once; therefore we store the

already selected attributes in \bbl@known@attribs. When that control sequence is not yet

defined this attribute is certainly not selected before.

1129 \ifx\bbl@known@attribs\@undefined

1130 \in@false

1131 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

1132 \bbl@xin@{,\bbl@tempc-##1,}{,\bbl@known@attribs,}%

1133 \fi

When the attribute was in the list we issue a warning; this might not be the users intention.

1134 \ifin@

1135 \bbl@warning{%

1136 You have more than once selected the attribute '##1'\\%

1137 for language #1. Reported}%

1138 \else

82

When we end up here the attribute is not selected before. So, we add it to the list of

selected attributes and execute the associated TEX-code.

1139 \bbl@exp{%

1140 \\\bbl@add@list\\\bbl@known@attribs{\bbl@tempc-##1}}%

1141 \edef\bbl@tempa{\bbl@tempc-##1}%

1142 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%

1143 {\csname\bbl@tempc @attr@##1\endcsname}%

1144 {\@attrerr{\bbl@tempc}{##1}}%

1145 \fi}}}

This command should only be used in the preamble of a document.

1146 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.

1147 \newcommand*{\@attrerr}[2]{%

1148 \bbl@error

1149 {The attribute #2 is unknown for language #1.}%

1150 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known

attributes.

Then it defines a control sequence to be executed when the attribute is used in a

document. The result of this should be that the macro \extras... for the current

language is extended, otherwise the attribute will not work as its code is removed from

memory at \begin{document}.

1151 \def\bbl@declare@ttribute#1#2#3{%

1152 \bbl@xin@{,#2,}{,\BabelModifiers,}%

1153 \ifin@

1154 \AfterBabelLanguage{#1}{\languageattribute{#1}{#2}}%

1155 \fi

1156 \bbl@add@list\bbl@attributes{#1-#2}%

1157 \expandafter\def\csname#1@attr@#2\endcsname{#3}}

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based on

whether a certain attribute was set. This command should appear inside the argument to

\AtBeginDocument because the attributes are set in the document preamble, after babel is

loaded.

The first argument is the language, the second argument the attribute being checked, and

the third and fourth arguments are the true and false clauses.

1158 \def\bbl@ifattributeset#1#2#3#4{%

First we need to find out if any attributes were set; if not we’re done.

1159 \ifx\bbl@known@attribs\@undefined

1160 \in@false

1161 \else

The we need to check the list of known attributes.

1162 \bbl@xin@{,#1-#2,}{,\bbl@known@attribs,}%

1163 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was set or

not. Just to be safe the code to be executed is ‘thrown over the \fi’.

1164 \ifin@

1165 \bbl@afterelse#3%

1166 \else

1167 \bbl@afterfi#4%

1168 \fi

1169 }

83

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The macro takes

4 arguments, the language/attribute, the attribute list, the TEX-code to be executed when

the attribute is known and the TEX-code to be executed otherwise.

1170 \def\bbl@ifknown@ttrib#1#2{%

We first assume the attribute is unknown.

1171 \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.

1172 \bbl@loopx\bbl@tempb{#2}{%

1173 \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%

1174 \ifin@

When a match is found the definition of \bbl@tempa is changed.

1175 \let\bbl@tempa\@firstoftwo

1176 \else

1177 \fi}%

Finally we execute \bbl@tempa.

1178 \bbl@tempa

1179 }

\bbl@clear@ttribs This macro removes all the attribute code from LATEX’s memory at \begin{document} time

(if any is present).

1180 \def\bbl@clear@ttribs{%

1181 \ifx\bbl@attributes\@undefined\else

1182 \bbl@loopx\bbl@tempa{\bbl@attributes}{%

1183 \expandafter\bbl@clear@ttrib\bbl@tempa.

1184 }%

1185 \let\bbl@attributes\@undefined

1186 \fi}

1187 \def\bbl@clear@ttrib#1-#2.{%

1188 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}

1189 \AtBeginDocument{\bbl@clear@ttribs}

9.6 Support for saving macro definitions

To save the meaning of control sequences using \babel@save, we use temporary control

sequences. To save hash table entries for these control sequences, we don’t use the name

of the control sequence to be saved to construct the temporary name. Instead we simply

use the value of a counter, which is reset to zero each time we begin to save new values.

This works well because we release the saved meanings before we begin to save a new set

of control sequence meanings (see \selectlanguage and \originalTeX). Note undefined

macros are not undefined any more when saved – they are \relax’ed.

\babel@savecnt

\babel@beginsave

The initialization of a new save cycle: reset the counter to zero.

1190 \bbl@trace{Macros for saving definitions}

1191 \def\babel@beginsave{\babel@savecnt\z@}

Before it’s forgotten, allocate the counter and initialize all.

1192 \newcount\babel@savecnt

1193 \babel@beginsave

\babel@save The macro \babel@save〈csname〉 saves the current meaning of the control sequence

〈csname〉 to \originalTeX32. To do this, we let the current meaning to a temporary control

32\originalTeX has to be expandable, i. e. you shouldn’t let it to \relax.

84

sequence, the restore commands are appended to \originalTeX and the counter is

incremented.

1194 \def\babel@save#1{%

1195 \expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax

1196 \toks@\expandafter{\originalTeX\let#1=}%

1197 \bbl@exp{%

1198 \def\\\originalTeX{\the\toks@\<babel@\number\babel@savecnt>\relax}}%

1199 \advance\babel@savecnt\@ne}

\babel@savevariable The macro \babel@savevariable〈variable〉 saves the value of the variable. 〈variable〉 can
be anything allowed after the \the primitive.

1200 \def\babel@savevariable#1{%

1201 \toks@\expandafter{\originalTeX #1=}%

1202 \bbl@exp{\def\\\originalTeX{\the\toks@\the#1\relax}}}

\bbl@frenchspacing

\bbl@nonfrenchspacing

Some languages need to have \frenchspacing in effect. Others don’t want that. The

command \bbl@frenchspacing switches it on when it isn’t already in effect and

\bbl@nonfrenchspacing switches it off if necessary.

1203 \def\bbl@frenchspacing{%

1204 \ifnum\the\sfcode`\.=\@m

1205 \let\bbl@nonfrenchspacing\relax

1206 \else

1207 \frenchspacing

1208 \let\bbl@nonfrenchspacing\nonfrenchspacing

1209 \fi}

1210 \let\bbl@nonfrenchspacing\nonfrenchspacing

9.7 Short tags

\babeltags This macro is straightforward. After zapping spaces, we loop over the list and define the

macros \text〈tag〉 and \〈tag〉. Definitions are first expanded so that they don’t contain

\csname but the actual macro.

1211 \bbl@trace{Short tags}

1212 \def\babeltags#1{%

1213 \edef\bbl@tempa{\zap@space#1 \@empty}%

1214 \def\bbl@tempb##1=##2\@@{%

1215 \edef\bbl@tempc{%

1216 \noexpand\newcommand

1217 \expandafter\noexpand\csname ##1\endcsname{%

1218 \noexpand\protect

1219 \expandafter\noexpand\csname otherlanguage*\endcsname{##2}}

1220 \noexpand\newcommand

1221 \expandafter\noexpand\csname text##1\endcsname{%

1222 \noexpand\foreignlanguage{##2}}}

1223 \bbl@tempc}%

1224 \bbl@for\bbl@tempa\bbl@tempa{%

1225 \expandafter\bbl@tempb\bbl@tempa\@@}}

9.8 Hyphens

\babelhyphenation This macro saves hyphenation exceptions. Two macros are used to store them:

\bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for language ones.

See \bbl@patterns above for further details. We make sure there is a space between

words when multiple commands are used.

1226 \bbl@trace{Hyphens}

85

1227 \@onlypreamble\babelhyphenation

1228 \AtEndOfPackage{%

1229 \newcommand\babelhyphenation[2][\@empty]{%

1230 \ifx\bbl@hyphenation@\relax

1231 \let\bbl@hyphenation@\@empty

1232 \fi

1233 \ifx\bbl@hyphlist\@empty\else

1234 \bbl@warning{%

1235 You must not intermingle \string\selectlanguage\space and\\%

1236 \string\babelhyphenation\space or some exceptions will not\\%

1237 be taken into account. Reported}%

1238 \fi

1239 \ifx\@empty#1%

1240 \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%

1241 \else

1242 \bbl@vforeach{#1}{%

1243 \def\bbl@tempa{##1}%

1244 \bbl@fixname\bbl@tempa

1245 \bbl@iflanguage\bbl@tempa{%

1246 \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%

1247 \bbl@ifunset{bbl@hyphenation@\bbl@tempa}%

1248 \@empty

1249 {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%

1250 #2}}}%

1251 \fi}}

\bbl@allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more than

\nobreak \hskip 0pt plus 0pt33.

1252 \def\bbl@allowhyphens{\ifvmode\else\nobreak\hskip\z@skip\fi}

1253 \def\bbl@t@one{T1}

1254 \def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\babelhyphen Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead of

protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same

procedure as shorthands, with \active@prefix.

1255 \newcommand\babelnullhyphen{\char\hyphenchar\font}

1256 \def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}

1257 \def\bbl@hyphen{%

1258 \@ifstar{\bbl@hyphen@i @}{\bbl@hyphen@i\@empty}}

1259 \def\bbl@hyphen@i#1#2{%

1260 \bbl@ifunset{bbl@hy@#1#2\@empty}%

1261 {\csname bbl@#1usehyphen\endcsname{\discretionary{#2}{}{#2}}}%

1262 {\csname bbl@hy@#1#2\@empty\endcsname}}

The following two commands are used to wrap the “hyphen” and set the behavior of the

rest of the word – the version with a single @ is used when further hyphenation is allowed,

while that with @@ if no more hyphens are allowed. In both cases, if the hyphen is preceded

by a positive space, breaking after the hyphen is disallowed.

There should not be a discretionary after a hyphen at the beginning of a word, so it is

prevented if preceded by a skip. Unfortunately, this does handle cases like “(-suffix)”.

\nobreak is always preceded by \leavevmode, in case the shorthand starts a paragraph.

1263 \def\bbl@usehyphen#1{%

1264 \leavevmode

1265 \ifdim\lastskip>\z@\mbox{#1}\else\nobreak#1\fi

1266 \nobreak\hskip\z@skip}

1267 \def\bbl@@usehyphen#1{%

1268 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}

33TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at this glue node.

86

The following macro inserts the hyphen char.

1269 \def\bbl@hyphenchar{%

1270 \ifnum\hyphenchar\font=\m@ne

1271 \babelnullhyphen

1272 \else

1273 \char\hyphenchar\font

1274 \fi}

Finally, we define the hyphen “types”. Their names will not change, so you may use them

in ldf’s. After a space, the \mbox in \bbl@hy@nobreak is redundant.

1275 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

1276 \def\bbl@hy@@soft{\bbl@@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

1277 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}

1278 \def\bbl@hy@@hard{\bbl@@usehyphen\bbl@hyphenchar}

1279 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}}}

1280 \def\bbl@hy@@nobreak{\mbox{\bbl@hyphenchar}}

1281 \def\bbl@hy@repeat{%

1282 \bbl@usehyphen{%

1283 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

1284 \def\bbl@hy@@repeat{%

1285 \bbl@@usehyphen{%

1286 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

1287 \def\bbl@hy@empty{\hskip\z@skip}

1288 \def\bbl@hy@@empty{\discretionary{}{}{}}

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of discretionaries

for letters that behave ‘abnormally’ at a breakpoint.

1289 \def\bbl@disc#1#2{\nobreak\discretionary{#2-}{}{#1}\bbl@allowhyphens}

9.9 Multiencoding strings

The aim following commands is to provide a commom interface for strings in several

encodings. They also contains several hooks which can be ued by luatex and xetex. The

code is organized here with pseudo-guards, so we start with the basic commands.

Tools But first, a couple of tools. The first one makes global a local variable. This is not

the best solution, but it works.

1290 \bbl@trace{Multiencoding strings}

1291 \def\bbl@toglobal#1{\global\let#1#1}

1292 \def\bbl@recatcode#1{%

1293 \@tempcnta="7F

1294 \def\bbl@tempa{%

1295 \ifnum\@tempcnta>"FF\else

1296 \catcode\@tempcnta=#1\relax

1297 \advance\@tempcnta\@ne

1298 \expandafter\bbl@tempa

1299 \fi}%

1300 \bbl@tempa}

The second one. We need to patch \@uclclist, but it is done once and only if \SetCase is

used or if strings are encoded. The code is far from satisfactory for several reasons,

including the fact \@uclclist is not a list any more. Therefore a package option is added

to ignore it. Instead of gobbling the macro getting the next two elements (usually

\reserved@a), we pass it as argument to \bbl@uclc. The parser is restarted inside

\〈lang〉@bbl@uclc because we do not know how many expansions are necessary (depends

on whether strings are encoded). The last part is tricky – when uppercasing, we have:

87

\let\bbl@tolower\@empty\bbl@toupper\@empty

and starts over (and similarly when lowercasing).

1301 \@ifpackagewith{babel}{nocase}%

1302 {\let\bbl@patchuclc\relax}%

1303 {\def\bbl@patchuclc{%

1304 \global\let\bbl@patchuclc\relax

1305 \g@addto@macro\@uclclist{\reserved@b{\reserved@b\bbl@uclc}}%

1306 \gdef\bbl@uclc##1{%

1307 \let\bbl@encoded\bbl@encoded@uclc

1308 \bbl@ifunset{\languagename @bbl@uclc}% and resumes it

1309 {##1}%

1310 {\let\bbl@tempa##1\relax % Used by LANG@bbl@uclc

1311 \csname\languagename @bbl@uclc\endcsname}%

1312 {\bbl@tolower\@empty}{\bbl@toupper\@empty}}%

1313 \gdef\bbl@tolower{\csname\languagename @bbl@lc\endcsname}%

1314 \gdef\bbl@toupper{\csname\languagename @bbl@uc\endcsname}}}

1315 〈〈∗More package options〉〉 ≡
1316 \DeclareOption{nocase}{}

1317 〈〈/More package options〉〉

The following package options control the behavior of \SetString.

1318 〈〈∗More package options〉〉 ≡
1319 \let\bbl@opt@strings\@nnil % accept strings=value

1320 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}

1321 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}

1322 \def\BabelStringsDefault{generic}

1323 〈〈/More package options〉〉

Main command This is the main command. With the first use it is redefined to omit the

basic setup in subsequent blocks. We make sure strings contain actual letters in the range

128-255, not active characters.

1324 \@onlypreamble\StartBabelCommands

1325 \def\StartBabelCommands{%

1326 \begingroup

1327 \bbl@recatcode{11}%

1328 〈〈Macros local to BabelCommands〉〉
1329 \def\bbl@provstring##1##2{%

1330 \providecommand##1{##2}%

1331 \bbl@toglobal##1}%

1332 \global\let\bbl@scafter\@empty

1333 \let\StartBabelCommands\bbl@startcmds

1334 \ifx\BabelLanguages\relax

1335 \let\BabelLanguages\CurrentOption

1336 \fi

1337 \begingroup

1338 \let\bbl@screset\@nnil % local flag - disable 1st stopcommands

1339 \StartBabelCommands}

1340 \def\bbl@startcmds{%

1341 \ifx\bbl@screset\@nnil\else

1342 \bbl@usehooks{stopcommands}{}%

1343 \fi

1344 \endgroup

1345 \begingroup

1346 \@ifstar

1347 {\ifx\bbl@opt@strings\@nnil

88

1348 \let\bbl@opt@strings\BabelStringsDefault

1349 \fi

1350 \bbl@startcmds@i}%

1351 \bbl@startcmds@i}

1352 \def\bbl@startcmds@i#1#2{%

1353 \edef\bbl@L{\zap@space#1 \@empty}%

1354 \edef\bbl@G{\zap@space#2 \@empty}%

1355 \bbl@startcmds@ii}

Parse the encoding info to get the label, input, and font parts.

Select the behavior of \SetString. Thre are two main cases, depending of if there is an

optional argument: without it and strings=encoded, strings are defined always;

otherwise, they are set only if they are still undefined (ie, fallback values). With labelled

blocks and strings=encoded, define the strings, but with another value, define strings

only if the current label or font encoding is the value of strings; otherwise (ie, no strings

or a block whose label is not in strings=) do nothing.

We presume the current block is not loaded, and therefore set (above) a couple of default

values to gobble the arguments. Then, these macros are redefined if necessary according

to several parameters.

1356 \newcommand\bbl@startcmds@ii[1][\@empty]{%

1357 \let\SetString\@gobbletwo

1358 \let\bbl@stringdef\@gobbletwo

1359 \let\AfterBabelCommands\@gobble

1360 \ifx\@empty#1%

1361 \def\bbl@sc@label{generic}%

1362 \def\bbl@encstring##1##2{%

1363 \ProvideTextCommandDefault##1{##2}%

1364 \bbl@toglobal##1%

1365 \expandafter\bbl@toglobal\csname\string?\string##1\endcsname}%

1366 \let\bbl@sctest\in@true

1367 \else

1368 \let\bbl@sc@charset\space % <- zapped below

1369 \let\bbl@sc@fontenc\space % <- " "

1370 \def\bbl@tempa##1=##2\@nil{%

1371 \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%

1372 \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}%

1373 \def\bbl@tempa##1 ##2{% space -> comma

1374 ##1%

1375 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%

1376 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%

1377 \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%

1378 \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%

1379 \def\bbl@encstring##1##2{%

1380 \bbl@foreach\bbl@sc@fontenc{%

1381 \bbl@ifunset{T@####1}%

1382 {}%

1383 {\ProvideTextCommand##1{####1}{##2}%

1384 \bbl@toglobal##1%

1385 \expandafter

1386 \bbl@toglobal\csname####1\string##1\endcsname}}}%

1387 \def\bbl@sctest{%

1388 \bbl@xin@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}}%

1389 \fi

1390 \ifx\bbl@opt@strings\@nnil % ie, no strings key -> defaults

1391 \else\ifx\bbl@opt@strings\relax % ie, strings=encoded

1392 \let\AfterBabelCommands\bbl@aftercmds

1393 \let\SetString\bbl@setstring

1394 \let\bbl@stringdef\bbl@encstring

89

1395 \else % ie, strings=value

1396 \bbl@sctest

1397 \ifin@

1398 \let\AfterBabelCommands\bbl@aftercmds

1399 \let\SetString\bbl@setstring

1400 \let\bbl@stringdef\bbl@provstring

1401 \fi\fi\fi

1402 \bbl@scswitch

1403 \ifx\bbl@G\@empty

1404 \def\SetString##1##2{%

1405 \bbl@error{Missing group for string \string##1}%

1406 {You must assign strings to some category, typically\\%

1407 captions or extras, but you set none}}%

1408 \fi

1409 \ifx\@empty#1%

1410 \bbl@usehooks{defaultcommands}{}%

1411 \else

1412 \@expandtwoargs

1413 \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%

1414 \fi}

There are two versions of \bbl@scswitch. The first version is used when ldfs are read,

and it makes sure \〈group〉〈language〉 is reset, but only once (\bbl@screset is used to keep

track of this). The second version is used in the preamble and packages loaded after babel

and does nothing. The macro \bbl@forlang loops \bbl@L but its body is executed only if

the value is in \BabelLanguages (inside babel) or \date〈language〉 is defined (after babel

has been loaded). There are also two version of \bbl@forlang. The first one skips the

current iteration if the language is not in \BabelLanguages (used in ldfs), and the second

one skips undefined languages (after babel has been loaded) .

1415 \def\bbl@forlang#1#2{%

1416 \bbl@for#1\bbl@L{%

1417 \bbl@xin@{,#1,}{,\BabelLanguages,}%

1418 \ifin@#2\relax\fi}}

1419 \def\bbl@scswitch{%

1420 \bbl@forlang\bbl@tempa{%

1421 \ifx\bbl@G\@empty\else

1422 \ifx\SetString\@gobbletwo\else

1423 \edef\bbl@GL{\bbl@G\bbl@tempa}%

1424 \bbl@xin@{,\bbl@GL,}{,\bbl@screset,}%

1425 \ifin@\else

1426 \global\expandafter\let\csname\bbl@GL\endcsname\@undefined

1427 \xdef\bbl@screset{\bbl@screset,\bbl@GL}%

1428 \fi

1429 \fi

1430 \fi}}

1431 \AtEndOfPackage{%

1432 \def\bbl@forlang#1#2{\bbl@for#1\bbl@L{\bbl@ifunset{date#1}{}{#2}}}%

1433 \let\bbl@scswitch\relax}

1434 \@onlypreamble\EndBabelCommands

1435 \def\EndBabelCommands{%

1436 \bbl@usehooks{stopcommands}{}%

1437 \endgroup

1438 \endgroup

1439 \bbl@scafter}

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is “active”

90

First save the “switcher”. Create it if undefined. Strings are defined only if undefined (ie,

like \providescommmand). With the event stringprocess you can preprocess the string by

manipulating the value of \BabelString. If there are several hooks assigned to this event,

preprocessing is done in the same order as defined. Finally, the string is set.

1440 \def\bbl@setstring#1#2{%

1441 \bbl@forlang\bbl@tempa{%

1442 \edef\bbl@LC{\bbl@tempa\bbl@stripslash#1}%

1443 \bbl@ifunset{\bbl@LC}% eg, \germanchaptername

1444 {\global\expandafter % TODO - con \bbl@exp ?

1445 \bbl@add\csname\bbl@G\bbl@tempa\expandafter\endcsname\expandafter

1446 {\expandafter\bbl@scset\expandafter#1\csname\bbl@LC\endcsname}}%

1447 {}%

1448 \def\BabelString{#2}%

1449 \bbl@usehooks{stringprocess}{}%

1450 \expandafter\bbl@stringdef

1451 \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}

Now, some addtional stuff to be used when encoded strings are used. Captions then

include \bbl@encoded for string to be expanded in case transformations. It is \relax by

default, but in \MakeUppercase and \MakeLowercase its value is a modified expandable

\@changed@cmd.

1452 \ifx\bbl@opt@strings\relax

1453 \def\bbl@scset#1#2{\def#1{\bbl@encoded#2}}

1454 \bbl@patchuclc

1455 \let\bbl@encoded\relax

1456 \def\bbl@encoded@uclc#1{%

1457 \@inmathwarn#1%

1458 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax

1459 \expandafter\ifx\csname ?\string#1\endcsname\relax

1460 \TextSymbolUnavailable#1%

1461 \else

1462 \csname ?\string#1\endcsname

1463 \fi

1464 \else

1465 \csname\cf@encoding\string#1\endcsname

1466 \fi}

1467 \else

1468 \def\bbl@scset#1#2{\def#1{#2}}

1469 \fi

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current

definition is somewhat complicated because we need a count, but \count@ is not under

our control (remember \SetString may call hooks). Instead of defining a dedicated count,

we just “pre-expand” its value.

1470 〈〈∗Macros local to BabelCommands〉〉 ≡
1471 \def\SetStringLoop##1##2{%

1472 \def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}%

1473 \count@\z@

1474 \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok

1475 \advance\count@\@ne

1476 \toks@\expandafter{\bbl@tempa}%

1477 \bbl@exp{%

1478 \\\SetString\bbl@templ{\romannumeral\count@}{\the\toks@}%

1479 \count@=\the\count@\relax}}}%

1480 〈〈/Macros local to BabelCommands〉〉

Delaying code Now the definition of \AfterBabelCommands when it is activated.

91

1481 \def\bbl@aftercmds#1{%

1482 \toks@\expandafter{\bbl@scafter#1}%

1483 \xdef\bbl@scafter{\the\toks@}}

Case mapping The command \SetCase provides a way to change the behavior of

\MakeUppercase and \MakeLowercase. \bbl@tempa is set by the patched \@uclclist to

the parsing command.

1484 〈〈∗Macros local to BabelCommands〉〉 ≡
1485 \newcommand\SetCase[3][]{%

1486 \bbl@patchuclc

1487 \bbl@forlang\bbl@tempa{%

1488 \expandafter\bbl@encstring

1489 \csname\bbl@tempa @bbl@uclc\endcsname{\bbl@tempa##1}%

1490 \expandafter\bbl@encstring

1491 \csname\bbl@tempa @bbl@uc\endcsname{##2}%

1492 \expandafter\bbl@encstring

1493 \csname\bbl@tempa @bbl@lc\endcsname{##3}}}%

1494 〈〈/Macros local to BabelCommands〉〉

Macros to deal with case mapping for hyphenation. To decide if the document is

monolingual or multilingual, we make a rough guess – just see if there is a comma in the

languages list, built in the first pass of the package options.

1495 〈〈∗Macros local to BabelCommands〉〉 ≡
1496 \newcommand\SetHyphenMap[1]{%

1497 \bbl@forlang\bbl@tempa{%

1498 \expandafter\bbl@stringdef

1499 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}

1500 〈〈/Macros local to BabelCommands〉〉

There are 3 helper macros which do most of the work for you.

1501 \newcommand\BabelLower[2]{% one to one.

1502 \ifnum\lccode#1=#2\else

1503 \babel@savevariable{\lccode#1}%

1504 \lccode#1=#2\relax

1505 \fi}

1506 \newcommand\BabelLowerMM[4]{% many-to-many

1507 \@tempcnta=#1\relax

1508 \@tempcntb=#4\relax

1509 \def\bbl@tempa{%

1510 \ifnum\@tempcnta>#2\else

1511 \@expandtwoargs\BabelLower{\the\@tempcnta}{\the\@tempcntb}%

1512 \advance\@tempcnta#3\relax

1513 \advance\@tempcntb#3\relax

1514 \expandafter\bbl@tempa

1515 \fi}%

1516 \bbl@tempa}

1517 \newcommand\BabelLowerMO[4]{% many-to-one

1518 \@tempcnta=#1\relax

1519 \def\bbl@tempa{%

1520 \ifnum\@tempcnta>#2\else

1521 \@expandtwoargs\BabelLower{\the\@tempcnta}{#4}%

1522 \advance\@tempcnta#3

1523 \expandafter\bbl@tempa

1524 \fi}%

1525 \bbl@tempa}

The following package options control the behavior of hyphenation mapping.

1526 〈〈∗More package options〉〉 ≡

92

1527 \DeclareOption{hyphenmap=off}{\chardef\bbl@opt@hyphenmap\z@}

1528 \DeclareOption{hyphenmap=first}{\chardef\bbl@opt@hyphenmap\@ne}

1529 \DeclareOption{hyphenmap=select}{\chardef\bbl@opt@hyphenmap\tw@}

1530 \DeclareOption{hyphenmap=other}{\chardef\bbl@opt@hyphenmap\thr@@}

1531 \DeclareOption{hyphenmap=other*}{\chardef\bbl@opt@hyphenmap4\relax}

1532 〈〈/More package options〉〉

Initial setup to provide a default behavior if hypenmap is not set.

1533 \AtEndOfPackage{%

1534 \ifx\bbl@opt@hyphenmap\@undefined

1535 \bbl@xin@{,}{\bbl@language@opts}%

1536 \chardef\bbl@opt@hyphenmap\ifin@4\else\@ne\fi

1537 \fi}

9.10 Macros common to a number of languages

\set@low@box The following macro is used to lower quotes to the same level as the comma. It prepares its

argument in box register 0.

1538 \bbl@trace{Macros related to glyphs}

1539 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%

1540 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%

1541 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

1542 \def\save@sf@q#1{\leavevmode

1543 \begingroup

1544 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF

1545 \endgroup}

9.11 Making glyphs available

This section makes a number of glyphs available that either do not exist in the OT1

encoding and have to be ‘faked’, or that are not accessible through T1enc.def.

9.11.1 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a separate

character, accessible via \quotedblbase. In the OT1 encoding it is not available, therefore

we make it available by lowering the normal open quote character to the baseline.

1546 \ProvideTextCommand{\quotedblbase}{OT1}{%

1547 \save@sf@q{\set@low@box{\textquotedblright\/}%

1548 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be

typeset.

1549 \ProvideTextCommandDefault{\quotedblbase}{%

1550 \UseTextSymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

1551 \ProvideTextCommand{\quotesinglbase}{OT1}{%

1552 \save@sf@q{\set@low@box{\textquoteright\/}%

1553 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be

typeset.

1554 \ProvideTextCommandDefault{\quotesinglbase}{%

1555 \UseTextSymbol{OT1}{\quotesinglbase}}

93

\guillemotleft

\guillemotright

The guillemet characters are not available in OT1 encoding. They are faked.

1556 \ProvideTextCommand{\guillemotleft}{OT1}{%

1557 \ifmmode

1558 \ll

1559 \else

1560 \save@sf@q{\nobreak

1561 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%

1562 \fi}

1563 \ProvideTextCommand{\guillemotright}{OT1}{%

1564 \ifmmode

1565 \gg

1566 \else

1567 \save@sf@q{\nobreak

1568 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%

1569 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be

typeset.

1570 \ProvideTextCommandDefault{\guillemotleft}{%

1571 \UseTextSymbol{OT1}{\guillemotleft}}

1572 \ProvideTextCommandDefault{\guillemotright}{%

1573 \UseTextSymbol{OT1}{\guillemotright}}

\guilsinglleft

\guilsinglright

The single guillemets are not available in OT1 encoding. They are faked.

1574 \ProvideTextCommand{\guilsinglleft}{OT1}{%

1575 \ifmmode

1576 <%

1577 \else

1578 \save@sf@q{\nobreak

1579 \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%

1580 \fi}

1581 \ProvideTextCommand{\guilsinglright}{OT1}{%

1582 \ifmmode

1583 >%

1584 \else

1585 \save@sf@q{\nobreak

1586 \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%

1587 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be

typeset.

1588 \ProvideTextCommandDefault{\guilsinglleft}{%

1589 \UseTextSymbol{OT1}{\guilsinglleft}}

1590 \ProvideTextCommandDefault{\guilsinglright}{%

1591 \UseTextSymbol{OT1}{\guilsinglright}}

9.11.2 Letters

\ij

\IJ

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in the OT1

encoded fonts. Therefore we fake it for the OT1 encoding.

1592 \DeclareTextCommand{\ij}{OT1}{%

1593 i\kern-0.02em\bbl@allowhyphens j}

1594 \DeclareTextCommand{\IJ}{OT1}{%

1595 I\kern-0.02em\bbl@allowhyphens J}

1596 \DeclareTextCommand{\ij}{T1}{\char188}

1597 \DeclareTextCommand{\IJ}{T1}{\char156}

94

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be

typeset.

1598 \ProvideTextCommandDefault{\ij}{%

1599 \UseTextSymbol{OT1}{\ij}}

1600 \ProvideTextCommandDefault{\IJ}{%

1601 \UseTextSymbol{OT1}{\IJ}}

\dj

\DJ

The croatian language needs the letters \dj and \DJ; they are available in the T1 encoding,

but not in the OT1 encoding by default.

Some code to construct these glyphs for the OT1 encoding was made available to me by

Stipčević Mario, (stipcevic@olimp.irb.hr).

1602 \def\crrtic@{\hrule height0.1ex width0.3em}

1603 \def\crttic@{\hrule height0.1ex width0.33em}

1604 \def\ddj@{%

1605 \setbox0\hbox{d}\dimen@=\ht0

1606 \advance\dimen@1ex

1607 \dimen@.45\dimen@

1608 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

1609 \advance\dimen@ii.5ex

1610 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}

1611 \def\DDJ@{%

1612 \setbox0\hbox{D}\dimen@=.55\ht0

1613 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

1614 \advance\dimen@ii.15ex % correction for the dash position

1615 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font

1616 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@

1617 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}

1618 %

1619 \DeclareTextCommand{\dj}{OT1}{\ddj@ d}

1620 \DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be

typeset.

1621 \ProvideTextCommandDefault{\dj}{%

1622 \UseTextSymbol{OT1}{\dj}}

1623 \ProvideTextCommandDefault{\DJ}{%

1624 \UseTextSymbol{OT1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other

encodings it is not available. Therefore we make it available here.

1625 \DeclareTextCommand{\SS}{OT1}{SS}

1626 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

9.11.3 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them

usable both outside and inside mathmode. They are defined with

\ProvideTextCommandDefault, but this is very likely not required because their

definitions are based on encoding-dependent macros.

\glq

\grq

The ‘german’ single quotes.

1627 \ProvideTextCommandDefault{\glq}{%

1628 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}

The definition of \grq depends on the fontencoding. With T1 encoding no extra kerning is

needed.

95

1629 \ProvideTextCommand{\grq}{T1}{%

1630 \textormath{\kern\z@\textquoteleft}{\mbox{\textquoteleft}}}

1631 \ProvideTextCommand{\grq}{TU}{%

1632 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}

1633 \ProvideTextCommand{\grq}{OT1}{%

1634 \save@sf@q{\kern-.0125em

1635 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%

1636 \kern.07em\relax}}

1637 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

\glqq

\grqq

The ‘german’ double quotes.

1638 \ProvideTextCommandDefault{\glqq}{%

1639 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra kerning is

needed.

1640 \ProvideTextCommand{\grqq}{T1}{%

1641 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

1642 \ProvideTextCommand{\grqq}{TU}{%

1643 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

1644 \ProvideTextCommand{\grqq}{OT1}{%

1645 \save@sf@q{\kern-.07em

1646 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%

1647 \kern.07em\relax}}

1648 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq

\frq

The ‘french’ single guillemets.

1649 \ProvideTextCommandDefault{\flq}{%

1650 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}

1651 \ProvideTextCommandDefault{\frq}{%

1652 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

\flqq

\frqq

The ‘french’ double guillemets.

1653 \ProvideTextCommandDefault{\flqq}{%

1654 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

1655 \ProvideTextCommandDefault{\frqq}{%

1656 \textormath{\guillemotright}{\mbox{\guillemotright}}}

9.11.4 Umlauts and tremas

The command \" needs to have a different effect for different languages. For German for

instance, the ‘umlaut’ should be positioned lower than the default position for placing it

over the letters a, o, u, A, O and U. When placed over an e, i, E or I it can retain its normal

position. For Dutch the same glyph is always placed in the lower position.

\umlauthigh

\umlautlow

To be able to provide both positions of \" we provide two commands to switch the

positioning, the default will be \umlauthigh (the normal positioning).

1657 \def\umlauthigh{%

1658 \def\bbl@umlauta##1{\leavevmode\bgroup%

1659 \expandafter\accent\csname\f@encoding dqpos\endcsname

1660 ##1\bbl@allowhyphens\egroup}%

1661 \let\bbl@umlaute\bbl@umlauta}

1662 \def\umlautlow{%

1663 \def\bbl@umlauta{\protect\lower@umlaut}}

1664 \def\umlautelow{%

1665 \def\bbl@umlaute{\protect\lower@umlaut}}

1666 \umlauthigh

96

\lower@umlaut The command \lower@umlaut is used to position the \" closer to the letter.

We want the umlaut character lowered, nearer to the letter. To do this we need an extra

〈dimen〉 register.
1667 \expandafter\ifx\csname U@D\endcsname\relax

1668 \csname newdimen\endcsname\U@D

1669 \fi

The following code fools TEX’s make_accent procedure about the current x-height of the

font to force another placement of the umlaut character. First we have to save the current

x-height of the font, because we’ll change this font dimension and this is always done

globally.

Then we compute the new x-height in such a way that the umlaut character is lowered to

the base character. The value of .45ex depends on the METAFONT parameters with which

the fonts were built. (Just try out, which value will look best.) If the new x-height is too low,

it is not changed. Finally we call the \accent primitive, reset the old x-height and insert

the base character in the argument.

1670 \def\lower@umlaut#1{%

1671 \leavevmode\bgroup

1672 \U@D 1ex%

1673 {\setbox\z@\hbox{%

1674 \expandafter\char\csname\f@encoding dqpos\endcsname}%

1675 \dimen@ -.45ex\advance\dimen@\ht\z@

1676 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%

1677 \expandafter\accent\csname\f@encoding dqpos\endcsname

1678 \fontdimen5\font\U@D #1%

1679 \egroup}

For all vowels we declare \" to be a composite command which uses \bbl@umlauta or

\bbl@umlaute to position the umlaut character. We need to be sure that these definitions

override the ones that are provided when the package fontenc with option OT1 is used.

Therefore these declarations are postponed until the beginning of the document. Note

these definitions only apply to some languages, but babel sets them for all languages – you

may want to redefine \bbl@umlauta and/or \bbl@umlaute for a language in the

corresponding ldf (using the babel switching mechanism, of course).

1680 \AtBeginDocument{%

1681 \DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%

1682 \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%

1683 \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%

1684 \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%

1685 \DeclareTextCompositeCommand{\"}{OT1}{o}{\bbl@umlauta{o}}%

1686 \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%

1687 \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%

1688 \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%

1689 \DeclareTextCompositeCommand{\"}{OT1}{I}{\bbl@umlaute{I}}%

1690 \DeclareTextCompositeCommand{\"}{OT1}{O}{\bbl@umlauta{O}}%

1691 \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}%

1692 }

Finally, the default is to use English as the main language.

1693 \ifx\l@english\@undefined

1694 \chardef\l@english\z@

1695 \fi

1696 \main@language{english}

9.12 Layout

Work in progress.

97

Layout is mainly intended to set bidi documents, but there is at least a tool useful in

general.

1697 \bbl@trace{Bidi layout}

1698 \providecommand\IfBabelLayout[3]{#3}%

1699 \newcommand\BabelPatchSection[1]{%

1700 \@ifundefined{#1}{}{%

1701 \bbl@exp{\let\<bbl@ss@#1>\<#1>}%

1702 \@namedef{#1}{%

1703 \@ifstar{\bbl@presec@s{#1}}%

1704 {\@dblarg{\bbl@presec@x{#1}}}}}}

1705 \def\bbl@presec@x#1[#2]#3{%

1706 \bbl@exp{%

1707 \\\select@language@x{\bbl@main@language}%

1708 \\\@nameuse{bbl@sspre@#1}%

1709 \\\@nameuse{bbl@ss@#1}%

1710 [\\\foreignlanguage{\languagename}{\unexpanded{#2}}]%

1711 {\\\foreignlanguage{\languagename}{\unexpanded{#3}}}%

1712 \\\select@language@x{\languagename}}}

1713 \def\bbl@presec@s#1#2{%

1714 \bbl@exp{%

1715 \\\select@language@x{\bbl@main@language}%

1716 \\\@nameuse{bbl@sspre@#1}%

1717 \\\@nameuse{bbl@ss@#1}*%

1718 {\\\foreignlanguage{\languagename}{\unexpanded{#2}}}%

1719 \\\select@language@x{\languagename}}}

1720 \IfBabelLayout{sectioning}%

1721 {\BabelPatchSection{part}%

1722 \BabelPatchSection{chapter}%

1723 \BabelPatchSection{section}%

1724 \BabelPatchSection{subsection}%

1725 \BabelPatchSection{subsubsection}%

1726 \BabelPatchSection{paragraph}%

1727 \BabelPatchSection{subparagraph}%

1728 \def\babel@toc#1{%

1729 \select@language@x{\bbl@main@language}}}{}

1730 \IfBabelLayout{captions}%

1731 {\BabelPatchSection{caption}}{}

9.13 Load engine specific macros

1732 \bbl@trace{Input engine specific macros}

1733 \ifcase\bbl@engine

1734 \input txtbabel.def

1735 \or

1736 \input luababel.def

1737 \or

1738 \input xebabel.def

1739 \fi

9.14 Creating languages

\babelprovide is a general purpose tool for creating and modifying languages. It creates

the language infrastructure, and loads, if requested, an ini file. It may be used in

conjunction to previouly loaded ldf files.

1740 \bbl@trace{Creating languages and reading ini files}

1741 \newcommand\babelprovide[2][]{%

1742 \let\bbl@savelangname\languagename

1743 \edef\bbl@savelocaleid{\the\localeid}%

98

1744 % Set name and locale id

1745 \def\languagename{#2}%

1746 \bbl@id@assign

1747 \chardef\localeid\@nameuse{bbl@id@@\languagename}%

1748 \let\bbl@KVP@captions\@nil

1749 \let\bbl@KVP@import\@nil

1750 \let\bbl@KVP@main\@nil

1751 \let\bbl@KVP@script\@nil

1752 \let\bbl@KVP@language\@nil

1753 \let\bbl@KVP@dir\@nil

1754 \let\bbl@KVP@hyphenrules\@nil

1755 \let\bbl@KVP@mapfont\@nil

1756 \let\bbl@KVP@maparabic\@nil

1757 \let\bbl@KVP@mapdigits\@nil

1758 \let\bbl@KVP@intraspace\@nil

1759 \let\bbl@KVP@intrapenalty\@nil

1760 \bbl@forkv{#1}{% TODO - error handling

1761 \in@{/}{##1}%

1762 \ifin@

1763 \bbl@renewinikey##1\@@{##2}%

1764 \else

1765 \bbl@csarg\def{KVP@##1}{##2}%

1766 \fi}%

1767 \ifx\bbl@KVP@import\@nil\else

1768 \bbl@exp{\\\bbl@ifblank{\bbl@KVP@import}}%

1769 {\begingroup

1770 \def\BabelBeforeIni##1##2{\gdef\bbl@KVP@import{##1}\endinput}%

1771 \InputIfFileExists{babel-#2.tex}{}{}%

1772 \endgroup}%

1773 {}%

1774 \fi

1775 \ifx\bbl@KVP@captions\@nil

1776 \let\bbl@KVP@captions\bbl@KVP@import

1777 \fi

1778 % Load ini

1779 \bbl@ifunset{date#2}%

1780 {\bbl@provide@new{#2}}%

1781 {\bbl@ifblank{#1}%

1782 {\bbl@error

1783 {If you want to modify `#2' you must tell how in\\%

1784 the optional argument. See the manual for the\\%

1785 available options.}%

1786 {Use this macro as documented}}%

1787 {\bbl@provide@renew{#2}}}%

1788 % Post tasks

1789 \bbl@exp{\\\babelensure[exclude=\\\today]{#2}}%

1790 \bbl@ifunset{bbl@ensure@\languagename}%

1791 {\bbl@exp{%

1792 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%

1793 \\\foreignlanguage{\languagename}%

1794 {####1}}}}%

1795 {}%

1796 % At this point all parameters are defined if 'import'. Now we

1797 % execute some code depending on them. But what about if nothing was

1798 % imported? We just load the very basic parameters: ids and a few

1799 % more.

1800 \bbl@ifunset{bbl@lname@#2}%

1801 {\def\BabelBeforeIni##1##2{%

1802 \begingroup

99

1803 \catcode`\[=12 \catcode`\]=12 \catcode`\==12 %

1804 \let\bbl@ini@captions@aux\@gobbletwo

1805 \def\bbl@inidate ####1.####2.####3.####4\relax ####5####6{}%

1806 \bbl@read@ini{##1}%

1807 \bbl@exportkey{chrng}{characters.ranges}{}%

1808 \bbl@exportkey{dgnat}{numbers.digits.native}{}%

1809 \endgroup}% boxed, to avoid extra spaces:

1810 {\setbox\z@\hbox{\InputIfFileExists{babel-#2.tex}{}{}}}}%

1811 {}%

1812 % -

1813 % Override script and language names with script= and language=

1814 \ifx\bbl@KVP@script\@nil\else

1815 \bbl@csarg\edef{sname@#2}{\bbl@KVP@script}%

1816 \fi

1817 \ifx\bbl@KVP@language\@nil\else

1818 \bbl@csarg\edef{lname@#2}{\bbl@KVP@language}%

1819 \fi

1820 % For bidi texts, to switch the language based on direction

1821 \ifx\bbl@KVP@mapfont\@nil\else

1822 \bbl@ifsamestring{\bbl@KVP@mapfont}{direction}{}%

1823 {\bbl@error{Option `\bbl@KVP@mapfont' unknown for\\%

1824 mapfont. Use `direction'.%

1825 {See the manual for details.}}}%

1826 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

1827 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

1828 \ifx\bbl@mapselect\@undefined

1829 \AtBeginDocument{%

1830 \expandafter\bbl@add\csname selectfont \endcsname{{\bbl@mapselect}}%

1831 {\selectfont}}%

1832 \def\bbl@mapselect{%

1833 \let\bbl@mapselect\relax

1834 \edef\bbl@prefontid{\fontid\font}}%

1835 \def\bbl@mapdir##1{%

1836 {\def\languagename{##1}%

1837 \let\bbl@ifrestoring\@firstoftwo % avoid font warning

1838 \bbl@switchfont

1839 \directlua{Babel.fontmap

1840 [\the\csname bbl@wdir@##1\endcsname]%

1841 [\bbl@prefontid]=\fontid\font}}}%

1842 \fi

1843 \bbl@exp{\\\bbl@add\\\bbl@mapselect{\\\bbl@mapdir{\languagename}}}%

1844 \fi

1845 % For East Asian, Southeast Asian, if interspace in ini - TODO: as hook?

1846 \ifx\bbl@KVP@intraspace\@nil\else % We may override the ini

1847 \bbl@csarg\edef{intsp@#2}{\bbl@KVP@intraspace}%

1848 \fi

1849 \ifcase\bbl@engine\or

1850 \bbl@ifunset{bbl@intsp@\languagename}{}%

1851 {\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else

1852 \bbl@xin@{\bbl@cs{sbcp@\languagename}}{Hant,Hans,Jpan,Kore,Kana}%

1853 \ifin@

1854 \bbl@cjkintraspace

1855 \directlua{

1856 Babel = Babel or {}

1857 Babel.locale_props = Babel.locale_props or {}

1858 Babel.locale_props[\the\localeid].linebreak = 'c'

1859 }%

1860 \bbl@exp{\\\bbl@intraspace\bbl@cs{intsp@\languagename}\\\@@}%

1861 \ifx\bbl@KVP@intrapenalty\@nil

100

1862 \bbl@intrapenalty0\@@

1863 \fi

1864 \else

1865 \bbl@seaintraspace

1866 \bbl@exp{\\\bbl@intraspace\bbl@cs{intsp@\languagename}\\\@@}%

1867 \directlua{

1868 Babel = Babel or {}

1869 Babel.sea_ranges = Babel.sea_ranges or {}

1870 Babel.set_chranges('\bbl@cs{sbcp@\languagename}',

1871 '\bbl@cs{chrng@\languagename}')

1872 }%

1873 \ifx\bbl@KVP@intrapenalty\@nil

1874 \bbl@intrapenalty0\@@

1875 \fi

1876 \fi

1877 \fi

1878 \ifx\bbl@KVP@intrapenalty\@nil\else

1879 \expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@

1880 \fi}%

1881 \or

1882 \bbl@xin@{\bbl@cs{sbcp@\languagename}}{Thai,Laoo,Khmr}%

1883 \ifin@

1884 \bbl@ifunset{bbl@intsp@\languagename}{}%

1885 {\expandafter\ifx\csname bbl@intsp@\languagename\endcsname\@empty\else

1886 \ifx\bbl@KVP@intraspace\@nil

1887 \bbl@exp{%

1888 \\\bbl@intraspace\bbl@cs{intsp@\languagename}\\\@@}%

1889 \fi

1890 \ifx\bbl@KVP@intrapenalty\@nil

1891 \bbl@intrapenalty0\@@

1892 \fi

1893 \fi

1894 \ifx\bbl@KVP@intraspace\@nil\else % We may override the ini

1895 \expandafter\bbl@intraspace\bbl@KVP@intraspace\@@

1896 \fi

1897 \ifx\bbl@KVP@intrapenalty\@nil\else

1898 \expandafter\bbl@intrapenalty\bbl@KVP@intrapenalty\@@

1899 \fi

1900 \ifx\bbl@ispacesize\@undefined

1901 \AtBeginDocument{%

1902 \expandafter\bbl@add

1903 \csname selectfont \endcsname{\bbl@ispacesize}}%

1904 \def\bbl@ispacesize{\bbl@cs{xeisp@\bbl@cs{sbcp@\languagename}}}%

1905 \fi}%

1906 \fi

1907 \fi

1908 % Native digits, if provided in ini (TeX level, xe and lua)

1909 \ifcase\bbl@engine\else

1910 \bbl@ifunset{bbl@dgnat@\languagename}{}%

1911 {\expandafter\ifx\csname bbl@dgnat@\languagename\endcsname\@empty\else

1912 \expandafter\expandafter\expandafter

1913 \bbl@setdigits\csname bbl@dgnat@\languagename\endcsname

1914 \ifx\bbl@KVP@maparabic\@nil\else

1915 \ifx\bbl@latinarabic\@undefined

1916 \expandafter\let\expandafter\@arabic

1917 \csname bbl@counter@\languagename\endcsname

1918 \else % ie, if layout=counters, which redefines \@arabic

1919 \expandafter\let\expandafter\bbl@latinarabic

1920 \csname bbl@counter@\languagename\endcsname

101

1921 \fi

1922 \fi

1923 \fi}%

1924 \fi

1925 % Native digits (lua level).

1926 \ifodd\bbl@engine

1927 \ifx\bbl@KVP@mapdigits\@nil\else

1928 \bbl@ifunset{bbl@dgnat@\languagename}{}%

1929 {\RequirePackage{luatexbase}%

1930 \bbl@activate@preotf

1931 \directlua{

1932 Babel = Babel or {} %%% -> presets in luababel

1933 Babel.digits_mapped = true

1934 Babel.digits = Babel.digits or {}

1935 Babel.digits[\the\localeid] =

1936 table.pack(string.utfvalue('\bbl@cs{dgnat@\languagename}'))

1937 if not Babel.numbers then

1938 function Babel.numbers(head)

1939 local LOCALE = luatexbase.registernumber'bbl@attr@locale'

1940 local GLYPH = node.id'glyph'

1941 local inmath = false

1942 for item in node.traverse(head) do

1943 if not inmath and item.id == GLYPH then

1944 local temp = node.get_attribute(item, LOCALE)

1945 if Babel.digits[temp] then

1946 local chr = item.char

1947 if chr > 47 and chr < 58 then

1948 item.char = Babel.digits[temp][chr-47]

1949 end

1950 end

1951 elseif item.id == node.id'math' then

1952 inmath = (item.subtype == 0)

1953 end

1954 end

1955 return head

1956 end

1957 end

1958 }}

1959 \fi

1960 \fi

1961 % To load or reaload the babel-*.tex, if require.babel in ini

1962 \bbl@ifunset{bbl@rqtex@\languagename}{}%

1963 {\expandafter\ifx\csname bbl@rqtex@\languagename\endcsname\@empty\else

1964 \let\BabelBeforeIni\@gobbletwo

1965 \chardef\atcatcode=\catcode`\@

1966 \catcode`\@=11\relax

1967 \InputIfFileExists{babel-\bbl@cs{rqtex@\languagename}.tex}{}{}%

1968 \catcode`\@=\atcatcode

1969 \let\atcatcode\relax

1970 \fi}%

1971 \ifx\bbl@KVP@main\@nil % Restore only if not 'main'

1972 \let\languagename\bbl@savelangname

1973 \chardef\localeid\bbl@savelocaleid\relax

1974 \fi}

A tool to define the macros for native digits from the list provided in the ini file.

Somewhat convoluted because there are 10 digits, but only 9 arguments in TEX.

1975 \def\bbl@setdigits#1#2#3#4#5{%

1976 \bbl@exp{%

102

1977 \def\<\languagename digits>####1{% ie, \langdigits

1978 \<bbl@digits@\languagename>####1\\\@nil}%

1979 \def\<\languagename counter>####1{% ie, \langcounter

1980 \\\expandafter\<bbl@counter@\languagename>%

1981 \\\csname c@####1\endcsname}%

1982 \def\<bbl@counter@\languagename>####1{% ie, \bbl@counter@lang

1983 \\\expandafter\<bbl@digits@\languagename>%

1984 \\\number####1\\\@nil}}%

1985 \def\bbl@tempa##1##2##3##4##5{%

1986 \bbl@exp{% Wow, quite a lot of hashes! :-(

1987 \def\<bbl@digits@\languagename>########1{%

1988 \\\ifx########1\\\@nil % ie, \bbl@digits@lang

1989 \\\else

1990 \\\ifx0########1#1%

1991 \\\else\\\ifx1########1#2%

1992 \\\else\\\ifx2########1#3%

1993 \\\else\\\ifx3########1#4%

1994 \\\else\\\ifx4########1#5%

1995 \\\else\\\ifx5########1##1%

1996 \\\else\\\ifx6########1##2%

1997 \\\else\\\ifx7########1##3%

1998 \\\else\\\ifx8########1##4%

1999 \\\else\\\ifx9########1##5%

2000 \\\else########1%

2001 \\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi

2002 \\\expandafter\<bbl@digits@\languagename>%

2003 \\\fi}}}%

2004 \bbl@tempa}

Depending on whether or not the language exists, we define two macros.

-

2005 \def\bbl@provide@new#1{%

2006 \@namedef{date#1}{}% marks lang exists - required by \StartBabelCommands

2007 \@namedef{extras#1}{}%

2008 \@namedef{noextras#1}{}%

2009 \StartBabelCommands*{#1}{captions}%

2010 \ifx\bbl@KVP@captions\@nil % and also if import, implicit

2011 \def\bbl@tempb##1{% elt for \bbl@captionslist

2012 \ifx##1\@empty\else

2013 \bbl@exp{%

2014 \\\SetString\\##1{%

2015 \\\bbl@nocaption{\bbl@stripslash##1}{#1\bbl@stripslash##1}}}%

2016 \expandafter\bbl@tempb

2017 \fi}%

2018 \expandafter\bbl@tempb\bbl@captionslist\@empty

2019 \else

2020 \bbl@read@ini{\bbl@KVP@captions}% Here all letters cat = 11

2021 \bbl@after@ini

2022 \bbl@savestrings

2023 \fi

2024 \StartBabelCommands*{#1}{date}%

2025 \ifx\bbl@KVP@import\@nil

2026 \bbl@exp{%

2027 \\\SetString\\\today{\\\bbl@nocaption{today}{#1today}}}%

2028 \else

2029 \bbl@savetoday

2030 \bbl@savedate

2031 \fi

2032 \EndBabelCommands

103

2033 \bbl@exp{%

2034 \def\<#1hyphenmins>{%

2035 {\bbl@ifunset{bbl@lfthm@#1}{2}{\@nameuse{bbl@lfthm@#1}}}%

2036 {\bbl@ifunset{bbl@rgthm@#1}{3}{\@nameuse{bbl@rgthm@#1}}}}}%

2037 \bbl@provide@hyphens{#1}%

2038 \ifx\bbl@KVP@main\@nil\else

2039 \expandafter\main@language\expandafter{#1}%

2040 \fi}

2041 \def\bbl@provide@renew#1{%

2042 \ifx\bbl@KVP@captions\@nil\else

2043 \StartBabelCommands*{#1}{captions}%

2044 \bbl@read@ini{\bbl@KVP@captions}% Here all letters cat = 11

2045 \bbl@after@ini

2046 \bbl@savestrings

2047 \EndBabelCommands

2048 \fi

2049 \ifx\bbl@KVP@import\@nil\else

2050 \StartBabelCommands*{#1}{date}%

2051 \bbl@savetoday

2052 \bbl@savedate

2053 \EndBabelCommands

2054 \fi

2055 \bbl@provide@hyphens{#1}}

The hyphenrules option is handled with an auxiliary macro.

2056 \def\bbl@provide@hyphens#1{%

2057 \let\bbl@tempa\relax

2058 \ifx\bbl@KVP@hyphenrules\@nil\else

2059 \bbl@replace\bbl@KVP@hyphenrules{ }{,}%

2060 \bbl@foreach\bbl@KVP@hyphenrules{%

2061 \ifx\bbl@tempa\relax % if not yet found

2062 \bbl@ifsamestring{##1}{+}%

2063 {{\bbl@exp{\\\addlanguage\<l@##1>}}}%

2064 {}%

2065 \bbl@ifunset{l@##1}%

2066 {}%

2067 {\bbl@exp{\let\bbl@tempa\<l@##1>}}%

2068 \fi}%

2069 \fi

2070 \ifx\bbl@tempa\relax % if no opt or no language in opt found

2071 \ifx\bbl@KVP@import\@nil\else % if importing

2072 \bbl@exp{% and hyphenrules is not empty

2073 \\\bbl@ifblank{\@nameuse{bbl@hyphr@#1}}%

2074 {}%

2075 {\let\\\bbl@tempa\<l@\@nameuse{bbl@hyphr@\languagename}>}}%

2076 \fi

2077 \fi

2078 \bbl@ifunset{bbl@tempa}% ie, relax or undefined

2079 {\bbl@ifunset{l@#1}% no hyphenrules found - fallback

2080 {\bbl@exp{\\\adddialect\<l@#1>\language}}%

2081 {}}% so, l@<lang> is ok - nothing to do

2082 {\bbl@exp{\\\adddialect\<l@#1>\bbl@tempa}}% found in opt list or ini

2083 \bbl@ifunset{bbl@prehc@\languagename}%

2084 {}% TODO - XeTeX, based on \babelfont and HyphenChar?

2085 {\ifodd\bbl@engine\bbl@exp{%

2086 \\\bbl@ifblank{\@nameuse{bbl@prehc@#1}}%

2087 {}%

2088 {\\\AddBabelHook[\languagename]{babel-prehc-\languagename}{patterns}%

2089 {\prehyphenchar=\@nameuse{bbl@prehc@\languagename}\relax}}}%

104

2090 \fi}}

The reader of ini files. There are 3 possible cases: a section name (in the form [...]), a

comment (starting with ;) and a key/value pair. TODO - Work in progress.

2091 \def\bbl@read@ini#1{%

2092 \openin1=babel-#1.ini % FIXME - number must not be hardcoded

2093 \ifeof1

2094 \bbl@error

2095 {There is no ini file for the requested language\\%

2096 (#1). Perhaps you misspelled it or your installation\\%

2097 is not complete.}%

2098 {Fix the name or reinstall babel.}%

2099 \else

2100 \let\bbl@section\@empty

2101 \let\bbl@savestrings\@empty

2102 \let\bbl@savetoday\@empty

2103 \let\bbl@savedate\@empty

2104 \def\bbl@inipreread##1=##2\@@{%

2105 \bbl@trim@def\bbl@tempa{##1}% Redundant below !!

2106 % Move trims here ??

2107 \bbl@ifunset{bbl@KVP@\bbl@section/\bbl@tempa}%

2108 {\expandafter\bbl@inireader\bbl@tempa=##2\@@}%

2109 {}}%

2110 \let\bbl@inireader\bbl@iniskip

2111 \bbl@info{Importing data from babel-#1.ini for \languagename}%

2112 \loop

2113 \if T\ifeof1F\fi T\relax % Trick, because inside \loop

2114 \endlinechar\m@ne

2115 \read1 to \bbl@line

2116 \endlinechar`\^^M

2117 \ifx\bbl@line\@empty\else

2118 \expandafter\bbl@iniline\bbl@line\bbl@iniline

2119 \fi

2120 \repeat

2121 \fi}

2122 \def\bbl@iniline#1\bbl@iniline{%

2123 \@ifnextchar[\bbl@inisec{\@ifnextchar;\bbl@iniskip\bbl@inipreread}#1\@@}%]

The special cases for comment lines and sections are handled by the two following

commands. In sections, we provide the posibility to take extra actions at the end or at the

start (TODO - but note the last section is not ended). By default, key=val pairs are ignored.

2124 \def\bbl@iniskip#1\@@{}% if starts with ;

2125 \def\bbl@inisec[#1]#2\@@{% if starts with opening bracket

2126 \def\bbl@elt##1##2{\bbl@inireader##1=##2\@@}%

2127 \@nameuse{bbl@renew@\bbl@section}%

2128 \global\bbl@csarg\let{renew@\bbl@section}\relax

2129 \@nameuse{bbl@secpost@\bbl@section}% ends previous section

2130 \def\bbl@section{#1}%

2131 \def\bbl@elt##1##2{%

2132 \@namedef{bbl@KVP@#1/##1}{}}%

2133 \@nameuse{bbl@renew@#1}%

2134 \@nameuse{bbl@secpre@#1}% starts current section

2135 \bbl@ifunset{bbl@inikv@#1}%

2136 {\let\bbl@inireader\bbl@iniskip}%

2137 {\bbl@exp{\let\\\bbl@inireader\<bbl@inikv@#1>}}}

Reads a key=val line and stores the trimmed val in \bbl@@kv@<section>.<key>.

2138 \def\bbl@inikv#1=#2\@@{% key=value

2139 \bbl@trim@def\bbl@tempa{#1}%

105

2140 \bbl@trim\toks@{#2}%

2141 \bbl@csarg\edef{@kv@\bbl@section.\bbl@tempa}{\the\toks@}}

The previous assignments are local, so we need to export them. If the value is empty, we

can provide a default value.

2142 \def\bbl@exportkey#1#2#3{%

2143 \bbl@ifunset{bbl@@kv@#2}%

2144 {\bbl@csarg\gdef{#1@\languagename}{#3}}%

2145 {\expandafter\ifx\csname bbl@@kv@#2\endcsname\@empty

2146 \bbl@csarg\gdef{#1@\languagename}{#3}%

2147 \else

2148 \bbl@exp{\global\let\<bbl@#1@\languagename>\<bbl@@kv@#2>}%

2149 \fi}}

Key-value pairs are treated differently depending on the section in the ini file. The

following macros are the readers for identification and typography.

2150 \let\bbl@inikv@identification\bbl@inikv

2151 \def\bbl@secpost@identification{%

2152 \bbl@exportkey{lname}{identification.name.english}{}%

2153 \bbl@exportkey{lbcp}{identification.tag.bcp47}{}%

2154 \bbl@exportkey{lotf}{identification.tag.opentype}{dflt}%

2155 \bbl@exportkey{sname}{identification.script.name}{}%

2156 \bbl@exportkey{sbcp}{identification.script.tag.bcp47}{}%

2157 \bbl@exportkey{sotf}{identification.script.tag.opentype}{DFLT}}

2158 \let\bbl@inikv@typography\bbl@inikv

2159 \let\bbl@inikv@characters\bbl@inikv

2160 \let\bbl@inikv@numbers\bbl@inikv

2161 \def\bbl@after@ini{%

2162 \bbl@exportkey{lfthm}{typography.lefthyphenmin}{2}%

2163 \bbl@exportkey{rgthm}{typography.righthyphenmin}{3}%

2164 \bbl@exportkey{prehc}{typography.prehyphenchar}{}%

2165 \bbl@exportkey{hyphr}{typography.hyphenrules}{}%

2166 \bbl@exportkey{intsp}{typography.intraspace}{}%

2167 \bbl@exportkey{jstfy}{typography.justify}{w}%

2168 \bbl@exportkey{chrng}{characters.ranges}{}%

2169 \bbl@exportkey{dgnat}{numbers.digits.native}{}%

2170 \bbl@exportkey{rqtex}{identification.require.babel}{}%

2171 \bbl@xin@{0.5}{\@nameuse{bbl@@kv@identification.version}}%

2172 \ifin@

2173 \bbl@warning{%

2174 There are neither captions nor date in `\languagename'.\\%

2175 It may not be suitable for proper typesetting, and it\\%

2176 could change. Reported}%

2177 \fi

2178 \bbl@xin@{0.9}{\@nameuse{bbl@@kv@identification.version}}%

2179 \ifin@

2180 \bbl@warning{%

2181 The `\languagename' date format may not be suitable\\%

2182 for proper typesetting, and therefore it very likely will\\%

2183 change in a future release. Reported}%

2184 \fi

2185 \bbl@toglobal\bbl@savetoday

2186 \bbl@toglobal\bbl@savedate}

Now captions and captions.licr, depending on the engine. And below also for dates.

They rely on a few auxiliary macros. It is expected the ini file provides the complete set in

Unicode and LICR, in that order.

2187 \ifcase\bbl@engine

2188 \bbl@csarg\def{inikv@captions.licr}#1=#2\@@{%

106

2189 \bbl@ini@captions@aux{#1}{#2}}

2190 \else

2191 \def\bbl@inikv@captions#1=#2\@@{%

2192 \bbl@ini@captions@aux{#1}{#2}}

2193 \fi

The auxiliary macro for captions define \<caption>name.

2194 \def\bbl@ini@captions@aux#1#2{%

2195 \bbl@trim@def\bbl@tempa{#1}%

2196 \bbl@ifblank{#2}%

2197 {\bbl@exp{%

2198 \toks@{\\\bbl@nocaption{\bbl@tempa}{\languagename\bbl@tempa name}}}}%

2199 {\bbl@trim\toks@{#2}}%

2200 \bbl@exp{%

2201 \\\bbl@add\\\bbl@savestrings{%

2202 \\\SetString\<\bbl@tempa name>{\the\toks@}}}}

But dates are more complex. The full date format is stores in date.gregorian, so we must

read it in non-Unicode engines, too (saved months are just discarded when the LICR

section is reached).

TODO. Remove copypaste pattern.

2203 \bbl@csarg\def{inikv@date.gregorian}#1=#2\@@{% for defaults

2204 \bbl@inidate#1...\relax{#2}{}}

2205 \bbl@csarg\def{inikv@date.islamic}#1=#2\@@{%

2206 \bbl@inidate#1...\relax{#2}{islamic}}

2207 \bbl@csarg\def{inikv@date.hebrew}#1=#2\@@{%

2208 \bbl@inidate#1...\relax{#2}{hebrew}}

2209 \bbl@csarg\def{inikv@date.persian}#1=#2\@@{%

2210 \bbl@inidate#1...\relax{#2}{persian}}

2211 \bbl@csarg\def{inikv@date.indian}#1=#2\@@{%

2212 \bbl@inidate#1...\relax{#2}{indian}}

2213 \ifcase\bbl@engine

2214 \bbl@csarg\def{inikv@date.gregorian.licr}#1=#2\@@{% override

2215 \bbl@inidate#1...\relax{#2}{}}

2216 \bbl@csarg\def{secpre@date.gregorian.licr}{% discard uni

2217 \ifcase\bbl@engine\let\bbl@savedate\@empty\fi}

2218 \fi

2219 % eg: 1=months, 2=wide, 3=1, 4=dummy

2220 \def\bbl@inidate#1.#2.#3.#4\relax#5#6{% TODO - ignore with 'captions'

2221 \bbl@trim@def\bbl@tempa{#1.#2}%

2222 \bbl@ifsamestring{\bbl@tempa}{months.wide}% to savedate

2223 {\bbl@trim@def\bbl@tempa{#3}%

2224 \bbl@trim\toks@{#5}%

2225 \bbl@exp{%

2226 \\\bbl@add\\\bbl@savedate{%

2227 \\\SetString\<month\romannumeral\bbl@tempa#6name>{\the\toks@}}}}%

2228 {\bbl@ifsamestring{\bbl@tempa}{date.long}% defined now

2229 {\bbl@trim@def\bbl@toreplace{#5}%

2230 \bbl@TG@@date

2231 \global\bbl@csarg\let{date@\languagename}\bbl@toreplace

2232 \bbl@exp{%

2233 \gdef\<\languagename date>{\\\protect\<\languagename date >}%

2234 \gdef\<\languagename date >####1####2####3{%

2235 \\\bbl@usedategrouptrue

2236 \<bbl@ensure@\languagename>{%

2237 \<bbl@date@\languagename>{####1}{####2}{####3}}}%

2238 \\\bbl@add\\\bbl@savetoday{%

2239 \\\SetString\\\today{%

2240 \<\languagename date>{\\\the\year}{\\\the\month}{\\\the\day}}}}}}%

107

2241 {}}

Dates will require some macros for the basic formatting. They may be redefined by

language, so “semi-public” names (camel case) are used. Oddly enough, the CLDR places

particles like “de” inconsistently in either in the date or in the month name.

2242 \let\bbl@calendar\@empty

2243 \newcommand\BabelDateSpace{\nobreakspace}

2244 \newcommand\BabelDateDot{.\@}

2245 \newcommand\BabelDated[1]{{\number#1}}

2246 \newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}

2247 \newcommand\BabelDateM[1]{{\number#1}}

2248 \newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}

2249 \newcommand\BabelDateMMMM[1]{{%

2250 \csname month\romannumeral#1\bbl@calendar name\endcsname}}%

2251 \newcommand\BabelDatey[1]{{\number#1}}%

2252 \newcommand\BabelDateyy[1]{{%

2253 \ifnum#1<10 0\number#1 %

2254 \else\ifnum#1<100 \number#1 %

2255 \else\ifnum#1<1000 \expandafter\@gobble\number#1 %

2256 \else\ifnum#1<10000 \expandafter\@gobbletwo\number#1 %

2257 \else

2258 \bbl@error

2259 {Currently two-digit years are restricted to the\\

2260 range 0-9999.}%

2261 {There is little you can do. Sorry.}%

2262 \fi\fi\fi\fi}}

2263 \newcommand\BabelDateyyyy[1]{{\number#1}} % FIXME - add leading 0

2264 \def\bbl@replace@finish@iii#1{%

2265 \bbl@exp{\def\\#1####1####2####3{\the\toks@}}}

2266 \def\bbl@TG@@date{%

2267 \bbl@replace\bbl@toreplace{[]}{\BabelDateSpace{}}%

2268 \bbl@replace\bbl@toreplace{[.]}{\BabelDateDot{}}%

2269 \bbl@replace\bbl@toreplace{[d]}{\BabelDated{####3}}%

2270 \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd{####3}}%

2271 \bbl@replace\bbl@toreplace{[M]}{\BabelDateM{####2}}%

2272 \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM{####2}}%

2273 \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM{####2}}%

2274 \bbl@replace\bbl@toreplace{[y]}{\BabelDatey{####1}}%

2275 \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy{####1}}%

2276 \bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy{####1}}%

2277 % Note after \bbl@replace \toks@ contains the resulting string.

2278 % TODO - Using this implicit behavior doesn't seem a good idea.

2279 \bbl@replace@finish@iii\bbl@toreplace}

Language and Script values to be used when defining a font or setting the direction are set

with the following macros.

2280 \def\bbl@provide@lsys#1{%

2281 \bbl@ifunset{bbl@lname@#1}%

2282 {\bbl@ini@ids{#1}}%

2283 {}%

2284 \bbl@csarg\let{lsys@#1}\@empty

2285 \bbl@ifunset{bbl@sname@#1}{\bbl@csarg\gdef{sname@#1}{Default}}{}%

2286 \bbl@ifunset{bbl@sotf@#1}{\bbl@csarg\gdef{sotf@#1}{DFLT}}{}%

2287 \bbl@csarg\bbl@add@list{lsys@#1}{Script=\bbl@cs{sname@#1}}%

2288 \bbl@ifunset{bbl@lname@#1}{}%

2289 {\bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{lname@#1}}}%

2290 \bbl@csarg\bbl@toglobal{lsys@#1}}

The following ini reader ignores everything but the identification section. It is called

when a font is defined (ie, when the language is first selected) to know which

108

script/language must be enabled. This means we must make sure a few characters are not

active. The ini is not read directly, but with a proxy tex file named as the language (which

means any code in it must be skipped, too.

2291 \def\bbl@ini@ids#1{%

2292 \def\BabelBeforeIni##1##2{%

2293 \begingroup

2294 \bbl@add\bbl@secpost@identification{\closein1 }%

2295 \catcode`\[=12 \catcode`\]=12 \catcode`\==12 %

2296 \bbl@read@ini{##1}%

2297 \endinput

2298 \endgroup}% boxed, to avoid extra spaces:

2299 {\setbox\z@\hbox{\InputIfFileExists{babel-#1.tex}{}{}}}}

10 The kernel of Babel (babel.def, only LATEX)

10.1 The redefinition of the style commands

The rest of the code in this file can only be processed by LATEX, so we check the current

format. If it is plain TEX, processing should stop here. But, because of the need to limit the

scope of the definition of \format, a macro that is used locally in the following

\if statement, this comparison is done inside a group. To prevent TEX from complaining

about an unclosed group, the processing of the command \endinput is deferred until after

the group is closed. This is accomplished by the command \aftergroup.

2300 {\def\format{lplain}

2301 \ifx\fmtname\format

2302 \else

2303 \def\format{LaTeX2e}

2304 \ifx\fmtname\format

2305 \else

2306 \aftergroup\endinput

2307 \fi

2308 \fi}

10.2 Cross referencing macros

The LATEX book states:

The key argument is any sequence of letters, digits, and punctuation symbols; upper-

and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a language that

has active characters, special care has to be taken of the category codes of these characters

when they appear in an argument of the cross referencing macros.

When a cross referencing command processes its argument, all tokens in this argument

should be character tokens with category ‘letter’ or ‘other’.

The only way to accomplish this in most cases is to use the trick described in the

TEXbook [2] (Appendix D, page 382). The primitive \meaning applied to a token expands to

the current meaning of this token. For example, ‘\meaning\A’ with \A defined as

‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with all category codes set to

‘other’ or ‘space’.

\newlabel The macro \label writes a line with a \newlabel command into the .aux file to define

labels.

2309 %\bbl@redefine\newlabel#1#2{%

2310 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

109

\@newl@bel We need to change the definition of the LATEX-internal macro \@newl@bel. This is needed

because we need to make sure that shorthand characters expand to their non-active

version.

The following package options control which macros are to be redefined.

2311 〈〈∗More package options〉〉 ≡
2312 \DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}

2313 \DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}

2314 \DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}

2315 〈〈/More package options〉〉

First we open a new group to keep the changed setting of \protect local and then we set

the @safe@actives switch to true to make sure that any shorthand that appears in any of

the arguments immediately expands to its non-active self.

2316 \bbl@trace{Cross referencing macros}

2317 \ifx\bbl@opt@safe\@empty\else

2318 \def\@newl@bel#1#2#3{%

2319 {\@safe@activestrue

2320 \bbl@ifunset{#1@#2}%

2321 \relax

2322 {\gdef\@multiplelabels{%

2323 \@latex@warning@no@line{There were multiply-defined labels}}%

2324 \@latex@warning@no@line{Label `#2' multiply defined}}%

2325 \global\@namedef{#1@#2}{#3}}}

\@testdef An internal LATEX macro used to test if the labels that have been written on the .aux file

have changed. It is called by the \enddocument macro. This macro needs to be completely

rewritten, using \meaning. The reason for this is that in some cases the expansion of

\#1@#2 contains the same characters as the #3; but the character codes differ. Therefore

LATEX keeps reporting that the labels may have changed.

2326 \CheckCommand*\@testdef[3]{%

2327 \def\reserved@a{#3}%

2328 \expandafter\ifx\csname#1@#2\endcsname\reserved@a

2329 \else

2330 \@tempswatrue

2331 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite it. First

we make the shorthands ‘safe’.

2332 \def\@testdef#1#2#3{%

2333 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which is being

checked.

2334 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname

Then we define \bbl@tempb just as \@newl@bel does it.

2335 \def\bbl@tempb{#3}%

2336 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.

2337 \ifx\bbl@tempa\relax

2338 \else

2339 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%

2340 \fi

We do the same for \bbl@tempb.

2341 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

110

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.

2342 \ifx\bbl@tempa\bbl@tempb

2343 \else

2344 \@tempswatrue

2345 \fi}

2346 \fi

\ref

\pageref

The same holds for the macro \ref that references a label and \pageref to reference a

page. So we redefine \ref and \pageref. While we change these macros, we make them

robust as well (if they weren’t already) to prevent problems if they should become

expanded at the wrong moment.

2347 \bbl@xin@{R}\bbl@opt@safe

2348 \ifin@

2349 \bbl@redefinerobust\ref#1{%

2350 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}

2351 \bbl@redefinerobust\pageref#1{%

2352 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}

2353 \else

2354 \let\org@ref\ref

2355 \let\org@pageref\pageref

2356 \fi

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is

this internal macro that picks up the argument(s), so we redefine this internal macro and

leave \cite alone. The first argument is used for typesetting, so the shorthands need only

be deactivated in the second argument.

2357 \bbl@xin@{B}\bbl@opt@safe

2358 \ifin@

2359 \bbl@redefine\@citex[#1]#2{%

2360 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse

2361 \org@@citex[#1]{\@tempa}}

Unfortunately, the packages natbib and cite need a different definition of \@citex... To

begin with, natbib has a definition for \@citex with three arguments... We only know that

a package is loaded when \begin{document} is executed, so we need to postpone the

different redefinition.

2362 \AtBeginDocument{%

2363 \@ifpackageloaded{natbib}{%

Notice that we use \def here instead of \bbl@redefine because \org@@citex is already

defined and we don’t want to overwrite that definition (it would result in parameter stack

overflow because of a circular definition).

(Recent versions of natbib change dynamically \@citex, so PR4087 doesn’t seem fixable in

a simple way. Just load natbib before.)

2364 \def\@citex[#1][#2]#3{%

2365 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse

2366 \org@@citex[#1][#2]{\@tempa}}%

2367 }{}}

The package cite has a definition of \@citex where the shorthands need to be turned off

in both arguments.

2368 \AtBeginDocument{%

2369 \@ifpackageloaded{cite}{%

2370 \def\@citex[#1]#2{%

2371 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%

2372 }{}}

111

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references from the

database.

2373 \bbl@redefine\nocite#1{%

2374 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages such as

natbib or cite are not loaded its second argument is used to typeset the citation label. In

that case, this second argument can contain active characters but is used in an

environment where \@safe@activestrue is in effect. This switch needs to be reset inside

the \hbox which contains the citation label. In order to determine during .aux file

processing which definition of \bibcite is needed we define \bibcite in such a way that

it redefines itself with the proper definition. We call \bbl@cite@choice to select the

proper definition for \bibcite. This new definition is then activated.

2375 \bbl@redefine\bibcite{%

2376 \bbl@cite@choice

2377 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither natbib

nor cite is loaded.

2378 \def\bbl@bibcite#1#2{%

2379 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed. First

we give \bibcite its default definition.

2380 \def\bbl@cite@choice{%

2381 \global\let\bibcite\bbl@bibcite

Then, when natbib is loaded we restore the original definition of \bibcite. For cite we

do the same.

2382 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

2383 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%

Make sure this only happens once.

2384 \global\let\bbl@cite@choice\relax}

When a document is run for the first time, no .aux file is available, and \bibcite will not

yet be properly defined. In this case, this has to happen before the document starts.

2385 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal LATEX macros called by \bibitem that write the citation label on the

.aux file.

2386 \bbl@redefine\@bibitem#1{%

2387 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

2388 \else

2389 \let\org@nocite\nocite

2390 \let\org@@citex\@citex

2391 \let\org@bibcite\bibcite

2392 \let\org@@bibitem\@bibitem

2393 \fi

10.3 Marks

\markright Because the output routine is asynchronous, we must pass the current language attribute

to the head lines, together with the text that is put into them. To achieve this we need to

adapt the definition of \markright and \markboth somewhat.

112

We check whether the argument is empty; if it is, we just make sure the scratch token

register is empty. Next, we store the argument to \markright in the scratch token register.

This way these commands will not be expanded later, and we make sure that the text is

typeset using the correct language settings. While doing so, we make sure that active

characters that may end up in the mark are not disabled by the output routine kicking in

while \@safe@activestrue is in effect.

2394 \bbl@trace{Marks}

2395 \IfBabelLayout{sectioning}

2396 {\ifx\bbl@opt@headfoot\@nnil

2397 \g@addto@macro\@resetactivechars{%

2398 \set@typeset@protect

2399 \expandafter\select@language@x\expandafter{\bbl@main@language}%

2400 \let\protect\noexpand

2401 \edef\thepage{%

2402 \noexpand\babelsublr{\unexpanded\expandafter{\thepage}}}}%

2403 \fi}

2404 {\ifbbl@single\else

2405 \bbl@ifunset{markright }\bbl@redefine\bbl@redefinerobust

2406 \markright#1{%

2407 \bbl@ifblank{#1}%

2408 {\org@markright{}}%

2409 {\toks@{#1}%

2410 \bbl@exp{%

2411 \\\org@markright{\\\protect\\\foreignlanguage{\languagename}%

2412 {\\\protect\\\bbl@restore@actives\the\toks@}}}}}%

\markboth

\@mkboth

The definition of \markboth is equivalent to that of \markright, except that we need two

token registers. The documentclasses report and book define and set the headings for the

page. While doing so they also store a copy of \markboth in \@mkboth. Therefore we need

to check whether \@mkboth has already been set. If so we neeed to do that again with the

new definition of \markboth. (As of Oct 2019, LATEX stores the definition in an intermediate

macros, so it’s not necessary anymore, but it’s preserved for older versions.)

2413 \ifx\@mkboth\markboth

2414 \def\bbl@tempc{\let\@mkboth\markboth}

2415 \else

2416 \def\bbl@tempc{}

2417 \fi

2418 \bbl@ifunset{markboth }\bbl@redefine\bbl@redefinerobust

2419 \markboth#1#2{%

2420 \protected@edef\bbl@tempb##1{%

2421 \protect\foreignlanguage

2422 {\languagename}{\protect\bbl@restore@actives##1}}%

2423 \bbl@ifblank{#1}%

2424 {\toks@{}}%

2425 {\toks@\expandafter{\bbl@tempb{#1}}}%

2426 \bbl@ifblank{#2}%

2427 {\@temptokena{}}%

2428 {\@temptokena\expandafter{\bbl@tempb{#2}}}%

2429 \bbl@exp{\\\org@markboth{\the\toks@}{\the\@temptokena}}}

2430 \bbl@tempc

2431 \fi} % end ifbbl@single, end \IfBabelLayout

113

10.4 Preventing clashes with other packages

10.4.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the page a

certain fragment of text appears on. This can be achieved by the following piece of code:

\ifthenelse{\isodd{\pageref{some:label}}}

{code for odd pages}

{code for even pages}

In order for this to work the argument of \isodd needs to be fully expandable. With the

above redefinition of \pageref it is not in the case of this example. To overcome that, we

add some code to the definition of \ifthenelse to make things work.

The first thing we need to do is check if the package ifthen is loaded. This should be done

at \begin{document} time.

2432 \bbl@trace{Preventing clashes with other packages}

2433 \bbl@xin@{R}\bbl@opt@safe

2434 \ifin@

2435 \AtBeginDocument{%

2436 \@ifpackageloaded{ifthen}{%

Then we can redefine \ifthenelse:

2437 \bbl@redefine@long\ifthenelse#1#2#3{%

We want to revert the definition of \pageref and \ref to their original definition for the

first argument of \ifthenelse, so we first need to store their current meanings.

2438 \let\bbl@temp@pref\pageref

2439 \let\pageref\org@pageref

2440 \let\bbl@temp@ref\ref

2441 \let\ref\org@ref

Then we can set the \@safe@actives switch and call the original \ifthenelse. In order to

be able to use shorthands in the second and third arguments of \ifthenelse the resetting

of the switch and the definition of \pageref happens inside those arguments. When the

package wasn’t loaded we do nothing.

2442 \@safe@activestrue

2443 \org@ifthenelse{#1}%

2444 {\let\pageref\bbl@temp@pref

2445 \let\ref\bbl@temp@ref

2446 \@safe@activesfalse

2447 #2}%

2448 {\let\pageref\bbl@temp@pref

2449 \let\ref\bbl@temp@ref

2450 \@safe@activesfalse

2451 #3}%

2452 }%

2453 }{}%

2454 }

10.4.2 varioref

\@@vpageref

\vrefpagenum

\Ref

When the package varioref is in use we need to modify its internal command \@@vpageref

in order to prevent problems when an active character ends up in the argument of \vref.

The same needs to happen for \vrefpagenum.

2455 \AtBeginDocument{%

2456 \@ifpackageloaded{varioref}{%

114

2457 \bbl@redefine\@@vpageref#1[#2]#3{%

2458 \@safe@activestrue

2459 \org@@@vpageref{#1}[#2]{#3}%

2460 \@safe@activesfalse}%

2461 \bbl@redefine\vrefpagenum#1#2{%

2462 \@safe@activestrue

2463 \org@vrefpagenum{#1}{#2}%

2464 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command wich uppercases the first

character of the reference text. In order to be able to do that it needs to access the

expandable form of \ref. So we employ a little trick here. We redefine the (internal)

command \Ref to call \org@ref instead of \ref. The disadvantage of this solution is that

whenever the definition of \Ref changes, this definition needs to be updated as well.

2465 \expandafter\def\csname Ref \endcsname#1{%

2466 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}

2467 }{}%

2468 }

2469 \fi

10.4.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with the

hhline package. The reason is that it uses the ‘:’ character which is made active by the

french support in babel. Therefore we need to reload the package when the ‘:’ is an active

character.

So at \begin{document} we check whether hhline is loaded.

2470 \AtEndOfPackage{%

2471 \AtBeginDocument{%

2472 \@ifpackageloaded{hhline}%

Then we check whether the expansion of \normal@char: is not equal to \relax.

2473 {\expandafter\ifx\csname normal@char\string:\endcsname\relax

2474 \else

In that case we simply reload the package. Note that this happens after the category code of

the @-sign has been changed to other, so we need to temporarily change it to letter again.

2475 \makeatletter

2476 \def\@currname{hhline}\input{hhline.sty}\makeatother

2477 \fi}%

2478 {}}}

10.4.4 hyperref

\pdfstringdefDisableCommands A number of interworking problems between babel and hyperref are tackled by

hyperref itself. The following code was introduced to prevent some annoying warnings

but it broke bookmarks. This was quickly fixed in hyperref, which essentially made it

no-op. However, it will not removed for the moment because hyperref is expecting it.

2479 \AtBeginDocument{%

2480 \ifx\pdfstringdefDisableCommands\@undefined\else

2481 \pdfstringdefDisableCommands{\languageshorthands{system}}%

2482 \fi}

115

10.4.5 fancyhdr

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat differently as the

standard classes. A symptom of this is that the command \foreignlanguage which babel

adds to the marks can end up inside the argument of \MakeUppercase. To prevent

unexpected results we need to define \FOREIGNLANGUAGE here.

2483 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%

2484 \lowercase{\foreignlanguage{#1}}}

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first argument is

an encoding mnemonic, the second and third arguments are font family names.

2485 \def\substitutefontfamily#1#2#3{%

2486 \lowercase{\immediate\openout15=#1#2.fd\relax}%

2487 \immediate\write15{%

2488 \string\ProvidesFile{#1#2.fd}%

2489 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}

2490 \space generated font description file]^^J

2491 \string\DeclareFontFamily{#1}{#2}{}^^J

2492 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J

2493 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J

2494 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J

2495 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J

2496 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J

2497 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J

2498 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J

2499 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J

2500 }%

2501 \closeout15

2502 }

This command should only be used in the preamble of a document.

2503 \@onlypreamble\substitutefontfamily

10.5 Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of TEX

and LATEX always come out in the right encoding. There is a list of non-ASCII encodings.

Unfortunately, fontenc deletes its package options, so we must guess which encodings has

been loaded by traversing \@filelist to search for 〈enc〉enc.def. If a non-ASCII has been
loaded, we define versions of \TeX and \LaTeX for them using \ensureascii. The default

ASCII encoding is set, too (in reverse order): the “main” encoding (when the document

begins), the last loaded, or OT1.

\ensureascii

2504 \bbl@trace{Encoding and fonts}

2505 \newcommand\BabelNonASCII{LGR,X2,OT2,OT3,OT6,LHE,LWN,LMA,LMC,LMS,LMU,PU,PD1}

2506 \newcommand\BabelNonText{TS1,T3,TS3}

2507 \let\org@TeX\TeX

2508 \let\org@LaTeX\LaTeX

2509 \let\ensureascii\@firstofone

2510 \AtBeginDocument{%

2511 \in@false

2512 \bbl@foreach\BabelNonASCII{% is there a text non-ascii enc?

2513 \ifin@\else

2514 \lowercase{\bbl@xin@{,#1enc.def,}{,\@filelist,}}%

2515 \fi}%

2516 \ifin@ % if a text non-ascii has been loaded

116

2517 \def\ensureascii#1{{\fontencoding{OT1}\selectfont#1}}%

2518 \DeclareTextCommandDefault{\TeX}{\org@TeX}%

2519 \DeclareTextCommandDefault{\LaTeX}{\org@LaTeX}%

2520 \def\bbl@tempb#1\@@{\uppercase{\bbl@tempc#1}ENC.DEF\@empty\@@}%

2521 \def\bbl@tempc#1ENC.DEF#2\@@{%

2522 \ifx\@empty#2\else

2523 \bbl@ifunset{T@#1}%

2524 {}%

2525 {\bbl@xin@{,#1,}{,\BabelNonASCII,\BabelNonText,}%

2526 \ifin@

2527 \DeclareTextCommand{\TeX}{#1}{\ensureascii{\org@TeX}}%

2528 \DeclareTextCommand{\LaTeX}{#1}{\ensureascii{\org@LaTeX}}%

2529 \else

2530 \def\ensureascii##1{{\fontencoding{#1}\selectfont##1}}%

2531 \fi}%

2532 \fi}%

2533 \bbl@foreach\@filelist{\bbl@tempb#1\@@}% TODO - \@@ de mas??

2534 \bbl@xin@{,\cf@encoding,}{,\BabelNonASCII,\BabelNonText,}%

2535 \ifin@\else

2536 \edef\ensureascii#1{{%

2537 \noexpand\fontencoding{\cf@encoding}\noexpand\selectfont#1}}%

2538 \fi

2539 \fi}

Now comes the old deprecated stuff (with a little change in 3.9l, for fontspec). The first

thing we need to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be nice to

still have Roman numerals come out in the Latin encoding. So we first assume that the

current encoding at the end of processing the package is the Latin encoding.

2540 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefore we

check at the execution of \begin{document} whether it was loaded with the T1 option. The

normal way to do this (using \@ifpackageloaded) is disabled for this package. Now we

have to revert to parsing the internal macro \@filelist which contains all the filenames

loaded.

2541 \AtBeginDocument{%

2542 \@ifpackageloaded{fontspec}%

2543 {\xdef\latinencoding{%

2544 \ifx\UTFencname\@undefined

2545 EU\ifcase\bbl@engine\or2\or1\fi

2546 \else

2547 \UTFencname

2548 \fi}}%

2549 {\gdef\latinencoding{OT1}%

2550 \ifx\cf@encoding\bbl@t@one

2551 \xdef\latinencoding{\bbl@t@one}%

2552 \else

2553 \@ifl@aded{def}{t1enc}{\xdef\latinencoding{\bbl@t@one}}{}%

2554 \fi}}

\latintext Then we can define the command \latintext which is a declarative switch to a latin

font-encoding. Usage of this macro is deprecated.

2555 \DeclareRobustCommand{\latintext}{%

2556 \fontencoding{\latinencoding}\selectfont

2557 \def\encodingdefault{\latinencoding}}

117

\textlatin This command takes an argument which is then typeset using the requested font encoding.

In order to avoid many encoding switches it operates in a local scope.

2558 \ifx\@undefined\DeclareTextFontCommand

2559 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

2560 \else

2561 \DeclareTextFontCommand{\textlatin}{\latintext}

2562 \fi

10.6 Basic bidi support

Work in progress. This code is currently placed here for practical reasons.

It is loosely based on rlbabel.def, but most of it has been developed from scratch. This

babelmodule (by Johannes Braams and Boris Lavva) has served the purpose of typesetting

R documents for two decades, and despite its flaws I think it is still a good starting point

(some parts have been copied here almost verbatim), partly thanks to its simplicity. I’ve

also looked at arabi (by Youssef Jabri), which is compatible with babel.

There are two ways of modifying macros to make them “bidi”, namely, by patching the

internal low-level macros (which is what I have done with lists, columns, counters, tocs,

much like rlbabel did), and by introducing a “middle layer” just below the user interface

(sectioning, footnotes).

• pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical

typesetting is not possible.

• xetex is somewhat better, thanks to its font engine (even if not always reliable) and a

few additional tools. However, very little is done at the paragraph level. Another

challenging problem is text direction does not honour TEX grouping.

• luatex can provide the most complete solution, as we can manipulate almost freely the

node list, the generated lines, and so on, but bidi text does not work out of the box and

some development is necessary. It also provides tools to properly set left-to-right and

right-to-left page layouts. As LuaTEX-ja shows, vertical typesetting is possible, too. Its

main drawback is font handling is often considered to be less mature than xetex,

mainly in Indic scripts (but there are steps to make HarfBuzz, the xetex font engine,

available in luatex; see <https://github.com/tatzetwerk/luatex-harfbuzz>).

2563 \bbl@trace{Basic (internal) bidi support}

2564 \def\bbl@alscripts{,Arabic,Syriac,Thaana,}

2565 \def\bbl@rscripts{%

2566 ,Imperial Aramaic,Avestan,Cypriot,Hatran,Hebrew,%

2567 Old Hungarian,Old Hungarian,Lydian,Mandaean,Manichaean,%

2568 Manichaean,Meroitic Cursive,Meroitic,Old North Arabian,%

2569 Nabataean,N'Ko,Orkhon,Palmyrene,Inscriptional Pahlavi,%

2570 Psalter Pahlavi,Phoenician,Inscriptional Parthian,Samaritan,%

2571 Old South Arabian,}%

2572 \def\bbl@provide@dirs#1{%

2573 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts\bbl@rscripts}%

2574 \ifin@

2575 \global\bbl@csarg\chardef{wdir@#1}\@ne

2576 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts}%

2577 \ifin@

2578 \global\bbl@csarg\chardef{wdir@#1}\tw@ % useless in xetex

2579 \fi

2580 \else

2581 \global\bbl@csarg\chardef{wdir@#1}\z@

2582 \fi

2583 \ifodd\bbl@engine

118

2584 \bbl@csarg\ifcase{wdir@#1}%

2585 \directlua{ Babel.locale_props[\the\localeid].textdir = 'l' }%

2586 \or

2587 \directlua{ Babel.locale_props[\the\localeid].textdir = 'r' }%

2588 \or

2589 \directlua{ Babel.locale_props[\the\localeid].textdir = 'al' }%

2590 \fi

2591 \fi}

2592 \def\bbl@switchdir{%

2593 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

2594 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

2595 \bbl@exp{\\\bbl@setdirs\bbl@cs{wdir@\languagename}}}

2596 \def\bbl@setdirs#1{% TODO - math

2597 \ifcase\bbl@select@type % TODO - strictly, not the right test

2598 \bbl@bodydir{#1}%

2599 \bbl@pardir{#1}%

2600 \fi

2601 \bbl@textdir{#1}}

2602 \ifodd\bbl@engine % luatex=1

2603 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}

2604 \DisableBabelHook{babel-bidi}

2605 \chardef\bbl@thetextdir\z@

2606 \chardef\bbl@thepardir\z@

2607 \def\bbl@getluadir#1{%

2608 \directlua{

2609 if tex.#1dir == 'TLT' then

2610 tex.sprint('0')

2611 elseif tex.#1dir == 'TRT' then

2612 tex.sprint('1')

2613 end}}

2614 \def\bbl@setluadir#1#2#3{% 1=text/par.. 2=\textdir.. 3=0 lr/1 rl

2615 \ifcase#3\relax

2616 \ifcase\bbl@getluadir{#1}\relax\else

2617 #2 TLT\relax

2618 \fi

2619 \else

2620 \ifcase\bbl@getluadir{#1}\relax

2621 #2 TRT\relax

2622 \fi

2623 \fi}

2624 \def\bbl@textdir#1{%

2625 \bbl@setluadir{text}\textdir{#1}%

2626 \chardef\bbl@thetextdir#1\relax

2627 \setattribute\bbl@attr@dir{\numexpr\bbl@thepardir*3+#1}}

2628 \def\bbl@pardir#1{%

2629 \bbl@setluadir{par}\pardir{#1}%

2630 \chardef\bbl@thepardir#1\relax}

2631 \def\bbl@bodydir{\bbl@setluadir{body}\bodydir}

2632 \def\bbl@pagedir{\bbl@setluadir{page}\pagedir}

2633 \def\bbl@dirparastext{\pardir\the\textdir\relax}% %%%%

2634 % Sadly, we have to deal with boxes in math with basic.

2635 % Activated every math with the package option bidi=:

2636 \def\bbl@mathboxdir{%

2637 \ifcase\bbl@thetextdir\relax

2638 \everyhbox{\textdir TLT\relax}%

2639 \else

2640 \everyhbox{\textdir TRT\relax}%

2641 \fi}

2642 \else % pdftex=0, xetex=2

119

2643 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}

2644 \DisableBabelHook{babel-bidi}

2645 \newcount\bbl@dirlevel

2646 \chardef\bbl@thetextdir\z@

2647 \chardef\bbl@thepardir\z@

2648 \def\bbl@textdir#1{%

2649 \ifcase#1\relax

2650 \chardef\bbl@thetextdir\z@

2651 \bbl@textdir@i\beginL\endL

2652 \else

2653 \chardef\bbl@thetextdir\@ne

2654 \bbl@textdir@i\beginR\endR

2655 \fi}

2656 \def\bbl@textdir@i#1#2{%

2657 \ifhmode

2658 \ifnum\currentgrouplevel>\z@

2659 \ifnum\currentgrouplevel=\bbl@dirlevel

2660 \bbl@error{Multiple bidi settings inside a group}%

2661 {I'll insert a new group, but expect wrong results.}%

2662 \bgroup\aftergroup#2\aftergroup\egroup

2663 \else

2664 \ifcase\currentgrouptype\or % 0 bottom

2665 \aftergroup#2% 1 simple {}

2666 \or

2667 \bgroup\aftergroup#2\aftergroup\egroup % 2 hbox

2668 \or

2669 \bgroup\aftergroup#2\aftergroup\egroup % 3 adj hbox

2670 \or\or\or % vbox vtop align

2671 \or

2672 \bgroup\aftergroup#2\aftergroup\egroup % 7 noalign

2673 \or\or\or\or\or\or % output math disc insert vcent mathchoice

2674 \or

2675 \aftergroup#2% 14 \begingroup

2676 \else

2677 \bgroup\aftergroup#2\aftergroup\egroup % 15 adj

2678 \fi

2679 \fi

2680 \bbl@dirlevel\currentgrouplevel

2681 \fi

2682 #1%

2683 \fi}

2684 \def\bbl@pardir#1{\chardef\bbl@thepardir#1\relax}

2685 \let\bbl@bodydir\@gobble

2686 \let\bbl@pagedir\@gobble

2687 \def\bbl@dirparastext{\chardef\bbl@thepardir\bbl@thetextdir}

The following command is executed only if there is a right-to-left script (once). It activates

the \everypar hack for xetex, to properly handle the par direction. Note text and par dirs

are decoupled to some extent (although not completely).

2688 \def\bbl@xebidipar{%

2689 \let\bbl@xebidipar\relax

2690 \TeXXeTstate\@ne

2691 \def\bbl@xeeverypar{%

2692 \ifcase\bbl@thepardir

2693 \ifcase\bbl@thetextdir\else\beginR\fi

2694 \else

2695 {\setbox\z@\lastbox\beginR\box\z@}%

2696 \fi}%

2697 \let\bbl@severypar\everypar

120

2698 \newtoks\everypar

2699 \everypar=\bbl@severypar

2700 \bbl@severypar{\bbl@xeeverypar\the\everypar}}

2701 \@ifpackagewith{babel}{bidi=bidi}%

2702 {\let\bbl@textdir@i\@gobbletwo

2703 \let\bbl@xebidipar\@empty

2704 \AddBabelHook{bidi}{foreign}{%

2705 \def\bbl@tempa{\def\BabelText####1}%

2706 \ifcase\bbl@thetextdir

2707 \expandafter\bbl@tempa\expandafter{\BabelText{\LR{##1}}}%

2708 \else

2709 \expandafter\bbl@tempa\expandafter{\BabelText{\RL{##1}}}%

2710 \fi}

2711 \def\bbl@pardir#1{\ifcase#1\relax\setLR\else\setRL\fi}}

2712 {}%

2713 \fi

A tool for weak L (mainly digits). We also disable warnings with hyperref.

2714 \DeclareRobustCommand\babelsublr[1]{\leavevmode{\bbl@textdir\z@#1}}

2715 \AtBeginDocument{%

2716 \ifx\pdfstringdefDisableCommands\@undefined\else

2717 \ifx\pdfstringdefDisableCommands\relax\else

2718 \pdfstringdefDisableCommands{\let\babelsublr\@firstofone}%

2719 \fi

2720 \fi}

10.7 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition file.

This can be done by creating a file with the same name as the language definition file, but

with the extension .cfg. For instance the file norsk.cfg will be loaded when the language

definition file norsk.ldf is loaded.

For plain-based formats we don’t want to override the definition of \loadlocalcfg from

plain.def.

2721 \bbl@trace{Local Language Configuration}

2722 \ifx\loadlocalcfg\@undefined

2723 \@ifpackagewith{babel}{noconfigs}%

2724 {\let\loadlocalcfg\@gobble}%

2725 {\def\loadlocalcfg#1{%

2726 \InputIfFileExists{#1.cfg}%

2727 {\typeout{*************************************^^J%

2728 * Local config file #1.cfg used^^J%

2729 *}}%

2730 \@empty}}

2731 \fi

Just to be compatible with LATEX 2.09 we add a few more lines of code:

2732 \ifx\@unexpandable@protect\@undefined

2733 \def\@unexpandable@protect{\noexpand\protect\noexpand}

2734 \long\def\protected@write#1#2#3{%

2735 \begingroup

2736 \let\thepage\relax

2737 #2%

2738 \let\protect\@unexpandable@protect

2739 \edef\reserved@a{\write#1{#3}}%

2740 \reserved@a

2741 \endgroup

2742 \if@nobreak\ifvmode\nobreak\fi\fi}

121

2743 \fi

2744 〈/core〉
2745 〈∗kernel〉

11 Multiple languages (switch.def)

Plain TEX version 3.0 provides the primitive \language that is used to store the current

language. When used with a pre-3.0 version this function has to be implemented by

allocating a counter.

2746 〈〈Make sure ProvidesFile is defined〉〉
2747 \ProvidesFile{switch.def}[〈〈date〉〉 〈〈version〉〉 Babel switching mechanism]

2748 〈〈Load macros for plain if not LaTeX〉〉
2749 〈〈Define core switching macros〉〉

\adddialect The macro \adddialect can be used to add the name of a dialect or variant language, for

which an already defined hyphenation table can be used.

2750 \def\bbl@version{〈〈version〉〉}
2751 \def\bbl@date{〈〈date〉〉}
2752 \def\adddialect#1#2{%

2753 \global\chardef#1#2\relax

2754 \bbl@usehooks{adddialect}{{#1}{#2}}%

2755 \wlog{\string#1 = a dialect from \string\language#2}}

\bbl@iflanguage executes code only if the language l@ exists. Otherwise raises and error.

The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if casing

(lc/uc) is wrong. It’s intented to fix a long-standing bug when \foreignlanguage and the

like appear in a \MakeXXXcase. However, a lowercase form is not imposed to improve

backward compatibility (perhaps you defined a language named MYLANG, but

unfortunately mixed case names cannot be trapped). Note l@ is encapsulated, so that its

case does not change.

2756 \def\bbl@fixname#1{%

2757 \begingroup

2758 \def\bbl@tempe{l@}%

2759 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%

2760 \bbl@tempd

2761 {\lowercase\expandafter{\bbl@tempd}%

2762 {\uppercase\expandafter{\bbl@tempd}%

2763 \@empty

2764 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

2765 \uppercase\expandafter{\bbl@tempd}}}%

2766 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

2767 \lowercase\expandafter{\bbl@tempd}}}%

2768 \@empty

2769 \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%

2770 \bbl@tempd}

2771 \def\bbl@iflanguage#1{%

2772 \@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

\iflanguage Users might want to test (in a private package for instance) which language is currently

active. For this we provide a test macro, \iflanguage, that has three arguments. It checks

whether the first argument is a known language. If so, it compares the first argument with

the value of \language. Then, depending on the result of the comparison, it executes

either the second or the third argument.

2773 \def\iflanguage#1{%

2774 \bbl@iflanguage{#1}{%

122

2775 \ifnum\csname l@#1\endcsname=\language

2776 \expandafter\@firstoftwo

2777 \else

2778 \expandafter\@secondoftwo

2779 \fi}}

11.1 Selecting the language

\selectlanguage The macro \selectlanguage checks whether the language is already defined before it

performs its actual task, which is to update \language and activate language-specific

definitions.

To allow the call of \selectlanguage either with a control sequence name or with a

simple string as argument, we have to use a trick to delete the optional escape character.

To convert a control sequence to a string, we use the \string primitive. Next we have to

look at the first character of this string and compare it with the escape character. Because

this escape character can be changed by setting the internal integer \escapechar to a

character number, we have to compare this number with the character of the string. To do

this we have to use TEX’s backquote notation to specify the character as a number.

If the first character of the \string’ed argument is the current escape character, the

comparison has stripped this character and the rest in the ‘then’ part consists of the rest of

the control sequence name. Otherwise we know that either the argument is not a control

sequence or \escapechar is set to a value outside of the character range 0–255.
If the user gives an empty argument, we provide a default argument for \string. This

argument should expand to nothing.

2780 \let\bbl@select@type\z@

2781 \edef\selectlanguage{%

2782 \noexpand\protect

2783 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it expands

to \protect\selectlanguage . Therefore, we have to make sure that a macro \protect

exists. If it doesn’t it is \let to \relax.

2784 \ifx\@undefined\protect\let\protect\relax\fi

As LATEX 2.09 writes to files expanded whereas LATEX2ε takes care not to expand the

arguments of \write statements we need to be a bit clever about the way we add

information to .aux files. Therefore we introduce the macro \xstring which should

expand to the right amount of \string’s.

2785 \ifx\documentclass\@undefined

2786 \def\xstring{\string\string\string}

2787 \else

2788 \let\xstring\string

2789 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of

contents etc. in the correct language environment.

\bbl@pop@language But when the language change happens inside a group the end of the group doesn’t write

anything to the auxiliary files. Therefore we need TEX’s aftergroup mechanism to help us.

The command \aftergroup stores the token immediately following it to be executed when

the current group is closed. So we define a temporary control sequence

\bbl@pop@language to be executed at the end of the group. It calls \bbl@set@language

with the name of the current language as its argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as more levels are

used it is no longer adequate. For that case we need to keep track of the nested languages

using a stack mechanism. This stack is called \bbl@language@stack and initially empty.

123

2790 \def\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to retrieve

the information afterwards.

\bbl@push@language

\bbl@pop@language

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push function can

be simple:

2791 \def\bbl@push@language{%

2792 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}}

Retrieving information from the stack is a little bit less simple, as we need to remove the

element from the stack while storing it in the macro \languagename. For this we first

define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in \languagename

and stores the rest of the string (delimited by ‘-’) in its third argument.

2793 \def\bbl@pop@lang#1+#2-#3{%

2794 \edef\languagename{#1}\xdef#3{#2}}

The reason for the somewhat weird arrangement of arguments to the helper function is

the fact it is called in the following way. This means that before \bbl@pop@lang is executed

TEX first expands the stack, stored in \bbl@language@stack. The result of that is that the

argument string of \bbl@pop@lang contains one or more language names, each followed

by a ‘+’-sign (zero language names won’t occur as this macro will only be called after

something has been pushed on the stack) followed by the ‘-’-sign and finally the reference

to the stack.

2795 \let\bbl@ifrestoring\@secondoftwo

2796 \def\bbl@pop@language{%

2797 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack

2798 \let\bbl@ifrestoring\@firstoftwo

2799 \expandafter\bbl@set@language\expandafter{\languagename}%

2800 \let\bbl@ifrestoring\@secondoftwo}

Once the name of the previous language is retrieved from the stack, it is fed to

\bbl@set@language to do the actual work of switching everything that needs switching.

An alternative way to identify languages (in the babel sense) with a numerical value is

introduced in 3.30. This is one of the first steps for a new interface based on the concept of

locale, which explains the name of \localeid. This means \l@... will be reserved for

hyphenation patterns.

2801 \chardef\localeid\z@

2802 \def\bbl@id@last{0} % No real need for a new counter

2803 \def\bbl@id@assign{%

2804 \bbl@ifunset{bbl@id@@\languagename}%

2805 {\count@\bbl@id@last\relax

2806 \advance\count@\@ne

2807 \bbl@csarg\chardef{id@@\languagename}\count@

2808 \edef\bbl@id@last{\the\count@}%

2809 \ifcase\bbl@engine\or

2810 \directlua{

2811 Babel = Babel or {}

2812 Babel.locale_props = Babel.locale_props or {}

2813 Babel.locale_props[\bbl@id@last] = {}

2814 }%

2815 \fi}%

2816 {}}

124

The unprotected part of \selectlanguage.

2817 \expandafter\def\csname selectlanguage \endcsname#1{%

2818 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi

2819 \bbl@push@language

2820 \aftergroup\bbl@pop@language

2821 \bbl@set@language{#1}}

\bbl@set@language The macro \bbl@set@language takes care of switching the language environment and of

writing entries on the auxiliary files. For historial reasons, language names can be either

language of \language. To catch either form a trick is used, but unfortunately as a side

effect the catcodes of letters in \languagename are messed up. This is a bug, but preserved

for backwards compatibility. The list of auxiliary files can be extended by redefining

\BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc, lof, and

lot do) or the last language of the document will remain active afterwards.

We also write a command to change the current language in the auxiliary files.

2822 \def\BabelContentsFiles{toc,lof,lot}

2823 \def\bbl@set@language#1{% from selectlanguage, pop@

2824 \edef\languagename{%

2825 \ifnum\escapechar=\expandafter`\string#1\@empty

2826 \else\string#1\@empty\fi}%

2827 \select@language{\languagename}%

2828 % write to auxs

2829 \expandafter\ifx\csname date\languagename\endcsname\relax\else

2830 \if@filesw

2831 \ifx\babel@aux\@gobbletwo\else % Set if single in the first, redundant

2832 \protected@write\@auxout{}{\string\babel@aux{\languagename}{}}%

2833 \fi

2834 \bbl@usehooks{write}{}%

2835 \fi

2836 \fi}

2837 \def\select@language#1{% from set@, babel@aux

2838 % set hymap

2839 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi

2840 % set name

2841 \edef\languagename{#1}%

2842 \bbl@fixname\languagename

2843 \bbl@iflanguage\languagename{%

2844 \expandafter\ifx\csname date\languagename\endcsname\relax

2845 \bbl@error

2846 {Unknown language `#1'. Either you have\\%

2847 misspelled its name, it has not been installed,\\%

2848 or you requested it in a previous run. Fix its name,\\%

2849 install it or just rerun the file, respectively. In\\%

2850 some cases, you may need to remove the aux file}%

2851 {You may proceed, but expect wrong results}%

2852 \else

2853 % set type

2854 \let\bbl@select@type\z@

2855 \expandafter\bbl@switch\expandafter{\languagename}%

2856 \fi}}

2857 \def\babel@aux#1#2{%

2858 \expandafter\ifx\csname date#1\endcsname\relax

2859 \expandafter\ifx\csname bbl@auxwarn@#1\endcsname\relax

2860 \@namedef{bbl@auxwarn@#1}{}%

2861 \bbl@warning

2862 {Unknown language `#1'. Very likely you\\%

2863 requested it in a previous run. Expect some\\%

2864 wrong results in this run, which should vanish\\%

125

2865 in the next one. Reported}%

2866 \fi

2867 \else

2868 \select@language{#1}%

2869 \bbl@foreach\BabelContentsFiles{%

2870 \@writefile{##1}{\babel@toc{#1}{#2}}}% %% TODO - ok in plain?

2871 \fi}

2872 \def\babel@toc#1#2{%

2873 \select@language{#1}}

A bit of optimization. Select in heads/foots the language only if necessary. The real thing is

in babel.def.

2874 \let\select@language@x\select@language

First, check if the user asks for a known language. If so, update the value of \language and

call \originalTeX to bring TEX in a certain pre-defined state.

The name of the language is stored in the control sequence \languagename.

Then we have to redefine \originalTeX to compensate for the things that have been

activated. To save memory space for the macro definition of \originalTeX, we construct

the control sequence name for the \noextras〈lang〉 command at definition time by

expanding the \csname primitive.

Now activate the language-specific definitions. This is done by constructing the names of

three macros by concatenating three words with the argument of \selectlanguage, and

calling these macros.

The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat

different. First we save their current values, then we check if \〈lang〉hyphenmins is
defined. If it is not, we set default values (2 and 3), otherwise the values in

\〈lang〉hyphenmins will be used.

2875 \newif\ifbbl@usedategroup

2876 \def\bbl@switch#1{% from select@, foreign@

2877 % restore

2878 \originalTeX

2879 \expandafter\def\expandafter\originalTeX\expandafter{%

2880 \csname noextras#1\endcsname

2881 \let\originalTeX\@empty

2882 \babel@beginsave}%

2883 \bbl@usehooks{afterreset}{}%

2884 \languageshorthands{none}%

2885 % set the locale id

2886 \bbl@id@assign

2887 \chardef\localeid\@nameuse{bbl@id@@\languagename}%

2888 % switch captions, date

2889 \ifcase\bbl@select@type

2890 \ifhmode

2891 \hskip\z@skip % trick to ignore spaces

2892 \csname captions#1\endcsname\relax

2893 \csname date#1\endcsname\relax

2894 \loop\ifdim\lastskip>\z@\unskip\repeat\unskip

2895 \else

2896 \csname captions#1\endcsname\relax

2897 \csname date#1\endcsname\relax

2898 \fi

2899 \else

2900 \ifbbl@usedategroup % if \foreign... within \<lang>date

2901 \bbl@usedategroupfalse

2902 \ifhmode

2903 \hskip\z@skip % trick to ignore spaces

126

2904 \csname date#1\endcsname\relax

2905 \loop\ifdim\lastskip>\z@\unskip\repeat\unskip

2906 \else

2907 \csname date#1\endcsname\relax

2908 \fi

2909 \fi

2910 \fi

2911 % switch extras

2912 \bbl@usehooks{beforeextras}{}%

2913 \csname extras#1\endcsname\relax

2914 \bbl@usehooks{afterextras}{}%

2915 % > babel-ensure

2916 % > babel-sh-<short>

2917 % > babel-bidi

2918 % > babel-fontspec

2919 % hyphenation - case mapping

2920 \ifcase\bbl@opt@hyphenmap\or

2921 \def\BabelLower##1##2{\lccode##1=##2\relax}%

2922 \ifnum\bbl@hymapsel>4\else

2923 \csname\languagename @bbl@hyphenmap\endcsname

2924 \fi

2925 \chardef\bbl@opt@hyphenmap\z@

2926 \else

2927 \ifnum\bbl@hymapsel>\bbl@opt@hyphenmap\else

2928 \csname\languagename @bbl@hyphenmap\endcsname

2929 \fi

2930 \fi

2931 \global\let\bbl@hymapsel\@cclv

2932 % hyphenation - patterns

2933 \bbl@patterns{#1}%

2934 % hyphenation - mins

2935 \babel@savevariable\lefthyphenmin

2936 \babel@savevariable\righthyphenmin

2937 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

2938 \set@hyphenmins\tw@\thr@@\relax

2939 \else

2940 \expandafter\expandafter\expandafter\set@hyphenmins

2941 \csname #1hyphenmins\endcsname\relax

2942 \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the

\selectlanguage declarative command. When you are typesetting a document which

mixes left-to-right and right-to-left typesetting you have to use this environment in order to

let things work as you expect them to.

The \ignorespaces command is necessary to hide the environment when it is entered in

horizontal mode.

2943 \long\def\otherlanguage#1{%

2944 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@@\fi

2945 \csname selectlanguage \endcsname{#1}%

2946 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called in

horizontal mode.

2947 \long\def\endotherlanguage{%

2948 \global\@ignoretrue\ignorespaces}

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from a

different language needs to be typeset, but without changing the translation of words such

127

as ‘figure’. This environment makes use of \foreign@language.

2949 \expandafter\def\csname otherlanguage*\endcsname#1{%

2950 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi

2951 \foreign@language{#1}}

At the end of the environment we need to switch off the extra definitions. The grouping

mechanism of the environment will take care of resetting the correct hyphenation rules

and “extras”.

2952 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage

command. This command takes two arguments, the first argument is the name of the

language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only switches the

hyphenation rules and the extra definitions for the language specified. It does this within a

group and assumes the \extras〈lang〉 command doesn’t make any \global changes. The

coding is very similar to part of \selectlanguage.

\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to

be a ‘text’ command, and therefore it must emit a \leavevmode, but it does not, and

therefore the indent is placed on the opposite margin. For backward compatibility,

however, it is done only if a right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a

different script direction, while preserving the paragraph format (thank the braces around

\par, things like \hangindent are not reset). Do not use it in production, because its

semantics and its syntax may change (and very likely will, or even it could be removed

altogether). Currently it enters in vmode and then selects the language (which in turn sets

the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine

\BabelText which by default does nothing. Its behavior is not well defined yet. So, use it

in horizontal mode only if you do not want surprises.

In other words, at the beginning of a paragraph \foreignlanguage enters into hmode

with the surrounding lang, and with \foreignlanguage* with the new lang.

2953 \providecommand\bbl@beforeforeign{}

2954 \edef\foreignlanguage{%

2955 \noexpand\protect

2956 \expandafter\noexpand\csname foreignlanguage \endcsname}

2957 \expandafter\def\csname foreignlanguage \endcsname{%

2958 \@ifstar\bbl@foreign@s\bbl@foreign@x}

2959 \def\bbl@foreign@x#1#2{%

2960 \begingroup

2961 \let\BabelText\@firstofone

2962 \bbl@beforeforeign

2963 \foreign@language{#1}%

2964 \bbl@usehooks{foreign}{}%

2965 \BabelText{#2}% Now in horizontal mode!

2966 \endgroup}

2967 \def\bbl@foreign@s#1#2{% TODO - \shapemode, \@setpar, ?\@@par

2968 \begingroup

2969 {\par}%

2970 \let\BabelText\@firstofone

2971 \foreign@language{#1}%

2972 \bbl@usehooks{foreign*}{}%

2973 \bbl@dirparastext

2974 \BabelText{#2}% Still in vertical mode!

2975 {\par}%

2976 \endgroup}

128

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environment.

First we need to store the name of the language and check that it is a known language.

Then it just calls bbl@switch.

2977 \def\foreign@language#1{%

2978 % set name

2979 \edef\languagename{#1}%

2980 \bbl@fixname\languagename

2981 \bbl@iflanguage\languagename{%

2982 \expandafter\ifx\csname date\languagename\endcsname\relax

2983 \bbl@warning % TODO - why a warning, not an error?

2984 {Unknown language `#1'. Either you have\\%

2985 misspelled its name, it has not been installed,\\%

2986 or you requested it in a previous run. Fix its name,\\%

2987 install it or just rerun the file, respectively. In\\%

2988 some cases, you may need to remove the aux file.\\%

2989 I'll proceed, but expect wrong results.\\%

2990 Reported}%

2991 \fi

2992 % set type

2993 \let\bbl@select@type\@ne

2994 \expandafter\bbl@switch\expandafter{\languagename}}}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If special

hyphenation patterns are available specifically for the current font encoding, use them

instead of the default.

It also sets hyphenation exceptions, but only once, because they are global (here language

\lccode’s has been set, too). \bbl@hyphenation@ is set to relax until the very first

\babelhyphenation, so do nothing with this value. If the exceptions for a language (by its

number, not its name, so that :ENC is taken into account) has been set, then use

\hyphenation with both global and language exceptions and empty the latter to mark they

must not be set again.

2995 \let\bbl@hyphlist\@empty

2996 \let\bbl@hyphenation@\relax

2997 \let\bbl@pttnlist\@empty

2998 \let\bbl@patterns@\relax

2999 \let\bbl@hymapsel=\@cclv

3000 \def\bbl@patterns#1{%

3001 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

3002 \csname l@#1\endcsname

3003 \edef\bbl@tempa{#1}%

3004 \else

3005 \csname l@#1:\f@encoding\endcsname

3006 \edef\bbl@tempa{#1:\f@encoding}%

3007 \fi

3008 \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%

3009 % > luatex

3010 \@ifundefined{bbl@hyphenation@}{}{% Can be \relax!

3011 \begingroup

3012 \bbl@xin@{,\number\language,}{,\bbl@hyphlist}%

3013 \ifin@\else

3014 \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%

3015 \hyphenation{%

3016 \bbl@hyphenation@

3017 \@ifundefined{bbl@hyphenation@#1}%

3018 \@empty

3019 {\space\csname bbl@hyphenation@#1\endcsname}}%

3020 \xdef\bbl@hyphlist{\bbl@hyphlist\number\language,}%

129

3021 \fi

3022 \endgroup}}

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules. This

environment does not change \languagename and when the hyphenation rules specified

were not loaded it has no effect. Note however, \lccode’s and font encodings are not set at

all, so in most cases you should use otherlanguage*.

3023 \def\hyphenrules#1{%

3024 \edef\bbl@tempf{#1}%

3025 \bbl@fixname\bbl@tempf

3026 \bbl@iflanguage\bbl@tempf{%

3027 \expandafter\bbl@patterns\expandafter{\bbl@tempf}%

3028 \languageshorthands{none}%

3029 \expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax

3030 \set@hyphenmins\tw@\thr@@\relax

3031 \else

3032 \expandafter\expandafter\expandafter\set@hyphenmins

3033 \csname\bbl@tempf hyphenmins\endcsname\relax

3034 \fi}}

3035 \let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to provide

a default setting for the hyphenation parameters \lefthyphenmin and \righthyphenmin.

If the macro \〈lang〉hyphenmins is already defined this command has no effect.

3036 \def\providehyphenmins#1#2{%

3037 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

3038 \@namedef{#1hyphenmins}{#2}%

3039 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects two values

as its argument.

3040 \def\set@hyphenmins#1#2{%

3041 \lefthyphenmin#1\relax

3042 \righthyphenmin#2\relax}

\ProvidesLanguage The identification code for each file is something that was introduced in LATEX2ε. When the

command \ProvidesFile does not exist, a dummy definition is provided temporarily. For

use in the language definition file the command \ProvidesLanguage is defined by babel.

Depending on the format, ie, on if the former is defined, we use a similar definition or not.

3043 \ifx\ProvidesFile\@undefined

3044 \def\ProvidesLanguage#1[#2 #3 #4]{%

3045 \wlog{Language: #1 #4 #3 <#2>}%

3046 }

3047 \else

3048 \def\ProvidesLanguage#1{%

3049 \begingroup

3050 \catcode`\ 10 %

3051 \@makeother\/%

3052 \@ifnextchar[%]

3053 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}

3054 \def\@provideslanguage#1[#2]{%

3055 \wlog{Language: #1 #2}%

3056 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%

3057 \endgroup}

3058 \fi

130

\LdfInit This macro is defined in two versions. The first version is to be part of the ‘kernel’ of babel,

ie. the part that is loaded in the format; the second version is defined in babel.def. The

version in the format just checks the category code of the ampersand and then loads

babel.def.

The category code of the ampersand is restored and the macro calls itself again with the

new definition from babel.def

3059 \def\LdfInit{%

3060 \chardef\atcatcode=\catcode`\@

3061 \catcode`\@=11\relax

3062 \input babel.def\relax

3063 \catcode`\@=\atcatcode \let\atcatcode\relax

3064 \LdfInit}

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to be

expandable we \let it to \@empty instead of \relax.

3065 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro

which initialises the save mechanism, \babel@beginsave, is not considered to be

undefined.

3066 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

A few macro names are reserved for future releases of babel, which will use the concept of

‘locale’:

3067 \providecommand\setlocale{%

3068 \bbl@error

3069 {Not yet available}%

3070 {Find an armchair, sit down and wait}}

3071 \let\uselocale\setlocale

3072 \let\locale\setlocale

3073 \let\selectlocale\setlocale

3074 \let\textlocale\setlocale

3075 \let\textlanguage\setlocale

3076 \let\languagetext\setlocale

11.2 Errors

\@nolanerr

\@nopatterns

The babel package will signal an error when a documents tries to select a language that

hasn’t been defined earlier. When a user selects a language for which no hyphenation

patterns were loaded into the format he will be given a warning about that fact. We revert

to the patterns for \language=0 in that case. In most formats that will be (US)english, but it

might also be empty.

\@noopterr When the package was loaded without options not everything will work as expected. An

error message is issued in that case.

When the format knows about \PackageError it must be LATEX2ε, so we can safely use its

error handling interface. Otherwise we’ll have to ‘keep it simple’.

3077 \edef\bbl@nulllanguage{\string\language=0}

3078 \ifx\PackageError\@undefined

3079 \def\bbl@error#1#2{%

3080 \begingroup

3081 \newlinechar=`\^^J

3082 \def\\{^^J(babel) }%

3083 \errhelp{#2}\errmessage{\\#1}%

3084 \endgroup}

3085 \def\bbl@warning#1{%

131

3086 \begingroup

3087 \newlinechar=`\^^J

3088 \def\\{^^J(babel) }%

3089 \message{\\#1}%

3090 \endgroup}

3091 \def\bbl@info#1{%

3092 \begingroup

3093 \newlinechar=`\^^J

3094 \def\\{^^J}%

3095 \wlog{#1}%

3096 \endgroup}

3097 \else

3098 \def\bbl@error#1#2{%

3099 \begingroup

3100 \def\\{\MessageBreak}%

3101 \PackageError{babel}{#1}{#2}%

3102 \endgroup}

3103 \def\bbl@warning#1{%

3104 \begingroup

3105 \def\\{\MessageBreak}%

3106 \PackageWarning{babel}{#1}%

3107 \endgroup}

3108 \def\bbl@info#1{%

3109 \begingroup

3110 \def\\{\MessageBreak}%

3111 \PackageInfo{babel}{#1}%

3112 \endgroup}

3113 \fi

3114 \@ifpackagewith{babel}{silent}

3115 {\let\bbl@info\@gobble

3116 \let\bbl@warning\@gobble}

3117 {}

3118 \def\bbl@nocaption{\protect\bbl@nocaption@i}

3119 \def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname

3120 \global\@namedef{#2}{\textbf{?#1?}}%

3121 \@nameuse{#2}%

3122 \bbl@warning{%

3123 \@backslashchar#2 not set. Please, define\\%

3124 it in the preamble with something like:\\%

3125 \string\renewcommand\@backslashchar#2{..}\\%

3126 Reported}}

3127 \def\bbl@tentative{\protect\bbl@tentative@i}

3128 \def\bbl@tentative@i#1{%

3129 \bbl@warning{%

3130 Some functions for '#1' are tentative.\\%

3131 They might not work as expected and their behavior\\%

3132 could change in the future.\\%

3133 Reported}}

3134 \def\@nolanerr#1{%

3135 \bbl@error

3136 {You haven't defined the language #1\space yet}%

3137 {Your command will be ignored, type <return> to proceed}}

3138 \def\@nopatterns#1{%

3139 \bbl@warning

3140 {No hyphenation patterns were preloaded for\\%

3141 the language `#1' into the format.\\%

3142 Please, configure your TeX system to add them and\\%

3143 rebuild the format. Now I will use the patterns\\%

3144 preloaded for \bbl@nulllanguage\space instead}}

132

3145 \let\bbl@usehooks\@gobbletwo

3146 〈/kernel〉
3147 〈∗patterns〉

12 Loading hyphenation patterns

The following code is meant to be read by iniTEX because it should instruct TEX to read

hyphenation patterns. To this end the docstrip option patterns can be used to include

this code in the file hyphen.cfg. Code is written with lower level macros.

We want to add a message to the message LATEX 2.09 puts in the \everyjob register. This

could be done by the following code:

\let\orgeveryjob\everyjob

\def\everyjob#1{%

\orgeveryjob{#1}%

\orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{%

hyphenation patterns for \the\loaded@patterns loaded.}}%

\let\everyjob\orgeveryjob\let\orgeveryjob\@undefined}

The code above redefines the control sequence \everyjob in order to be able to add

something to the current contents of the register. This is necessary because the processing

of hyphenation patterns happens long before LATEX fills the register.

There are some problems with this approach though.

• When someone wants to use several hyphenation patterns with SLiTEX the above

scheme won’t work. The reason is that SLiTEX overwrites the contents of the \everyjob

register with its own message.

• Plain TEX does not use the \everyjob register so the message would not be displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed when creating

a new format file there is one command that is sure to be used, \dump. Therefore the

original \dump is saved in \org@dump and a new definition is supplied.

To make sure that LATEX 2.09 executes the \@begindocumenthook we would want to alter

\begin{document}, but as this done too often already, we add the new code at the front of

\@preamblecmds. But we can only do that after it has been defined, so we add this piece of

code to \dump.

This new definition starts by adding an instruction to write a message on the terminal and

in the transcript file to inform the user of the preloaded hyphenation patterns.

Then everything is restored to the old situation and the format is dumped.

3148 〈〈Make sure ProvidesFile is defined〉〉
3149 \ProvidesFile{hyphen.cfg}[〈〈date〉〉 〈〈version〉〉 Babel hyphens]

3150 \xdef\bbl@format{\jobname}

3151 \ifx\AtBeginDocument\@undefined

3152 \def\@empty{}

3153 \let\orig@dump\dump

3154 \def\dump{%

3155 \ifx\@ztryfc\@undefined

3156 \else

3157 \toks0=\expandafter{\@preamblecmds}%

3158 \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}%

3159 \def\@begindocumenthook{}%

3160 \fi

3161 \let\dump\orig@dump\let\orig@dump\@undefined\dump}

3162 \fi

3163 〈〈Define core switching macros〉〉

133

\process@line Each line in the file language.dat is processed by \process@line after it is read. The first

thing this macro does is to check whether the line starts with =. When the first token of a

line is an =, the macro \process@synonym is called; otherwise the macro

\process@language will continue.

3164 \def\process@line#1#2 #3 #4 {%

3165 \ifx=#1%

3166 \process@synonym{#2}%

3167 \else

3168 \process@language{#1#2}{#3}{#4}%

3169 \fi

3170 \ignorespaces}

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token register to

begin with. \bbl@languages is also set to empty.

3171 \toks@{}

3172 \def\bbl@languages{}

When no languages have been loaded yet, the name following the = will be a synonym for

hyphenation register 0. So, it is stored in a token register and executed when the first

pattern file has been processed. (The \relax just helps to the \if below catching

synonyms without a language.)

Otherwise the name will be a synonym for the language loaded last.

We also need to copy the hyphenmin parameters for the synonym.

3173 \def\process@synonym#1{%

3174 \ifnum\last@language=\m@ne

3175 \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%

3176 \else

3177 \expandafter\chardef\csname l@#1\endcsname\last@language

3178 \wlog{\string\l@#1=\string\language\the\last@language}%

3179 \expandafter\let\csname #1hyphenmins\expandafter\endcsname

3180 \csname\languagename hyphenmins\endcsname

3181 \let\bbl@elt\relax

3182 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}%

3183 \fi}

\process@language The macro \process@language is used to process a non-empty line from the ‘configuration

file’. It has three arguments, each delimited by white space. The first argument is the

‘name’ of a language; the second is the name of the file that contains the patterns. The

optional third argument is the name of a file containing hyphenation exceptions.

The first thing to do is call \addlanguage to allocate a pattern register and to make that

register ‘active’. Then the pattern file is read.

For some hyphenation patterns it is needed to load them with a specific font encoding

selected. This can be specified in the file language.dat by adding for instance ‘:T1’ to the

name of the language. The macro \bbl@get@enc extracts the font encoding from the

language name and stores it in \bbl@hyph@enc. The latter can be used in hyphenation files

if you need to set a behavior depending on the given encoding (it is set to empty if no

encoding is given).

Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin. TEX does

not keep track of these assignments. Therefore we try to detect such assignments and store

them in the \〈lang〉hyphenmins macro. When no assignments were made we provide a

default setting.

Some pattern files contain changes to the \lccode en \uccode arrays. Such changes should

remain local to the language; therefore we process the pattern file in a group; the

\patterns command acts globally so its effect will be remembered.

Then we globally store the settings of \lefthyphenmin and \righthyphenmin and close the

group.

134

When the hyphenation patterns have been processed we need to see if a file with

hyphenation exceptions needs to be read. This is the case when the third argument is not

empty and when it does not contain a space token. (Note however there is no need to save

hyphenation exceptions into the format.)

\bbl@languages saves a snapshot of the loaded languages in the form

\bbl@elt{〈language-name〉}{〈number〉} {〈patterns-file〉}{〈exceptions-file〉}. Note the last
2 arguments are empty in ‘dialects’ defined in language.dat with =. Note also the

language name can have encoding info.

Finally, if the counter \language is equal to zero we execute the synonyms stored.

3184 \def\process@language#1#2#3{%

3185 \expandafter\addlanguage\csname l@#1\endcsname

3186 \expandafter\language\csname l@#1\endcsname

3187 \edef\languagename{#1}%

3188 \bbl@hook@everylanguage{#1}%

3189 % > luatex

3190 \bbl@get@enc#1::\@@@

3191 \begingroup

3192 \lefthyphenmin\m@ne

3193 \bbl@hook@loadpatterns{#2}%

3194 % > luatex

3195 \ifnum\lefthyphenmin=\m@ne

3196 \else

3197 \expandafter\xdef\csname #1hyphenmins\endcsname{%

3198 \the\lefthyphenmin\the\righthyphenmin}%

3199 \fi

3200 \endgroup

3201 \def\bbl@tempa{#3}%

3202 \ifx\bbl@tempa\@empty\else

3203 \bbl@hook@loadexceptions{#3}%

3204 % > luatex

3205 \fi

3206 \let\bbl@elt\relax

3207 \edef\bbl@languages{%

3208 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa}}%

3209 \ifnum\the\language=\z@

3210 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

3211 \set@hyphenmins\tw@\thr@@\relax

3212 \else

3213 \expandafter\expandafter\expandafter\set@hyphenmins

3214 \csname #1hyphenmins\endcsname

3215 \fi

3216 \the\toks@

3217 \toks@{}%

3218 \fi}

\bbl@get@enc

\bbl@hyph@enc

The macro \bbl@get@enc extracts the font encoding from the language name and stores it

in \bbl@hyph@enc. It uses delimited arguments to achieve this.

3219 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way.

Besides luatex, format-specific configuration files are taken into account.

3220 \def\bbl@hook@everylanguage#1{}

3221 \def\bbl@hook@loadpatterns#1{\input #1\relax}

3222 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns

3223 \let\bbl@hook@loadkernel\bbl@hook@loadpatterns

3224 \begingroup

3225 \def\AddBabelHook#1#2{%

135

3226 \expandafter\ifx\csname bbl@hook@#2\endcsname\relax

3227 \def\next{\toks1}%

3228 \else

3229 \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%

3230 \fi

3231 \next}

3232 \ifx\directlua\@undefined

3233 \ifx\XeTeXinputencoding\@undefined\else

3234 \input xebabel.def

3235 \fi

3236 \else

3237 \input luababel.def

3238 \fi

3239 \openin1 = babel-\bbl@format.cfg

3240 \ifeof1

3241 \else

3242 \input babel-\bbl@format.cfg\relax

3243 \fi

3244 \closein1

3245 \endgroup

3246 \bbl@hook@loadkernel{switch.def}

\readconfigfile The configuration file can now be opened for reading.

3247 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be

informed about this.

3248 \def\languagename{english}%

3249 \ifeof1

3250 \message{I couldn't find the file language.dat,\space

3251 I will try the file hyphen.tex}

3252 \input hyphen.tex\relax

3253 \chardef\l@english\z@

3254 \else

Pattern registers are allocated using count register \last@language. Its initial value is 0.

The definition of the macro \newlanguage is such that it first increments the count register

and then defines the language. In order to have the first patterns loaded in pattern register

number 0 we initialize \last@language with the value−1.

3255 \last@language\m@ne

We now read lines from the file until the end is found

3256 \loop

While reading from the input, it is useful to switch off recognition of the end-of-line

character. This saves us stripping off spaces from the contents of the control sequence.

3257 \endlinechar\m@ne

3258 \read1 to \bbl@line

3259 \endlinechar`\^^M

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add

3 space characters to the end of \bbl@line. This is needed to be able to recognize the

arguments of \process@line later on. The default language should be the very first one.

3260 \if T\ifeof1F\fi T\relax

3261 \ifx\bbl@line\@empty\else

3262 \edef\bbl@line{\bbl@line\space\space\space}%

3263 \expandafter\process@line\bbl@line\relax

3264 \fi

3265 \repeat

136

Check for the end of the file. We must reverse the test for \ifeof without \else. Then

reactivate the default patterns.

3266 \begingroup

3267 \def\bbl@elt#1#2#3#4{%

3268 \global\language=#2\relax

3269 \gdef\languagename{#1}%

3270 \def\bbl@elt##1##2##3##4{}}%

3271 \bbl@languages

3272 \endgroup

3273 \fi

and close the configuration file.

3274 \closein1

We add a message about the fact that babel is loaded in the format and with which

language patterns to the \everyjob register.

3275 \if/\the\toks@/\else

3276 \errhelp{language.dat loads no language, only synonyms}

3277 \errmessage{Orphan language synonym}

3278 \fi

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally

load switch.def, but the latter is not required and the line inputting it may be commented

out.

3279 \let\bbl@line\@undefined

3280 \let\process@line\@undefined

3281 \let\process@synonym\@undefined

3282 \let\process@language\@undefined

3283 \let\bbl@get@enc\@undefined

3284 \let\bbl@hyph@enc\@undefined

3285 \let\bbl@tempa\@undefined

3286 \let\bbl@hook@loadkernel\@undefined

3287 \let\bbl@hook@everylanguage\@undefined

3288 \let\bbl@hook@loadpatterns\@undefined

3289 \let\bbl@hook@loadexceptions\@undefined

3290 〈/patterns〉

Here the code for iniTEX ends.

13 Font handling with fontspec

Add the bidi handler just before luaoftload, which is loaded by default by LaTeX. Just in

case, consider the possibility it has not been loaded. First, a couple of definitions related to

bidi [misplaced].

3291 〈〈∗More package options〉〉 ≡
3292 \ifodd\bbl@engine

3293 \DeclareOption{bidi=basic-r}%

3294 {\ExecuteOptions{bidi=basic}}

3295 \DeclareOption{bidi=basic}%

3296 {\let\bbl@beforeforeign\leavevmode

3297 % TODO - to locale_props, not as separate attribute

3298 \newattribute\bbl@attr@dir

3299 % I don't like it, hackish:

3300 \frozen@everymath\expandafter{%

3301 \expandafter\bbl@mathboxdir\the\frozen@everymath}%

3302 \frozen@everydisplay\expandafter{%

3303 \expandafter\bbl@mathboxdir\the\frozen@everydisplay}%

137

3304 \bbl@exp{\output{\bodydir\pagedir\the\output}}%

3305 \AtEndOfPackage{\EnableBabelHook{babel-bidi}}}

3306 \else

3307 \DeclareOption{bidi=basic-r}%

3308 {\ExecuteOptions{bidi=basic}}

3309 \DeclareOption{bidi=basic}%

3310 {\bbl@error

3311 {The bidi method `basic' is available only in\\%

3312 luatex. I'll continue with `bidi=default', so\\%

3313 expect wrong results}%

3314 {See the manual for further details.}%

3315 \let\bbl@beforeforeign\leavevmode

3316 \AtEndOfPackage{%

3317 \EnableBabelHook{babel-bidi}%

3318 \bbl@xebidipar}}

3319 \def\bbl@loadxebidi#1{%

3320 \ifx\RTLfootnotetext\@undefined

3321 \AtEndOfPackage{%

3322 \EnableBabelHook{babel-bidi}%

3323 \ifx\fontspec\@undefined

3324 \usepackage{fontspec}% bidi needs fontspec

3325 \fi

3326 \usepackage#1{bidi}}%

3327 \fi}

3328 \DeclareOption{bidi=bidi}%

3329 {\bbl@tentative{bidi=bidi}%

3330 \bbl@loadxebidi{}}

3331 \DeclareOption{bidi=bidi-r}%

3332 {\bbl@tentative{bidi=bidi-r}%

3333 \bbl@loadxebidi{[rldocument]}}

3334 \DeclareOption{bidi=bidi-l}%

3335 {\bbl@tentative{bidi=bidi-l}%

3336 \bbl@loadxebidi{}}

3337 \fi

3338 \DeclareOption{bidi=default}%

3339 {\let\bbl@beforeforeign\leavevmode

3340 \ifodd\bbl@engine

3341 \newattribute\bbl@attr@dir

3342 \bbl@exp{\output{\bodydir\pagedir\the\output}}%

3343 \fi

3344 \AtEndOfPackage{%

3345 \EnableBabelHook{babel-bidi}%

3346 \ifodd\bbl@engine\else

3347 \bbl@xebidipar

3348 \fi}}

3349 〈〈/More package options〉〉

With explicit languages, we could define the font at once, but we don’t. Just wait and see if

the language is actually activated. bbl@font replaces hardcoded font names inside

\..family by the corresponding macro \..default.

3350 〈〈∗Font selection〉〉 ≡
3351 \bbl@trace{Font handling with fontspec}

3352 \@onlypreamble\babelfont

3353 \newcommand\babelfont[2][]{% 1=langs/scripts 2=fam

3354 \edef\bbl@tempa{#1}%

3355 \def\bbl@tempb{#2}% Used by \bbl@bblfont

3356 \ifx\fontspec\@undefined

3357 \usepackage{fontspec}%

3358 \fi

138

3359 \EnableBabelHook{babel-fontspec}% Just calls \bbl@switchfont

3360 \bbl@bblfont}

3361 \newcommand\bbl@bblfont[2][]{% 1=features 2=fontname, @font=rm|sf|tt

3362 \bbl@ifunset{\bbl@tempb family}%

3363 {\bbl@providefam{\bbl@tempb}}%

3364 {\bbl@exp{%

3365 \\\bbl@sreplace\<\bbl@tempb family >%

3366 {\@nameuse{\bbl@tempb default}}{\<\bbl@tempb default>}}}%

3367 % For the default font, just in case:

3368 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

3369 \expandafter\bbl@ifblank\expandafter{\bbl@tempa}%

3370 {\bbl@csarg\edef{\bbl@tempb dflt@}{<>{#1}{#2}}% save bbl@rmdflt@

3371 \bbl@exp{%

3372 \let\<bbl@\bbl@tempb dflt@\languagename>\<bbl@\bbl@tempb dflt@>%

3373 \\\bbl@font@set\<bbl@\bbl@tempb dflt@\languagename>%

3374 \<\bbl@tempb default>\<\bbl@tempb family>}}%

3375 {\bbl@foreach\bbl@tempa{% ie bbl@rmdflt@lang / *scrt

3376 \bbl@csarg\def{\bbl@tempb dflt@##1}{<>{#1}{#2}}}}}%

If the family in the previous command does not exist, it must be defined. Here is how:

3377 \def\bbl@providefam#1{%

3378 \bbl@exp{%

3379 \\\newcommand\<#1default>{}% Just define it

3380 \\\bbl@add@list\\\bbl@font@fams{#1}%

3381 \\\DeclareRobustCommand\<#1family>{%

3382 \\\not@math@alphabet\<#1family>\relax

3383 \\\fontfamily\<#1default>\\\selectfont}%

3384 \\\DeclareTextFontCommand{\<text#1>}{\<#1family>}}}

The following macro is activated when the hook babel-fontspec is enabled. But before

we define a macro for a warning, which sets a flag to avoid duplicate them.

3385 \def\bbl@nostdfont#1{%

3386 \bbl@ifunset{bbl@WFF@\f@family}%

3387 {\bbl@csarg\gdef{WFF@\f@family}{}% Flag, to avoid dupl warns

3388 \bbl@warning{The current font is not a babel standard family:\\%

3389 #1%

3390 \fontname\font\\%

3391 There is nothing intrinsically wrong with this warning, and\\%

3392 you can ignore it altogether if you do not need these\\%

3393 families. But if they are used in the document, you should be\\%

3394 aware 'babel' will no set Script and Language for them, so\\%

3395 you may consider defining a new family with \string\babelfont.\\%

3396 See the manual for further details about \string\babelfont.\\%

3397 Reported}}

3398 {}}%

3399 \gdef\bbl@switchfont{%

3400 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

3401 \bbl@exp{% eg Arabic -> arabic

3402 \lowercase{\edef\\\bbl@tempa{\bbl@cs{sname@\languagename}}}}%

3403 \bbl@foreach\bbl@font@fams{%

3404 \bbl@ifunset{bbl@##1dflt@\languagename}% (1) language?

3405 {\bbl@ifunset{bbl@##1dflt@*\bbl@tempa}% (2) from script?

3406 {\bbl@ifunset{bbl@##1dflt@}% 2=F - (3) from generic?

3407 {}% 123=F - nothing!

3408 {\bbl@exp{% 3=T - from generic

3409 \global\let\<bbl@##1dflt@\languagename>%

3410 \<bbl@##1dflt@>}}}%

3411 {\bbl@exp{% 2=T - from script

3412 \global\let\<bbl@##1dflt@\languagename>%

139

3413 \<bbl@##1dflt@*\bbl@tempa>}}}%

3414 {}}% 1=T - language, already defined

3415 \def\bbl@tempa{\bbl@nostdfont{}}%

3416 \bbl@foreach\bbl@font@fams{% don't gather with prev for

3417 \bbl@ifunset{bbl@##1dflt@\languagename}%

3418 {\bbl@cs{famrst@##1}%

3419 \global\bbl@csarg\let{famrst@##1}\relax}%

3420 {\bbl@exp{% order is relevant

3421 \\\bbl@add\\\originalTeX{%

3422 \\\bbl@font@rst{\bbl@cs{##1dflt@\languagename}}%

3423 \<##1default>\<##1family>{##1}}%

3424 \\\bbl@font@set\<bbl@##1dflt@\languagename>% the main part!

3425 \<##1default>\<##1family>}}}%

3426 \bbl@ifrestoring{}{\bbl@tempa}}%

The following is executed at the beginning of the aux file or the document to warn about

fonts not defined with \babelfont.

3427 \ifx\f@family\@undefined\else % if latex

3428 \ifcase\bbl@engine % if pdftex

3429 \let\bbl@ckeckstdfonts\relax

3430 \else

3431 \def\bbl@ckeckstdfonts{%

3432 \begingroup

3433 \global\let\bbl@ckeckstdfonts\relax

3434 \let\bbl@tempa\@empty

3435 \bbl@foreach\bbl@font@fams{%

3436 \bbl@ifunset{bbl@##1dflt@}%

3437 {\@nameuse{##1family}%

3438 \bbl@csarg\gdef{WFF@\f@family}{}% Flag

3439 \bbl@exp{\\\bbl@add\\\bbl@tempa{* \<##1family> / \f@family\\\\%

3440 \space\space\fontname\font\\\\}}%

3441 \bbl@csarg\xdef{##1dflt@}{\f@family}%

3442 \expandafter\xdef\csname ##1default\endcsname{\f@family}}%

3443 {}}%

3444 \ifx\bbl@tempa\@empty\else

3445 \bbl@warning{The following fonts are not babel standard families:\\%

3446 \bbl@tempa

3447 There is nothing intrinsically wrong with it, but\\%

3448 'babel' will no set Script and Language. Consider\\%

3449 defining a new family with \string\babelfont.\\%

3450 Reported}%

3451 \fi

3452 \endgroup}

3453 \fi

3454 \fi

Now the macros defining the font with fontspec.

When there are repeated keys in fontspec, the last value wins. So, we just place the ini

settings at the beginning, and user settings will take precedence. We must deactivate

temporarily \bbl@mapselect because \selectfont is called internally when a font is

defined.

3455 \def\bbl@font@set#1#2#3{% eg \bbl@rmdflt@lang \rmdefault \rmfamily

3456 \bbl@xin@{<>}{#1}%

3457 \ifin@

3458 \bbl@exp{\\\bbl@fontspec@set\\#1\expandafter\@gobbletwo#1\\#3}%

3459 \fi

3460 \bbl@exp{%

3461 \def\\#2{#1}% eg, \rmdefault{\bbl@rmdflt@lang}

3462 \\\bbl@ifsamestring{#2}{\f@family}{\\#3\let\\\bbl@tempa\relax}{}}}

140

3463 % TODO - next should be global?, but even local does its job. I'm

3464 % still not sure -- must investigate:

3465 \def\bbl@fontspec@set#1#2#3#4{% eg \bbl@rmdflt@lang fnt-opt fnt-nme \xxfamily

3466 \let\bbl@tempe\bbl@mapselect

3467 \let\bbl@mapselect\relax

3468 \let\bbl@temp@fam#4% eg, '\rmfamily', to be restored below

3469 \let#4\relax % So that can be used with \newfontfamily

3470 \bbl@exp{%

3471 \let\\\bbl@temp@pfam\<\bbl@stripslash#4\space>% eg, '\rmfamily '

3472 \<keys_if_exist:nnF>{fontspec-opentype}%

3473 {Script/\bbl@cs{sname@\languagename}}%

3474 {\\\newfontscript{\bbl@cs{sname@\languagename}}%

3475 {\bbl@cs{sotf@\languagename}}}%

3476 \<keys_if_exist:nnF>{fontspec-opentype}%

3477 {Language/\bbl@cs{lname@\languagename}}%

3478 {\\\newfontlanguage{\bbl@cs{lname@\languagename}}%

3479 {\bbl@cs{lotf@\languagename}}}%

3480 \\\newfontfamily\\#4%

3481 [\bbl@cs{lsys@\languagename},#2]}{#3}% ie \bbl@exp{..}{#3}

3482 \begingroup

3483 #4%

3484 \xdef#1{\f@family}% eg, \bbl@rmdflt@lang{FreeSerif(0)}

3485 \endgroup

3486 \let#4\bbl@temp@fam

3487 \bbl@exp{\let\<\bbl@stripslash#4\space>}\bbl@temp@pfam

3488 \let\bbl@mapselect\bbl@tempe}%

font@rst and famrst are only used when there is no global settings, to save and restore de

previous families. Not really necessary, but done for optimization.

3489 \def\bbl@font@rst#1#2#3#4{%

3490 \bbl@csarg\def{famrst@#4}{\bbl@font@set{#1}#2#3}}

The default font families. They are eurocentric, but the list can be expanded easily with

\babelfont.

3491 \def\bbl@font@fams{rm,sf,tt}

The old tentative way. Short and preverved for compatibility, but deprecated. Note there is

no direct alternative for \babelFSfeatures. The reason in explained in the user guide, but

essentially – that was not the way to go :-).

3492 \newcommand\babelFSstore[2][]{%

3493 \bbl@ifblank{#1}%

3494 {\bbl@csarg\def{sname@#2}{Latin}}%

3495 {\bbl@csarg\def{sname@#2}{#1}}%

3496 \bbl@provide@dirs{#2}%

3497 \bbl@csarg\ifnum{wdir@#2}>\z@

3498 \let\bbl@beforeforeign\leavevmode

3499 \EnableBabelHook{babel-bidi}%

3500 \fi

3501 \bbl@foreach{#2}{%

3502 \bbl@FSstore{##1}{rm}\rmdefault\bbl@save@rmdefault

3503 \bbl@FSstore{##1}{sf}\sfdefault\bbl@save@sfdefault

3504 \bbl@FSstore{##1}{tt}\ttdefault\bbl@save@ttdefault}}

3505 \def\bbl@FSstore#1#2#3#4{%

3506 \bbl@csarg\edef{#2default#1}{#3}%

3507 \expandafter\addto\csname extras#1\endcsname{%

3508 \let#4#3%

3509 \ifx#3\f@family

3510 \edef#3{\csname bbl@#2default#1\endcsname}%

3511 \fontfamily{#3}\selectfont

141

3512 \else

3513 \edef#3{\csname bbl@#2default#1\endcsname}%

3514 \fi}%

3515 \expandafter\addto\csname noextras#1\endcsname{%

3516 \ifx#3\f@family

3517 \fontfamily{#4}\selectfont

3518 \fi

3519 \let#3#4}}

3520 \let\bbl@langfeatures\@empty

3521 \def\babelFSfeatures{% make sure \fontspec is redefined once

3522 \let\bbl@ori@fontspec\fontspec

3523 \renewcommand\fontspec[1][]{%

3524 \bbl@ori@fontspec[\bbl@langfeatures##1]}

3525 \let\babelFSfeatures\bbl@FSfeatures

3526 \babelFSfeatures}

3527 \def\bbl@FSfeatures#1#2{%

3528 \expandafter\addto\csname extras#1\endcsname{%

3529 \babel@save\bbl@langfeatures

3530 \edef\bbl@langfeatures{#2,}}}

3531 〈〈/Font selection〉〉

14 Hooks for XeTeX and LuaTeX

14.1 XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to

utf8, which seems a sensible default.

LATEX sets many “codes” just before loading hyphen.cfg. That is not a problem in luatex,

but in xetex they must be reset to the proper value. Most of the work is done in

xe(la)tex.ini, so here we just “undo” some of the changes done by LATEX. Anyway, for

consistency LuaTEX also resets the catcodes.

3532 〈〈∗Restore Unicode catcodes before loading patterns〉〉 ≡
3533 \begingroup

3534 % Reset chars "80-"C0 to category "other", no case mapping:

3535 \catcode`\@=11 \count@=128

3536 \loop\ifnum\count@<192

3537 \global\uccode\count@=0 \global\lccode\count@=0

3538 \global\catcode\count@=12 \global\sfcode\count@=1000

3539 \advance\count@ by 1 \repeat

3540 % Other:

3541 \def\O ##1 {%

3542 \global\uccode"##1=0 \global\lccode"##1=0

3543 \global\catcode"##1=12 \global\sfcode"##1=1000 }%

3544 % Letter:

3545 \def\L ##1 ##2 ##3 {\global\catcode"##1=11

3546 \global\uccode"##1="##2

3547 \global\lccode"##1="##3

3548 % Uppercase letters have sfcode=999:

3549 \ifnum"##1="##3 \else \global\sfcode"##1=999 \fi }%

3550 % Letter without case mappings:

3551 \def\l ##1 {\L ##1 ##1 ##1 }%

3552 \l 00AA

3553 \L 00B5 039C 00B5

3554 \l 00BA

3555 \O 00D7

3556 \l 00DF

3557 \O 00F7

142

3558 \L 00FF 0178 00FF

3559 \endgroup

3560 \input #1\relax

3561 〈〈/Restore Unicode catcodes before loading patterns〉〉

Some more common code.

3562 〈〈∗Footnote changes〉〉 ≡
3563 \bbl@trace{Bidi footnotes}

3564 \ifx\bbl@beforeforeign\leavevmode

3565 \def\bbl@footnote#1#2#3{%

3566 \@ifnextchar[%

3567 {\bbl@footnote@o{#1}{#2}{#3}}%

3568 {\bbl@footnote@x{#1}{#2}{#3}}}

3569 \def\bbl@footnote@x#1#2#3#4{%

3570 \bgroup

3571 \select@language@x{\bbl@main@language}%

3572 \bbl@fn@footnote{#2#1{\ignorespaces#4}#3}%

3573 \egroup}

3574 \def\bbl@footnote@o#1#2#3[#4]#5{%

3575 \bgroup

3576 \select@language@x{\bbl@main@language}%

3577 \bbl@fn@footnote[#4]{#2#1{\ignorespaces#5}#3}%

3578 \egroup}

3579 \def\bbl@footnotetext#1#2#3{%

3580 \@ifnextchar[%

3581 {\bbl@footnotetext@o{#1}{#2}{#3}}%

3582 {\bbl@footnotetext@x{#1}{#2}{#3}}}

3583 \def\bbl@footnotetext@x#1#2#3#4{%

3584 \bgroup

3585 \select@language@x{\bbl@main@language}%

3586 \bbl@fn@footnotetext{#2#1{\ignorespaces#4}#3}%

3587 \egroup}

3588 \def\bbl@footnotetext@o#1#2#3[#4]#5{%

3589 \bgroup

3590 \select@language@x{\bbl@main@language}%

3591 \bbl@fn@footnotetext[#4]{#2#1{\ignorespaces#5}#3}%

3592 \egroup}

3593 \def\BabelFootnote#1#2#3#4{%

3594 \ifx\bbl@fn@footnote\@undefined

3595 \let\bbl@fn@footnote\footnote

3596 \fi

3597 \ifx\bbl@fn@footnotetext\@undefined

3598 \let\bbl@fn@footnotetext\footnotetext

3599 \fi

3600 \bbl@ifblank{#2}%

3601 {\def#1{\bbl@footnote{\@firstofone}{#3}{#4}}

3602 \@namedef{\bbl@stripslash#1text}%

3603 {\bbl@footnotetext{\@firstofone}{#3}{#4}}}%

3604 {\def#1{\bbl@exp{\\\bbl@footnote{\\\foreignlanguage{#2}}}{#3}{#4}}%

3605 \@namedef{\bbl@stripslash#1text}%

3606 {\bbl@exp{\\\bbl@footnotetext{\\\foreignlanguage{#2}}}{#3}{#4}}}}

3607 \fi

3608 〈〈/Footnote changes〉〉

Now, the code.

3609 〈∗xetex〉
3610 \def\BabelStringsDefault{unicode}

3611 \let\xebbl@stop\relax

3612 \AddBabelHook{xetex}{encodedcommands}{%

143

3613 \def\bbl@tempa{#1}%

3614 \ifx\bbl@tempa\@empty

3615 \XeTeXinputencoding"bytes"%

3616 \else

3617 \XeTeXinputencoding"#1"%

3618 \fi

3619 \def\xebbl@stop{\XeTeXinputencoding"utf8"}}

3620 \AddBabelHook{xetex}{stopcommands}{%

3621 \xebbl@stop

3622 \let\xebbl@stop\relax}

3623 \def\bbl@intraspace#1 #2 #3\@@{%

3624 \bbl@csarg\gdef{xeisp@\bbl@cs{sbcp@\languagename}}%

3625 {\XeTeXlinebreakskip #1em plus #2em minus #3em\relax}}

3626 \def\bbl@intrapenalty#1\@@{%

3627 \bbl@csarg\gdef{xeipn@\bbl@cs{sbcp@\languagename}}%

3628 {\XeTeXlinebreakpenalty #1\relax}}

3629 \AddBabelHook{xetex}{loadkernel}{%

3630 〈〈Restore Unicode catcodes before loading patterns〉〉}
3631 \ifx\DisableBabelHook\@undefined\endinput\fi

3632 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}

3633 \AddBabelHook{babel-fontspec}{beforestart}{\bbl@ckeckstdfonts}

3634 \DisableBabelHook{babel-fontspec}

3635 〈〈Font selection〉〉
3636 \input txtbabel.def

3637 〈/xetex〉

14.2 Layout

In progress.

Note elements like headlines and margins can be modified easily with packages like

fancyhdr, typearea or titleps, and geometry.

\bbl@startskip and \bbl@endskip are available to package authors. Thanks to the TEX

expansion mechanism the following constructs are valid: \adim\bbl@startskip,

\advance\bbl@startskip\adim, \bbl@startskip\adim.

Consider txtbabel as a shorthand for tex–xet babel, which is the bidi model in both pdftex

and xetex.

3638 〈∗texxet〉
3639 \bbl@trace{Redefinitions for bidi layout}

3640 \def\bbl@sspre@caption{%

3641 \bbl@exp{\everyhbox{\\\bbl@textdir\bbl@cs{wdir@\bbl@main@language}}}}

3642 \ifx\bbl@opt@layout\@nnil\endinput\fi % No layout

3643 \def\bbl@startskip{\ifcase\bbl@thepardir\leftskip\else\rightskip\fi}

3644 \def\bbl@endskip{\ifcase\bbl@thepardir\rightskip\else\leftskip\fi}

3645 \ifx\bbl@beforeforeign\leavevmode % A poor test for bidi=

3646 \def\@hangfrom#1{%

3647 \setbox\@tempboxa\hbox{{#1}}%

3648 \hangindent\ifcase\bbl@thepardir\wd\@tempboxa\else-\wd\@tempboxa\fi

3649 \noindent\box\@tempboxa}

3650 \def\raggedright{%

3651 \let\\\@centercr

3652 \bbl@startskip\z@skip

3653 \@rightskip\@flushglue

3654 \bbl@endskip\@rightskip

3655 \parindent\z@

3656 \parfillskip\bbl@startskip}

3657 \def\raggedleft{%

3658 \let\\\@centercr

144

3659 \bbl@startskip\@flushglue

3660 \bbl@endskip\z@skip

3661 \parindent\z@

3662 \parfillskip\bbl@endskip}

3663 \fi

3664 \IfBabelLayout{lists}

3665 {\bbl@sreplace\list

3666 {\@totalleftmargin\leftmargin}{\@totalleftmargin\bbl@listleftmargin}%

3667 \def\bbl@listleftmargin{%

3668 \ifcase\bbl@thepardir\leftmargin\else\rightmargin\fi}%

3669 \ifcase\bbl@engine

3670 \def\labelenumii{)\theenumii(}% pdftex doesn't reverse ()

3671 \def\p@enumiii{\p@enumii)\theenumii(}%

3672 \fi

3673 \bbl@sreplace\@verbatim

3674 {\leftskip\@totalleftmargin}%

3675 {\bbl@startskip\textwidth

3676 \advance\bbl@startskip-\linewidth}%

3677 \bbl@sreplace\@verbatim

3678 {\rightskip\z@skip}%

3679 {\bbl@endskip\z@skip}}%

3680 {}

3681 \IfBabelLayout{contents}

3682 {\bbl@sreplace\@dottedtocline{\leftskip}{\bbl@startskip}%

3683 \bbl@sreplace\@dottedtocline{\rightskip}{\bbl@endskip}}

3684 {}

3685 \IfBabelLayout{columns}

3686 {\bbl@sreplace\@outputdblcol{\hb@xt@\textwidth}{\bbl@outputhbox}%

3687 \def\bbl@outputhbox#1{%

3688 \hb@xt@\textwidth{%

3689 \hskip\columnwidth

3690 \hfil

3691 {\normalcolor\vrule \@width\columnseprule}%

3692 \hfil

3693 \hb@xt@\columnwidth{\box\@leftcolumn \hss}%

3694 \hskip-\textwidth

3695 \hb@xt@\columnwidth{\box\@outputbox \hss}%

3696 \hskip\columnsep

3697 \hskip\columnwidth}}}%

3698 {}

3699 〈〈Footnote changes〉〉
3700 \IfBabelLayout{footnotes}%

3701 {\BabelFootnote\footnote\languagename{}{}%

3702 \BabelFootnote\localfootnote\languagename{}{}%

3703 \BabelFootnote\mainfootnote{}{}{}}

3704 {}

Implicitly reverses sectioning labels in bidi=basic, because the full stop is not in contact

with L numbers any more. I think there must be a better way.

3705 \IfBabelLayout{counters}%

3706 {\let\bbl@latinarabic=\@arabic

3707 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

3708 \let\bbl@asciiroman=\@roman

3709 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%

3710 \let\bbl@asciiRoman=\@Roman

3711 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}}{}

3712 〈/texxet〉

145

14.3 LuaTeX

The new loader for luatex is based solely on language.dat, which is read on the fly. The

code shouldn’t be executed when the format is build, so we check if \AddBabelHook is

defined. Then comes a modified version of the loader in hyphen.cfg (without the

hyphenmins stuff, which is under the direct control of babel).

The names \l@<language> are defined and take some value from the beginning because

all ldf files assume this for the corresponding language to be considered valid, but

patterns are not loaded (except the first one). This is done later, when the language is first

selected (which usually means when the ldf finishes). If a language has been loaded,

\bbl@hyphendata@<num> exists (with the names of the files read).

The default setup preloads the first language into the format. This is intended mainly for

‘english’, so that it’s available without further intervention from the user. To avoid

duplicating it, the following rule applies: if the “0th” language and the first language in

language.dat have the same name then just ignore the latter. If there are new

synonymous, the are added, but note if the language patterns have not been preloaded

they won’t at run time.

Other preloaded languages could be read twice, if they have been preloaded into the

format. This is not optimal, but it shouldn’t happen very often – with luatex patterns are

best loaded when the document is typeset, and the “0th” language is preloaded just for

backwards compatibility.

As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly didn’t

work in this format, but with the new loader it does. Unfortunately, the format is not based

on babel, and data could be duplicated, because languages are reassigned above those in

the format (nothing serious, anyway). Note even with this format language.dat is used

(under the principle of a single source), instead of language.def.

Of course, there is room for improvements, like tools to read and reassign languages,

which would require modifying the language list, and better error handling.

We need catcode tables, but no format (targeted by babel) provide a command to allocate

them (although there are packages like ctablestack). For the moment, a dangerous

approach is used – just allocate a high random number and cross the fingers. To

complicate things, etex.sty changes the way languages are allocated.

3713 〈∗luatex〉
3714 \ifx\AddBabelHook\@undefined

3715 \bbl@trace{Read language.dat}

3716 \begingroup

3717 \toks@{}

3718 \count@\z@ % 0=start, 1=0th, 2=normal

3719 \def\bbl@process@line#1#2 #3 #4 {%

3720 \ifx=#1%

3721 \bbl@process@synonym{#2}%

3722 \else

3723 \bbl@process@language{#1#2}{#3}{#4}%

3724 \fi

3725 \ignorespaces}

3726 \def\bbl@manylang{%

3727 \ifnum\bbl@last>\@ne

3728 \bbl@info{Non-standard hyphenation setup}%

3729 \fi

3730 \let\bbl@manylang\relax}

3731 \def\bbl@process@language#1#2#3{%

3732 \ifcase\count@

3733 \@ifundefined{zth@#1}{\count@\tw@}{\count@\@ne}%

3734 \or

3735 \count@\tw@

3736 \fi

146

3737 \ifnum\count@=\tw@

3738 \expandafter\addlanguage\csname l@#1\endcsname

3739 \language\allocationnumber

3740 \chardef\bbl@last\allocationnumber

3741 \bbl@manylang

3742 \let\bbl@elt\relax

3743 \xdef\bbl@languages{%

3744 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}%

3745 \fi

3746 \the\toks@

3747 \toks@{}}

3748 \def\bbl@process@synonym@aux#1#2{%

3749 \global\expandafter\chardef\csname l@#1\endcsname#2\relax

3750 \let\bbl@elt\relax

3751 \xdef\bbl@languages{%

3752 \bbl@languages\bbl@elt{#1}{#2}{}{}}}%

3753 \def\bbl@process@synonym#1{%

3754 \ifcase\count@

3755 \toks@\expandafter{\the\toks@\relax\bbl@process@synonym{#1}}%

3756 \or

3757 \@ifundefined{zth@#1}{\bbl@process@synonym@aux{#1}{0}}{}%

3758 \else

3759 \bbl@process@synonym@aux{#1}{\the\bbl@last}%

3760 \fi}

3761 \ifx\bbl@languages\@undefined % Just a (sensible?) guess

3762 \chardef\l@english\z@

3763 \chardef\l@USenglish\z@

3764 \chardef\bbl@last\z@

3765 \global\@namedef{bbl@hyphendata@0}{{hyphen.tex}{}}

3766 \gdef\bbl@languages{%

3767 \bbl@elt{english}{0}{hyphen.tex}{}%

3768 \bbl@elt{USenglish}{0}{}{}}

3769 \else

3770 \global\let\bbl@languages@format\bbl@languages

3771 \def\bbl@elt#1#2#3#4{% Remove all except language 0

3772 \ifnum#2>\z@\else

3773 \noexpand\bbl@elt{#1}{#2}{#3}{#4}%

3774 \fi}%

3775 \xdef\bbl@languages{\bbl@languages}%

3776 \fi

3777 \def\bbl@elt#1#2#3#4{\@namedef{zth@#1}{}} % Define flags

3778 \bbl@languages

3779 \openin1=language.dat

3780 \ifeof1

3781 \bbl@warning{I couldn't find language.dat. No additional\\%

3782 patterns loaded. Reported}%

3783 \else

3784 \loop

3785 \endlinechar\m@ne

3786 \read1 to \bbl@line

3787 \endlinechar`\^^M

3788 \if T\ifeof1F\fi T\relax

3789 \ifx\bbl@line\@empty\else

3790 \edef\bbl@line{\bbl@line\space\space\space}%

3791 \expandafter\bbl@process@line\bbl@line\relax

3792 \fi

3793 \repeat

3794 \fi

3795 \endgroup

147

3796 \bbl@trace{Macros for reading patterns files}

3797 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

3798 \ifx\babelcatcodetablenum\@undefined

3799 \def\babelcatcodetablenum{5211}

3800 \fi

3801 \def\bbl@luapatterns#1#2{%

3802 \bbl@get@enc#1::\@@@

3803 \setbox\z@\hbox\bgroup

3804 \begingroup

3805 \ifx\catcodetable\@undefined

3806 \let\savecatcodetable\luatexsavecatcodetable

3807 \let\initcatcodetable\luatexinitcatcodetable

3808 \let\catcodetable\luatexcatcodetable

3809 \fi

3810 \savecatcodetable\babelcatcodetablenum\relax

3811 \initcatcodetable\numexpr\babelcatcodetablenum+1\relax

3812 \catcodetable\numexpr\babelcatcodetablenum+1\relax

3813 \catcode`\#=6 \catcode`\$=3 \catcode`\&=4 \catcode`\^=7

3814 \catcode`_=8 \catcode`\{=1 \catcode`\}=2 \catcode`\~=13

3815 \catcode`\@=11 \catcode`\^^I=10 \catcode`\^^J=12

3816 \catcode`\<=12 \catcode`\>=12 \catcode`*=12 \catcode`\.=12

3817 \catcode`\-=12 \catcode`\/=12 \catcode`\[=12 \catcode`\]=12

3818 \catcode`\`=12 \catcode`\'=12 \catcode`\"=12

3819 \input #1\relax

3820 \catcodetable\babelcatcodetablenum\relax

3821 \endgroup

3822 \def\bbl@tempa{#2}%

3823 \ifx\bbl@tempa\@empty\else

3824 \input #2\relax

3825 \fi

3826 \egroup}%

3827 \def\bbl@patterns@lua#1{%

3828 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

3829 \csname l@#1\endcsname

3830 \edef\bbl@tempa{#1}%

3831 \else

3832 \csname l@#1:\f@encoding\endcsname

3833 \edef\bbl@tempa{#1:\f@encoding}%

3834 \fi\relax

3835 \@namedef{lu@texhyphen@loaded@\the\language}{}% Temp

3836 \@ifundefined{bbl@hyphendata@\the\language}%

3837 {\def\bbl@elt##1##2##3##4{%

3838 \ifnum##2=\csname l@\bbl@tempa\endcsname % #2=spanish, dutch:OT1...

3839 \def\bbl@tempb{##3}%

3840 \ifx\bbl@tempb\@empty\else % if not a synonymous

3841 \def\bbl@tempc{{##3}{##4}}%

3842 \fi

3843 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

3844 \fi}%

3845 \bbl@languages

3846 \@ifundefined{bbl@hyphendata@\the\language}%

3847 {\bbl@info{No hyphenation patterns were set for\\%

3848 language '\bbl@tempa'. Reported}}%

3849 {\expandafter\expandafter\expandafter\bbl@luapatterns

3850 \csname bbl@hyphendata@\the\language\endcsname}}{}}

3851 \endinput\fi

3852 \begingroup

3853 \catcode`\%=12

3854 \catcode`\'=12

148

3855 \catcode`\"=12

3856 \catcode`\:=12

3857 \directlua{

3858 Babel = Babel or {}

3859 function Babel.bytes(line)

3860 return line:gsub("(.)",

3861 function (chr) return unicode.utf8.char(string.byte(chr)) end)

3862 end

3863 function Babel.begin_process_input()

3864 if luatexbase and luatexbase.add_to_callback then

3865 luatexbase.add_to_callback('process_input_buffer',

3866 Babel.bytes,'Babel.bytes')

3867 else

3868 Babel.callback = callback.find('process_input_buffer')

3869 callback.register('process_input_buffer',Babel.bytes)

3870 end

3871 end

3872 function Babel.end_process_input ()

3873 if luatexbase and luatexbase.remove_from_callback then

3874 luatexbase.remove_from_callback('process_input_buffer','Babel.bytes')

3875 else

3876 callback.register('process_input_buffer',Babel.callback)

3877 end

3878 end

3879 function Babel.addpatterns(pp, lg)

3880 local lg = lang.new(lg)

3881 local pats = lang.patterns(lg) or ''

3882 lang.clear_patterns(lg)

3883 for p in pp:gmatch('[^%s]+') do

3884 ss = ''

3885 for i in string.utfcharacters(p:gsub('%d', '')) do

3886 ss = ss .. '%d?' .. i

3887 end

3888 ss = ss:gsub('^%%d%?%.', '%%.') .. '%d?'

3889 ss = ss:gsub('%.%%d%?$', '%%.')

3890 pats, n = pats:gsub('%s' .. ss .. '%s', ' ' .. p .. ' ')

3891 if n == 0 then

3892 tex.sprint(

3893 [[\string\csname\space bbl@info\endcsname{New pattern:]]

3894 .. p .. [[}]])

3895 pats = pats .. ' ' .. p

3896 else

3897 tex.sprint(

3898 [[\string\csname\space bbl@info\endcsname{Renew pattern:]]

3899 .. p .. [[}]])

3900 end

3901 end

3902 lang.patterns(lg, pats)

3903 end

3904 }

3905 \endgroup

3906 \ifx\newattribute\@undefined\else

3907 \newattribute\bbl@attr@locale

3908 \AddBabelHook{luatex}{beforeextras}{%

3909 \setattribute\bbl@attr@locale\localeid}

3910 \fi

3911 \def\BabelStringsDefault{unicode}

3912 \let\luabbl@stop\relax

3913 \AddBabelHook{luatex}{encodedcommands}{%

149

3914 \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%

3915 \ifx\bbl@tempa\bbl@tempb\else

3916 \directlua{Babel.begin_process_input()}%

3917 \def\luabbl@stop{%

3918 \directlua{Babel.end_process_input()}}%

3919 \fi}%

3920 \AddBabelHook{luatex}{stopcommands}{%

3921 \luabbl@stop

3922 \let\luabbl@stop\relax}

3923 \AddBabelHook{luatex}{patterns}{%

3924 \@ifundefined{bbl@hyphendata@\the\language}%

3925 {\def\bbl@elt##1##2##3##4{%

3926 \ifnum##2=\csname l@#2\endcsname % #2=spanish, dutch:OT1...

3927 \def\bbl@tempb{##3}%

3928 \ifx\bbl@tempb\@empty\else % if not a synonymous

3929 \def\bbl@tempc{{##3}{##4}}%

3930 \fi

3931 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

3932 \fi}%

3933 \bbl@languages

3934 \@ifundefined{bbl@hyphendata@\the\language}%

3935 {\bbl@info{No hyphenation patterns were set for\\%

3936 language '#2'. Reported}}%

3937 {\expandafter\expandafter\expandafter\bbl@luapatterns

3938 \csname bbl@hyphendata@\the\language\endcsname}}{}%

3939 \@ifundefined{bbl@patterns@}{}{%

3940 \begingroup

3941 \bbl@xin@{,\number\language,}{,\bbl@pttnlist}%

3942 \ifin@\else

3943 \ifx\bbl@patterns@\@empty\else

3944 \directlua{ Babel.addpatterns(

3945 [[\bbl@patterns@]], \number\language) }%

3946 \fi

3947 \@ifundefined{bbl@patterns@#1}%

3948 \@empty

3949 {\directlua{ Babel.addpatterns(

3950 [[\space\csname bbl@patterns@#1\endcsname]],

3951 \number\language) }}%

3952 \xdef\bbl@pttnlist{\bbl@pttnlist\number\language,}%

3953 \fi

3954 \endgroup}}

3955 \AddBabelHook{luatex}{everylanguage}{%

3956 \def\process@language##1##2##3{%

3957 \def\process@line####1####2 ####3 ####4 {}}}

3958 \AddBabelHook{luatex}{loadpatterns}{%

3959 \input #1\relax

3960 \expandafter\gdef\csname bbl@hyphendata@\the\language\endcsname

3961 {{#1}{}}}

3962 \AddBabelHook{luatex}{loadexceptions}{%

3963 \input #1\relax

3964 \def\bbl@tempb##1##2{{##1}{#1}}%

3965 \expandafter\xdef\csname bbl@hyphendata@\the\language\endcsname

3966 {\expandafter\expandafter\expandafter\bbl@tempb

3967 \csname bbl@hyphendata@\the\language\endcsname}}

\babelpatterns This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for the

global ones and \bbl@patterns@<lang> for language ones. We make sure there is a space

between words when multiple commands are used.

150

3968 \@onlypreamble\babelpatterns

3969 \AtEndOfPackage{%

3970 \newcommand\babelpatterns[2][\@empty]{%

3971 \ifx\bbl@patterns@\relax

3972 \let\bbl@patterns@\@empty

3973 \fi

3974 \ifx\bbl@pttnlist\@empty\else

3975 \bbl@warning{%

3976 You must not intermingle \string\selectlanguage\space and\\%

3977 \string\babelpatterns\space or some patterns will not\\%

3978 be taken into account. Reported}%

3979 \fi

3980 \ifx\@empty#1%

3981 \protected@edef\bbl@patterns@{\bbl@patterns@\space#2}%

3982 \else

3983 \edef\bbl@tempb{\zap@space#1 \@empty}%

3984 \bbl@for\bbl@tempa\bbl@tempb{%

3985 \bbl@fixname\bbl@tempa

3986 \bbl@iflanguage\bbl@tempa{%

3987 \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%

3988 \@ifundefined{bbl@patterns@\bbl@tempa}%

3989 \@empty

3990 {\csname bbl@patterns@\bbl@tempa\endcsname\space}%

3991 #2}}}%

3992 \fi}}

14.4 Southeast Asian scripts

In progress. Replace regular (ie, implicit) discretionaries by spaceskips, based on the

previous glyph (which I think makes sense, because the hyphen and the previous char go

always together). Other discretionaries are not touched.

For the moment, only 3 SA languages are activated by default (see Unicode UAX 14).

3993 \def\bbl@intraspace#1 #2 #3\@@{%

3994 \directlua{

3995 Babel = Babel or {}

3996 Babel.intraspaces = Babel.intraspaces or {}

3997 Babel.intraspaces['\csname bbl@sbcp@\languagename\endcsname'] = %

3998 {b = #1, p = #2, m = #3}

3999 Babel.locale_props[\the\localeid].intraspace = %

4000 {b = #1, p = #2, m = #3}

4001 }}

4002 \def\bbl@intrapenalty#1\@@{%

4003 \directlua{

4004 Babel = Babel or {}

4005 Babel.intrapenalties = Babel.intrapenalties or {}

4006 Babel.intrapenalties['\csname bbl@sbcp@\languagename\endcsname'] = #1

4007 Babel.locale_props[\the\localeid].intrapenalty = #1

4008 }}

4009 \begingroup

4010 \catcode`\%=12

4011 \catcode`\^=14

4012 \catcode`\'=12

4013 \catcode`\~=12

4014 \gdef\bbl@seaintraspace{^

4015 \let\bbl@seaintraspace\relax

4016 \directlua{

4017 Babel = Babel or {}

4018 Babel.sea_enabled = true

151

4019 Babel.sea_ranges = Babel.sea_ranges or {}

4020 function Babel.set_chranges (script, chrng)

4021 local c = 0

4022 for s, e in string.gmatch(chrng..' ', '(.-)%.%.(.-)%s') do

4023 Babel.sea_ranges[script..c]={tonumber(s,16), tonumber(e,16)}

4024 c = c + 1

4025 end

4026 end

4027 function Babel.sea_disc_to_space (head)

4028 local sea_ranges = Babel.sea_ranges

4029 local last_char = nil

4030 local quad = 655360 ^^ 10 pt = 655360 = 10 * 65536

4031 for item in node.traverse(head) do

4032 local i = item.id

4033 if i == node.id'glyph' then

4034 last_char = item

4035 elseif i == 7 and item.subtype == 3 and last_char

4036 and last_char.char > 0x0C99 then

4037 quad = font.getfont(last_char.font).size

4038 for lg, rg in pairs(sea_ranges) do

4039 if last_char.char > rg[1] and last_char.char < rg[2] then

4040 lg = lg:sub(1, 4)

4041 local intraspace = Babel.intraspaces[lg]

4042 local intrapenalty = Babel.intrapenalties[lg]

4043 local n

4044 if intrapenalty ~= 0 then

4045 n = node.new(14, 0) ^^ penalty

4046 n.penalty = intrapenalty

4047 node.insert_before(head, item, n)

4048 end

4049 n = node.new(12, 13) ^^ (glue, spaceskip)

4050 node.setglue(n, intraspace.b * quad,

4051 intraspace.p * quad,

4052 intraspace.m * quad)

4053 node.insert_before(head, item, n)

4054 node.remove(head, item)

4055 end

4056 end

4057 end

4058 end

4059 end

4060 }^^

4061 \bbl@luahyphenate}

4062 \catcode`\%=14

4063 \gdef\bbl@cjkintraspace{%

4064 \let\bbl@cjkintraspace\relax

4065 \directlua{

4066 Babel = Babel or {}

4067 require'babel-data-cjk.lua'

4068 Babel.cjk_enabled = true

4069 function Babel.cjk_linebreak(head)

4070 local GLYPH = node.id'glyph'

4071 local last_char = nil

4072 local quad = 655360 % 10 pt = 655360 = 10 * 65536

4073 local last_class = nil

4074 local last_lang = nil

4075

4076 for item in node.traverse(head) do

4077 if item.id == GLYPH then

152

4078

4079 local lang = item.lang

4080

4081 local LOCALE = node.get_attribute(item,

4082 luatexbase.registernumber'bbl@attr@locale')

4083 local props = Babel.locale_props[LOCALE]

4084

4085 class = Babel.cjk_class[item.char].c

4086

4087 if class == 'cp' then class = 'cl' end %)] as CL

4088 if class == 'id' then class = 'I' end

4089

4090 if class and last_class and Babel.cjk_breaks[last_class][class] then

4091 br = Babel.cjk_breaks[last_class][class]

4092 else

4093 br = 0

4094 end

4095

4096 if br == 1 and props.linebreak == 'c' and

4097 lang ~= \the\l@nohyphenation\space and

4098 last_lang ~= \the\l@nohyphenation then

4099 local intrapenalty = props.intrapenalty

4100 if intrapenalty ~= 0 then

4101 local n = node.new(14, 0) % penalty

4102 n.penalty = intrapenalty

4103 node.insert_before(head, item, n)

4104 end

4105 local intraspace = props.intraspace

4106 local n = node.new(12, 13) % (glue, spaceskip)

4107 node.setglue(n, intraspace.b * quad,

4108 intraspace.p * quad,

4109 intraspace.m * quad)

4110 node.insert_before(head, item, n)

4111 end

4112

4113 quad = font.getfont(item.font).size

4114 last_class = class

4115 last_lang = lang

4116 else % if penalty, glue or anything else

4117 last_class = nil

4118 end

4119 end

4120 lang.hyphenate(head)

4121 end

4122 }%

4123 \bbl@luahyphenate}

4124 \gdef\bbl@luahyphenate{%

4125 \let\bbl@luahyphenate\relax

4126 \directlua{

4127 luatexbase.add_to_callback('hyphenate',

4128 function (head, tail)

4129 if Babel.cjk_enabled then

4130 Babel.cjk_linebreak(head)

4131 end

4132 lang.hyphenate(head)

4133 if Babel.sea_enabled then

4134 Babel.sea_disc_to_space(head)

4135 end

4136 end,

153

4137 'Babel.hyphenate')

4138 }

4139 }

4140 \endgroup

14.5 CJK line breaking

Minimal line breaking for CJK scripts, mainly intended for simple documents and short

texts as a secundary language. Only line breaking, with a little stretching for justification,

without any attempt to adjust the spacing. It is based on (but does not strictly follow) the

Unicode algorithm.

We first need a little table with the corresponding line breaking properties. A few

characters have an additional key for the width (fullwidth vs. halfwidth), not yet used.

There is a separate file, defined below.

Work in progress.

Common stuff.

4141 \AddBabelHook{luatex}{loadkernel}{%

4142 〈〈Restore Unicode catcodes before loading patterns〉〉}
4143 \ifx\DisableBabelHook\@undefined\endinput\fi

4144 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}

4145 \AddBabelHook{babel-fontspec}{beforestart}{\bbl@ckeckstdfonts}

4146 \DisableBabelHook{babel-fontspec}

4147 〈〈Font selection〉〉

Temporary fix for luatex<1.10, which sometimes inserted a spurious closing dir node

with a \textdir within \hboxes. This will be eventually removed.

4148 \def\bbl@luafixboxdir{%

4149 \setbox\z@\hbox{\textdir TLT}%

4150 \directlua{

4151 function Babel.first_dir(head)

4152 for item in node.traverse_id(node.id'dir', head) do

4153 return item

4154 end

4155 return nil

4156 end

4157 if Babel.first_dir(tex.box[0].head) then

4158 function Babel.fixboxdirs(head)

4159 local fd = Babel.first_dir(head)

4160 if fd and fd.dir:sub(1,1) == '-' then

4161 head = node.remove(head, fd)

4162 end

4163 return head

4164 end

4165 end

4166 }}

4167 \AtBeginDocument{\bbl@luafixboxdir}

The code for \babelcharproperty is straightforward. Just note the modified lua table can

be different.

4168 \newcommand\babelcharproperty[1]{%

4169 \count@=#1\relax

4170 \ifvmode

4171 \expandafter\bbl@chprop

4172 \else

4173 \bbl@error{\string\babelcharproperty\space can be used only in\\%

4174 vertical mode (preamble or between paragraphs)}%

4175 {See the manual for futher info}%

154

4176 \fi}

4177 \newcommand\bbl@chprop[3][\the\count@]{%

4178 \@tempcnta=#1\relax

4179 \bbl@ifunset{bbl@chprop@#2}%

4180 {\bbl@error{No property named '#2'. Allowed values are\\%

4181 direction (bc), mirror (bmg), and linebreak (lb)}%

4182 {See the manual for futher info}}%

4183 {}%

4184 \loop

4185 \@nameuse{bbl@chprop@#2}{#3}%

4186 \ifnum\count@<\@tempcnta

4187 \advance\count@\@ne

4188 \repeat}

4189 \def\bbl@chprop@direction#1{%

4190 \directlua{

4191 Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}

4192 Babel.characters[\the\count@]['d'] = '#1'

4193 }}

4194 \let\bbl@chprop@bc\bbl@chprop@direction

4195 \def\bbl@chprop@mirror#1{%

4196 \directlua{

4197 Babel.characters[\the\count@] = Babel.characters[\the\count@] or {}

4198 Babel.characters[\the\count@]['m'] = '\number#1'

4199 }}

4200 \let\bbl@chprop@bmg\bbl@chprop@mirror

4201 \def\bbl@chprop@linebreak#1{%

4202 \directlua{

4203 Babel.Babel.cjk_characters[\the\count@] = Babel.Babel.cjk_characters[\the\count@] or {}

4204 Babel.Babel.cjk_characters[\the\count@]['c'] = '#1'

4205 }}

4206 \let\bbl@chprop@lb\bbl@chprop@linebreak

14.6 Layout

Work in progress.

Unlike xetex, luatex requires only minimal changes for right-to-left layouts, particularly in

monolingual documents (the engine itself reverses boxes – including column order or

headings –, margins, etc.) with bidi=basic, without having to patch almost any macro

where text direction is relevant.

\@hangfrom is useful in many contexts and it is redefined always with the layout option.

There are, however, a number of issues when the text direction is not the same as the box

direction (as set by \bodydir), and when \parbox and \hangindent are involved.

Fortunately, latest releases of luatex simplify a lot the solution with \shapemode.

With the issue #15 I realized commands are best patched, instead of redefined. With a few

lines, a modification could be applied to several classes and packages. Now, tabular seems

to work (at least in simple cases) with array, tabularx, hhline, colortbl, longtable, booktabs,

etc. However, dcolumn still fails.

4207 \bbl@trace{Redefinitions for bidi layout}

4208 \ifx\@eqnnum\@undefined\else

4209 \ifx\bbl@attr@dir\@undefined\else

4210 \edef\@eqnnum{{%

4211 \unexpanded{\ifcase\bbl@attr@dir\else\bbl@textdir\@ne\fi}%

4212 \unexpanded\expandafter{\@eqnnum}}}

4213 \fi

4214 \fi

4215 \ifx\bbl@opt@layout\@nnil\endinput\fi % if no layout

4216 \ifx\bbl@beforeforeign\leavevmode % A poor test for bidi=

155

4217 \def\bbl@nextfake#1{% non-local changes, use always inside a group!

4218 \bbl@exp{%

4219 \mathdir\the\bodydir

4220 #1% Once entered in math, set boxes to restore values

4221 \<ifmmode>%

4222 \everyvbox{%

4223 \the\everyvbox

4224 \bodydir\the\bodydir

4225 \mathdir\the\mathdir

4226 \everyhbox{\the\everyhbox}%

4227 \everyvbox{\the\everyvbox}}%

4228 \everyhbox{%

4229 \the\everyhbox

4230 \bodydir\the\bodydir

4231 \mathdir\the\mathdir

4232 \everyhbox{\the\everyhbox}%

4233 \everyvbox{\the\everyvbox}}%

4234 \<fi>}}%

4235 \def\@hangfrom#1{%

4236 \setbox\@tempboxa\hbox{{#1}}%

4237 \hangindent\wd\@tempboxa

4238 \ifnum\bbl@getluadir{page}=\bbl@getluadir{par}\else

4239 \shapemode\@ne

4240 \fi

4241 \noindent\box\@tempboxa}

4242 \fi

4243 \IfBabelLayout{tabular}

4244 {\let\bbl@OL@@tabular\@tabular

4245 \bbl@replace\@tabular{$}{\bbl@nextfake$}%

4246 \let\bbl@tabular\@tabular

4247 \AtBeginDocument{%

4248 \ifx\bbl@tabular\@tabular\else

4249 \bbl@replace\@tabular{$}{\bbl@nextfake$}%

4250 \fi}}

4251 {}

4252 \IfBabelLayout{lists}

4253 {\let\bbl@OL@list\list

4254 \bbl@sreplace\list{\parshape}{\bbl@listparshape}%

4255 \def\bbl@listparshape#1#2#3{%

4256 \parshape #1 #2 #3 %

4257 \ifnum\bbl@getluadir{page}=\bbl@getluadir{par}\else

4258 \shapemode\tw@

4259 \fi}}

4260 {}

4261 \IfBabelLayout{graphics}

4262 {\let\bbl@pictresetdir\relax

4263 \def\bbl@pictsetdir{%

4264 \ifcase\bbl@thetextdir

4265 \let\bbl@pictresetdir\relax

4266 \else

4267 \textdir TLT\relax

4268 \def\bbl@pictresetdir{\textdir TRT\relax}%

4269 \fi}%

4270 \let\bbl@OL@@picture\@picture

4271 \let\bbl@OL@put\put

4272 \bbl@sreplace\@picture{\hskip-}{\bbl@pictsetdir\hskip-}%

4273 \def\put(#1,#2)#3{% Not easy to patch. Better redefine.

4274 \@killglue

4275 \raise#2\unitlength

156

4276 \hb@xt@\z@{\kern#1\unitlength{\bbl@pictresetdir#3}\hss}}%

4277 \AtBeginDocument

4278 {\ifx\tikz@atbegin@node\@undefined\else

4279 \let\bbl@OL@pgfpicture\pgfpicture

4280 \bbl@sreplace\pgfpicture{\pgfpicturetrue}{\bbl@pictsetdir\pgfpicturetrue}%

4281 \bbl@add\pgfsys@beginpicture{\bbl@pictsetdir}%

4282 \bbl@add\tikz@atbegin@node{\bbl@pictresetdir}%

4283 \fi}}

4284 {}

Implicitly reverses sectioning labels in bidi=basic-r, because the full stop is not in contact

with L numbers any more. I think there must be a better way. Assumes bidi=basic, but

there are some additional readjustments for bidi=default.

4285 \IfBabelLayout{counters}%

4286 {\let\bbl@OL@@textsuperscript\@textsuperscript

4287 \bbl@sreplace\@textsuperscript{\m@th}{\m@th\mathdir\pagedir}%

4288 \let\bbl@latinarabic=\@arabic

4289 \let\bbl@OL@@arabic\@arabic

4290 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

4291 \@ifpackagewith{babel}{bidi=default}%

4292 {\let\bbl@asciiroman=\@roman

4293 \let\bbl@OL@@roman\@roman

4294 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%

4295 \let\bbl@asciiRoman=\@Roman

4296 \let\bbl@OL@@roman\@Roman

4297 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}%

4298 \let\bbl@OL@labelenumii\labelenumii

4299 \def\labelenumii{)\theenumii(}%

4300 \let\bbl@OL@p@enumiii\p@enumiii

4301 \def\p@enumiii{\p@enumii)\theenumii(}}{}}{}

4302 〈〈Footnote changes〉〉
4303 \IfBabelLayout{footnotes}%

4304 {\let\bbl@OL@footnote\footnote

4305 \BabelFootnote\footnote\languagename{}{}%

4306 \BabelFootnote\localfootnote\languagename{}{}%

4307 \BabelFootnote\mainfootnote{}{}{}}

4308 {}

Some LATEX macros use internally the math mode for text formatting. They have very little

in common and are grouped here, as a single option.

4309 \IfBabelLayout{extras}%

4310 {\let\bbl@OL@underline\underline

4311 \bbl@sreplace\underline{$\@@underline}{\bbl@nextfake$\@@underline}%

4312 \let\bbl@OL@LaTeX2e\LaTeX2e

4313 \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th

4314 \if b\expandafter\@car\f@series\@nil\boldmath\fi

4315 \babelsublr{%

4316 \LaTeX\kern.15em2\bbl@nextfake$_{\textstyle\varepsilon}$}}}}

4317 {}

4318 〈/luatex〉

14.7 Auto bidi with basic and basic-r

The file babel-data-bidi.lua currently only contains data. It is a large and boring file and it’s

not shown here. See the generated file.

Now the basic-r bidi mode. One of the aims is to implement a fast and simple bidi

algorithm, with a single loop. I managed to do it for R texts, with a second smaller loop for

a special case. The code is still somewhat chaotic, but its behavior is essentially correct. I

157

cannot resist copying the following text from Emacs bidi.c (which also attempts to

implement the bidi algorithm with a single loop):

Arrrgh!! The UAX#9 algorithm is too deeply entrenched in the assumption of

batch-style processing [...]. May the fleas of a thousand camels infest the armpits of

those who design supposedly general-purpose algorithms by looking at their own

implementations, and fail to consider other possible implementations!

Well, it took me some time to guess what the batch rules in UAX#9 actually mean (in other

word, what they do andwhy, and not only how), but I think (or I hope) I’ve managed to

understand them.

In some sense, there are two bidi modes, one for numbers, and the other for text.

Furthermore, setting just the direction in R text is not enough, because there are actually

two R modes (set explicitly in Unicode with RLM and ALM). In babel the dir is set by a

higher protocol based on the language/script, which in turn sets the correct dir (<l>, <r> or

<al>).

From UAX#9: “Where available, markup should be used instead of the explicit formatting

characters”. So, this simple version just ignores formatting characters. Actually, most of

that annex is devoted to how to handle them.

BD14-BD16 are not implemented. Unicode (and the W3C) are making a great effort to deal

with some special problematic cases in “streamed” plain text. I don’t think this is the way

to go – particular issues should be fixed by a high level interface taking into account the

needs of the document. And here is where luatex excels, because everything related to bidi

writing is under our control.

4319 〈∗basic-r〉
4320 Babel = Babel or {}

4321

4322 Babel.bidi_enabled = true

4323

4324 require('babel-data-bidi.lua')

4325

4326 local characters = Babel.characters

4327 local ranges = Babel.ranges

4328

4329 local DIR = node.id("dir")

4330

4331 local function dir_mark(head, from, to, outer)

4332 dir = (outer == 'r') and 'TLT' or 'TRT' -- ie, reverse

4333 local d = node.new(DIR)

4334 d.dir = '+' .. dir

4335 node.insert_before(head, from, d)

4336 d = node.new(DIR)

4337 d.dir = '-' .. dir

4338 node.insert_after(head, to, d)

4339 end

4340

4341 function Babel.bidi(head, ispar)

4342 local first_n, last_n -- first and last char with nums

4343 local last_es -- an auxiliary 'last' used with nums

4344 local first_d, last_d -- first and last char in L/R block

4345 local dir, dir_real

Next also depends on script/lang (<al>/<r>). To be set by babel. tex.pardir is dangerous,

could be (re)set but it should be changed only in vmode. There are two strong’s – strong =

l/al/r and strong_lr = l/r (there must be a better way):

4346 local strong = ('TRT' == tex.pardir) and 'r' or 'l'

4347 local strong_lr = (strong == 'l') and 'l' or 'r'

158

4348 local outer = strong

4349

4350 local new_dir = false

4351 local first_dir = false

4352 local inmath = false

4353

4354 local last_lr

4355

4356 local type_n = ''

4357

4358 for item in node.traverse(head) do

4359

4360 -- three cases: glyph, dir, otherwise

4361 if item.id == node.id'glyph'

4362 or (item.id == 7 and item.subtype == 2) then

4363

4364 local itemchar

4365 if item.id == 7 and item.subtype == 2 then

4366 itemchar = item.replace.char

4367 else

4368 itemchar = item.char

4369 end

4370 local chardata = characters[itemchar]

4371 dir = chardata and chardata.d or nil

4372 if not dir then

4373 for nn, et in ipairs(ranges) do

4374 if itemchar < et[1] then

4375 break

4376 elseif itemchar <= et[2] then

4377 dir = et[3]

4378 break

4379 end

4380 end

4381 end

4382 dir = dir or 'l'

4383 if inmath then dir = ('TRT' == tex.mathdir) and 'r' or 'l' end

Next is based on the assumption babel sets the language AND switches the script with its

dir. We treat a language block as a separate Unicode sequence. The following piece of code

is executed at the first glyph after a ‘dir’ node. We don’t know the current language until

then. This is not exactly true, as the math mode may insert explicit dirs in the node list, so,

for the moment there is a hack by brute force (just above).

4384 if new_dir then

4385 attr_dir = 0

4386 for at in node.traverse(item.attr) do

4387 if at.number == luatexbase.registernumber'bbl@attr@dir' then

4388 attr_dir = at.value % 3

4389 end

4390 end

4391 if attr_dir == 1 then

4392 strong = 'r'

4393 elseif attr_dir == 2 then

4394 strong = 'al'

4395 else

4396 strong = 'l'

4397 end

4398 strong_lr = (strong == 'l') and 'l' or 'r'

4399 outer = strong_lr

4400 new_dir = false

159

4401 end

4402

4403 if dir == 'nsm' then dir = strong end -- W1

Numbers. The dual <al>/<r> system for R is somewhat cumbersome.

4404 dir_real = dir -- We need dir_real to set strong below

4405 if dir == 'al' then dir = 'r' end -- W3

By W2, there are no <en> <et> <es> if strong == <al>, only <an>. Therefore, there are not

<et en> nor <en et>, W5 can be ignored, and W6 applied:

4406 if strong == 'al' then

4407 if dir == 'en' then dir = 'an' end -- W2

4408 if dir == 'et' or dir == 'es' then dir = 'on' end -- W6

4409 strong_lr = 'r' -- W3

4410 end

Once finished the basic setup for glyphs, consider the two other cases: dir node and the

rest.

4411 elseif item.id == node.id'dir' and not inmath then

4412 new_dir = true

4413 dir = nil

4414 elseif item.id == node.id'math' then

4415 inmath = (item.subtype == 0)

4416 else

4417 dir = nil -- Not a char

4418 end

Numbers in R mode. A sequence of <en>, <et>, <an>, <es> and <cs> is typeset (with some

rules) in L mode. We store the starting and ending points, and only when anything

different is found (including nil, ie, a non-char), the textdir is set. This means you cannot

insert, say, a whatsit, but this is what I would expect (with luacolor you may colorize some

digits). Anyway, this behavior could be changed with a switch in the future. Note in the

first branch only <an> is relevant if <al>.

4419 if dir == 'en' or dir == 'an' or dir == 'et' then

4420 if dir ~= 'et' then

4421 type_n = dir

4422 end

4423 first_n = first_n or item

4424 last_n = last_es or item

4425 last_es = nil

4426 elseif dir == 'es' and last_n then -- W3+W6

4427 last_es = item

4428 elseif dir == 'cs' then -- it's right - do nothing

4429 elseif first_n then -- & if dir = any but en, et, an, es, cs, inc nil

4430 if strong_lr == 'r' and type_n ~= '' then

4431 dir_mark(head, first_n, last_n, 'r')

4432 elseif strong_lr == 'l' and first_d and type_n == 'an' then

4433 dir_mark(head, first_n, last_n, 'r')

4434 dir_mark(head, first_d, last_d, outer)

4435 first_d, last_d = nil, nil

4436 elseif strong_lr == 'l' and type_n ~= '' then

4437 last_d = last_n

4438 end

4439 type_n = ''

4440 first_n, last_n = nil, nil

4441 end

R text in L, or L text in R. Order of dir_ mark’s are relevant: d goes outside n, and

therefore it’s emitted after. See dir_mark to understand why (but is the nesting actually

160

necessary or is a flat dir structure enough?). Only L, R (and AL) chars are taken into

account – everything else, including spaces, whatsits, etc., are ignored:

4442 if dir == 'l' or dir == 'r' then

4443 if dir ~= outer then

4444 first_d = first_d or item

4445 last_d = item

4446 elseif first_d and dir ~= strong_lr then

4447 dir_mark(head, first_d, last_d, outer)

4448 first_d, last_d = nil, nil

4449 end

4450 end

Mirroring. Each chunk of text in a certain language is considered a “closed” sequence. If

<r on r> and <l on l>, it’s clearly <r> and <l>, resptly, but with other combinations depends

on outer. From all these, we select only those resolving <on>→ <r>. At the beginning

(when last_lr is nil) of an R text, they are mirrored directly.

TODO - numbers in R mode are processed. It doesn’t hurt, but should not be done.

4451 if dir and not last_lr and dir ~= 'l' and outer == 'r' then

4452 item.char = characters[item.char] and

4453 characters[item.char].m or item.char

4454 elseif (dir or new_dir) and last_lr ~= item then

4455 local mir = outer .. strong_lr .. (dir or outer)

4456 if mir == 'rrr' or mir == 'lrr' or mir == 'rrl' or mir == 'rlr' then

4457 for ch in node.traverse(node.next(last_lr)) do

4458 if ch == item then break end

4459 if ch.id == node.id'glyph' and characters[ch.char] then

4460 ch.char = characters[ch.char].m or ch.char

4461 end

4462 end

4463 end

4464 end

Save some values for the next iteration. If the current node is ‘dir’, open a new sequence.

Since dir could be changed, strong is set with its real value (dir_real).

4465 if dir == 'l' or dir == 'r' then

4466 last_lr = item

4467 strong = dir_real -- Don't search back - best save now

4468 strong_lr = (strong == 'l') and 'l' or 'r'

4469 elseif new_dir then

4470 last_lr = nil

4471 end

4472 end

Mirror the last chars if they are no directed. And make sure any open block is closed, too.

4473 if last_lr and outer == 'r' then

4474 for ch in node.traverse_id(node.id'glyph', node.next(last_lr)) do

4475 if characters[ch.char] then

4476 ch.char = characters[ch.char].m or ch.char

4477 end

4478 end

4479 end

4480 if first_n then

4481 dir_mark(head, first_n, last_n, outer)

4482 end

4483 if first_d then

4484 dir_mark(head, first_d, last_d, outer)

4485 end

161

In boxes, the dir node could be added before the original head, so the actual head is the

previous node.

4486 return node.prev(head) or head

4487 end

4488 〈/basic-r〉

And here the Lua code for bidi=basic:

4489 〈∗basic〉
4490 Babel = Babel or {}

4491

4492 -- eg, Babel.fontmap[1][<prefontid>]=<dirfontid>

4493

4494 Babel.fontmap = Babel.fontmap or {}

4495 Babel.fontmap[0] = {} -- l

4496 Babel.fontmap[1] = {} -- r

4497 Babel.fontmap[2] = {} -- al/an

4498

4499 Babel.bidi_enabled = true

4500 Babel.mirroring_enabled = true

4501

4502 -- Temporary:

4503

4504 if harf then

4505 Babel.mirroring_enabled = false

4506 end

4507

4508 require('babel-data-bidi.lua')

4509

4510 local characters = Babel.characters

4511 local ranges = Babel.ranges

4512

4513 local DIR = node.id('dir')

4514 local GLYPH = node.id('glyph')

4515

4516 local function insert_implicit(head, state, outer)

4517 local new_state = state

4518 if state.sim and state.eim and state.sim ~= state.eim then

4519 dir = ((outer == 'r') and 'TLT' or 'TRT') -- ie, reverse

4520 local d = node.new(DIR)

4521 d.dir = '+' .. dir

4522 node.insert_before(head, state.sim, d)

4523 local d = node.new(DIR)

4524 d.dir = '-' .. dir

4525 node.insert_after(head, state.eim, d)

4526 end

4527 new_state.sim, new_state.eim = nil, nil

4528 return head, new_state

4529 end

4530

4531 local function insert_numeric(head, state)

4532 local new

4533 local new_state = state

4534 if state.san and state.ean and state.san ~= state.ean then

4535 local d = node.new(DIR)

4536 d.dir = '+TLT'

4537 _, new = node.insert_before(head, state.san, d)

4538 if state.san == state.sim then state.sim = new end

4539 local d = node.new(DIR)

162

4540 d.dir = '-TLT'

4541 _, new = node.insert_after(head, state.ean, d)

4542 if state.ean == state.eim then state.eim = new end

4543 end

4544 new_state.san, new_state.ean = nil, nil

4545 return head, new_state

4546 end

4547

4548 -- TODO - \hbox with an explicit dir can lead to wrong results

4549 -- <R \hbox dir TLT{<R>}> and <L \hbox dir TRT{<L>}>. A small attempt

4550 -- was s made to improve the situation, but the problem is the 3-dir

4551 -- model in babel/Unicode and the 2-dir model in LuaTeX don't fit

4552 -- well.

4553

4554 function Babel.bidi(head, ispar, hdir)

4555 local d -- d is used mainly for computations in a loop

4556 local prev_d = ''

4557 local new_d = false

4558

4559 local nodes = {}

4560 local outer_first = nil

4561 local inmath = false

4562

4563 local glue_d = nil

4564 local glue_i = nil

4565

4566 local has_en = false

4567 local first_et = nil

4568

4569 local ATDIR = luatexbase.registernumber'bbl@attr@dir'

4570

4571 local save_outer

4572 local temp = node.get_attribute(head, ATDIR)

4573 if temp then

4574 temp = temp % 3

4575 save_outer = (temp == 0 and 'l') or

4576 (temp == 1 and 'r') or

4577 (temp == 2 and 'al')

4578 elseif ispar then -- Or error? Shouldn't happen

4579 save_outer = ('TRT' == tex.pardir) and 'r' or 'l'

4580 else -- Or error? Shouldn't happen

4581 save_outer = ('TRT' == hdir) and 'r' or 'l'

4582 end

4583 -- when the callback is called, we are just _after_ the box,

4584 -- and the textdir is that of the surrounding text

4585 -- if not ispar and hdir ~= tex.textdir then

4586 -- save_outer = ('TRT' == hdir) and 'r' or 'l'

4587 -- end

4588 local outer = save_outer

4589 local last = outer

4590 -- 'al' is only taken into account in the first, current loop

4591 if save_outer == 'al' then save_outer = 'r' end

4592

4593 local fontmap = Babel.fontmap

4594

4595 for item in node.traverse(head) do

4596

4597 -- In what follows, #node is the last (previous) node, because the

4598 -- current one is not added until we start processing the neutrals.

163

4599

4600 -- three cases: glyph, dir, otherwise

4601 if item.id == GLYPH

4602 or (item.id == 7 and item.subtype == 2) then

4603

4604 local d_font = nil

4605 local item_r

4606 if item.id == 7 and item.subtype == 2 then

4607 item_r = item.replace -- automatic discs have just 1 glyph

4608 else

4609 item_r = item

4610 end

4611 local chardata = characters[item_r.char]

4612 d = chardata and chardata.d or nil

4613 if not d or d == 'nsm' then

4614 for nn, et in ipairs(ranges) do

4615 if item_r.char < et[1] then

4616 break

4617 elseif item_r.char <= et[2] then

4618 if not d then d = et[3]

4619 elseif d == 'nsm' then d_font = et[3]

4620 end

4621 break

4622 end

4623 end

4624 end

4625 d = d or 'l'

4626

4627 -- A short 'pause' in bidi for mapfont

4628 d_font = d_font or d

4629 d_font = (d_font == 'l' and 0) or

4630 (d_font == 'nsm' and 0) or

4631 (d_font == 'r' and 1) or

4632 (d_font == 'al' and 2) or

4633 (d_font == 'an' and 2) or nil

4634 if d_font and fontmap and fontmap[d_font][item_r.font] then

4635 item_r.font = fontmap[d_font][item_r.font]

4636 end

4637

4638 if new_d then

4639 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

4640 if inmath then

4641 attr_d = 0

4642 else

4643 attr_d = node.get_attribute(item, ATDIR)

4644 attr_d = attr_d % 3

4645 end

4646 if attr_d == 1 then

4647 outer_first = 'r'

4648 last = 'r'

4649 elseif attr_d == 2 then

4650 outer_first = 'r'

4651 last = 'al'

4652 else

4653 outer_first = 'l'

4654 last = 'l'

4655 end

4656 outer = last

4657 has_en = false

164

4658 first_et = nil

4659 new_d = false

4660 end

4661

4662 if glue_d then

4663 if (d == 'l' and 'l' or 'r') ~= glue_d then

4664 table.insert(nodes, {glue_i, 'on', nil})

4665 end

4666 glue_d = nil

4667 glue_i = nil

4668 end

4669

4670 elseif item.id == DIR then

4671 d = nil

4672 new_d = true

4673

4674 elseif item.id == node.id'glue' and item.subtype == 13 then

4675 glue_d = d

4676 glue_i = item

4677 d = nil

4678

4679 elseif item.id == node.id'math' then

4680 inmath = (item.subtype == 0)

4681

4682 else

4683 d = nil

4684 end

4685

4686 -- AL <= EN/ET/ES -- W2 + W3 + W6

4687 if last == 'al' and d == 'en' then

4688 d = 'an' -- W3

4689 elseif last == 'al' and (d == 'et' or d == 'es') then

4690 d = 'on' -- W6

4691 end

4692

4693 -- EN + CS/ES + EN -- W4

4694 if d == 'en' and #nodes >= 2 then

4695 if (nodes[#nodes][2] == 'es' or nodes[#nodes][2] == 'cs')

4696 and nodes[#nodes-1][2] == 'en' then

4697 nodes[#nodes][2] = 'en'

4698 end

4699 end

4700

4701 -- AN + CS + AN -- W4 too, because uax9 mixes both cases

4702 if d == 'an' and #nodes >= 2 then

4703 if (nodes[#nodes][2] == 'cs')

4704 and nodes[#nodes-1][2] == 'an' then

4705 nodes[#nodes][2] = 'an'

4706 end

4707 end

4708

4709 -- ET/EN -- W5 + W7->l / W6->on

4710 if d == 'et' then

4711 first_et = first_et or (#nodes + 1)

4712 elseif d == 'en' then

4713 has_en = true

4714 first_et = first_et or (#nodes + 1)

4715 elseif first_et then -- d may be nil here !

4716 if has_en then

165

4717 if last == 'l' then

4718 temp = 'l' -- W7

4719 else

4720 temp = 'en' -- W5

4721 end

4722 else

4723 temp = 'on' -- W6

4724 end

4725 for e = first_et, #nodes do

4726 if nodes[e][1].id == GLYPH then nodes[e][2] = temp end

4727 end

4728 first_et = nil

4729 has_en = false

4730 end

4731

4732 if d then

4733 if d == 'al' then

4734 d = 'r'

4735 last = 'al'

4736 elseif d == 'l' or d == 'r' then

4737 last = d

4738 end

4739 prev_d = d

4740 table.insert(nodes, {item, d, outer_first})

4741 end

4742

4743 outer_first = nil

4744

4745 end

4746

4747 -- TODO -- repeated here in case EN/ET is the last node. Find a

4748 -- better way of doing things:

4749 if first_et then -- dir may be nil here !

4750 if has_en then

4751 if last == 'l' then

4752 temp = 'l' -- W7

4753 else

4754 temp = 'en' -- W5

4755 end

4756 else

4757 temp = 'on' -- W6

4758 end

4759 for e = first_et, #nodes do

4760 if nodes[e][1].id == GLYPH then nodes[e][2] = temp end

4761 end

4762 end

4763

4764 -- dummy node, to close things

4765 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

4766

4767 --------------- NEUTRAL -----------------

4768

4769 outer = save_outer

4770 last = outer

4771

4772 local first_on = nil

4773

4774 for q = 1, #nodes do

4775 local item

166

4776

4777 local outer_first = nodes[q][3]

4778 outer = outer_first or outer

4779 last = outer_first or last

4780

4781 local d = nodes[q][2]

4782 if d == 'an' or d == 'en' then d = 'r' end

4783 if d == 'cs' or d == 'et' or d == 'es' then d = 'on' end --- W6

4784

4785 if d == 'on' then

4786 first_on = first_on or q

4787 elseif first_on then

4788 if last == d then

4789 temp = d

4790 else

4791 temp = outer

4792 end

4793 for r = first_on, q - 1 do

4794 nodes[r][2] = temp

4795 item = nodes[r][1] -- MIRRORING

4796 if Babel.mirroring_enabled and item.id == GLYPH

4797 and temp == 'r' and characters[item.char] then

4798 item.char = characters[item.char].m or item.char

4799 end

4800 end

4801 first_on = nil

4802 end

4803

4804 if d == 'r' or d == 'l' then last = d end

4805 end

4806

4807 -------------- IMPLICIT, REORDER ----------------

4808

4809 outer = save_outer

4810 last = outer

4811

4812 local state = {}

4813 state.has_r = false

4814

4815 for q = 1, #nodes do

4816

4817 local item = nodes[q][1]

4818

4819 outer = nodes[q][3] or outer

4820

4821 local d = nodes[q][2]

4822

4823 if d == 'nsm' then d = last end -- W1

4824 if d == 'en' then d = 'an' end

4825 local isdir = (d == 'r' or d == 'l')

4826

4827 if outer == 'l' and d == 'an' then

4828 state.san = state.san or item

4829 state.ean = item

4830 elseif state.san then

4831 head, state = insert_numeric(head, state)

4832 end

4833

4834 if outer == 'l' then

167

4835 if d == 'an' or d == 'r' then -- im -> implicit

4836 if d == 'r' then state.has_r = true end

4837 state.sim = state.sim or item

4838 state.eim = item

4839 elseif d == 'l' and state.sim and state.has_r then

4840 head, state = insert_implicit(head, state, outer)

4841 elseif d == 'l' then

4842 state.sim, state.eim, state.has_r = nil, nil, false

4843 end

4844 else

4845 if d == 'an' or d == 'l' then

4846 if nodes[q][3] then -- nil except after an explicit dir

4847 state.sim = item -- so we move sim 'inside' the group

4848 else

4849 state.sim = state.sim or item

4850 end

4851 state.eim = item

4852 elseif d == 'r' and state.sim then

4853 head, state = insert_implicit(head, state, outer)

4854 elseif d == 'r' then

4855 state.sim, state.eim = nil, nil

4856 end

4857 end

4858

4859 if isdir then

4860 last = d -- Don't search back - best save now

4861 elseif d == 'on' and state.san then

4862 state.san = state.san or item

4863 state.ean = item

4864 end

4865

4866 end

4867

4868 return node.prev(head) or head

4869 end

4870 〈/basic〉

15 Data for CJK

It is a boring file and it’s not shown here. See the generated file.

16 The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to nohyphenation.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than once,

checking the category code of the @ sign, etc.

4871 〈∗nil〉
4872 \ProvidesLanguage{nil}[〈〈date〉〉 〈〈version〉〉 Nil language]

4873 \LdfInit{nil}{datenil}

When this file is read as an option, i.e. by the \usepackage command, nil could be an

‘unknown’ language in which case we have to make it known.

4874 \ifx\l@nil\@undefined

4875 \newlanguage\l@nil

4876 \@namedef{bbl@hyphendata@\the\l@nil}{{}{}}% Remove warning

168

4877 \fi

This macro is used to store the values of the hyphenation parameters \lefthyphenmin and

\righthyphenmin.

4878 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’ language.

\captionnil

\datenil 4879 \let\captionsnil\@empty

4880 \let\datenil\@empty

The macro \ldf@finish takes care of looking for a configuration file, setting the main

language to be switched on at \begin{document} and resetting the category code of @ to its

original value.

4881 \ldf@finish{nil}

4882 〈/nil〉

17 Support for Plain TEX (plain.def)

17.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to designate

his version of the american English hyphenation patterns, a new solution has to be found

in order to be able to load hyphenation patterns for other languages in a plain-based

TEX-format. When asked he responded:

That file name is “sacred”, and if anybody changes it they will cause severe

upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they mustn’t diddle

with hyphen.tex (or plain.tex except to preload additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around

plain.tex and lplain.tex to acheive the desired effect, based on the babel package. If

you load each of them with iniTEX, you will get a file called either bplain.fmt or

blplain.fmt, which you can use as replacements for plain.fmt and lplain.fmt.

As these files are going to be read as the first thing iniTEX sees, we need to set some

category codes just to be able to change the definition of \input

4883 〈∗bplain | blplain〉
4884 \catcode`\{=1 % left brace is begin-group character

4885 \catcode`\}=2 % right brace is end-group character

4886 \catcode`\#=6 % hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on TEX’s input path by

trying to open it for reading...

4887 \openin 0 hyphen.cfg

If the file wasn’t found the following test turns out true.

4888 \ifeof0

4889 \else

When hyphen.cfg could be opened we make sure that it will be read instead of the file

hyphen.tex which should (according to Don Knuth’s ruling) contain the american English

hyphenation patterns and nothing else.

We do this by first saving the original meaning of \input (and I use a one letter control

sequence for that so as not to waste multi-letter control sequence on this in the format).

4890 \let\a\input

169

Then \input is defined to forget about its argument and load hyphen.cfg instead.

4891 \def\input #1 {%

4892 \let\input\a

4893 \a hyphen.cfg

Once that’s done the original meaning of \input can be restored and the definition of \a

can be forgotten.

4894 \let\a\undefined

4895 }

4896 \fi

4897 〈/bplain | blplain〉

Now that we have made sure that hyphen.cfg will be loaded at the right moment it is time

to load plain.tex.

4898 〈bplain〉\a plain.tex

4899 〈blplain〉\a lplain.tex

Finally we change the contents of \fmtname to indicate that this is not the plain format, but

a format based on plain with the babel package preloaded.

4900 〈bplain〉\def\fmtname{babel-plain}
4901 〈blplain〉\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy of

blplain.tex, rename it and replace plain.tex with the name of your format file.

17.2 Emulating some LATEX features

The following code duplicates or emulates parts of LATEX2ε that are needed for babel.

4902 〈∗plain〉
4903 \def\@empty{}

4904 \def\loadlocalcfg#1{%

4905 \openin0#1.cfg

4906 \ifeof0

4907 \closein0

4908 \else

4909 \closein0

4910 {\immediate\write16{*************************************}%

4911 \immediate\write16{* Local config file #1.cfg used}%

4912 \immediate\write16{*}%

4913 }

4914 \input #1.cfg\relax

4915 \fi

4916 \@endofldf}

17.3 General tools

A number of LATEX macro’s that are needed later on.

4917 \long\def\@firstofone#1{#1}

4918 \long\def\@firstoftwo#1#2{#1}

4919 \long\def\@secondoftwo#1#2{#2}

4920 \def\@nnil{\@nil}

4921 \def\@gobbletwo#1#2{}

4922 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

4923 \def\@star@or@long#1{%

4924 \@ifstar

4925 {\let\l@ngrel@x\relax#1}%

4926 {\let\l@ngrel@x\long#1}}

170

4927 \let\l@ngrel@x\relax

4928 \def\@car#1#2\@nil{#1}

4929 \def\@cdr#1#2\@nil{#2}

4930 \let\@typeset@protect\relax

4931 \let\protected@edef\edef

4932 \long\def\@gobble#1{}

4933 \edef\@backslashchar{\expandafter\@gobble\string\\}

4934 \def\strip@prefix#1>{}

4935 \def\g@addto@macro#1#2{{%

4936 \toks@\expandafter{#1#2}%

4937 \xdef#1{\the\toks@}}}

4938 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

4939 \def\@nameuse#1{\csname #1\endcsname}

4940 \def\@ifundefined#1{%

4941 \expandafter\ifx\csname#1\endcsname\relax

4942 \expandafter\@firstoftwo

4943 \else

4944 \expandafter\@secondoftwo

4945 \fi}

4946 \def\@expandtwoargs#1#2#3{%

4947 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}

4948 \def\zap@space#1 #2{%

4949 #1%

4950 \ifx#2\@empty\else\expandafter\zap@space\fi

4951 #2}

LATEX2ε has the command \@onlypreamble which adds commands to a list of commands

that are no longer needed after \begin{document}.

4952 \ifx\@preamblecmds\@undefined

4953 \def\@preamblecmds{}

4954 \fi

4955 \def\@onlypreamble#1{%

4956 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%

4957 \@preamblecmds\do#1}}

4958 \@onlypreamble\@onlypreamble

Mimick LATEX’s \AtBeginDocument; for this to work the user needs to add \begindocument

to his file.

4959 \def\begindocument{%

4960 \@begindocumenthook

4961 \global\let\@begindocumenthook\@undefined

4962 \def\do##1{\global\let##1\@undefined}%

4963 \@preamblecmds

4964 \global\let\do\noexpand}

4965 \ifx\@begindocumenthook\@undefined

4966 \def\@begindocumenthook{}

4967 \fi

4968 \@onlypreamble\@begindocumenthook

4969 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimick LATEX’s \AtEndOfPackage. Our replacement macro is much

simpler; it stores its argument in \@endofldf.

4970 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}

4971 \@onlypreamble\AtEndOfPackage

4972 \def\@endofldf{}

4973 \@onlypreamble\@endofldf

4974 \let\bbl@afterlang\@empty

4975 \chardef\bbl@opt@hyphenmap\z@

171

LATEX needs to be able to switch off writing to its auxiliary files; plain doesn’t have them by

default.

4976 \ifx\if@filesw\@undefined

4977 \expandafter\let\csname if@filesw\expandafter\endcsname

4978 \csname iffalse\endcsname

4979 \fi

Mimick LATEX’s commands to define control sequences.

4980 \def\newcommand{\@star@or@long\new@command}

4981 \def\new@command#1{%

4982 \@testopt{\@newcommand#1}0}

4983 \def\@newcommand#1[#2]{%

4984 \@ifnextchar [{\@xargdef#1[#2]}%

4985 {\@argdef#1[#2]}}

4986 \long\def\@argdef#1[#2]#3{%

4987 \@yargdef#1\@ne{#2}{#3}}

4988 \long\def\@xargdef#1[#2][#3]#4{%

4989 \expandafter\def\expandafter#1\expandafter{%

4990 \expandafter\@protected@testopt\expandafter #1%

4991 \csname\string#1\expandafter\endcsname{#3}}%

4992 \expandafter\@yargdef \csname\string#1\endcsname

4993 \tw@{#2}{#4}}

4994 \long\def\@yargdef#1#2#3{%

4995 \@tempcnta#3\relax

4996 \advance \@tempcnta \@ne

4997 \let\@hash@\relax

4998 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fi}%

4999 \@tempcntb #2%

5000 \@whilenum\@tempcntb <\@tempcnta

5001 \do{%

5002 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%

5003 \advance\@tempcntb \@ne}%

5004 \let\@hash@##%

5005 \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}

5006 \def\providecommand{\@star@or@long\provide@command}

5007 \def\provide@command#1{%

5008 \begingroup

5009 \escapechar\m@ne\xdef\@gtempa{{\string#1}}%

5010 \endgroup

5011 \expandafter\@ifundefined\@gtempa

5012 {\def\reserved@a{\new@command#1}}%

5013 {\let\reserved@a\relax

5014 \def\reserved@a{\new@command\reserved@a}}%

5015 \reserved@a}%

5016 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

5017 \def\declare@robustcommand#1{%

5018 \edef\reserved@a{\string#1}%

5019 \def\reserved@b{#1}%

5020 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%

5021 \edef#1{%

5022 \ifx\reserved@a\reserved@b

5023 \noexpand\x@protect

5024 \noexpand#1%

5025 \fi

5026 \noexpand\protect

5027 \expandafter\noexpand\csname

5028 \expandafter\@gobble\string#1 \endcsname

5029 }%

172

5030 \expandafter\new@command\csname

5031 \expandafter\@gobble\string#1 \endcsname

5032 }

5033 \def\x@protect#1{%

5034 \ifx\protect\@typeset@protect\else

5035 \@x@protect#1%

5036 \fi

5037 }

5038 \def\@x@protect#1\fi#2#3{%

5039 \fi\protect#1%

5040 }

The following little macro \in@ is taken from latex.ltx; it checks whether its first

argument is part of its second argument. It uses the boolean \in@; allocating a new

boolean inside conditionally executed code is not possible, hence the construct with the

temporary definition of \bbl@tempa.

5041 \def\bbl@tempa{\csname newif\endcsname\ifin@}

5042 \ifx\in@\@undefined

5043 \def\in@#1#2{%

5044 \def\in@@##1#1##2##3\in@@{%

5045 \ifx\in@##2\in@false\else\in@true\fi}%

5046 \in@@#2#1\in@\in@@}

5047 \else

5048 \let\bbl@tempa\@empty

5049 \fi

5050 \bbl@tempa

LATEX has a macro to check whether a certain package was loaded with specific options. The

command has two extra arguments which are code to be executed in either the true or

false case. This is used to detect whether the document needs one of the accents to be

activated (activegrave and activeacute). For plain TEX we assume that the user wants them

to be active by default. Therefore the only thing we do is execute the third argument (the

code for the true case).

5051 \def\@ifpackagewith#1#2#3#4{#3}

The LATEX macro \@ifl@aded checks whether a file was loaded. This functionality is not

needed for plain TEX but we need the macro to be defined as a no-op.

5052 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and

\providecommand exist with some sensible definition. They are not fully equivalent to

their LATEX2ε versions; just enough to make things work in plain TEXenvironments.

5053 \ifx\@tempcnta\@undefined

5054 \csname newcount\endcsname\@tempcnta\relax

5055 \fi

5056 \ifx\@tempcntb\@undefined

5057 \csname newcount\endcsname\@tempcntb\relax

5058 \fi

To prevent wasting two counters in LATEX 2.09 (because counters with the same name are

allocated later by it) we reset the counter that holds the next free counter (\count10).

5059 \ifx\bye\@undefined

5060 \advance\count10 by -2\relax

5061 \fi

5062 \ifx\@ifnextchar\@undefined

5063 \def\@ifnextchar#1#2#3{%

5064 \let\reserved@d=#1%

5065 \def\reserved@a{#2}\def\reserved@b{#3}%

173

5066 \futurelet\@let@token\@ifnch}

5067 \def\@ifnch{%

5068 \ifx\@let@token\@sptoken

5069 \let\reserved@c\@xifnch

5070 \else

5071 \ifx\@let@token\reserved@d

5072 \let\reserved@c\reserved@a

5073 \else

5074 \let\reserved@c\reserved@b

5075 \fi

5076 \fi

5077 \reserved@c}

5078 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token

5079 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

5080 \fi

5081 \def\@testopt#1#2{%

5082 \@ifnextchar[{#1}{#1[#2]}}

5083 \def\@protected@testopt#1{%

5084 \ifx\protect\@typeset@protect

5085 \expandafter\@testopt

5086 \else

5087 \@x@protect#1%

5088 \fi}

5089 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax

5090 #2\relax}\fi}

5091 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum

5092 \else\expandafter\@gobble\fi{#1}}

17.4 Encoding related macros

Code from ltoutenc.dtx, adapted for use in the plain TEX environment.

5093 \def\DeclareTextCommand{%

5094 \@dec@text@cmd\providecommand

5095 }

5096 \def\ProvideTextCommand{%

5097 \@dec@text@cmd\providecommand

5098 }

5099 \def\DeclareTextSymbol#1#2#3{%

5100 \@dec@text@cmd\chardef#1{#2}#3\relax

5101 }

5102 \def\@dec@text@cmd#1#2#3{%

5103 \expandafter\def\expandafter#2%

5104 \expandafter{%

5105 \csname#3-cmd\expandafter\endcsname

5106 \expandafter#2%

5107 \csname#3\string#2\endcsname

5108 }%

5109 % \let\@ifdefinable\@rc@ifdefinable

5110 \expandafter#1\csname#3\string#2\endcsname

5111 }

5112 \def\@current@cmd#1{%

5113 \ifx\protect\@typeset@protect\else

5114 \noexpand#1\expandafter\@gobble

5115 \fi

5116 }

5117 \def\@changed@cmd#1#2{%

5118 \ifx\protect\@typeset@protect

5119 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax

174

5120 \expandafter\ifx\csname ?\string#1\endcsname\relax

5121 \expandafter\def\csname ?\string#1\endcsname{%

5122 \@changed@x@err{#1}%

5123 }%

5124 \fi

5125 \global\expandafter\let

5126 \csname\cf@encoding \string#1\expandafter\endcsname

5127 \csname ?\string#1\endcsname

5128 \fi

5129 \csname\cf@encoding\string#1%

5130 \expandafter\endcsname

5131 \else

5132 \noexpand#1%

5133 \fi

5134 }

5135 \def\@changed@x@err#1{%

5136 \errhelp{Your command will be ignored, type <return> to proceed}%

5137 \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}

5138 \def\DeclareTextCommandDefault#1{%

5139 \DeclareTextCommand#1?%

5140 }

5141 \def\ProvideTextCommandDefault#1{%

5142 \ProvideTextCommand#1?%

5143 }

5144 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd

5145 \expandafter\let\csname?-cmd\endcsname\@changed@cmd

5146 \def\DeclareTextAccent#1#2#3{%

5147 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}

5148 }

5149 \def\DeclareTextCompositeCommand#1#2#3#4{%

5150 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname

5151 \edef\reserved@b{\string##1}%

5152 \edef\reserved@c{%

5153 \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%

5154 \ifx\reserved@b\reserved@c

5155 \expandafter\expandafter\expandafter\ifx

5156 \expandafter\@car\reserved@a\relax\relax\@nil

5157 \@text@composite

5158 \else

5159 \edef\reserved@b##1{%

5160 \def\expandafter\noexpand

5161 \csname#2\string#1\endcsname####1{%

5162 \noexpand\@text@composite

5163 \expandafter\noexpand\csname#2\string#1\endcsname

5164 ####1\noexpand\@empty\noexpand\@text@composite

5165 {##1}%

5166 }%

5167 }%

5168 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%

5169 \fi

5170 \expandafter\def\csname\expandafter\string\csname

5171 #2\endcsname\string#1-\string#3\endcsname{#4}

5172 \else

5173 \errhelp{Your command will be ignored, type <return> to proceed}%

5174 \errmessage{\string\DeclareTextCompositeCommand\space used on

5175 inappropriate command \protect#1}

5176 \fi

5177 }

5178 \def\@text@composite#1#2#3\@text@composite{%

175

5179 \expandafter\@text@composite@x

5180 \csname\string#1-\string#2\endcsname

5181 }

5182 \def\@text@composite@x#1#2{%

5183 \ifx#1\relax

5184 #2%

5185 \else

5186 #1%

5187 \fi

5188 }

5189 %

5190 \def\@strip@args#1:#2-#3\@strip@args{#2}

5191 \def\DeclareTextComposite#1#2#3#4{%

5192 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%

5193 \bgroup

5194 \lccode`\@=#4%

5195 \lowercase{%

5196 \egroup

5197 \reserved@a @%

5198 }%

5199 }

5200 %

5201 \def\UseTextSymbol#1#2{%

5202 % \let\@curr@enc\cf@encoding

5203 % \@use@text@encoding{#1}%

5204 #2%

5205 % \@use@text@encoding\@curr@enc

5206 }

5207 \def\UseTextAccent#1#2#3{%

5208 % \let\@curr@enc\cf@encoding

5209 % \@use@text@encoding{#1}%

5210 % #2{\@use@text@encoding\@curr@enc\selectfont#3}%

5211 % \@use@text@encoding\@curr@enc

5212 }

5213 \def\@use@text@encoding#1{%

5214 % \edef\f@encoding{#1}%

5215 % \xdef\font@name{%

5216 % \csname\curr@fontshape/\f@size\endcsname

5217 % }%

5218 % \pickup@font

5219 % \font@name

5220 % \@@enc@update

5221 }

5222 \def\DeclareTextSymbolDefault#1#2{%

5223 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%

5224 }

5225 \def\DeclareTextAccentDefault#1#2{%

5226 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%

5227 }

5228 \def\cf@encoding{OT1}

Currently we only use the LATEX2ε method for accents for those that are known to be made

active in some language definition file.

5229 \DeclareTextAccent{\"}{OT1}{127}

5230 \DeclareTextAccent{\'}{OT1}{19}

5231 \DeclareTextAccent{\^}{OT1}{94}

5232 \DeclareTextAccent{\`}{OT1}{18}

5233 \DeclareTextAccent{\~}{OT1}{126}

176

The following control sequences are used in babel.def but are not defined for plain TEX.

5234 \DeclareTextSymbol{\textquotedblleft}{OT1}{92}

5235 \DeclareTextSymbol{\textquotedblright}{OT1}{`\"}

5236 \DeclareTextSymbol{\textquoteleft}{OT1}{`\`}

5237 \DeclareTextSymbol{\textquoteright}{OT1}{`\'}

5238 \DeclareTextSymbol{\i}{OT1}{16}

5239 \DeclareTextSymbol{\ss}{OT1}{25}

For a couple of languages we need the LATEX-control sequence \scriptsize to be available.

Because plain TEX doesn’t have such a sofisticated font mechanism as LATEX has, we just

\let it to \sevenrm.

5240 \ifx\scriptsize\@undefined

5241 \let\scriptsize\sevenrm

5242 \fi

5243 〈/plain〉

18 Acknowledgements

I would like to thank all who volunteered as β-testers for their time. Michel Goossens

supplied contributions for most of the other languages. Nico Poppelier helped polish the

text of the documentation and supplied parts of the macros for the Dutch language. Paul

Wackers and Werenfried Spit helped find and repair bugs.

During the further development of the babel system I received much help from Bernd

Raichle, for which I am grateful.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

[3] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[4] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst, SDU Uitgeverij

(’s-Gravenhage, 1988).

[5] Hubert Partl, German TEX, TUGboat 9 (1988) #1, p. 70–72.

[6] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[7] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national LATEX

styles, TUGboat 10 (1989) #3, p. 401–406.

[8] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[9] Jukka K. Korpela, Unicode Explained, O’Reilly, 2006.

[10] Ken Lunde, CJKV Information Processing, O’Reilly, 2nd ed., 2009.

[11] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1, p. 87–90.

[12] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using

LATEX, Springer, 2002, p. 301–373.

177

	I User guide
	The user interface
	Monolingual documents
	Multilingual documents
	Modifiers
	xelatex and lualatex
	Troubleshooting
	Plain
	Basic language selectors
	Auxiliary language selectors
	More on selection
	Shorthands
	Package options
	The base option
	ini files
	Selecting fonts
	Modifying a language
	Creating a language
	Digits
	Getting the current language name
	Hyphenation and line breaking
	Selecting scripts
	Selecting directions
	Language attributes
	Hooks
	Languages supported by babel with ldf files
	Unicode character properties in luatex
	Tips, workarounds, known issues and notes
	Current and future work
	Tentative and experimental code

	Loading languages with language.dat
	Format

	The interface between the core of babel and the language definition files
	Guidelines for contributed languages
	Basic macros
	Skeleton
	Support for active characters
	Support for saving macro definitions
	Support for extending macros
	Macros common to a number of languages
	Encoding-dependent strings

	Changes
	Changes in babel version 3.9

	II Source code
	Identification and loading of required files
	locale directory
	Tools
	Multiple languages

	The Package File (LaTeX, babel.sty)
	base
	key=value options and other general option
	Conditional loading of shorthands
	Language options

	The kernel of Babel (babel.def, common)
	Tools
	Hooks
	Setting up language files
	Shorthands
	Language attributes
	Support for saving macro definitions
	Short tags
	Hyphens
	Multiencoding strings
	Macros common to a number of languages
	Making glyphs available
	Quotation marks
	Letters
	Shorthands for quotation marks
	Umlauts and tremas

	Layout
	Load engine specific macros
	Creating languages

	The kernel of Babel (babel.def, only LaTeX)
	The redefinition of the style commands
	Cross referencing macros
	Marks
	Preventing clashes with other packages
	ifthen
	varioref
	hhline
	hyperref
	fancyhdr

	Encoding and fonts
	Basic bidi support
	Local Language Configuration

	Multiple languages (switch.def)
	Selecting the language
	Errors

	Loading hyphenation patterns
	Font handling with fontspec
	Hooks for XeTeX and LuaTeX
	XeTeX
	Layout
	LuaTeX
	Southeast Asian scripts
	CJK line breaking
	Layout
	Auto bidi with basic and basic-r

	Data for CJK
	The `nil' language
	Support for Plain TeX (plain.def)
	Not renaming hyphen.tex
	Emulating some LaTeX features
	General tools
	Encoding related macros

	Acknowledgements

