Tests

- Having a referenced equation with reference before 1

$$
\begin{align*}
& d-d=0 \tag{1}\\
& d-d=0
\end{align*}
$$

2
a
b

- Having a referenced equation with reference after

$$
\begin{equation*}
c^{2}=c c \tag{3}
\end{equation*}
$$

3

- Having an unlabeled equation

$$
a^{2}+b^{2}=c^{2}
$$

- Having a labeled, but unreferenced equation

$$
\sqrt{a}
$$

- Having a labeled equation with a very strange label 4

$$
\begin{equation*}
\sqrt{b} \tag{4}
\end{equation*}
$$

- Check for spurious whitespace around reference (5)

$$
\begin{equation*}
b_{c} \tag{5}
\end{equation*}
$$

- Placing the number in long equations 6

$$
\begin{equation*}
\sum a \tag{6}
\end{equation*}
$$

- Printing the number without referencing

$$
\begin{equation*}
E=m g h \tag{7}
\end{equation*}
$$

- Using cref with one argument

$$
\begin{equation*}
g \tag{8}
\end{equation*}
$$

eq. (8)

- Using cref with two arguments

$$
\begin{equation*}
c r=e f \tag{9}
\end{equation*}
$$

eqs. (8) and (9)

- Using align 10,11

$$
\begin{align*}
& a \tag{10}\\
& b \\
& c \tag{11}
\end{align*}
$$

- Using gather 12, 13

$$
\begin{align*}
& a \tag{12}\\
& b \\
& c \tag{13}
\end{align*}
$$

- Using multline without referencing
a
c
- Using multline with referencing 14
a
- Using flalign with referencing 15
- Using alignat with referencing 16

$$
\begin{align*}
& x=y y \Longrightarrow y=x \\
& y=z \Longrightarrow z=y \tag{16}
\end{align*}
$$

- short one-line shortcut

$$
n
$$

- align, numbering always

$$
\begin{equation*}
a=l \tag{17}
\end{equation*}
$$

- gather, numbering always

$$
\begin{equation*}
g=a \tag{18}
\end{equation*}
$$

- multline, numbering always (and avoiding overfull hbox warning)

$$
\begin{equation*}
m=u \quad=v \tag{19}
\end{equation*}
$$

- equation, numbering always

$$
\begin{equation*}
e=q \tag{20}
\end{equation*}
$$

- shortcut and split 21

$$
\begin{align*}
& s \\
& p \tag{21}
\end{align*}
$$

- equation and split 22
s
p

