
The animate Package

Alexander Grahn ∗†

https://gitlab.com/agrahn/animatehttps://gitlab.com/agrahn/animate

30th November 2018

Abstract

A LaTeX package for creating portable, JavaScript driven PDF and SVG

animations from sets of vector graphics or raster image files or from inline

graphics.

Keywords: include portable PDF animation SVG animation animated PDF

animated SVG dvisvgm html TeX4ht web animating embed animated graphics

LaTeX pdfLaTeX LuaLaTeX PSTricks pgf TikZ LaTeX-picture MetaPost inline

graphics vector graphics animated GIF LaTeX dvips ps2pdf dvipdfmx XeLaTeX

JavaScript Acrobat Reader PDF-XChange Foxit Reader Firefox Chrome

Chromium

Contents

1 Introduction 22

2 Requirements 22

3 Installation 22

4 Using the package 33

5 The user interface 44

6 Command options 66
6.1 Basic options . 66
6.2 The ‘timeline’ option . 99

7 Programming interface 1414

8 Examples 1616
8.1 Animations from sets of files, using \animategraphics 1616
8.2 Animating PSTricks graphics, using ‘animateinline’ environment . 1919

9 Producing animated SVG 2525

∗Animated GIF taken from phpBBphpBB forum software and burst into a set of EPS files using ImageMagickImageMagick
before embedding.

†Animations may run slowly if viewed in the Acrobat Reader browser plugin.

1

https://gitlab.com/agrahn/animate
https://gitlab.com/agrahn/animate
http://www.phpBB.com
http://www.phpBB.com
http://www.imagemagick.org
http://www.imagemagick.org

10 Bugs 2626

11 Acknowledgements 2828

1 Introduction

This package provides an interface for creating PDF and SVG files with animated
content from sets of graphics or image files, from inline graphics, such as LATEX-picture,
PSTricks or pgf/TikZ generated pictures, or just from typeset text. Unlike standard
movie/video formats, package ‘animate’ allows for animating vector graphics. The
result is roughly similar to the SWF (Flash) format, although not as space-efficient.

Package ‘animate’ supports the usual workflows formaking PDF, i. e. pdfLATEX, LuaLATEX,
LATEX → dvips → ps2pdf/Distiller and (X E)LATEX → (x)dvipdfmx. For animated
SVG, it supports the dvisvgm driver. The DVI/XDV used as input for dvisvgm can
be generated with LATEX, LuaLATEX (in DVI mode) and X ELATEX.

PDF files with animations can be viewed in Acrobat Reader (except onmobile devices),
PDF-XChange and Foxit Reader. Animated SVG produced by means of LATEX and
dvisvgmare self-contained files that can be embedded into HTMLusing the <object>
tag or opened directly in a Web browser, such as Firefox or Chromium.

The user interacts with the animation through optional animation controls or using
the mouse like so: Pressing the mouse button over the animation widget immediately
pauses a playing animation and releasing it resumes playback. Pressing the shift-key
at the same time reverses the playback direction. Keeping the mouse button pressed
while moving the mouse pointer off the animation widget permanently pauses play-
back.

On mobile devices, interaction with an animated SVG is similar to that on desktop
devices, just using finger touches instead of mouse button press/release. To perman-
ently pause an animationwithout the pause button, touch the animationwith a second
finger, then lift both fingers off.

2 Requirements

pdfTEX, version ≥ 1.20, or LuaTEX, version ≥ 0.95, for direct PDF output

Ghostscript, version ≥ 9.15 or Adobe Distiller for PS to PDF conversion

dvipdfmx for DVI to PDF conversion

dvisvgm for DVI to SVG conversion (also requires Ghostscript)

PDF: Acrobat Reader (version ≥ 7), PDF-XChange, Foxit Reader

SVG: Firefox, Chrome/Chromium and others

3 Installation

Unzip the file ‘animate.tds.zip’‘animate.tds.zip’ into the local TDS root directory which can be found
by running ‘kpsewhich -var-value TEXMFLOCAL’ on the command line.

2

http://mirrors.ctan.org/install/macros/latex/contrib/animate.tds.zip
http://mirrors.ctan.org/install/macros/latex/contrib/animate.tds.zip

After installation, update the filename database by running ‘texhash’ on the com-
mand line.

TEX-Live and MiKTEX users should run the package manager of their system for in-
stallation.

4 Using the package

First of all, read Section 1010 on problems related to this package. Then, invoke the
package by putting the line

\usepackage[<package options>]{animate}

to the preamble of the document source, i. e. somewhere between \documentclass

and \begin{document}.

‘animate’ honours the package options:

dvipdfmx

xetex

dvisvgm

export

autoplay

autopause

autoresume

loop

palindrome

draft

final

controls[=(all|true|on) |

(none|false|off) | {[play][,step][,stop][,speed]}]

width=<h-size>

height=<v-size> | totalheight=<v-size>

keepaspectratio

scale=<factor>

buttonsize=<size>

buttonbg=<colour>

buttonfg=<colour>

buttonalpha=<opacity>

step

nomouse

type=<file ext>

method=icon | widget | ocg

poster[=first | <num> | last | none]

Except for ‘dvipdfmx’, ‘xetex’, ‘dvisvgm’ and ‘export’, the listed package options
are also available (among others) as command options and will be explained shortly.
However, if used as package options they have global scope, taking effect on all anim-
ations in the document. In turn, command options locally override global settings. Op-
tions without an argument are boolean options and can be negated, with the exception
of package-only options ‘dvipdfmx’, ‘xetex’, ‘dvisvgm and ‘export’, by appending
‘=false’.

3

Option ‘-Ppdf’ should not be used with dvips when converting DVI to
PostScript. If you cannot do without, put ‘-D 1200’ after ‘-Ppdf’ on the command
line. Users of LATEX-aware text editors with menu-driven toolchain invocation, such
as TEXnicCenter, should check the configuration of the dvips call.

All workflows require the ‘graphicx’ package to be loaded explicitly.

Options ‘dvipdfmx’ or ‘dvisvgm’ must be set for the document class, as in

\documentclass[dvipdfmx,...]{...}

or

\documentclass[dvisvgm,...]{...}

because these drivers cannot be auto-detected by ‘animate’, ‘graphicx’ and other pack-
ages.

Usually, a second LATEX run is necessary to resolve internally created object references.
A warning message will be issued if appropriate.

With option ‘export’, animation frames are output as individual pages of a multipage
document that can be converted to other file formats, such as animated GIF. The ‘stan-
dalone’ document class must be used together with ‘export’:

\documentclass{standalone}

\usepackage[export]{animate}

or

\documentclass[export]{standalone}

\usepackage{animate}

5 The user interface

Package ‘animate’ provides the command

\animategraphics[<options>]{<frame rate>}{<file basename>}{<first>}{<last>}

and the environment

\begin{animateinline}[<options>]{<frame rate>}

... typeset material ...

\newframe[<frame rate>]

... typeset material ...

\newframe*[<frame rate>]

... typeset material ...

\newframe

\multiframe{<number of frames>}{[<variables>]}{

... repeated (parameterized) material ...

}

\end{animateinline}

While \animategraphics can be used to assemble animations from sets of existing
graphics files or from multipage PDF, the environment ‘animateinline’ is meant
to create the animation from the typeset material it encloses. This material can be

4

pictures drawn within the LATEX ‘picture’ environment or using the advanced cap-
abilities of PSTricks or pgf/TikZ. Even ordinary textual material may be animated in
this way. The parameter <frame rate> specifies the number of frames per second
of the animation.

The \newframe command terminates a frame and starts the next one. It can be used
only inside the ‘animateinline’environment. There is a starred variant, \newframe*.
If placed after a particular frame, it causes the animation to pause at that frame. The
animation continues as normal after clicking it again. Both \newframe variants take
an optional argument that allows the frame rate to be changed in the middle of an
animation.

The \multiframe command allows the construction of loops around pictures. The
first argument<number of frames>doeswhat onewould expect it to do, the second
argument <variables> is a comma-separated list of variable declarations. The list
may be of arbitrary, even zero, length. Variables may be used to parameterize pic-
tures which are defined in the loop body (third argument of \multiframe). A single
variable declaration has the form

<variable name>=<initial value>+<increment>

<variable name> is a sequence of one or more letters without a leading backslash11.
The first (and possibly only) letter of the variable name determines the type of the
variable. There are three different types: integers (‘i’, ‘I’), reals (‘n’, ‘N’, ‘r’, ‘R’) and di-
mensions or LATEX lengths (‘d’, ‘D’). Upon first execution of the loop body, the variable
takes the value <initial value>. Each further iteration increments the variable by
<increment>. Negative increments must be preceded by ‘-’. Here are some examples:
‘i=1+2’, ‘Rx=10.0+-2.25’, ‘dim=20pt+1ex’. Within the loop body, variables are ex-
panded to their current value by prepending a backslash to the variable name, that
is \i, \Rx and \dim according to the previous examples. \multiframemust be sur-
rounded by \begin{animateinline} and \end{animateinline} or by any of the
\newframe variants. Two consecutive \multiframe commands must be separated
by one of the \newframe variants.

By default, the animation is built frame by frame in the order of inclusion of the
embedded material. However, extended control of the order of appearance, superpos-
ition and repetition of the material is available through the ‘timeline’ option (see
Section 6.26.2).

Sets of graphics files
All files of the sequence should exist and be consecutively numbered. (Exception to
this rule is allowed in connection with the ‘every’ option, see below.) <file base-

name> is the leftmost part of the file name that is common to all members of the
sequence. <first> is the number of the first and <last> the number of the last file
in the set. If <first> is greater than <last>, files are embedded in reverse order. File
names may be simply numbered, such as 0… 99. If there are leading zeros, make sure
that all file numbers have the same number of digits, such as 0000… 0099, and that
the <first> and <last> arguments are filled in accordingly.

1This is different from \multido (package ‘multido’) where variable names have a leading ‘\’ in the
declaration.

5

For example, given the sequence ‘frame_5.png’ through ‘frame_50.png’ from a pos-
sibly larger set that shall be used to build an animation running at 12 frames per
second, the correct inclusion command would read

\animategraphics{12}{frame_}{5}{50}

The possible file formats depend on the output driver being used. In the case of LATEX +
dvips, files with the ‘eps’ extension are at first searched for, followed by ‘mps’ (META-
POST-generated PostScript) and ‘ps’. With pdfLATEX and LuaLATEX the searching or-
der is: (1) ‘pdf’, (2) ‘mps’, (3) ‘png’, (4) ‘jpg’, (5) ‘jpeg’, (6) ‘jbig2’, (7) ‘jb2’, (8) ‘jp2’1,
(9) ‘j2k’1, (10) ‘jpx’1, with X ELATEX or LATEX+dvipdfmx: (1) ‘pdf’, (2) ‘mps’, (3) ‘eps’,
(4) ‘ps’, (5) ‘png’, (6) ‘jpg’, (7) ‘jpeg’, (8) ‘bmp’, andwith LATEX+dvisvgm: (1) ‘eps’, (2) ‘ps’,
(3) ‘mps’, (4) ‘svg’, (5) ‘png’, (6) ‘jpg’, (7) ‘jpeg’. That is, files capable of storing vector
graphics are found first. Make sure that all file names have lower case extensions.

This searching procedure can be skipped thanks to the package and command op-
tion ‘type=<file ext>’. It enforces the embedding of files with the given file name
extension <file ext>.

Command \graphicspath{} from the ‘graphicx’ package can be used to specify
directories to be browsed for graphics files.

Multipage PDF (pdfLATEX, X ELATEX) and JBIG2 (pdfLATEX) inclusion
If the file ‘<file basename>.(pdf|jbig2|jb2)’ exists, it is taken as a multipage docu-
ment where each page represents one frame of the animation. In this case, the last two
arguments, <first>& <last>, are interpreted differently from above; they specify a
zero-based range of pages to be included in the animation. Either or both of themmay
be omitted, ‘{}’, in which case they default to 0 and n −1, where n is the total number
of available pages. Arguments that fall outside this range are automatically corrected
to the actual limits. If <first> is greater than <last>, pages are embedded in reverse
order. Again, option ‘type=<file ext>’ can be used to enforce a particular file type.

For example, the line

\animategraphics{12}{frames}{}{}

would create an animation from all pages of the file ‘frames.pdf’, running at 12 fps.

6 Command options

The following options to \animategraphics and ‘animateinline’ have been pro-
vided:

6.1 Basic options

label=<label text>

The animation is given a label, <label text>, which must be unique. Labelling an
animation enables its JavaScript programming interface by defining anim[’<label

text>’], which is a JavaScript reference to the animation object. The animation ob-
ject provides a number of properties and methods that can be used for controlling the
animation playback from within user defined JavaScript. For details, see Section 77.

1Only LuaLATEX currently supports JPEG2000.

6

type=[<file ext>]

Overrides the searching procedure for graphics files explained in the previous section
and forces files with extension <file ext> to be used. Given with an empty argu-
ment as in ‘type=’, this option locally reinstates the default searching procedure if it
was globally disabled through the package option.

poster[=first | <num> | last | none]

Specifies which frame to display and print if the animation is not activated. The first
frame is shown by default. Thus ‘poster’ or ‘poster=first’ need not be explicitly
set. A frame number <num> may as well be given; <num> is zero-based, that is, the
first frame has number ‘0’.

every=<num>

Build animation from every <num>th frame only. Skipped frames are discarded and
not embedded into the document. In the case of \animategraphics, skipped input
files may be missing.

autopause

Pause animation when the page is closed, instead of stopping and rewinding it to the
default frame.

autoplay

Start animation after the page has opened. Also resumes playback of a previously
paused animation.

autoresume

Resume previously paused animation when the page is opened again.

loop

The animation restarts immediately after reaching the end.

palindrome

The animation continuously plays forwards and backwards.

step

Step through the animation one frame at a time per mouse-click. The <frame rate>

argument will be ignored.

width=<h-size>

height=<v-size> | totalheight=<v-size>

keepaspectratio

Resize the animation widget. If only one of ‘width’ or ‘[total]height’ is given,
the other dimension of the animation widget is scaled to maintain the aspect ratio
of the first frame’s content. If both ‘width’ and ‘[total]height’ are given together
with ‘keepaspectratio’, the first frame’s content is resized to fit within <h-size>

and <v-size>while maintaining its original aspect ratio. Any valid TEX dimension is
accepted as a parameter. In addition, the length commands \width, \height, \depth
and \totalheight can be used to refer to the original dimensions of the first frame
of the animated sequence.

7

scale=<factor>

Scales the animation widget by <factor>.

bb=<llx> <lly> <urx> <ury>

(\animategraphics only.) The four, space separated arguments set the bounding
box of the graphics files. Units can be omitted, in which case ‘bp’ (PostScript points)
is assumed.

viewport=<llx> <lly> <urx> <ury>

(\animategraphicsonly.) This option takes four arguments, just like ‘bb’. However,
in this case the values are taken relative to the origin specified by the bounding box
in the graphics files.

trim=<left> <bottom> <right> <top>

(\animategraphics only.) Crops graphics at the edges. The four lengths specify the
amount to be removed from or, if negative values have been provided, to be added to
each side of the graphics.

controls[=all | true | on]

controls=(none | false | off) | {[play][,step][,stop][,speed]}

Inserts control buttons below the animation widget. Visibility of buttons can be fine-
tuned through optional keys. By default, if setting ‘controls’ alone, all available but-
tons are shown, while any of ‘none’, ‘false’ or ‘off’ suppresses them altogether. A
comma-separated selection from ‘play’, ‘step’, ‘stop’ and ‘speed’ enables corres-
ponding pairs or groups of buttons. Such a comma list must be enclosed in braces, i. e.
controls={..., ..., ...}. If all buttons are shown, their meaning is as follows,
from left to right: stop & first frame, step backwards, play backwards, play forwards,
step forwards, stop & last frame, decrease speed, default speed, increase speed. Both
‘play’ buttons are replaced by a large ‘pause’ button while the animation is playing.

buttonsize=<size>

Changes the control button height to <size>, which must be a valid TEX dimension.
The default button height is 1.44em and thus scales with the current font size.

buttonbg=<colour>

buttonfg=<colour>

buttonalpha=<opacity>

By default, control button widgets are drawn with black strokes on transparent back-
ground. The background can be turned into a solid colour by the first option, while
the second option specifies the stroke colour. The parameter <colour> is an array
of colon-(:)-separated numbers in the range from 0.0 to 1.0. The number of array
elements determines the colour model in which the colour is defined: (1) gray value,
(3) RGB, (4) CMYK. For example, ‘1’, ‘1:0.5:0.2’ and ‘0.5:0.3:0.7:0.1’ are valid
colour specifications. Option buttonalpha adds transparency to the control buttons.
Its parameter <opacity> is a number between 0.0 and 1.0, where 0.0 produces fully
transparent and 1.0 fully opaque buttons.

draft

final

8

With ‘draft’ the animation is not embedded. Instead, a box with the exact dimen-
sions of the animation is inserted. Option ‘final’ does the opposite as it forces the
animation to be built and embedded. Both options can be used to reduce compilation
time during authoring of a document. To get the most out of them it is recommended
to set ‘draft’ globally as a package or class option and to set ‘final’ locally as a com-
mand option of the animation that is currently being worked on. After the document
has been finished, the global ‘draft’ option can be removed to embed all animations.

nomouse

Animation widget will not respond to mouse clicks. Unless the JavaScript interface,
Sect. 77, p. 1414, is used to control the animation, it is recommended to also set at least
one of the ‘autoplay’ or ‘controls’ options.

method=icon | widget | ocg

The package implements three different animation methods. The ‘icon’ method is the
default method and usually gives the best performance in terms of animation frame
rate. ‘widget’ and ‘ocg’ are alternative animation methods. In rare cases (standalone
animations without animation controls) method ‘ocg’ may lead to a better animation
performance than the other two.Moreover, it allows overlaying animations with other
typeset material, that is, playing animations in the page background.

measure

Measures the frame rate during one cycle of the animation and prints the value to the
JavaScript console of the Reader. (For testing purposes.)

begin={<begin text>}

end={<end text>}

(‘animateinline’ only.) <begin text> and <end text> are inserted into the code
at start and end of each frame. Mainly used for setting up some drawing environment,
such as

begin={\begin{pspicture}(... , ...)(... , ...)},

end={\end{pspicture}}

A short note on the ‘tikzpicture’ environment: Unlike ‘pspicture’, the ‘tikzpic-
ture’ environment is able to determine its size from the graphical objects it encloses.
However, this may result in differently sized frames of a sequence, depending on the
size and position of the graphical objects. Thus, in order to ensure that all frames
of the sequence be displayed at the same scale in the animation widget, a common
bounding box should be shared by the frames. A bounding box can be provided by
means of an invisible ‘rectangle’ object:

begin={

\begin{tikzpicture}

\useasboundingbox (... , ...) rectangle (... , ...);

},

end={\end{tikzpicture}}

6.2 The ‘timeline’ option

timeline=<timeline file>

9

<timeline file> is a plain text file whose contents determines the order of appear-
ance of the embedded material during the animation. It allows the user to freely re-
arrange, repeat and overlay the material at any point of the animation. This may
greatly reduce the file size of the resulting PDF, as objects that do not change between
several or all frames, such as coordinate axes or labels, can be embedded once and
re-used in other frames of the animation. (Technically, this is done by the XObject
referencing mechanism of PDF.)

If a timeline is associated with the animation, the graphics files or inline graphics em-
bedded by \animategraphics and ‘animateinline’ no longer represent the actual
frames of the animation. Rather, they are a collection of transparencies that can be
played with at will. However, it is now up to the author’s responsibility to construct
a timeline that makes use of each of those transparencies and to put them into a sens-
ible order. In order to identify the transparencies within the timeline file, they are
numbered in the order of their inclusion, starting at zero.

A timeline-based animation can be thought of as a living stack of translucent trans-
parencies. Each animation frame is a snapshot of the stack viewed from above. Trans-
parencies are usually put on top of that stack and stay there for a given number of
frames before expiring (becoming invisible). The lifetime of each transparency within
the stack can be set individually. Once expired, a transparency can be put on the stack
again, if desired. The stack may also be divided into an arbitrary number of sub-stacks
to facilitate the creation of layers, such as background, foreground and intermediate
layers. Sub-stacks allow the insertion of transparencies at depth positions of the global
stack other than just the top. It is important to keep the stack-like nature of anima-
tions in mind because graphical objects on transparencies at higher stack positions
overlay the content of transparencies at lower stack positions.

General structure of the timeline file
Each line of the timeline file that is not blank and which does not begin with a com-
ment (‘%’) corresponds to one frame of the animation. There may be more transparen-
cies than animation frames and vice-versa. A frame specification consists of three or
four colon-(:)-separated fields:

[*]:[<frame rate>]:[<transparencies>][:<JavaScript>]

While any field may be left blank, the first two colons are mandatory. The fourth field,
<JavaScript>, is explained on p. 1212.

An asterisk (‘*’) in the leftmost field causes the animation to pause at that frame, very
much as a \newframe*would do; a number in the second field changes the frame rate
of the animation section that follows. In connection with the ‘timeline’ option, the
asterisk extension and the optional <frame rate> argument of \newframe cease to
make sense and will be tacitly ignored if present.

The third field <transparencies> is a comma-separated list of transparency specific-
ations that determines the transparencies to be put on the stack. Semicolons (;) are
used to separate sub-stacks (= layers) from each other. A single transparency specific-
ation obeys the syntax

<transparency ID>[x<number of frames>]

where <transparency ID> is an integer number that identifies the transparency
to be drawn into the current animation frame. As pointed out above, the transpar-

10

encies are consecutively numbered in the order of their inclusion, starting at zero.
The optional postfix ‘x<number of frames>’ specifies the number of consecutive
frames within which the transparency is to appear. If omitted, a postfix of ‘x1’ is
assumed, which causes the transparency to be shown in the current frame only. Obvi-
ously, <number of frames> must be a non-negative integer number. The meaning
of postfix ‘x0’ is special; it causes the transparency to be shown in all frames, starting
with the current one, until the end of the animation or until the animation sub-stack
to which it belongs is explicitly cleared.

The letter ‘c’, if put into <transparencies>, clears an animation sub-stack, that is,
it causes all transparencies added so far to be removed from the sub-stack, overriding
any <number of frames> value. The effect of ‘c’ is restricted to the sub-stack in
which it appears. Thus, a ‘c’ must be applied to every sub-stack if the complete anim-
ation stack is to be cleared. Moreover, if applied, ‘c’ should go into the first position
of the transparency list of a sub-stack because everything in the sub-stack up to ‘c’
will be cleared.

Timeline example with a single animation stack
Table 11 is an example of a single-stack animation. It lists the contents of a timeline
file together with the resulting stack of transparencies. Note how the stack is strictly
built from the bottom up as transparency specifications are read from left to right and
line by line from the timeline file. In frame No. 4, the stack is first cleared before new
transparencies are deposited on it. Also note that the stack is viewed from above and
transparencies in higher stack position overprint the lower ones.

Table 1: Timeline example of a single-stack animation

frame No. timeline file transparency stack

0 ::0x0,1x2
———1———
———0———

1 ::2

———2———
———1———
———0———

2 ::3
———3———
———0———

3 ::4
———4———
———0———

4 ::c,5x0,6
———6———
———5———

5 ::7
———7———
———5———

6 ::8
———8———
———5———

7 ::9
———9———
———5———

Figures 11 and 44 in Sect. 8.18.1 are animation examples with a single transparency stack.

11

Grouping objects into layers (= sub-stacks) using ‘;’
Due to the stack-like nature of the animation, the position of a transparency specific-
ation in the timeline file determines its depth level in relation to other transparencies.
The timeline file is processed line by line and from left to right. In a single-stack an-
imation, the stack is strictly built from the bottom up, such that earlier transparencies
are overprinted by more recent ones. This may turn out to be inconvenient in certain
situations. For example, it might be desirable to change the background image in the
middle of an animation without affecting objects that are located in the foreground.
For this purpose, transparency specifications can be grouped into layers (sub-stacks)
using the semicolon (;) as a separator. New transparencies can now be put on top
of the individual sub-stacks. After a line of the timeline file has been processed, the
global stack is built by placing the sub-stacks on top of the other. Again, the left-to-
right rule applies when determining the height of the sub-stacks in relation to each
other within the global stack.

The layer concept is best illustrated by an example. In the timeline of Table 22, trans-
parencies are grouped into two sub-stacks only. One is reserved for the background
images, transparencies No. 0 & 1, to be exchanged in frame No. 3, as well as for two
other transparencies, No. 7 & 8, to be interspersed in frame No. 1. A second sub-stack
takes the foreground objects that are successively added to the scene. The dotted lines
in the third column of the table just mark the border between the two sub-stacks.
In frame No. 3, ‘c’ first clears the bottom sub-stack before the new background im-
age is inserted. (Instead, ‘x3’ could have been used with transparency No. 0 in frame
No. 0.) As can be seen in the specifications of frames No. 2 & 4, sub-stacks need not
be explicitly populated; the leading semicolons just ensure the proper assignment of
transparencies to animation sub-stacks.

See the second animation, Fig. 22, in Sect. 8.18.1 for a working example that makes use of
the timeline and the layer concept.

Associate JavaScript actions with animation frames
The optional fourth field <JavaScript> in a frame specification takes JavaScript code
to be executed upon display of that frame. This could be used, for instance, to play
a sound that was embedded using the ‘media9’ LATEX package [66] or to execute Java-
Script methods of the animation object. A non-trivial example is looping over a sub-
range of frames which can be programmed by setting the ‘frameNum’ property of the
animation object. See Section 77 for details of the animation programming interface.

The backslash ‘\’ and percent ‘%’ characters retain their special meaning from LATEX
and must be escaped by a backslash ‘\’ in the JavaScript code. The same applies to
unbalanced braces ‘{’ and ‘}’. Thus, a code line such as

console.println(’{}%}{\n’);

would have to look like

console.println(’{}\%\}\{\\n’);

in the timeline file. The first pair of braces are balancing themselves and do not need
to be escaped.

Note that JavaScript is executed at the start of displaying the frame. If something is to
be executed at the end of a particular frame, the <JavaScript>field should be added
to the next frame in the timeline file. However, this is not possible for the last frame

12

Table 2: Timeline example with two sub-stacks

frame No. timeline file transparency stack

0 :: 0x0 ; 2x0

———2———
. .

———0———

1 ::7,8x2 ; 3x0

———3———
———2———

. .

———8———
———7———
———0———

2 :: ; 4x0

———4———
———3———
———2———

. .

———8———
———0———

3 ::c,1x0 ; 5x0

———5———
———4———
———3———
———2———

. .

———1———

4 :: ; 6x0

———6———
———5———
———4———
———3———
———2———

. .

———1———

in a timeline file. Here, the ‘setTimeOut’ method can be used to delay the execution
of commands:

app.setTimeOut(’anim.myanim.frameNum=5;’, 0.5*anim.myanim.dt)

In this example, the 6th frame will be displayed after half of the current frame’s life-
time has elapsed.

Other things to note
When designing the timeline, care should be taken not to include a transparency more
than once into the same animation frame. Besides the useless redundancy, this may
slow down the animation speed in the Reader because the graphical objects of a mul-
tiply included transparency have to be rendered unnecessarily often at the same time.
‘animate’ is smart enough to detect multiple inclusion and issues a warning message
along with the transparency ID and the frame number if it occurs. Here is an example
of a poorly designed timeline:

::0

13

::1x0

::2

::3

::4,2

::5,1 % bad: transparency ‘1’ included twice

::6

Also, ‘animate’ finds and warns about transparencies that have never been used in an
animation timeline. This may help to avoid dead code in the final PDF.

7 Programming interface

The package provides a simple JavaScript programming interface which gives access
to the animation objects in a PDF file. A particular animation property or method can
be accessed by

anim[’<anim label>’].<property or method>

or

anim.<anim label>.<property or method>

‘anim’ is an array of animation object references. Animations must be labelled using
the ‘label=...’ command option in order to be present in the ‘anim’ array. As usual,
properties and methods are accessed via the dot notation. Properties and methods of
the animation object are summarized in Tables 33 and 44.

One potential use of the JavaScript interface could be within a timeline file associated
with an animation. For example, loops over a sub-range of frames can be programmed
by setting the ‘frameNum’ property. See Section 6.26.2, p. 1212 for details.

Also, the programming interface can be used to create custom buttons for playback
control. The command \mediabutton from the ‘media9’ package provides a conveni-
ent way for achieving this:

\usepackage{media9}

\usepackage{animate}

...

\animategraphics[label=my_anim]{12}{...}{...}{...}

\mediabutton[

jsaction={anim[’my_anim’].playFwd();}

]{\fbox{Play}}

\mediabutton[

jsaction={anim[’my_anim’].frameNum=5;}

]{\fbox{Goto 6th frame}}

14

Table 3: Animation object properties

name type access description
numFrames Integer read-only Holds the total number of animation

frames.
frameNum Integer read+write Gets or sets the current frame being/to be

displayed. Note that frame numbers are
zero-based. Assigning a value less than
zero or greater than numFrames-1 results
in an error.

fps Number read+write Gets or temporarily sets the animation
frame rate (frames per second). Reset after
reaching the end of a sequence, or if
the frame rate is set in a timeline or by
\newframe[<frame rate>]. For scaling
overall animation speed, consider using
the speed property. Assigning a value less
than zero results in an error.

speed Number read+write Globally scales animation speed. The value
must be greater than zero. A value of 1
means ‘normal speed’ as specified by the
frame rate in the document source. Larger
values mean ‘faster’, values between zero
and one mean ‘slower’.

dt Number read-only Holds the time span (milliseconds) for dis-
play of the current frame.

isPlaying Boolean read-only Holds the value true if the animation is
currently playing, false otherwise.

playsFwd Boolean read-only Holds the value true if the animation is
played forward, independently of whether
the animation is currently paused or not.

Table 4: Animation object methods

name description
playFwd() Starts playing the animation in the forward direction, setting the

properties isPlaying and playsFwd to true.
playBwd() Starts playing the animation in the backward direction, setting

isPlaying to true and playsFwd to false.
pause() Pauses animation, setting isPlaying to false.
stopFirst() Stops animation and rewinds to the first frame. isPlaying is set

to false.
stopLast() Stops animation and goes to the last frame. isPlaying is set to

false.

15

8 Examples

8.1 Animations from sets of files, using \animategraphics

Animations in this section are made from graphics files that were prepared with
METAPOST. Run ‘mpost --tex=latex’ on the files ending in ‘.mp’ in the ‘files’
directory to generate the graphics files. Both examples make use of the ‘timeline’
option to reduce the resulting PDF file size.

The first example, Fig. 11, originally written by Jan Holeček [44], shows the exponential
function y = ex and its approximation by Taylor polynomials of different degree.
Below the animation, a custom button was inserted using the JavaScript programming
interface and the \mediabutton command from the ‘media9’ package.

\documentclass{article}

\usepackage{animate}

\usepackage{media9}

\usepackage{graphicx}

\begin{filecontents}{timeline.txt}

::0x0 % coordinate system & y=e^x, repeated until last frame

::1 % one blue curve per frame

::2

::3

::4

::5

::6

::7

::8

\end{filecontents}

\begin{document}

\begin{center}

\animategraphics[

label=taylor,

controls, loop,

timeline=timeline.txt

]{4}{exp_}{0}{8}

\mediabutton[

jsaction={

if(anim[’taylor’].isPlaying)

anim[’taylor’].pause();

else

anim[’taylor’].playFwd();

}

]{\fbox{Play/Pause}}

\end{center}

16

Figure 1

\end{document}

The second, somewhat more complex example, Fig. 22, animates the geometric con-
struction of a scarabaeus. In addition to the use of a timeline, it introduces the layer
concept. This example is adapted fromMaxime Chupin’s originalMETAPOST source
file [11]. The present version separates stationary from moving parts of the draw-
ing and saves them into different files. A total of 254 files, scarab_0.mps through
scarab_253.mps, is written out by running ‘mpost --tex=latex’ on the source file
‘scarab.mp’. Files 0 through 100 contain the red line segments that make up the grow-
ing scarabaeus. Files 101 through 201 contain the moving construction lines and files
202 through 252 contain the gray lines which represent intermediate stages of the
construction. The last file, No. 253, contains the coordinate axes, two stationary con-
struction lines and the labels which do not move. A timeline file ‘scarab.tln’ is written
out on-the-fly during the LATEX run. It arranges the animation into three layers, forcing
the gray lines into the background, the coordinate axes into the intermediate layer and
the scarabaeus along with the moving construction lines into the foreground. The fi-
nal animation consists of 101 individual frames.

\documentclass{article}

\usepackage{intcalc} %defines \intcalcMod for Modulo computation

\usepackage{animate}

\usepackage{graphicx}

\newcounter{scarab}

\setcounter{scarab}{0}

\newcounter{blueline}

\setcounter{blueline}{101}

\newcounter{grayline}

17

Figure 2

\setcounter{grayline}{202}

%write timeline file

\newwrite\TimeLineFile

\immediate\openout\TimeLineFile=scarab.tln

\whiledo{\thescarab<101}{

\ifthenelse{\intcalcMod{\thescarab}{2}=0}{

%a gray line is added to every 2nd frame

\immediate\write\TimeLineFile{%

::\thegrayline x0;253;\thescarab x0,\theblueline}

\stepcounter{grayline}

}{

\immediate\write\TimeLineFile{%

::;253;\thescarab x0,\theblueline}

}

\stepcounter{scarab}

\stepcounter{blueline}

}

\immediate\closeout\TimeLineFile

\begin{document}

\begin{center}

18

\animategraphics[

width=0.8\linewidth,

controls, loop,

timeline=scarab.tln

]{12}{scarab_}{0}{253}

\end{center}

\end{document}

8.2 Animating PSTricks graphics, using ‘animateinline’ envir-
onment

Fig. 33 is an inline graphics example adapted from [33].

\documentclass{article}

\usepackage{pst-3dplot}

\usepackage{animate}

%draws a torus sector

\newcommand{\torus}[2]{% #1: angle of the torus sector,

% #2: linewidth of leading circle

\psset{Beta=20,Alpha=50,linewidth=0.1pt,origin={0,0,0},unit=0.35}%

\begin{pspicture}(-12.3,-6.3)(12.3,7)%

\parametricplotThreeD[xPlotpoints=100](80,#1)(0,360){%

t cos 2 mul 4 u sin 2 mul add mul

t sin 2 mul 4 u sin 2 mul add mul

u cos 4 mul

}%

\parametricplotThreeD[yPlotpoints=75](0,360)(80,#1){%

u cos 2 mul 4 t sin 2 mul add mul

u sin 2 mul 4 t sin 2 mul add mul

t cos 4 mul

}%

\parametricplotThreeD[yPlotpoints=1,linewidth=#2](0,360)(#1,#1){%

u cos 2 mul 4 t sin 2 mul add mul

u sin 2 mul 4 t sin 2 mul add mul

t cos 4 mul

}%

\end{pspicture}%

}

\begin{document}

\begin{center}

\begin{animateinline}[poster=last, controls, palindrome]{12}%

\multiframe{29}{iAngle=80+10, dLineWidth=2.9pt+-0.1pt}{%

%iAngle = 80, 90, ..., 360 degrees

%dLineWidth = 2.9pt, 2.8pt, ..., 0.1pt

\torus{\iAngle}{\dLineWidth}%

}%

19

Figure 3

\end{animateinline}%

\end{center}

\end{document}

Another inline example, Fig. 44, is an animation of the Lorenz Attractor. The Lorenz
Attractor is a three-dimensional parametric curve whose coordinates are obtained by
integrating the set of three ordinary differential equations

dx

dt
= �(y − x)

dy

dt
= x(� − z) − y

dz

dt
= xy − z

with respect to the independent parameter t . The shape of the attractor strongly de-
pends on the values chosen for the coefficients � , � and as well as on the initial
conditions, that is, the coordinates x0, y0 and z0 of the starting point of the curve.
Here we use the values � = 10, � = 28, = 8/3 and the starting point x0 = (10, 10, 30).

The right hand sides of the equations above are defined in themacro \lorenz as algeb-
raic expressions. The initial value problem is solved by themacro \pstODEsolve from
the PSTricks package ‘pst-ode’ and plotted by the macro \parametricplotThreeD
from the PSTricks package ‘pst-3dplot’.

A timeline file, written on-the-fly, is used to assemble the curve segments frame by
frame to the growing attractor which, in turn, is put on top of the x-y-z coordinate sys-
tem. After the attractor has been completed, the transparency stack is cleared. Then,
transparencies containing the complete curve and the coordinate system seen from
different viewpoints are put in a row to produce the animated fly-around.

\documentclass{article}

\usepackage{multido}

\usepackage{pst-3dplot}

20

Figure 4

\usepackage{pst-ode}

\usepackage{animate}

\begin{document}

%Lorenz’ set of differential equations

\def\lorenz{%

10*(x[1]-x[0]) | %dx/dt

x[0]*(28-x[2]) - x[1] | %dy/dt

x[0]*x[1] - 8/3*x[2] %dz/dt

}%

%

%write timeline file

\newwrite\OutFile%

\immediate\openout\OutFile=lorenz.tln%

\multido{\iLorenz=0+1}{101}{%

\immediate\write\OutFile{::\iLorenz x0}%

}%

21

\immediate\write\OutFile{::c,101}%

\multido{\iLorenz=102+1}{89}{%

\immediate\write\OutFile{::\iLorenz}%

}%

\immediate\closeout\OutFile%

%

\psset{unit=0.155,linewidth=0.5pt}%

\noindent\begin{animateinline}[

timeline=lorenz.tln,

controls,poster=last,

begin={\begin{pspicture}(-39,-13)(39,60)},

end={\end{pspicture}}

]{10}

%coordinate axes

\psset{Alpha=120,Beta=20}%

\pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%

\newframe

%attractor segments

\gdef\initCond{10 10 30}% initial condition

\pstVerb{/lorenzXYZall {} def} %takes the whole attractor

\multiframe{100}{rtZero=0+0.25,rtOne=0.25+0.25}{%

%compute current attractor segment, store it in ‘lorenzXYZseg’

\pstODEsolve[algebraic]{%

lorenzXYZseg}{0 1 2}{\rtZero}{\rtOne}{26}{\initCond}{\lorenz}%

%empty initial condition --> next \pstODEsolve continues

\gdef\initCond{}% from last state vector

%append segment to the whole attractor stored in ‘lorenzXYZall’

\pstVerb{%

/lorenzXYZall [lorenzXYZall lorenzXYZseg] aload astore cvx def}%

%plot the current segment

\listplotThreeD[plotstyle=line]{lorenzXYZseg}%

}%

\newframe% required between two \multiframe

%fly-around (whole attractor)

\multiframe{90}{rAlpha=116+-4}{%

\psset{Alpha=\rAlpha,Beta=20}%

\pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%

\listplotThreeD[plotstyle=line]{lorenzXYZall}%

}%

\end{animateinline}

\end{document}

The last inline example in Fig. 55 is a ticking metronome written by Manuel Luque [55].
The short clicking sound was embedded by means of the ‘media9’ package.Whenever
the pendulum reaches one of its reversal points, playback of the sound file is started
using JavaScript. The JavaScript code was inserted at the corresponding frame spe-
cifications in a timeline file. Since the PSTricks macros for drawing the metronome
body and the pendulum are quite long they have been moved into an external file,
files/pstmetronome.tex. Note that the sound can be heard only on Win and Mac

22

platforms. Even then, mileage may vary. A dual core CPUmay be necessary for fluent
playback.

Figure 5

\documentclass[12pt]{article}

\usepackage{pstricks,pst-node,pst-plot,pst-tools,pst-text}

\usepackage{animate}

\usepackage{media9}

%writing timeline to external file

\begin{filecontents}{metro.txt}

::0x0,1 : annotRM[’click’].callAS(’play’);

::2

::3

::4

::5

::6

::7

::8

::9

::10

::11

::12

::13

23

click

null

0.15673469

::14

::15

::16

::17

::18

::19

::20

::21

::22

::23

::24

::25

::26 : annotRM[’click’].callAS(’play’);

\end{filecontents}

\begin{document}

\begin{center}

%loading metronome macros from external file

\input{files/pstmetronome}

%

%sound inclusion: click.mp3

\makebox[0pt][r]{\includemedia[

width=1ex,height=1ex,

label=click,

addresource=click.mp3,

activate=pageopen,transparent,noplaybutton,

flashvars={source=click.mp3&hideBar=true}

]{}{APlayer.swf}}%

%

%animated metronome

\begin{animateinline}[

controls,

width=0.7\linewidth,

palindrome,

begin={\begin{pspicture}(-9.5,-5)(9.5,15)},

end={\end{pspicture}},

timeline=metro.txt

]{25}

%metronome without pendulum

\metronomebody

\newframe

%half period of pendulum swing (26 frames)

\multiframe{26}{i=0+4}{

\pendulum{\i}

}

\end{animateinline}

\end{center}

\end{document}

24

9 Producing animated SVG

Thanks to Martin Gieseking’s ‘dvisvgm’ utility [22] that ships with all major TEX dis-
tributions, package ‘animate’ can produce self-contained animated SVG, with all the
bits and pieces already included that are necessary to run in modern Web browsers
as standalone files or as embedded objects within a Web page made of HTML. Anim-
ations have the same look and usability, including optional control buttons, as if they
were embedded in a PDF document. Animated SVG even work on mobile devices.

As ‘dvisvgm’ is linked against the Ghostscript library, it can parse and convert em-
bedded PostScript to inline SVG code. It is therefore compatible with the popular TikZ
and PSTricks LATEX packages.

SVG is a one-page graphics format. Therefore, it is most useful to first produce DVI
with a single animation per file or page. Then, ‘dvisvgm’ converts every page of the
DVI input to a standalone animated SVG file. Use the ‘article’ document class and
pass ‘dvisvgm’ as a global option. In this way, it gets conveyed to ‘animate’ and other
packages to be loaded, such as ‘graphicx’ or TikZ. Note that the ‘standalone’ document
class is not required; ‘dvisvgm’ already computes the tightly enclosing bounding box
around the page content by default.

The following code may serve as a template for generating standalone animated SVG:

\documentclass[12pt,dvisvgm]{article}

\usepackage{animate}

\usepackage{graphicx}

%\usepackage{xcolor}

%\pagecolor{white} % opaque background with solid colour

%\usepackage{pstricks} % enable as needed

%\usepackage{tikz}

\pagestyle{empty}

\begin{document}

\begin{center}

%

% \animategraphics{..}{...}{...}{...}

%

% or

%

% \begin{animateinline}{..} ... \end{animateinline}

%

\end{center}

\end{document}

Note that when animating external graphics with \animategraphics, only Post-
Script (EPS, PS, MPS) files are converted to inline SVG code; files in other formats

25

(SVG, PNG, JPEG) remain external and must be bundled with the final SVG output.
Also note that PostScript files must have the fonts embedded. This is not always the
case for METAPOST-generated PostScript. Here, embedding of fonts is ensured put-
ting ‘prologues := 3;’ into the header of the METAPOST input. Unfortunately,
animating PostScript files with \animategraphics is limited to vector graphics. If
such files contain bitmapped content they must be converted to PNG (or JPEG, if pho-
tographs). Of course, these files remain external to the final animated SVG.

Use one of

latex

platex

lualatex --output-format=dvi

xelatex -no-pdf

to produce DVI or XDV output from the LATEX source. After this, SVG is obtained by
running

dvisvgm --no-fonts --exact

on the intermediate DVI or XDV file. Option ‘--no-fonts’ prompts ‘dvisvgm’ to
retrace font glyphs as graphical paths. It ensures that the text font looks as in nor-
mal PDF output. Option ‘--exact’ tells ‘dvisvgm’ to calculate exact bounding boxes
around font glyphs. This avoids clipping of glyphs in the SVG output, as glyphs usually
tend to be slightly bigger than their boxes defined in the font files. To convert mul-
tipage DVI/XDV with several animations, add option ‘-p1,-’. By default, ‘dvisvgm’
processes only the very first page of the input file. As SVG derives from XML it is not
known to be particularly economical in terms of file size. Compressed SVG, with file
extension ‘svgz’, shortens download times and is supported by most Web browsers.
It can be generated by adding option ‘-z’.

The recommended way to include animated SVG into HTML is to use the <object>
tag. The tag does not work here, as it ignores the embedded JavaScript. How-
ever, it may still be used as fallback. Also, it allows for search engine indexing, if
desired:

<object type="image/svg+xml" data="animatedImage.svg">

<!-- fallback & search engine indexing -->

</object>

In TEX4ht documents, the whole <object>...</object> tag can be inserted by
wrapping it in a \HCode{...} command.

10 Bugs

• The maximum frame rate that can actually be achieved largely depends on the
complexity of the graphics and on the available hardware. Starting with version
8, Acrobat Reader appears to be somewhat slower. However, you might want
to experiment with the graphical hardware acceleration feature that was intro-
duced in Reader 8. Go to menu ‘Edit’ → ‘Preferences’ → ‘Page Display’ →
‘Rendering’ to see whether hardware acceleration is available. A 2D GPU accel-
eration check box will be visible if a supported video card has been detected.

26

• The Acrobat Reader setting ‘Use page cache’ (menu ‘Edit’ → ‘Preferences’ →
‘Startup’) should be disabled for version 7, while remaining enabled beginning
with version 8 (menu ‘Edit’→ ‘Preferences’→ ‘Page Display’→ ‘Rendering’).

• The dvips option ‘-Ppdf’ should be avoided entirely or followed by something
like ‘-D 1200’ on the command line in order to set a sensible DVI resolution.
This does not degrade the output quality! The configuration file ‘config.pdf’
loaded by option ‘-Ppdf’ specifies an excessively high DVI resolution that will
be passed on to the final PDF. Eventually, Acrobat Reader gets confused and
will not display the frames within the animation widget.

• Animations do not work if the PDF was produced with Ghostscript versions
older than 9.15.

• If the ‘animateinline’ environment is used in a right-to-left typesetting con-
text (RTL) and using the (pdf)LATEX and X ELATEX engines, every frame’s content
should be enclosed in a pair of \beginR and \endR commands in order to cor-
rectly typeset RTL text contained therein. This can be conveniently done by
means of the ‘begin’ and ‘end’ optionsoptions of the ‘animateinline’ environment.

• Animations with complex graphics and/or many frames may cause LATEX to fail
with a ‘TeX capacity exceeded’ error. The following steps should fix most
of the memory related problems.

MiKTEX:

1. Open a DOS command prompt window (execute ‘cmd.exe’ via ‘Start’ →
‘Run’).

2. At the DOS prompt, enter
initexmf --edit-config-file=latex

3. Type
main_memory=12000000

into the editor window that opens, save the file and quit the editor.

4. To rebuild the format, enter
initexmf --dump=latex

5. Repeat steps 22–44 with config files ‘pdflatex’ and ‘xelatex’

TEX Live:

1. Find the configuration file ‘texmf.cnf’ by means of
kpsewhich texmf.cnf

at the shell prompt in a terminal.

2. As Root, open the file in your favourite text editor, scroll to the
‘main_memory’ entry and change it to the value given above; save and
quit.

3. Rebuild the formats by
fmtutil-sys --byfmt latex

fmtutil-sys --byfmt pdflatex

fmtutil-sys --byfmt xelatex

27

• If a PDF containing animations is post-processed using tools like PDFtk to split
the document into separate files, then animations in the output documents may
not work.

• PDFs with animations cannot be embedded (via \includegraphics,
\includepdf) into other documents as the animation capability gets lost.

• Animations should not be placed onmultilayered slides, also known as overlays,
created with presentation making classes such as Beamer or Powerdot. Those
document classes turn overlays into separate PDF pages and re-insert the an-
imation on every page thus produced. The animations are independent from
each other and do not share the current playing state, such as frame number,
playing speed and direction. Therefore, put animations on flat slides only; slides
without animations may still have overlays, of course. On TEX.SETEX.SE [77], a method
is suggested for placing an animation on a slide with overlays. It makes use of
the programming interface introduced in Sect. 77, p. 1414.

11 Acknowledgements

I would like to thank François Lafont who discovered quite a few bugs andmademany
suggestions that helped to improve the functionality of the package. Many thanks to
Jin-Hwan Cho, the developer of ‘dvipdfmx’, for contributing the ‘dvipdfmx’ specific
code, and to Walter Scott for proof-reading the documentation.

References

[1] Chupin, M.: Syracuse MetaPost/Animations. URL: http://melusine.eu.org/http://melusine.eu.org/http://melusine.eu.org/http://melusine.eu.org/

syracuse/metapost/animations/chupin/?idsec=scarasyracuse/metapost/animations/chupin/?idsec=scarasyracuse/metapost/animations/chupin/?idsec=scarasyracuse/metapost/animations/chupin/?idsec=scara

[2] dvisvgm: A fast DVI to SVG converter URL: http://dvisvgm.dehttp://dvisvgm.de

[3] Gilg, J.: PDF-Animationen. In: Die TEXnische Komödie, Issue 4, 2005, pp. 30–37

[4] Holeček, J.; Sojka, P.: Animations in pdfTEX-generated PDF. In: TEX, XML, and Di-
gital Typography, Springer, 2004, pp. 179–191. doi:10.1007/978-3-540-27773-6_14

[5] Luque, M.: PSTricks : applications. URL: http://pstricks.blogspot.comhttp://pstricks.blogspot.com

[6] The media9 Package. URL: http://www.ctan.org/pkg/media9http://www.ctan.org/pkg/media9

[7] Beamer: animate package and overlay. URL: https://tex.stackexchange.comhttps://tex.stackexchange.comhttps://tex.stackexchange.comhttps://tex.stackexchange.com

/a/385209/a/385209/a/385209/a/385209

28

https://tex.stackexchange.com/a/385209
https://tex.stackexchange.com/a/385209
http://melusine.eu.org/
http://melusine.eu.org/
http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara
http://melusine.eu.org/
http://melusine.eu.org/
http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara
syracuse/metapost/animations/chupin/?idsec=scara
syracuse/metapost/animations/chupin/?idsec=scara
http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara
syracuse/metapost/animations/chupin/?idsec=scara
syracuse/metapost/animations/chupin/?idsec=scara
http://melusine.eu.org/syracuse/metapost/animations/chupin/?idsec=scara
http://dvisvgm.de
http://dvisvgm.de
http://pstricks.blogspot.com
http://pstricks.blogspot.com
http://www.ctan.org/pkg/media9
http://www.ctan.org/pkg/media9
https://tex.stackexchange.com
https://tex.stackexchange.com
https://tex.stackexchange.com/a/385209
https://tex.stackexchange.com
https://tex.stackexchange.com
https://tex.stackexchange.com/a/385209
/a/385209
/a/385209
https://tex.stackexchange.com/a/385209
/a/385209
/a/385209
https://tex.stackexchange.com/a/385209

	1 Introduction
	2 Requirements
	3 Installation
	4 Using the package
	5 The user interface
	6 Command options
	6.1 Basic options
	6.2 The `timeline' option

	7 Programming interface
	8 Examples
	8.1 Animations from sets of files, using \animategraphics
	8.2 Animating PSTricks graphics, using `animateinline' environment

	9 Producing animated SVG
	10 Bugs
	11 Acknowledgements

	6.Plus:
	6.Reset:
	6.Minus:
	6.EndRight:
	6.StepRight:
	6.PlayPauseRight:
	6.PlayRight:
	6.PauseRight:
	6.PlayPauseLeft:
	6.PlayLeft:
	6.PauseLeft:
	6.StepLeft:
	6.EndLeft:
	anm6:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	fd@click:
	5.Plus:
	5.Reset:
	5.Minus:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.190:
	5.189:
	5.188:
	5.187:
	5.186:
	5.185:
	5.184:
	5.183:
	5.182:
	5.181:
	5.180:
	5.179:
	5.178:
	5.177:
	5.176:
	5.175:
	5.174:
	5.173:
	5.172:
	5.171:
	5.170:
	5.169:
	5.168:
	5.167:
	5.166:
	5.165:
	5.164:
	5.163:
	5.162:
	5.161:
	5.160:
	5.159:
	5.158:
	5.157:
	5.156:
	5.155:
	5.154:
	5.153:
	5.152:
	5.151:
	5.150:
	5.149:
	5.148:
	5.147:
	5.146:
	5.145:
	5.144:
	5.143:
	5.142:
	5.141:
	5.140:
	5.139:
	5.138:
	5.137:
	5.136:
	5.135:
	5.134:
	5.133:
	5.132:
	5.131:
	5.130:
	5.129:
	5.128:
	5.127:
	5.126:
	5.125:
	5.124:
	5.123:
	5.122:
	5.121:
	5.120:
	5.119:
	5.118:
	5.117:
	5.116:
	5.115:
	5.114:
	5.113:
	5.112:
	5.111:
	5.110:
	5.109:
	5.108:
	5.107:
	5.106:
	5.105:
	5.104:
	5.103:
	5.102:
	5.101:
	5.100:
	5.99:
	5.98:
	5.97:
	5.96:
	5.95:
	5.94:
	5.93:
	5.92:
	5.91:
	5.90:
	5.89:
	5.88:
	5.87:
	5.86:
	5.85:
	5.84:
	5.83:
	5.82:
	5.81:
	5.80:
	5.79:
	5.78:
	5.77:
	5.76:
	5.75:
	5.74:
	5.73:
	5.72:
	5.71:
	5.70:
	5.69:
	5.68:
	5.67:
	5.66:
	5.65:
	5.64:
	5.63:
	5.62:
	5.61:
	5.60:
	5.59:
	5.58:
	5.57:
	5.56:
	5.55:
	5.54:
	5.53:
	5.52:
	5.51:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	mbtn@0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.1:
	1.0:
	anm0:
	0.3:
	0.2:
	0.1:
	0.0:

