
Babel

Version 3.22
2018/06/05

Original author
Johannes L. Braams

Current maintainer
Javier Bezos

The standard distribution of LATEX contains a number of
document classes that are meant to be used, but also
serve as examples for other users to create their own
document classes. These document classes have become
very popular among LATEX users. But it should be kept in
mind that they were designed for American tastes and
typography. At one time they even contained a number
of hard-wired texts.

This manual describes babel, a package that makes use
of the capabilities of TEX version 3 and, to some extent,
xetex and luatex, to provide an environment in which
documents can be typeset in a language other than US
English, or in more than one language or script.

Current development is focused on Unicode engines
(XeTEX and LuaTEX) and the so-called complex scripts. New
features related to font selection, bidi writing and the like
will be added incrementally.

Babel provides support (total or partial) for about 200
languages, either as a “classical” package option or as an
ini file. Furthermore, new languages can be created
from scratch easily.



Contents

I User guide 4

1 The user interface 4
1.1 Monolingual documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Multilingual documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 xelatex and lualatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Basic language selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Auxiliary language selectors . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 More on selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 Shorthands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.11 Package options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.12 The base option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.13 ini files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.14 Selecting fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.15 Modifying a language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.16 Creating a language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.17 Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.18 Getting the current language name . . . . . . . . . . . . . . . . . . . . . . 27
1.19 Hyphenation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.20 Selecting scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.21 Selecting directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.22 Language attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.23 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.24 Languages supported by babel . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.25 Tips, workarounds, know issues and notes . . . . . . . . . . . . . . . . . . 35
1.26 Current and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.27 Tentative and experimental code . . . . . . . . . . . . . . . . . . . . . . . 37

2 Loading languages with language.dat 38
2.1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 The interface between the core of babel and the language definition files 39
3.1 Guidelines for contributed languages . . . . . . . . . . . . . . . . . . . . . 41
3.2 Basic macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Support for active characters . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Support for saving macro definitions . . . . . . . . . . . . . . . . . . . . . 44
3.6 Support for extending macros . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Macros common to a number of languages . . . . . . . . . . . . . . . . . . 44
3.8 Encoding-dependent strings . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Changes 48
4.1 Changes in babel version 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Changes in babel version 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II The code 49

5 Identification and loading of required files 49

1



6 locale directory 50

7 Tools 50
7.1 Multiple languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 The Package File (LATEX, babel.sty) 55
8.1 base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 key=value options and other general option . . . . . . . . . . . . . . . . . 57
8.3 Conditional loading of shorthands . . . . . . . . . . . . . . . . . . . . . . . 58
8.4 Language options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 The kernel of Babel (babel.def, common) 62
9.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.3 Setting up language files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.4 Shorthands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.5 Language attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.6 Support for saving macro definitions . . . . . . . . . . . . . . . . . . . . . 80
9.7 Short tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.8 Hyphens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.9 Multiencoding strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.10 Macros common to a number of languages . . . . . . . . . . . . . . . . . . 88
9.11 Making glyphs available . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.11.1 Quotation marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.11.2 Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.11.3 Shorthands for quotation marks . . . . . . . . . . . . . . . . . . . 91
9.11.4 Umlauts and tremas . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.12 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.13 Creating languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10 The kernel of Babel (babel.def, only LATEX) 101
10.1 The redefinition of the style commands . . . . . . . . . . . . . . . . . . . . 101
10.2 Cross referencing macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.3 Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.4 Preventing clashes with other packages . . . . . . . . . . . . . . . . . . . 106

10.4.1 ifthen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4.2 varioref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4.3 hhline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.4.4 hyperref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.4.5 fancyhdr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.5 Encoding and fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.6 Basic bidi support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.7 Local Language Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 112

11 Multiple languages (switch.def) 113
11.1 Selecting the language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.2 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

12 Loading hyphenation patterns 123

13 Font handling with fontspec 128

2



14 Hooks for XeTeX and LuaTeX 131
14.1 XeTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
14.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
14.3 LuaTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
14.4 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
14.5 Auto bidi with basic-r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

15 The ‘nil’ language 154

16 Support for Plain TEX (plain.def) 154
16.1 Not renaming hyphen.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
16.2 Emulating some LATEX features . . . . . . . . . . . . . . . . . . . . . . . . . 155
16.3 General tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
16.4 Encoding related macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

17 Acknowledgements 162

Troubleshoooting

Paragraph ended before \UTFviii@three@octets was complete . . . . . . . . . . . 4
No hyphenation patterns were preloaded for (babel) the language ‘LANG’ into the

format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
You are loading directly a language style . . . . . . . . . . . . . . . . . . . . . . . 7
Unknown language ‘LANG’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Argument of \language@active@arg” has an extra } . . . . . . . . . . . . . . . . . 11

3



Part I

User guide
• This user guide focuses on LATEX. There are also some notes on its use with Plain TEX.

• Changes and new features with relation to version 3.8 are highlighted with New X.XX .
The most recent features could be still unstable. Please, report any issues you find.

• If you are interested in the TEX multilingual support, please join the kadingira list on
http://tug.org/mailman/listinfo/kadingira. You can follow the development of
babel on https://github.com/latex3/latex2e/tree/master/required/babel

(which provides some sample files, too).

• See section 3.1 for contributing a language.

• The first sections describe the traditional way of loading a language (with ldf files). The
alternative way based on ini files, which complements the previous one (it will not
replace it), is described below.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in LATEX is to load the
package using its standand mechanism for this purpose, namely, passing that language as
an optional argument. In addition, you may want to set the font and input encodings.

EXAMPLE Here is a simple full example for “traditional” TEX engines (see below for xetex
and luatex). The packages fontenc and inputenc do not belong to babel, but they are
included in the example because typically you will need them (however, the package
inputencmay be omitted with LATEX≥ 2018-04-01 if the encoding is UTF-8):

\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[utf8]{inputenc}

\usepackage[french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\end{document}

TROUBLESHOOTING A common source of trouble is a wrong setting of the input
encoding. Very often you will get the following somewhat cryptic error:

! Paragraph ended before \UTFviii@three@octets was complete.

Make sure you set the encoding actually used by your editor.

4



Another approach is making the language (french in the example) a global option in order
to let other packages detect and use it:

\documentclass[french]{article}

\usepackage{babel}

\usepackage{varioref}

In this last example, the package varioref will also see the option and will be able to use it.

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of
hyphenation patterns as preloaded into the format, (2) a package option, (3) an ldf file,
and (4) a name used in the document to select a language or dialect. So, a package
option refers to a language in a generic way – sometimes it is the actual language name
used to select it, sometimes it is a file name loading a language with a different name,
sometimes it is a file name loading several languages. Please, read the documentation
for specific languages for further info.

TROUBLESHOOTING The following warning is about hyphenation patterns, which are not
under the direct control of babel:

Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language `LANG' into the format.

(babel) Please, configure your TeX system to add them and

(babel) rebuild the format. Now I will use the patterns

(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated.
Some languages may be raising this warning wrongly (because they are not
hyphenated); it is a bug to be fixed – just ignore it. See the manual of your distribution
(MacTEX, MikTEX, TEXLive, etc.) for further info about how to configure it.

1.2 Multilingual documents

In multilingual documents, just use several options. The last one is considered the main
language, activated by default. Sometimes, the main language changes the document
layout (eg, spanish and french).

EXAMPLE In LATEX, the preamble of the document:

\documentclass{article}

\usepackage[dutch,english]{babel}

would tell LATEX that the document would be written in two languages, Dutch and
English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly:

\documentclass{article}

\usepackage[main=english,dutch]{babel}

WARNING Languages may be set as global and as package option at the same time, but in
such a case you should set explicitly the main language with the package option main:

5



\documentclass[italian]{book}

\usepackage[ngerman,main=italian]{babel}

WARNING In the preamble the main language has not been selected, except hyphenation
patterns and the name assigned to \languagename (in particular, shorthands, captions
and date are not activated). If you need to define boxes and the like in the preamble,
you might want to use some of the language selectors described below.

To switch the language there are two basic macros, decribed below in detail:
\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text
inside paragraphs.

EXAMPLE A full bilingual document follows. The main language is french, which is
activated when the document begins. The package inputencmay be omitted with LATEX
≥ 2018-04-01 if the encoding is UTF-8.

\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[utf8]{inputenc}

\usepackage[english,french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\selectlanguage{english}

And an English paragraph, with a short text in

\foreignlanguage{french}{français}.

\end{document}

1.3 Modifiers

New 3.9c The basic behavior of some languages can be modified when loading babel by
means ofmodifiers. They are set after the language name, and are prefixed with a dot (only
when the language is set as package option – neither global options nor the main key accept
them). An example is (spaces are not significant and they can be added or removed):1

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by
including it in the list of modifiers. However, modifiers is a more general mechanism.

1.4 xelatex and lualatex

Many languages are compatible with xetex and luatex. With them you can use babel to
localize the documents.
The Latin script is covered by default in current LATEX (provided the document encoding is
UTF-8), because the font loader is preloaded and the font is switched to lmroman. Other
scripts require loading fontspec. You may want to set the font attributes with fontspec, too.

1No predefined “axis” formodifiers are provided because languages and their scripts have quite different needs.

6



EXAMPLE The following bilingual, single script document in UTF-8 encoding just prints a
couple of ‘captions’ and \today in Danish and Vietnamese. No additional packages are
required.

\documentclass{article}

\usepackage[vietnamese,danish]{babel}

\begin{document}

\prefacename{} -- \alsoname{} -- \today

\selectlanguage{vietnamese}

\prefacename{} -- \alsoname{} -- \today

\end{document}

EXAMPLE Here is a simple monolingual document in Russian (text from the Wikipedia).
Note neither fontenc nor inputenc are necessary, but the document should be encoded
in UTF-8 and a so-called Unicode font must be loaded (in this example \babelfont is
used, described below).

\documentclass{article}

\usepackage[russian]{babel}

\babelfont{rm}{DejaVu Serif}

\begin{document}

Россия, находящаяся на пересечении множества культур, а также

с учётом многонационального характера её населения, — отличается

высокой степенью этнокультурного многообразия и способностью к

межкультурному диалогу.

\end{document}

1.5 Troubleshooting

• Loading directly sty files in LATEX (ie, \usepackage{〈language〉}) is deprecated and you
will get the error:2

! Package babel Error: You are loading directly a language style.

(babel) This syntax is deprecated and you must use

(babel) \usepackage[language]{babel}.

• Another typical error when using babel is the following:3

2In old versions the error read “You have used an old interface to call babel”, not very helpful.
3In old versions the error read “You haven’t loaded the language LANG yet”.

7



! Package babel Error: Unknown language `#1'. Either you have

(babel) misspelled its name, it has not been installed,

(babel) or you requested it in a previous run. Fix its name,

(babel) install it or just rerun the file, respectively. In

(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but
you realized this language is not used after all, and therefore you removed it from the
option list). In most cases, the error vanishes when the document is typeset again, but
in more severe ones you will need to remove the aux file.

1.6 Plain

In Plain, load languages styles with \input and then use \begindocument (the latter is
defined by babel):

\input estonian.sty

\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with
Plain.4

1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in
multilingual documents. In most cases, only the two basic macros \selectlanguage and
\foreignlanguage are necessary. The environments otherlanguage, otherlanguage*
and hyphenrules are auxiliary, and described in the next section.
The main language is selected automatically when the document environment begins.

{〈language〉}\selectlanguage

When a user wants to switch from one language to another he can do so using the macro
\selectlanguage. This macro takes the language, defined previously by a language
definition file, as its argument. It calls several macros that should be defined in the
language definition files to activate the special definitions for the language chosen:

\selectlanguage{german}

This command can be used as environment, too.

NOTE For “historical reasons”, a macro name is converted to a language name without the
leading \; in other words, \selectlanguage{\german} is equivalent to
\selectlanguage{german}. Using a macro instead of a “real” name is deprecated.

WARNING If used inside braces there might be some non-local changes, as this would be
roughly equivalent to:

4Even in the babel kernel there were some macros not compatible with plain. Hopefully these issues will be
fixed soon.

8



{\selectlanguage{<inner-language>} ...}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an
additional grouping level.

{〈language〉}{〈text〉}\foreignlanguage

The command \foreignlanguage takes two arguments; the second argument is a phrase
to be typeset according to the rules of the language named in its first one. This command
(1) only switches the extra definitions and the hyphenation rules for the language, not the
names and dates, (2) does not send information about the language to auxiliary files (i.e.,
the surrounding language is still in force), and (3) it works even if the language has not
been set as package option (but in such a case it only sets the hyphenation patterns and a
warning is shown).

1.8 Auxiliary language selectors

{〈language〉} … \end{otherlanguage}\begin{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except the
language change is (mostly) local to the environment.
Actually, there might be some non-local changes, as this environment is roughly equivalent
to:

\begingroup

\selectlanguage{<inner-language>}

...

\endgroup

\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this environment with an
additional grouping, like braces {}.
Spaces after the environment are ignored.

{〈language〉} … \end{otherlanguage*}\begin{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not
ignored.
This environment was originally intended for intermixing left-to-right typesetting with
right-to-left typesetting in engines not supporting a change in the writing direction inside a
line. However, by default it never complied with the documented behavior and it is just a
version as environment of \foreignlanguage.

{〈language〉} … \end{hyphenrules}\begin{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be used
(it can be used as command, too). This can for instance be used to select ‘nohyphenation’,
provided that in language.dat the ‘language’ nohyphenation is defined by loading
zerohyph.tex. It deactivates language shorthands, too (but not user shorthands).
Except for these simple uses, hyphenrules is discouraged and otherlanguage* (the
starred version) is preferred, as the former does not take into account possible changes in
encodings of characters like, say, ' done by some languages (eg, italian, french, ukraineb).
To set hyphenation exceptions, use \babelhyphenation (see below).

9



1.9 More on selection

{〈tag1〉 = 〈language1〉, 〈tag2〉 = 〈language2〉, …}\babeltags

New 3.9i In multilingual documents with many language switches the commands above
can be cumbersome. With this tool shorter names can be defined. It adds nothing really
new – it is just syntactical sugar.
It defines \text〈tag1〉{〈text〉} to be \foreignlanguage{〈language1〉}{〈text〉}, and
\begin{〈tag1〉} to be \begin{otherlanguage*}{〈language1〉}, and so on. Note \〈tag1〉 is
also allowed, but remember to set it locally inside a group.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}

German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} is legitimate – it defines
\textfinnish and \finnish (and, of course, \begin{finnish}).

NOTE Actually, there may be another advantage in the ‘short’ syntax \text〈tag〉, namely,
it is not affected by \MakeUppercase (while \foreignlanguage is).

[include=〈commands〉,exclude=〈commands〉,fontenc=〈encoding〉]{〈language〉}\babelensure

New 3.9i Except in a few languages, like russian, captions and dates are just strings, and
do not switch the language. That means you should set it explicitly if you want to use them,
or hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TEX can do it for you. To avoid switching the language all the while,
\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

By default only the basic captions and \today are redefined, but you can add further
macros with the key include in the optional argument (without commas). Macros not to
be modified are listed in exclude. You can also enforce a font encoding with fontenc.5 A
couple of examples:

5With it encoded string may not work as expected.

10



\babelensure[include=\Today]{spanish}

\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it makes
some assumptions which could not be fulfilled in some languages. Note also you should
include only macros defined by the language, not global macros (eg, \TeX of \dag).
With ini files (see below), captions are ensured by default.

1.10 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX code.
Shorthands can be used for different kinds of things, as for example: (1) in some languages
shorthands such as "a are defined to be able to hyphenate the word if the encoding is OT1;
(2) in some languages shorthands such as ! are used to insert the right amount of white
space; (3) several kinds of discretionaries and breaks can be inserted easily with "-, "=, etc.
The package inputenc as well as xetex an luatex have alleviated entering non-ASCII
characters, but minority languages and some kinds of text can still require characters not
directly available on the keyboards (and sometimes not even as separated or precomposed
Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can
manipulate the glyph list. Tools for point 3 can be still very useful in general.
There are three levels of shorthands: user, language, and system (by order of precedence).
Version 3.9 introduces the language user level on top of the user level, as described below.
In most cases, you will use only shorthands provided by languages.

NOTE Note the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace
} and the spaces following are gobbled. With one-char shorthands (eg, :), they are
preserved.

2. If on a certain level (system, language, user) there is a one-char shorthand, two-char
ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition
(except if it is deactivated with, eg, string).

A typical error when using shorthands is the following:

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (eg, "}). Just
add {} after (eg, "{}}).

{〈shorthands-list〉}\shorthandon

* {〈shorthands-list〉}\shorthandoff

It is sometimes necessary to switch a shorthand character off temporarily, because it must
be used in an entirely different way. For this purpose, the user commands \shorthandoff
and \shorthandon are provided. They each take a list of characters as their arguments.
The command \shorthandoff sets the \catcode for each of the characters in its argument
to other (12); the command \shorthandon sets the \catcode to active (13). Both commands
only work on ‘known’ shorthand characters. If a character is not known to be a shorthand
character its category code will be left unchanged.

11



New 3.9a However, \shorthandoff does not behave as you would expect with
characters like ~ or ^, because they usually are not “other”. For them \shorthandoff* is
provided, so that with

\shorthandoff*{~^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the
superscript character. The catcodes used are those when the shorthands are defined,
usually when language files are loaded.

* {〈char〉}\useshorthands

The command \useshorthands initiates the definition of user-defined shorthand
sequences. It has one argument, the character that starts these personal shorthands.
New 3.9a User shorthands are not always alive, as they may be deactivated by languages
(for example, if you use " for your user shorthands and switch from german to french, they
stop working). Therefore, a starred version \useshorthands*{〈char〉} is provided, which
makes sure shorthands are always activated.
Currently, if the package option shorthands is used, you must include any character to be
activated with \useshorthands. This restriction will be lifted in a future release.

[〈language〉,〈language〉,...]{〈shorthand〉}{〈code〉}\defineshorthand

The command \defineshorthand takes two arguments: the first is a one- or two-character
shorthand sequence, and the second is the code the shorthand should expand to.
New 3.9a An optional argument allows to (re)define language and system shorthands
(some languages do not activate shorthands, so you may want to add
\languageshorthands{〈lang〉} to the corresponding \extras〈lang〉, as explained below).
By default, user shorthands are (re)defined.
User shorthands override language ones, which in turn override system shorthands.
Language-dependent user shorthands (new in 3.9) take precedence over “normal” user
shorthands.

EXAMPLE Let’s assume you want a unified set of shorthand for discretionaries (languages
do not define shorthands consistently, and "-, \-, "= have different meanings). You
could start with, say:

\useshorthands*{"}

\defineshorthand{"*}{\babelhyphen{soft}}

\defineshorthand{"-}{\babelhyphen{hard}}

However, behavior of hyphens is language dependent. For example, in languages like
Polish and Portuguese, a hard hyphen inside compound words are repeated at the
beginning of the next line. You could then set:

\defineshorthand[*polish,*portugese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the
generic one above only applies for the rest of languages; without * they would
(re)define the language shorthands instead, which are overriden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning
(‘compound word hyphen’) whose visual behavior is that expected in each context.

12



{〈original〉}{〈alias〉}\aliasshorthand

The command \aliasshorthand can be used to let another character perform the same
functions as the default shorthand character. If one prefers for example to use the
character / over " in typing Polish texts, this can be achieved by entering
\aliasshorthand{"}{/}.

NOTE The substitute character must not have been declared before as shorthand (in such
a case, \aliashorthands is ignored).

EXAMPLE The following example shows how to replace a shorthand by another

\aliasshorthand{~}{^}

\AtBeginDocument{\shorthandoff*{~}}

WARNING Shorthands remember somehow the original character, and the fallback value
is that of the latter. So, in this example, if no shorthand if found, ^ expands to a
non-breaking space, because this is the value of ~ (internally, ^ still calls \active@char~
or \normal@char~). Furthermore, if you change the system value of ^ with
\defineshorthand nothing happens.

{〈language〉}\languageshorthands

The command \languageshorthands can be used to switch the shorthands on the
language level. It takes one argument, the name of a language or none (the latter does what
its name suggests).6 Note that for this to work the language should have been specified as
an option when loading the babel package. For example, you can use in english the
shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them with, for example, \useshorthands.)
Very often, this is a more convenient way to deactivate shorthands than \shorthandoff, as
for example if you want to define a macro to easy typing phonetic characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

{〈shorthand〉}\babelshorthand

With this command you can use a shorthand even if (1) not activated in shorthands (in
this case only shorthands for the current language are taken into account, ie, not user
shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal
\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can
conveniently define your own macros, or even you own user shorthands provided they do
not ovelap.)
For your records, here is a list of shorthands, but you must double check them, as they may
change:7

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,
Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

6Actually, any name not corresponding to a language group does the same as none. However, follow this con-
vention because it might be enforced in future releases of babel to catch possible errors.

7Thanks to Enrico Gregorio

13



Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,
Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,
Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),
Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

Catalan " ' `

Czech " -

Esperanto ^

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ < >

Greek ~

Hungarian `

Kurmanji ^

Latin " ^ =

Slovak " ^ ' -

Spanish " . < > '

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the
standard ~, to a non breaking space.8

1.11 Package options

New 3.9a These package options are processed before language options, so that they are
taken into account irrespective of its order. The first three options have been available in
previous versions.

Tells babel not to deactivate shorthands after loading a language file, so that they are alsoKeepShorthandsActive

availabe in the preamble.

For some languages babel supports this options to set ' as a shorthand in case it is not doneactiveacute

by default.

Same for `.activegrave

〈char〉〈char〉... | offshorthands=

The only language shorthands activated are those given, like, eg:

\usepackage[esperanto,french,shorthands=:;!?]{babel}

If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters
(like ~) should be preceded by \string (otherwise they will be expanded by LATEX before
they are passed to the package and therefore they will not be recognized); however, t is
provided for the common case of ~ (as well as c for not so common case of the comma).
With shorthands=off no language shorthands are defined, As some languages use this
mechanism for tools not available otherwise, a macro \babelshorthand is defined, which
allows using them; see above.

none | ref | bibsafe=

8This declaration serves to nothing, but it is preserved for backward compatibility.

14



Some LATEX macros are redefined so that using shorthands is safe. With safe=bib only
\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and
\pageref are redefined (as well as a few macros from varioref and ifthen). With safe=none

no macro is redefined. This option is strongly recommended, because a good deal of
incompatibilities and errors are related to these redefinitions – of course, in such a case
you cannot use shorthands in these macros, but this is not a real problem (just use
“allowed” characters).

active | normalmath=

Shorthands are mainly intended for text, not for math. By setting this option with the
value normal they are deactivated in math mode (default is active) and things like ${a'}$
(a closing brace after a shorthand) are not a source of trouble any more.

〈file〉config=

Load 〈file〉.cfg instead of the default config file bblopts.cfg (the file is loaded even with
noconfigs).

〈language〉main=

Sets the main language, as explained above, ie, this language is always loaded last. If it is
not given as package or global option, it is added to the list of requested languages.

〈language〉headfoot=

By default, headlines and footlines are not touched (only marks), and if they contain
language dependent macros (which is not usual) there may be unexpected results. With
this option you may set the language in heads and foots.

Global and language default config files are not loaded, so you can make sure yournoconfigs

document is not spoilt by an unexpected .cfg file. However, if the key config is set, this
file is loaded.

Prints to the log the list of languages loaded when the format was created: numbershowlanguages

(remember dialects can share it), name, hyphenation file and exceptions file.

New 3.9l Language settings for uppercase and lowercase mapping (as set by \SetCase)nocase

are ignored. Use only if there are incompatibilities with other packages.

New 3.9l No warnings and no infos are written to the log file.9silent

generic | unicode | encoded | 〈label〉 | 〈font encoding〉strings=

Selects the encoding of strings in languages supporting this feature. Predefined labels are
generic (for traditional TEX, LICR and ASCII strings), unicode (for engines like xetex and
luatex) and encoded (for special cases requiring mixed encodings). Other allowed values
are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be
aware with encoded captions are protected, but they work in \MakeUppercase and the like
(this feature misuses some internal LATEX tools, so use it only as a last resort).

off | main | select | other | other*hyphenmap=

9You can use alternatively the package silence.

15



New 3.9g Sets the behavior of case mapping for hyphenation, provided the language
defines it.10 It can take the following values:

off deactivates this feature and no case mapping is applied;
first sets it at the first switching commands in the current or parent scope (typically,

when the aux file is first read and at \begin{document}, but also the first
\selectlanguage in the preamble), and it’s the default if a single language option has
been stated;11

select sets it only at \selectlanguage;
other also sets it at otherlanguage;
other* also sets it at otherlanguage* as well as in heads and foots (if the option headfoot

is used) and in auxiliary files (ie, at \select@language), and it’s the default if several
language options have been stated. The option first can be regarded as an optimized
version of other* for monolingual documents.12

bidi=

New 3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 1.21.

layout=

New 3.16 Selects which layout elements are adapted in bidi documents. See sec. 1.21.

1.12 The base option

With this package option babel just loads some basic macros (those in switch.def),
defines \AfterBabelLanguage and exits. It also selects the hyphenations patterns for the
last language passed as option (by its name in language.dat). There are two main uses:
classes and packages, and as a last resort in case there are, for some reason, incompatible
languages. It can be used if you just want to select the hyphenations patterns of a single
language, too.

{〈option-name〉}{〈code〉}\AfterBabelLanguage

This command is currently the only provided by base. Executes 〈code〉when the file loaded
by the corresponding package option is finished (at \ldf@finish). The setting is global. So

\AfterBabelLanguage{french}{...}

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the code
is executed only if 〈option-name〉 is the same as \CurrentOption (which could not be the
same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with
\newcommand. An error is raised if you attempt to load both. Here is a way to overcome
this problem:

\usepackage[base]{babel}

\AfterBabelLanguage{foo}{%

\let\macroFoo\macro

10Turned off in plain.
11Duplicated options count as several ones.
12Providing foreign is pointless, because the case mapping applied is that at the end of paragraph, but if either

xetex or luatex change this behavior it might be added. On the other hand, other is provided even if I [JBL] think
it isn’t really useful, but who knows.

16



\let\macro\relax}

\usepackage[foo,bar]{babel}

1.13 ini files

An alternative approach to define a language is by means of an ini file. Currently babel
provides about 200 of these files containing the basic data required for a language.
Most of them set the date, and many also the captions (Unicode and LICR). They will be
evolving with the time to add more features (something to keep in mind if backward
compatibility is important). The following section shows how to make use of them
currently (by means of \babelprovide), but a higher interface, based on package options,
in under development (in other words, \babelprovide is mainly intended for auxiliary
tasks).

EXAMPLE Although Georgian has its own ldf file, here is how to declare this language
with an ini file in Unicode engines.

\documentclass{book}

\usepackage{babel}

\babelprovide[import=ka, main]{georgian}

\babelfont{rm}{DejaVu Sans}

\begin{document}

\tableofcontents

\chapter{სამზარეულო და სუფრის ტრადიციები}

ქართული ტრადიციული სამზარეულო ერთ-ერთი უმდიდრესია მთელ მსოფლიოში.

\end{document}

Here is the list (u means Unicode captions, and l means LICR captions):

af Afrikaansul

agq Aghem
ak Akan
am Amharicul

ar Arabicul

ar-DZ Arabicul

ar-MA Arabicul

ar-SY Arabicul

as Assamese
asa Asu
ast Asturianul

az-Cyrl Azerbaijani
az-Latn Azerbaijani
az Azerbaijaniul

bas Basaa
be Belarusianul

bem Bemba
bez Bena
bg Bulgarianul

bm Bambara
bn Banglaul

bo Tibetanu

brx Bodo
bs-Cyrl Bosnian
bs-Latn Bosnianul

bs Bosnianul

ca Catalanul

ce Chechen
cgg Chiga
chr Cherokee
ckb Central Kurdish
cs Czechul

17



cy Welshul

da Danishul

dav Taita
de-AT Germanul

de-CH Germanul

de Germanul

dje Zarma
dsb Lower Sorbianul

dua Duala
dyo Jola-Fonyi
dz Dzongkha
ebu Embu
ee Ewe
el Greekul
en-AU Englishul

en-CA Englishul

en-GB Englishul

en-NZ Englishul

en-US Englishul

en Englishul

eo Esperantoul
es-MX Spanishul

es Spanishul

et Estonianul

eu Basqueul
ewo Ewondo
fa Persianul

ff Fulah
fi Finnishul

fil Filipino
fo Faroese
fr Frenchul

fr-BE Frenchul

fr-CA Frenchul

fr-CH Frenchul

fr-LU Frenchul

fur Friulianul

fy Western Frisian
ga Irishul

gd Scottish Gaelicul
gl Galicianul

gsw Swiss German
gu Gujarati
guz Gusii
gv Manx
ha-GH Hausa
ha-NE Hausal
ha Hausa
haw Hawaiian
he Hebrewul

hi Hindiu
hr Croatianul

hsb Upper Sorbianul

hu Hungarianul

hy Armenian
ia Interlinguaul
id Indonesianul

ig Igbo
ii Sichuan Yi
is Icelandicul
it Italianul

ja Japanese
jgo Ngomba
jmc Machame
ka Georgianul

kab Kabyle
kam Kamba
kde Makonde
kea Kabuverdianu
khq Koyra Chiini
ki Kikuyu
kk Kazakh
kkj Kako
kl Kalaallisut
kln Kalenjin
km Khmer
kn Kannadaul
ko Korean
kok Konkani
ks Kashmiri
ksb Shambala
ksf Bafia
ksh Colognian
kw Cornish
ky Kyrgyz
lag Langi
lb Luxembourgish
lg Ganda
lkt Lakota
ln Lingala
lo Laoul
lrc Northern Luri
lt Lithuanianul

lu Luba-Katanga
luo Luo
luy Luyia
lv Latvianul

mas Masai
mer Meru
mfe Morisyen
mg Malagasy
mgh Makhuwa-Meetto
mgo Metaʼ
mk Macedonianul

ml Malayalamul

mn Mongolian
mr Marathiul
ms-BN Malayl

18



ms-SG Malayl
ms Malayul
mt Maltese
mua Mundang
my Burmese
mzn Mazanderani
naq Nama
nb Norwegian Bokmålul
nd North Ndebele
ne Nepali
nl Dutchul

nmg Kwasio
nn Norwegian Nynorskul
nnh Ngiemboon
nus Nuer
nyn Nyankole
om Oromo
or Odia
os Ossetic
pa-Arab Punjabi
pa-Guru Punjabi
pa Punjabi
pl Polishul

pms Piedmonteseul
ps Pashto
pt-BR Portugueseul
pt-PT Portugueseul
pt Portugueseul
qu Quechua
rm Romanshul

rn Rundi
ro Romanianul

rof Rombo
ru Russianul

rw Kinyarwanda
rwk Rwa
sa-Beng Sanskrit
sa-Deva Sanskrit
sa-Gujr Sanskrit
sa-Knda Sanskrit
sa-Mlym Sanskrit
sa-Telu Sanskrit
sa Sanskrit
sah Sakha
saq Samburu
sbp Sangu
se Northern Samiul
seh Sena
ses Koyraboro Senni
sg Sango
shi-Latn Tachelhit
shi-Tfng Tachelhit
shi Tachelhit
si Sinhala
sk Slovakul

sl Slovenianul

smn Inari Sami
sn Shona
so Somali
sq Albanianul

sr-Cyrl-BA Serbianul

sr-Cyrl-ME Serbianul

sr-Cyrl-XK Serbianul

sr-Cyrl Serbianul

sr-Latn-BA Serbianul

sr-Latn-ME Serbianul

sr-Latn-XK Serbianul

sr-Latn Serbianul

sr Serbianul

sv Swedishul

sw Swahili
ta Tamilu
te Teluguul

teo Teso
th Thaiul
ti Tigrinya
tk Turkmenul

to Tongan
tr Turkishul

twq Tasawaq
tzm Central Atlas Tamazight
ug Uyghur
uk Ukrainianul

ur Urduul

uz-Arab Uzbek
uz-Cyrl Uzbek
uz-Latn Uzbek
uz Uzbek
vai-Latn Vai
vai-Vaii Vai
vai Vai
vi Vietnameseul
vun Vunjo
wae Walser
xog Soga
yav Yangben
yi Yiddish
yo Yoruba
yue Cantonese
zgh Standard Moroccan

Tamazight
zh-Hans-HK Chinese
zh-Hans-MO Chinese
zh-Hans-SG Chinese
zh-Hans Chinese
zh-Hant-HK Chinese
zh-Hant-MO Chinese
zh-Hant Chinese
zh Chinese
zu Zulu

19



In some contexts (currently \babelfont) an ini file may be loaded by its name. Here is the
list of the names currently supported. With these languages, \babelfont loads (if not done
before) the language and script names (even if the language is defined as a package option
with an ldf file).

aghem
akan
albanian
american
amharic
arabic
arabic-algeria
arabic-DZ
arabic-morocco
arabic-MA
arabic-syria
arabic-SY
armenian
assamese
asturian
asu
australian
austrian
azerbaijani-cyrillic
azerbaijani-cyrl
azerbaijani-latin
azerbaijani-latn
azerbaijani
bafia
bambara
basaa
basque
belarusian
bemba
bena
bengali
bodo
bosnian-cyrillic
bosnian-cyrl
bosnian-latin
bosnian-latn
bosnian
brazilian
breton
british
bulgarian
burmese
canadian
cantonese
catalan
centralatlastamazight

centralkurdish
chechen
cherokee
chiga
chinese-hans-hk
chinese-hans-mo
chinese-hans-sg
chinese-hans
chinese-hant-hk
chinese-hant-mo
chinese-hant
chinese-simplified-hongkongsarchina
chinese-simplified-macausarchina
chinese-simplified-singapore
chinese-simplified
chinese-traditional-hongkongsarchina
chinese-traditional-macausarchina
chinese-traditional
chinese
colognian
cornish
croatian
czech
danish
duala
dutch
dzongkha
embu
english-au
english-australia
english-ca
english-canada
english-gb
english-newzealand
english-nz
english-unitedkingdom
english-unitedstates
english-us
english
esperanto
estonian
ewe
ewondo
faroese
filipino
finnish

20



french-be
french-belgium
french-ca
french-canada
french-ch
french-lu
french-luxembourg
french-switzerland
french
friulian
fulah
galician
ganda
georgian
german-at
german-austria
german-ch
german-switzerland
german
greek
gujarati
gusii
hausa-gh
hausa-ghana
hausa-ne
hausa-niger
hausa
hawaiian
hebrew
hindi
hungarian
icelandic
igbo
inarisami
indonesian
interlingua
irish
italian
japanese
jolafonyi
kabuverdianu
kabyle
kako
kalaallisut
kalenjin
kamba
kannada
kashmiri
kazakh
khmer
kikuyu
kinyarwanda
konkani
korean

koyraborosenni
koyrachiini
kwasio
kyrgyz
lakota
langi
lao
latvian
lingala
lithuanian
lowersorbian
lsorbian
lubakatanga
luo
luxembourgish
luyia
macedonian
machame
makhuwameetto
makonde
malagasy
malay-bn
malay-brunei
malay-sg
malay-singapore
malay
malayalam
maltese
manx
marathi
masai
mazanderani
meru
meta
mexican
mongolian
morisyen
mundang
nama
nepali
newzealand
ngiemboon
ngomba
norsk
northernluri
northernsami
northndebele
norwegianbokmal
norwegiannynorsk
nswissgerman
nuer
nyankole
nynorsk
occitan

21



oriya
oromo
ossetic
pashto
persian
piedmontese
polish
portuguese-br
portuguese-brazil
portuguese-portugal
portuguese-pt
portuguese
punjabi-arab
punjabi-arabic
punjabi-gurmukhi
punjabi-guru
punjabi
quechua
romanian
romansh
rombo
rundi
russian
rwa
sakha
samburu
samin
sango
sangu
sanskrit-beng
sanskrit-bengali
sanskrit-deva
sanskrit-devanagari
sanskrit-gujarati
sanskrit-gujr
sanskrit-kannada
sanskrit-knda
sanskrit-malayalam
sanskrit-mlym
sanskrit-telu
sanskrit-telugu
sanskrit
scottishgaelic
sena
serbian-cyrillic-bosniaherzegovina
serbian-cyrillic-kosovo
serbian-cyrillic-montenegro
serbian-cyrillic
serbian-cyrl-ba
serbian-cyrl-me
serbian-cyrl-xk
serbian-cyrl
serbian-latin-bosniaherzegovina
serbian-latin-kosovo

serbian-latin-montenegro
serbian-latin
serbian-latn-ba
serbian-latn-me
serbian-latn-xk
serbian-latn
serbian
shambala
shona
sichuanyi
sinhala
slovak
slovene
slovenian
soga
somali
spanish-mexico
spanish-mx
spanish
standardmoroccantamazight
swahili
swedish
swissgerman
tachelhit-latin
tachelhit-latn
tachelhit-tfng
tachelhit-tifinagh
tachelhit
taita
tamil
tasawaq
telugu
teso
thai
tibetan
tigrinya
tongan
turkish
turkmen
ukenglish
ukrainian
uppersorbian
urdu
usenglish
usorbian
uyghur
uzbek-arab
uzbek-arabic
uzbek-cyrillic
uzbek-cyrl
uzbek-latin
uzbek-latn
uzbek
vai-latin

22



vai-latn
vai-vai
vai-vaii
vai
vietnam
vietnamese
vunjo
walser

welsh
westernfrisian
yangben
yiddish
yoruba
zarma
zulu afrikaans

1.14 Selecting fonts

New 3.15 Babel provides a high level interface on top of fontspec to select fonts. There
is no need to load fontspec explicitly – babel does it for you with the first \babelfont.13

[〈language-list〉]{〈font-family〉}[〈font-options〉]{〈font-name〉}\babelfont

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and font-name
is the same as in fontspec and the like.
If no language is given, then it is considered the default font for the family, activated when
a language is selected. On the other hand, if there is one or more languages in the optional
argument, the font will be assigned to them, overriding the default. Alternatively, you may
set a font for a script – just precede its name (lowercase) with a star (eg, *devanagari).
Babel takes care of the font language and the font script when languages are selected (as
well as the writing direction); see the recognized languages above. In most cases, you will
not need font-options, which is the same as in fontspec, but you may add further key/value
pairs if necessary.

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document
in Swedish, with some words in Hebrew, with a font suited for both languages.

\documentclass{article}

\usepackage[swedish, bidi=default]{babel}

\babelprovide[import=he]{hebrew}

\babelfont{rm}{FreeSerif}

\begin{document}

Svenska \foreignlanguage{hebrew}{ תירְִבעִ } svenska.

\end{document}

If on the other hand you have to resort to different fonts, you could replace the red line
above with, say:

\babelfont{rm}{Iwona}

\babelfont[hebrew]{rm}{FreeSerif}

\babelfont can be used to implicitly define a new font family. Just write its name instead
of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic ones.

13See also the package combofont for a complementary approach.

23



EXAMPLE Here is how to do it:

\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

\usepackage{fontspec}

\newfontscript{Devanagari}{deva}

\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2 (luatex does
not detect automatically the correct script14).

NOTE Directionality is a property affecting margins, intentation, column order, etc., not
just text. Therefore, it is under the direct control of the language, which appplies both
the script and the direction to the text. As a consequence, there is no need to set Script
when declaring a font (nor Language). In fact, it is even discouraged.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the
like). If a language is switched when an ad hoc font is active, or you select the font with
this command, neither the script nor the language are passed. You must add them by
hand. This is by design, for several reasons (for example, each font has its own set of
features and a generic setting for several of them could be problematic, and also a
“lower level” font selection is useful).

NOTE The keys Language and Script just pass these values to the font, and do not set the
script for the language (and therefore the writing direction). In other words, the ini file
or \babelprovide provides default values for \babelfont if omitted, but the opposite
is not true. See the note above for the reasons of this behavior.

WARNING Do not use \setxxxxfont and \babelfont at the same time. \babelfont
follows the standard LATEX conventions to set the basic families – define \xxdefault,
and activate it with \xxfamily. On the other hand, \setxxxxfont in fontspec takes a
different approach, because \xxfamily is redefined with the family name hardcoded
(so that \xxdefault becomes no-op). Of course, both methods are incompatible, and if
you use \setxxxxfont, font switching with \babelfont just does not work (nor the
standard \xxdefault, for that matter).

1.15 Modifying a language

Modifying the behavior of a language (say, the chapter “caption”), is sometimes necessary,
but not always trivial.

• The old way, still valid for many languages, to redefine a caption is the following:

\addto\captionsenglish{%

\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is
advisable to do it.

14And even with the correct code some fonts could be rendered incorrectly by fontspec, so double check the
results. xetex fares better, but some font are still problematic.

24



• The new way, which is found in bulgarian, azerbaijani, spanish, french, turkish,
icelandic, vietnamese and a few more, as well as in languages created with
\babelprovide and its key import, is:

\renewcommand\spanishchaptername{Foo}

• Macros to be run when a language is selected can be add to \extras〈lang〉:

\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected:
\noextras〈lang〉.

NOTE These macros (\captions〈lang〉, \extras〈lang〉) may be redefined, but must not be
used as such – they just pass information to babel, which executes them in the proper
context.

1.16 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You
may then define quickly a language with the help of the following macro in the preamble.

[〈options〉]{〈language-name〉}\babelprovide

Defines the internal structure of the language with some defaults: the hyphen rules, if not
available, are set to the current ones, left and right hyphen mins are set to 2 and 3, but
captions and date are not defined. Conveniently, babel warns you about what to do. Very
likely you will find alerts like that in the log file:

Package babel Warning: \mylangchaptername not set. Please, define

(babel) it in the preamble with something like:

(babel) \renewcommand\maylangchaptername{..}

(babel) Reported on input line 18.

In most cases, you will only need to define a few macros.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}

\babelprovide{arhinish}

\renewcommand\arhinishchaptername{Chapitula}

\renewcommand\arhinishrefname{Refirenke}

\renewcommand\arhinishhyphenmins{22}

The main language is not changed (danish in this example). So, you must add
\selectlanguage{arhinish} or other selectors where necessary.
If the language has been loaded as an argument in \documentclass or \usepackage, then
\babelprovide redefines the requested data.

25



〈language-tag〉import=

New 3.13 Imports data from an ini file, including captions, date, and hyphenmins. For
example:

\babelprovide[import=hu]{hungarian}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (ie, with macros
like \' or \ss) ones.
There are about 200 ini files, with data taken from the ldf files and the CLDR provided by
Unicode. Not all languages in the latter are complete, and therefore neither are the ini
files. A few languages will show a warning about the current lack of suitability of the date
format (hindi, french, breton, and occitan).
Besides \today, there is a \<language>date macro with three arguments: year, month
and day numbers. In fact, \today calls \<language>today, which in turn calls
\<language>date{\the\year}{\the\month}{\the\day}.

〈language-tag〉captions=

Loads only the strings. For example:

\babelprovide[captions=hu]{hungarian}

〈language-list〉hyphenrules=

With this option, with a space-separated list of hyphenation rules, babel assigns to the
language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example
we set chavacano as first option – without it, it would select spanish even if chavacano
exists.
A special value is +, which allocates a new language (in the TEX sense). It only makes sense
as the last value (or the only one; the subsequent ones are silently ignored). It is mostly
useful with luatex, because you can add some patterns with \babelpatterns, as for
example:

\babelprovide[hyphenrules=+]{neo}

\babelpatterns[neo]{a1 e1 i1 o1 u1}

In other engines it just supresses hyphenation (because the pattern list is empty).

This valueless option makes the language the main one. Only in newly defined languages.main

〈script-name〉script=

New 3.15 Sets the script name to be used by fontspec (eg, Devanagari). Overrides the
value in the ini file. This value is particularly important because it sets the writing
direction.

26



〈language-name〉language=

New 3.15 Sets the language name to be used by fontspec (eg, Hindi). Overrides the value
in the ini file. Not so important, but sometimes still relevant.

NOTE (1) If you need shorthands, you can use \useshorthands and \defineshorthand as
described above. (2) Captions and \today are “ensured” with \babelensure (this is be
the default in ini-based languages).

1.17 Digits

New 3.20 A few ini files define a field named digits.native. When it is present, two
macros are created: \<language>digits and \<language>counter (only xetex and
luatex). With the first, a string of ‘Latin’ digits are converted to the native digits of that
language; the second takes a counter name as argument. With option maparabic in
\babelprovide, \arabic is redefined to produce the native digits (this is done globally, to
avoid inconsistencies in, for example, page numbering).
For example:

\babelprovide[import=te]{telugu} % Telugu better with XeTeX

% Or also, if you want:

% \babelprovide[import=te, maparabic]{telugu}

\babelfont{rm}{Gautami}

\begin{document}

\telugudigits{1234}

\telugucounter{section}

\end{document}

Languages providing native digits in all or some variants are ar, as, bn, bo, brx, ckb, dz, fa,
gu, hi, km, kn, kok, ks, lo, lrc, ml, mr, my, mzn, ne, or, pa, ps, ta, te, th, ug, ur, uz, vai, yue, zh.

1.18 Getting the current language name

The control sequence \languagename contains the name of the current language.\languagename

WARNING Due to some internal inconsistencies in catcodes, it should not be used to test
its value. Use iflang, by Heiko Oberdiek.

{〈language〉}{〈true〉}{〈false〉}\iflanguage

If more than one language is used, it might be necessary to know which language is active
at a specific time. This can be checked by a call to \iflanguage, but note here “language” is
used in the TEX sense, as a set of hyphenation patterns, and not as its babel name. This
macro takes three arguments. The first argument is the name of a language; the second and
third arguments are the actions to take if the result of the test is true or false respectively.

WARNING The advice about \languagename also applies here – use iflang instead of
\iflanguage if possible.

1.19 Hyphenation tools

* {〈type〉}\babelhyphen

27



* {〈text〉}\babelhyphen

New 3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens,
which in TEX are entered as -, and (2) optional or soft hyphens, which are entered as \-.
Strictly, a soft hyphen is not a hyphen, but just a breaking oportunity or, in TEX terms, a
“discretionary”; a hard hyphen is a hyphen with a breaking oportunity after it. A further
type is a non-breaking hyphen, a hyphen without a breaking oportunity.
In TEX, - and \- forbid further breaking oportunities in the word. This is the desired
behavior very often, but not always, and therefore many languages provide shorthands for
these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch,
Portugese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,
Slovak or Russian is a soft hyphen. Furthermore, some of them even redefine \-, so that
you cannot insert a soft hyphen without breaking oportunities in the rest of the word.
Therefore, some macros are provide with a set of basic “hyphens” which can be used by
themselves, to define a user shorthand, or even in language files.

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the
next line, as done in languages like Polish, Portugese and Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space
follows).

• \babelhyphen{empty} inserts a break oportunity without a hyphen at all.

• \babelhyphen{〈text〉} is a hard “hyphen” using 〈text〉 instead. A typical case is
\babelhyphen{/}.

With all of them hyphenation in the rest of the word is enabled. If you don’t want enabling
it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is equivalent
to the original \-), \babelhyphen*{hard}, etc.
Note hard is also good for isolated prefixes (eg, anti-) and nobreak for isolated suffixes (eg,
-ism), but in both cases \babelhyphen*{nobreak} is usually better.
There are also some differences with LATEX: (1) the character used is that set for the current
font, while in LATEX it is hardwired to - (a typical value); (2) the hyphen to be used in fonts
with a negative \hyphenchar is -, like in LATEX, but it can be changed to another value by
redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if preceded by a
glue>0 pt (at the beginning of a word, provided it is not immediately preceded by, say, a
parenthesis).

[〈language〉,〈language〉,...]{〈exceptions〉}\babelhyphenation

New 3.9a Sets hyphenation exceptions for the languages given or, without the optional
argument, for all languages (eg, proper nouns or common loan words, and of course
monolingual documents). Language exceptions take precedence over global ones.
It can be used only in the preamble, and exceptions are set when the language is first
selected, thus taking into account changes of \lccodes’s done in \extras〈lang〉 as well as
the language specific encoding (not set in the preamble by default). Multiple
\babelhyphenation’s are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

28



[〈language〉,〈language〉,...]{〈patterns〉}\babelpatterns

New 3.9m In luatex only,15 adds or replaces patterns for the languages given or, without
the optional argument, for all languages. If a pattern for a certain combination already
exists, it gets replaced by the new one.
It can be used only in the preamble, and patterns are added when the language is first
selected, thus taking into account changes of \lccodes’s done in \extras〈lang〉 as well as
the language specific encoding (not set in the preamble by default). Multiple
\babelpatterns’s are allowed.
Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

1.20 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best
selected with either \fontencoding (low level) or a language name (high level). Even the
Latin script may require different encodings (ie, sets of glyphs) depending on the language,
and therefore such a switch would be in a sense incomplete.16
Some languages sharing the same script define macros to switch it (eg, \textcyrillic),
but be aware they may also set the language to a certain default. Even the babel core
defined \textlatin, but is was somewhat buggy because in some cases it messed up
encodings and fonts (for example, if the main latin encoding was LY1), and therefore it has
been deprecated.17

{〈text〉}\ensureascii

New 3.9i This macro makes sure 〈text〉 is typeset with a LICR-savvy encoding in the ASCII
range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with
LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, X2, OT2,
OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the
bug described in the previous paragraph.
If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and
\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the
beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For
example, if you load LY1,LGR, then it is set to LY1, but if you load LY1,T2A it is set to T2A.
The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used
for “ordinary” text.
The foregoing rules (which are applied “at begin document”) cover most of cases. No
asumption is made on characters above 127, which may not follow the LICR conventions –
the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.21 Selecting directions

No macros to select the writing direction are provided, either – writing direction is
intrinsic to each script and therefore it is best set by the language (which could be a
dummy one). Furthermore, there are in fact two right-to-left modes, depending on the
language, which differ in the way ‘weak’ numeric characters are ordered (eg, Arabic %123
vs Hebrew 123%).

15With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a
separate package and babel only provides the most basic tools.

16The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not neces-
sarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does
not mean it includes them for Classic Greek.

17But still defined for backwards compatibility.

29



WARNING Setting bidi text has many subtleties (see for example
<https://www.w3.org/TR/html-bidi/>). This means the babel bidi code may take some time
before it is truly stable.18 This is particularly true for graphical elements, including the
picture environment and PDF or PS based graphics.

An effort is being made to avoid incompatibilities in the future (this one of the reason
currently bidi must be explicitly requested as a package option, with a certain bidi
model, and also the layout options described below).

There are some package options controlling bidi writing.

default | basic-r | basicbidi=

New 3.14 Selects the bidi algorithm to be used. With default the bidi mechanism is just
activated (by default it is not), but every change must by marked up. In xetex and pdftex
this is the only option. In luatex, basic-r provides a simple and fast method for R text,
which handles numbers and unmarked L text within an R context. New 3.19 Finally,
basic suports both L and R text (see 1.27). (They are named basic mainly because they
only consider the intrinsic direction of scripts and weak directionality.)

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia).
Copy-pasting some text from the Wikipedia is a good way to test this feature, which will
be improved in the future. Remember basic-r is available in luatex only.19

\documentclass{article}

\usepackage[bidi=basic-r]{babel}

\babelprovide[import=ar, main]{arabic}

\babelfont{rm}{FreeSerif}

\begin{document}

ـب)يقيرغلاا(ينيليهلارصعلاةليطبرعلاةريزجهبشتفرعدقو

ArabiaوأAravia)ةيقيرغلاابΑραβία(،ثلاثنامورلامدختسا

اهنألاإ،ةيبرعلاةريزجلاهبشنمقطانمثلاثىلع”Arabia“ـبتائداب

.مويلاهيلعفرعتاممربكأتناكًةقيقح

\end{document}

sectioning | counters | lists | contents | footnotes | captions | columns | extraslayout=

New 3.16 To be expanded. Selects which layout elements are adapted in bidi documents,
including some text elements. You may use several options with a comma-separated list
(eg, layout=counters.contents.sectioning). This list will be expanded in future
releases (tables, captions, etc.). Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with
the title text in the current language (see below \BabelPatchSection for further
details).

18A basic stable version for luatex is planned before (Northern) Summer 2018. Other engines must wait very
likely until (Northern) Winter.

19At the time of this writing some Arabic fonts are not rendered correctly by the default luatex font loader, with
misplaced kerns inside some words, so double check the resulting text. It seems a fix is on the way, but in the
meanwhile you could have a look at the workaround available on GitHub, under /required/babel/samples

30



counters required in all engines (except luatex with bidi=basic) to reorder section
numbers and the like (eg, 〈subsection〉.〈section〉); required in xetex and pdftex for
counters in general, as well as in luatex with bidi=default; required in luatex for
numeric footnote marks>9 with bidi=basic-r (but not with bidi=basic); note,
however, it could depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see
below), but also an “isolated” block which does not interact with the surrounding chars.
So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal
number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may
always adjust the order by changing the language, if necessary.20

lists required in xetex and pdftex, but only in multilingual documents in luatex.
contents required in xetex and pdftex; in luatex toc entries are R by default if the main

language is R.
columns required in xetex and pdftex to reverse the column order (currently only the

standard two column mode); in luatex they are R by default if the main language is R
(includingmulticol).

footnotes not required in monolingual documents, but it may be useful in multilingual
documents in all engines; you may use alternatively \BabelFootnote described below
(what this options does exactly is also explained there).

captions is similar to sectioning, but for \caption; not required in monolingual
documents with luatex, but may be required in xetex and pdftex in some styles (support
for the latter two engines is still experimental) New 3.18 .

tabular required in luatex for R tabular (it has been tested only with simple tables, so
expect some readjustments in the future); ignored in pdftex or xetex (which will not
support a similar option in the short term) New 3.18 ,

extras is used for miscelaneous readjustments which do not fit into the previous groups.
Currently redefines in luatex \underline and LaTeX2e New 3.19 .

{〈lr-text〉}\babelsublr

Digits in pdftexmust be marked up explicitly (unlike luatex with bidi=basic-r and,
usually, xetex). This command is provided to set {〈lr-text〉} in L mode if necessary. It’s
intended for what Unicode calls weak characters, because words are best set with the
corresponding language. For this reason, there is no rl counterpart.
Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,
it first returns to R and then switches to explicit L. This is by design to provide the proper
behaviour in the most usual cases — but if you need to use \ref in an L text inside R, it
must be marked up explictly.

{〈section-name〉}\BabelPatchSection

Mainly for bidi text, but it could be useful in other cases. \BabelPatchSection and the
corresponding option layout=sectioning takes a more logical approach (at least in many
cases) because it applies the global language to the section format (including the
\chaptername in \chapter), while the section text is still the current language. The latter
is passed to tocs and marks, too, and with sectioning in layout they both reset the
“global” language to the main one, while the text uses the “local” language
With layout=sectioning all the standard sectioning commands are redefined, but with
this command you can set them individually if necessary (but note then tocs and marks
are not touched).

{〈cmd〉}{〈local-language〉}{〈before〉}{〈after〉}\BabelFootnote

20Next on the roadmap are counters and numeral systems in general. Expect some minor readjustments.

31



New 3.17 Something like:

\BabelFootnote{\parsfootnote}{\languagename}{(}{)}

defines \parsfootnote so that \parsfootnote{note} is equivalent to:

\footnote{(\foreignlanguage{\languagename}{note})}

but the footnote itself is typeset in the main language (to unify its direction). In addition,
\parsfootnotetext is defined. The option footnotes just does the following:

\BabelFootnote{\footnote}{\languagename}{}{}%

\BabelFootnote{\localfootnote}{\languagename}{}{}%

\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and
\mainfootnotetext). If the language argument is empty, then no language is selected
inside the argument of the footnote. Note this command is available always in bidi
documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes
entirely in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line.
This means the dot the end of the footnote text should be omitted.

1.22 Language attributes

This is a user-level command, to be used in the preamble of a document (after\languageattribute

\usepackage[...]{babel}), that declares which attributes are to be used for a given
language. It takes two arguments: the first is the name of the language; the second, a (list
of) attribute(s) to be used. Attributes must be set in the preamble and only once – they
cannot be turned on and off. The command checks whether the language is known in this
document and whether the attribute(s) are known for this language.
Very often, using amodifier in a package option is better.
Several language definition files use their own methods to set options. For example, french
uses \frenchsetup,magyar (1.5) uses \magyarOptions; modifiers provided by spanish
have no attribute counterparts. Macros settting options are also used (eg,
\ProsodicMarksOn in latin).

1.23 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are
predefined when luatex and xetex are used.

32



{〈name〉}{〈event〉}{〈code〉}\AddBabelHook

The same name can be applied to several events. Hooks may be enabled and disabled for
all defined events with \EnableBabelHook{〈name〉}, \DisableBabelHook{〈name〉}.
Names containing the string babel are reserved (they are used, for example, by
\useshortands* to add a hook for the event afterextras).
Current events are the following; in some of them you can use one to three TEX parameters
(#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if
not preloaded.

patterns (language name, language with encoding) Executed just after the \language has
been set. The second argument has the patterns name actually selected (in the form of
either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before
exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.
encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both

xetex and luatexmake sure the encoded text is read correctly.
stopcommands Used to reset the the above, if necessary.
write This event comes just after the switching commands are written to the aux file.
beforeextras Just before executing \extras〈language〉. This event and the next one

should not contain language-dependent code (for that, add it to \extras〈language〉).
afterextras Just after executing \extras〈language〉. For example, the following

deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString
containing the string to be defined with \SetString. For example, to use an expanded
version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%

\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) New 3.9i Executed just
after a shorthand has been ‘initiated’. The three parameters are the same character
with different catcodes: active, other (\string’ed) and the original one.

afterreset New 3.9i Executed when selecting a language just after \originalTeX is
run and reset to its base value, before executing \captions〈language〉 and
\date〈language〉.

Four events are used in hyphen.cfg, which are handled in a quite different way for
efficiency reasons – unlike the precedent ones, they only have a single hook and replace a
default definition.

everylanguage (language) Executed before every language patterns are loaded.
loadkernel (file) By default loads switch.def. It can be used to load a different version of

this files or to load nothing.
loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.
loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.

New 3.9a This macro contains a list of “toc” types requiring a command to switch the\BabelContentsFiles

language. Its default value is toc,lof,lot, but you may redefine it with \renewcommand

(it’s up to you to make sure no toc type is duplicated).

33



1.24 Languages supported by babel

In the following table most of the languages supported by babel with and .ldf file are
listed, together with the names of the option which you can load babel with for each
language. Note this list is open and the current options may be different. It does not
include ini files.

Afrikaans afrikaans
Azerbaijani azerbaijani
Basque basque
Breton breton
Bulgarian bulgarian
Catalan catalan
Croatian croatian
Czech czech
Danish danish
Dutch dutch
English english, USenglish, american, UKenglish, british, canadian, australian, newzealand
Esperanto esperanto
Estonian estonian
Finnish finnish
French french, francais, canadien, acadian
Galician galician
German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Icelandic icelandic
Indonesian bahasa, indonesian, indon, bahasai
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
Malay bahasam, malay, melayu
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

There are more languages not listed above, including hindi, thai, thaicjk, latvian, turkmen,
magyar, mongolian, romansh, lithuanian, spanglish, vietnamese, japanese, pinyin, arabic,
farsi, ibygreek, bgreek, serbianc, frenchle, ethiop and friulan.
Most of them work out of the box, but some may require extra fonts, encoding files, a

34



preprocessor or even a complete framework (like CJK). For example, if you have got the
velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}

\usepackage[hindi]{babel}

\begin{document}

{\dn devaanaa.m priya.h}

\end{document}

Then you preprocess it with devnag 〈file〉, which creates 〈file〉.tex; you can then typeset
the latter with LATEX.

1.25 Tips, workarounds, know issues and notes

• If you use the document class book and you use \ref inside the argument of \chapter
(or just use \ref inside \MakeUppercase), LATEX will keep complaining about an
undefined label. To prevent such problems, you could revert to using uppercase labels,
you can use \lowercase{\ref{foo}} inside the argument of \chapter, or, if you will
not use shorthands in labels, set the safe option to none or bib.

• Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and babel
reloads hhline to make sure : has the right one, so if you want to change the catcode of
| it has to be done using the same method at the proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1) make |
active (ltxdoc); (2) make it unactive (your settings); (3) make babel shorthands active
(babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

• Documents with several input encodings are not frequent, but sometimes are useful.
You can set different encodings for different languages as the following example shows:

\addto\extrasfrench{\inputencoding{latin1}}

\addto\extrasrussian{\inputencoding{koi8-r}}

(A recent version of inputenc is required.)

• For the hyphenation to work correctly, lccodes cannot change, because TEX only takes
into account the values when the paragraph is hyphenated, i.e., when it has been
finished.21 So, if you write a chunk of French text with \foreinglanguage, the
apostrophes might not be taken into account. This is a limitation of TEX, not of babel.
Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or
redefine \textquoteright (the latter is called by the non-ASCII right quote).

• \bibitem is out of sync with \selectlanguage in the .aux file. The reason is \bibitem
uses \immediate (and others, in fact), while \selectlanguage doesn’t. There is no
known workaround.

• Babel does not take into account \normalsfcodes and (non-)French spacing is not
always properly (un)set by languages. However, problems are unlikely to happen and
therefore this part remains untouched in version 3.9 (but it is in the ‘to do’ list).

21This explains why LATEX assumes the lowercase mapping of T1 and does not provide a tool for multiple map-
pings. Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in
the format and cannot be changed.

35



• Using a character mathematically active (ie, with math code "8000) as a shorthand can
make TEX enter in an infinite loop in some rare cases. (Another issue in the ‘to do’ list,
although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

csquotes Logical markup for quotes.
iflang Tests correctly the current language.
hyphsubst Selects a different set of patterns for a language.
translator An open platform for packages that need to be localized.
siunitx Typesetting of numbers and physical quantities.
biblatex Programmable bibliographies and citations.
bicaption Bilingual captions.
babelbib Multilingual bibliographies.
microtype Adjusts the typesetting according to some languages (kerning and spacing).

Ligatures can be disabled.
substitutefont Combines fonts in several encodings.
mkpattern Generates hyphenation patterns.
tracklang Tracks which languages have been requested.
ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another.
zhspacing Spacing for CJK documents in xetex.

1.26 Current and future work

Current work is focused on the so-called complex scripts in luatex. In 8-bit engines, babel
provided a basic support for bidi text as part of the style for Hebrew, but it is somewhat
unsatisfactory and internally replaces some hardwired commands by other hardwired
commands (generic changes would be much better).
It is possible now to typeset Arabic or Hebrew with numbers and L text. Next on the
roadmap are line breaking in Thai and the like, as well as “non-European” digits. Also on
the roadmap are R layouts (lists, footnotes, tables, column order), page and section
numbering, and maybe kashida justification.
As to Thai line breaking, here is the basic idea of what luatex can do for us, with the Thai
patterns and a little script (the final version will not be so little, of course). It replaces each
discretionary by the equivalent to ZWJ.

\documentclass{article}

\usepackage{babel}

\babelprovide[import=th, main]{thai}

\babelfont{rm}{FreeSerif}

\directlua{

local GLYF = node.id'glyph'

function insertsp (head)

local size = 0

for item in node.traverse(head) do

local i = item.id

if i == GLYF then

f = font.getfont(item.font)

size = f.size

elseif i == 7 then

local n = node.new(12, 0)

36



node.setglue(n, 0, size * 1) % 1 is a factor

node.insert_before(head, item, n)

node.remove(head, item)

end

end

end

luatexbase.add_to_callback('hyphenate',

function (head, tail)

lang.hyphenate(head)

insertsp(head)

end, 'insertsp')

}

\begin{document}

(Thai text.)

\end{document}

Useful additions would be, for example, time, currency, addresses and personal names.22.
But that is the easy part, because they don’t require modifying the LATEX internals.
Also interesting are differences in the sentence structure or related to it. For example, in
Basque the number precedes the name (including chapters), in Hungarian “from (1)” is
“(1)-ből”, but “from (3)” is “(3)-ból”, in Spanish an item labelled “3.o” may be referred to as
either “ítem 3.o” or “3.er ítem”, and so on.

1.27 Tentative and experimental code

Option bidi=basic

New 3.19 With this package option both L and R text can be mixed without explicit
markup (the latter will be only necessary in some special cases where the Unicode
algorithm fails). It is used much like bidi=basic-r, but with R text inside L text you may
want to map the font so that the correct features are in force. This is accomplised with an
option in \babelprovide, as illustrated:

\documentclass{book}

\usepackage[english, bidi=basic]{babel}

\babelprovide[mapfont=direction]{arabic}

\babelfont{rm}{Crimson}

\babelfont[*arabic]{rm}{FreeSerif}

\begin{document}

Most Arabic speakers consider the two varieties to be two registers

of one language, although the two registers can be referred to in

Arabic as رصعلاىحصف \textit{fuṣḥā l-ʻaṣr} (MSA) and

ثارتلاىحصف \textit{fuṣḥā t-turāth} (CA).

\end{document}

22See for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR). Those system,
however, have limited application to TEX because their aim is just to display information and not fine typesetting.

37



What mapfont=direction means is, ‘when a character has the same direction as the script
for the “provided” language (arabic in this case), then change its font to that set for this
language’ (here defined via *arabic, because Crimson does not provide Arabic letters).
Boxes are “black boxes”. Numbers inside an \hbox (as for example in a \ref) do not know
anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in the
visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the digits
inside the \hbox’es). If you need \ref ranges, the best option is to define a dedicated macro
like this (to avoid explicit direction changes in the body; here \texthe must be defined to
select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In a future a more complete method, reading recursively boxed text, may be added.
There are samples on GitHub, under /required/babel/samples: lua-bidibasic.tex and
lua-secenum.tex.

Old stuff
A couple of tentative macros were provided by babel (≥3.9g) with a partial solution for
“Unicode” fonts. These macros are now deprecated — use \babelfont. A short description
follows, for reference:

• \babelFSstore{〈babel-language〉} sets the current three basic families (rm, sf, tt) as the
default for the language given.

• \babelFSdefault{〈babel-language〉}{〈fontspec-features〉} patches \fontspec so that
the given features are always passed as the optional argument or added to it (not an
ideal solution).

So, for example:

\setmainfont[Language=Turkish]{Minion Pro}

\babelFSstore{turkish}

\setmainfont{Minion Pro}

\babelFSfeatures{turkish}{Language=Turkish}

Bidi writing in luatex is under development, but a basic implementation is almost
finished. On the other hand, in xetex it is taking its first steps. The latter engine poses quite
different challenges. An option to manage document layout in luatex (lists, footnotes, etc.)
is almost finished, but xetex required more work.
See the code section for \foreignlanguage* (a new starred version of \foreignlanguage).
xetex relies on the font to properly handle these unmarked changes, so it is not under the
control of TEX.

2 Loading languages with language.dat

TEX and most engines based on it (pdfTEX, xetex, ε-TEX, the main exception being luatex)
require hyphenation patterns to be preloaded when a format is created (eg, LATEX, XeLATEX,
pdfLATEX). babel provides a tool which has become standand in many distributions and
based on a “configuration file” named language.dat. The exact way this file is used
depends on the distribution, so please, read the documentation for the latter (note also
some distributions generate the file with some tool).
New 3.9q With luatex, however, patterns are loaded on the fly when requested by the
language (except the “0th” language, typically english, which is preloaded always).23 Until

23This feature was added to 3.9o, but it was buggy. Both 3.9o and 3.9p are deprecated.

38



3.9n, this task was delegated to the package luatex-hyphen, by Khaled Hosny, Élie Roux,
and Manuel Pégourié-Gonnard, and required an extra file named language.dat.lua, but
now a newmechanism has been devised based solely on language.dat. Youmust rebuild
the formats if upgrading from a previous version. You may want to have a local
language.dat for a particular project (for example, a book on Chemistry).24

2.1 Format

In that file the person who maintains a TEX environment has to record for which languages
he has hyphenation patterns and in which files these are stored25. When hyphenation
exceptions are stored in a separate file this can be indicated by naming that file after the
file with the hyphenation patterns.
The file can contain empty lines and comments, as well as lines which start with an equals
(=) sign. Such a line will instruct LATEX that the hyphenation patterns just processed have to
be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.

english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands

german hyphen.ger

You may also set the font encoding the patterns are intended for by following the language
name by a colon and the encoding code.26 For example:

german:T1 hyphenT1.ger

german hyphen.ger

With the previous settings, if the enconding when the language is selected is T1 then the
patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the
encoding could be set in \extras〈lang〉).
A typical error when using babel is the following:

No hyphenation patterns were preloaded for

the language `<lang>' into the format.

Please, configure your TeX system to add them and

rebuild the format. Now I will use the patterns

preloaded for english instead}}

It simply means you must reconfigure language.dat, either by hand or with the tools
provided by your distribution.

3 The interface between the core of babel and the
language definition files

The language definition files (ldf) must conform to a number of conventions, because these
files have to fill in the gaps left by the common code in babel.def, i. e., the definitions of

24The loader for lua(e)tex is slightly different as it’s not based on babel but on etex.src. Until 3.9p it just didn’t
work, but thanks to the new code it works by reloading the data in the babel way, i.e., with language.dat.

25This is because different operating systems sometimes use very different file-naming conventions.
26This in not a new feature, but in former versions it didn’t work correctly.

39



the macros that produce texts. Also the language-switching possibility which has been
built into the babel system has its implications.
The following assumptions are made:

• Some of the language-specific definitions might be used by plain TEX users, so the files
have to be coded so that they can be read by both LATEX and plain TEX. The current
format can be checked by looking at the value of the macro \fmtname.

• The common part of the babel system redefines a number of macros and environments
(defined previously in the document style) to put in the names of macros that replace
the previously hard-wired texts. These macros have to be defined in the language
definition files.

• The language definition files must define five macros, used to activate and deactivate
the language-specific definitions. These macros are \〈lang〉hyphenmins,
\captions〈lang〉, \date〈lang〉, \extras〈lang〉 and \noextras〈lang〉(the last two may
be left empty); where 〈lang〉 is either the name of the language definition file or the
name of the LATEX option that is to be used. These macros and their functions are
discussed below. You must define all or none for a language (or a dialect); defining, say,
\date〈lang〉 but not \captions〈lang〉 does not raise an error but can lead to
unexpected results.

• When a language definition file is loaded, it can define \l@〈lang〉 to be a dialect of
\language0 when \l@〈lang〉 is undefined.

• Language names must be all lowercase. If an unknow language is selected, babel will
attempt setting it after lowercasing its name.

• The semantics of modifiers is not defined (on purpose). In most cases, they will just be
simple separated options (eg, spanish), but a language might require, say, a set of
options organized as a tree with suboptions (in such a case, the recommended
separator is /).

Some recommendations:

• The preferred shorthand is ", which is not used in LATEX (quotes are entered as `` and
''). Other good choices are characters which are not used in a certain context (eg, = in
an ancient language). Note however =, <, >, : and the like can be dangerous, because
they may be used as part of the syntax of some elements (numeric expressions,
key/value pairs, etc.).

• Captions should not contain shorthands or encoding dependent commands (the latter is
not always possible, but should be clearly documented). They should be defined using
the LICR. You may also use the new tools for encoded strings, described below.

• Avoid adding things to \noextras〈lang〉 except for umlauthigh and friends,
\bbl@deactivate, \bbl@(non)frenchspacing, and language specific macros. Use
always, if possible, \bbl@save and \bbl@savevariable (except if you still want to have
access to the previous value). Do not reset a macro or a setting to a hardcoded value.
Never. Instead save its value in \extras〈lang〉.

• Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the
font encoding (low level) or the language (high level, which in turn may switch the font
encoding). Usage of things like \latintext is deprecated.27

• Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and
it can lead to incompatibilities.

27But not removed, for backward compatibility.

40



There are no special requirements for documenting your language files. Now they are not
included in the base babelmanual, so provide a standalone document suited for your
needs, as well as other files you think can be useful. A PDF and a “readme” are strongly
recommended.

3.1 Guidelines for contributed languages

Now language files are “outsourced” and are located in a separate directory
(/macros/latex/contrib/babel-contrib), so that they are contributed directly to CTAN
(please, do not send to me language styles just to upload them to CTAN).
Of course, placing your style files in this directory is not mandatory, but if you want to do
it, here are a few guidelines.

• Do not hesitate stating on the file heads you are the author and the maintainer, if you
actually are. There is no need to state the babel maintainer(s) as authors if they have
not contributed significantly to your language files.

• Fonts are not strictly part of a language, so they are best placed in the corresponding
TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.

• Font and input encodings are usually best placed in the corresponding tree, too, but
sometimes they belong more naturally to the babel style. Note you may also need to
define a LICR.

• Babel ldf files may just interface a framework, as it happens often with Oriental
languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point: http://www.texnia.com/incubator.html.
If your need further assistance and technical advice in the development of language styles,
I am willing to help you. And of course, you can make any suggestion you like.

3.2 Basic macros

In the core of the babel system, several macros are defined for use in language definition
files. Their purpose is to make a new language known. The first two are related to
hyphenation patterns.
The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in\addlanguage

plain.tex version 3.x. For older versions of plain.tex and lplain.tex a substitute
definition is used. Here “language” is used in the TEX sense of set of hyphenation patterns.
The macro \adddialect can be used when two languages can (or must) use the same\adddialect

hyphenation patterns. This can also be useful for languages for which no patterns are
preloaded in the format. In such cases the default behavior of the babel system is to define
this language as a ‘dialect’ of the language for which the patterns were loaded as
\language0. Here “language” is used in the TEX sense of set of hyphenation patterns.
The macro \〈lang〉hyphenmins is used to store the values of the \lefthyphenmin and\<lang>hyphenmins

\righthyphenmin. Redefine this macro to set your own values, with two numbers
corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<lang> has no
effect.)
The macro \providehyphenmins should be used in the language definition files to set\providehyphenmins

\lefthyphenmin and \righthyphenmin. This macro will check whether these parameters

41



were provided by the hyphenation file before it takes any action. If these values have been
already set, this command is ignored (currenty, default pattern files do not set them).
The macro \captions〈lang〉 defines the macros that hold the texts to replace the original\captions〈lang〉
hard-wired texts.
The macro \date〈lang〉 defines \today.\date〈lang〉
The macro \extras〈lang〉 contains all the extra definitions needed for a specific language.\extras〈lang〉
This macro, like the following, is a hook – you can add things to it, but it must not be used
directly.
Because we want to let the user switch between languages, but we do not know what state\noextras〈lang〉
TEX might be in after the execution of \extras〈lang〉, a macro that brings TEX into a
predefined state is needed. It will be no surprise that the name of this macro is
\noextras〈lang〉.
This is a command to be used in the language definition files for declaring a language\bbl@declare@ttribute

attribute. It takes three arguments: the name of the language, the attribute to be defined,
and the code to be executed when the attribute is to be used.
To postpone the activation of the definitions needed for a language until the beginning of a\main@language

document, all language definition files should use \main@language instead of
\selectlanguage. This will just store the name of the language, and the proper language
will be activated at the start of the document.
The macro \ProvidesLanguage should be used to identify the language definition files. Its\ProvidesLanguage

syntax is similar to the syntax of the LATEX command \ProvidesPackage.
The macro \LdfInit performs a couple of standard checks that must be made at the\LdfInit

beginning of a language definition file, such as checking the category code of the @-sign,
preventing the .ldf file from being processed twice, etc.
The macro \ldf@quit does work needed if a .ldf file was processed earlier. This includes\ldf@quit

resetting the category code of the @-sign, preparing the language to be activated at
\begin{document} time, and ending the input stream.
The macro \ldf@finish does work needed at the end of each .ldf file. This includes\ldf@finish

resetting the category code of the @-sign, loading a local configuration file, and preparing
the language to be activated at \begin{document} time.
After processing a language definition file, LATEX can be instructed to load a local\loadlocalcfg

configuration file. This file can, for instance, be used to add strings to \captions〈lang〉 to
support local document classes. The user will be informed that this configuration file has
been loaded. This macro is called by \ldf@finish.
(Deprecated.) This command takes three arguments, a font encoding and two font family\substitutefontfamily

names. It creates a font description file for the first font in the given encoding. This .fd file
will instruct LATEX to use a font from the second family when a font from the first family in
the given encoding seems to be needed.

3.3 Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an attribute.
Strings are best defined using the method explained in in sec. 3.8 (babel 3.9 and later).

\ProvidesLanguage{<language>}

[2016/04/23 v0.0 <Language> support from the babel system]

\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>

\@nopatterns{<Language>}

\adddialect\l@<language>0

\fi

\adddialect\l@<dialect>\l@<language>

42



\bbl@declare@ttribute{<language>}{<attrib>}{%

\expandafter\addto\expandafter\extras<language>

\expandafter{\extras<attrib><language>}%

\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\thr@@}

\StartBabelCommands*{<language>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<language>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\StartBabelCommands*{<dialect>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<dialect>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\EndBabelCommands

\addto\extras<language>{}

\addto\noextras<language>{}

\let\extras<dialect>\extras<language>

\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

3.4 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.
The internal macro \initiate@active@char is used in language definition files to instruct\initiate@active@char

LATEX to give a character the category code ‘active’. When a character has been made active
it will remain that way until the end of the document. Its definition may vary.
The command \bbl@activate is used to change the way an active character expands.\bbl@activate

\bbl@deactivate \bbl@activate ‘switches on’ the active behavior of the character. \bbl@deactivate lets
the active character expand to its former (mostly) non-active self.
The macro \declare@shorthand is used to define the various shorthands. It takes three\declare@shorthand

arguments: the name for the collection of shorthands this definition belongs to; the
character (sequence) that makes up the shorthand, i.e. ~ or "a; and the code to be executed
when the shorthand is encountered. (It does not raise an error if the shorthand character
has not been “initiated”.)
The TEXbook states: “Plain TEX includes a macro called \dospecials that is essentially a set\bbl@add@special

\bbl@remove@special macro, representing the set of all characters that have a special category code.” [2, p. 380]
It is used to set text ‘verbatim’. To make this work if more characters get a special category
code, you have to add this character to the macro \dospecial. LATEX adds another macro
called \@sanitize representing the same character set, but without the curly braces. The
macros \bbl@add@special〈char〉 and \bbl@remove@special〈char〉 add and remove the
character 〈char〉 to these two sets.

43



3.5 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a
mechanism for saving (and restoring) the original definition of those macros is provided.
We provide two macros for this28.
To save the current meaning of any control sequence, the macro \babel@save is provided.\babel@save

It takes one argument, 〈csname〉, the control sequence for which the meaning has to be
saved.
A second macro is provided to save the current value of a variable. In this context,\babel@savevariable

anything that is allowed after the \the primitive is considered to be a variable. The macro
takes one argument, the 〈variable〉.
The effect of the preceding macros is to append a piece of code to the current definition of
\originalTeX. When \originalTeX is expanded, this code restores the previous definition
of the control sequence or the previous value of the variable.

3.6 Support for extending macros

The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the definition of\addto

a macro. The macro need not be defined (ie, it can be undefined or \relax). This macro
can, for instance, be used in adding instructions to a macro like \extrasenglish.
Be careful when using this macro, because depending on the case the assignment could be
either global (usually) or local (sometimes). That does not seem very consistent, but this
behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp
Lehman, consider using the tools provided by this package instead of \addto.

3.7 Macros common to a number of languages

In several languages compound words are used. This means that when TEX has to\bbl@allowhyphens

hyphenate such a compound word, it only does so at the ‘-’ that is used in such words. To
allow hyphenation in the rest of such a compound word, the macro \bbl@allowhyphens
can be used.
Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended mainly\allowhyphens

for characters provided as real glyphs by this encoding but constructed with \accent in
OT1.
Note the previous command (\bbl@allowhyphens) has different applications (hyphens and
discretionaries) than this one (composite chars). Note also prior to version 3.7,
\allowhyphens had the behavior of \bbl@allowhyphens.
For some languages, quotes need to be lowered to the baseline. For this purpose the macro\set@low@box

\set@low@box is available. It takes one argument and puts that argument in an \hbox, at
the baseline. The result is available in \box0 for further processing.
Sometimes it is necessary to preserve the \spacefactor. For this purpose the macro\save@sf@q

\save@sf@q is available. It takes one argument, saves the current spacefactor, executes the
argument, and restores the spacefactor.
The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to\bbl@frenchspacing

\bbl@nonfrenchspacing properly switch French spacing on and off.

3.8 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings, intended
mainly for luatex and xetex. This is the only new feature requiring changes in language
files if you want to make use of it.
Furthermore, it must be activated explicitly, with the package option strings. If there is
no strings, these blocks are ignored, except \SetCases (and except if forced as described

28This mechanism was introduced by Bernd Raichle.

44



below). In other words, the old way of defining/switching strings still works and it’s used
by default.
It consist is a series of blocks started with \StartBabelCommands. The last block is closed
with \EndBabelCommands. Each block is a single group (ie, local declarations apply until
the next \StartBabelCommands or \EndBabelCommands). An ldf may contain several
series of this kind.
Thanks to this new feature, string values and string language switching are not mixed any
more. No need of \addto. If the language is french, just redefine \frenchchaptername.

{〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The 〈language-list〉 specifies which languages the block is intended for. A block is taken
into account only if the \CurrentOption is listed here. Alternatively, you can define
\BabelLanguages to a comma-separated list of languages to be defined (if undefined,
\StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the
language, but this is discouraged – a explicit name (or names) is much better and clearer.
A “selector” is a name to be used as value in package option strings, optionally followed
by extra info about the encodings to be used. The name unicode must be used for xetex
and luatex (the key strings has also other two special values: generic and encoded).
If a string is set several times (because several blocks are read), the first one take
precedence (ie, it works much like \providecommand).
Encoding info is charset= followed by a charset, which if given sets how the strings should
be traslated to the internal representation used by the engine, typically utf8, which is the
only value supported currently (default is no traslations). Note charset is applied by luatex
and xetex when reading the file, not when the macro or string is used in the document.
A list of font encodings which the strings are expected to work with can be given after
fontenc= (separated with spaces, if two or more) – recommended, but not mandatory,
although blocks without this key are not taken into account if you have requested
strings=encoded.
Blocks without a selector are read always if the key strings has been used. They provide
fallback values, and therefore must be the last blocks; they should be provided always if
possible and all strings should be defined somehow inside it; they can be the only blocks
(mainly LGC scripts using the LICR). Blocks without a selector can be activated explicitly
with strings=generic (no block is taken into account except those). With
strings=encoded, strings in those blocks are set as default (internally, ?). With
strings=encoded strings are protected, but they are correctly expanded in
\MakeUppercase and the like. If there is no key strings, string definitions are ignored, but
\SetCases are still honoured (in a encoded way).
The 〈category〉 is either captions, date or extras. You must stick to these three categories,
even if no error is raised when using other name.29 It may be empty, too, but in such a case
using \SetString is an error (but not \SetCase).

\StartBabelCommands{language}{captions}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}

\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands

A real example is:
29In future releases further categories may be added.

45



\StartBabelCommands{austrian}{date}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString\monthiname{Jänner}

\StartBabelCommands{german,austrian}{date}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString\monthiiiname{März}

\StartBabelCommands{austrian}{date}

\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}

\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}

\SetString\monthiiname{Februar}

\SetString\monthiiiname{M\"{a}rz}

\SetString\monthivname{April}

\SetString\monthvname{Mai}

\SetString\monthviname{Juni}

\SetString\monthviiname{Juli}

\SetString\monthviiiname{August}

\SetString\monthixname{September}

\SetString\monthxname{Oktober}

\SetString\monthxiname{November}

\SetString\monthxiiname{Dezenber}

\SetString\today{\number\day.~%

\csname month\romannumeral\month name\endcsname\space

\number\year}

\StartBabelCommands{german,austrian}{captions}

\SetString\prefacename{Vorwort}

[etc.]

\EndBabelCommands

When used in ldf files, previous values of \〈category〉〈language〉 are overriden, which
means the old way to define strings still works and used by default (to be precise, is first set
to undefined and then strings are added). However, when used in the preamble or in a
package, new settings are added to the previous ones, if the language exists (in the babel
sense, ie, if \date〈language〉 exists).

* {〈language-list〉}{〈category〉}[〈selector〉]\StartBabelCommands

The starred version just forces strings to take a value – if not set as package option, then
the default for the engine is used. This is not done by default to prevent backward
incompatibilities, but if you are creating a new language this version is better. It’s up to the
maintainers of the current languages to decide if using it is appropiate.30

Marks the end of the series of blocks.\EndBabelCommands

{〈code〉}\AfterBabelCommands

The code is delayed and executed at the global scope just after \EndBabelCommands.
30This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.

46



{〈macro-name〉}{〈string〉}\SetString

Adds 〈macro-name〉 to the current category, and defines globally 〈lang-macro-name〉 to
〈code〉 (after applying the transformation corresponding to the current charset or defined
with the hook stringprocess).
Use this command to define strings, without including any “logic” if possible, which should
be a separated macro. See the example above for the date.

{〈macro-name〉}{〈string-list〉}\SetStringLoop

A convenient way to define several ordered names at once. For example, to define
\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}

\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

[〈map-list〉]{〈toupper-code〉}{〈tolower-code〉}\SetCase

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The code
would be typically things like \let\BB\bb and \uccode or \lccode (although for the
reasons explained above, changes in lc/uc codes may not work). A 〈map-list〉 is a series of
macros using the internal format of \@uclclist (eg, \bb\BB\cc\CC). The mandatory
arguments take precedence over the optional one. This command, unlike \SetString, is
executed always (even without strings), and it is intented for minor readjustments only.
For example, as T1 is the default case mapping in LATEX, we could set for Turkish:

\StartBabelCommands{turkish}{}[ot1enc, fontenc=OT1]

\SetCase

{\uccode"10=`I\relax}

{\lccode`I="10\relax}

\StartBabelCommands{turkish}{}[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetCase

{\uccode`i=`İ\relax

\uccode`ı=`I\relax}

{\lccode`İ=`i\relax

\lccode`I=`ı\relax}

\StartBabelCommands{turkish}{}

\SetCase

{\uccode`i="9D\relax

\uccode"19=`I\relax}

{\lccode"9D=`i\relax

\lccode`I="19\relax}

\EndBabelCommands

(Note the mapping for OT1 is not complete.)

{〈to-lower-macros〉}\SetHyphenMap

New 3.9g Case mapping serves in TEX for two unrelated purposes: case transforms
(upper/lower) and hyphenation. \SetCase handles the former, while hyphenation is
handled by \SetHyphenMap and controlled with the package option hyphenmap. So, even if
internally they are based on the same TEX primitive (\lccode), babel sets them separately.

47



There are three helper macros to be used inside \SetHyphenMap:

• \BabelLower{〈uccode〉}{〈lccode〉} is similar to \lccode but it’s ignored if the char has
been set and saves the original lccode to restore it when switching the language (except
with hyphenmap=first).

• \BabelLowerMM{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode-from〉} loops though the
given uppercase codes, using the step, and assigns them the lccode, which is also
increased (MM stands formany-to-many).

• \BabelLowerMO{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode〉} loops though the given
uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands
formany-to-one).

An example is (which is redundant, because these assignments are done by both luatex
and xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

This macro is not intended to fix wrong mappings done by Unicode (which are the default
in both xetex and luatex) – if an assignment is wrong, fix it directly.

4 Changes

4.1 Changes in babel version 3.9

Most of changes in version 3.9 are related to bugs, either to fix them (there were lots), or to
provide some alternatives. Even new features like \babelhyphen are intended to solve a
certain problem (in this case, the lacking of a uniform syntax and behavior for shorthands
across languages). These changes are described in this manual in the corresponding place.
A selective list follows:

• \select@language did not set \languagename. This meant the language in force when
auxiliary files were loaded was the one used in, for example, shorthands – if the
language was german, a \select@language{spanish} had no effect.

• \foreignlanguage and otherlanguage* messed up \extras<language>. Scripts,
encodings and many other things were not switched correctly.

• The :ENC mechanism for hyphenation patterns used the encoding of the previous
language, not that of the language being selected.

• ' (with activeacute) had the original value when writing to an auxiliary file, and
things like an infinite loop could happen. It worked incorrectly with ^ (if activated) and
also if deactivated.

• Active chars where not reset at the end of language options, and that lead to
incompatibilities between languages.

• \textormath raised and error with a conditional.

• \aliasshorthand didn’t work (or only in a few and very specific cases).

• \l@english was defined incorrectly (using \let instead of \chardef).

• ldf files not bundled with babel were not recognized when called as global options.

48



4.2 Changes in babel version 3.7

In babel version 3.7 a number of bugs that were found in version 3.6 are fixed. Also a
number of changes and additions have occurred:

• Shorthands are expandable again. The disadvantage is that one has to type '{}a when
the acute accent is used as a shorthand character. The advantage is that a number of
other problems (such as the breaking of ligatures, etc.) have vanished.

• Two new commands, \shorthandon and \shorthandoff have been introduced to
enable to temporarily switch off one or more shorthands.

• Support for typesetting Hebrew (and potential support for typesetting other right-to-left
written languages) is now available thanks to Rama Porrat and Boris Lavva.

• A language attribute has been added to the \mark... commands in order to make sure
that a Greek header line comes out right on the last page before a language switch.

• Hyphenation pattern files are now read inside a group; therefore any changes a pattern
file needs to make to lowercase codes, uppercase codes, and category codes are kept
local to that group. If they are needed for the language, these changes will need to be
repeated and stored in \extras...

• The concept of language attributes is introduced. It is intended to give the user some
control over the features a language-definition file provides. Its first use is for the Greek
language, where the user can choose the πολυτονικό (“polytonikó” or multi-accented)
Greek way of typesetting texts.

• The environment hyphenrules is introduced.

• The syntax of the file language.dat has been extended to allow (optionally) specifying
the font encoding to be used while processing the patterns file.

• The command \providehyphenmins should now be used in language definition files in
order to be able to keep any settings provided by the pattern file.

Part II

The code
babel is being developed incrementally, which means parts of the code are under
development and therefore incomplete. Only documented features are considered
complete. In other words, use babel only as documented (except, of course, if you want to
explore and test them – you can post suggestions about multilingual issues to
kadingira@tug.org on http://tug.org/mailman/listinfo/kadingira).

5 Identification and loading of required files

Code documentation is still under revision.
The babel package after unpacking consists of the following files:

switch.def defines macros to set and switch languages.
babel.def defines the rest of macros. It has tow parts: a generic one and a second one

only for LaTeX.
babel.sty is the LATEX package, which set options and load language styles.

49



plain.def defines some LATEX macros required by babel.def and provides a few tools for
Plain.

hyphen.cfg is the file to be used when generating the formats to load hyphenation
patterns. By default it also loads switch.def.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at
installation time. They are used with <@name@> at the appropiated places in the source
code and shown below with 〈〈name〉〉. That brings a little bit of literate programming.

6 locale directory

A required component of babel is a set of ini files with basic definitions for about 200
languages. They are distributed as a separate zip file, not packed as dtx. With them, babel
will fully support Unicode engines.
Most of them are essentially finished (except bugs and mistakes, of course). Some of them
are still incomplete (but they will be usable), and there are some omissions (eg, Latin and
polytonic Greek, and there are no geographic areas in Spanish). Hindi, French, Occitan and
Breton will show a warning related to dates. Not all include LICR variants.
This is a preliminary documentation.
ini files contain the actual data; tex files are currently just proxies to the corresponding
ini files.
Most keys are self-explanatory.

charset the encoding used in the ini file.

version of the ini file

level “version” of the ini specification . which keys are available (they may grow in a
compatible way) and how they should be read.

encodings a descriptive list of font encondings.

[captions] section of captions in the file charset

[captions.licr] same, but in pure ASCII using the LICR

date.long fields are as in the CLDR, but the syntax is different. Anything inside brackets is
a date field (eg, MMMM for the month name) and anything outside is text. In addition, [ ]

is a non breakable space and [.] is an abbreviation dot.

Keys may be further qualified in a particular language with a suffix starting with a
uppercase letter. It can be just a letter (eg, babel.name.A, babel.name.B) or a name (eg,
date.long.Nominative, date.long.Formal, but no language is currently using the latter).
Multi-letter qualifiers are forward compatible in the sense they won’t conflict with new
“global” keys (all lowercase).

7 Tools
1 〈〈version=3.22〉〉
2 〈〈date=2018/06/05〉〉

Do not use the following macros in ldf files. They may change in the future. This
applies mainly to those recently added for replacing, trimming and looping. The older
ones, like \bbl@afterfi, will not change.
We define some basic macros which just make the code cleaner. \bbl@add is now used
internally instead of \addto because of the unpredictable behavior of the latter. Used in

50



babel.def and in babel.sty, which means in LATEX is executed twice, but we need them
when defining options and babel.def cannot be load until options have been defined.
This does not hurt, but should be fixed somehow.
3 〈〈∗Basic macros〉〉 ≡
4 \bbl@trace{Basic macros}

5 \def\bbl@stripslash{\expandafter\@gobble\string}

6 \def\bbl@add#1#2{%

7 \bbl@ifunset{\bbl@stripslash#1}%

8 {\def#1{#2}}%

9 {\expandafter\def\expandafter#1\expandafter{#1#2}}}

10 \def\bbl@xin@{\@expandtwoargs\in@}

11 \def\bbl@csarg#1#2{\expandafter#1\csname bbl@#2\endcsname}%

12 \def\bbl@cs#1{\csname bbl@#1\endcsname}

13 \def\bbl@loop#1#2#3{\bbl@@loop#1{#3}#2,\@nnil,}

14 \def\bbl@loopx#1#2{\expandafter\bbl@loop\expandafter#1\expandafter{#2}}

15 \def\bbl@@loop#1#2#3,{%

16 \ifx\@nnil#3\relax\else

17 \def#1{#3}#2\bbl@afterfi\bbl@@loop#1{#2}%

18 \fi}

19 \def\bbl@for#1#2#3{\bbl@loopx#1{#2}{\ifx#1\@empty\else#3\fi}}

\bbl@add@list This internal macro adds its second argument to a comma separated list in its first
argument. When the list is not defined yet (or empty), it will be initiated. It presumes
expandable character strings.
20 \def\bbl@add@list#1#2{%

21 \edef#1{%

22 \bbl@ifunset{\bbl@stripslash#1}%

23 {}%

24 {\ifx#1\@empty\else#1,\fi}%

25 #2}}

\bbl@afterelse

\bbl@afterfi

Because the code that is used in the handling of active characters may need to look ahead,
we take extra care to ‘throw’ it over the \else and \fi parts of an \if-statement31. These
macros will break if another \if...\fi statement appears in one of the arguments and it
is not enclosed in braces.
26 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}

27 \long\def\bbl@afterfi#1\fi{\fi#1}

\bbl@trim The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It
defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and
trailing spaces from the second argument and then applies the first argument (a macro,
\toks@ and the like). The second one, as its name suggests, defines the first argument as
the stripped second argument.
28 \def\bbl@tempa#1{%

29 \long\def\bbl@trim##1##2{%

30 \futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}%

31 \def\bbl@trim@c{%

32 \ifx\bbl@trim@a\@sptoken

33 \expandafter\bbl@trim@b

34 \else

35 \expandafter\bbl@trim@b\expandafter#1%

36 \fi}%

37 \long\def\bbl@trim@b#1##1 \@nil{\bbl@trim@i##1}}

38 \bbl@tempa{ }

39 \long\def\bbl@trim@i#1\@nil#2\relax#3{#3{#1}}

40 \long\def\bbl@trim@def#1{\bbl@trim{\def#1}}

31This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by
Sonja Maus.

51



\bbl@ifunset To check if a macro is defined, we create a new macro, which does the same as
\@ifundefined. However, in an ε-tex engine, it is based on \ifcsname, which is more
efficient, and do not waste memory.

41 \def\bbl@ifunset#1{%

42 \expandafter\ifx\csname#1\endcsname\relax

43 \expandafter\@firstoftwo

44 \else

45 \expandafter\@secondoftwo

46 \fi}

47 \bbl@ifunset{ifcsname}%

48 {}%

49 {\def\bbl@ifunset#1{%

50 \ifcsname#1\endcsname

51 \expandafter\ifx\csname#1\endcsname\relax

52 \bbl@afterelse\expandafter\@firstoftwo

53 \else

54 \bbl@afterfi\expandafter\@secondoftwo

55 \fi

56 \else

57 \expandafter\@firstoftwo

58 \fi}}

\bbl@ifblank A tool from url, by Donald Arseneau, which tests if a string is empty or space.

59 \def\bbl@ifblank#1{%

60 \bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}

61 \long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}

For each element in the comma separated <key>=<value> list, execute <code> with #1 and
#2 as the key and the value of current item (trimmed). In addition, the item is passed
verbatim as #3. With the <key> alone, it passes \@empty (ie, the macro thus named, not an
empty argument, which is what you get with <key>= and no value).

62 \def\bbl@forkv#1#2{%

63 \def\bbl@kvcmd##1##2##3{#2}%

64 \bbl@kvnext#1,\@nil,}

65 \def\bbl@kvnext#1,{%

66 \ifx\@nil#1\relax\else

67 \bbl@ifblank{#1}{}{\bbl@forkv@eq#1=\@empty=\@nil{#1}}%

68 \expandafter\bbl@kvnext

69 \fi}

70 \def\bbl@forkv@eq#1=#2=#3\@nil#4{%

71 \bbl@trim@def\bbl@forkv@a{#1}%

72 \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}

A for loop. Each item (trimmed), is #1. It cannot be nested (it’s doable, but we don’t need it).

73 \def\bbl@vforeach#1#2{%

74 \def\bbl@forcmd##1{#2}%

75 \bbl@fornext#1,\@nil,}

76 \def\bbl@fornext#1,{%

77 \ifx\@nil#1\relax\else

78 \bbl@ifblank{#1}{}{\bbl@trim\bbl@forcmd{#1}}%

79 \expandafter\bbl@fornext

80 \fi}

81 \def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}

\bbl@replace

82 \def\bbl@replace#1#2#3{% in #1 -> repl #2 by #3

83 \toks@{}%

52



84 \def\bbl@replace@aux##1#2##2#2{%

85 \ifx\bbl@nil##2%

86 \toks@\expandafter{\the\toks@##1}%

87 \else

88 \toks@\expandafter{\the\toks@##1#3}%

89 \bbl@afterfi

90 \bbl@replace@aux##2#2%

91 \fi}%

92 \expandafter\bbl@replace@aux#1#2\bbl@nil#2%

93 \edef#1{\the\toks@}}

\bbl@exp Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple
and readable. Here \\ stands for \noexpand and \<..> for \noexpand applied to a built
macro name (the latter does not define the macro if undefined to \relax, because it is
created locally). The result may be followed by extra arguments, if necessary.
94 \def\bbl@exp#1{%

95 \begingroup

96 \let\\\noexpand

97 \def\<##1>{\expandafter\noexpand\csname##1\endcsname}%

98 \edef\bbl@exp@aux{\endgroup#1}%

99 \bbl@exp@aux}

Two further tools. \bbl@samestring first expand its arguments and then compare their
expansion (sanitized, so that the catcodes do not matter). \bbl@engine takes the following
values: 0 is pdfTEX, 1 is luatex, and 2 is xetex. You may use the latter it in your language
style if you want.
100 \def\bbl@ifsamestring#1#2{%

101 \begingroup

102 \protected@edef\bbl@tempb{#1}%

103 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

104 \protected@edef\bbl@tempc{#2}%

105 \edef\bbl@tempc{\expandafter\strip@prefix\meaning\bbl@tempc}%

106 \ifx\bbl@tempb\bbl@tempc

107 \aftergroup\@firstoftwo

108 \else

109 \aftergroup\@secondoftwo

110 \fi

111 \endgroup}

112 \chardef\bbl@engine=%

113 \ifx\directlua\@undefined

114 \ifx\XeTeXinputencoding\@undefined

115 \z@

116 \else

117 \tw@

118 \fi

119 \else

120 \@ne

121 \fi

122 〈〈/Basic macros〉〉

Some files identify themselves with a LATEX macro. The following code is placed before
them to define (and then undefine) if not in LATEX.
123 〈〈∗Make sure ProvidesFile is defined〉〉 ≡
124 \ifx\ProvidesFile\@undefined

125 \def\ProvidesFile#1[#2 #3 #4]{%

126 \wlog{File: #1 #4 #3 <#2>}%

127 \let\ProvidesFile\@undefined}

128 \fi

53



129 〈〈/Make sure ProvidesFile is defined〉〉

The following code is used in babel.sty and babel.def, and loads (only once) the data in
language.dat.
130 〈〈∗Load patterns in luatex〉〉 ≡
131 \ifx\directlua\@undefined\else

132 \ifx\bbl@luapatterns\@undefined

133 \input luababel.def

134 \fi

135 \fi

136 〈〈/Load patterns in luatex〉〉

The following code is used in babel.def and switch.def.
137 〈〈∗Load macros for plain if not LaTeX〉〉 ≡
138 \ifx\AtBeginDocument\@undefined

139 \input plain.def\relax

140 \fi

141 〈〈/Load macros for plain if not LaTeX〉〉

7.1 Multiple languages

\language Plain TEX version 3.0 provides the primitive \language that is used to store the current
language. When used with a pre-3.0 version this function has to be implemented by
allocating a counter. The following block is used in switch.def and hyphen.cfg; the latter
may seem redundant, but remember babel doesn’t requires loading switch.def in the
format.
142 〈〈∗Define core switching macros〉〉 ≡
143 \ifx\language\@undefined

144 \csname newcount\endcsname\language

145 \fi

146 〈〈/Define core switching macros〉〉

\last@language Another counter is used to store the last language defined. For pre-3.0 formats an extra
counter has to be allocated.

\addlanguage To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage, in a
pre-3.0 environment a similar macro has to be provided. For both cases a new macro is
defined here, because the original \newlanguage was defined to be \outer.
For a format based on plain version 2.x, the definition of \newlanguage can not be copied
because \count 19 is used for other purposes in these formats. Therefore \addlanguage is
defined using a definition based on the macros used to define \newlanguage in plain TEX
version 3.0.
For formats based on plain version 3.0 the definition of \newlanguage can be simply
copied, removing \outer. Plain TEX version 3.0 uses \count 19 for this purpose.
147 〈〈∗Define core switching macros〉〉 ≡
148 \ifx\newlanguage\@undefined

149 \csname newcount\endcsname\last@language

150 \def\addlanguage#1{%

151 \global\advance\last@language\@ne

152 \ifnum\last@language<\@cclvi

153 \else

154 \errmessage{No room for a new \string\language!}%

155 \fi

156 \global\chardef#1\last@language

157 \wlog{\string#1 = \string\language\the\last@language}}

158 \else

159 \countdef\last@language=19

54



160 \def\addlanguage{\alloc@9\language\chardef\@cclvi}

161 \fi

162 〈〈/Define core switching macros〉〉

Now we make sure all required files are loaded. When the command \AtBeginDocument

doesn’t exist we assume that we are dealing with a plain-based format or LATEX2.09. In that
case the file plain.def is needed (which also defines \AtBeginDocument, and therefore it
is not loaded twice). We need the first part when the format is created, and \orig@dump is
used as a flag. Otherwise, we need to use the second part, so \orig@dump is not defined
(plain.def undefines it).
Check if the current version of switch.def has been previously loaded (mainly,
hyphen.cfg). If not, load it now. We cannot load babel.def here because we first need to
declare and process the package options.

8 The Package File (LATEX, babel.sty)

In order to make use of the features of LATEX2ε, the babel system contains a package file,
babel.sty. This file is loaded by the \usepackage command and defines all the language
options whose name is different from that of the .ldf file (like variant spellings). It also
takes care of a number of compatibility issues with other packages an defines a few
aditional package options.
Apart from all the language options below we also have a few options that influence the
behavior of language definition files.
Many of the following options don’t do anything themselves, they are just defined in order
to make it possible for babel and language definition files to check if one of them was
specified by the user.

8.1 base

The first option to be processed is base, which set the hyphenation patterns then resets
ver@babel.sty so that LATEXforgets about the first loading. After switch.def has been
loaded (above) and \AfterBabelLanguage defined, exits.

163 〈∗package〉
164 \NeedsTeXFormat{LaTeX2e}[2005/12/01]

165 \ProvidesPackage{babel}[〈〈date〉〉 〈〈version〉〉 The Babel package]

166 \@ifpackagewith{babel}{debug}

167 {\providecommand\bbl@trace[1]{\message{^^J[ #1 ]}}%

168 \let\bbl@debug\@firstofone}

169 {\providecommand\bbl@trace[1]{}%

170 \let\bbl@debug\@gobble}

171 \ifx\bbl@switchflag\@undefined % Prevent double input

172 \let\bbl@switchflag\relax

173 \input switch.def\relax

174 \fi

175 〈〈Load patterns in luatex〉〉
176 〈〈Basic macros〉〉
177 \def\AfterBabelLanguage#1{%

178 \global\expandafter\bbl@add\csname#1.ldf-h@@k\endcsname}%

If the format created a list of loaded languages (in \bbl@languages), get the name of the
0-th to show the actual language used.

179 \ifx\bbl@languages\@undefined\else

180 \begingroup

181 \catcode`\^^I=12

182 \@ifpackagewith{babel}{showlanguages}{%

55



183 \begingroup

184 \def\bbl@elt#1#2#3#4{\wlog{#2^^I#1^^I#3^^I#4}}%

185 \wlog{<*languages>}%

186 \bbl@languages

187 \wlog{</languages>}%

188 \endgroup}{}

189 \endgroup

190 \def\bbl@elt#1#2#3#4{%

191 \ifnum#2=\z@

192 \gdef\bbl@nulllanguage{#1}%

193 \def\bbl@elt##1##2##3##4{}%

194 \fi}%

195 \bbl@languages

196 \fi

197 \ifodd\bbl@engine

198 \let\bbl@tempa\relax

199 \@ifpackagewith{babel}{bidi=basic}%

200 {\def\bbl@tempa{basic}}%

201 {\@ifpackagewith{babel}{bidi=basic-r}%

202 {\def\bbl@tempa{basic-r}}%

203 {}}

204 \ifx\bbl@tempa\relax\else

205 \let\bbl@beforeforeign\leavevmode

206 \AtEndOfPackage{\EnableBabelHook{babel-bidi}}%

207 \RequirePackage{luatexbase}%

208 \directlua{

209 require('babel-bidi.lua')

210 require('babel-bidi-\bbl@tempa.lua')

211 luatexbase.add_to_callback('pre_linebreak_filter',

212 Babel.pre_otfload_v,

213 'Babel.pre_otfload_v',

214 luatexbase.priority_in_callback('pre_linebreak_filter',

215 'luaotfload.node_processor') or nil)

216 luatexbase.add_to_callback('hpack_filter',

217 Babel.pre_otfload_h,

218 'Babel.pre_otfload_h',

219 luatexbase.priority_in_callback('hpack_filter',

220 'luaotfload.node_processor') or nil)

221 }

222 \fi

223 \fi

Now the base option. With it we can define (and load, with luatex) hyphenation patterns,
even if we are not interesed in the rest of babel. Useful for old versions of polyglossia, too.

224 \bbl@trace{Defining option 'base'}

225 \@ifpackagewith{babel}{base}{%

226 \ifx\directlua\@undefined

227 \DeclareOption*{\bbl@patterns{\CurrentOption}}%

228 \else

229 \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%

230 \fi

231 \DeclareOption{base}{}%

232 \DeclareOption{showlanguages}{}%

233 \ProcessOptions

234 \global\expandafter\let\csname opt@babel.sty\endcsname\relax

235 \global\expandafter\let\csname ver@babel.sty\endcsname\relax

236 \global\let\@ifl@ter@@\@ifl@ter

237 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%

238 \endinput}{}%

56



8.2 key=value options and other general option

The following macros extract language modifiers, and only real package options are kept
in the option list. Modifiers are saved and assigned to \BabelModifiers at
\bbl@load@language; when no modifiers have been given, the former is \relax. How
modifiers are handled are left to language styles; they can use \in@, loop them with \@for

or load keyval, for example.

239 \bbl@trace{key=value and another general options}

240 \bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname

241 \def\bbl@tempb#1.#2{%

242 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%

243 \def\bbl@tempd#1.#2\@nnil{%

244 \ifx\@empty#2%

245 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

246 \else

247 \in@{=}{#1}\ifin@

248 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%

249 \else

250 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%

251 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%

252 \fi

253 \fi}

254 \let\bbl@tempc\@empty

255 \bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}

256 \expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc

The next option tells babel to leave shorthand characters active at the end of processing
the package. This is not the default as it can cause problems with other packages, but for
those who want to use the shorthand characters in the preamble of their documents this
can help.

257 \DeclareOption{KeepShorthandsActive}{}

258 \DeclareOption{activeacute}{}

259 \DeclareOption{activegrave}{}

260 \DeclareOption{debug}{}

261 \DeclareOption{noconfigs}{}

262 \DeclareOption{showlanguages}{}

263 \DeclareOption{silent}{}

264 \DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}

265 〈〈More package options〉〉

Handling of package options is done in three passes. (I [JBL] am not very happy with the
idea, anyway.) The first one processes options which has been declared above or follow the
syntax <key>=<value>, the second one loads the requested languages, except the main one
if set with the key main, and the third one loads the latter. First, we “flag” valid keys with a
nil value.

266 \let\bbl@opt@shorthands\@nnil

267 \let\bbl@opt@config\@nnil

268 \let\bbl@opt@main\@nnil

269 \let\bbl@opt@headfoot\@nnil

270 \let\bbl@opt@layout\@nnil

The following tool is defined temporarily to store the values of options.

271 \def\bbl@tempa#1=#2\bbl@tempa{%

272 \bbl@csarg\ifx{opt@#1}\@nnil

273 \bbl@csarg\edef{opt@#1}{#2}%

274 \else

275 \bbl@error{%

276 Bad option `#1=#2'. Either you have misspelled the\\%

57



277 key or there is a previous setting of `#1'}{%

278 Valid keys are `shorthands', `config', `strings', `main',\\%

279 `headfoot', `safe', `math', among others.}

280 \fi}

Now the option list is processed, taking into account only currently declared options
(including those declared with a =), and <key>=<value> options (the former take
precedence). Unrecognized options are saved in \bbl@language@opts, because they are
language options.

281 \let\bbl@language@opts\@empty

282 \DeclareOption*{%

283 \bbl@xin@{\string=}{\CurrentOption}%

284 \ifin@

285 \expandafter\bbl@tempa\CurrentOption\bbl@tempa

286 \else

287 \bbl@add@list\bbl@language@opts{\CurrentOption}%

288 \fi}

Now we finish the first pass (and start over).

289 \ProcessOptions*

8.3 Conditional loading of shorthands

If there is no shorthands=<chars>, the original babelmacros are left untouched, but if
there is, these macros are wrapped (in babel.def) to define only those given.
A bit of optimization: if there is no shorthands=, then \bbl@ifshorthands is always true,
and it is always false if shorthands is empty. Also, some code makes sense only with
shorthands=....

290 \bbl@trace{Conditional loading of shorthands}

291 \def\bbl@sh@string#1{%

292 \ifx#1\@empty\else

293 \ifx#1t\string~%

294 \else\ifx#1c\string,%

295 \else\string#1%

296 \fi\fi

297 \expandafter\bbl@sh@string

298 \fi}

299 \ifx\bbl@opt@shorthands\@nnil

300 \def\bbl@ifshorthand#1#2#3{#2}%

301 \else\ifx\bbl@opt@shorthands\@empty

302 \def\bbl@ifshorthand#1#2#3{#3}%

303 \else

The following macro tests if a shortand is one of the allowed ones.

304 \def\bbl@ifshorthand#1{%

305 \bbl@xin@{\string#1}{\bbl@opt@shorthands}%

306 \ifin@

307 \expandafter\@firstoftwo

308 \else

309 \expandafter\@secondoftwo

310 \fi}

Wemake sure all chars in the string are ‘other’, with the help of an auxiliary macro
defined above (which also zaps spaces).

311 \edef\bbl@opt@shorthands{%

312 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%

58



The following is ignored with shorthands=off, since it is intended to take some aditional
actions for certain chars.

313 \bbl@ifshorthand{'}%

314 {\PassOptionsToPackage{activeacute}{babel}}{}

315 \bbl@ifshorthand{`}%

316 {\PassOptionsToPackage{activegrave}{babel}}{}

317 \fi\fi

With headfoot=lang we can set the language used in heads/foots. For example, in
babel/3796 just adds headfoot=english. It misuses \@resetactivechars but seems to
work.

318 \ifx\bbl@opt@headfoot\@nnil\else

319 \g@addto@macro\@resetactivechars{%

320 \set@typeset@protect

321 \expandafter\select@language@x\expandafter{\bbl@opt@headfoot}%

322 \let\protect\noexpand}

323 \fi

For the option safe we use a different approach – \bbl@opt@safe says which macros are
redefined (B for bibs and R for refs). By default, both are set.

324 \ifx\bbl@opt@safe\@undefined

325 \def\bbl@opt@safe{BR}

326 \fi

327 \ifx\bbl@opt@main\@nnil\else

328 \edef\bbl@language@opts{%

329 \ifx\bbl@language@opts\@empty\else\bbl@language@opts,\fi

330 \bbl@opt@main}

331 \fi

For layout an auxiliary macro is provided, available for packages and language styles.

332 \bbl@trace{Defining IfBabelLayout}

333 \ifx\bbl@opt@layout\@nnil

334 \newcommand\IfBabelLayout[3]{#3}%

335 \else

336 \newcommand\IfBabelLayout[1]{%

337 \@expandtwoargs\in@{.#1.}{.\bbl@opt@layout.}%

338 \ifin@

339 \expandafter\@firstoftwo

340 \else

341 \expandafter\@secondoftwo

342 \fi}

343 \fi

8.4 Language options

Languages are loaded when processing the corresponding option except if a main language
has been set. In such a case, it is not loaded until all options has been processed. The
following macro inputs the ldf file and does some additional checks (\input works, too,
but possible errors are not catched).

344 \bbl@trace{Language options}

345 \let\bbl@afterlang\relax

346 \let\BabelModifiers\relax

347 \let\bbl@loaded\@empty

348 \def\bbl@load@language#1{%

349 \InputIfFileExists{#1.ldf}%

350 {\edef\bbl@loaded{\CurrentOption

351 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%

59



352 \expandafter\let\expandafter\bbl@afterlang

353 \csname\CurrentOption.ldf-h@@k\endcsname

354 \expandafter\let\expandafter\BabelModifiers

355 \csname bbl@mod@\CurrentOption\endcsname}%

356 {\bbl@error{%

357 Unknown option `\CurrentOption'. Either you misspelled it\\%

358 or the language definition file \CurrentOption.ldf was not found}{%

359 Valid options are: shorthands=, KeepShorthandsActive,\\%

360 activeacute, activegrave, noconfigs, safe=, main=, math=\\%

361 headfoot=, strings=, config=, hyphenmap=, or a language name.}}}

Now, we set language options whose names are different from ldf files.
362 \def\bbl@try@load@lang#1#2#3{%

363 \IfFileExists{\CurrentOption.ldf}%

364 {\bbl@load@language{\CurrentOption}}%

365 {#1\bbl@load@language{#2}#3}}

366 \DeclareOption{afrikaans}{\bbl@try@load@lang{}{dutch}{}}

367 \DeclareOption{brazil}{\bbl@try@load@lang{}{portuges}{}}

368 \DeclareOption{brazilian}{\bbl@try@load@lang{}{portuges}{}}

369 \DeclareOption{hebrew}{%

370 \input{rlbabel.def}%

371 \bbl@load@language{hebrew}}

372 \DeclareOption{hungarian}{\bbl@try@load@lang{}{magyar}{}}

373 \DeclareOption{lowersorbian}{\bbl@try@load@lang{}{lsorbian}{}}

374 \DeclareOption{nynorsk}{\bbl@try@load@lang{}{norsk}{}}

375 \DeclareOption{polutonikogreek}{%

376 \bbl@try@load@lang{}{greek}{\languageattribute{greek}{polutoniko}}}

377 \DeclareOption{portuguese}{\bbl@try@load@lang{}{portuges}{}}

378 \DeclareOption{russian}{\bbl@try@load@lang{}{russianb}{}}

379 \DeclareOption{ukrainian}{\bbl@try@load@lang{}{ukraineb}{}}

380 \DeclareOption{uppersorbian}{\bbl@try@load@lang{}{usorbian}{}}

Another way to extend the list of ‘known’ options for babel was to create the file
bblopts.cfg in which one can add option declarations. However, this mechanism is
deprecated – if you want an alternative name for a language, just create a new .ldf file
loading the actual one. You can also set the name of the file with the package option
config=<name>, which will load <name>.cfg instead.
381 \ifx\bbl@opt@config\@nnil

382 \@ifpackagewith{babel}{noconfigs}{}%

383 {\InputIfFileExists{bblopts.cfg}%

384 {\typeout{*************************************^^J%

385 * Local config file bblopts.cfg used^^J%

386 *}}%

387 {}}%

388 \else

389 \InputIfFileExists{\bbl@opt@config.cfg}%

390 {\typeout{*************************************^^J%

391 * Local config file \bbl@opt@config.cfg used^^J%

392 *}}%

393 {\bbl@error{%

394 Local config file `\bbl@opt@config.cfg' not found}{%

395 Perhaps you misspelled it.}}%

396 \fi

Recognizing global options in packages not having a closed set of them is not trivial, as for
them to be processed they must be defined explicitly. So, package options not yet taken
into account and stored in bbl@language@opts are assumed to be languages (note this list
also contains the language given with main). If not declared above, the name of the option
and the file are the same.

60



397 \bbl@for\bbl@tempa\bbl@language@opts{%

398 \bbl@ifunset{ds@\bbl@tempa}%

399 {\edef\bbl@tempb{%

400 \noexpand\DeclareOption

401 {\bbl@tempa}%

402 {\noexpand\bbl@load@language{\bbl@tempa}}}%

403 \bbl@tempb}%

404 \@empty}

Now, we make sure an option is explicitly declared for any language set as global option,
by checking if an ldf exists. The previous step was, in fact, somewhat redundant, but that
way we minimize accesing the file system just to see if the option could be a language.

405 \bbl@foreach\@classoptionslist{%

406 \bbl@ifunset{ds@#1}%

407 {\IfFileExists{#1.ldf}%

408 {\DeclareOption{#1}{\bbl@load@language{#1}}}%

409 {}}%

410 {}}

If a main language has been set, store it for the third pass.

411 \ifx\bbl@opt@main\@nnil\else

412 \expandafter

413 \let\expandafter\bbl@loadmain\csname ds@\bbl@opt@main\endcsname

414 \DeclareOption{\bbl@opt@main}{}

415 \fi

And we are done, because all options for this pass has been declared. Those already
processed in the first pass are just ignored.
The options have to be processed in the order in which the user specified them (except, of
course, global options, which LATEX processes before):

416 \def\AfterBabelLanguage#1{%

417 \bbl@ifsamestring\CurrentOption{#1}{\global\bbl@add\bbl@afterlang}{}}

418 \DeclareOption*{}

419 \ProcessOptions*

This finished the second pass. Now the third one begins, which loads the main language set
with the key main. A warning is raised if the main language is not the same as the last
named one, or if the value of the key main is not a language. Then execute directly the
option (because it could be used only in main). After loading all languages, we deactivate
\AfterBabelLanguage.

420 \ifx\bbl@opt@main\@nnil

421 \edef\bbl@tempa{\@classoptionslist,\bbl@language@opts}

422 \let\bbl@tempc\@empty

423 \bbl@for\bbl@tempb\bbl@tempa{%

424 \bbl@xin@{,\bbl@tempb,}{,\bbl@loaded,}%

425 \ifin@\edef\bbl@tempc{\bbl@tempb}\fi}

426 \def\bbl@tempa#1,#2\@nnil{\def\bbl@tempb{#1}}

427 \expandafter\bbl@tempa\bbl@loaded,\@nnil

428 \ifx\bbl@tempb\bbl@tempc\else

429 \bbl@warning{%

430 Last declared language option is `\bbl@tempc',\\%

431 but the last processed one was `\bbl@tempb'.\\%

432 The main language cannot be set as both a global\\%

433 and a package option. Use `main=\bbl@tempc' as\\%

434 option. Reported}%

435 \fi

436 \else

437 \DeclareOption{\bbl@opt@main}{\bbl@loadmain}

61



438 \ExecuteOptions{\bbl@opt@main}

439 \DeclareOption*{}

440 \ProcessOptions*

441 \fi

442 \def\AfterBabelLanguage{%

443 \bbl@error

444 {Too late for \string\AfterBabelLanguage}%

445 {Languages have been loaded, so I can do nothing}}

In order to catch the case where the user forgot to specify a language we check whether
\bbl@main@language, has become defined. If not, no language has been loaded and an
error message is displayed.

446 \ifx\bbl@main@language\@undefined

447 \bbl@info{%

448 You haven't specified a language. I'll use 'nil'\\%

449 as the main language. Reported}

450 \bbl@load@language{nil}

451 \fi

452 〈/package〉
453 〈∗core〉

9 The kernel of Babel (babel.def, common)

The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file babel.def contains most of the code, while switch.def defines the
language switching commands; both can be read at run time. The file hyphen.cfg is a file
that can be loaded into the format, which is necessary when you want to be able to switch
hyphenation patterns (by default, it also inputs switch.def, for “historical reasons”, but it
is not necessary). When babel.def is loaded it checks if the current version of switch.def
is in the format; if not, it is loaded. A further file, babel.sty, contains LATEX-specific stuff.
Because plain TEX users might want to use some of the features of the babel system too,
care has to be taken that plain TEX can process the files. For this reason the current format
will have to be checked in a number of places. Some of the code below is common to plain
TEX and LATEX, some of it is for the LATEX case only.
Plain formats based on etex (etex, xetex, luatex) don’t load hyphen.cfg but etex.src,
which follows a different naming convention, so we need to define the babel names. It
presumes language.def exists and it is the same file used when formats were created.

9.1 Tools
454 \ifx\ldf@quit\@undefined

455 \else

456 \expandafter\endinput

457 \fi

458 〈〈Make sure ProvidesFile is defined〉〉
459 \ProvidesFile{babel.def}[〈〈date〉〉 〈〈version〉〉 Babel common definitions]

460 〈〈Load macros for plain if not LaTeX〉〉

The file babel.def expects some definitions made in the LATEX2ε style file. So, In LATEX2.09
and Plain we must provide at least some predefined values as well some tools to set them
(even if not all options are available). There in no package options, and therefore and
alternative mechanism is provided. For the moment, only \babeloptionstrings and
\babeloptionmath are provided, which can be defined before loading babel.
\BabelModifiers can be set too (but not sure it works).
461 \ifx\bbl@ifshorthand\@undefined

462 \let\bbl@opt@shorthands\@nnil

62



463 \def\bbl@ifshorthand#1#2#3{#2}%

464 \let\bbl@language@opts\@empty

465 \ifx\babeloptionstrings\@undefined

466 \let\bbl@opt@strings\@nnil

467 \else

468 \let\bbl@opt@strings\babeloptionstrings

469 \fi

470 \def\BabelStringsDefault{generic}

471 \def\bbl@tempa{normal}

472 \ifx\babeloptionmath\bbl@tempa

473 \def\bbl@mathnormal{\noexpand\textormath}

474 \fi

475 \def\AfterBabelLanguage#1#2{}

476 \ifx\BabelModifiers\@undefined\let\BabelModifiers\relax\fi

477 \let\bbl@afterlang\relax

478 \def\bbl@opt@safe{BR}

479 \ifx\@uclclist\@undefined\let\@uclclist\@empty\fi

480 \ifx\bbl@trace\@undefined\def\bbl@trace#1{}\fi

481 \fi

And continue.
482 \ifx\bbl@switchflag\@undefined % Prevent double input

483 \let\bbl@switchflag\relax

484 \input switch.def\relax

485 \fi

486 \bbl@trace{Compatibility with language.def}

487 \ifx\bbl@languages\@undefined

488 \ifx\directlua\@undefined

489 \openin1 = language.def

490 \ifeof1

491 \closein1

492 \message{I couldn't find the file language.def}

493 \else

494 \closein1

495 \begingroup

496 \def\addlanguage#1#2#3#4#5{%

497 \expandafter\ifx\csname lang@#1\endcsname\relax\else

498 \global\expandafter\let\csname l@#1\expandafter\endcsname

499 \csname lang@#1\endcsname

500 \fi}%

501 \def\uselanguage#1{}%

502 \input language.def

503 \endgroup

504 \fi

505 \fi

506 \chardef\l@english\z@

507 \fi

508 〈〈Load patterns in luatex〉〉
509 〈〈Basic macros〉〉

\addto For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once they have
been defined the macro \addto is introduced. It takes two arguments, a 〈control sequence〉
and TEX-code to be added to the 〈control sequence〉.
If the 〈control sequence〉 has not been defined before it is defined now. The control
sequence could also expand to \relax, in which case a circular definition results. The net
result is a stack overflow. Otherwise the replacement text for the 〈control sequence〉 is
expanded and stored in a token register, together with the TEX-code to be added. Finally
the 〈control sequence〉 is redefined, using the contents of the token register.

63



510 \def\addto#1#2{%

511 \ifx#1\@undefined

512 \def#1{#2}%

513 \else

514 \ifx#1\relax

515 \def#1{#2}%

516 \else

517 {\toks@\expandafter{#1#2}%

518 \xdef#1{\the\toks@}}%

519 \fi

520 \fi}

The macro \initiate@active@char takes all the necessary actions to make its argument a
shorthand character. The real work is performed once for each character.

521 \def\bbl@withactive#1#2{%

522 \begingroup

523 \lccode`~=`#2\relax

524 \lowercase{\endgroup#1~}}

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine it to call
the original macro with the ‘sanitized’ argument. The reason why we do it this way is that
we don’t want to redefine the LATEX macros completely in case their definitions change
(they have changed in the past).
Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence, \org@...

525 \def\bbl@redefine#1{%

526 \edef\bbl@tempa{\bbl@stripslash#1}%

527 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

528 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.

529 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such as
\ifthenelse.

530 \def\bbl@redefine@long#1{%

531 \edef\bbl@tempa{\bbl@stripslash#1}%

532 \expandafter\let\csname org@\bbl@tempa\endcsname#1%

533 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}

534 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but whichmight be robust we need a slightly more
intelligent macro. A robust command foo is defined to expand to \protect\foo␣. So it is
necessary to check whether \foo␣ exists. The result is that the command that is being
redefined is always robust afterwards. Therefore all we need to do now is define \foo␣.

535 \def\bbl@redefinerobust#1{%

536 \edef\bbl@tempa{\bbl@stripslash#1}%

537 \bbl@ifunset{\bbl@tempa\space}%

538 {\expandafter\let\csname org@\bbl@tempa\endcsname#1%

539 \bbl@exp{\def\\#1{\\\protect\<\bbl@tempa\space>}}}%

540 {\bbl@exp{\let\<org@\bbl@tempa>\<\bbl@tempa\space>}}%

541 \@namedef{\bbl@tempa\space}}

This command should only be used in the preamble of the document.

542 \@onlypreamble\bbl@redefinerobust

64



9.2 Hooks

Note they are loaded in babel.def. switch.def only provides a “hook” for hooks (with a
default value which is a no-op, below). Admittedly, the current implementation is a
somewhat simplistic and does vety little to catch errors, but it is intended for developpers,
after all. \bbl@usehooks is the commands used by babel to execute hooks defined for an
event.

543 \bbl@trace{Hooks}

544 \def\AddBabelHook#1#2{%

545 \bbl@ifunset{bbl@hk@#1}{\EnableBabelHook{#1}}{}%

546 \def\bbl@tempa##1,#2=##2,##3\@empty{\def\bbl@tempb{##2}}%

547 \expandafter\bbl@tempa\bbl@evargs,#2=,\@empty

548 \bbl@ifunset{bbl@ev@#1@#2}%

549 {\bbl@csarg\bbl@add{ev@#2}{\bbl@elt{#1}}%

550 \bbl@csarg\newcommand}%

551 {\bbl@csarg\let{ev@#1@#2}\relax

552 \bbl@csarg\newcommand}%

553 {ev@#1@#2}[\bbl@tempb]}

554 \def\EnableBabelHook#1{\bbl@csarg\let{hk@#1}\@firstofone}

555 \def\DisableBabelHook#1{\bbl@csarg\let{hk@#1}\@gobble}

556 \def\bbl@usehooks#1#2{%

557 \def\bbl@elt##1{%

558 \@nameuse{bbl@hk@##1}{\@nameuse{bbl@ev@##1@#1}#2}}%

559 \@nameuse{bbl@ev@#1}}

To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further
argument is added in the future, there is no need to change the existing code. Note events
intended for hyphen.cfg are also loaded (just in case you need them for some reason).

560 \def\bbl@evargs{,% don't delete the comma

561 everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%

562 adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%

563 beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%

564 hyphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0}

\babelensure The user command just parses the optional argument and creates a new macro named
\bbl@e@〈language〉. We register a hook at the afterextras event which just executes this
macro in a “complete” selection (which, if undefined, is \relax and does nothing). This
part is somewhat involved because we have to make sure things are expanded the correct
number of times.
The macro \bbl@e@〈language〉 contains \bbl@ensure{〈include〉}{〈exclude〉}{〈fontenc〉},
which in in turn loops over the macros names in \bbl@captionslist, excluding (with the
help of \in@) those in the exclude list. If the fontenc is given (and not \relax), the
\fontencoding is also added. Then we loop over the include list, but if the macro already
contains \foreignlanguage, nothing is done. Note this macro (1) is not restricted to the
preamble, and (2) changes are local.

565 \bbl@trace{Defining babelensure}

566 \newcommand\babelensure[2][]{% TODO - revise test files

567 \AddBabelHook{babel-ensure}{afterextras}{%

568 \ifcase\bbl@select@type

569 \@nameuse{bbl@e@\languagename}%

570 \fi}%

571 \begingroup

572 \let\bbl@ens@include\@empty

573 \let\bbl@ens@exclude\@empty

574 \def\bbl@ens@fontenc{\relax}%

575 \def\bbl@tempb##1{%

576 \ifx\@empty##1\else\noexpand##1\expandafter\bbl@tempb\fi}%

65



577 \edef\bbl@tempa{\bbl@tempb#1\@empty}%

578 \def\bbl@tempb##1=##2\@@{\@namedef{bbl@ens@##1}{##2}}%

579 \bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}%

580 \def\bbl@tempc{\bbl@ensure}%

581 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

582 \expandafter{\bbl@ens@include}}%

583 \expandafter\bbl@add\expandafter\bbl@tempc\expandafter{%

584 \expandafter{\bbl@ens@exclude}}%

585 \toks@\expandafter{\bbl@tempc}%

586 \bbl@exp{%

587 \endgroup

588 \def\<bbl@e@#2>{\the\toks@{\bbl@ens@fontenc}}}}

589 \def\bbl@ensure#1#2#3{% 1: include 2: exclude 3: fontenc

590 \def\bbl@tempb##1{% elt for (excluding) \bbl@captionslist list

591 \ifx##1\@empty\else

592 \in@{##1}{#2}%

593 \ifin@\else

594 \bbl@ifunset{bbl@ensure@\languagename}%

595 {\bbl@exp{%

596 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%

597 \\\foreignlanguage{\languagename}%

598 {\ifx\relax#3\else

599 \\\fontencoding{#3}\\\selectfont

600 \fi

601 ########1}}}}%

602 {}%

603 \toks@\expandafter{##1}%

604 \edef##1{%

605 \bbl@csarg\noexpand{ensure@\languagename}%

606 {\the\toks@}}%

607 \fi

608 \expandafter\bbl@tempb

609 \fi}%

610 \expandafter\bbl@tempb\bbl@captionslist\today\@empty

611 \def\bbl@tempa##1{% elt for include list

612 \ifx##1\@empty\else

613 \bbl@csarg\in@{ensure@\languagename\expandafter}\expandafter{##1}%

614 \ifin@\else

615 \bbl@tempb##1\@empty

616 \fi

617 \expandafter\bbl@tempa

618 \fi}%

619 \bbl@tempa#1\@empty}

620 \def\bbl@captionslist{%

621 \prefacename\refname\abstractname\bibname\chaptername\appendixname

622 \contentsname\listfigurename\listtablename\indexname\figurename

623 \tablename\partname\enclname\ccname\headtoname\pagename\seename

624 \alsoname\proofname\glossaryname}

9.3 Setting up language files

\LdfInit The second version of \LdfInit macro takes two arguments. The first argument is the
name of the language that will be defined in the language definition file; the second
argument is either a control sequence or a string from which a control sequence should be
constructed. The existence of the control sequence indicates that the file has been
processed before.
At the start of processing a language definition file we always check the category code of
the at-sign. We make sure that it is a ‘letter’ during the processing of the file. We also save

66



its name as the last called option, even if not loaded.
Another character that needs to have the correct category code during processing of
language definition files is the equals sign, ‘=’, because it is sometimes used in constructions
with the \let primitive. Therefore we store its current catcode and restore it later on.
Now we check whether we should perhaps stop the processing of this file. To do this we
first need to check whether the second argument that is passed to \LdfInit is a control
sequence. We do that by looking at the first token after passing #2 through string. When
it is equal to \@backslashchar we are dealing with a control sequence which we can
compare with \@undefined.
If so, we call \ldf@quit to set the main language, restore the category code of the @-sign
and call \endinput
When #2 was not a control sequence we construct one and compare it with \relax.
Finally we check \originalTeX.

625 \bbl@trace{Macros for setting language files up}

626 \def\bbl@ldfinit{%

627 \let\bbl@screset\@empty

628 \let\BabelStrings\bbl@opt@string

629 \let\BabelOptions\@empty

630 \let\BabelLanguages\relax

631 \ifx\originalTeX\@undefined

632 \let\originalTeX\@empty

633 \else

634 \originalTeX

635 \fi}

636 \def\LdfInit#1#2{%

637 \chardef\atcatcode=\catcode`\@

638 \catcode`\@=11\relax

639 \chardef\eqcatcode=\catcode`\=

640 \catcode`\==12\relax

641 \expandafter\if\expandafter\@backslashchar

642 \expandafter\@car\string#2\@nil

643 \ifx#2\@undefined\else

644 \ldf@quit{#1}%

645 \fi

646 \else

647 \expandafter\ifx\csname#2\endcsname\relax\else

648 \ldf@quit{#1}%

649 \fi

650 \fi

651 \bbl@ldfinit}

\ldf@quit This macro interrupts the processing of a language definition file.

652 \def\ldf@quit#1{%

653 \expandafter\main@language\expandafter{#1}%

654 \catcode`\@=\atcatcode \let\atcatcode\relax

655 \catcode`\==\eqcatcode \let\eqcatcode\relax

656 \endinput}

\ldf@finish This macro takes one argument. It is the name of the language that was defined in the
language definition file.
We load the local configuration file if one is present, we set the main language (taking into
account that the argument might be a control sequence that needs to be expanded) and
reset the category code of the @-sign.

657 \def\bbl@afterldf#1{%

658 \bbl@afterlang

659 \let\bbl@afterlang\relax

67



660 \let\BabelModifiers\relax

661 \let\bbl@screset\relax}%

662 \def\ldf@finish#1{%

663 \loadlocalcfg{#1}%

664 \bbl@afterldf{#1}%

665 \expandafter\main@language\expandafter{#1}%

666 \catcode`\@=\atcatcode \let\atcatcode\relax

667 \catcode`\==\eqcatcode \let\eqcatcode\relax}

After the preamble of the document the commands \LdfInit, \ldf@quit and \ldf@finish
are no longer needed. Therefore they are turned into warning messages in LATEX.

668 \@onlypreamble\LdfInit

669 \@onlypreamble\ldf@quit

670 \@onlypreamble\ldf@finish

\main@language

\bbl@main@language

This command should be used in the various language definition files. It stores its
argument in \bbl@main@language; to be used to switch to the correct language at the
beginning of the document.

671 \def\main@language#1{%

672 \def\bbl@main@language{#1}%

673 \let\languagename\bbl@main@language

674 \bbl@patterns{\languagename}}

We also have to make sure that some code gets executed at the beginning of the document.
Languages does not set \pagedir, so we set here for the whole document to the main
\bodydir.

675 \AtBeginDocument{%

676 \expandafter\selectlanguage\expandafter{\bbl@main@language}%

677 \ifcase\bbl@engine\or\pagedir\bodydir\fi} % TODO - a better place

A bit of optimization. Select in heads/foots the language only if necessary.

678 \def\select@language@x#1{%

679 \ifcase\bbl@select@type

680 \bbl@ifsamestring\languagename{#1}{}{\select@language{#1}}%

681 \else

682 \select@language{#1}%

683 \fi}

9.4 Shorthands

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character control
sequence) to the macro \dospecials (and \@sanitize if LATEX is used). It is used only at
one place, namely when \initiate@active@char is called (which is ignored if the char
has been made active before). Because \@sanitize can be undefined, we put the
definition inside a conditional.
Items are added to the lists without checking its existence or the original catcode. It does
not hurt, but should be fixed. It’s already done with \nfss@catcodes, added in 3.10.

684 \bbl@trace{Shorhands}

685 \def\bbl@add@special#1{% 1:a macro like \", \?, etc.

686 \bbl@add\dospecials{\do#1}% test @sanitize = \relax, for back. compat.

687 \bbl@ifunset{@sanitize}{}{\bbl@add\@sanitize{\@makeother#1}}%

688 \ifx\nfss@catcodes\@undefined\else % TODO - same for above

689 \begingroup

690 \catcode`#1\active

691 \nfss@catcodes

692 \ifnum\catcode`#1=\active

68



693 \endgroup

694 \bbl@add\nfss@catcodes{\@makeother#1}%

695 \else

696 \endgroup

697 \fi

698 \fi}

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It removes a character from
the set macros \dospecials and \@sanitize, but it is not used at all in the babel core.

699 \def\bbl@remove@special#1{%

700 \begingroup

701 \def\x##1##2{\ifnum`#1=`##2\noexpand\@empty

702 \else\noexpand##1\noexpand##2\fi}%

703 \def\do{\x\do}%

704 \def\@makeother{\x\@makeother}%

705 \edef\x{\endgroup

706 \def\noexpand\dospecials{\dospecials}%

707 \expandafter\ifx\csname @sanitize\endcsname\relax\else

708 \def\noexpand\@sanitize{\@sanitize}%

709 \fi}%

710 \x}

\initiate@active@char A language definition file can call this macro to make a character active. This macro takes
one argument, the character that is to be made active. When the character was already
active this macro does nothing. Otherwise, this macro defines the control sequence
\normal@char〈char〉 to expand to the character in its ‘normal state’ and it defines the
active character to expand to \normal@char〈char〉 by default (〈char〉 being the character
to be made active). Later its definition can be changed to expand to \active@char〈char〉
by calling \bbl@activate{〈char〉}.
For example, to make the double quote character active one could have
\initiate@active@char{"} in a language definition file. This defines " as
\active@prefix "\active@char" (where the first " is the character with its original
catcode, when the shorthand is created, and \active@char" is a single token). In protected
contexts, it expands to \protect " or \noexpand " (ie, with the original "); otherwise
\active@char" is executed. This macro in turn expands to \normal@char" in “safe”
contexts (eg, \label), but \user@active" in normal “unsafe” ones. The latter search a
definition in the user, language and system levels, in this order, but if none is found,
\normal@char" is used. However, a deactivated shorthand (with \bbl@deactivate is
defined as \active@prefix "\normal@char".
The following macro is used to define shorthands in the three levels. It takes 4 arguments:
the (string’ed) character, \<level>@group, <level>@active and <next-level>@active

(except in system).

711 \def\bbl@active@def#1#2#3#4{%

712 \@namedef{#3#1}{%

713 \expandafter\ifx\csname#2@sh@#1@\endcsname\relax

714 \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%

715 \else

716 \bbl@afterfi\csname#2@sh@#1@\endcsname

717 \fi}%

When there is also no current-level shorthand with an argument we will check whether
there is a next-level defined shorthand for this active character.

718 \long\@namedef{#3@arg#1}##1{%

719 \expandafter\ifx\csname#2@sh@#1@\string##1@\endcsname\relax

720 \bbl@afterelse\csname#4#1\endcsname##1%

721 \else

69



722 \bbl@afterfi\csname#2@sh@#1@\string##1@\endcsname

723 \fi}}%

\initiate@active@char calls \@initiate@active@char with 3 arguments. All of them
are the same character with different catcodes: active, other (\string’ed) and the original
one. This trick simplifies the code a lot.
724 \def\initiate@active@char#1{%

725 \bbl@ifunset{active@char\string#1}%

726 {\bbl@withactive

727 {\expandafter\@initiate@active@char\expandafter}#1\string#1#1}%

728 {}}

The very first thing to do is saving the original catcode and the original definition, even if
not active, which is possible (undefined characters require a special treatement to avoid
making them \relax).
729 \def\@initiate@active@char#1#2#3{%

730 \bbl@csarg\edef{oricat@#2}{\catcode`#2=\the\catcode`#2\relax}%

731 \ifx#1\@undefined

732 \bbl@csarg\edef{oridef@#2}{\let\noexpand#1\noexpand\@undefined}%

733 \else

734 \bbl@csarg\let{oridef@@#2}#1%

735 \bbl@csarg\edef{oridef@#2}{%

736 \let\noexpand#1%

737 \expandafter\noexpand\csname bbl@oridef@@#2\endcsname}%

738 \fi

If the character is already active we provide the default expansion under this shorthand
mechanism. Otherwise we write a message in the transcript file, and define
\normal@char〈char〉 to expand to the character in its default state. If the character is
mathematically active when babel is loaded (for example ') the normal expansion is
somewhat different to avoid an infinite loop (but it does not prevent the loop if the
mathcode is set to "8000 a posteriori).
739 \ifx#1#3\relax

740 \expandafter\let\csname normal@char#2\endcsname#3%

741 \else

742 \bbl@info{Making #2 an active character}%

743 \ifnum\mathcode`#2="8000

744 \@namedef{normal@char#2}{%

745 \textormath{#3}{\csname bbl@oridef@@#2\endcsname}}%

746 \else

747 \@namedef{normal@char#2}{#3}%

748 \fi

To prevent problems with the loading of other packages after babel we reset the catcode of
the character to the original one at the end of the package and of each language file (except
with KeepShorthandsActive). It is re-activate again at \begin{document}. We also need to
make sure that the shorthands are active during the processing of the .aux file. Otherwise
some citations may give unexpected results in the printout when a shorthand was used in
the optional argument of \bibitem for example. Then we make it active (not strictly
necessary, but done for backward compatibility).
749 \bbl@restoreactive{#2}%

750 \AtBeginDocument{%

751 \catcode`#2\active

752 \if@filesw

753 \immediate\write\@mainaux{\catcode`\string#2\active}%

754 \fi}%

755 \expandafter\bbl@add@special\csname#2\endcsname

756 \catcode`#2\active

70



757 \fi

Nowwe have set \normal@char〈char〉, we must define \active@char〈char〉, to be executed
when the character is activated. We define the first level expansion of \active@char〈char〉
to check the status of the @safe@actives flag. If it is set to true we expand to the ‘normal’
version of this character, otherwise we call \user@active〈char〉 to start the search of a
definition in the user, language and system levels (or eventually normal@char〈char〉).
758 \let\bbl@tempa\@firstoftwo

759 \if\string^#2%

760 \def\bbl@tempa{\noexpand\textormath}%

761 \else

762 \ifx\bbl@mathnormal\@undefined\else

763 \let\bbl@tempa\bbl@mathnormal

764 \fi

765 \fi

766 \expandafter\edef\csname active@char#2\endcsname{%

767 \bbl@tempa

768 {\noexpand\if@safe@actives

769 \noexpand\expandafter

770 \expandafter\noexpand\csname normal@char#2\endcsname

771 \noexpand\else

772 \noexpand\expandafter

773 \expandafter\noexpand\csname bbl@doactive#2\endcsname

774 \noexpand\fi}%

775 {\expandafter\noexpand\csname normal@char#2\endcsname}}%

776 \bbl@csarg\edef{doactive#2}{%

777 \expandafter\noexpand\csname user@active#2\endcsname}%

We now define the default values which the shorthand is set to when activated or
deactivated. It is set to the deactivated form (globally), so that the character expands to

\active@prefix 〈char〉 \normal@char〈char〉

(where \active@char〈char〉 is one control sequence!).
778 \bbl@csarg\edef{active@#2}{%

779 \noexpand\active@prefix\noexpand#1%

780 \expandafter\noexpand\csname active@char#2\endcsname}%

781 \bbl@csarg\edef{normal@#2}{%

782 \noexpand\active@prefix\noexpand#1%

783 \expandafter\noexpand\csname normal@char#2\endcsname}%

784 \expandafter\let\expandafter#1\csname bbl@normal@#2\endcsname

The next level of the code checks whether a user has defined a shorthand for himself with
this character. First we check for a single character shorthand. If that doesn’t exist we
check for a shorthand with an argument.

785 \bbl@active@def#2\user@group{user@active}{language@active}%

786 \bbl@active@def#2\language@group{language@active}{system@active}%

787 \bbl@active@def#2\system@group{system@active}{normal@char}%

In order to do the right thing when a shorthand with an argument is used by itself at the
end of the line we provide a definition for the case of an empty argument. For that case we
let the shorthand character expand to its non-active self. Also, When a shorthand
combination such as '' ends up in a heading TEX would see \protect'\protect'. To
prevent this from happening a couple of shorthand needs to be defined at user level.

788 \expandafter\edef\csname\user@group @sh@#2@@\endcsname

789 {\expandafter\noexpand\csname normal@char#2\endcsname}%

790 \expandafter\edef\csname\user@group @sh@#2@\string\protect@\endcsname

791 {\expandafter\noexpand\csname user@active#2\endcsname}%

71



Finally, a couple of special cases are taken care of. (1) If we are making the right quote (')
active we need to change \pr@m@s as well. Also, make sure that a single ' in math mode
‘does the right thing’. (2) If we are using the caret (^) as a shorthand character special care
should be taken to make sure math still works. Therefore an extra level of expansion is
introduced with a check for math mode on the upper level.

792 \if\string'#2%

793 \let\prim@s\bbl@prim@s

794 \let\active@math@prime#1%

795 \fi

796 \bbl@usehooks{initiateactive}{{#1}{#2}{#3}}}

The following package options control the behavior of shorthands in math mode.

797 〈〈∗More package options〉〉 ≡
798 \DeclareOption{math=active}{}

799 \DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}

800 〈〈/More package options〉〉

Initiating a shorthand makes active the char. That is not strictly necessary but it is still
done for backward compatibility. So we need to restore the original catcode at the end of
package and and the end of the ldf.

801 \@ifpackagewith{babel}{KeepShorthandsActive}%

802 {\let\bbl@restoreactive\@gobble}%

803 {\def\bbl@restoreactive#1{%

804 \bbl@exp{%

805 \\\AfterBabelLanguage\\\CurrentOption

806 {\catcode`#1=\the\catcode`#1\relax}%

807 \\\AtEndOfPackage

808 {\catcode`#1=\the\catcode`#1\relax}}}%

809 \AtEndOfPackage{\let\bbl@restoreactive\@gobble}}

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed. Note that
this macro needs to be expandable as do all the shorthand macros in order for them to
work in expansion-only environments such as the argument of \hyphenation.
This macro expects the name of a group of shorthands in its first argument and a
shorthand character in its second argument. It will expand to either \bbl@firstcs or
\bbl@scndcs. Hence two more arguments need to follow it.

810 \def\bbl@sh@select#1#2{%

811 \expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax

812 \bbl@afterelse\bbl@scndcs

813 \else

814 \bbl@afterfi\csname#1@sh@#2@sel\endcsname

815 \fi}

\active@prefix The command \active@prefix which is used in the expansion of active characters has a
function similar to \OT1-cmd in that it \protects the active character whenever \protect
is not \@typeset@protect.

816 \def\active@prefix#1{%

817 \ifx\protect\@typeset@protect

818 \else

When \protect is set to \@unexpandable@protect we make sure that the active character
is als not expanded by inserting \noexpand in front of it. The \@gobble is needed to
remove a token such as \activechar: (when the double colon was the active character to
be dealt with).

819 \ifx\protect\@unexpandable@protect

820 \noexpand#1%

72



821 \else

822 \protect#1%

823 \fi

824 \expandafter\@gobble

825 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an active
character on the fly. For this purpose the switch @safe@actives is available. The setting of
this switch should be checked in the first level expansion of \active@char〈char〉.
826 \newif\if@safe@actives

827 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this must
be undone in the headers to prevent unexpected typeset results. For this situation we
define a command to make them “unsafe” again.

828 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbl@activate

\bbl@deactivate

Both macros take one argument, like \initiate@active@char. The macro is used to
change the definition of an active character to expand to \active@char〈char〉 in the case
of \bbl@activate, or \normal@char〈char〉 in the case of \bbl@deactivate.

829 \def\bbl@activate#1{%

830 \bbl@withactive{\expandafter\let\expandafter}#1%

831 \csname bbl@active@\string#1\endcsname}

832 \def\bbl@deactivate#1{%

833 \bbl@withactive{\expandafter\let\expandafter}#1%

834 \csname bbl@normal@\string#1\endcsname}

\bbl@firstcs

\bbl@scndcs

These macros have two arguments. They use one of their arguments to build a control
sequence from.

835 \def\bbl@firstcs#1#2{\csname#1\endcsname}

836 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain level. It
takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

837 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}

838 \def\@decl@short#1#2#3\@nil#4{%

839 \def\bbl@tempa{#3}%

840 \ifx\bbl@tempa\@empty

841 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs

842 \bbl@ifunset{#1@sh@\string#2@}{}%

843 {\def\bbl@tempa{#4}%

844 \expandafter\ifx\csname#1@sh@\string#2@\endcsname\bbl@tempa

845 \else

846 \bbl@info

847 {Redefining #1 shorthand \string#2\\%

848 in language \CurrentOption}%

849 \fi}%

850 \@namedef{#1@sh@\string#2@}{#4}%

851 \else

852 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs

853 \bbl@ifunset{#1@sh@\string#2@\string#3@}{}%

73



854 {\def\bbl@tempa{#4}%

855 \expandafter\ifx\csname#1@sh@\string#2@\string#3@\endcsname\bbl@tempa

856 \else

857 \bbl@info

858 {Redefining #1 shorthand \string#2\string#3\\%

859 in language \CurrentOption}%

860 \fi}%

861 \@namedef{#1@sh@\string#2@\string#3@}{#4}%

862 \fi}

\textormath Some of the shorthands that will be declared by the language definition files have to be
usable in both text and mathmode. To achieve this the helper macro \textormath is
provided.
863 \def\textormath{%

864 \ifmmode

865 \expandafter\@secondoftwo

866 \else

867 \expandafter\@firstoftwo

868 \fi}

\user@group

\language@group

\system@group

The current concept of ‘shorthands’ supports three levels or groups of shorthands. For
each level the name of the level or group is stored in a macro. The default is to have a user
group; use language group ‘english’ and have a system group called ‘system’.
869 \def\user@group{user}

870 \def\language@group{english}

871 \def\system@group{system}

\useshorthands This is the user level command to tell LATEX that user level shorthands will be used in the
document. It takes one argument, the character that starts a shorthand. First note that this
is user level, and then initialize and activate the character for use as a shorthand character
(ie, it’s active in the preamble). Languages can deactivate shorthands, so a starred version
is also provided which activates them always after the language has been switched.
872 \def\useshorthands{%

873 \@ifstar\bbl@usesh@s{\bbl@usesh@x{}}}

874 \def\bbl@usesh@s#1{%

875 \bbl@usesh@x

876 {\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}%

877 {#1}}

878 \def\bbl@usesh@x#1#2{%

879 \bbl@ifshorthand{#2}%

880 {\def\user@group{user}%

881 \initiate@active@char{#2}%

882 #1%

883 \bbl@activate{#2}}%

884 {\bbl@error

885 {Cannot declare a shorthand turned off (\string#2)}

886 {Sorry, but you cannot use shorthands which have been\\%

887 turned off in the package options}}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally user and
user@<lang> (language-dependent user shorthands). By default, only the first one is taken
into account, but if the former is also used (in the optional argument of \defineshorthand)
a new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make
also sure {} and \protect are taken into account in this new top level.
888 \def\user@language@group{user@\language@group}

889 \def\bbl@set@user@generic#1#2{%

890 \bbl@ifunset{user@generic@active#1}%

74



891 {\bbl@active@def#1\user@language@group{user@active}{user@generic@active}%

892 \bbl@active@def#1\user@group{user@generic@active}{language@active}%

893 \expandafter\edef\csname#2@sh@#1@@\endcsname{%

894 \expandafter\noexpand\csname normal@char#1\endcsname}%

895 \expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{%

896 \expandafter\noexpand\csname user@active#1\endcsname}}%

897 \@empty}

898 \newcommand\defineshorthand[3][user]{%

899 \edef\bbl@tempa{\zap@space#1 \@empty}%

900 \bbl@for\bbl@tempb\bbl@tempa{%

901 \if*\expandafter\@car\bbl@tempb\@nil

902 \edef\bbl@tempb{user@\expandafter\@gobble\bbl@tempb}%

903 \@expandtwoargs

904 \bbl@set@user@generic{\expandafter\string\@car#2\@nil}\bbl@tempb

905 \fi

906 \declare@shorthand{\bbl@tempb}{#2}{#3}}}

\languageshorthands A user level command to change the language from which shorthands are used.
Unfortunately, babel currently does not keep track of defined groups, and therefore there
is no way to catch a possible change in casing.

907 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand First the new shorthand needs to be initialized,

908 \def\aliasshorthand#1#2{%

909 \bbl@ifshorthand{#2}%

910 {\expandafter\ifx\csname active@char\string#2\endcsname\relax

911 \ifx\document\@notprerr

912 \@notshorthand{#2}%

913 \else

914 \initiate@active@char{#2}%

Then, we define the new shorthand in terms of the original one, but note with
\aliasshorthands{"}{/} is \active@prefix /\active@char/, so we still need to let the
lattest to \active@char".

915 \expandafter\let\csname active@char\string#2\expandafter\endcsname

916 \csname active@char\string#1\endcsname

917 \expandafter\let\csname normal@char\string#2\expandafter\endcsname

918 \csname normal@char\string#1\endcsname

919 \bbl@activate{#2}%

920 \fi

921 \fi}%

922 {\bbl@error

923 {Cannot declare a shorthand turned off (\string#2)}

924 {Sorry, but you cannot use shorthands which have been\\%

925 turned off in the package options}}}

\@notshorthand

926 \def\@notshorthand#1{%

927 \bbl@error{%

928 The character `\string #1' should be made a shorthand character;\\%

929 add the command \string\useshorthands\string{#1\string} to

930 the preamble.\\%

931 I will ignore your instruction}%

932 {You may proceed, but expect unexpected results}}

\shorthandon

\shorthandoff

The first level definition of these macros just passes the argument on to \bbl@switch@sh,
adding \@nil at the end to denote the end of the list of characters.

75



933 \newcommand*\shorthandon[1]{\bbl@switch@sh\@ne#1\@nnil}

934 \DeclareRobustCommand*\shorthandoff{%

935 \@ifstar{\bbl@shorthandoff\tw@}{\bbl@shorthandoff\z@}}

936 \def\bbl@shorthandoff#1#2{\bbl@switch@sh#1#2\@nnil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and subsequently
switches the category code of the shorthand character according to the first argument of
\bbl@switch@sh.
But before any of this switching takes place we make sure that the character we are
dealing with is known as a shorthand character. If it is, a macro such as \active@char"
should exist.
Switching off and on is easy – we just set the category code to ‘other’ (12) and \active.
With the starred version, the original catcode and the original definition, saved in
@initiate@active@char, are restored.

937 \def\bbl@switch@sh#1#2{%

938 \ifx#2\@nnil\else

939 \bbl@ifunset{bbl@active@\string#2}%

940 {\bbl@error

941 {I cannot switch `\string#2' on or off--not a shorthand}%

942 {This character is not a shorthand. Maybe you made\\%

943 a typing mistake? I will ignore your instruction}}%

944 {\ifcase#1%

945 \catcode`#212\relax

946 \or

947 \catcode`#2\active

948 \or

949 \csname bbl@oricat@\string#2\endcsname

950 \csname bbl@oridef@\string#2\endcsname

951 \fi}%

952 \bbl@afterfi\bbl@switch@sh#1%

953 \fi}

Note the value is that at the expansion time, eg, in the preample shorhands are usually
deactivated.

954 \def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}

955 \def\bbl@putsh#1{%

956 \bbl@ifunset{bbl@active@\string#1}%

957 {\bbl@putsh@i#1\@empty\@nnil}%

958 {\csname bbl@active@\string#1\endcsname}}

959 \def\bbl@putsh@i#1#2\@nnil{%

960 \csname\languagename @sh@\string#1@%

961 \ifx\@empty#2\else\string#2@\fi\endcsname}

962 \ifx\bbl@opt@shorthands\@nnil\else

963 \let\bbl@s@initiate@active@char\initiate@active@char

964 \def\initiate@active@char#1{%

965 \bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}

966 \let\bbl@s@switch@sh\bbl@switch@sh

967 \def\bbl@switch@sh#1#2{%

968 \ifx#2\@nnil\else

969 \bbl@afterfi

970 \bbl@ifshorthand{#2}{\bbl@s@switch@sh#1{#2}}{\bbl@switch@sh#1}%

971 \fi}

972 \let\bbl@s@activate\bbl@activate

973 \def\bbl@activate#1{%

974 \bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}

975 \let\bbl@s@deactivate\bbl@deactivate

976 \def\bbl@deactivate#1{%

76



977 \bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}

978 \fi

\bbl@prim@s

\bbl@pr@m@s

One of the internal macros that are involved in substituting \prime for each right quote in
mathmode is \prim@s. This checks if the next character is a right quote. When the right
quote is active, the definition of this macro needs to be adapted to look also for an active
right quote; the hat could be active, too.
979 \def\bbl@prim@s{%

980 \prime\futurelet\@let@token\bbl@pr@m@s}

981 \def\bbl@if@primes#1#2{%

982 \ifx#1\@let@token

983 \expandafter\@firstoftwo

984 \else\ifx#2\@let@token

985 \bbl@afterelse\expandafter\@firstoftwo

986 \else

987 \bbl@afterfi\expandafter\@secondoftwo

988 \fi\fi}

989 \begingroup

990 \catcode`\^=7 \catcode`\*=\active \lccode`\*=`\^

991 \catcode`\'=12 \catcode`\"=\active \lccode`\"=`\'

992 \lowercase{%

993 \gdef\bbl@pr@m@s{%

994 \bbl@if@primes"'%

995 \pr@@@s

996 {\bbl@if@primes*^\pr@@@t\egroup}}}

997 \endgroup

Usually the ~ is active and expands to \penalty\@M\␣. When it is written to the .aux file it
is written expanded. To prevent that and to be able to use the character ~ as a start
character for a shorthand, it is redefined here as a one character shorthand on system
level. The system declaration is in most cases redundant (when ~ is still a non-break
space), and in some cases is inconvenient (if ~ has been redefined); however, for backward
compatibility it is maintained (some existing documents may rely on the babel value).
998 \initiate@active@char{~}

999 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }

1000 \bbl@activate{~}

\OT1dqpos

\T1dqpos

The position of the double quote character is different for the OT1 and T1 encodings. It will
later be selected using the \f@encoding macro. Therefore we define two macros here to
store the position of the character in these encodings.

1001 \expandafter\def\csname OT1dqpos\endcsname{127}

1002 \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here to
expand to OT1

1003 \ifx\f@encoding\@undefined

1004 \def\f@encoding{OT1}

1005 \fi

9.5 Language attributes

Language attributes provide a means to give the user control over which features of the
language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute. First check whether the language is known, and
then process each attribute in the list.

77



1006 \bbl@trace{Language attributes}

1007 \newcommand\languageattribute[2]{%

1008 \def\bbl@tempc{#1}%

1009 \bbl@fixname\bbl@tempc

1010 \bbl@iflanguage\bbl@tempc{%

1011 \bbl@vforeach{#2}{%

We want to make sure that each attribute is selected only once; therefore we store the
already selected attributes in \bbl@known@attribs. When that control sequence is not yet
defined this attribute is certainly not selected before.

1012 \ifx\bbl@known@attribs\@undefined

1013 \in@false

1014 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

1015 \bbl@xin@{,\bbl@tempc-##1,}{,\bbl@known@attribs,}%

1016 \fi

When the attribute was in the list we issue a warning; this might not be the users intention.

1017 \ifin@

1018 \bbl@warning{%

1019 You have more than once selected the attribute '##1'\\%

1020 for language #1. Reported}%

1021 \else

When we end up here the attribute is not selected before. So, we add it to the list of
selected attributes and execute the associated TEX-code.

1022 \bbl@exp{%

1023 \\\bbl@add@list\\\bbl@known@attribs{\bbl@tempc-##1}}%

1024 \edef\bbl@tempa{\bbl@tempc-##1}%

1025 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%

1026 {\csname\bbl@tempc @attr@##1\endcsname}%

1027 {\@attrerr{\bbl@tempc}{##1}}%

1028 \fi}}}

This command should only be used in the preamble of a document.

1029 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.

1030 \newcommand*{\@attrerr}[2]{%

1031 \bbl@error

1032 {The attribute #2 is unknown for language #1.}%

1033 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known
attributes.
Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras... for the current
language is extended, otherwise the attribute will not work as its code is removed from
memory at \begin{document}.

1034 \def\bbl@declare@ttribute#1#2#3{%

1035 \bbl@xin@{,#2,}{,\BabelModifiers,}%

1036 \ifin@

1037 \AfterBabelLanguage{#1}{\languageattribute{#1}{#2}}%

1038 \fi

1039 \bbl@add@list\bbl@attributes{#1-#2}%

1040 \expandafter\def\csname#1@attr@#2\endcsname{#3}}

78



\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based on
whether a certain attribute was set. This command should appear inside the argument to
\AtBeginDocument because the attributes are set in the document preamble, after babel is
loaded.
The first argument is the language, the second argument the attribute being checked, and
the third and fourth arguments are the true and false clauses.

1041 \def\bbl@ifattributeset#1#2#3#4{%

First we need to find out if any attributes were set; if not we’re done.
1042 \ifx\bbl@known@attribs\@undefined

1043 \in@false

1044 \else

The we need to check the list of known attributes.
1045 \bbl@xin@{,#1-#2,}{,\bbl@known@attribs,}%

1046 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was set or
not. Just to be safe the code to be executed is ‘thrown over the \fi’.

1047 \ifin@

1048 \bbl@afterelse#3%

1049 \else

1050 \bbl@afterfi#4%

1051 \fi

1052 }

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The macro takes
4 arguments, the language/attribute, the attribute list, the TEX-code to be executed when
the attribute is known and the TEX-code to be executed otherwise.

1053 \def\bbl@ifknown@ttrib#1#2{%

We first assume the attribute is unknown.
1054 \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.
1055 \bbl@loopx\bbl@tempb{#2}{%

1056 \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%

1057 \ifin@

When a match is found the definition of \bbl@tempa is changed.
1058 \let\bbl@tempa\@firstoftwo

1059 \else

1060 \fi}%

Finally we execute \bbl@tempa.
1061 \bbl@tempa

1062 }

\bbl@clear@ttribs This macro removes all the attribute code from LATEX’s memory at \begin{document} time
(if any is present).

1063 \def\bbl@clear@ttribs{%

1064 \ifx\bbl@attributes\@undefined\else

1065 \bbl@loopx\bbl@tempa{\bbl@attributes}{%

1066 \expandafter\bbl@clear@ttrib\bbl@tempa.

1067 }%

1068 \let\bbl@attributes\@undefined

1069 \fi}

1070 \def\bbl@clear@ttrib#1-#2.{%

1071 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}

1072 \AtBeginDocument{\bbl@clear@ttribs}

79



9.6 Support for saving macro definitions

To save the meaning of control sequences using \babel@save, we use temporary control
sequences. To save hash table entries for these control sequences, we don’t use the name
of the control sequence to be saved to construct the temporary name. Instead we simply
use the value of a counter, which is reset to zero each time we begin to save new values.
This works well because we release the saved meanings before we begin to save a new set
of control sequence meanings (see \selectlanguage and \originalTeX). Note undefined
macros are not undefined any more when saved – they are \relax’ed.

\babel@savecnt

\babel@beginsave

The initialization of a new save cycle: reset the counter to zero.

1073 \bbl@trace{Macros for saving definitions}

1074 \def\babel@beginsave{\babel@savecnt\z@}

Before it’s forgotten, allocate the counter and initialize all.

1075 \newcount\babel@savecnt

1076 \babel@beginsave

\babel@save The macro \babel@save〈csname〉 saves the current meaning of the control sequence
〈csname〉 to \originalTeX32. To do this, we let the current meaning to a temporary control
sequence, the restore commands are appended to \originalTeX and the counter is
incremented.

1077 \def\babel@save#1{%

1078 \expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax

1079 \toks@\expandafter{\originalTeX\let#1=}%

1080 \bbl@exp{%

1081 \def\\\originalTeX{\the\toks@\<babel@\number\babel@savecnt>\relax}}%

1082 \advance\babel@savecnt\@ne}

\babel@savevariable The macro \babel@savevariable〈variable〉 saves the value of the variable. 〈variable〉 can
be anything allowed after the \the primitive.

1083 \def\babel@savevariable#1{%

1084 \toks@\expandafter{\originalTeX #1=}%

1085 \bbl@exp{\def\\\originalTeX{\the\toks@\the#1\relax}}}

\bbl@frenchspacing

\bbl@nonfrenchspacing

Some languages need to have \frenchspacing in effect. Others don’t want that. The
command \bbl@frenchspacing switches it on when it isn’t already in effect and
\bbl@nonfrenchspacing switches it off if necessary.

1086 \def\bbl@frenchspacing{%

1087 \ifnum\the\sfcode`\.=\@m

1088 \let\bbl@nonfrenchspacing\relax

1089 \else

1090 \frenchspacing

1091 \let\bbl@nonfrenchspacing\nonfrenchspacing

1092 \fi}

1093 \let\bbl@nonfrenchspacing\nonfrenchspacing

9.7 Short tags

\babeltags This macro is straightforward. After zapping spaces, we loop over the list and define the
macros \text〈tag〉 and \〈tag〉. Definitions are first expanded so that they don’t contain
\csname but the actual macro.

1094 \bbl@trace{Short tags}

1095 \def\babeltags#1{%

32\originalTeX has to be expandable, i. e. you shouldn’t let it to \relax.

80



1096 \edef\bbl@tempa{\zap@space#1 \@empty}%

1097 \def\bbl@tempb##1=##2\@@{%

1098 \edef\bbl@tempc{%

1099 \noexpand\newcommand

1100 \expandafter\noexpand\csname ##1\endcsname{%

1101 \noexpand\protect

1102 \expandafter\noexpand\csname otherlanguage*\endcsname{##2}}

1103 \noexpand\newcommand

1104 \expandafter\noexpand\csname text##1\endcsname{%

1105 \noexpand\foreignlanguage{##2}}}

1106 \bbl@tempc}%

1107 \bbl@for\bbl@tempa\bbl@tempa{%

1108 \expandafter\bbl@tempb\bbl@tempa\@@}}

9.8 Hyphens

\babelhyphenation This macro saves hyphenation exceptions. Two macros are used to store them:
\bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for language ones.
See \bbl@patterns above for further details. We make sure there is a space between
words when multiple commands are used.

1109 \bbl@trace{Hyphens}

1110 \@onlypreamble\babelhyphenation

1111 \AtEndOfPackage{%

1112 \newcommand\babelhyphenation[2][\@empty]{%

1113 \ifx\bbl@hyphenation@\relax

1114 \let\bbl@hyphenation@\@empty

1115 \fi

1116 \ifx\bbl@hyphlist\@empty\else

1117 \bbl@warning{%

1118 You must not intermingle \string\selectlanguage\space and\\%

1119 \string\babelhyphenation\space or some exceptions will not\\%

1120 be taken into account. Reported}%

1121 \fi

1122 \ifx\@empty#1%

1123 \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%

1124 \else

1125 \bbl@vforeach{#1}{%

1126 \def\bbl@tempa{##1}%

1127 \bbl@fixname\bbl@tempa

1128 \bbl@iflanguage\bbl@tempa{%

1129 \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%

1130 \bbl@ifunset{bbl@hyphenation@\bbl@tempa}%

1131 \@empty

1132 {\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%

1133 #2}}}%

1134 \fi}}

\bbl@allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more than
\nobreak \hskip 0pt plus 0pt33.

1135 \def\bbl@allowhyphens{\ifvmode\else\nobreak\hskip\z@skip\fi}

1136 \def\bbl@t@one{T1}

1137 \def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\babelhyphen Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead of
protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same
procedure as shorthands, with \active@prefix.

33TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at this glue node.

81



1138 \newcommand\babelnullhyphen{\char\hyphenchar\font}

1139 \def\babelhyphen{\active@prefix\babelhyphen\bbl@hyphen}

1140 \def\bbl@hyphen{%

1141 \@ifstar{\bbl@hyphen@i @}{\bbl@hyphen@i\@empty}}

1142 \def\bbl@hyphen@i#1#2{%

1143 \bbl@ifunset{bbl@hy@#1#2\@empty}%

1144 {\csname bbl@#1usehyphen\endcsname{\discretionary{#2}{}{#2}}}%

1145 {\csname bbl@hy@#1#2\@empty\endcsname}}

The following two commands are used to wrap the “hyphen” and set the behavior of the
rest of the word – the version with a single @ is used when further hyphenation is allowed,
while that with @@ if no more hyphen are allowed. In both cases, if the hyphen is preceded
by a positive space, breaking after the hyphen is disallowed.
There should not be a discretionaty after a hyphen at the beginning of a word, so it is
prevented if preceded by a skip. Unfortunately, this does handle cases like “(-suffix)”.
\nobreak is always preceded by \leavevmode, in case the shorthand starts a paragraph.

1146 \def\bbl@usehyphen#1{%

1147 \leavevmode

1148 \ifdim\lastskip>\z@\mbox{#1}\else\nobreak#1\fi

1149 \nobreak\hskip\z@skip}

1150 \def\bbl@@usehyphen#1{%

1151 \leavevmode\ifdim\lastskip>\z@\mbox{#1}\else#1\fi}

The following macro inserts the hyphen char.

1152 \def\bbl@hyphenchar{%

1153 \ifnum\hyphenchar\font=\m@ne

1154 \babelnullhyphen

1155 \else

1156 \char\hyphenchar\font

1157 \fi}

Finally, we define the hyphen “types”. Their names will not change, so you may use them
in ldf’s. After a space, the \mbox in \bbl@hy@nobreak is redundant.

1158 \def\bbl@hy@soft{\bbl@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

1159 \def\bbl@hy@@soft{\bbl@@usehyphen{\discretionary{\bbl@hyphenchar}{}{}}}

1160 \def\bbl@hy@hard{\bbl@usehyphen\bbl@hyphenchar}

1161 \def\bbl@hy@@hard{\bbl@@usehyphen\bbl@hyphenchar}

1162 \def\bbl@hy@nobreak{\bbl@usehyphen{\mbox{\bbl@hyphenchar}}}

1163 \def\bbl@hy@@nobreak{\mbox{\bbl@hyphenchar}}

1164 \def\bbl@hy@repeat{%

1165 \bbl@usehyphen{%

1166 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

1167 \def\bbl@hy@@repeat{%

1168 \bbl@@usehyphen{%

1169 \discretionary{\bbl@hyphenchar}{\bbl@hyphenchar}{\bbl@hyphenchar}}}

1170 \def\bbl@hy@empty{\hskip\z@skip}

1171 \def\bbl@hy@@empty{\discretionary{}{}{}}

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of discretionaries
for letters that behave ‘abnormally’ at a breakpoint.

1172 \def\bbl@disc#1#2{\nobreak\discretionary{#2-}{}{#1}\bbl@allowhyphens}

9.9 Multiencoding strings

The aim following commands is to provide a commom interface for strings in several
encodings. They also contains several hooks which can be ued by luatex and xetex. The
code is organized here with pseudo-guards, so we start with the basic commands.

82



Tools But first, a couple of tools. The first one makes global a local variable. This is not
the best solution, but it works.

1173 \bbl@trace{Multiencoding strings}

1174 \def\bbl@toglobal#1{\global\let#1#1}

1175 \def\bbl@recatcode#1{%

1176 \@tempcnta="7F

1177 \def\bbl@tempa{%

1178 \ifnum\@tempcnta>"FF\else

1179 \catcode\@tempcnta=#1\relax

1180 \advance\@tempcnta\@ne

1181 \expandafter\bbl@tempa

1182 \fi}%

1183 \bbl@tempa}

The second one. We need to patch \@uclclist, but it is done once and only if \SetCase is
used or if strings are encoded. The code is far from satisfactory for several reasons,
including the fact \@uclclist is not a list any more. Therefore a package option is added
to ignore it. Instead of gobbling the macro getting the next two elements (usually
\reserved@a), we pass it as argument to \bbl@uclc. The parser is restarted inside
\〈lang〉@bbl@uclc because we do not know how many expansions are necessary (depends
on whether strings are encoded). The last part is tricky – when uppercasing, we have:

\let\bbl@tolower\@empty\bbl@toupper\@empty

and starts over (and similarly when lowercasing).

1184 \@ifpackagewith{babel}{nocase}%

1185 {\let\bbl@patchuclc\relax}%

1186 {\def\bbl@patchuclc{%

1187 \global\let\bbl@patchuclc\relax

1188 \g@addto@macro\@uclclist{\reserved@b{\reserved@b\bbl@uclc}}%

1189 \gdef\bbl@uclc##1{%

1190 \let\bbl@encoded\bbl@encoded@uclc

1191 \bbl@ifunset{\languagename @bbl@uclc}% and resumes it

1192 {##1}%

1193 {\let\bbl@tempa##1\relax % Used by LANG@bbl@uclc

1194 \csname\languagename @bbl@uclc\endcsname}%

1195 {\bbl@tolower\@empty}{\bbl@toupper\@empty}}%

1196 \gdef\bbl@tolower{\csname\languagename @bbl@lc\endcsname}%

1197 \gdef\bbl@toupper{\csname\languagename @bbl@uc\endcsname}}}

1198 〈〈∗More package options〉〉 ≡
1199 \DeclareOption{nocase}{}

1200 〈〈/More package options〉〉

The following package options control the behavior of \SetString.

1201 〈〈∗More package options〉〉 ≡
1202 \let\bbl@opt@strings\@nnil % accept strings=value

1203 \DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}

1204 \DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}

1205 \def\BabelStringsDefault{generic}

1206 〈〈/More package options〉〉

Main command This is the main command. With the first use it is redefined to omit the
basic setup in subsequent blocks. We make sure strings contain actual letters in the range
128-255, not active characters.

1207 \@onlypreamble\StartBabelCommands

83



1208 \def\StartBabelCommands{%

1209 \begingroup

1210 \bbl@recatcode{11}%

1211 〈〈Macros local to BabelCommands〉〉
1212 \def\bbl@provstring##1##2{%

1213 \providecommand##1{##2}%

1214 \bbl@toglobal##1}%

1215 \global\let\bbl@scafter\@empty

1216 \let\StartBabelCommands\bbl@startcmds

1217 \ifx\BabelLanguages\relax

1218 \let\BabelLanguages\CurrentOption

1219 \fi

1220 \begingroup

1221 \let\bbl@screset\@nnil % local flag - disable 1st stopcommands

1222 \StartBabelCommands}

1223 \def\bbl@startcmds{%

1224 \ifx\bbl@screset\@nnil\else

1225 \bbl@usehooks{stopcommands}{}%

1226 \fi

1227 \endgroup

1228 \begingroup

1229 \@ifstar

1230 {\ifx\bbl@opt@strings\@nnil

1231 \let\bbl@opt@strings\BabelStringsDefault

1232 \fi

1233 \bbl@startcmds@i}%

1234 \bbl@startcmds@i}

1235 \def\bbl@startcmds@i#1#2{%

1236 \edef\bbl@L{\zap@space#1 \@empty}%

1237 \edef\bbl@G{\zap@space#2 \@empty}%

1238 \bbl@startcmds@ii}

Parse the encoding info to get the label, input, and font parts.
Select the behavior of \SetString. Thre are two main cases, depending of if there is an
optional argument: without it and strings=encoded, strings are defined always;
otherwise, they are set only if they are still undefined (ie, fallback values). With labelled
blocks and strings=encoded, define the strings, but with another value, define strings
only if the current label or font encoding is the value of strings; otherwise (ie, no strings
or a block whose label is not in strings=) do nothing.
We presume the current block is not loaded, and therefore set (above) a couple of default
values to gobble the arguments. Then, these macros are redefined if necessary according
to several parameters.

1239 \newcommand\bbl@startcmds@ii[1][\@empty]{%

1240 \let\SetString\@gobbletwo

1241 \let\bbl@stringdef\@gobbletwo

1242 \let\AfterBabelCommands\@gobble

1243 \ifx\@empty#1%

1244 \def\bbl@sc@label{generic}%

1245 \def\bbl@encstring##1##2{%

1246 \ProvideTextCommandDefault##1{##2}%

1247 \bbl@toglobal##1%

1248 \expandafter\bbl@toglobal\csname\string?\string##1\endcsname}%

1249 \let\bbl@sctest\in@true

1250 \else

1251 \let\bbl@sc@charset\space % <- zapped below

1252 \let\bbl@sc@fontenc\space % <- " "

1253 \def\bbl@tempa##1=##2\@nil{%

1254 \bbl@csarg\edef{sc@\zap@space##1 \@empty}{##2 }}%

84



1255 \bbl@vforeach{label=#1}{\bbl@tempa##1\@nil}%

1256 \def\bbl@tempa##1 ##2{% space -> comma

1257 ##1%

1258 \ifx\@empty##2\else\ifx,##1,\else,\fi\bbl@afterfi\bbl@tempa##2\fi}%

1259 \edef\bbl@sc@fontenc{\expandafter\bbl@tempa\bbl@sc@fontenc\@empty}%

1260 \edef\bbl@sc@label{\expandafter\zap@space\bbl@sc@label\@empty}%

1261 \edef\bbl@sc@charset{\expandafter\zap@space\bbl@sc@charset\@empty}%

1262 \def\bbl@encstring##1##2{%

1263 \bbl@foreach\bbl@sc@fontenc{%

1264 \bbl@ifunset{T@####1}%

1265 {}%

1266 {\ProvideTextCommand##1{####1}{##2}%

1267 \bbl@toglobal##1%

1268 \expandafter

1269 \bbl@toglobal\csname####1\string##1\endcsname}}}%

1270 \def\bbl@sctest{%

1271 \bbl@xin@{,\bbl@opt@strings,}{,\bbl@sc@label,\bbl@sc@fontenc,}}%

1272 \fi

1273 \ifx\bbl@opt@strings\@nnil % ie, no strings key -> defaults

1274 \else\ifx\bbl@opt@strings\relax % ie, strings=encoded

1275 \let\AfterBabelCommands\bbl@aftercmds

1276 \let\SetString\bbl@setstring

1277 \let\bbl@stringdef\bbl@encstring

1278 \else % ie, strings=value

1279 \bbl@sctest

1280 \ifin@

1281 \let\AfterBabelCommands\bbl@aftercmds

1282 \let\SetString\bbl@setstring

1283 \let\bbl@stringdef\bbl@provstring

1284 \fi\fi\fi

1285 \bbl@scswitch

1286 \ifx\bbl@G\@empty

1287 \def\SetString##1##2{%

1288 \bbl@error{Missing group for string \string##1}%

1289 {You must assign strings to some category, typically\\%

1290 captions or extras, but you set none}}%

1291 \fi

1292 \ifx\@empty#1%

1293 \bbl@usehooks{defaultcommands}{}%

1294 \else

1295 \@expandtwoargs

1296 \bbl@usehooks{encodedcommands}{{\bbl@sc@charset}{\bbl@sc@fontenc}}%

1297 \fi}

There are two versions of \bbl@scswitch. The first version is used when ldfs are read,
and it makes sure \〈group〉〈language〉 is reset, but only once (\bbl@screset is used to keep
track of this). The second version is used in the preamble and packages loaded after babel
and does nothing. The macro \bbl@forlang loops \bbl@L but its body is executed only if
the value is in \BabelLanguages (inside babel) or \date〈language〉 is defined (after babel
has been loaded). There are also two version of \bbl@forlang. The first one skips the
current iteration if the language is not in \BabelLanguages (used in ldfs), and the second
one skips undefined languages (after babel has been loaded) .

1298 \def\bbl@forlang#1#2{%

1299 \bbl@for#1\bbl@L{%

1300 \bbl@xin@{,#1,}{,\BabelLanguages,}%

1301 \ifin@#2\relax\fi}}

1302 \def\bbl@scswitch{%

1303 \bbl@forlang\bbl@tempa{%

85



1304 \ifx\bbl@G\@empty\else

1305 \ifx\SetString\@gobbletwo\else

1306 \edef\bbl@GL{\bbl@G\bbl@tempa}%

1307 \bbl@xin@{,\bbl@GL,}{,\bbl@screset,}%

1308 \ifin@\else

1309 \global\expandafter\let\csname\bbl@GL\endcsname\@undefined

1310 \xdef\bbl@screset{\bbl@screset,\bbl@GL}%

1311 \fi

1312 \fi

1313 \fi}}

1314 \AtEndOfPackage{%

1315 \def\bbl@forlang#1#2{\bbl@for#1\bbl@L{\bbl@ifunset{date#1}{}{#2}}}%

1316 \let\bbl@scswitch\relax}

1317 \@onlypreamble\EndBabelCommands

1318 \def\EndBabelCommands{%

1319 \bbl@usehooks{stopcommands}{}%

1320 \endgroup

1321 \endgroup

1322 \bbl@scafter}

Now we define commands to be used inside \StartBabelCommands.

Strings The following macro is the actual definition of \SetString when it is “active”
First save the “switcher”. Create it if undefined. Strings are defined only if undefined (ie,
like \providescommmand). With the event stringprocess you can preprocess the string by
manipulating the value of \BabelString. If there are several hooks assigned to this event,
preprocessing is done in the same order as defined. Finally, the string is set.

1323 \def\bbl@setstring#1#2{%

1324 \bbl@forlang\bbl@tempa{%

1325 \edef\bbl@LC{\bbl@tempa\bbl@stripslash#1}%

1326 \bbl@ifunset{\bbl@LC}% eg, \germanchaptername

1327 {\global\expandafter % TODO - con \bbl@exp ?

1328 \bbl@add\csname\bbl@G\bbl@tempa\expandafter\endcsname\expandafter

1329 {\expandafter\bbl@scset\expandafter#1\csname\bbl@LC\endcsname}}%

1330 {}%

1331 \def\BabelString{#2}%

1332 \bbl@usehooks{stringprocess}{}%

1333 \expandafter\bbl@stringdef

1334 \csname\bbl@LC\expandafter\endcsname\expandafter{\BabelString}}}

Now, some addtional stuff to be used when encoded strings are used. Captions then
include \bbl@encoded for string to be expanded in case transformations. It is \relax by
default, but in \MakeUppercase and \MakeLowercase its value is a modified expandable
\@changed@cmd.

1335 \ifx\bbl@opt@strings\relax

1336 \def\bbl@scset#1#2{\def#1{\bbl@encoded#2}}

1337 \bbl@patchuclc

1338 \let\bbl@encoded\relax

1339 \def\bbl@encoded@uclc#1{%

1340 \@inmathwarn#1%

1341 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax

1342 \expandafter\ifx\csname ?\string#1\endcsname\relax

1343 \TextSymbolUnavailable#1%

1344 \else

1345 \csname ?\string#1\endcsname

1346 \fi

1347 \else

1348 \csname\cf@encoding\string#1\endcsname

86



1349 \fi}

1350 \else

1351 \def\bbl@scset#1#2{\def#1{#2}}

1352 \fi

Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current
definition is somewhat complicated because we need a count, but \count@ is not under
our control (remember \SetString may call hooks). Instead of defining a dedicated count,
we just “pre-expand” its value.

1353 〈〈∗Macros local to BabelCommands〉〉 ≡
1354 \def\SetStringLoop##1##2{%

1355 \def\bbl@templ####1{\expandafter\noexpand\csname##1\endcsname}%

1356 \count@\z@

1357 \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok

1358 \advance\count@\@ne

1359 \toks@\expandafter{\bbl@tempa}%

1360 \bbl@exp{%

1361 \\\SetString\bbl@templ{\romannumeral\count@}{\the\toks@}%

1362 \count@=\the\count@\relax}}}%

1363 〈〈/Macros local to BabelCommands〉〉

Delaying code Now the definition of \AfterBabelCommands when it is activated.
1364 \def\bbl@aftercmds#1{%

1365 \toks@\expandafter{\bbl@scafter#1}%

1366 \xdef\bbl@scafter{\the\toks@}}

Case mapping The command \SetCase provides a way to change the behavior of
\MakeUppercase and \MakeLowercase. \bbl@tempa is set by the patched \@uclclist to
the parsing command.

1367 〈〈∗Macros local to BabelCommands〉〉 ≡
1368 \newcommand\SetCase[3][]{%

1369 \bbl@patchuclc

1370 \bbl@forlang\bbl@tempa{%

1371 \expandafter\bbl@encstring

1372 \csname\bbl@tempa @bbl@uclc\endcsname{\bbl@tempa##1}%

1373 \expandafter\bbl@encstring

1374 \csname\bbl@tempa @bbl@uc\endcsname{##2}%

1375 \expandafter\bbl@encstring

1376 \csname\bbl@tempa @bbl@lc\endcsname{##3}}}%

1377 〈〈/Macros local to BabelCommands〉〉

Macros to deal with case mapping for hyphenation. To decide if the document is
monolingual or multilingual, we make a rough guess – just see if there is a comma in the
languages list, built in the first pass of the package options.

1378 〈〈∗Macros local to BabelCommands〉〉 ≡
1379 \newcommand\SetHyphenMap[1]{%

1380 \bbl@forlang\bbl@tempa{%

1381 \expandafter\bbl@stringdef

1382 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}

1383 〈〈/Macros local to BabelCommands〉〉

There are 3 helper macros which do most of the work for you.
1384 \newcommand\BabelLower[2]{% one to one.

1385 \ifnum\lccode#1=#2\else

1386 \babel@savevariable{\lccode#1}%

1387 \lccode#1=#2\relax

1388 \fi}

87



1389 \newcommand\BabelLowerMM[4]{% many-to-many

1390 \@tempcnta=#1\relax

1391 \@tempcntb=#4\relax

1392 \def\bbl@tempa{%

1393 \ifnum\@tempcnta>#2\else

1394 \@expandtwoargs\BabelLower{\the\@tempcnta}{\the\@tempcntb}%

1395 \advance\@tempcnta#3\relax

1396 \advance\@tempcntb#3\relax

1397 \expandafter\bbl@tempa

1398 \fi}%

1399 \bbl@tempa}

1400 \newcommand\BabelLowerMO[4]{% many-to-one

1401 \@tempcnta=#1\relax

1402 \def\bbl@tempa{%

1403 \ifnum\@tempcnta>#2\else

1404 \@expandtwoargs\BabelLower{\the\@tempcnta}{#4}%

1405 \advance\@tempcnta#3

1406 \expandafter\bbl@tempa

1407 \fi}%

1408 \bbl@tempa}

The following package options control the behavior of hyphenation mapping.

1409 〈〈∗More package options〉〉 ≡
1410 \DeclareOption{hyphenmap=off}{\chardef\bbl@opt@hyphenmap\z@}

1411 \DeclareOption{hyphenmap=first}{\chardef\bbl@opt@hyphenmap\@ne}

1412 \DeclareOption{hyphenmap=select}{\chardef\bbl@opt@hyphenmap\tw@}

1413 \DeclareOption{hyphenmap=other}{\chardef\bbl@opt@hyphenmap\thr@@}

1414 \DeclareOption{hyphenmap=other*}{\chardef\bbl@opt@hyphenmap4\relax}

1415 〈〈/More package options〉〉

Initial setup to provide a default behavior if hypenmap is not set.

1416 \AtEndOfPackage{%

1417 \ifx\bbl@opt@hyphenmap\@undefined

1418 \bbl@xin@{,}{\bbl@language@opts}%

1419 \chardef\bbl@opt@hyphenmap\ifin@4\else\@ne\fi

1420 \fi}

9.10 Macros common to a number of languages

\set@low@box The following macro is used to lower quotes to the same level as the comma. It prepares its
argument in box register 0.

1421 \bbl@trace{Macros related to glyphs}

1422 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%

1423 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%

1424 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

1425 \def\save@sf@q#1{\leavevmode

1426 \begingroup

1427 \edef\@SF{\spacefactor\the\spacefactor}#1\@SF

1428 \endgroup}

9.11 Making glyphs available

This section makes a number of glyphs available that either do not exist in the OT1
encoding and have to be ‘faked’, or that are not accessible through T1enc.def.

88



9.11.1 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a separate
character, accessible via \quotedblbase. In the OT1 encoding it is not available, therefore
we make it available by lowering the normal open quote character to the baseline.

1429 \ProvideTextCommand{\quotedblbase}{OT1}{%

1430 \save@sf@q{\set@low@box{\textquotedblright\/}%

1431 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be
typeset.

1432 \ProvideTextCommandDefault{\quotedblbase}{%

1433 \UseTextSymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

1434 \ProvideTextCommand{\quotesinglbase}{OT1}{%

1435 \save@sf@q{\set@low@box{\textquoteright\/}%

1436 \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be
typeset.

1437 \ProvideTextCommandDefault{\quotesinglbase}{%

1438 \UseTextSymbol{OT1}{\quotesinglbase}}

\guillemotleft

\guillemotright

The guillemet characters are not available in OT1 encoding. They are faked.

1439 \ProvideTextCommand{\guillemotleft}{OT1}{%

1440 \ifmmode

1441 \ll

1442 \else

1443 \save@sf@q{\nobreak

1444 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}%

1445 \fi}

1446 \ProvideTextCommand{\guillemotright}{OT1}{%

1447 \ifmmode

1448 \gg

1449 \else

1450 \save@sf@q{\nobreak

1451 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}%

1452 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be
typeset.

1453 \ProvideTextCommandDefault{\guillemotleft}{%

1454 \UseTextSymbol{OT1}{\guillemotleft}}

1455 \ProvideTextCommandDefault{\guillemotright}{%

1456 \UseTextSymbol{OT1}{\guillemotright}}

\guilsinglleft

\guilsinglright

The single guillemets are not available in OT1 encoding. They are faked.

1457 \ProvideTextCommand{\guilsinglleft}{OT1}{%

1458 \ifmmode

1459 <%

1460 \else

1461 \save@sf@q{\nobreak

1462 \raise.2ex\hbox{$\scriptscriptstyle<$}\bbl@allowhyphens}%

1463 \fi}

1464 \ProvideTextCommand{\guilsinglright}{OT1}{%

1465 \ifmmode

89



1466 >%

1467 \else

1468 \save@sf@q{\nobreak

1469 \raise.2ex\hbox{$\scriptscriptstyle>$}\bbl@allowhyphens}%

1470 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be
typeset.

1471 \ProvideTextCommandDefault{\guilsinglleft}{%

1472 \UseTextSymbol{OT1}{\guilsinglleft}}

1473 \ProvideTextCommandDefault{\guilsinglright}{%

1474 \UseTextSymbol{OT1}{\guilsinglright}}

9.11.2 Letters

\ij

\IJ

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in the OT1
encoded fonts. Therefore we fake it for the OT1 encoding.

1475 \DeclareTextCommand{\ij}{OT1}{%

1476 i\kern-0.02em\bbl@allowhyphens j}

1477 \DeclareTextCommand{\IJ}{OT1}{%

1478 I\kern-0.02em\bbl@allowhyphens J}

1479 \DeclareTextCommand{\ij}{T1}{\char188}

1480 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be
typeset.

1481 \ProvideTextCommandDefault{\ij}{%

1482 \UseTextSymbol{OT1}{\ij}}

1483 \ProvideTextCommandDefault{\IJ}{%

1484 \UseTextSymbol{OT1}{\IJ}}

\dj

\DJ

The croatian language needs the letters \dj and \DJ; they are available in the T1 encoding,
but not in the OT1 encoding by default.
Some code to construct these glyphs for the OT1 encoding was made available to me by
Stipcevic Mario, (stipcevic@olimp.irb.hr).

1485 \def\crrtic@{\hrule height0.1ex width0.3em}

1486 \def\crttic@{\hrule height0.1ex width0.33em}

1487 \def\ddj@{%

1488 \setbox0\hbox{d}\dimen@=\ht0

1489 \advance\dimen@1ex

1490 \dimen@.45\dimen@

1491 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

1492 \advance\dimen@ii.5ex

1493 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}

1494 \def\DDJ@{%

1495 \setbox0\hbox{D}\dimen@=.55\ht0

1496 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

1497 \advance\dimen@ii.15ex % correction for the dash position

1498 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font

1499 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@

1500 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}

1501 %

1502 \DeclareTextCommand{\dj}{OT1}{\ddj@ d}

1503 \DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be
typeset.

90



1504 \ProvideTextCommandDefault{\dj}{%

1505 \UseTextSymbol{OT1}{\dj}}

1506 \ProvideTextCommandDefault{\DJ}{%

1507 \UseTextSymbol{OT1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other
encodings it is not available. Therefore we make it available here.

1508 \DeclareTextCommand{\SS}{OT1}{SS}

1509 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

9.11.3 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them
usable both outside and inside mathmode. They are defined with
\ProvideTextCommandDefault, but this is very likely not required because their
definitions are based on encoding dependent macros.

\glq

\grq

The ‘german’ single quotes.

1510 \ProvideTextCommandDefault{\glq}{%

1511 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}

The definition of \grq depends on the fontencoding. With T1 encoding no extra kerning is
needed.

1512 \ProvideTextCommand{\grq}{T1}{%

1513 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}

1514 \ProvideTextCommand{\grq}{TU}{%

1515 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}

1516 \ProvideTextCommand{\grq}{OT1}{%

1517 \save@sf@q{\kern-.0125em

1518 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%

1519 \kern.07em\relax}}

1520 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

\glqq

\grqq

The ‘german’ double quotes.

1521 \ProvideTextCommandDefault{\glqq}{%

1522 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra kerning is
needed.

1523 \ProvideTextCommand{\grqq}{T1}{%

1524 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

1525 \ProvideTextCommand{\grqq}{TU}{%

1526 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

1527 \ProvideTextCommand{\grqq}{OT1}{%

1528 \save@sf@q{\kern-.07em

1529 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%

1530 \kern.07em\relax}}

1531 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq

\frq

The ‘french’ single guillemets.

1532 \ProvideTextCommandDefault{\flq}{%

1533 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}

1534 \ProvideTextCommandDefault{\frq}{%

1535 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}

91



\flqq

\frqq

The ‘french’ double guillemets.

1536 \ProvideTextCommandDefault{\flqq}{%

1537 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

1538 \ProvideTextCommandDefault{\frqq}{%

1539 \textormath{\guillemotright}{\mbox{\guillemotright}}}

9.11.4 Umlauts and tremas

The command \" needs to have a different effect for different languages. For German for
instance, the ‘umlaut’ should be positioned lower than the default position for placing it
over the letters a, o, u, A, O and U. When placed over an e, i, E or I it can retain its normal
position. For Dutch the same glyph is always placed in the lower position.

\umlauthigh

\umlautlow

To be able to provide both positions of \" we provide two commands to switch the
positioning, the default will be \umlauthigh (the normal positioning).

1540 \def\umlauthigh{%

1541 \def\bbl@umlauta##1{\leavevmode\bgroup%

1542 \expandafter\accent\csname\f@encoding dqpos\endcsname

1543 ##1\bbl@allowhyphens\egroup}%

1544 \let\bbl@umlaute\bbl@umlauta}

1545 \def\umlautlow{%

1546 \def\bbl@umlauta{\protect\lower@umlaut}}

1547 \def\umlautelow{%

1548 \def\bbl@umlaute{\protect\lower@umlaut}}

1549 \umlauthigh

\lower@umlaut The command \lower@umlaut is used to position the \" closer to the letter.
We want the umlaut character lowered, nearer to the letter. To do this we need an extra
〈dimen〉 register.

1550 \expandafter\ifx\csname U@D\endcsname\relax

1551 \csname newdimen\endcsname\U@D

1552 \fi

The following code fools TEX’s make_accent procedure about the current x-height of the
font to force another placement of the umlaut character. First we have to save the current
x-height of the font, because we’ll change this font dimension and this is always done
globally.
Then we compute the new x-height in such a way that the umlaut character is lowered to
the base character. The value of .45ex depends on the METAFONT parameters with which
the fonts were built. (Just try out, which value will look best.) If the new x-height is too low,
it is not changed. Finally we call the \accent primitive, reset the old x-height and insert
the base character in the argument.

1553 \def\lower@umlaut#1{%

1554 \leavevmode\bgroup

1555 \U@D 1ex%

1556 {\setbox\z@\hbox{%

1557 \expandafter\char\csname\f@encoding dqpos\endcsname}%

1558 \dimen@ -.45ex\advance\dimen@\ht\z@

1559 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%

1560 \expandafter\accent\csname\f@encoding dqpos\endcsname

1561 \fontdimen5\font\U@D #1%

1562 \egroup}

For all vowels we declare \" to be a composite command which uses \bbl@umlauta or
\bbl@umlaute to position the umlaut character. We need to be sure that these definitions
override the ones that are provided when the package fontenc with option OT1 is used.

92



Therefore these declarations are postponed until the beginning of the document. Note
these definitions only apply to some languages, but babel sets them for all languages – you
may want to redefine \bbl@umlauta and/or \bbl@umlaute for a language in the
corresponding ldf (using the babel switching mechanism, of course).

1563 \AtBeginDocument{%

1564 \DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%

1565 \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%

1566 \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%

1567 \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%

1568 \DeclareTextCompositeCommand{\"}{OT1}{o}{\bbl@umlauta{o}}%

1569 \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%

1570 \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%

1571 \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%

1572 \DeclareTextCompositeCommand{\"}{OT1}{I}{\bbl@umlaute{I}}%

1573 \DeclareTextCompositeCommand{\"}{OT1}{O}{\bbl@umlauta{O}}%

1574 \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}%

1575 }

Finally, the default is to use English as the main language.

1576 \ifx\l@english\@undefined

1577 \chardef\l@english\z@

1578 \fi

1579 \main@language{english}

9.12 Layout

Work in progress.
Layout is mainly intended to set bidi documents, but there is at least a tool useful in
general.

1580 \bbl@trace{Bidi layout}

1581 \providecommand\IfBabelLayout[3]{#3}%

1582 \newcommand\BabelPatchSection[1]{%

1583 \@ifundefined{#1}{}{%

1584 \bbl@exp{\let\<bbl@ss@#1>\<#1>}%

1585 \@namedef{#1}{%

1586 \@ifstar{\bbl@presec@s{#1}}%

1587 {\@dblarg{\bbl@presec@x{#1}}}}}}

1588 \def\bbl@presec@x#1[#2]#3{%

1589 \bbl@exp{%

1590 \\\select@language@x{\bbl@main@language}%

1591 \\\@nameuse{bbl@sspre@#1}%

1592 \\\@nameuse{bbl@ss@#1}%

1593 [\\\foreignlanguage{\languagename}{\unexpanded{#2}}]%

1594 {\\\foreignlanguage{\languagename}{\unexpanded{#3}}}%

1595 \\\select@language@x{\languagename}}}

1596 \def\bbl@presec@s#1#2{%

1597 \bbl@exp{%

1598 \\\select@language@x{\bbl@main@language}%

1599 \\\@nameuse{bbl@sspre@#1}%

1600 \\\@nameuse{bbl@ss@#1}*%

1601 {\\\foreignlanguage{\languagename}{\unexpanded{#2}}}%

1602 \\\select@language@x{\languagename}}}

1603 \IfBabelLayout{sectioning}%

1604 {\BabelPatchSection{part}%

1605 \BabelPatchSection{chapter}%

1606 \BabelPatchSection{section}%

1607 \BabelPatchSection{subsection}%

93



1608 \BabelPatchSection{subsubsection}%

1609 \BabelPatchSection{paragraph}%

1610 \BabelPatchSection{subparagraph}%

1611 \def\babel@toc#1{%

1612 \select@language@x{\bbl@main@language}}}{}

1613 \IfBabelLayout{captions}%

1614 {\BabelPatchSection{caption}}{}

Now we load definition files for engines.

1615 \bbl@trace{Input engine specific macros}

1616 \ifcase\bbl@engine

1617 \input txtbabel.def

1618 \or

1619 \input luababel.def

1620 \or

1621 \input xebabel.def

1622 \fi

9.13 Creating languages

\babelprovide is a general purpose tool for creating languages. Currently it just creates
the language infrastructure, but in the future it will be able to read data from ini files, as
well as to create variants. Unlike the nil pseudo-language, captions are defined, but with a
warning to invite the user to provide the real string.

1623 \bbl@trace{Creating languages and reading ini files}

1624 \newcommand\babelprovide[2][]{%

1625 \let\bbl@savelangname\languagename

1626 \def\languagename{#2}%

1627 \let\bbl@KVP@captions\@nil

1628 \let\bbl@KVP@import\@nil

1629 \let\bbl@KVP@main\@nil

1630 \let\bbl@KVP@script\@nil

1631 \let\bbl@KVP@language\@nil

1632 \let\bbl@KVP@dir\@nil

1633 \let\bbl@KVP@hyphenrules\@nil

1634 \let\bbl@KVP@mapfont\@nil

1635 \let\bbl@KVP@maparabic\@nil

1636 \bbl@forkv{#1}{\bbl@csarg\def{KVP@##1}{##2}}% TODO - error handling

1637 \ifx\bbl@KVP@captions\@nil

1638 \let\bbl@KVP@captions\bbl@KVP@import

1639 \fi

1640 \bbl@ifunset{date#2}%

1641 {\bbl@provide@new{#2}}%

1642 {\bbl@ifblank{#1}%

1643 {\bbl@error

1644 {If you want to modify `#2' you must tell how in\\%

1645 the optional argument. Currently there are three\\%

1646 options: captions=lang-tag, hyphenrules=lang-list\\%

1647 import=lang-tag}%

1648 {Use this macro as documented}}%

1649 {\bbl@provide@renew{#2}}}%

1650 \bbl@exp{\\\babelensure[exclude=\\\today]{#2}}%

1651 \bbl@ifunset{bbl@ensure@\languagename}%

1652 {\bbl@exp{%

1653 \\\DeclareRobustCommand\<bbl@ensure@\languagename>[1]{%

1654 \\\foreignlanguage{\languagename}%

1655 {####1}}}}%

1656 {}%

94



1657 \ifx\bbl@KVP@script\@nil\else

1658 \bbl@csarg\edef{sname@#2}{\bbl@KVP@script}%

1659 \fi

1660 \ifx\bbl@KVP@language\@nil\else

1661 \bbl@csarg\edef{lname@#2}{\bbl@KVP@language}%

1662 \fi

1663 \ifx\bbl@KVP@mapfont\@nil\else

1664 \bbl@ifsamestring{\bbl@KVP@mapfont}{direction}{}%

1665 {\bbl@error{Option `\bbl@KVP@mapfont' unknown for\\%

1666 mapfont. Use `direction'.%

1667 {See the manual for details.}}}%

1668 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

1669 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

1670 \ifx\bbl@mapselect\@undefined

1671 \AtBeginDocument{%

1672 \expandafter\bbl@add\csname selectfont \endcsname{{\bbl@mapselect}}%

1673 {\selectfont}}%

1674 \def\bbl@mapselect{%

1675 \let\bbl@mapselect\relax

1676 \edef\bbl@prefontid{\fontid\font}}%

1677 \def\bbl@mapdir##1{%

1678 {\def\languagename{##1}\bbl@switchfont

1679 \directlua{Babel.fontmap

1680 [\the\csname bbl@wdir@##1\endcsname]%

1681 [\bbl@prefontid]=\fontid\font}}}%

1682 \fi

1683 \bbl@exp{\\\bbl@add\\\bbl@mapselect{\\\bbl@mapdir{\languagename}}}%

1684 \fi

1685 \ifcase\bbl@engine\else

1686 \bbl@ifunset{bbl@dgnat@\languagename}{}%

1687 {\expandafter\ifx\csname bbl@dgnat@\languagename\endcsname\@empty\else

1688 \expandafter\expandafter\expandafter

1689 \bbl@setdigits\csname bbl@dgnat@\languagename\endcsname

1690 \ifx\bbl@KVP@maparabic\@nil\else

1691 \expandafter\let\expandafter\@arabic

1692 \csname bbl@counter@\languagename\endcsname

1693 \fi

1694 \fi}%

1695 \fi

1696 \let\languagename\bbl@savelangname}

1697 \def\bbl@setdigits#1#2#3#4#5{%

1698 \bbl@exp{%

1699 \def\<\languagename digits>####1{% ie, \langdigits

1700 \<bbl@digits@\languagename>####1\\\@nil}%

1701 \def\<\languagename counter>####1{% ie, \langcounter

1702 \\\expandafter\<bbl@counter@\languagename>%

1703 \\\csname c@####1\endcsname}%

1704 \def\<bbl@counter@\languagename>####1{% ie, \bbl@counter@lang

1705 \\\expandafter\<bbl@digits@\languagename>%

1706 \\\number####1\\\@nil}}%

1707 \def\bbl@tempa##1##2##3##4##5{%

1708 \bbl@exp{% Wow, quite a lot of hashes! :-(

1709 \def\<bbl@digits@\languagename>########1{%

1710 \\\ifx########1\\\@nil % ie, \bbl@digits@lang

1711 \\\else

1712 \\\ifx0########1#1%

1713 \\\else\\\ifx1########1#2%

1714 \\\else\\\ifx2########1#3%

1715 \\\else\\\ifx3########1#4%

95



1716 \\\else\\\ifx4########1#5%

1717 \\\else\\\ifx5########1##1%

1718 \\\else\\\ifx6########1##2%

1719 \\\else\\\ifx7########1##3%

1720 \\\else\\\ifx8########1##4%

1721 \\\else\\\ifx9########1##5%

1722 \\\else########1%

1723 \\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi\\\fi

1724 \\\expandafter\<bbl@digits@\languagename>%

1725 \\\fi}}}%

1726 \bbl@tempa}

Depending on whether or not the language exists, we define two macros.
-

1727 \def\bbl@provide@new#1{%

1728 \@namedef{date#1}{}% marks lang exists - required by \StartBabelCommands

1729 \@namedef{extras#1}{}%

1730 \@namedef{noextras#1}{}%

1731 \StartBabelCommands*{#1}{captions}%

1732 \ifx\bbl@KVP@captions\@nil % and also if import, implicit

1733 \def\bbl@tempb##1{% elt for \bbl@captionslist

1734 \ifx##1\@empty\else

1735 \bbl@exp{%

1736 \\\SetString\\##1{%

1737 \\\bbl@nocaption{\bbl@stripslash##1}{#1\bbl@stripslash##1}}}%

1738 \expandafter\bbl@tempb

1739 \fi}%

1740 \expandafter\bbl@tempb\bbl@captionslist\@empty

1741 \else

1742 \bbl@read@ini{\bbl@KVP@captions}% Here all letters cat = 11

1743 \bbl@after@ini

1744 \bbl@savestrings

1745 \fi

1746 \StartBabelCommands*{#1}{date}%

1747 \ifx\bbl@KVP@import\@nil

1748 \bbl@exp{%

1749 \\\SetString\\\today{\\\bbl@nocaption{today}{#1today}}}%

1750 \else

1751 \bbl@savetoday

1752 \bbl@savedate

1753 \fi

1754 \EndBabelCommands

1755 \bbl@exp{%

1756 \def\<#1hyphenmins>{%

1757 {\bbl@ifunset{bbl@lfthm@#1}{2}{\@nameuse{bbl@lfthm@#1}}}%

1758 {\bbl@ifunset{bbl@rgthm@#1}{3}{\@nameuse{bbl@rgthm@#1}}}}}%

1759 \bbl@provide@hyphens{#1}%

1760 \ifx\bbl@KVP@main\@nil\else

1761 \expandafter\main@language\expandafter{#1}%

1762 \fi}

1763 \def\bbl@provide@renew#1{%

1764 \ifx\bbl@KVP@captions\@nil\else

1765 \StartBabelCommands*{#1}{captions}%

1766 \bbl@read@ini{\bbl@KVP@captions}% Here all letters cat = 11

1767 \bbl@after@ini

1768 \bbl@savestrings

1769 \EndBabelCommands

1770 \fi

1771 \ifx\bbl@KVP@import\@nil\else

96



1772 \StartBabelCommands*{#1}{date}%

1773 \bbl@savetoday

1774 \bbl@savedate

1775 \EndBabelCommands

1776 \fi

1777 \bbl@provide@hyphens{#1}}

The hyphenrules option is handled with an auxiliary macro.

1778 \def\bbl@provide@hyphens#1{%

1779 \let\bbl@tempa\relax

1780 \ifx\bbl@KVP@hyphenrules\@nil\else

1781 \bbl@replace\bbl@KVP@hyphenrules{ }{,}%

1782 \bbl@foreach\bbl@KVP@hyphenrules{%

1783 \ifx\bbl@tempa\relax % if not yet found

1784 \bbl@ifsamestring{##1}{+}%

1785 {{\bbl@exp{\\\addlanguage\<l@##1>}}}%

1786 {}%

1787 \bbl@ifunset{l@##1}%

1788 {}%

1789 {\bbl@exp{\let\bbl@tempa\<l@##1>}}%

1790 \fi}%

1791 \fi

1792 \ifx\bbl@tempa\relax % if no opt or no language in opt found

1793 \ifx\bbl@KVP@import\@nil\else % if importing

1794 \bbl@exp{% and hyphenrules is not empty

1795 \\\bbl@ifblank{\@nameuse{bbl@hyphr@#1}}%

1796 {}%

1797 {\let\\\bbl@tempa\<l@\@nameuse{bbl@hyphr@\languagename}>}}%

1798 \fi

1799 \fi

1800 \bbl@ifunset{bbl@tempa}% ie, relax or undefined

1801 {\bbl@ifunset{l@#1}% no hyphenrules found - fallback

1802 {\bbl@exp{\\\adddialect\<l@#1>\language}}%

1803 {}}% so, l@<lang> is ok - nothing to do

1804 {\bbl@exp{\\\adddialect\<l@#1>\bbl@tempa}}}% found in opt list or ini

The reader of ini files. There are 3 possible cases: a section name (in the form [...]), a
comment (starting with ;) and a key/value pair. TODO - Work in progress.

1805 \def\bbl@read@ini#1{%

1806 \openin1=babel-#1.ini

1807 \ifeof1

1808 \bbl@error

1809 {There is no ini file for the requested language\\%

1810 (#1). Perhaps you misspelled it or your installation\\%

1811 is not complete.}%

1812 {Fix the name or reinstall babel.}%

1813 \else

1814 \let\bbl@section\@empty

1815 \let\bbl@savestrings\@empty

1816 \let\bbl@savetoday\@empty

1817 \let\bbl@savedate\@empty

1818 \let\bbl@inireader\bbl@iniskip

1819 \bbl@info{Importing data from babel-#1.ini for \languagename}%

1820 \loop

1821 \if T\ifeof1F\fi T\relax % Trick, because inside \loop

1822 \endlinechar\m@ne

1823 \read1 to \bbl@line

1824 \endlinechar`\^^M

1825 \ifx\bbl@line\@empty\else

97



1826 \expandafter\bbl@iniline\bbl@line\bbl@iniline

1827 \fi

1828 \repeat

1829 \fi}

1830 \def\bbl@iniline#1\bbl@iniline{%

1831 \@ifnextchar[\bbl@inisec{\@ifnextchar;\bbl@iniskip\bbl@inireader}#1\@@}% ]

The special cases for comment lines and sections are handled by the two following
commands. In sections, we provide the posibility to take extra actions at the end or at the
start (TODO - but note the last section is not ended). By default, key=val pairs are ignored.

1832 \def\bbl@iniskip#1\@@{}% if starts with ;

1833 \def\bbl@inisec[#1]#2\@@{% if starts with opening bracket

1834 \@nameuse{bbl@secpost@\bbl@section}% ends previous section

1835 \def\bbl@section{#1}%

1836 \@nameuse{bbl@secpre@\bbl@section}% starts current section

1837 \bbl@ifunset{bbl@secline@#1}%

1838 {\let\bbl@inireader\bbl@iniskip}%

1839 {\bbl@exp{\let\\\bbl@inireader\<bbl@secline@#1>}}}

Reads a key=val line and stores the trimmed val in \bbl@@kv@<section>.<key>.
1840 \def\bbl@inikv#1=#2\@@{% key=value

1841 \bbl@trim@def\bbl@tempa{#1}%

1842 \bbl@trim\toks@{#2}%

1843 \bbl@csarg\edef{@kv@\bbl@section.\bbl@tempa}{\the\toks@}}

The previous assignments are local, so we need to export them. If the value is empty, we
can provide a default value.

1844 \def\bbl@exportkey#1#2#3{%

1845 \bbl@ifunset{bbl@@kv@#2}%

1846 {\bbl@csarg\gdef{#1@\languagename}{#3}}%

1847 {\expandafter\ifx\csname bbl@@kv@#2\endcsname\@empty

1848 \bbl@csarg\gdef{#1@\languagename}{#3}%

1849 \else

1850 \bbl@exp{\global\let\<bbl@#1@\languagename>\<bbl@@kv@#2>}%

1851 \fi}}

Key-value pairs are treated differently depending on the section in the ini file. The
following macros are the readers for identification and typography.

1852 \let\bbl@secline@identification\bbl@inikv

1853 \def\bbl@secpost@identification{%

1854 \bbl@exportkey{lname}{identification.name.english}{}%

1855 \bbl@exportkey{lbcp}{identification.tag.bcp47}{}%

1856 \bbl@exportkey{lotf}{identification.tag.opentype}{dflt}%

1857 \bbl@exportkey{sname}{identification.script.name}{}%

1858 \bbl@exportkey{sbcp}{identification.script.tag.bcp47}{}%

1859 \bbl@exportkey{sotf}{identification.script.tag.opentype}{DFLT}}

1860 \let\bbl@secline@typography\bbl@inikv

1861 \let\bbl@secline@numbers\bbl@inikv

1862 \def\bbl@after@ini{%

1863 \bbl@exportkey{lfthm}{typography.lefthyphenmin}{2}%

1864 \bbl@exportkey{rgthm}{typography.righthyphenmin}{3}%

1865 \bbl@exportkey{hyphr}{typography.hyphenrules}{}%

1866 \bbl@exportkey{dgnat}{numbers.digits.native}{}%

1867 \bbl@xin@{0.5}{\@nameuse{bbl@@kv@identification.version}}%

1868 \ifin@

1869 \bbl@warning{%

1870 There are neither captions nor date in `\languagename'.\\%

1871 It may not be suitable for proper typesetting, and it\\%

1872 could change. Reported}%

98



1873 \fi

1874 \bbl@xin@{0.9}{\@nameuse{bbl@@kv@identification.version}}%

1875 \ifin@

1876 \bbl@warning{%

1877 The `\languagename' date format may not be suitable\\%

1878 for proper typesetting, and therefore it very likely will\\%

1879 change in a future release. Reported}%

1880 \fi

1881 \bbl@toglobal\bbl@savetoday

1882 \bbl@toglobal\bbl@savedate}

Now captions and captions.licr, depending on the engine. And also for dates. They rely
on a few auxilary macros.

1883 \ifcase\bbl@engine

1884 \bbl@csarg\def{secline@captions.licr}#1=#2\@@{%

1885 \bbl@ini@captions@aux{#1}{#2}}

1886 \bbl@csarg\def{secline@date.gregorian}#1=#2\@@{% for defaults

1887 \bbl@ini@dategreg#1...\relax{#2}}

1888 \bbl@csarg\def{secline@date.gregorian.licr}#1=#2\@@{% override

1889 \bbl@ini@dategreg#1...\relax{#2}}

1890 \else

1891 \def\bbl@secline@captions#1=#2\@@{%

1892 \bbl@ini@captions@aux{#1}{#2}}

1893 \bbl@csarg\def{secline@date.gregorian}#1=#2\@@{%

1894 \bbl@ini@dategreg#1...\relax{#2}}

1895 \fi

The auxiliary macro for captions define \<caption>name.

1896 \def\bbl@ini@captions@aux#1#2{%

1897 \bbl@trim@def\bbl@tempa{#1}%

1898 \bbl@ifblank{#2}%

1899 {\bbl@exp{%

1900 \toks@{\\\bbl@nocaption{\bbl@tempa}{\languagename\bbl@tempa name}}}}%

1901 {\bbl@trim\toks@{#2}}%

1902 \bbl@exp{%

1903 \\\bbl@add\\\bbl@savestrings{%

1904 \\\SetString\<\bbl@tempa name>{\the\toks@}}}}

But dates are more complex. The full date format is stores in date.gregorian, so we must
read it in non-Unicode engines, too.

1905 \bbl@csarg\def{secpre@date.gregorian.licr}{%

1906 \ifcase\bbl@engine\let\bbl@savedate\@empty\fi}

1907 \def\bbl@ini@dategreg#1.#2.#3.#4\relax#5{% TODO - ignore with 'captions'

1908 \bbl@trim@def\bbl@tempa{#1.#2}%

1909 \bbl@ifsamestring{\bbl@tempa}{months.wide}%

1910 {\bbl@trim@def\bbl@tempa{#3}%

1911 \bbl@trim\toks@{#5}%

1912 \bbl@exp{%

1913 \\\bbl@add\\\bbl@savedate{%

1914 \\\SetString\<month\romannumeral\bbl@tempa name>{\the\toks@}}}}%

1915 {\bbl@ifsamestring{\bbl@tempa}{date.long}%

1916 {\bbl@trim@def\bbl@toreplace{#5}%

1917 \bbl@TG@@date

1918 \global\bbl@csarg\let{date@\languagename}\bbl@toreplace

1919 \bbl@exp{%

1920 \gdef\<\languagename date>{\\\protect\<\languagename date >}%

1921 \gdef\<\languagename date >####1####2####3{%

1922 \\\bbl@usedategrouptrue

1923 \<bbl@ensure@\languagename>{%

99



1924 \<bbl@date@\languagename>{####1}{####2}{####3}}}%

1925 \\\bbl@add\\\bbl@savetoday{%

1926 \\\SetString\\\today{%

1927 \<\languagename date>{\\\the\year}{\\\the\month}{\\\the\day}}}}}}%

1928 {}}

Dates will require some macros for the basic formatting. They may be redefined by
language, so “semi-public” names (camel case) are used. Oddly enough, the CLDR places
particles like “de” inconsistenly in either in the date or in the month name.

1929 \newcommand\BabelDateSpace{\nobreakspace}

1930 \newcommand\BabelDateDot{.\@}

1931 \newcommand\BabelDated[1]{{\number#1}}

1932 \newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}

1933 \newcommand\BabelDateM[1]{{\number#1}}

1934 \newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}

1935 \newcommand\BabelDateMMMM[1]{{%

1936 \csname month\romannumeral#1name\endcsname}}%

1937 \newcommand\BabelDatey[1]{{\number#1}}%

1938 \newcommand\BabelDateyy[1]{{%

1939 \ifnum#1<10 0\number#1 %

1940 \else\ifnum#1<100 \number#1 %

1941 \else\ifnum#1<1000 \expandafter\@gobble\number#1 %

1942 \else\ifnum#1<10000 \expandafter\@gobbletwo\number#1 %

1943 \else

1944 \bbl@error

1945 {Currently two-digit years are restricted to the\\

1946 range 0-9999.}%

1947 {There is little you can do. Sorry.}%

1948 \fi\fi\fi\fi}}

1949 \newcommand\BabelDateyyyy[1]{{\number#1}}

1950 \def\bbl@replace@finish@iii#1{%

1951 \bbl@exp{\def\\#1####1####2####3{\the\toks@}}}

1952 \def\bbl@TG@@date{%

1953 \bbl@replace\bbl@toreplace{[ ]}{\BabelDateSpace{}}%

1954 \bbl@replace\bbl@toreplace{[.]}{\BabelDateDot{}}%

1955 \bbl@replace\bbl@toreplace{[d]}{\BabelDated{####3}}%

1956 \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd{####3}}%

1957 \bbl@replace\bbl@toreplace{[M]}{\BabelDateM{####2}}%

1958 \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM{####2}}%

1959 \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM{####2}}%

1960 \bbl@replace\bbl@toreplace{[y]}{\BabelDatey{####1}}%

1961 \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy{####1}}%

1962 \bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy{####1}}%

1963 % Note after \bbl@replace \toks@ contains the resulting string.

1964 % TODO - Using this implicit behavior doesn't seem a good idea.

1965 \bbl@replace@finish@iii\bbl@toreplace}

Language and Script values to be used when defining a font or setting the direction are set
with the following macros.

1966 \def\bbl@provide@lsys#1{%

1967 \bbl@ifunset{bbl@lname@#1}%

1968 {\bbl@ini@ids{#1}}%

1969 {}%

1970 \bbl@csarg\let{lsys@#1}\@empty

1971 \bbl@ifunset{bbl@sname@#1}{\bbl@csarg\gdef{sname@#1}{Default}}{}%

1972 \bbl@ifunset{bbl@sotf#1}{\bbl@csarg\gdef{sotf@#1}{DFLT}}{}%

1973 \bbl@csarg\bbl@add@list{lsys@#1}{Script=\bbl@cs{sname@#1}}%

1974 \bbl@ifunset{bbl@lname@#1}{}%

1975 {\bbl@csarg\bbl@add@list{lsys@#1}{Language=\bbl@cs{lname@#1}}}%

100



1976 \bbl@csarg\bbl@toglobal{lsys@#1}}%

1977 % \bbl@exp{% TODO - should be global

1978 % \<keys_if_exist:nnF>{fontspec-opentype/Script}{\bbl@cs{sname@#1}}%

1979 % {\\\newfontscript{\bbl@cs{sname@#1}}{\bbl@cs{sotf@#1}}}%

1980 % \<keys_if_exist:nnF>{fontspec-opentype/Language}{\bbl@cs{lname@#1}}%

1981 % {\\\newfontlanguage{\bbl@cs{lname@#1}}{\bbl@cs{lotf@#1}}}}}

The following ini reader ignores everything but the identification section. It is called
when a font is defined (ie, when the language is first selected) to know which
script/language must be enabled. This means we must make sure a few characters are not
active. The ini is not read directly, but with a proxy tex file named as the language.

1982 \def\bbl@ini@ids#1{%

1983 \def\BabelBeforeIni##1##2{%

1984 \begingroup

1985 \bbl@add\bbl@secpost@identification{\closein1 }%

1986 \catcode`\[=12 \catcode`\]=12 \catcode`\==12 %

1987 \bbl@read@ini{##1}%

1988 \endgroup}% boxed, to avoid extra spaces:

1989 {\setbox\z@\hbox{\InputIfFileExists{babel-#1.tex}{}{}}}}

10 The kernel of Babel (babel.def, only LATEX)

10.1 The redefinition of the style commands

The rest of the code in this file can only be processed by LATEX, so we check the current
format. If it is plain TEX, processing should stop here. But, because of the need to limit the
scope of the definition of \format, a macro that is used locally in the following
\if statement, this comparison is done inside a group. To prevent TEX from complaining
about an unclosed group, the processing of the command \endinput is deferred until after
the group is closed. This is accomplished by the command \aftergroup.

1990 {\def\format{lplain}

1991 \ifx\fmtname\format

1992 \else

1993 \def\format{LaTeX2e}

1994 \ifx\fmtname\format

1995 \else

1996 \aftergroup\endinput

1997 \fi

1998 \fi}

10.2 Cross referencing macros

The LATEX book states:

The key argument is any sequence of letters, digits, and punctuation symbols; upper-
and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a language that
has active characters, special care has to be taken of the category codes of these characters
when they appear in an argument of the cross referencing macros.
When a cross referencing command processes its argument, all tokens in this argument
should be character tokens with category ‘letter’ or ‘other’.
The only way to accomplish this in most cases is to use the trick described in the
TEXbook [2] (Appendix D, page 382). The primitive \meaning applied to a token expands to
the current meaning of this token. For example, ‘\meaning\A’ with \A defined as
‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with all category codes set to
‘other’ or ‘space’.

101



\newlabel The macro \label writes a line with a \newlabel command into the .aux file to define
labels.

1999 %\bbl@redefine\newlabel#1#2{%

2000 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

\@newl@bel We need to change the definition of the LATEX-internal macro \@newl@bel. This is needed
because we need to make sure that shorthand characters expand to their non-active
version.
The following package options control which macros are to be redefined.

2001 〈〈∗More package options〉〉 ≡
2002 \DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}

2003 \DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}

2004 \DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}

2005 〈〈/More package options〉〉

First we open a new group to keep the changed setting of \protect local and then we set
the @safe@actives switch to true to make sure that any shorthand that appears in any of
the arguments immediately expands to its non-active self.

2006 \bbl@trace{Cross referencing macros}

2007 \ifx\bbl@opt@safe\@empty\else

2008 \def\@newl@bel#1#2#3{%

2009 {\@safe@activestrue

2010 \bbl@ifunset{#1@#2}%

2011 \relax

2012 {\gdef\@multiplelabels{%

2013 \@latex@warning@no@line{There were multiply-defined labels}}%

2014 \@latex@warning@no@line{Label `#2' multiply defined}}%

2015 \global\@namedef{#1@#2}{#3}}}

\@testdef An internal LATEX macro used to test if the labels that have been written on the .aux file
have changed. It is called by the \enddocument macro. This macro needs to be completely
rewritten, using \meaning. The reason for this is that in some cases the expansion of
\#1@#2 contains the same characters as the #3; but the character codes differ. Therefore
LATEX keeps reporting that the labels may have changed.

2016 \CheckCommand*\@testdef[3]{%

2017 \def\reserved@a{#3}%

2018 \expandafter\ifx\csname#1@#2\endcsname\reserved@a

2019 \else

2020 \@tempswatrue

2021 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite it. First
we make the shorthands ‘safe’.

2022 \def\@testdef#1#2#3{%

2023 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which is being
checked.

2024 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname

Then we define \bbl@tempb just as \@newl@bel does it.
2025 \def\bbl@tempb{#3}%

2026 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.
2027 \ifx\bbl@tempa\relax

2028 \else

2029 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%

2030 \fi

102



We do the same for \bbl@tempb.

2031 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.

2032 \ifx\bbl@tempa\bbl@tempb

2033 \else

2034 \@tempswatrue

2035 \fi}

2036 \fi

\ref

\pageref

The same holds for the macro \ref that references a label and \pageref to reference a
page. So we redefine \ref and \pageref. While we change these macros, we make them
robust as well (if they weren’t already) to prevent problems if they should become
expanded at the wrong moment.

2037 \bbl@xin@{R}\bbl@opt@safe

2038 \ifin@

2039 \bbl@redefinerobust\ref#1{%

2040 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}

2041 \bbl@redefinerobust\pageref#1{%

2042 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}

2043 \else

2044 \let\org@ref\ref

2045 \let\org@pageref\pageref

2046 \fi

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is
this internal macro that picks up the argument(s), so we redefine this internal macro and
leave \cite alone. The first argument is used for typesetting, so the shorthands need only
be deactivated in the second argument.

2047 \bbl@xin@{B}\bbl@opt@safe

2048 \ifin@

2049 \bbl@redefine\@citex[#1]#2{%

2050 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse

2051 \org@@citex[#1]{\@tempa}}

Unfortunately, the packages natbib and cite need a different definition of \@citex... To
begin with, natbib has a definition for \@citex with three arguments... We only know that
a package is loaded when \begin{document} is executed, so we need to postpone the
different redefinition.

2052 \AtBeginDocument{%

2053 \@ifpackageloaded{natbib}{%

Notice that we use \def here instead of \bbl@redefine because \org@@citex is already
defined and we don’t want to overwrite that definition (it would result in parameter stack
overflow because of a circular definition).
(Recent versions of natbib change dynamically \@citex, so PR4087 doesn’t seem fixable in
a simple way. Just load natbib before.)

2054 \def\@citex[#1][#2]#3{%

2055 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse

2056 \org@@citex[#1][#2]{\@tempa}}%

2057 }{}}

The package cite has a definition of \@citex where the shorthands need to be turned off
in both arguments.

2058 \AtBeginDocument{%

2059 \@ifpackageloaded{cite}{%

2060 \def\@citex[#1]#2{%

103



2061 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%

2062 }{}}

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references from the
database.

2063 \bbl@redefine\nocite#1{%

2064 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages such as
natbib or cite are not loaded its second argument is used to typeset the citation label. In
that case, this second argument can contain active characters but is used in an
environment where \@safe@activestrue is in effect. This switch needs to be reset inside
the \hbox which contains the citation label. In order to determine during .aux file
processing which definition of \bibcite is needed we define \bibcite in such a way that
it redefines itself with the proper definition.

2065 \bbl@redefine\bibcite{%

We call \bbl@cite@choice to select the proper definition for \bibcite. This new
definition is then activated.

2066 \bbl@cite@choice

2067 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither natbib
nor cite is loaded.

2068 \def\bbl@bibcite#1#2{%

2069 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.

2070 \def\bbl@cite@choice{%

First we give \bibcite its default definition.

2071 \global\let\bibcite\bbl@bibcite

Then, when natbib is loaded we restore the original definition of \bibcite.

2072 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

For cite we do the same.

2073 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%

Make sure this only happens once.

2074 \global\let\bbl@cite@choice\relax}

When a document is run for the first time, no .aux file is available, and \bibcite will not
yet be properly defined. In this case, this has to happen before the document starts.

2075 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal LATEX macros called by \bibitem that write the citation label on the
.aux file.

2076 \bbl@redefine\@bibitem#1{%

2077 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

2078 \else

2079 \let\org@nocite\nocite

2080 \let\org@@citex\@citex

2081 \let\org@bibcite\bibcite

2082 \let\org@@bibitem\@bibitem

2083 \fi

104



10.3 Marks

\markright Because the output routine is asynchronous, we must pass the current language attribute
to the head lines, together with the text that is put into them. To achieve this we need to
adapt the definition of \markright and \markboth somewhat.
We check whether the argument is empty; if it is, we just make sure the scratch token
register is empty. Next, we store the argument to \markright in the scratch token register.
This way these commands will not be expanded later, and we make sure that the text is
typeset using the correct language settings. While doing so, we make sure that active
characters that may end up in the mark are not disabled by the output routine kicking in
while \@safe@activestrue is in effect.

2084 \bbl@trace{Marks}

2085 \IfBabelLayout{sectioning}

2086 {\ifx\bbl@opt@headfoot\@nnil

2087 \g@addto@macro\@resetactivechars{%

2088 \set@typeset@protect

2089 \expandafter\select@language@x\expandafter{\bbl@main@language}%

2090 \let\protect\noexpand}%

2091 \fi}

2092 {\bbl@redefine\markright#1{%

2093 \bbl@ifblank{#1}%

2094 {\org@markright{}}%

2095 {\toks@{#1}%

2096 \bbl@exp{%

2097 \\\org@markright{\\\protect\\\foreignlanguage{\languagename}%

2098 {\\\protect\\\bbl@restore@actives\the\toks@}}}}}

\markboth

\@mkboth

The definition of \markboth is equivalent to that of \markright, except that we need two
token registers. The documentclasses report and book define and set the headings for the
page. While doing so they also store a copy of \markboth in \@mkboth. Therefore we need
to check whether \@mkboth has already been set. If so we neeed to do that again with the
new definition of \markboth.

2099 \ifx\@mkboth\markboth

2100 \def\bbl@tempc{\let\@mkboth\markboth}

2101 \else

2102 \def\bbl@tempc{}

2103 \fi

Now we can start the new definition of \markboth

2104 \bbl@redefine\markboth#1#2{%

2105 \protected@edef\bbl@tempb##1{%

2106 \protect\foreignlanguage

2107 {\languagename}{\protect\bbl@restore@actives##1}}%

2108 \bbl@ifblank{#1}%

2109 {\toks@{}}%

2110 {\toks@\expandafter{\bbl@tempb{#1}}}%

2111 \bbl@ifblank{#2}%

2112 {\@temptokena{}}%

2113 {\@temptokena\expandafter{\bbl@tempb{#2}}}%

2114 \bbl@exp{\\\org@markboth{\the\toks@}{\the\@temptokena}}}

and copy it to \@mkboth if necessary.

2115 \bbl@tempc} % end \IfBabelLayout

105



10.4 Preventing clashes with other packages

10.4.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the page a
certain fragment of text appears on. This can be achieved by the following piece of code:

\ifthenelse{\isodd{\pageref{some:label}}}

{code for odd pages}

{code for even pages}

In order for this to work the argument of \isodd needs to be fully expandable. With the
above redefinition of \pageref it is not in the case of this example. To overcome that, we
add some code to the definition of \ifthenelse to make things work.
The first thing we need to do is check if the package ifthen is loaded. This should be done
at \begin{document} time.

2116 \bbl@trace{Preventing clashes with other packages}

2117 \bbl@xin@{R}\bbl@opt@safe

2118 \ifin@

2119 \AtBeginDocument{%

2120 \@ifpackageloaded{ifthen}{%

Then we can redefine \ifthenelse:

2121 \bbl@redefine@long\ifthenelse#1#2#3{%

We want to revert the definition of \pageref and \ref to their original definition for the
first argument of \ifthenelse, so we first need to store their current meanings.

2122 \let\bbl@temp@pref\pageref

2123 \let\pageref\org@pageref

2124 \let\bbl@temp@ref\ref

2125 \let\ref\org@ref

Then we can set the \@safe@actives switch and call the original \ifthenelse. In order to
be able to use shorthands in the second and third arguments of \ifthenelse the resetting
of the switch and the definition of \pageref happens inside those arguments. When the
package wasn’t loaded we do nothing.

2126 \@safe@activestrue

2127 \org@ifthenelse{#1}%

2128 {\let\pageref\bbl@temp@pref

2129 \let\ref\bbl@temp@ref

2130 \@safe@activesfalse

2131 #2}%

2132 {\let\pageref\bbl@temp@pref

2133 \let\ref\bbl@temp@ref

2134 \@safe@activesfalse

2135 #3}%

2136 }%

2137 }{}%

2138 }

10.4.2 varioref

\@@vpageref

\vrefpagenum

\Ref

When the package varioref is in use we need to modify its internal command \@@vpageref

in order to prevent problems when an active character ends up in the argument of \vref.

2139 \AtBeginDocument{%

2140 \@ifpackageloaded{varioref}{%

2141 \bbl@redefine\@@vpageref#1[#2]#3{%

106



2142 \@safe@activestrue

2143 \org@@@vpageref{#1}[#2]{#3}%

2144 \@safe@activesfalse}%

The same needs to happen for \vrefpagenum.

2145 \bbl@redefine\vrefpagenum#1#2{%

2146 \@safe@activestrue

2147 \org@vrefpagenum{#1}{#2}%

2148 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command wich uppercases the first
character of the reference text. In order to be able to do that it needs to access the
exandable form of \ref. So we employ a little trick here. We redefine the (internal)
command \Ref␣ to call \org@ref instead of \ref. The disadvantgage of this solution is
that whenever the derfinition of \Ref changes, this definition needs to be updated as well.

2149 \expandafter\def\csname Ref \endcsname#1{%

2150 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}

2151 }{}%

2152 }

2153 \fi

10.4.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with the
hhline package. The reason is that it uses the ‘:’ character which is made active by the
french support in babel. Therefore we need to reload the package when the ‘:’ is an active
character.
So at \begin{document} we check whether hhline is loaded.

2154 \AtEndOfPackage{%

2155 \AtBeginDocument{%

2156 \@ifpackageloaded{hhline}%

Then we check whether the expansion of \normal@char: is not equal to \relax.

2157 {\expandafter\ifx\csname normal@char\string:\endcsname\relax

2158 \else

In that case we simply reload the package. Note that this happens after the category code of
the @-sign has been changed to other, so we need to temporarily change it to letter again.

2159 \makeatletter

2160 \def\@currname{hhline}\input{hhline.sty}\makeatother

2161 \fi}%

2162 {}}}

10.4.4 hyperref

\pdfstringdefDisableCommands A number of interworking problems between babel and hyperref are tackled by
hyperref itself. The following code was introduced to prevent some annoying warnings
but it broke bookmarks. This was quickly fixed in hyperref, which essentially made it
no-op. However, it will not removed for the moment because hyperref is expecting it.

2163 \AtBeginDocument{%

2164 \ifx\pdfstringdefDisableCommands\@undefined\else

2165 \pdfstringdefDisableCommands{\languageshorthands{system}}%

2166 \fi}

107



10.4.5 fancyhdr

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat differently as the
standard classes. A symptom of this is that the command \foreignlanguage which babel
adds to the marks can end up inside the argument of \MakeUppercase. To prevent
unexpected results we need to define \FOREIGNLANGUAGE here.

2167 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%

2168 \lowercase{\foreignlanguage{#1}}}

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first argument is
an encoding mnemonic, the second and third arguments are font family names.

2169 \def\substitutefontfamily#1#2#3{%

2170 \lowercase{\immediate\openout15=#1#2.fd\relax}%

2171 \immediate\write15{%

2172 \string\ProvidesFile{#1#2.fd}%

2173 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}

2174 \space generated font description file]^^J

2175 \string\DeclareFontFamily{#1}{#2}{}^^J

2176 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J

2177 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J

2178 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J

2179 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J

2180 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J

2181 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J

2182 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J

2183 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J

2184 }%

2185 \closeout15

2186 }

This command should only be used in the preamble of a document.

2187 \@onlypreamble\substitutefontfamily

10.5 Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of TEX
and LATEX always come out in the right encoding. There is a list of non-ASCII encodings.
Unfortunately, fontenc deletes its package options, so we must guess which encodings has
been loaded by traversing \@filelist to search for 〈enc〉enc.def. If a non-ASCII has been
loaded, we define versions of \TeX and \LaTeX for them using \ensureascii. The default
ASCII encoding is set, too (in reverse order): the “main” encoding (when the document
begins), the last loaded, or OT1.

\ensureascii

2188 \bbl@trace{Encoding and fonts}

2189 \newcommand\BabelNonASCII{LGR,X2,OT2,OT3,OT6,LHE,LWN,LMA,LMC,LMS,LMU,}

2190 \let\org@TeX\TeX

2191 \let\org@LaTeX\LaTeX

2192 \let\ensureascii\@firstofone

2193 \AtBeginDocument{%

2194 \in@false

2195 \bbl@foreach\BabelNonASCII{% is there a non-ascii enc?

2196 \ifin@\else

2197 \lowercase{\bbl@xin@{,#1enc.def,}{,\@filelist,}}%

2198 \fi}%

2199 \ifin@ % if a non-ascii has been loaded

2200 \def\ensureascii#1{{\fontencoding{OT1}\selectfont#1}}%

108



2201 \DeclareTextCommandDefault{\TeX}{\org@TeX}%

2202 \DeclareTextCommandDefault{\LaTeX}{\org@LaTeX}%

2203 \def\bbl@tempb#1\@@{\uppercase{\bbl@tempc#1}ENC.DEF\@empty\@@}%

2204 \def\bbl@tempc#1ENC.DEF#2\@@{%

2205 \ifx\@empty#2\else

2206 \bbl@ifunset{T@#1}%

2207 {}%

2208 {\bbl@xin@{,#1,}{,\BabelNonASCII,}%

2209 \ifin@

2210 \DeclareTextCommand{\TeX}{#1}{\ensureascii{\org@TeX}}%

2211 \DeclareTextCommand{\LaTeX}{#1}{\ensureascii{\org@LaTeX}}%

2212 \else

2213 \def\ensureascii##1{{\fontencoding{#1}\selectfont##1}}%

2214 \fi}%

2215 \fi}%

2216 \bbl@foreach\@filelist{\bbl@tempb#1\@@}% TODO - \@@ de mas??

2217 \bbl@xin@{,\cf@encoding,}{,\BabelNonASCII,}%

2218 \ifin@\else

2219 \edef\ensureascii#1{{%

2220 \noexpand\fontencoding{\cf@encoding}\noexpand\selectfont#1}}%

2221 \fi

2222 \fi}

Now comes the old deprecated stuff (with a little change in 3.9l, for fontspec). The first
thing we need to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be nice to
still have Roman numerals come out in the Latin encoding. So we first assume that the
current encoding at the end of processing the package is the Latin encoding.

2223 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefore we
check at the execution of \begin{document} whether it was loaded with the T1 option. The
normal way to do this (using \@ifpackageloaded) is disabled for this package. Now we
have to revert to parsing the internal macro \@filelist which contains all the filenames
loaded.

2224 \AtBeginDocument{%

2225 \@ifpackageloaded{fontspec}%

2226 {\xdef\latinencoding{%

2227 \ifx\UTFencname\@undefined

2228 EU\ifcase\bbl@engine\or2\or1\fi

2229 \else

2230 \UTFencname

2231 \fi}}%

2232 {\gdef\latinencoding{OT1}%

2233 \ifx\cf@encoding\bbl@t@one

2234 \xdef\latinencoding{\bbl@t@one}%

2235 \else

2236 \@ifl@aded{def}{t1enc}{\xdef\latinencoding{\bbl@t@one}}{}%

2237 \fi}}

\latintext Then we can define the command \latintext which is a declarative switch to a latin
font-encoding. Usage of this macro is deprecated.

2238 \DeclareRobustCommand{\latintext}{%

2239 \fontencoding{\latinencoding}\selectfont

2240 \def\encodingdefault{\latinencoding}}

109



\textlatin This command takes an argument which is then typeset using the requested font encoding.
In order to avoid many encoding switches it operates in a local scope.

2241 \ifx\@undefined\DeclareTextFontCommand

2242 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

2243 \else

2244 \DeclareTextFontCommand{\textlatin}{\latintext}

2245 \fi

10.6 Basic bidi support

Work in progress. This code is currently placed here for practical reasons.
It is loosely based on rlbabel.def, but most of it has been developed from scratch. This
babelmodule (by Johannes Braams and Boris Lavva) has served the purpose of typesetting
R documents for two decades, and despite its flaws I think it is still a good starting point
(some parts have been copied here almost verbatim), partly thanks to its simplicity. I’ve
also looked at arabi (by Youssef Jabri), which is compatible with babel.
There are two ways of modifying macros to make them “bidi”, namely, by patching the
internal low level macros (which is what I have done with lists, columns, counters, tocs,
much like rlbabel did), and by introducing a “middle layer” just below the user interface
(sectioning, footnotes).

• pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical
typesetting is not possible.

• xetex is somewhat better, thanks to its font engine (even if not always reliable) and a
few additional tools. However, very little is done at the paragraph level. Another
challenging problem is text direction does not honour TEX grouping.

• luatex can provide the most complete solution, as we can manipulate almost freely the
node list, the generated lines, and so on, but bidi text does not work out of the box and
some development is necessary. It also provides tools to properly set left-to-right and
right-to-left page layouts. As LuaTEX-ja shows, vertical typesetting is posible, too. Its
main drawback is font handling is often considered to be less mature than xetex,
mainly in Indic scripts (but there are steps to make HarfBuzz, the xetex font engine,
available in luatex; see <https://github.com/tatzetwerk/luatex-harfbuzz>).

2246 \bbl@trace{Basic (internal) bidi support}

2247 \def\bbl@alscripts{,Arabic,Syriac,Thaana,}

2248 \def\bbl@rscripts{%

2249 ,Imperial Aramaic,Avestan,Cypriot,Hatran,Hebrew,%

2250 Old Hungarian,Old Hungarian,Lydian,Mandaean,Manichaean,%

2251 Manichaean,Meroitic Cursive,Meroitic,Old North Arabian,%

2252 Nabataean,N'Ko,Orkhon,Palmyrene,Inscriptional Pahlavi,%

2253 Psalter Pahlavi,Phoenician,Inscriptional Parthian,Samaritan,%

2254 Old South Arabian,}%

2255 \def\bbl@provide@dirs#1{%

2256 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts\bbl@rscripts}%

2257 \ifin@

2258 \global\bbl@csarg\chardef{wdir@#1}\@ne

2259 \bbl@xin@{\csname bbl@sname@#1\endcsname}{\bbl@alscripts}%

2260 \ifin@

2261 \global\bbl@csarg\chardef{wdir@#1}\tw@ % useless in xetex

2262 \fi

2263 \else

2264 \global\bbl@csarg\chardef{wdir@#1}\z@

2265 \fi}

2266 \def\bbl@switchdir{%

110



2267 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

2268 \bbl@ifunset{bbl@wdir@\languagename}{\bbl@provide@dirs{\languagename}}{}%

2269 \bbl@exp{\\\bbl@setdirs\bbl@cs{wdir@\languagename}}}

2270 \def\bbl@setdirs#1{% TODO - math

2271 \ifcase\bbl@select@type % TODO - strictly, not the right test

2272 \bbl@bodydir{#1}%

2273 \bbl@pardir{#1}%

2274 \fi

2275 \bbl@textdir{#1}}

2276 \ifodd\bbl@engine % luatex=1

2277 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}

2278 \DisableBabelHook{babel-bidi}

2279 \chardef\bbl@thepardir\z@

2280 \def\bbl@getluadir#1{%

2281 \directlua{

2282 if tex.#1dir == 'TLT' then

2283 tex.sprint('0')

2284 elseif tex.#1dir == 'TRT' then

2285 tex.sprint('1')

2286 end}}

2287 \def\bbl@setluadir#1#2#3{% 1=text/par.. 2=\textdir.. 3=0 lr/1 rl

2288 \ifcase#3\relax

2289 \ifcase\bbl@getluadir{#1}\relax\else

2290 #2 TLT\relax

2291 \fi

2292 \else

2293 \ifcase\bbl@getluadir{#1}\relax

2294 #2 TRT\relax

2295 \fi

2296 \fi}

2297 \def\bbl@textdir#1{%

2298 \bbl@setluadir{text}\textdir{#1}% TODO - ?\linedir

2299 \setattribute\bbl@attr@dir{\numexpr\bbl@thepardir*3+#1}}

2300 \def\bbl@pardir#1{\bbl@setluadir{par}\pardir{#1}%

2301 \chardef\bbl@thepardir#1\relax}

2302 \def\bbl@bodydir{\bbl@setluadir{body}\bodydir}

2303 \def\bbl@pagedir{\bbl@setluadir{page}\pagedir}

2304 \def\bbl@dirparastext{\pardir\the\textdir\relax}% %%%%

2305 \else % pdftex=0, xetex=2

2306 \AddBabelHook{babel-bidi}{afterextras}{\bbl@switchdir}

2307 \DisableBabelHook{babel-bidi}

2308 \newcount\bbl@dirlevel

2309 \chardef\bbl@thetextdir\z@

2310 \chardef\bbl@thepardir\z@

2311 \def\bbl@textdir#1{%

2312 \ifcase#1\relax

2313 \chardef\bbl@thetextdir\z@

2314 \bbl@textdir@i\beginL\endL

2315 \else

2316 \chardef\bbl@thetextdir\@ne

2317 \bbl@textdir@i\beginR\endR

2318 \fi}

2319 \def\bbl@textdir@i#1#2{%

2320 \ifhmode

2321 \ifnum\currentgrouplevel>\z@

2322 \ifnum\currentgrouplevel=\bbl@dirlevel

2323 \bbl@error{Multiple bidi settings inside a group}%

2324 {I'll insert a new group, but expect wrong results.}%

2325 \bgroup\aftergroup#2\aftergroup\egroup

111



2326 \else

2327 \ifcase\currentgrouptype\or % 0 bottom

2328 \aftergroup#2% 1 simple {}

2329 \or

2330 \bgroup\aftergroup#2\aftergroup\egroup % 2 hbox

2331 \or

2332 \bgroup\aftergroup#2\aftergroup\egroup % 3 adj hbox

2333 \or\or\or % vbox vtop align

2334 \or

2335 \bgroup\aftergroup#2\aftergroup\egroup % 7 noalign

2336 \or\or\or\or\or\or % output math disc insert vcent mathchoice

2337 \or

2338 \aftergroup#2% 14 \begingroup

2339 \else

2340 \bgroup\aftergroup#2\aftergroup\egroup % 15 adj

2341 \fi

2342 \fi

2343 \bbl@dirlevel\currentgrouplevel

2344 \fi

2345 #1%

2346 \fi}

2347 \def\bbl@pardir#1{\chardef\bbl@thepardir#1\relax}

2348 \let\bbl@bodydir\@gobble

2349 \let\bbl@pagedir\@gobble

2350 \def\bbl@dirparastext{\chardef\bbl@thepardir\bbl@thetextdir}

The following command is executed only if there is a right-to-left script (once). It activates
the \everypar hack for xetex, to properly handle the par direction. Note text and par dirs
are decoupled to some extent (although not completely).

2351 \def\bbl@xebidipar{%

2352 \let\bbl@xebidipar\relax

2353 \TeXXeTstate\@ne

2354 \def\bbl@xeeverypar{%

2355 \ifcase\bbl@thepardir

2356 \ifcase\bbl@thetextdir\else\beginR\fi

2357 \else

2358 {\setbox\z@\lastbox\beginR\box\z@}%

2359 \fi}%

2360 \let\bbl@severypar\everypar

2361 \newtoks\everypar

2362 \everypar=\bbl@severypar

2363 \bbl@severypar{\bbl@xeeverypar\the\everypar}}

2364 \fi

A tool for weak L (mainly digits).

2365 \DeclareRobustCommand\babelsublr[1]{\leavevmode{\bbl@textdir\z@#1}}

10.7 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition file.
This can be done by creating a file with the same name as the language definition file, but
with the extension .cfg. For instance the file norsk.cfg will be loaded when the language
definition file norsk.ldf is loaded.
For plain-based formats we don’t want to override the definition of \loadlocalcfg from
plain.def.

2366 \bbl@trace{Local Language Configuration}

2367 \ifx\loadlocalcfg\@undefined

112



2368 \@ifpackagewith{babel}{noconfigs}%

2369 {\let\loadlocalcfg\@gobble}%

2370 {\def\loadlocalcfg#1{%

2371 \InputIfFileExists{#1.cfg}%

2372 {\typeout{*************************************^^J%

2373 * Local config file #1.cfg used^^J%

2374 *}}%

2375 \@empty}}

2376 \fi

Just to be compatible with LATEX 2.09 we add a few more lines of code:

2377 \ifx\@unexpandable@protect\@undefined

2378 \def\@unexpandable@protect{\noexpand\protect\noexpand}

2379 \long\def\protected@write#1#2#3{%

2380 \begingroup

2381 \let\thepage\relax

2382 #2%

2383 \let\protect\@unexpandable@protect

2384 \edef\reserved@a{\write#1{#3}}%

2385 \reserved@a

2386 \endgroup

2387 \if@nobreak\ifvmode\nobreak\fi\fi}

2388 \fi

2389 〈/core〉
2390 〈∗kernel〉

11 Multiple languages (switch.def)

Plain TEX version 3.0 provides the primitive \language that is used to store the current
language. When used with a pre-3.0 version this function has to be implemented by
allocating a counter.

2391 〈〈Make sure ProvidesFile is defined〉〉
2392 \ProvidesFile{switch.def}[〈〈date〉〉 〈〈version〉〉 Babel switching mechanism]

2393 〈〈Load macros for plain if not LaTeX〉〉
2394 〈〈Define core switching macros〉〉

\adddialect The macro \adddialect can be used to add the name of a dialect or variant language, for
which an already defined hyphenation table can be used.

2395 \def\bbl@version{〈〈version〉〉}
2396 \def\bbl@date{〈〈date〉〉}
2397 \def\adddialect#1#2{%

2398 \global\chardef#1#2\relax

2399 \bbl@usehooks{adddialect}{{#1}{#2}}%

2400 \wlog{\string#1 = a dialect from \string\language#2}}

\bbl@iflanguage executes code only if the language l@ exists. Otherwise raises and error.
The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if casing
(lc/uc) is wrong. It’s intented to fix a long-standing bug when \foreignlanguage and the
like appear in a \MakeXXXcase. However, a lowercase form is not imposed to improve
backward compatibility (perhaps you defined a language named MYLANG, but
unfortunately mixed case names cannot be trapped). Note l@ is encapsulated, so that its
case does not change.

2401 \def\bbl@fixname#1{%

2402 \begingroup

2403 \def\bbl@tempe{l@}%

2404 \edef\bbl@tempd{\noexpand\@ifundefined{\noexpand\bbl@tempe#1}}%

113



2405 \bbl@tempd

2406 {\lowercase\expandafter{\bbl@tempd}%

2407 {\uppercase\expandafter{\bbl@tempd}%

2408 \@empty

2409 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

2410 \uppercase\expandafter{\bbl@tempd}}}%

2411 {\edef\bbl@tempd{\def\noexpand#1{#1}}%

2412 \lowercase\expandafter{\bbl@tempd}}}%

2413 \@empty

2414 \edef\bbl@tempd{\endgroup\def\noexpand#1{#1}}%

2415 \bbl@tempd}

2416 \def\bbl@iflanguage#1{%

2417 \@ifundefined{l@#1}{\@nolanerr{#1}\@gobble}\@firstofone}

\iflanguage Users might want to test (in a private package for instance) which language is currently
active. For this we provide a test macro, \iflanguage, that has three arguments. It checks
whether the first argument is a known language. If so, it compares the first argument with
the value of \language. Then, depending on the result of the comparison, it executes
either the second or the third argument.

2418 \def\iflanguage#1{%

2419 \bbl@iflanguage{#1}{%

2420 \ifnum\csname l@#1\endcsname=\language

2421 \expandafter\@firstoftwo

2422 \else

2423 \expandafter\@secondoftwo

2424 \fi}}

11.1 Selecting the language

\selectlanguage The macro \selectlanguage checks whether the language is already defined before it
performs its actual task, which is to update \language and activate language-specific
definitions.
To allow the call of \selectlanguage either with a control sequence name or with a
simple string as argument, we have to use a trick to delete the optional escape character.
To convert a control sequence to a string, we use the \string primitive. Next we have to
look at the first character of this string and compare it with the escape character. Because
this escape character can be changed by setting the internal integer \escapechar to a
character number, we have to compare this number with the character of the string. To do
this we have to use TEX’s backquote notation to specify the character as a number.
If the first character of the \string’ed argument is the current escape character, the
comparison has stripped this character and the rest in the ‘then’ part consists of the rest of
the control sequence name. Otherwise we know that either the argument is not a control
sequence or \escapechar is set to a value outside of the character range 0–255.
If the user gives an empty argument, we provide a default argument for \string. This
argument should expand to nothing.

2425 \let\bbl@select@type\z@

2426 \edef\selectlanguage{%

2427 \noexpand\protect

2428 \expandafter\noexpand\csname selectlanguage \endcsname}

Because the command \selectlanguage could be used in a moving argument it expands
to \protect\selectlanguage␣. Therefore, we have to make sure that a macro \protect
exists. If it doesn’t it is \let to \relax.

2429 \ifx\@undefined\protect\let\protect\relax\fi

114



As LATEX 2.09 writes to files expanded whereas LATEX2ε takes care not to expand the
arguments of \write statements we need to be a bit clever about the way we add
information to .aux files. Therefore we introduce the macro \xstring which should
expand to the right amount of \string’s.

2430 \ifx\documentclass\@undefined

2431 \def\xstring{\string\string\string}

2432 \else

2433 \let\xstring\string

2434 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of
contents etc. in the correct language environment.

\bbl@pop@language But when the language change happens inside a group the end of the group doesn’t write
anything to the auxiliary files. Therefore we need TEX’s aftergroup mechanism to help us.
The command \aftergroup stores the token immediately following it to be executed when
the current group is closed. So we define a temporary control sequence
\bbl@pop@language to be executed at the end of the group. It calls \bbl@set@language
with the name of the current language as its argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as more levels are
used it is no longer adequate. For that case we need to keep track of the nested languages
using a stack mechanism. This stack is called \bbl@language@stack and initially empty.

2435 \def\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to retrieve
the information afterwards.

\bbl@push@language

\bbl@pop@language

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push function can
be simple:

2436 \def\bbl@push@language{%

2437 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}}

Retrieving information from the stack is a little bit less simple, as we need to remove the
element from the stack while storing it in the macro \languagename. For this we first
define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in \languagename

and stores the rest of the string (delimited by ‘-’) in its third argument.
2438 \def\bbl@pop@lang#1+#2-#3{%

2439 \edef\languagename{#1}\xdef#3{#2}}

The reason for the somewhat weird arrangement of arguments to the helper function is
the fact it is called in the following way. This means that before \bbl@pop@lang is executed
TEX first expands the stack, stored in \bbl@language@stack. The result of that is that the
argument string of \bbl@pop@lang contains one or more language names, each followed
by a ‘+’-sign (zero language names won’t occur as this macro will only be called after
something has been pushed on the stack) followed by the ‘-’-sign and finally the reference
to the stack.

2440 \let\bbl@ifrestoring\@secondoftwo

2441 \def\bbl@pop@language{%

2442 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack

2443 \let\bbl@ifrestoring\@firstoftwo

2444 \expandafter\bbl@set@language\expandafter{\languagename}%

2445 \let\bbl@ifrestoring\@secondoftwo}

Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs switching.

115



2446 \expandafter\def\csname selectlanguage \endcsname#1{%

2447 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\tw@\fi

2448 \bbl@push@language

2449 \aftergroup\bbl@pop@language

2450 \bbl@set@language{#1}}

\bbl@set@language The macro \bbl@set@language takes care of switching the language environment and of
writing entries on the auxiliary files. For historial reasons, language names can be either
language of \language. To catch either form a trick is used, but unfortunately as a side
effect the catcodes of letters in \languagename are not well defined. The list of auxiliary
files can be extended by redefining \BabelContentsFiles, but make sure they are loaded
inside a group (as aux, toc, lof, and lot do) or the last language of the document will
remain active afterwards.
We also write a command to change the current language in the auxiliary files.

2451 \def\BabelContentsFiles{toc,lof,lot}

2452 \def\bbl@set@language#1{%

2453 \edef\languagename{%

2454 \ifnum\escapechar=\expandafter`\string#1\@empty

2455 \else\string#1\@empty\fi}%

2456 \select@language{\languagename}%

2457 \expandafter\ifx\csname date\languagename\endcsname\relax\else

2458 \if@filesw

2459 \protected@write\@auxout{}{\string\babel@aux{\languagename}{}}%

2460 \bbl@usehooks{write}{}%

2461 \fi

2462 \fi}

2463 \def\select@language#1{%

2464 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi

2465 \edef\languagename{#1}%

2466 \bbl@fixname\languagename

2467 \bbl@iflanguage\languagename{%

2468 \expandafter\ifx\csname date\languagename\endcsname\relax

2469 \bbl@error

2470 {Unknown language `#1'. Either you have\\%

2471 misspelled its name, it has not been installed,\\%

2472 or you requested it in a previous run. Fix its name,\\%

2473 install it or just rerun the file, respectively. In\\%

2474 some cases, you may need to remove the aux file}%

2475 {You may proceed, but expect wrong results}%

2476 \else

2477 \let\bbl@select@type\z@

2478 \expandafter\bbl@switch\expandafter{\languagename}%

2479 \fi}}

2480 \def\babel@aux#1#2{%

2481 \expandafter\ifx\csname date#1\endcsname\relax

2482 \expandafter\ifx\csname bbl@auxwarn@#1\endcsname\relax

2483 \@namedef{bbl@auxwarn@#1}{}%

2484 \bbl@warning

2485 {Unknown language `#1'. Very likely you\\%

2486 requested it in a previous run. Expect some\\%

2487 wrong results in this run, which should vanish\\%

2488 in the next one. Reported}%

2489 \fi

2490 \else

2491 \select@language{#1}%

2492 \bbl@foreach\BabelContentsFiles{%

2493 \@writefile{##1}{\babel@toc{#1}{#2}}}% %% TODO - ok in plain?

2494 \fi}

116



2495 \def\babel@toc#1#2{%

2496 \select@language{#1}}

A bit of optimization. Select in heads/foots the language only if necessary. The real thing is
in babel.def.

2497 \let\select@language@x\select@language

First, check if the user asks for a known language. If so, update the value of \language and
call \originalTeX to bring TEX in a certain pre-defined state.
The name of the language is stored in the control sequence \languagename.
Then we have to redefine \originalTeX to compensate for the things that have been
activated. To save memory space for the macro definition of \originalTeX, we construct
the control sequence name for the \noextras〈lang〉 command at definition time by
expanding the \csname primitive.
Now activate the language-specific definitions. This is done by constructing the names of
three macros by concatenating three words with the argument of \selectlanguage, and
calling these macros.
The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat
different. First we save their current values, then we check if \〈lang〉hyphenmins is
defined. If it is not, we set default values (2 and 3), otherwise the values in
\〈lang〉hyphenmins will be used.

2498 \newif\ifbbl@usedategroup

2499 \def\bbl@switch#1{%

2500 \originalTeX

2501 \expandafter\def\expandafter\originalTeX\expandafter{%

2502 \csname noextras#1\endcsname

2503 \let\originalTeX\@empty

2504 \babel@beginsave}%

2505 \bbl@usehooks{afterreset}{}%

2506 \languageshorthands{none}%

2507 \ifcase\bbl@select@type

2508 \ifhmode

2509 \hskip\z@skip % trick to ignore spaces

2510 \csname captions#1\endcsname\relax

2511 \csname date#1\endcsname\relax

2512 \loop\ifdim\lastskip>\z@\unskip\repeat\unskip

2513 \else

2514 \csname captions#1\endcsname\relax

2515 \csname date#1\endcsname\relax

2516 \fi

2517 \else\ifbbl@usedategroup

2518 \bbl@usedategroupfalse

2519 \ifhmode

2520 \hskip\z@skip % trick to ignore spaces

2521 \csname date#1\endcsname\relax

2522 \loop\ifdim\lastskip>\z@\unskip\repeat\unskip

2523 \else

2524 \csname date#1\endcsname\relax

2525 \fi

2526 \fi\fi

2527 \bbl@usehooks{beforeextras}{}%

2528 \csname extras#1\endcsname\relax

2529 \bbl@usehooks{afterextras}{}%

2530 \ifcase\bbl@opt@hyphenmap\or

2531 \def\BabelLower##1##2{\lccode##1=##2\relax}%

2532 \ifnum\bbl@hymapsel>4\else

2533 \csname\languagename @bbl@hyphenmap\endcsname

117



2534 \fi

2535 \chardef\bbl@opt@hyphenmap\z@

2536 \else

2537 \ifnum\bbl@hymapsel>\bbl@opt@hyphenmap\else

2538 \csname\languagename @bbl@hyphenmap\endcsname

2539 \fi

2540 \fi

2541 \global\let\bbl@hymapsel\@cclv

2542 \bbl@patterns{#1}%

2543 \babel@savevariable\lefthyphenmin

2544 \babel@savevariable\righthyphenmin

2545 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

2546 \set@hyphenmins\tw@\thr@@\relax

2547 \else

2548 \expandafter\expandafter\expandafter\set@hyphenmins

2549 \csname #1hyphenmins\endcsname\relax

2550 \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document which
mixes left-to-right and right-to-left typesetting you have to use this environment in order to
let things work as you expect them to.
The \ignorespaces command is necessary to hide the environment when it is entered in
horizontal mode.

2551 \long\def\otherlanguage#1{%

2552 \ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel\thr@@\fi

2553 \csname selectlanguage \endcsname{#1}%

2554 \ignorespaces}

The \endotherlanguage part of the environment tries to hide itself when it is called in
horizontal mode.

2555 \long\def\endotherlanguage{%

2556 \global\@ignoretrue\ignorespaces}

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from a
different language needs to be typeset, but without changing the translation of words such
as ‘figure’. This environment makes use of \foreign@language.

2557 \expandafter\def\csname otherlanguage*\endcsname#1{%

2558 \ifnum\bbl@hymapsel=\@cclv\chardef\bbl@hymapsel4\relax\fi

2559 \foreign@language{#1}}

At the end of the environment we need to switch off the extra definitions. The grouping
mechanism of the environment will take care of resetting the correct hyphenation rules
and “extras”.

2560 \expandafter\let\csname endotherlanguage*\endcsname\relax

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage
command. This command takes two arguments, the first argument is the name of the
language to use for typesetting the text specified in the second argument.
Unlike \selectlanguage this command doesn’t switch everything, it only switches the
hyphenation rules and the extra definitions for the language specified. It does this within a
group and assumes the \extras〈lang〉 command doesn’t make any \global changes. The
coding is very similar to part of \selectlanguage.
\bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to
be a ‘text’ command, and therefore it must emit a \leavevmode, but it does not, and
therefore the indent is placed on the opposite margin. For backward compatibility,
however, it is done only if a right-to-left script is requested; otherwise, it is no-op.

118



(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a
different script direction, while preserving the paragraph format (thank the braces around
\par, things like \hangindent are not reset). Do not use it in production, because its
semantics and its syntax may change (and very likely will, or even it could be removed
altogether). Currently it enters in vmode and then selects the language (which in turn sets
the paragraph direction).
(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine
\BabelText which by default does nothing. Its behavior is not well defined yet. So, use it
in horizontal mode only if you do not want surprises.
In other words, at the beginning of a paragraph \foreignlanguage enters into hmode
with the surrounding lang, and with \foreignlanguage* with the new lang.

2561 \providecommand\bbl@beforeforeign{}

2562 \edef\foreignlanguage{%

2563 \noexpand\protect

2564 \expandafter\noexpand\csname foreignlanguage \endcsname}

2565 \expandafter\def\csname foreignlanguage \endcsname{%

2566 \@ifstar\bbl@foreign@s\bbl@foreign@x}

2567 \def\bbl@foreign@x#1#2{%

2568 \begingroup

2569 \let\BabelText\@firstofone

2570 \bbl@beforeforeign

2571 \foreign@language{#1}%

2572 \bbl@usehooks{foreign}{}%

2573 \BabelText{#2}% Now in horizontal mode!

2574 \endgroup}

2575 \def\bbl@foreign@s#1#2{% TODO - \shapemode, \@setpar, ?\@@par

2576 \begingroup

2577 {\par}%

2578 \let\BabelText\@firstofone

2579 \foreign@language{#1}%

2580 \bbl@usehooks{foreign*}{}%

2581 \bbl@dirparastext

2582 \BabelText{#2}% Still in vertical mode!

2583 {\par}%

2584 \endgroup}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environment.
First we need to store the name of the language and check that it is a known language.
Then it just calls bbl@switch.

2585 \def\foreign@language#1{%

2586 \edef\languagename{#1}%

2587 \bbl@fixname\languagename

2588 \bbl@iflanguage\languagename{%

2589 \expandafter\ifx\csname date\languagename\endcsname\relax

2590 \bbl@warning

2591 {Unknown language `#1'. Either you have\\%

2592 misspelled its name, it has not been installed,\\%

2593 or you requested it in a previous run. Fix its name,\\%

2594 install it or just rerun the file, respectively.\\%

2595 I'll proceed, but expect wrong results.\\%

2596 Reported}%

2597 \fi

2598 \let\bbl@select@type\@ne

2599 \expandafter\bbl@switch\expandafter{\languagename}}}

\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If special
hyphenation patterns are available specifically for the current font encoding, use them
instead of the default.

119



It also sets hyphenation exceptions, but only once, because they are global (here language
\lccode’s has been set, too). \bbl@hyphenation@ is set to relax until the very first
\babelhyphenation, so do nothing with this value. If the exceptions for a language (by its
number, not its name, so that :ENC is taken into account) has been set, then use
\hyphenation with both global and language exceptions and empty the latter to mark they
must not be set again.

2600 \let\bbl@hyphlist\@empty

2601 \let\bbl@hyphenation@\relax

2602 \let\bbl@pttnlist\@empty

2603 \let\bbl@patterns@\relax

2604 \let\bbl@hymapsel=\@cclv

2605 \def\bbl@patterns#1{%

2606 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

2607 \csname l@#1\endcsname

2608 \edef\bbl@tempa{#1}%

2609 \else

2610 \csname l@#1:\f@encoding\endcsname

2611 \edef\bbl@tempa{#1:\f@encoding}%

2612 \fi

2613 \@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%

2614 \@ifundefined{bbl@hyphenation@}{}{% Can be \relax!

2615 \begingroup

2616 \bbl@xin@{,\number\language,}{,\bbl@hyphlist}%

2617 \ifin@\else

2618 \@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%

2619 \hyphenation{%

2620 \bbl@hyphenation@

2621 \@ifundefined{bbl@hyphenation@#1}%

2622 \@empty

2623 {\space\csname bbl@hyphenation@#1\endcsname}}%

2624 \xdef\bbl@hyphlist{\bbl@hyphlist\number\language,}%

2625 \fi

2626 \endgroup}}

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules. This
environment does not change \languagename and when the hyphenation rules specified
were not loaded it has no effect. Note however, \lccode’s and font encodings are not set at
all, so in most cases you should use otherlanguage*.

2627 \def\hyphenrules#1{%

2628 \edef\bbl@tempf{#1}%

2629 \bbl@fixname\bbl@tempf

2630 \bbl@iflanguage\bbl@tempf{%

2631 \expandafter\bbl@patterns\expandafter{\bbl@tempf}%

2632 \languageshorthands{none}%

2633 \expandafter\ifx\csname\bbl@tempf hyphenmins\endcsname\relax

2634 \set@hyphenmins\tw@\thr@@\relax

2635 \else

2636 \expandafter\expandafter\expandafter\set@hyphenmins

2637 \csname\bbl@tempf hyphenmins\endcsname\relax

2638 \fi}}

2639 \let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to provide
a default setting for the hyphenation parameters \lefthyphenmin and \righthyphenmin.
If the macro \〈lang〉hyphenmins is already defined this command has no effect.

2640 \def\providehyphenmins#1#2{%

2641 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

120



2642 \@namedef{#1hyphenmins}{#2}%

2643 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects two values
as its argument.

2644 \def\set@hyphenmins#1#2{%

2645 \lefthyphenmin#1\relax

2646 \righthyphenmin#2\relax}

\ProvidesLanguage The identification code for each file is something that was introduced in LATEX2ε. When the
command \ProvidesFile does not exist, a dummy definition is provided temporarily. For
use in the language definition file the command \ProvidesLanguage is defined by babel.
Depending on the format, ie, on if the former is defined, we use a similar definition or not.

2647 \ifx\ProvidesFile\@undefined

2648 \def\ProvidesLanguage#1[#2 #3 #4]{%

2649 \wlog{Language: #1 #4 #3 <#2>}%

2650 }

2651 \else

2652 \def\ProvidesLanguage#1{%

2653 \begingroup

2654 \catcode`\ 10 %

2655 \@makeother\/%

2656 \@ifnextchar[%]

2657 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}

2658 \def\@provideslanguage#1[#2]{%

2659 \wlog{Language: #1 #2}%

2660 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%

2661 \endgroup}

2662 \fi

\LdfInit This macro is defined in two versions. The first version is to be part of the ‘kernel’ of babel,
ie. the part that is loaded in the format; the second version is defined in babel.def. The
version in the format just checks the category code of the ampersand and then loads
babel.def.
The category code of the ampersand is restored and the macro calls itself again with the
new definition from babel.def

2663 \def\LdfInit{%

2664 \chardef\atcatcode=\catcode`\@

2665 \catcode`\@=11\relax

2666 \input babel.def\relax

2667 \catcode`\@=\atcatcode \let\atcatcode\relax

2668 \LdfInit}

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to be
expandable we \let it to \@empty instead of \relax.

2669 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro
which initialises the save mechanism, \babel@beginsave, is not considered to be
undefined.

2670 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

A few macro names are reserved for future releases of babel, which will use the concept of
‘locale’:

2671 \providecommand\setlocale{%

2672 \bbl@error

121



2673 {Not yet available}%

2674 {Find an armchair, sit down and wait}}

2675 \let\uselocale\setlocale

2676 \let\locale\setlocale

2677 \let\selectlocale\setlocale

2678 \let\textlocale\setlocale

2679 \let\textlanguage\setlocale

2680 \let\languagetext\setlocale

11.2 Errors

\@nolanerr

\@nopatterns

The babel package will signal an error when a documents tries to select a language that
hasn’t been defined earlier. When a user selects a language for which no hyphenation
patterns were loaded into the format he will be given a warning about that fact. We revert
to the patterns for \language=0 in that case. In most formats that will be (US)english, but it
might also be empty.

\@noopterr When the package was loaded without options not everything will work as expected. An
error message is issued in that case.
When the format knows about \PackageError it must be LATEX2ε, so we can safely use its
error handling interface. Otherwise we’ll have to ‘keep it simple’.

2681 \edef\bbl@nulllanguage{\string\language=0}

2682 \ifx\PackageError\@undefined

2683 \def\bbl@error#1#2{%

2684 \begingroup

2685 \newlinechar=`\^^J

2686 \def\\{^^J(babel) }%

2687 \errhelp{#2}\errmessage{\\#1}%

2688 \endgroup}

2689 \def\bbl@warning#1{%

2690 \begingroup

2691 \newlinechar=`\^^J

2692 \def\\{^^J(babel) }%

2693 \message{\\#1}%

2694 \endgroup}

2695 \def\bbl@info#1{%

2696 \begingroup

2697 \newlinechar=`\^^J

2698 \def\\{^^J}%

2699 \wlog{#1}%

2700 \endgroup}

2701 \else

2702 \def\bbl@error#1#2{%

2703 \begingroup

2704 \def\\{\MessageBreak}%

2705 \PackageError{babel}{#1}{#2}%

2706 \endgroup}

2707 \def\bbl@warning#1{%

2708 \begingroup

2709 \def\\{\MessageBreak}%

2710 \PackageWarning{babel}{#1}%

2711 \endgroup}

2712 \def\bbl@info#1{%

2713 \begingroup

2714 \def\\{\MessageBreak}%

2715 \PackageInfo{babel}{#1}%

2716 \endgroup}

2717 \fi

122



2718 \@ifpackagewith{babel}{silent}

2719 {\let\bbl@info\@gobble

2720 \let\bbl@warning\@gobble}

2721 {}

2722 \def\bbl@nocaption{\protect\bbl@nocaption@i}

2723 \def\bbl@nocaption@i#1#2{% 1: text to be printed 2: caption macro \langXname

2724 \global\@namedef{#2}{\textbf{?#1?}}%

2725 \@nameuse{#2}%

2726 \bbl@warning{%

2727 \@backslashchar#2 not set. Please, define\\%

2728 it in the preamble with something like:\\%

2729 \string\renewcommand\@backslashchar#2{..}\\%

2730 Reported}}

2731 \def\@nolanerr#1{%

2732 \bbl@error

2733 {You haven't defined the language #1\space yet}%

2734 {Your command will be ignored, type <return> to proceed}}

2735 \def\@nopatterns#1{%

2736 \bbl@warning

2737 {No hyphenation patterns were preloaded for\\%

2738 the language `#1' into the format.\\%

2739 Please, configure your TeX system to add them and\\%

2740 rebuild the format. Now I will use the patterns\\%

2741 preloaded for \bbl@nulllanguage\space instead}}

2742 \let\bbl@usehooks\@gobbletwo

2743 〈/kernel〉
2744 〈∗patterns〉

12 Loading hyphenation patterns

The following code is meant to be read by iniTEX because it should instruct TEX to read
hyphenation patterns. To this end the docstrip option patterns can be used to include
this code in the file hyphen.cfg. Code is written with lower level macros.
We want to add a message to the message LATEX 2.09 puts in the \everyjob register. This
could be done by the following code:

\let\orgeveryjob\everyjob

\def\everyjob#1{%

\orgeveryjob{#1}%

\orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{%

hyphenation patterns for \the\loaded@patterns loaded.}}%

\let\everyjob\orgeveryjob\let\orgeveryjob\@undefined}

The code above redefines the control sequence \everyjob in order to be able to add
something to the current contents of the register. This is necessary because the processing
of hyphenation patterns happens long before LATEX fills the register.
There are some problems with this approach though.

• When someone wants to use several hyphenation patterns with SLiTEX the above
scheme won’t work. The reason is that SLiTEX overwrites the contents of the \everyjob
register with its own message.

• Plain TEX does not use the \everyjob register so the message would not be displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed when creating
a new format file there is one command that is sure to be used, \dump. Therefore the
original \dump is saved in \org@dump and a new definition is supplied.

123



To make sure that LATEX 2.09 executes the \@begindocumenthook we would want to alter
\begin{document}, but as this done too often already, we add the new code at the front of
\@preamblecmds. But we can only do that after it has been defined, so we add this piece of
code to \dump.
This new definition starts by adding an instruction to write a message on the terminal and
in the transcript file to inform the user of the preloaded hyphenation patterns.
Then everything is restored to the old situation and the format is dumped.

2745 〈〈Make sure ProvidesFile is defined〉〉
2746 \ProvidesFile{hyphen.cfg}[〈〈date〉〉 〈〈version〉〉 Babel hyphens]

2747 \xdef\bbl@format{\jobname}

2748 \ifx\AtBeginDocument\@undefined

2749 \def\@empty{}

2750 \let\orig@dump\dump

2751 \def\dump{%

2752 \ifx\@ztryfc\@undefined

2753 \else

2754 \toks0=\expandafter{\@preamblecmds}%

2755 \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}%

2756 \def\@begindocumenthook{}%

2757 \fi

2758 \let\dump\orig@dump\let\orig@dump\@undefined\dump}

2759 \fi

2760 〈〈Define core switching macros〉〉

\process@line Each line in the file language.dat is processed by \process@line after it is read. The first
thing this macro does is to check whether the line starts with =. When the first token of a
line is an =, the macro \process@synonym is called; otherwise the macro
\process@language will continue.

2761 \def\process@line#1#2 #3 #4 {%

2762 \ifx=#1%

2763 \process@synonym{#2}%

2764 \else

2765 \process@language{#1#2}{#3}{#4}%

2766 \fi

2767 \ignorespaces}

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token register to
begin with. \bbl@languages is also set to empty.

2768 \toks@{}

2769 \def\bbl@languages{}

When no languages have been loaded yet, the name following the = will be a synonym for
hyphenation register 0. So, it is stored in a token register and executed when the first
pattern file has been processed. (The \relax just helps to the \if below catching
synonyms without a language.)
Otherwise the name will be a synonym for the language loaded last.
We also need to copy the hyphenmin parameters for the synonym.

2770 \def\process@synonym#1{%

2771 \ifnum\last@language=\m@ne

2772 \toks@\expandafter{\the\toks@\relax\process@synonym{#1}}%

2773 \else

2774 \expandafter\chardef\csname l@#1\endcsname\last@language

2775 \wlog{\string\l@#1=\string\language\the\last@language}%

2776 \expandafter\let\csname #1hyphenmins\expandafter\endcsname

2777 \csname\languagename hyphenmins\endcsname

2778 \let\bbl@elt\relax

124



2779 \edef\bbl@languages{\bbl@languages\bbl@elt{#1}{\the\last@language}{}{}}%

2780 \fi}

\process@language The macro \process@language is used to process a non-empty line from the ‘configuration
file’. It has three arguments, each delimited by white space. The first argument is the
‘name’ of a language; the second is the name of the file that contains the patterns. The
optional third argument is the name of a file containing hyphenation exceptions.
The first thing to do is call \addlanguage to allocate a pattern register and to make that
register ‘active’. Then the pattern file is read.
For some hyphenation patterns it is needed to load them with a specific font encoding
selected. This can be specified in the file language.dat by adding for instance ‘:T1’ to the
name of the language. The macro \bbl@get@enc extracts the font encoding from the
language name and stores it in \bbl@hyph@enc. The latter can be used in hyphenation files
if you need to set a behavior depending on the given encoding (it is set to empty if no
encoding is given).
Pattern files may contain assignments to \lefthyphenmin and \righthyphenmin. TEX does
not keep track of these assignments. Therefore we try to detect such assignments and store
them in the \〈lang〉hyphenmins macro. When no assignments were made we provide a
default setting.
Some pattern files contain changes to the \lccode en \uccode arrays. Such changes should
remain local to the language; therefore we process the pattern file in a group; the
\patterns command acts globally so its effect will be remembered.
Then we globally store the settings of \lefthyphenmin and \righthyphenmin and close the
group.
When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third argument is not
empty and when it does not contain a space token. (Note however there is no need to save
hyphenation exceptions into the format.)
\bbl@languages saves a snapshot of the loaded languagues in the form
\bbl@elt{〈language-name〉}{〈number〉} {〈patterns-file〉}{〈exceptions-file〉}. Note the last
2 arguments are empty in ‘dialects’ defined in language.dat with =. Note also the
language name can have encoding info.
Finally, if the counter \language is equal to zero we execute the synonyms stored.

2781 \def\process@language#1#2#3{%

2782 \expandafter\addlanguage\csname l@#1\endcsname

2783 \expandafter\language\csname l@#1\endcsname

2784 \edef\languagename{#1}%

2785 \bbl@hook@everylanguage{#1}%

2786 \bbl@get@enc#1::\@@@

2787 \begingroup

2788 \lefthyphenmin\m@ne

2789 \bbl@hook@loadpatterns{#2}%

2790 \ifnum\lefthyphenmin=\m@ne

2791 \else

2792 \expandafter\xdef\csname #1hyphenmins\endcsname{%

2793 \the\lefthyphenmin\the\righthyphenmin}%

2794 \fi

2795 \endgroup

2796 \def\bbl@tempa{#3}%

2797 \ifx\bbl@tempa\@empty\else

2798 \bbl@hook@loadexceptions{#3}%

2799 \fi

2800 \let\bbl@elt\relax

2801 \edef\bbl@languages{%

2802 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa}}%

2803 \ifnum\the\language=\z@

125



2804 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

2805 \set@hyphenmins\tw@\thr@@\relax

2806 \else

2807 \expandafter\expandafter\expandafter\set@hyphenmins

2808 \csname #1hyphenmins\endcsname

2809 \fi

2810 \the\toks@

2811 \toks@{}%

2812 \fi}

\bbl@get@enc

\bbl@hyph@enc

The macro \bbl@get@enc extracts the font encoding from the language name and stores it
in \bbl@hyph@enc. It uses delimited arguments to achieve this.

2813 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way.
Besides luatex, format specific configuration files are taken into account.

2814 \def\bbl@hook@everylanguage#1{}

2815 \def\bbl@hook@loadpatterns#1{\input #1\relax}

2816 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns

2817 \let\bbl@hook@loadkernel\bbl@hook@loadpatterns

2818 \begingroup

2819 \def\AddBabelHook#1#2{%

2820 \expandafter\ifx\csname bbl@hook@#2\endcsname\relax

2821 \def\next{\toks1}%

2822 \else

2823 \def\next{\expandafter\gdef\csname bbl@hook@#2\endcsname####1}%

2824 \fi

2825 \next}

2826 \ifx\directlua\@undefined

2827 \ifx\XeTeXinputencoding\@undefined\else

2828 \input xebabel.def

2829 \fi

2830 \else

2831 \input luababel.def

2832 \fi

2833 \openin1 = babel-\bbl@format.cfg

2834 \ifeof1

2835 \else

2836 \input babel-\bbl@format.cfg\relax

2837 \fi

2838 \closein1

2839 \endgroup

2840 \bbl@hook@loadkernel{switch.def}

\readconfigfile The configuration file can now be opened for reading.

2841 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be
informed about this.

2842 \def\languagename{english}%

2843 \ifeof1

2844 \message{I couldn't find the file language.dat,\space

2845 I will try the file hyphen.tex}

2846 \input hyphen.tex\relax

2847 \chardef\l@english\z@

2848 \else

126



Pattern registers are allocated using count register \last@language. Its initial value is 0.
The definition of the macro \newlanguage is such that it first increments the count register
and then defines the language. In order to have the first patterns loaded in pattern register
number 0 we initialize \last@language with the value−1.

2849 \last@language\m@ne

We now read lines from the file until the end is found

2850 \loop

While reading from the input, it is useful to switch off recognition of the end-of-line
character. This saves us stripping off spaces from the contents of the control sequence.

2851 \endlinechar\m@ne

2852 \read1 to \bbl@line

2853 \endlinechar`\^^M

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add
3 space characters to the end of \bbl@line. This is needed to be able to recognize the
arguments of \process@line later on. The default language should be the very first one.

2854 \if T\ifeof1F\fi T\relax

2855 \ifx\bbl@line\@empty\else

2856 \edef\bbl@line{\bbl@line\space\space\space}%

2857 \expandafter\process@line\bbl@line\relax

2858 \fi

2859 \repeat

Check for the end of the file. We must reverse the test for \ifeof without \else. Then
reactivate the default patterns.

2860 \begingroup

2861 \def\bbl@elt#1#2#3#4{%

2862 \global\language=#2\relax

2863 \gdef\languagename{#1}%

2864 \def\bbl@elt##1##2##3##4{}}%

2865 \bbl@languages

2866 \endgroup

2867 \fi

and close the configuration file.

2868 \closein1

We add a message about the fact that babel is loaded in the format and with which
language patterns to the \everyjob register.

2869 \if/\the\toks@/\else

2870 \errhelp{language.dat loads no language, only synonyms}

2871 \errmessage{Orphan language synonym}

2872 \fi

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally
load switch.def, but the latter is not required and the line inputting it may be commented
out.

2873 \let\bbl@line\@undefined

2874 \let\process@line\@undefined

2875 \let\process@synonym\@undefined

2876 \let\process@language\@undefined

2877 \let\bbl@get@enc\@undefined

2878 \let\bbl@hyph@enc\@undefined

2879 \let\bbl@tempa\@undefined

2880 \let\bbl@hook@loadkernel\@undefined

2881 \let\bbl@hook@everylanguage\@undefined

127



2882 \let\bbl@hook@loadpatterns\@undefined

2883 \let\bbl@hook@loadexceptions\@undefined

2884 〈/patterns〉

Here the code for iniTEX ends.

13 Font handling with fontspec

Add the bidi handler just before luaoftload, which is loaded by default by LaTeX. Just in
case, consider the possibility it has not been loaded. First, a couple of definitions related to
bidi [misplaced].

2885 〈〈∗More package options〉〉 ≡
2886 \ifodd\bbl@engine

2887 \DeclareOption{bidi=basic-r}%

2888 {\ExecuteOptions{bidi=basic}}

2889 \DeclareOption{bidi=basic}%

2890 {\let\bbl@beforeforeign\leavevmode

2891 \newattribute\bbl@attr@dir

2892 \bbl@exp{\output{\bodydir\pagedir\the\output}}%

2893 \AtEndOfPackage{\EnableBabelHook{babel-bidi}}}

2894 \else

2895 \DeclareOption{bidi=basic-r}%

2896 {\ExecuteOptions{bidi=basic}}

2897 \DeclareOption{bidi=basic}%

2898 {\bbl@error

2899 {The bidi method `basic' is available only in\\%

2900 luatex. I'll continue with `bidi=default', so\\%

2901 expect wrong results}%

2902 {See the manual for further details.}%

2903 \let\bbl@beforeforeign\leavevmode

2904 \AtEndOfPackage{%

2905 \EnableBabelHook{babel-bidi}%

2906 \bbl@xebidipar}}

2907 \fi

2908 \DeclareOption{bidi=default}%

2909 {\let\bbl@beforeforeign\leavevmode

2910 \ifodd\bbl@engine

2911 \newattribute\bbl@attr@dir

2912 \bbl@exp{\output{\bodydir\pagedir\the\output}}%

2913 \fi

2914 \AtEndOfPackage{%

2915 \EnableBabelHook{babel-bidi}%

2916 \ifodd\bbl@engine\else

2917 \bbl@xebidipar

2918 \fi}}

2919 〈〈/More package options〉〉

With explicit languages, we could define the font at once, but we don’t. Just wait and see if
the language is actually activated.

2920 〈〈∗Font selection〉〉 ≡
2921 \bbl@trace{Font handling with fontspec}

2922 \@onlypreamble\babelfont

2923 \newcommand\babelfont[2][]{% 1=langs/scripts 2=fam

2924 \edef\bbl@tempa{#1}%

2925 \def\bbl@tempb{#2}%

2926 \ifx\fontspec\@undefined

2927 \usepackage{fontspec}%

128



2928 \fi

2929 \EnableBabelHook{babel-fontspec}%

2930 \bbl@bblfont}

2931 \newcommand\bbl@bblfont[2][]{% 1=features 2=fontname

2932 \bbl@ifunset{\bbl@tempb family}{\bbl@providefam{\bbl@tempb}}{}%

2933 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

2934 \expandafter\bbl@ifblank\expandafter{\bbl@tempa}%

2935 {\bbl@csarg\edef{\bbl@tempb dflt@}{<>{#1}{#2}}% save bbl@rmdflt@

2936 \bbl@exp{%

2937 \let\<bbl@\bbl@tempb dflt@\languagename>\<bbl@\bbl@tempb dflt@>%

2938 \\\bbl@font@set\<bbl@\bbl@tempb dflt@\languagename>%

2939 \<\bbl@tempb default>\<\bbl@tempb family>}}%

2940 {\bbl@foreach\bbl@tempa{% ie bbl@rmdflt@lang / *scrt

2941 \bbl@csarg\def{\bbl@tempb dflt@##1}{<>{#1}{#2}}}}}%

If the family in the previous command does not exist, it must be defined. Here is how:
2942 \def\bbl@providefam#1{%

2943 \bbl@exp{%

2944 \\\newcommand\<#1default>{}% Just define it

2945 \\\bbl@add@list\\\bbl@font@fams{#1}%

2946 \\\DeclareRobustCommand\<#1family>{%

2947 \\\not@math@alphabet\<#1family>\relax

2948 \\\fontfamily\<#1default>\\\selectfont}%

2949 \\\DeclareTextFontCommand{\<text#1>}{\<#1family>}}}

The following macro is activated when the hook babel-fontspec is enabled.
2950 \def\bbl@switchfont{%

2951 \bbl@ifunset{bbl@lsys@\languagename}{\bbl@provide@lsys{\languagename}}{}%

2952 \bbl@exp{% eg Arabic -> arabic

2953 \lowercase{\edef\\\bbl@tempa{\bbl@cs{sname@\languagename}}}}%

2954 \bbl@foreach\bbl@font@fams{%

2955 \bbl@ifunset{bbl@##1dflt@\languagename}% (1) language?

2956 {\bbl@ifunset{bbl@##1dflt@*\bbl@tempa}% (2) from script?

2957 {\bbl@ifunset{bbl@##1dflt@}% 2=F - (3) from generic?

2958 {}% 123=F - nothing!

2959 {\bbl@exp{% 3=T - from generic

2960 \global\let\<bbl@##1dflt@\languagename>%

2961 \<bbl@##1dflt@>}}}%

2962 {\bbl@exp{% 2=T - from script

2963 \global\let\<bbl@##1dflt@\languagename>%

2964 \<bbl@##1dflt@*\bbl@tempa>}}}%

2965 {}}% 1=T - language, already defined

2966 \def\bbl@tempa{%

2967 \bbl@warning{The current font is not a standard family:\\%

2968 \fontname\font\\%

2969 Script and Language are not applied. Consider defining a\\%

2970 new family with \string\babelfont. Reported}}%

2971 \bbl@foreach\bbl@font@fams{% don't gather with prev for

2972 \bbl@ifunset{bbl@##1dflt@\languagename}%

2973 {\bbl@cs{famrst@##1}%

2974 \global\bbl@csarg\let{famrst@##1}\relax}%

2975 {\bbl@exp{% order is relevant

2976 \\\bbl@add\\\originalTeX{%

2977 \\\bbl@font@rst{\bbl@cs{##1dflt@\languagename}}%

2978 \<##1default>\<##1family>{##1}}%

2979 \\\bbl@font@set\<bbl@##1dflt@\languagename>% the main part!

2980 \<##1default>\<##1family>}}}%

2981 \bbl@ifrestoring{}{\bbl@tempa}}%

Now the macros defining the font with fontspec.

129



When there are repeated keys in fontspec, the last value wins. So, we just place the ini
settings at the beginning, and user settings will take precedence. We must deactivate
temporarily \bbl@mapselect because \selectfont is called internally when a font is
defined.

2982 \def\bbl@font@set#1#2#3{% eg \bbl@rmdflt@lang \rmdefault \rmfamily

2983 \bbl@xin@{<>}{#1}%

2984 \ifin@

2985 \bbl@exp{\\\bbl@fontspec@set\\#1\expandafter\@gobbletwo#1}%

2986 \fi

2987 \bbl@exp{%

2988 \def\\#2{#1}% eg, \rmdefault{\bbl@rmdflt@lang}

2989 \\\bbl@ifsamestring{#2}{\f@family}{\\#3\let\\\bbl@tempa\relax}{}}}

2990 \def\bbl@fontspec@set#1#2#3{% eg \bbl@rmdflt@lang fnt-opt fnt-nme

2991 \let\bbl@tempe\bbl@mapselect

2992 \let\bbl@mapselect\relax

2993 \bbl@exp{\<fontspec_set_family:Nnn>\\#1%

2994 {\bbl@cs{lsys@\languagename},#2}}{#3}%

2995 \let\bbl@mapselect\bbl@tempe

2996 \bbl@toglobal#1}%

font@rst and famrst are only used when there is no global settings, to save and restore de
previous families. Not really necessary, but done for optimization.

2997 \def\bbl@font@rst#1#2#3#4{%

2998 \bbl@csarg\def{famrst@#4}{\bbl@font@set{#1}#2#3}}

The default font families. They are eurocentric, but the list can be expanded easily with
\babelfont.

2999 \def\bbl@font@fams{rm,sf,tt}

The old tentative way. Short and preverved for compatibility, but deprecated. Note there is
no direct alternative for \babelFSfeatures. The reason in explained in the user guide, but
essentially – that was not the way to go :-).

3000 \newcommand\babelFSstore[2][]{%

3001 \bbl@ifblank{#1}%

3002 {\bbl@csarg\def{sname@#2}{Latin}}%

3003 {\bbl@csarg\def{sname@#2}{#1}}%

3004 \bbl@provide@dirs{#2}%

3005 \bbl@csarg\ifnum{wdir@#2}>\z@

3006 \let\bbl@beforeforeign\leavevmode

3007 \EnableBabelHook{babel-bidi}%

3008 \fi

3009 \bbl@foreach{#2}{%

3010 \bbl@FSstore{##1}{rm}\rmdefault\bbl@save@rmdefault

3011 \bbl@FSstore{##1}{sf}\sfdefault\bbl@save@sfdefault

3012 \bbl@FSstore{##1}{tt}\ttdefault\bbl@save@ttdefault}}

3013 \def\bbl@FSstore#1#2#3#4{%

3014 \bbl@csarg\edef{#2default#1}{#3}%

3015 \expandafter\addto\csname extras#1\endcsname{%

3016 \let#4#3%

3017 \ifx#3\f@family

3018 \edef#3{\csname bbl@#2default#1\endcsname}%

3019 \fontfamily{#3}\selectfont

3020 \else

3021 \edef#3{\csname bbl@#2default#1\endcsname}%

3022 \fi}%

3023 \expandafter\addto\csname noextras#1\endcsname{%

3024 \ifx#3\f@family

3025 \fontfamily{#4}\selectfont

130



3026 \fi

3027 \let#3#4}}

3028 \let\bbl@langfeatures\@empty

3029 \def\babelFSfeatures{% make sure \fontspec is redefined once

3030 \let\bbl@ori@fontspec\fontspec

3031 \renewcommand\fontspec[1][]{%

3032 \bbl@ori@fontspec[\bbl@langfeatures##1]}

3033 \let\babelFSfeatures\bbl@FSfeatures

3034 \babelFSfeatures}

3035 \def\bbl@FSfeatures#1#2{%

3036 \expandafter\addto\csname extras#1\endcsname{%

3037 \babel@save\bbl@langfeatures

3038 \edef\bbl@langfeatures{#2,}}}

3039 〈〈/Font selection〉〉

14 Hooks for XeTeX and LuaTeX

14.1 XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to
utf8, which seems a sensible default.
LATEX sets many “codes” just before loading hyphen.cfg. That is not a problem in luatex,
but in xetex they must be reset to the proper value. Most of the work is done in
xe(la)tex.ini, so here we just “undo” some of the changes done by LATEX. Anyway, for
consistency LuaTEX also resets the catcodes.

3040 〈〈∗Restore Unicode catcodes before loading patterns〉〉 ≡
3041 \begingroup

3042 % Reset chars "80-"C0 to category "other", no case mapping:

3043 \catcode`\@=11 \count@=128

3044 \loop\ifnum\count@<192

3045 \global\uccode\count@=0 \global\lccode\count@=0

3046 \global\catcode\count@=12 \global\sfcode\count@=1000

3047 \advance\count@ by 1 \repeat

3048 % Other:

3049 \def\O ##1 {%

3050 \global\uccode"##1=0 \global\lccode"##1=0

3051 \global\catcode"##1=12 \global\sfcode"##1=1000 }%

3052 % Letter:

3053 \def\L ##1 ##2 ##3 {\global\catcode"##1=11

3054 \global\uccode"##1="##2

3055 \global\lccode"##1="##3

3056 % Uppercase letters have sfcode=999:

3057 \ifnum"##1="##3 \else \global\sfcode"##1=999 \fi }%

3058 % Letter without case mappings:

3059 \def\l ##1 {\L ##1 ##1 ##1 }%

3060 \l 00AA

3061 \L 00B5 039C 00B5

3062 \l 00BA

3063 \O 00D7

3064 \l 00DF

3065 \O 00F7

3066 \L 00FF 0178 00FF

3067 \endgroup

3068 \input #1\relax

3069 〈〈/Restore Unicode catcodes before loading patterns〉〉

Some more common code.

131



3070 〈〈∗Footnote changes〉〉 ≡
3071 \bbl@trace{Bidi footnotes}

3072 \ifx\bbl@beforeforeign\leavevmode

3073 \def\bbl@footnote#1#2#3{%

3074 \@ifnextchar[%

3075 {\bbl@footnote@o{#1}{#2}{#3}}%

3076 {\bbl@footnote@x{#1}{#2}{#3}}}

3077 \def\bbl@footnote@x#1#2#3#4{%

3078 \bgroup

3079 \select@language@x{\bbl@main@language}%

3080 \bbl@fn@footnote{#2#1{\ignorespaces#4}#3}%

3081 \egroup}

3082 \def\bbl@footnote@o#1#2#3[#4]#5{%

3083 \bgroup

3084 \select@language@x{\bbl@main@language}%

3085 \bbl@fn@footnote[#4]{#2#1{\ignorespaces#5}#3}%

3086 \egroup}

3087 \def\bbl@footnotetext#1#2#3{%

3088 \@ifnextchar[%

3089 {\bbl@footnotetext@o{#1}{#2}{#3}}%

3090 {\bbl@footnotetext@x{#1}{#2}{#3}}}

3091 \def\bbl@footnotetext@x#1#2#3#4{%

3092 \bgroup

3093 \select@language@x{\bbl@main@language}%

3094 \bbl@fn@footnotetext{#2#1{\ignorespaces#4}#3}%

3095 \egroup}

3096 \def\bbl@footnotetext@o#1#2#3[#4]#5{%

3097 \bgroup

3098 \select@language@x{\bbl@main@language}%

3099 \bbl@fn@footnotetext[#4]{#2#1{\ignorespaces#5}#3}%

3100 \egroup}

3101 \def\BabelFootnote#1#2#3#4{%

3102 \ifx\bbl@fn@footnote\@undefined

3103 \let\bbl@fn@footnote\footnote

3104 \fi

3105 \ifx\bbl@fn@footnotetext\@undefined

3106 \let\bbl@fn@footnotetext\footnotetext

3107 \fi

3108 \bbl@ifblank{#2}%

3109 {\def#1{\bbl@footnote{\@firstofone}{#3}{#4}}

3110 \@namedef{\bbl@stripslash#1text}%

3111 {\bbl@footnotetext{\@firstofone}{#3}{#4}}}%

3112 {\def#1{\bbl@exp{\\\bbl@footnote{\\\foreignlanguage{#2}}}{#3}{#4}}%

3113 \@namedef{\bbl@stripslash#1text}%

3114 {\bbl@exp{\\\bbl@footnotetext{\\\foreignlanguage{#2}}}{#3}{#4}}}}

3115 \fi

3116 〈〈/Footnote changes〉〉

Now, the code.

3117 〈∗xetex〉
3118 \def\BabelStringsDefault{unicode}

3119 \let\xebbl@stop\relax

3120 \AddBabelHook{xetex}{encodedcommands}{%

3121 \def\bbl@tempa{#1}%

3122 \ifx\bbl@tempa\@empty

3123 \XeTeXinputencoding"bytes"%

3124 \else

3125 \XeTeXinputencoding"#1"%

3126 \fi

132



3127 \def\xebbl@stop{\XeTeXinputencoding"utf8"}}

3128 \AddBabelHook{xetex}{stopcommands}{%

3129 \xebbl@stop

3130 \let\xebbl@stop\relax}

3131 \AddBabelHook{xetex}{loadkernel}{%

3132 〈〈Restore Unicode catcodes before loading patterns〉〉}
3133 \ifx\DisableBabelHook\@undefined\endinput\fi

3134 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}

3135 \DisableBabelHook{babel-fontspec}

3136 〈〈Font selection〉〉
3137 \input txtbabel.def

3138 〈/xetex〉

14.2 Layout

In progress.
Unfortunately, proper support for xetex requires patching somehow lots of macros and
packages (and some issues related to \specials remain, like color and hyperlinks). At least
at this stage, babel will not do it and therefore a package like bidi (by Vafa Khalighi) would
be necessary to overcome the limitations of xetex. Any help in making babel and bidi
collaborate will be welcome, although the underlying concepts in both packages seem very
different. Note also elements like headlines and margins can be modified easily with
packages like fancyhdr, typearea or titleps, and geometry.
\bbl@startskip and \bbl@endskip are available to package authors. Thanks to the TEX
expansion mechanism the following constructs are valid: \adim\bbl@startskip,
\advance\bbl@startskip\adim, \bbl@startskip\adim.
Consider txtbabel as a shorthand for tex–xet babel, which is the bidi model in both pdftex
and xetex.

3139 〈∗texxet〉
3140 \bbl@trace{Redefinitions for bidi layout}

3141 \def\bbl@sspre@caption{%

3142 \bbl@exp{\everyhbox{\\\bbl@textdir\bbl@cs{wdir@\bbl@main@language}}}}

3143 \ifx\bbl@opt@layout\@nnil\endinput\fi % No layout

3144 \def\bbl@startskip{\ifcase\bbl@thepardir\leftskip\else\rightskip\fi}

3145 \def\bbl@endskip{\ifcase\bbl@thepardir\rightskip\else\leftskip\fi}

3146 \ifx\bbl@beforeforeign\leavevmode % A poor test for bidi=

3147 \def\@hangfrom#1{%

3148 \setbox\@tempboxa\hbox{{#1}}%

3149 \hangindent\ifcase\bbl@thepardir\wd\@tempboxa\else-\wd\@tempboxa\fi

3150 \noindent\box\@tempboxa}

3151 \def\raggedright{%

3152 \let\\\@centercr

3153 \bbl@startskip\z@skip

3154 \@rightskip\@flushglue

3155 \bbl@endskip\@rightskip

3156 \parindent\z@

3157 \parfillskip\bbl@startskip}

3158 \def\raggedleft{%

3159 \let\\\@centercr

3160 \bbl@startskip\@flushglue

3161 \bbl@endskip\z@skip

3162 \parindent\z@

3163 \parfillskip\bbl@endskip}

3164 \fi

3165 \IfBabelLayout{lists}

3166 {\def\list#1#2{%

3167 \ifnum \@listdepth >5\relax

133



3168 \@toodeep

3169 \else

3170 \global\advance\@listdepth\@ne

3171 \fi

3172 \rightmargin\z@

3173 \listparindent\z@

3174 \itemindent\z@

3175 \csname @list\romannumeral\the\@listdepth\endcsname

3176 \def\@itemlabel{#1}%

3177 \let\makelabel\@mklab

3178 \@nmbrlistfalse

3179 #2\relax

3180 \@trivlist

3181 \parskip\parsep

3182 \parindent\listparindent

3183 \advance\linewidth-\rightmargin

3184 \advance\linewidth-\leftmargin

3185 \advance\@totalleftmargin

3186 \ifcase\bbl@thepardir\leftmargin\else\rightmargin\fi

3187 \parshape\@ne\@totalleftmargin\linewidth

3188 \ignorespaces}%

3189 \ifcase\bbl@engine

3190 \def\labelenumii{)\theenumii(}%

3191 \def\p@enumiii{\p@enumii)\theenumii(}%

3192 \fi

3193 \def\@verbatim{%

3194 \trivlist \item\relax

3195 \if@minipage\else\vskip\parskip\fi

3196 \bbl@startskip\textwidth

3197 \advance\bbl@startskip-\linewidth

3198 \bbl@endskip\z@skip

3199 \parindent\z@

3200 \parfillskip\@flushglue

3201 \parskip\z@skip

3202 \@@par

3203 \language\l@nohyphenation

3204 \@tempswafalse

3205 \def\par{%

3206 \if@tempswa

3207 \leavevmode\null

3208 \@@par\penalty\interlinepenalty

3209 \else

3210 \@tempswatrue

3211 \ifhmode\@@par\penalty\interlinepenalty\fi

3212 \fi}%

3213 \let\do\@makeother \dospecials

3214 \obeylines \verbatim@font \@noligs

3215 \everypar\expandafter{\the\everypar\unpenalty}}}

3216 {}

3217 \IfBabelLayout{contents}

3218 {\def\@dottedtocline#1#2#3#4#5{%

3219 \ifnum#1>\c@tocdepth\else

3220 \vskip \z@ \@plus.2\p@

3221 {\bbl@startskip#2\relax

3222 \bbl@endskip\@tocrmarg

3223 \parfillskip-\bbl@endskip

3224 \parindent#2\relax

3225 \@afterindenttrue

3226 \interlinepenalty\@M

134



3227 \leavevmode

3228 \@tempdima#3\relax

3229 \advance\bbl@startskip\@tempdima

3230 \null\nobreak\hskip-\bbl@startskip

3231 {#4}\nobreak

3232 \leaders\hbox{%

3233 $\m@th\mkern\@dotsep mu\hbox{.}\mkern\@dotsep mu$}%

3234 \hfill\nobreak

3235 \hb@xt@\@pnumwidth{\hfil\normalfont\normalcolor#5}%

3236 \par}%

3237 \fi}}

3238 {}

3239 \IfBabelLayout{columns}

3240 {\def\@outputdblcol{%

3241 \if@firstcolumn

3242 \global\@firstcolumnfalse

3243 \global\setbox\@leftcolumn\copy\@outputbox

3244 \splitmaxdepth\maxdimen

3245 \vbadness\maxdimen

3246 \setbox\@outputbox\vbox{\unvbox\@outputbox\unskip}%

3247 \setbox\@outputbox\vsplit\@outputbox to\maxdimen

3248 \toks@\expandafter{\topmark}%

3249 \xdef\@firstcoltopmark{\the\toks@}%

3250 \toks@\expandafter{\splitfirstmark}%

3251 \xdef\@firstcolfirstmark{\the\toks@}%

3252 \ifx\@firstcolfirstmark\@empty

3253 \global\let\@setmarks\relax

3254 \else

3255 \gdef\@setmarks{%

3256 \let\firstmark\@firstcolfirstmark

3257 \let\topmark\@firstcoltopmark}%

3258 \fi

3259 \else

3260 \global\@firstcolumntrue

3261 \setbox\@outputbox\vbox{%

3262 \hb@xt@\textwidth{%

3263 \hskip\columnwidth

3264 \hfil

3265 {\normalcolor\vrule \@width\columnseprule}%

3266 \hfil

3267 \hb@xt@\columnwidth{\box\@leftcolumn \hss}%

3268 \hskip-\textwidth

3269 \hb@xt@\columnwidth{\box\@outputbox \hss}%

3270 \hskip\columnsep

3271 \hskip\columnwidth}}%

3272 \@combinedblfloats

3273 \@setmarks

3274 \@outputpage

3275 \begingroup

3276 \@dblfloatplacement

3277 \@startdblcolumn

3278 \@whilesw\if@fcolmade \fi{\@outputpage

3279 \@startdblcolumn}%

3280 \endgroup

3281 \fi}}%

3282 {}

3283 〈〈Footnote changes〉〉
3284 \IfBabelLayout{footnotes}%

3285 {\BabelFootnote\footnote\languagename{}{}%

135



3286 \BabelFootnote\localfootnote\languagename{}{}%

3287 \BabelFootnote\mainfootnote{}{}{}}

3288 {}

Implicitly reverses sectioning labels in bidi=basic-r, because the full stop is not in
contact with L numbers any more. I think there must be a better way.

3289 \IfBabelLayout{counters}%

3290 {\let\bbl@latinarabic=\@arabic

3291 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

3292 \let\bbl@asciiroman=\@roman

3293 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%

3294 \let\bbl@asciiRoman=\@Roman

3295 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}}{}

3296 〈/texxet〉

14.3 LuaTeX

The new loader for luatex is based solely on language.dat, which is read on the fly. The
code shouldn’t be executed when the format is build, so we check if \AddBabelHook is
defined. Then comes a modified version of the loader in hyphen.cfg (without the
hyphenmins stuff, which is under the direct control of babel).
The names \l@<language> are defined and take some value from the beginning because
all ldf files assume this for the corresponding language to be considered valid, but
patterns are not loaded (except the first one). This is done later, when the language is first
selected (which usually means when the ldf finishes). If a language has been loaded,
\bbl@hyphendata@<num> exists (with the names of the files read).
The default setup preloads the first language into the format. This is intended mainly for
‘english’, so that it’s available without further intervention from the user. To avoid
duplicating it, the following rule applies: if the “0th” language and the first language in
language.dat have the same name then just ignore the latter. If there are new
synonymous, the are added, but note if the language patterns have not been preloaded
they won’t at run time.
Other preloaded languages could be read twice, if they has been preloaded into the format.
This is not optimal, but it shouldn’t happen very often – with luatex patterns are best
loaded when the document is typeset, and the “0th” language is preloaded just for
backwards compatibility.
As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly didn’t
work in this format, but with the new loader it does. Unfortunately, the format is not based
on babel, and data could be duplicated, because languages are reassigned above those in
the format (nothing serious, anyway). Note even with this format language.dat is used
(under the principle of a single source), instead of language.def.
Of course, there is room for improvements, like tools to read and reassign languages,
which would require modifying the language list, and better error handling.
We need catcode tables, but no format (targeted by babel) provide a command to allocate
them (although there are packages like ctablestack). For the moment, a dangerous
approach is used – just allocate a high random number and cross the fingers. To
complicate things, etex.sty changes the way languages are allocated.

3297 〈∗luatex〉
3298 \ifx\AddBabelHook\@undefined

3299 \bbl@trace{Read language.dat}

3300 \begingroup

3301 \toks@{}

3302 \count@\z@ % 0=start, 1=0th, 2=normal

3303 \def\bbl@process@line#1#2 #3 #4 {%

3304 \ifx=#1%

136



3305 \bbl@process@synonym{#2}%

3306 \else

3307 \bbl@process@language{#1#2}{#3}{#4}%

3308 \fi

3309 \ignorespaces}

3310 \def\bbl@manylang{%

3311 \ifnum\bbl@last>\@ne

3312 \bbl@info{Non-standard hyphenation setup}%

3313 \fi

3314 \let\bbl@manylang\relax}

3315 \def\bbl@process@language#1#2#3{%

3316 \ifcase\count@

3317 \@ifundefined{zth@#1}{\count@\tw@}{\count@\@ne}%

3318 \or

3319 \count@\tw@

3320 \fi

3321 \ifnum\count@=\tw@

3322 \expandafter\addlanguage\csname l@#1\endcsname

3323 \language\allocationnumber

3324 \chardef\bbl@last\allocationnumber

3325 \bbl@manylang

3326 \let\bbl@elt\relax

3327 \xdef\bbl@languages{%

3328 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{#3}}%

3329 \fi

3330 \the\toks@

3331 \toks@{}}

3332 \def\bbl@process@synonym@aux#1#2{%

3333 \global\expandafter\chardef\csname l@#1\endcsname#2\relax

3334 \let\bbl@elt\relax

3335 \xdef\bbl@languages{%

3336 \bbl@languages\bbl@elt{#1}{#2}{}{}}}%

3337 \def\bbl@process@synonym#1{%

3338 \ifcase\count@

3339 \toks@\expandafter{\the\toks@\relax\bbl@process@synonym{#1}}%

3340 \or

3341 \@ifundefined{zth@#1}{\bbl@process@synonym@aux{#1}{0}}{}%

3342 \else

3343 \bbl@process@synonym@aux{#1}{\the\bbl@last}%

3344 \fi}

3345 \ifx\bbl@languages\@undefined % Just a (sensible?) guess

3346 \chardef\l@english\z@

3347 \chardef\l@USenglish\z@

3348 \chardef\bbl@last\z@

3349 \global\@namedef{bbl@hyphendata@0}{{hyphen.tex}{}}

3350 \gdef\bbl@languages{%

3351 \bbl@elt{english}{0}{hyphen.tex}{}%

3352 \bbl@elt{USenglish}{0}{}{}}

3353 \else

3354 \global\let\bbl@languages@format\bbl@languages

3355 \def\bbl@elt#1#2#3#4{% Remove all except language 0

3356 \ifnum#2>\z@\else

3357 \noexpand\bbl@elt{#1}{#2}{#3}{#4}%

3358 \fi}%

3359 \xdef\bbl@languages{\bbl@languages}%

3360 \fi

3361 \def\bbl@elt#1#2#3#4{\@namedef{zth@#1}{}} % Define flags

3362 \bbl@languages

3363 \openin1=language.dat

137



3364 \ifeof1

3365 \bbl@warning{I couldn't find language.dat. No additional\\%

3366 patterns loaded. Reported}%

3367 \else

3368 \loop

3369 \endlinechar\m@ne

3370 \read1 to \bbl@line

3371 \endlinechar`\^^M

3372 \if T\ifeof1F\fi T\relax

3373 \ifx\bbl@line\@empty\else

3374 \edef\bbl@line{\bbl@line\space\space\space}%

3375 \expandafter\bbl@process@line\bbl@line\relax

3376 \fi

3377 \repeat

3378 \fi

3379 \endgroup

3380 \bbl@trace{Macros for reading patterns files}

3381 \def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}

3382 \ifx\babelcatcodetablenum\@undefined

3383 \def\babelcatcodetablenum{5211}

3384 \fi

3385 \def\bbl@luapatterns#1#2{%

3386 \bbl@get@enc#1::\@@@

3387 \setbox\z@\hbox\bgroup

3388 \begingroup

3389 \ifx\catcodetable\@undefined

3390 \let\savecatcodetable\luatexsavecatcodetable

3391 \let\initcatcodetable\luatexinitcatcodetable

3392 \let\catcodetable\luatexcatcodetable

3393 \fi

3394 \savecatcodetable\babelcatcodetablenum\relax

3395 \initcatcodetable\numexpr\babelcatcodetablenum+1\relax

3396 \catcodetable\numexpr\babelcatcodetablenum+1\relax

3397 \catcode`\#=6 \catcode`\$=3 \catcode`\&=4 \catcode`\^=7

3398 \catcode`\_=8 \catcode`\{=1 \catcode`\}=2 \catcode`\~=13

3399 \catcode`\@=11 \catcode`\^^I=10 \catcode`\^^J=12

3400 \catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\.=12

3401 \catcode`\-=12 \catcode`\/=12 \catcode`\[=12 \catcode`\]=12

3402 \catcode`\`=12 \catcode`\'=12 \catcode`\"=12

3403 \input #1\relax

3404 \catcodetable\babelcatcodetablenum\relax

3405 \endgroup

3406 \def\bbl@tempa{#2}%

3407 \ifx\bbl@tempa\@empty\else

3408 \input #2\relax

3409 \fi

3410 \egroup}%

3411 \def\bbl@patterns@lua#1{%

3412 \language=\expandafter\ifx\csname l@#1:\f@encoding\endcsname\relax

3413 \csname l@#1\endcsname

3414 \edef\bbl@tempa{#1}%

3415 \else

3416 \csname l@#1:\f@encoding\endcsname

3417 \edef\bbl@tempa{#1:\f@encoding}%

3418 \fi\relax

3419 \@namedef{lu@texhyphen@loaded@\the\language}{}% Temp

3420 \@ifundefined{bbl@hyphendata@\the\language}%

3421 {\def\bbl@elt##1##2##3##4{%

3422 \ifnum##2=\csname l@\bbl@tempa\endcsname % #2=spanish, dutch:OT1...

138



3423 \def\bbl@tempb{##3}%

3424 \ifx\bbl@tempb\@empty\else % if not a synonymous

3425 \def\bbl@tempc{{##3}{##4}}%

3426 \fi

3427 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

3428 \fi}%

3429 \bbl@languages

3430 \@ifundefined{bbl@hyphendata@\the\language}%

3431 {\bbl@info{No hyphenation patterns were set for\\%

3432 language '\bbl@tempa'. Reported}}%

3433 {\expandafter\expandafter\expandafter\bbl@luapatterns

3434 \csname bbl@hyphendata@\the\language\endcsname}}{}}

3435 \endinput\fi

3436 \begingroup

3437 \catcode`\%=12

3438 \catcode`\'=12

3439 \catcode`\"=12

3440 \catcode`\:=12

3441 \directlua{

3442 Babel = Babel or {}

3443 function Babel.bytes(line)

3444 return line:gsub("(.)",

3445 function (chr) return unicode.utf8.char(string.byte(chr)) end)

3446 end

3447 function Babel.begin_process_input()

3448 if luatexbase and luatexbase.add_to_callback then

3449 luatexbase.add_to_callback('process_input_buffer',

3450 Babel.bytes,'Babel.bytes')

3451 else

3452 Babel.callback = callback.find('process_input_buffer')

3453 callback.register('process_input_buffer',Babel.bytes)

3454 end

3455 end

3456 function Babel.end_process_input ()

3457 if luatexbase and luatexbase.remove_from_callback then

3458 luatexbase.remove_from_callback('process_input_buffer','Babel.bytes')

3459 else

3460 callback.register('process_input_buffer',Babel.callback)

3461 end

3462 end

3463 function Babel.addpatterns(pp, lg)

3464 local lg = lang.new(lg)

3465 local pats = lang.patterns(lg) or ''

3466 lang.clear_patterns(lg)

3467 for p in pp:gmatch('[^%s]+') do

3468 ss = ''

3469 for i in string.utfcharacters(p:gsub('%d', '')) do

3470 ss = ss .. '%d?' .. i

3471 end

3472 ss = ss:gsub('^%%d%?%.', '%%.') .. '%d?'

3473 ss = ss:gsub('%.%%d%?$', '%%.')

3474 pats, n = pats:gsub('%s' .. ss .. '%s', ' ' .. p .. ' ')

3475 if n == 0 then

3476 tex.sprint(

3477 [[\string\csname\space bbl@info\endcsname{New pattern: ]]

3478 .. p .. [[}]])

3479 pats = pats .. ' ' .. p

3480 else

3481 tex.sprint(

139



3482 [[\string\csname\space bbl@info\endcsname{Renew pattern: ]]

3483 .. p .. [[}]])

3484 end

3485 end

3486 lang.patterns(lg, pats)

3487 end

3488 }

3489 \endgroup

3490 \def\BabelStringsDefault{unicode}

3491 \let\luabbl@stop\relax

3492 \AddBabelHook{luatex}{encodedcommands}{%

3493 \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%

3494 \ifx\bbl@tempa\bbl@tempb\else

3495 \directlua{Babel.begin_process_input()}%

3496 \def\luabbl@stop{%

3497 \directlua{Babel.end_process_input()}}%

3498 \fi}%

3499 \AddBabelHook{luatex}{stopcommands}{%

3500 \luabbl@stop

3501 \let\luabbl@stop\relax}

3502 \AddBabelHook{luatex}{patterns}{%

3503 \@ifundefined{bbl@hyphendata@\the\language}%

3504 {\def\bbl@elt##1##2##3##4{%

3505 \ifnum##2=\csname l@#2\endcsname % #2=spanish, dutch:OT1...

3506 \def\bbl@tempb{##3}%

3507 \ifx\bbl@tempb\@empty\else % if not a synonymous

3508 \def\bbl@tempc{{##3}{##4}}%

3509 \fi

3510 \bbl@csarg\xdef{hyphendata@##2}{\bbl@tempc}%

3511 \fi}%

3512 \bbl@languages

3513 \@ifundefined{bbl@hyphendata@\the\language}%

3514 {\bbl@info{No hyphenation patterns were set for\\%

3515 language '#2'. Reported}}%

3516 {\expandafter\expandafter\expandafter\bbl@luapatterns

3517 \csname bbl@hyphendata@\the\language\endcsname}}{}%

3518 \@ifundefined{bbl@patterns@}{}{%

3519 \begingroup

3520 \bbl@xin@{,\number\language,}{,\bbl@pttnlist}%

3521 \ifin@\else

3522 \ifx\bbl@patterns@\@empty\else

3523 \directlua{ Babel.addpatterns(

3524 [[\bbl@patterns@]], \number\language) }%

3525 \fi

3526 \@ifundefined{bbl@patterns@#1}%

3527 \@empty

3528 {\directlua{ Babel.addpatterns(

3529 [[\space\csname bbl@patterns@#1\endcsname]],

3530 \number\language) }}%

3531 \xdef\bbl@pttnlist{\bbl@pttnlist\number\language,}%

3532 \fi

3533 \endgroup}}

3534 \AddBabelHook{luatex}{everylanguage}{%

3535 \def\process@language##1##2##3{%

3536 \def\process@line####1####2 ####3 ####4 {}}}

3537 \AddBabelHook{luatex}{loadpatterns}{%

3538 \input #1\relax

3539 \expandafter\gdef\csname bbl@hyphendata@\the\language\endcsname

3540 {{#1}{}}}

140



3541 \AddBabelHook{luatex}{loadexceptions}{%

3542 \input #1\relax

3543 \def\bbl@tempb##1##2{{##1}{#1}}%

3544 \expandafter\xdef\csname bbl@hyphendata@\the\language\endcsname

3545 {\expandafter\expandafter\expandafter\bbl@tempb

3546 \csname bbl@hyphendata@\the\language\endcsname}}

\babelpatterns This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for the
global ones and \bbl@patterns@<lang> for language ones. We make sure there is a space
between words when multiple commands are used.

3547 \@onlypreamble\babelpatterns

3548 \AtEndOfPackage{%

3549 \newcommand\babelpatterns[2][\@empty]{%

3550 \ifx\bbl@patterns@\relax

3551 \let\bbl@patterns@\@empty

3552 \fi

3553 \ifx\bbl@pttnlist\@empty\else

3554 \bbl@warning{%

3555 You must not intermingle \string\selectlanguage\space and\\%

3556 \string\babelpatterns\space or some patterns will not\\%

3557 be taken into account. Reported}%

3558 \fi

3559 \ifx\@empty#1%

3560 \protected@edef\bbl@patterns@{\bbl@patterns@\space#2}%

3561 \else

3562 \edef\bbl@tempb{\zap@space#1 \@empty}%

3563 \bbl@for\bbl@tempa\bbl@tempb{%

3564 \bbl@fixname\bbl@tempa

3565 \bbl@iflanguage\bbl@tempa{%

3566 \bbl@csarg\protected@edef{patterns@\bbl@tempa}{%

3567 \@ifundefined{bbl@patterns@\bbl@tempa}%

3568 \@empty

3569 {\csname bbl@patterns@\bbl@tempa\endcsname\space}%

3570 #2}}}%

3571 \fi}}

Common stuff.

3572 \AddBabelHook{luatex}{loadkernel}{%

3573 〈〈Restore Unicode catcodes before loading patterns〉〉}
3574 \ifx\DisableBabelHook\@undefined\endinput\fi

3575 \AddBabelHook{babel-fontspec}{afterextras}{\bbl@switchfont}

3576 \DisableBabelHook{babel-fontspec}

3577 〈〈Font selection〉〉

14.4 Layout

Work in progress.
Unlike xetex, luatex requires only minimal changes for right-to-left layouts, particularly in
monolingual documents (the engine itself reverses boxes – including column order or
headings –, margins, etc.) and with bidi=basic-r, without having to patch almost any
macro where text direction is relevant.
\@hangfrom is useful in many contexts and it is redefined always with the layout option.
There are, however, a number of issues when the text direction is not the same as the box
direction (as set by \bodydir), and when \parbox and \hangindent are involved.
Fortunately, latest releases of luatex simplify a lot the solution with \shapemode.

3578 \bbl@trace{Redefinitions for bidi layout}

141



3579 \ifx\@eqnnum\@undefined\else

3580 \ifx\bbl@attr@dir\@undefined\else

3581 \edef\@eqnnum{{%

3582 \unexpanded{\ifcase\bbl@attr@dir\else\bbl@textdir\@ne\fi}%

3583 \unexpanded\expandafter{\@eqnnum}}}

3584 \fi

3585 \fi

3586 \ifx\bbl@opt@layout\@nnil\endinput\fi % if no layout

3587 \ifx\bbl@beforeforeign\leavevmode % A poor test for bidi=

3588 \def\bbl@nextfake#1{%

3589 \mathdir\bodydir % non-local, use always inside a group!

3590 \bbl@exp{%

3591 #1% Once entered in math, set boxes to restore values

3592 \everyvbox{%

3593 \the\everyvbox

3594 \bodydir\the\bodydir

3595 \mathdir\the\mathdir

3596 \everyhbox{\the\everyhbox}%

3597 \everyvbox{\the\everyvbox}}%

3598 \everyhbox{%

3599 \the\everyhbox

3600 \bodydir\the\bodydir

3601 \mathdir\the\mathdir

3602 \everyhbox{\the\everyhbox}%

3603 \everyvbox{\the\everyvbox}}}}%

3604 \def\@hangfrom#1{%

3605 \setbox\@tempboxa\hbox{{#1}}%

3606 \hangindent\wd\@tempboxa

3607 \ifnum\bbl@getluadir{page}=\bbl@getluadir{par}\else

3608 \shapemode\@ne

3609 \fi

3610 \noindent\box\@tempboxa}

3611 \fi

3612 \IfBabelLayout{tabular}

3613 {\def\@tabular{%

3614 \leavevmode\hbox\bgroup\bbl@nextfake$% %$

3615 \let\@acol\@tabacol \let\@classz\@tabclassz

3616 \let\@classiv\@tabclassiv \let\\\@tabularcr\@tabarray}}

3617 {}

3618 \IfBabelLayout{lists}

3619 {\def\list#1#2{%

3620 \ifnum \@listdepth >5\relax

3621 \@toodeep

3622 \else

3623 \global\advance\@listdepth\@ne

3624 \fi

3625 \rightmargin\z@

3626 \listparindent\z@

3627 \itemindent\z@

3628 \csname @list\romannumeral\the\@listdepth\endcsname

3629 \def\@itemlabel{#1}%

3630 \let\makelabel\@mklab

3631 \@nmbrlistfalse

3632 #2\relax

3633 \@trivlist

3634 \parskip\parsep

3635 \parindent\listparindent

3636 \advance\linewidth -\rightmargin

3637 \advance\linewidth -\leftmargin

142



3638 \advance\@totalleftmargin \leftmargin

3639 \parshape \@ne

3640 \@totalleftmargin \linewidth

3641 \ifnum\bbl@getluadir{page}=\bbl@getluadir{par}\else

3642 \shapemode\tw@

3643 \fi

3644 \ignorespaces}}

3645 {}

Implicitly reverses sectioning labels in bidi=basic-r, because the full stop is not in contact
with L numbers any more. I think there must be a better way. Assumes bidi=basic-r, but
there are some additional readjustments for bidi=default.

3646 \IfBabelLayout{counters}%

3647 {\def\@textsuperscript#1{{% lua has separate settings for math

3648 \m@th

3649 \mathdir\pagedir % required with basic-r; ok with default, too

3650 \ensuremath{^{\mbox {\fontsize \sf@size \z@ #1}}}}}%

3651 \let\bbl@latinarabic=\@arabic

3652 \def\@arabic#1{\babelsublr{\bbl@latinarabic#1}}%

3653 \@ifpackagewith{babel}{bidi=default}%

3654 {\let\bbl@asciiroman=\@roman

3655 \def\@roman#1{\babelsublr{\ensureascii{\bbl@asciiroman#1}}}%

3656 \let\bbl@asciiRoman=\@Roman

3657 \def\@Roman#1{\babelsublr{\ensureascii{\bbl@asciiRoman#1}}}%

3658 \def\labelenumii{)\theenumii(}%

3659 \def\p@enumiii{\p@enumii)\theenumii(}}{}}{}

3660 〈〈Footnote changes〉〉
3661 \IfBabelLayout{footnotes}%

3662 {\BabelFootnote\footnote\languagename{}{}%

3663 \BabelFootnote\localfootnote\languagename{}{}%

3664 \BabelFootnote\mainfootnote{}{}{}}

3665 {}

Some LATEX macros use internally the math mode for text formatting. They have very little
in common and are grouped here, as a single option.

3666 \IfBabelLayout{extras}%

3667 {\def\underline#1{%

3668 \relax

3669 \ifmmode\@@underline{#1}%

3670 \else\bbl@nextfake$\@@underline{\hbox{#1}}\m@th$\relax\fi}%

3671 \DeclareRobustCommand{\LaTeXe}{\mbox{\m@th

3672 \if b\expandafter\@car\f@series\@nil\boldmath\fi

3673 \babelsublr{%

3674 \LaTeX\kern.15em2\bbl@nextfake$_{\textstyle\varepsilon}$}}}}

3675 {}

3676 〈/luatex〉

14.5 Auto bidi with basic-r

The file babel-bidi.lua currently only contains data. It is a large and boring file and it’s not
shown here. See the generated file.
Now the basic-r bidi mode. One of the aims is to implement a fast and simple bidi
algorithm, with a single loop. I managed to do it for R texts, with a second smaller loop for
a special case. The code is still somewhat chaotic, but its behavior is essentially correct. I
cannot resist copying the following text from Emacs bidi.c (which also attempts to
implement the bidi algorithm with a single loop):

143



Arrrgh!! The UAX#9 algorithm is too deeply entrenched in the assumption of
batch-style processing [...]. May the fleas of a thousand camels infest the armpits of
those who design supposedly general-purpose algorithms by looking at their own
implementations, and fail to consider other possible implementations!

Well, it took me some time to guess what the batch rules in UAX#9 actually mean (in other
word, what they do andwhy, and not only how), but I think (or I hope) I’ve managed to
understand them.
In some sense, there are two bidi modes, one for numbers, and the other for text.
Furthermore, setting just the direction in R text is not enough, because there are actually
two R modes (set explicitly in Unicode with RLM and ALM). In babel the dir is set by a
higher protocol based on the language/script, which in turn sets the correct dir (<l>, <r> or
<al>).
From UAX#9: “Where available, markup should be used instead of the explicit formatting
characters”. So, this simple version just ignores formatting characters. Actually, most of
that annex is devoted to how to handle them.
BD14-BD16 are not implemented. Unicode (and the W3C) are making a great effort to deal
with some special problematic cases in “streamed” plain text. I don’t think this is the way
to go – particular issues should be fixed by a high level interface taking into account the
needs of the document. And here is where luatex excels, because everything related to bidi
writing is under our control.
TODO: math mode (as weak L?)

3677 〈∗basic-r〉
3678 Babel = Babel or {}

3679

3680 require('babel-bidi.lua')

3681

3682 local characters = Babel.characters

3683 local ranges = Babel.ranges

3684

3685 local DIR = node.id("dir")

3686

3687 local function dir_mark(head, from, to, outer)

3688 dir = (outer == 'r') and 'TLT' or 'TRT' -- ie, reverse

3689 local d = node.new(DIR)

3690 d.dir = '+' .. dir

3691 node.insert_before(head, from, d)

3692 d = node.new(DIR)

3693 d.dir = '-' .. dir

3694 node.insert_after(head, to, d)

3695 end

3696

3697 function Babel.pre_otfload_v(head)

3698 -- head = Babel.numbers(head)

3699 head = Babel.bidi(head, true)

3700 return head

3701 end

3702

3703 function Babel.pre_otfload_h(head)

3704 -- head = Babel.numbers(head)

3705 head = Babel.bidi(head, false)

3706 return head

3707 end

3708

3709 function Babel.bidi(head, ispar)

3710 local first_n, last_n -- first and last char with nums

3711 local last_es -- an auxiliary 'last' used with nums

144



3712 local first_d, last_d -- first and last char in L/R block

3713 local dir, dir_real

Next also depends on script/lang (<al>/<r>). To be set by babel. tex.pardir is dangerous,
could be (re)set but it should be changed only in vmode. There are two strong’s – strong =
l/al/r and strong_lr = l/r (there must be a better way):

3714 local strong = ('TRT' == tex.pardir) and 'r' or 'l'

3715 local strong_lr = (strong == 'l') and 'l' or 'r'

3716 local outer = strong

3717

3718 local new_dir = false

3719 local first_dir = false

3720

3721 local last_lr

3722

3723 local type_n = ''

3724

3725 for item in node.traverse(head) do

3726

3727 -- three cases: glyph, dir, otherwise

3728 if item.id == node.id'glyph'

3729 or (item.id == 7 and item.subtype == 2) then

3730

3731 local itemchar

3732 if item.id == 7 and item.subtype == 2 then

3733 itemchar = item.replace.char

3734 else

3735 itemchar = item.char

3736 end

3737 local chardata = characters[itemchar]

3738 dir = chardata and chardata.d or nil

3739 if not dir then

3740 for nn, et in ipairs(ranges) do

3741 if itemchar < et[1] then

3742 break

3743 elseif itemchar <= et[2] then

3744 dir = et[3]

3745 break

3746 end

3747 end

3748 end

3749 dir = dir or 'l'

Next is based on the assumption babel sets the language AND switches the script with its
dir. We treat a language block as a separate Unicode sequence. The following piece of code
is executed at the first glyph after a ‘dir’ node. We don’t know the current language until
then.

3750 if new_dir then

3751 attr_dir = 0

3752 for at in node.traverse(item.attr) do

3753 if at.number == luatexbase.registernumber'bbl@attr@dir' then

3754 attr_dir = at.value % 3

3755 end

3756 end

3757 if attr_dir == 1 then

3758 strong = 'r'

3759 elseif attr_dir == 2 then

3760 strong = 'al'

3761 else

145



3762 strong = 'l'

3763 end

3764 strong_lr = (strong == 'l') and 'l' or 'r'

3765 outer = strong_lr

3766 new_dir = false

3767 end

3768

3769 if dir == 'nsm' then dir = strong end -- W1

Numbers. The dual <al>/<r> system for R is somewhat cumbersome.
3770 dir_real = dir -- We need dir_real to set strong below

3771 if dir == 'al' then dir = 'r' end -- W3

By W2, there are no <en> <et> <es> if strong == <al>, only <an>. Therefore, there are not
<et en> nor <en et>, W5 can be ignored, and W6 applied:

3772 if strong == 'al' then

3773 if dir == 'en' then dir = 'an' end -- W2

3774 if dir == 'et' or dir == 'es' then dir = 'on' end -- W6

3775 strong_lr = 'r' -- W3

3776 end

Once finished the basic setup for glyphs, consider the two other cases: dir node and the
rest.

3777 elseif item.id == node.id'dir' then

3778 new_dir = true

3779 dir = nil

3780 else

3781 dir = nil -- Not a char

3782 end

Numbers in R mode. A sequence of <en>, <et>, <an>, <es> and <cs> is typeset (with some
rules) in L mode. We store the starting and ending points, and only when anything
different is found (including nil, ie, a non-char), the textdir is set. This means you cannot
insert, say, a whatsit, but this is what I would expect (with luacolor you may colorize some
digits). Anyway, this behavior could be changed with a switch in the future. Note in the
first branch only <an> is relevant if <al>.

3783 if dir == 'en' or dir == 'an' or dir == 'et' then

3784 if dir ~= 'et' then

3785 type_n = dir

3786 end

3787 first_n = first_n or item

3788 last_n = last_es or item

3789 last_es = nil

3790 elseif dir == 'es' and last_n then -- W3+W6

3791 last_es = item

3792 elseif dir == 'cs' then -- it's right - do nothing

3793 elseif first_n then -- & if dir = any but en, et, an, es, cs, inc nil

3794 if strong_lr == 'r' and type_n ~= '' then

3795 dir_mark(head, first_n, last_n, 'r')

3796 elseif strong_lr == 'l' and first_d and type_n == 'an' then

3797 dir_mark(head, first_n, last_n, 'r')

3798 dir_mark(head, first_d, last_d, outer)

3799 first_d, last_d = nil, nil

3800 elseif strong_lr == 'l' and type_n ~= '' then

3801 last_d = last_n

3802 end

3803 type_n = ''

3804 first_n, last_n = nil, nil

3805 end

146



R text in L, or L text in R. Order of dir_ mark’s are relevant: d goes outside n, and
therefore it’s emitted after. See dir_mark to understand why (but is the nesting actually
necessary or is a flat dir structure enough?). Only L, R (and AL) chars are taken into
account – everything else, including spaces, whatsits, etc., are ignored:

3806 if dir == 'l' or dir == 'r' then

3807 if dir ~= outer then

3808 first_d = first_d or item

3809 last_d = item

3810 elseif first_d and dir ~= strong_lr then

3811 dir_mark(head, first_d, last_d, outer)

3812 first_d, last_d = nil, nil

3813 end

3814 end

Mirroring. Each chunk of text in a certain language is considered a “closed” sequence. If
<r on r> and <l on l>, it’s clearly <r> and <l>, resptly, but with other combinations depends
on outer. From all these, we select only those resolving <on>→ <r>. At the beginning
(when last_lr is nil) of an R text, they are mirrored directly.
TODO - numbers in R mode are processed. It doesn’t hurt, but should not be done.

3815 if dir and not last_lr and dir ~= 'l' and outer == 'r' then

3816 item.char = characters[item.char] and

3817 characters[item.char].m or item.char

3818 elseif (dir or new_dir) and last_lr ~= item then

3819 local mir = outer .. strong_lr .. (dir or outer)

3820 if mir == 'rrr' or mir == 'lrr' or mir == 'rrl' or mir == 'rlr' then

3821 for ch in node.traverse(node.next(last_lr)) do

3822 if ch == item then break end

3823 if ch.id == node.id'glyph' then

3824 ch.char = characters[ch.char].m or ch.char

3825 end

3826 end

3827 end

3828 end

Save some values for the next iteration. If the current node is ‘dir’, open a new sequence.
Since dir could be changed, strong is set with its real value (dir_real).

3829 if dir == 'l' or dir == 'r' then

3830 last_lr = item

3831 strong = dir_real -- Don't search back - best save now

3832 strong_lr = (strong == 'l') and 'l' or 'r'

3833 elseif new_dir then

3834 last_lr = nil

3835 end

3836 end

Mirror the last chars if they are no directed. And make sure any open block is closed, too.

3837 if last_lr and outer == 'r' then

3838 for ch in node.traverse_id(node.id'glyph', node.next(last_lr)) do

3839 ch.char = characters[ch.char].m or ch.char

3840 end

3841 end

3842 if first_n then

3843 dir_mark(head, first_n, last_n, outer)

3844 end

3845 if first_d then

3846 dir_mark(head, first_d, last_d, outer)

3847 end

147



In boxes, the dir node could be added before the original head, so the actual head is the
previous node.

3848 return node.prev(head) or head

3849 end

3850 〈/basic-r〉

And here the Lua code for bidi=basic:

3851 〈∗basic〉
3852 Babel = Babel or {}

3853

3854 Babel.fontmap = Babel.fontmap or {}

3855 Babel.fontmap[0] = {} -- l

3856 Babel.fontmap[1] = {} -- r

3857 Babel.fontmap[2] = {} -- al/an

3858

3859 function Babel.pre_otfload_v(head)

3860 -- head = Babel.numbers(head)

3861 head = Babel.bidi(head, true)

3862 return head

3863 end

3864

3865 function Babel.pre_otfload_h(head, gc, sz, pt, dir)

3866 -- head = Babel.numbers(head)

3867 head = Babel.bidi(head, false, dir)

3868 return head

3869 end

3870

3871 require('babel-bidi.lua')

3872

3873 local characters = Babel.characters

3874 local ranges = Babel.ranges

3875

3876 local DIR = node.id('dir')

3877 local GLYPH = node.id('glyph')

3878

3879 local function insert_implicit(head, state, outer)

3880 local new_state = state

3881 if state.sim and state.eim and state.sim ~= state.eim then

3882 dir = ((outer == 'r') and 'TLT' or 'TRT') -- ie, reverse

3883 local d = node.new(DIR)

3884 d.dir = '+' .. dir

3885 node.insert_before(head, state.sim, d)

3886 local d = node.new(DIR)

3887 d.dir = '-' .. dir

3888 node.insert_after(head, state.eim, d)

3889 end

3890 new_state.sim, new_state.eim = nil, nil

3891 return head, new_state

3892 end

3893

3894 local function insert_numeric(head, state)

3895 local new

3896 local new_state = state

3897 if state.san and state.ean and state.san ~= state.ean then

3898 local d = node.new(DIR)

3899 d.dir = '+TLT'

3900 _, new = node.insert_before(head, state.san, d)

3901 if state.san == state.sim then state.sim = new end

148



3902 local d = node.new(DIR)

3903 d.dir = '-TLT'

3904 _, new = node.insert_after(head, state.ean, d)

3905 if state.ean == state.eim then state.eim = new end

3906 end

3907 new_state.san, new_state.ean = nil, nil

3908 return head, new_state

3909 end

3910

3911 -- \hbox with an explicit dir can lead to wrong results

3912 -- <R \hbox dir TLT{<R>}> and <L \hbox dir TRT{<L>}>

3913

3914 function Babel.bidi(head, ispar, hdir)

3915 local d -- d is used mainly for computations in a loop

3916 local prev_d = ''

3917 local new_d = false

3918

3919 local nodes = {}

3920 local outer_first = nil

3921

3922 local has_en = false

3923 local first_et = nil

3924

3925 local ATDIR = luatexbase.registernumber'bbl@attr@dir'

3926

3927 local save_outer

3928 local temp = node.get_attribute(head, ATDIR)

3929 if temp then

3930 temp = temp % 3

3931 save_outer = (temp == 0 and 'l') or

3932 (temp == 1 and 'r') or

3933 (temp == 2 and 'al')

3934 elseif ispar then -- Or error? Shouldn't happen

3935 save_outer = ('TRT' == tex.pardir) and 'r' or 'l'

3936 else

3937 save_outer = ('TRT' == hdir) and 'r' or 'l'

3938 end

3939 local outer = save_outer

3940 local last = outer

3941 -- 'al' is only taken into account in the first, current loop

3942 if save_outer == 'al' then save_outer = 'r' end

3943

3944 local fontmap = Babel.fontmap

3945

3946 for item in node.traverse(head) do

3947

3948 -- In what follows, #node is the last (previous) node, because the

3949 -- current one is not added until we start processing the neutrals.

3950

3951 -- three cases: glyph, dir, otherwise

3952 if item.id == GLYPH

3953 or (item.id == 7 and item.subtype == 2) then

3954

3955 local d_font = nil

3956 local item_r

3957 if item.id == 7 and item.subtype == 2 then

3958 item_r = item.replace -- automatic discs have just 1 glyph

3959 else

3960 item_r = item

149



3961 end

3962 local chardata = characters[item_r.char]

3963 d = chardata and chardata.d or nil

3964 if not d or d == 'nsm' then

3965 for nn, et in ipairs(ranges) do

3966 if item_r.char < et[1] then

3967 break

3968 elseif item_r.char <= et[2] then

3969 if not d then d = et[3]

3970 elseif d == 'nsm' then d_font = et[3]

3971 end

3972 break

3973 end

3974 end

3975 end

3976 d = d or 'l'

3977 d_font = d_font or d

3978

3979 d_font = (d_font == 'l' and 0) or

3980 (d_font == 'nsm' and 0) or

3981 (d_font == 'r' and 1) or

3982 (d_font == 'al' and 2) or

3983 (d_font == 'an' and 2) or nil

3984 if d_font and fontmap and fontmap[d_font][item_r.font] then

3985 item_r.font = fontmap[d_font][item_r.font]

3986 end

3987

3988 if new_d then

3989 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

3990 attr_d = node.get_attribute(item, ATDIR)

3991 attr_d = attr_d % 3

3992 if attr_d == 1 then

3993 outer_first = 'r'

3994 last = 'r'

3995 elseif attr_d == 2 then

3996 outer_first = 'r'

3997 last = 'al'

3998 else

3999 outer_first = 'l'

4000 last = 'l'

4001 end

4002 outer = last

4003 has_en = false

4004 first_et = nil

4005 new_d = false

4006 end

4007

4008 elseif item.id == DIR then

4009 d = nil

4010 new_d = true

4011

4012 else

4013 d = nil

4014 end

4015

4016 -- AL <= EN/ET/ES -- W2 + W3 + W6

4017 if last == 'al' and d == 'en' then

4018 d = 'an' -- W3

4019 elseif last == 'al' and (d == 'et' or d == 'es') then

150



4020 d = 'on' -- W6

4021 end

4022

4023 -- EN + CS/ES + EN -- W4

4024 if d == 'en' and #nodes >= 2 then

4025 if (nodes[#nodes][2] == 'es' or nodes[#nodes][2] == 'cs')

4026 and nodes[#nodes-1][2] == 'en' then

4027 nodes[#nodes][2] = 'en'

4028 end

4029 end

4030

4031 -- AN + CS + AN -- W4 too, because uax9 mixes both cases

4032 if d == 'an' and #nodes >= 2 then

4033 if (nodes[#nodes][2] == 'cs')

4034 and nodes[#nodes-1][2] == 'an' then

4035 nodes[#nodes][2] = 'an'

4036 end

4037 end

4038

4039 -- ET/EN -- W5 + W7->l / W6->on

4040 if d == 'et' then

4041 first_et = first_et or (#nodes + 1)

4042 elseif d == 'en' then

4043 has_en = true

4044 first_et = first_et or (#nodes + 1)

4045 elseif first_et then -- d may be nil here !

4046 if has_en then

4047 if last == 'l' then

4048 temp = 'l' -- W7

4049 else

4050 temp = 'en' -- W5

4051 end

4052 else

4053 temp = 'on' -- W6

4054 end

4055 for e = first_et, #nodes do

4056 if nodes[e][1].id == GLYPH then nodes[e][2] = temp end

4057 end

4058 first_et = nil

4059 has_en = false

4060 end

4061

4062 if d then

4063 if d == 'al' then

4064 d = 'r'

4065 last = 'al'

4066 elseif d == 'l' or d == 'r' then

4067 last = d

4068 end

4069 prev_d = d

4070 table.insert(nodes, {item, d, outer_first})

4071 else

4072 -- Not sure about the following. Looks too 'ad hoc', but it's

4073 -- required for numbers, so that 89 19 becomes 19 89. It also

4074 -- affects n+cs/es+n.

4075 if prev_d == 'an' or prev_d == 'en' then

4076 table.insert(nodes, {item, 'on', nil})

4077 end

4078 end

151



4079

4080 outer_first = nil

4081

4082 end

4083

4084 -- TODO -- repeated here in case EN/ET is the last node. Find a

4085 -- better way of doing things:

4086 if first_et then -- dir may be nil here !

4087 if has_en then

4088 if last == 'l' then

4089 temp = 'l' -- W7

4090 else

4091 temp = 'en' -- W5

4092 end

4093 else

4094 temp = 'on' -- W6

4095 end

4096 for e = first_et, #nodes do

4097 if nodes[e][1].id == GLYPH then nodes[e][2] = temp end

4098 end

4099 end

4100

4101 -- dummy node, to close things

4102 table.insert(nodes, {nil, (outer == 'l') and 'l' or 'r', nil})

4103

4104 --------------- NEUTRAL -----------------

4105

4106 outer = save_outer

4107 last = outer

4108

4109 local first_on = nil

4110

4111 for q = 1, #nodes do

4112 local item

4113

4114 local outer_first = nodes[q][3]

4115 outer = outer_first or outer

4116 last = outer_first or last

4117

4118 local d = nodes[q][2]

4119 if d == 'an' or d == 'en' then d = 'r' end

4120 if d == 'cs' or d == 'et' or d == 'es' then d = 'on' end --- W6

4121

4122 if d == 'on' then

4123 first_on = first_on or q

4124 elseif first_on then

4125 if last == d then

4126 temp = d

4127 else

4128 temp = outer

4129 end

4130 for r = first_on, q - 1 do

4131 nodes[r][2] = temp

4132 item = nodes[r][1] -- MIRRORING

4133 if item.id == GLYPH and temp == 'r' then

4134 item.char = characters[item.char].m or item.char

4135 end

4136 end

4137 first_on = nil

152



4138 end

4139

4140 if d == 'r' or d == 'l' then last = d end

4141 end

4142

4143 -------------- IMPLICIT, REORDER ----------------

4144

4145 outer = save_outer

4146 last = outer

4147

4148 local state = {}

4149 state.has_r = false

4150

4151 for q = 1, #nodes do

4152

4153 local item = nodes[q][1]

4154

4155 outer = nodes[q][3] or outer

4156

4157 local d = nodes[q][2]

4158

4159 if d == 'nsm' then d = last end -- W1

4160 if d == 'en' then d = 'an' end

4161 local isdir = (d == 'r' or d == 'l')

4162

4163 if outer == 'l' and d == 'an' then

4164 state.san = state.san or item

4165 state.ean = item

4166 elseif state.san then

4167 head, state = insert_numeric(head, state)

4168 end

4169

4170 if outer == 'l' then

4171 if d == 'an' or d == 'r' then -- im -> implicit

4172 if d == 'r' then state.has_r = true end

4173 state.sim = state.sim or item

4174 state.eim = item

4175 elseif d == 'l' and state.sim and state.has_r then

4176 head, state = insert_implicit(head, state, outer)

4177 elseif d == 'l' then

4178 state.sim, state.eim, state.has_r = nil, nil, false

4179 end

4180 else

4181 if d == 'an' or d == 'l' then

4182 state.sim = state.sim or item

4183 state.eim = item

4184 elseif d == 'r' and state.sim then

4185 head, state = insert_implicit(head, state, outer)

4186 elseif d == 'r' then

4187 state.sim, state.eim = nil, nil

4188 end

4189 end

4190

4191 if isdir then

4192 last = d -- Don't search back - best save now

4193 elseif d == 'on' and state.san then

4194 state.san = state.san or item

4195 state.ean = item

4196 end

153



4197

4198 end

4199

4200 return node.prev(head) or head

4201 end

4202 〈/basic〉

15 The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to nohyphenation.
For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than once,
checking the category code of the @ sign, etc.

4203 〈∗nil〉
4204 \ProvidesLanguage{nil}[〈〈date〉〉 〈〈version〉〉 Nil language]

4205 \LdfInit{nil}{datenil}

When this file is read as an option, i.e. by the \usepackage command, nil could be an
‘unknown’ language in which case we have to make it known.

4206 \ifx\l@nohyphenation\@undefined

4207 \@nopatterns{nil}

4208 \adddialect\l@nil0

4209 \else

4210 \let\l@nil\l@nohyphenation

4211 \fi

This macro is used to store the values of the hyphenation parameters \lefthyphenmin and
\righthyphenmin.

4212 \providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’ language.

\captionnil

\datenil 4213 \let\captionsnil\@empty

4214 \let\datenil\@empty

The macro \ldf@finish takes care of looking for a configuration file, setting the main
language to be switched on at \begin{document} and resetting the category code of @ to its
original value.

4215 \ldf@finish{nil}

4216 〈/nil〉

16 Support for Plain TEX (plain.def)

16.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to designate
his version of the american English hyphenation patterns, a new solution has to be found
in order to be able to load hyphenation patterns for other languages in a plain-based
TEX-format. When asked he responded:

That file name is “sacred”, and if anybody changes it they will cause severe
upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they mustn’t diddle
with hyphen.tex (or plain.tex except to preload additional fonts).

154



The files bplain.tex and blplain.tex can be used as replacement wrappers around
plain.tex and lplain.tex to acheive the desired effect, based on the babel package. If
you load each of them with iniTEX, you will get a file called either bplain.fmt or
blplain.fmt, which you can use as replacements for plain.fmt and lplain.fmt.
As these files are going to be read as the first thing iniTEX sees, we need to set some
category codes just to be able to change the definition of \input

4217 〈∗bplain | blplain〉
4218 \catcode`\{=1 % left brace is begin-group character

4219 \catcode`\}=2 % right brace is end-group character

4220 \catcode`\#=6 % hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on TEX’s input path by
trying to open it for reading...

4221 \openin 0 hyphen.cfg

If the file wasn’t found the following test turns out true.

4222 \ifeof0

4223 \else

When hyphen.cfg could be opened we make sure that it will be read instead of the file
hyphen.tex which should (according to Don Knuth’s ruling) contain the american English
hyphenation patterns and nothing else.
We do this by first saving the original meaning of \input (and I use a one letter control
sequence for that so as not to waste multi-letter control sequence on this in the format).

4224 \let\a\input

Then \input is defined to forget about its argument and load hyphen.cfg instead.

4225 \def\input #1 {%

4226 \let\input\a

4227 \a hyphen.cfg

Once that’s done the original meaning of \input can be restored and the definition of \a
can be forgotten.

4228 \let\a\undefined

4229 }

4230 \fi

4231 〈/bplain | blplain〉

Now that we have made sure that hyphen.cfg will be loaded at the right moment it is time
to load plain.tex.

4232 〈bplain〉\a plain.tex

4233 〈blplain〉\a lplain.tex

Finally we change the contents of \fmtname to indicate that this is not the plain format, but
a format based on plain with the babel package preloaded.

4234 〈bplain〉\def\fmtname{babel-plain}
4235 〈blplain〉\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy of
blplain.tex, rename it and replace plain.tex with the name of your format file.

16.2 Emulating some LATEX features

The following code duplicates or emulates parts of LATEX2ε that are needed for babel.

4236 〈∗plain〉
4237 \def\@empty{}

4238 \def\loadlocalcfg#1{%

155



4239 \openin0#1.cfg

4240 \ifeof0

4241 \closein0

4242 \else

4243 \closein0

4244 {\immediate\write16{*************************************}%

4245 \immediate\write16{* Local config file #1.cfg used}%

4246 \immediate\write16{*}%

4247 }

4248 \input #1.cfg\relax

4249 \fi

4250 \@endofldf}

16.3 General tools

A number of LATEX macro’s that are needed later on.

4251 \long\def\@firstofone#1{#1}

4252 \long\def\@firstoftwo#1#2{#1}

4253 \long\def\@secondoftwo#1#2{#2}

4254 \def\@nnil{\@nil}

4255 \def\@gobbletwo#1#2{}

4256 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}

4257 \def\@star@or@long#1{%

4258 \@ifstar

4259 {\let\l@ngrel@x\relax#1}%

4260 {\let\l@ngrel@x\long#1}}

4261 \let\l@ngrel@x\relax

4262 \def\@car#1#2\@nil{#1}

4263 \def\@cdr#1#2\@nil{#2}

4264 \let\@typeset@protect\relax

4265 \let\protected@edef\edef

4266 \long\def\@gobble#1{}

4267 \edef\@backslashchar{\expandafter\@gobble\string\\}

4268 \def\strip@prefix#1>{}

4269 \def\g@addto@macro#1#2{{%

4270 \toks@\expandafter{#1#2}%

4271 \xdef#1{\the\toks@}}}

4272 \def\@namedef#1{\expandafter\def\csname #1\endcsname}

4273 \def\@nameuse#1{\csname #1\endcsname}

4274 \def\@ifundefined#1{%

4275 \expandafter\ifx\csname#1\endcsname\relax

4276 \expandafter\@firstoftwo

4277 \else

4278 \expandafter\@secondoftwo

4279 \fi}

4280 \def\@expandtwoargs#1#2#3{%

4281 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}

4282 \def\zap@space#1 #2{%

4283 #1%

4284 \ifx#2\@empty\else\expandafter\zap@space\fi

4285 #2}

LATEX2ε has the command \@onlypreamble which adds commands to a list of commands
that are no longer needed after \begin{document}.

4286 \ifx\@preamblecmds\@undefined

4287 \def\@preamblecmds{}

4288 \fi

4289 \def\@onlypreamble#1{%

156



4290 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%

4291 \@preamblecmds\do#1}}

4292 \@onlypreamble\@onlypreamble

Mimick LATEX’s \AtBeginDocument; for this to work the user needs to add \begindocument

to his file.

4293 \def\begindocument{%

4294 \@begindocumenthook

4295 \global\let\@begindocumenthook\@undefined

4296 \def\do##1{\global\let##1\@undefined}%

4297 \@preamblecmds

4298 \global\let\do\noexpand}

4299 \ifx\@begindocumenthook\@undefined

4300 \def\@begindocumenthook{}

4301 \fi

4302 \@onlypreamble\@begindocumenthook

4303 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimick LATEX’s \AtEndOfPackage. Our replacement macro is much
simpler; it stores its argument in \@endofldf.

4304 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}

4305 \@onlypreamble\AtEndOfPackage

4306 \def\@endofldf{}

4307 \@onlypreamble\@endofldf

4308 \let\bbl@afterlang\@empty

4309 \chardef\bbl@opt@hyphenmap\z@

LATEX needs to be able to switch off writing to its auxiliary files; plain doesn’t have them by
default.

4310 \ifx\if@filesw\@undefined

4311 \expandafter\let\csname if@filesw\expandafter\endcsname

4312 \csname iffalse\endcsname

4313 \fi

Mimick LATEX’s commands to define control sequences.

4314 \def\newcommand{\@star@or@long\new@command}

4315 \def\new@command#1{%

4316 \@testopt{\@newcommand#1}0}

4317 \def\@newcommand#1[#2]{%

4318 \@ifnextchar [{\@xargdef#1[#2]}%

4319 {\@argdef#1[#2]}}

4320 \long\def\@argdef#1[#2]#3{%

4321 \@yargdef#1\@ne{#2}{#3}}

4322 \long\def\@xargdef#1[#2][#3]#4{%

4323 \expandafter\def\expandafter#1\expandafter{%

4324 \expandafter\@protected@testopt\expandafter #1%

4325 \csname\string#1\expandafter\endcsname{#3}}%

4326 \expandafter\@yargdef \csname\string#1\endcsname

4327 \tw@{#2}{#4}}

4328 \long\def\@yargdef#1#2#3{%

4329 \@tempcnta#3\relax

4330 \advance \@tempcnta \@ne

4331 \let\@hash@\relax

4332 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fi}%

4333 \@tempcntb #2%

4334 \@whilenum\@tempcntb <\@tempcnta

4335 \do{%

4336 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%

157



4337 \advance\@tempcntb \@ne}%

4338 \let\@hash@##%

4339 \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}

4340 \def\providecommand{\@star@or@long\provide@command}

4341 \def\provide@command#1{%

4342 \begingroup

4343 \escapechar\m@ne\xdef\@gtempa{{\string#1}}%

4344 \endgroup

4345 \expandafter\@ifundefined\@gtempa

4346 {\def\reserved@a{\new@command#1}}%

4347 {\let\reserved@a\relax

4348 \def\reserved@a{\new@command\reserved@a}}%

4349 \reserved@a}%

4350 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}

4351 \def\declare@robustcommand#1{%

4352 \edef\reserved@a{\string#1}%

4353 \def\reserved@b{#1}%

4354 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%

4355 \edef#1{%

4356 \ifx\reserved@a\reserved@b

4357 \noexpand\x@protect

4358 \noexpand#1%

4359 \fi

4360 \noexpand\protect

4361 \expandafter\noexpand\csname\bbl@stripslash#1 \endcsname

4362 }%

4363 \expandafter\new@command\csname\bbl@stripslash#1 \endcsname

4364 }

4365 \def\x@protect#1{%

4366 \ifx\protect\@typeset@protect\else

4367 \@x@protect#1%

4368 \fi

4369 }

4370 \def\@x@protect#1\fi#2#3{%

4371 \fi\protect#1%

4372 }

The following little macro \in@ is taken from latex.ltx; it checks whether its first
argument is part of its second argument. It uses the boolean \in@; allocating a new
boolean inside conditionally executed code is not possible, hence the construct with the
temporary definition of \bbl@tempa.

4373 \def\bbl@tempa{\csname newif\endcsname\ifin@}

4374 \ifx\in@\@undefined

4375 \def\in@#1#2{%

4376 \def\in@@##1#1##2##3\in@@{%

4377 \ifx\in@##2\in@false\else\in@true\fi}%

4378 \in@@#2#1\in@\in@@}

4379 \else

4380 \let\bbl@tempa\@empty

4381 \fi

4382 \bbl@tempa

LATEX has a macro to check whether a certain package was loaded with specific options. The
command has two extra arguments which are code to be executed in either the true or
false case. This is used to detect whether the document needs one of the accents to be
activated (activegrave and activeacute). For plain TEX we assume that the user wants them
to be active by default. Therefore the only thing we do is execute the third argument (the
code for the true case).

158



4383 \def\@ifpackagewith#1#2#3#4{#3}

The LATEX macro \@ifl@aded checks whether a file was loaded. This functionality is not
needed for plain TEX but we need the macro to be defined as a no-op.

4384 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and
\providecommand exist with some sensible definition. They are not fully equivalent to
their LATEX2ε versions; just enough to make things work in plain TEXenvironments.

4385 \ifx\@tempcnta\@undefined

4386 \csname newcount\endcsname\@tempcnta\relax

4387 \fi

4388 \ifx\@tempcntb\@undefined

4389 \csname newcount\endcsname\@tempcntb\relax

4390 \fi

To prevent wasting two counters in LATEX 2.09 (because counters with the same name are
allocated later by it) we reset the counter that holds the next free counter (\count10).

4391 \ifx\bye\@undefined

4392 \advance\count10 by -2\relax

4393 \fi

4394 \ifx\@ifnextchar\@undefined

4395 \def\@ifnextchar#1#2#3{%

4396 \let\reserved@d=#1%

4397 \def\reserved@a{#2}\def\reserved@b{#3}%

4398 \futurelet\@let@token\@ifnch}

4399 \def\@ifnch{%

4400 \ifx\@let@token\@sptoken

4401 \let\reserved@c\@xifnch

4402 \else

4403 \ifx\@let@token\reserved@d

4404 \let\reserved@c\reserved@a

4405 \else

4406 \let\reserved@c\reserved@b

4407 \fi

4408 \fi

4409 \reserved@c}

4410 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token

4411 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}

4412 \fi

4413 \def\@testopt#1#2{%

4414 \@ifnextchar[{#1}{#1[#2]}}

4415 \def\@protected@testopt#1{%

4416 \ifx\protect\@typeset@protect

4417 \expandafter\@testopt

4418 \else

4419 \@x@protect#1%

4420 \fi}

4421 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax

4422 #2\relax}\fi}

4423 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum

4424 \else\expandafter\@gobble\fi{#1}}

16.4 Encoding related macros

Code from ltoutenc.dtx, adapted for use in the plain TEX environment.

4425 \def\DeclareTextCommand{%

4426 \@dec@text@cmd\providecommand

159



4427 }

4428 \def\ProvideTextCommand{%

4429 \@dec@text@cmd\providecommand

4430 }

4431 \def\DeclareTextSymbol#1#2#3{%

4432 \@dec@text@cmd\chardef#1{#2}#3\relax

4433 }

4434 \def\@dec@text@cmd#1#2#3{%

4435 \expandafter\def\expandafter#2%

4436 \expandafter{%

4437 \csname#3-cmd\expandafter\endcsname

4438 \expandafter#2%

4439 \csname#3\string#2\endcsname

4440 }%

4441 % \let\@ifdefinable\@rc@ifdefinable

4442 \expandafter#1\csname#3\string#2\endcsname

4443 }

4444 \def\@current@cmd#1{%

4445 \ifx\protect\@typeset@protect\else

4446 \noexpand#1\expandafter\@gobble

4447 \fi

4448 }

4449 \def\@changed@cmd#1#2{%

4450 \ifx\protect\@typeset@protect

4451 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax

4452 \expandafter\ifx\csname ?\string#1\endcsname\relax

4453 \expandafter\def\csname ?\string#1\endcsname{%

4454 \@changed@x@err{#1}%

4455 }%

4456 \fi

4457 \global\expandafter\let

4458 \csname\cf@encoding \string#1\expandafter\endcsname

4459 \csname ?\string#1\endcsname

4460 \fi

4461 \csname\cf@encoding\string#1%

4462 \expandafter\endcsname

4463 \else

4464 \noexpand#1%

4465 \fi

4466 }

4467 \def\@changed@x@err#1{%

4468 \errhelp{Your command will be ignored, type <return> to proceed}%

4469 \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}

4470 \def\DeclareTextCommandDefault#1{%

4471 \DeclareTextCommand#1?%

4472 }

4473 \def\ProvideTextCommandDefault#1{%

4474 \ProvideTextCommand#1?%

4475 }

4476 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd

4477 \expandafter\let\csname?-cmd\endcsname\@changed@cmd

4478 \def\DeclareTextAccent#1#2#3{%

4479 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}

4480 }

4481 \def\DeclareTextCompositeCommand#1#2#3#4{%

4482 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname

4483 \edef\reserved@b{\string##1}%

4484 \edef\reserved@c{%

4485 \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%

160



4486 \ifx\reserved@b\reserved@c

4487 \expandafter\expandafter\expandafter\ifx

4488 \expandafter\@car\reserved@a\relax\relax\@nil

4489 \@text@composite

4490 \else

4491 \edef\reserved@b##1{%

4492 \def\expandafter\noexpand

4493 \csname#2\string#1\endcsname####1{%

4494 \noexpand\@text@composite

4495 \expandafter\noexpand\csname#2\string#1\endcsname

4496 ####1\noexpand\@empty\noexpand\@text@composite

4497 {##1}%

4498 }%

4499 }%

4500 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%

4501 \fi

4502 \expandafter\def\csname\expandafter\string\csname

4503 #2\endcsname\string#1-\string#3\endcsname{#4}

4504 \else

4505 \errhelp{Your command will be ignored, type <return> to proceed}%

4506 \errmessage{\string\DeclareTextCompositeCommand\space used on

4507 inappropriate command \protect#1}

4508 \fi

4509 }

4510 \def\@text@composite#1#2#3\@text@composite{%

4511 \expandafter\@text@composite@x

4512 \csname\string#1-\string#2\endcsname

4513 }

4514 \def\@text@composite@x#1#2{%

4515 \ifx#1\relax

4516 #2%

4517 \else

4518 #1%

4519 \fi

4520 }

4521 %

4522 \def\@strip@args#1:#2-#3\@strip@args{#2}

4523 \def\DeclareTextComposite#1#2#3#4{%

4524 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%

4525 \bgroup

4526 \lccode`\@=#4%

4527 \lowercase{%

4528 \egroup

4529 \reserved@a @%

4530 }%

4531 }

4532 %

4533 \def\UseTextSymbol#1#2{%

4534 % \let\@curr@enc\cf@encoding

4535 % \@use@text@encoding{#1}%

4536 #2%

4537 % \@use@text@encoding\@curr@enc

4538 }

4539 \def\UseTextAccent#1#2#3{%

4540 % \let\@curr@enc\cf@encoding

4541 % \@use@text@encoding{#1}%

4542 % #2{\@use@text@encoding\@curr@enc\selectfont#3}%

4543 % \@use@text@encoding\@curr@enc

4544 }

161



4545 \def\@use@text@encoding#1{%

4546 % \edef\f@encoding{#1}%

4547 % \xdef\font@name{%

4548 % \csname\curr@fontshape/\f@size\endcsname

4549 % }%

4550 % \pickup@font

4551 % \font@name

4552 % \@@enc@update

4553 }

4554 \def\DeclareTextSymbolDefault#1#2{%

4555 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%

4556 }

4557 \def\DeclareTextAccentDefault#1#2{%

4558 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%

4559 }

4560 \def\cf@encoding{OT1}

Currently we only use the LATEX2ε method for accents for those that are known to be made
active in some language definition file.

4561 \DeclareTextAccent{\"}{OT1}{127}

4562 \DeclareTextAccent{\'}{OT1}{19}

4563 \DeclareTextAccent{\^}{OT1}{94}

4564 \DeclareTextAccent{\`}{OT1}{18}

4565 \DeclareTextAccent{\~}{OT1}{126}

The following control sequences are used in babel.def but are not defined for plain TEX.

4566 \DeclareTextSymbol{\textquotedblleft}{OT1}{92}

4567 \DeclareTextSymbol{\textquotedblright}{OT1}{`\"}

4568 \DeclareTextSymbol{\textquoteleft}{OT1}{`\`}

4569 \DeclareTextSymbol{\textquoteright}{OT1}{`\'}

4570 \DeclareTextSymbol{\i}{OT1}{16}

4571 \DeclareTextSymbol{\ss}{OT1}{25}

For a couple of languages we need the LATEX-control sequence \scriptsize to be available.
Because plain TEX doesn’t have such a sofisticated font mechanism as LATEX has, we just
\let it to \sevenrm.

4572 \ifx\scriptsize\@undefined

4573 \let\scriptsize\sevenrm

4574 \fi

4575 〈/plain〉

17 Acknowledgements

I would like to thank all who volunteered as β-testers for their time. Michel Goossens
supplied contributions for most of the other languages. Nico Poppelier helped polish the
text of the documentation and supplied parts of the macros for the Dutch language. Paul
Wackers and Werenfried Spit helped find and repair bugs.
During the further development of the babel system I received much help from Bernd
Raichle, for which I am grateful.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

162



[3] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[4] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst. SDU Uitgeverij
(’s-Gravenhage, 1988).

[5] Hubert Partl, German TEX, TUGboat 9 (1988) #1, p. 70–72.

[6] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[7] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national LATEX
styles, TUGboat 10 (1989) #3, p. 401–406.

[8] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[9] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1, p. 87–90.

[10] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using
LATEX, Springer, 2002, p. 301–373.

163


	I User guide
	The user interface
	Monolingual documents
	Multilingual documents
	Modifiers
	xelatex and lualatex
	Troubleshooting
	Plain
	Basic language selectors
	Auxiliary language selectors
	More on selection
	Shorthands
	Package options
	The base option
	ini files
	Selecting fonts
	Modifying a language
	Creating a language
	Digits
	Getting the current language name
	Hyphenation tools
	Selecting scripts
	Selecting directions
	Language attributes
	Hooks
	Languages supported by babel
	Tips, workarounds, know issues and notes
	Current and future work
	Tentative and experimental code

	Loading languages with language.dat
	Format

	The interface between the core of babel and the language definition files
	Guidelines for contributed languages
	Basic macros
	Skeleton
	Support for active characters
	Support for saving macro definitions
	Support for extending macros
	Macros common to a number of languages
	Encoding-dependent strings

	Changes
	Changes in babel version 3.9
	Changes in babel version 3.7


	II The code
	Identification and loading of required files
	locale directory
	Tools
	Multiple languages

	The Package File (LaTeX, babel.sty)
	base
	key=value options and other general option
	Conditional loading of shorthands
	Language options

	The kernel of Babel (babel.def, common)
	Tools
	Hooks
	Setting up language files
	Shorthands
	Language attributes
	Support for saving macro definitions
	Short tags
	Hyphens
	Multiencoding strings
	Macros common to a number of languages
	Making glyphs available
	Quotation marks
	Letters
	Shorthands for quotation marks
	Umlauts and tremas

	Layout
	Creating languages

	The kernel of Babel (babel.def, only LaTeX)
	The redefinition of the style commands
	Cross referencing macros
	Marks
	Preventing clashes with other packages
	ifthen
	varioref
	hhline
	hyperref
	fancyhdr

	Encoding and fonts
	Basic bidi support
	Local Language Configuration

	Multiple languages (switch.def)
	Selecting the language
	Errors

	Loading hyphenation patterns
	Font handling with fontspec
	Hooks for XeTeX and LuaTeX
	XeTeX
	Layout
	LuaTeX
	Layout
	Auto bidi with basic-r

	The `nil' language
	Support for Plain TeX (plain.def)
	Not renaming hyphen.tex
	Emulating some LaTeX features
	General tools
	Encoding related macros

	Acknowledgements


