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The results of Johnston [5] on homology manifolds are extended here. It is not
possible to investigate transversality by geometric methods—as in [5] we employ
bordism and surgery instead.

The proof of transversality is indirect, relying heavily on surgery theory—see
Kirby and Siebenmann [7, III, §1], Marin [8] and Quinn [11]. We shall use the
formulation in terms of topological block bundles of Rourke and Sanderson [12].
Q is a codimension q subspace by Theorem 4.9 of Rourke and Sanderson [12].

(Hughes, Taylor and Williams [4] obtained a topological regular neighborhood the-
orem for arbitrary submanifolds . . . .)

Wall [13, Chapter 11] obtained a codimension q splitting obstruction . . . .
. . . following the work of Cohen [2] on PL manifold transversality.
In this case each inverse image is automatically a PL submanifold of codimension

σ (Cohen [2]), so there is no need to use s-cobordisms.
Quinn [10, 1.1] proved that . . .

Theorem 3.1 (The additive structure of homology manifold bordism, Johnston
[5]). . . .

For m ≥ 5 the Novikov-Wall surgery theory for topological manifolds gives an
exact sequence (Wall [13, Chapter 10].

The surgery theory of topological manifolds was extended to homology manifolds
in Quinn [9, 10] and Bryant, Ferry, Mio and Weinberger [1].

The 4-periodic obstruction is equivalent to an m-dimensional homology manifold,
by [1].

Thus, the surgery exact sequence of [1] does not follow Wall [13] in relating
homology manifold structures and normal invariants.

. . . the canonical TOP reduction ([3]) of the Spivak normal fibration of M . . .

Theorem 3.2 (Johnston [5]). . . .

Actually [5, (5.2)] is for m ≥ 7, but we can improve to m ≥ 6 by a slight variation
of the proof as described below.

(This type of surgery on a Poincaré space is in the tradition of Lowell Jones [6].)
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