
ADPOSITIONAL TREES IN LATEX

MARCO BENINI AND FEDERICO GOBBO

1. Introduction

Adpositional trees (adtrees, for short) are a formal way to represent expressions
in natural language. They have been defined, used, and discussed in F. Gobbo
and M. Benini, Constructive Adpositional Grammars: Foundations of Constructive
Linguistics, Cambridge Scholar Press (2011). Since then, they have been used
without theoretical modifications in a number of applications.

This document describes the LATEX package to draw adtrees. This package is an
improvement over the original one used to typeset all the examples in the previously
cited book. The present package maintains the same graphical presentation with a
number of improvements, and an incompatible syntax. Also, the original package,
although never distributed, is no longer maintained.

This document describes all the features of the package. It is written so that a
user may start typesetting adtrees as soon as possible: all the fundamental com-
mands and macros are presented in Section 2. At the first reading, the subsequent
sections may be freely skipped.

Section 3 describes the next obvious step: how to put an adtree inside your
document, controlling the way to align it with other objects. Section 4 explains
how to control the length of branches via the \unitlength value. It also introduces
the variants of the fundamental commands to modify the lengths of the branches in
the adtree, the angle between them, or both, either globally, locally, or recursively.

Section 5 describes the low-level definitions that affect the construction of the
various pieces composing adtrees. Changing these definitions is intended for ad-
vanced users, who want to modify the standard appearance of adtrees. Section 6
concludes the description of the graphical package, showing some special techniques
to deal with adtrees, and a couple of very low-level primitives of the package.

The final Section 7 describes the way to render adtrees in a linear format. This
is a minor feature which we discourage to use, except for very special purposes.

2. Simple Adtrees

The installation of the package is standard: see the documentation on your
particular TEX system for the details. Using the package in a document requires it
to be invoked with \usepackage{adtrees}.

The simplest adtree is composed by a single morpheme:

Liza

O

which has been typeset by the command

\ATm{Liza}{O}

1

2 MARCO BENINI AND FEDERICO GOBBO

Sometimes, a morpheme requires to specify attributes:

Liza

O
[proper noun]
[animated]

this behaviour is accomplished by the command

\ATm{Liza}{O}[proper noun][animated]

The general form of the \ATm command is

\ATm{m}{g}[a1] · · · [an]

with m the morpheme, g its grammar character, and a1, . . . , an its attributes, if
any. The attributes are optional, and there can be any number of them. Also,
notice how all the commands in the package start with \AT: the final m stands for
morpheme. This is a general naming rule: all the fundamental command have the
form \AT followed by a single letter which reminds its function. Variants of the
fundamental commands use a two-letter code, the first letter being the same as the
fundamental command, and the second letter reminding the variant.

2.1. Complex Adtrees. A complex adtree is made by two adtrees, composed
via an adposition, which is described by a morpheme together with the grammar
character of the resulting adtree, and the trajectory. The trajectory is an arrow,
and it can be ←, →, or ↔. The following three examples are very similar to the
ones in Figure 2.11 of Gobbo and Benini (2011:24):

Kim

O2

�
�
�
�
�

q
→
to

I22

A
A
A
A
A
4

The box belongs

I21

4
the box

O2

�
�
�
�
�

q
←
ε

I22

A
A
A
A
A
4

Kim owns

I21

4
the box

O

�
�
�
�
�

q
↔
on

E > I11

A
A
A
A
A
4

Kim jumps

I11

These adtrees are typeset, respectively, by the commands

\ATr{to}{I_2^2}

{\ATm{Kim}{O_2}}

{\ATs{The box belongs}{I_1^2}}

\ATl{ϵ}{I_2^2}

{\ATm{the box}{O_2}}

{\ATs{Kim owns}{I_1^2}}

\ATb{on}{E>I_1^1}

{\ATs{the box}{O_2}}

{\ATs{Kim jumps}{I_1^1}}

The general format of these commands is

c{a}{g}[x1] . . . [xn]{L}{R}

ADPOSITIONAL TREES IN LATEX 3

with c among \ATl, ATr, \ATb; a the adposition: g the grammar character of the
whole construction; x1, . . . , xn the optional attributes of the construction; L the
left adtree; and R the right adtree. The adposition is typeset as normal text, the
grammar character in math mode with the roman typeface, so that super- and sub-
scripts can be freely used, and the trajectory is defined by the command: \ATl for
the left arrow, \ATr for the right arrow, and \ATb for the arrow in both direction,
following the general naming rule. The attributes are optional and they are typeset
as in the morpheme construction.

Actually, the \ATm command is used to typeset proper morphemes, while the
\ATs command is designed to typeset expressions which can be expanded into an
adtree. In fact, the s letter stands for summary, following the general naming rule.
The \ATs command has the same syntax as the \ATm command, and it differs just
in the graphical appearance. So, it may take an arbitrary number of attributes,
and whatever applies to \ATm holds for \ATs, too.

2.2. Epsilon Adpositions. Since writing adtrees with the empty adposition, rep-
resented by the ε symbol, is very common, the following commands are provided:
\ATle, \ATre, and \ATbe, with e standing for empty in the general naming con-
vention. They behave as the command without the trailing e, but the adposition is
automatically typeset. Also, they share the same syntax. So, the previous example

4
the box

O

�
�
�
�
�

q
←
ε

I22

A
A
A
A
A
4

Kim owns

I21

can be typeset in a simplified way as

\ATle{I_2^2}

{\ATs{the box}{O}}

{\ATs{Kim owns}{I_1^2}}

Similarly, because the so-called epsilon-transformations are common, and they
require to forget about adpositions and morphemes, which is graphically marked
by cancelling them with a stroke, the package automatically includes the cancel

package by Donald Arseneau, (available in CTAN, at http://mirror.ctan.org/

macros/latex/contrib/cancel). In addition, to simplify the cancellation of empty
adpositions, the commands \ATrc \ATlc \ATbc are provided, with c standing for
cancel ed. They work as their counterparts with the trailing e, sharing the same
syntax. For example,

4
���

��the apple

O

�
�
�
�
�

q
←

�ε
I22

A
A
A
A
A
4

Kim eats

I21

4 MARCO BENINI AND FEDERICO GOBBO

has been typeset by

\ATlc{I_2^2}

{\ATs{\cancel{the apple}}{O}}

{\ATs{Kim eats}{I_1^2}}

2.3. Overlapping subtrees. When one has to write complex adtrees, it is often
the case that there are overlapping subtrees. To cope with these situations, the
simplest way is to prolong the left or the right branch of a node. This behaviour can
be accomplished with the \ATxl and \ATxr commands, where x stands for extends
and l and r for left and right, respectively. They both take a single argument which
is the adtree being appended at the end of the extended branch. For example, the
following adtree, similar to the one in Figure 2.16 (Gobbo and Benini 2011:29):

4
the key

O

�
�
�
�
�

q
←

with

I33
[phrase]

A
A
A
A
A

4
the door

O2

�
�
�
�
�

�
�
�
�
�

q
→
ε

I32

A
A
A
A
A
4

will be opened

I3

has been typeset by the following LATEX code

\ATl{with}{I^3_3}[phrase]

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}}

The example also shows how to put an attribute in the top adposition. Normally,
for reasons of space, adtrees use extensively summaries to put in evidence only the
linguistic phenomenon needed in that moment. For example, the following adtree:

4
the key

O3

�
�
�
�
�

q
←

with

I33

A
A
A
A
A
A
A
A
A
A
4

the door will be opened

I32

ADPOSITIONAL TREES IN LATEX 5

has been typeset by the following LATEX code

\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATxr{\ATs{the door will be opened}{I^3_2}}}

The example also shows a right-branch extension. Overlapping can be also avoided
in complex adtrees using advanced commands. See Section 4 for details.

2.4. Morphological adpositions. Sometimes, for the sake of clarity, morpholog-
ical relations should be stated explicitly. For example, the following adtree:

quick-

A

�
�
�
��

q
→
-ly

E > I32

A
A
A
AA

4
the door

O2

�
�
�
��

�
�
�
��

q
→
ε

I32

A
A
A
AA
4

will be opened

I3

which has been typeset by the following LATEX code

\ATr{-ly}{E>I^3_2}

{\ATm{quick-}{A}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}}

could be made explicit, where the µ adposition indicates a morphological relation.
For example, the following adtree is linguistically equivalent to the previous one:

-ly

E

�
�
�
��

q
→
µ
E

A
A
A
AA

quick-

A

�
�
�
��

�
�
�
��

�
�
�
��

q
←
ε

I32

A
A
A
AA

4
the door

O2

�
�
�
��

�
�
�
��

q
→
ε

I32

A
A
A
AA
4

will be opened

I3

6 MARCO BENINI AND FEDERICO GOBBO

and it has been typeset by the following LATEX code

\ATle{I^3_2}

{\ATxl{\ATxl{\ATrmu{E}

{\ATm{-ly}{E}}

{\ATm{quick-}{A}}}}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}}

The package provides the commands \ATlmu, \ATrmu, and \ATbmu, analogous to
the ε variants, to simplify the typesetting of adtrees using the µ adposition.

3. Alignments and Centring

Drawing an adtree in a display is the simplest and most common way:

4
the key

O3

�
�
�
�
�

q
←

with

I33

A
A
A
A
A

4
the door

O2

�
�
�
�
�

�
�
�
�
�

q
→
ε

I32

A
A
A
A
A
4

will be opened

I3

is generated by the following code

\begin{equation*}

\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}}

{\ATs{will be opened}{I^3}}}

\end{equation*}

Putting an adtree in a figure environment reduces to write the corresponding
LATEX display inside the content of the figure environment.

In general, we strongly encourages the user to use a robust display environment,
like equation* or displaymath, and to avoid the center environment. Advanced
displays to align mathematical material, as in AMS-TEX, are another good and
reliable option to place adtrees in a page.

ADPOSITIONAL TREES IN LATEX 7

An adtree fits exactly its enclosing box, that is

4
the key

O3

�
�
�
�
�
��

r
←

with

I33

A
A
A
A
A
AA

the

A

�
�
�
�
�
��

r
↔
ε
O2

A
A
A
A
A
AA
door

O

�
�
�
�
�
��

�
�
�
�
�
��

r
→
ε

I32

A
A
A
A
A
AA
4

will be opened

I3

If one looks closely (and that is why the adtree is so big), there is half of the point
in the root which lies outside the box. This is done on purpose, to make easier to
collate together adtrees.

Writing a morpheme or a summary directly inside the text, like Gargoyle

O

, pro-

duces a box whose baseline is exactly the baseline of the morpheme. This makes
the behaviour predictable, even if the graphical appearance is quite terrible (like in

this paragraph). An adtree, like

the box

O2

�
�
�
�
�

q
→
ε

I22

A
A
A
A
A

Kim

O1

�
�
�
�
�

q
↔
ε

I21

A
A
A
A
A
4

owns

I2
, behaves similarly, because

the baseline of the box is the baseline of the lowest morpheme or summary in the
whole tree, the one corresponding to the owns morpheme in the example.

So, at least in principle, since the user can rely on the size of the enclosing box,
and on the position of the baseline, it is possible to align an adtree in whatever

8 MARCO BENINI AND FEDERICO GOBBO

way one may desire. In our experience, the only really common way one requires
to move adtrees in the surrounding text is to centre them: the package provides
three commands to centre an adtree horizontally, vertically, or both. These are
\ATvcentre, \AThcentre, and \ATcentre, respectively. For example

4
the key

O3

�
�
�
�
�

q
←

with

I33

A
A
A
A
A

4
the door

O2

�
�
�
�
�

�
�
�
�
�

q
→
ε

I32

A
A
A
A
A
4

will be opened

I3

≡

4
the key

O3

�
�
�
�
�

q
←

with

I33

A
A
A
A
A

4
the door

O2

�
�
�
�
�

q
→
ε

I32

A
A
A
A
A
A
A
A
A
A
4

will be opened

I3

has been generated by

\ATvcentre{\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}}}

\mathbin{\equiv}

\ATvcentre{\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATs{the door}{O_2}}

{\ATxr{\ATs{will be opened}{I^3}}}}}

More sophisticated ways to place an adtree in the page are discussed in Section 6.

4. Dealing with Complex Adtrees

Simple adtrees are easily typeset using the previously described commands. But,
sooner or later, one has to typeset a complex adtree, which does not fit into the
page, or whose branches overlap, no matter how we extend branches, or which looks
awful because of a poor choice of dimensions. In all these cases, there are a number
of strategies one may adopt.

The simplest and crudest one is to change the length of branches. In this respect,
branches are drawn using the LATEX picture environment, so the length of each
branch is 25\unitlength. The value of \unitlength may be changed globally,
affecting the way all subsequent adtrees in a document are typeset. Also, the value
may be changed inside a surrounding group, which affects only the adtree to be
typeset, but not the rest of the document. Finally, the value of \unitlength can be
changed within the adtree, to affect the point where the change appears and all the

ADPOSITIONAL TREES IN LATEX 9

subtrees. Notice how there is no way to directly change the value of \unitlength
in a single node: we will return on this point later.

For example,

4
the key

O3

�
�
�
�
�
��

r
←

with

I33

A
A
A
A
A
AA

4
the door

O2

�
�
�
�
�
��

r
→
ε

I32

A
A
A
A
A
AA
4

will be opened

I3

has been typeset by

{\unitlength.3ex

\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATs{the door}{O_2}}

{\ATs{will be opened}{I^3}}} }

adopting the strategy to affect all the branches in the adtree. Notice how the
outermost braces limit the scope of the change to the value of \unitlength.

On the contrary,

the

A

�
�
�

p
↔
ε
O3

A
A
A
key

O

�
�
�

�
�
�
�
�

q
←

with

I33

A
A
A
A
A

4
the door

O2

�
�
�
�
�
�
��

r
→
ε

I32

A
A
A
A
A
A
AA
4

will be opened

I3

modifies the length of all the branches in the left subtree to 3ex (since 3 = 25 ·0.12),
and to 8.25ex in the right subtree

\ATl{with}{I^3_3}

{\unitlength.12ex\ATxl{\ATbe{O_3}

{\ATm{the}{A}}

{\ATm{key}{O}}}}

{\unitlength.33ex\ATre{I^3_2}

{\ATs{the door}{O_2}}

10 MARCO BENINI AND FEDERICO GOBBO

{\ATs{will be opened}{I^3}}}

The adposition, and the related arrow and grammar character are moved ac-
cordingly, which is not pleasant in this example, although it is what one usually
wants when changing the value of \unitlength in the whole adtree.

The right way to have the adposition always in the same place with respect to
the branches in a node, is to fix a suitable \unitlength for the whole adtree, and
to extend locally, just in the single node, its value. The exact technique is a bit
complex, and it will be explained by an example later. Usually, there is no need to
cope with these minor details, except for maniacs or for high precision works.

The length of branches can be changed locally to a single node, without recur-
sively affecting the subtrees, as it happens when we change the value of \unitlength
inside a node, like in the latest example. This can be achieved using the length
variant of the adtree drawing commands. There are also an angle variant, and a
variant affecting both the length and the angle.

The complete list of complex adtree drawing commands, with all the variants is:

base command length variant angle variant combined variant

plain adtrees

\ATl \ATlL \ATlA \ATlLA

\ATr \ATrL \ATrA \ATrLA

\ATb \ATbL \ATbA \ATbLA

extensions

\ATxl \ATxlL \ATxlA \ATxlLA

\ATxr \ATxrL \ATxrA \ATxrLA

adtrees with special adpositions

\ATle \ATleL \ATleA \ATleLA

\ATlc \ATlcL \ATlcA \ATlcLA

\ATlmu \ATlmuL \ATlmuA \ATlmuLA

\ATre \ATreL \ATreA \ATreLA

\ATrc \ATrcL \ATrcA \ATrcLA

\ATrmu \ATrmuL \ATrmuA \ATrmuLA

\ATbe \ATbeL \ATbeA \ATbeLA

\ATbc \ATbcL \ATbcA \ATbcLA

\ATbmu \ATbmuL \ATbmuA \ATbmuLA

The names of these commands are easy to remember: the length variant has a
trailing L, the angle variant a trailing A, and the combined variant a trailing LA.

The syntax of the length variant is the same as the base command except that
there is an additional argument, the first one, which contains the value for the local
\unitlength. In fact, the length we specify has exactly the same effect of changing
\unitlength just before the command, but the change does not apply recursively.

It is worth remarking that, e.g., \ATlL{\unitlength} is equivalent to \ATl, so
to reduce the length of branches to 90% of their current value, it suffices the write
something like \ATrL{.9\unitlength}.

Similarly, the syntax of the angle variant requires an additional first argument
which can be 60, 90, or 120, representing the angle between the branches: the
default is 60 degrees. Specifying any other values resorts to the default.

ADPOSITIONAL TREES IN LATEX 11

The combined variant requires two additional arguments, the length and the
angle, in this order, before any other parameter.

A hidden, very technical, feature of the package is that, whatever follows the
length in the L argument gets evaluated inside the group which generates the
branches in the node. So, for those well inside LATEX mysteries, this feature can be
used to tweak the behaviour of the graphical engine.

For example,

the

A

�
�
�
�
�

q
↔
ε
O3

A
A
A
A
A
key

O

�
�
�
�
�
�
�
�
�

r
←

with

I33

A
A
A
A
A
A
A
A
A

4
the door

O2

�
�
�
�
��

q
→
ε

I32

A
A
A
A
AA
4

will be opened

I3

has been typeset by

\ATlL{.4ex}{with}{I^3_3}

{\ATbe{O_3}

{\ATm{the}{A}}

{\ATm{key}{O}}}

{\ATreL{.25ex}{I^3_2}

{\ATs{the door}{O_2}}

{\ATs{will be opened}{I^3}}}

The trick to have the adposition always in the same place we speak before, is
now easy to write, although slightly cumbersome. Specifically, the trick is to choose
a reasonable global value for \unitlength which affects all the adtree, and then to
locally extend the branches with the \ATxlL and \ATxrL commands whenever there
is a need. The sensible choice for \unitlength minimises the number of extensions,
and nicely place the adpositions. For example

{\unitlength.32ex

\ATl{with}{I^3_3}

{\ATxlL{.1ex}

{\ATbe{O_3}

{\ATm{the}{A}}

{\ATm{key}{O}}}}

{\ATxrL{.2ex}

{\ATre{I^3_2}

{\ATs{the door}{O_2}}

{\ATs{will be opened}{I^3}}}}}

12 MARCO BENINI AND FEDERICO GOBBO

generates

the

A

�
�
�
�
�
��

r
↔
ε
O3

A
A
A
A
A
AA
key

O

�
��

�
�
�
�
�
��

r
←

with

I33

A
A
A
A
A
AA
A
A
A
AA

4
the door

O2

�
�
�
�
�
��

r
→
ε

I32

A
A
A
A
A
AA
4

will be opened

I3

Another possibility to change the geometry of adtrees is to modify the angle
between the branches. The commands to change the angle in the whole document,
or within any group, affecting just the content of the group, are \ATnormalangle,
which sets the angle to 60 degrees, the default, \ATwideangle, which sets the angle
to 90 degrees, and \ATextrawideangle, which sets the angle to 120 degrees. These
values are the only possible ones, also in the angle variant of the commands, as said
before. Moreover, the value 60, 90, or 120 passed to the angle variant of a command
(or to the combined variant) affect the node locally, as in the length variants’ case.

For example

the

A

�
�
��

r
↔
ε
O3

@
@
@@
key

O

�
�
��

r
←

with

I33

@
@
@@
@
@@

4
the door

O2

�
�
��

r
→
ε

I32

@
@
@@
4

will be opened

I3

has been typeset by

{\ATwideangle\unitlength.3ex

\ATl{with}{I^3_3}

{\ATbe{O_3}

{\ATm{the}{A}}

{\ATm{key}{O}}}

{\ATxrL{.2ex}{\ATre{I^3_2}

{\ATs{the door}{O_2}}

{\ATs{will be opened}{I^3}}}} }

ADPOSITIONAL TREES IN LATEX 13

However, the following adtree

the

A

�
�
�
�
�

q
↔
ε
O3

A
A
A
A
A
key

O

��
����

s
←

with

I33

HH
HHHH

4
the door

O2

�
�
�
�
��

q
→
ε

I32

A
A
A
A
AA
4

will be opened

I3

has been generated by

\ATlLA{.5ex}{120}{with}{I^3_3}

{\ATbe{O_3}

{\ATm{the}{A}}

{\ATm{key}{O}}}

{\ATreL{.25ex}{I^3_2}

{\ATs{the door}{O_2}}

{\ATs{will be opened}{I^3}}}

The placement of the adposition varies when the angle is changed: this has been
done on purpose to cope with the reduction in height which is induced by a larger
angle between the branches. Notice how the reduction in height may cause the
adposition part of the adtree to fall beyond the base of the branches.

5. Internal Constructions

All the major parts of an adtree can be customised. This section describes a
number of definitions which are used to control the spacing between the various
parts of morpheme blocks, summaries, and adposition blocks. Also, the boxes
which are deputed to provide a format to a single morpheme, a grammar character,
or an attribute, are described.

The shape of the adposition block, which lies just below the root of a node in
the adtree, is synthetically described as:

pre skip

t

first intermediate skip

a

second intermediate skip

g + x

post skip

�
�
�
�
�

q
↔
a
g

[x]

A
A
A
A
A

Here, t stands for the trajectory, one of ←, →, or ↔, as in the exemplifying adtree
above; a is the adposition; g is the grammar character; x is an attribute. The various
skips are LATEX commands deputed to add vertical space between the components.

These commands, together with their definition, are:

14 MARCO BENINI AND FEDERICO GOBBO

\def\ATpreadpositionskip{\relax}

\def\ATfirstinteradpositionskip{\vskip.3ex}

\def\ATsecondinteradpositionskip{\vskip.3ex}

\def\ATpostadpositionskip{\relax}

They can be redefined globally, to affect all the adtrees following the redefinition,
or locally, within a group which limits the scope. For example, the following adtree

Kim

O2

�
�
�
�
�
��

r
→
to

I22

A
A
A
A
A
AA
4

The box belongs

I21

has been obtained by the code

{\def\ATpreadpositionskip{\vskip-2ex}

\ATrL{.3ex}{to}{I_2^2}

{\ATm{Kim}{O_2}}

{\ATs{The box belongs}{I^2_1}}}

The L hidden feature of the package, already introduces, allows to redefine these
commands within the scope of a single node, as in the root of

Kim

O

�
�
�
�
�

q
→
to

I22

A
A
A
A
A

4
The box

O1

�
�
�
�
�

q
↔
ε

I21

A
A
A
A
A

belongs

I21

This effect is obtained by the following code

\ATrL{\unitlength\def\ATpreadpositionskip{\vskip-2ex}}

{to}{I_2^2}

{\ATm{Kim}{O_2}}

{\ATbe{I_1^2}{\ATs{The box}{O_1}}{\ATm{belongs}{I^2}}}

Attributes are managed so to form a unique block together with the grammar
character. This block is constructed by the \ATm and \ATs commands, and inside
the previously described adposition block.

It is important to remark that, although the size of text is normal in the case
of the morpheme and summary blocks, and while it is small in the case of the
adposition block, the values of skips are not affected by the size. Thus, we strongly
suggest, if you want to change them, to express these values in the ex unit, which
is the right unit to measure vertical space in terms of the current font size.

ADPOSITIONAL TREES IN LATEX 15

The structure of the attribute block is

g

first skip

a1

intermediate skip

...
intermediate skip

an

g

[a1]
...

[an]

Here, g is the grammar character, while a1, . . . , an are the various attributes. The
commands defining the skips in this block are

\def\ATfirstattrskip{\vskip.7ex}

\def\ATinterattrskip{\vskip.5ex}

These definitions can be changed globally or locally, within the scope of a group.
Also, in the case of attributes in the adposition block, they can be redefined within
the single node, with the same technique as before.

It is worth remarking that any kind of material can be generated by these com-
mands, not only vertical space. For example

the

A

�
�
�
�
�

q
↔
ε
O

* * *

[determ]

A
A
A
A
A

box

O

has been generated by

{\makeatletter

\def\ATfirstattrskip{\vskip.5ex

\hbox to\@ATlen{\hfil\tiny * * *\hfil}\nointerlineskip

\vskip.3ex}

\makeatother

\ATbe{O}[determ]

{\ATm{the}{A}}

{\ATm{box}{O}}}

Finally, morpheme and summary blocks are as follows:

4, if a summary

pre skip

m

intermediate skip

g + x

post skip

m
g
[x]

4
m
g
[x]

16 MARCO BENINI AND FEDERICO GOBBO

Here, m is the morpheme or expression, and g is the grammar character together
with its attributes x. The commands defining the skips in this block are

\def\ATpremorphemeskip{\vskip.5ex}

\def\ATintermorphemeskip{\vskip1ex}

\def\ATpostmorphemeskip{\relax}

Again, these definitions can be modified globally, or locally, within a group that
limits the scope of the change. It is worth remarking that nesting an \ATm or \ATs
command inside a complex adtree provides a natural group. For example

the
A

�
�
�
�
�

q
↔
ε
O

A
A
A
A
A

box

O

has been typeset by

\ATbe{O}

{\def\ATpremorphemeskip{\vskip0ex}

\def\ATintermorphemeskip{\vskip.2ex}

\ATm{the}{A}}

{\ATm{box}{O}}

Actually, the face of morphemes, adpositions, and expressions in summaries is
controlled by the following command:

\def\ATMorphemeBox#1{#1\strut}

The \strut forces all the instances to have the same minimal height and depth.
So, to typeset all the morphemes and summaries in italic, as in

4
the house

O

�
�
�
�
�

q
↔
in

E > I22

A
A
A
A
A
4

Kim moves

I21

the following code suffices

{\def\ATMorphemeBox#1{\textit{#1}\strut}

\ATb{in}{E>I_2^2}

{\ATs{the house}{O}}

{\ATs{Kim moves}{I^2_1}} }

Similarly, the face of grammar characters, wherever they appear, is controlled
by the command

\def\ATGrammarCharacterBox#1{$\mathrm{#1}$}

ADPOSITIONAL TREES IN LATEX 17

The same scoping rules apply as in the case of \ATMorphemeBox. So, for example,
we can make the grammar character of the left subtree to be \Huge, as in

4
the house

O

�
�
�
�
�

q
↔
in

E > I22

A
A
A
A
A
4

Kim move

I21

by typing the following code

\ATb{in}{E>I_2^2}

{\def\ATGrammarCharacterBox#1{\Huge$\mathrm{#1}$}

\ATs{the house}{O}}

{\ATs{Kim moves}{I_1^2}}

Also attributes are typeset according to a command:

\def\ATAttributeBox#1{\textsf{[#1]}}

So, for example, the illustrating attribute block on the previous page has been
generated by the following code

{\def\ATAttributeBox#1{\strut\textsf{#1}}

\raisebox{20ex}{\ATm{}{g}[\lbracka_1\rbrack]

[\vdots]

[\lbracka_n\rbrack]} }

Finally, the symbol denoting a summary can be customised by changing

\def\ATSummarySymbol{\triangle}

It is important to remark that the top vertex of the triangle lies in the middle of
the top of the 4 character, providing a natural point to join with the branches of
adtrees. This fact should be taken in account when changing the definition.

6. Hints and Tricks

There are a few last features which can be exploited in the adtrees package.
These are the low-level commands to draw the branches:

\def\ATleftbranch#1#2{\line(#1,#2)}

\def\ATrightbranch#1#2{\line(#1,#2)}

\def\ATcircle{\circle*}

The \ATleftbranch and \ATrightbranch commands draw the left and the right
branch of an adtree, respectively. Also, they draw the extensions, when present.
They can be redefined globally, locally within the scope of a group, or locally within
a node, using the implicit scope of the length variant, as previously described by
the trick to equalise the position of adposition blocks.

18 MARCO BENINI AND FEDERICO GOBBO

For example,

4
the key

O3

�
�
�
��

q
←

with

I33

A
A
A
AA

4
the door

O2

�
�
�
��

�
�
�
��

q
→
ε

I32

A
A
A
AA
4

will be opened

I3

is obtained by making all the right branches red, and the topmost left branch green:

{\def\ATrightbranch#1#2{\color{red}\line(#1,#2)}

\ATlL{\unitlength

\def\ATleftbranch##1##2{\color{green}\line(##1,##2)}}

{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}} }

Also, the following definition

{\def\ATcircle#1{\relax}

\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}} }

suppresses the points in the whole adtree

4
the key

O3

�
�
�
��

←
with

I33

A
A
A
AA

4
the door

O2

�
�
�
��

�
�
�
��

→
ε

I32

A
A
A
AA
4

will be opened

I3

ADPOSITIONAL TREES IN LATEX 19

As a rather extreme and useless example, one can typeset the previous adtree
without showing the branches and making the points really huge

4
the key

O3

w
←

with

I33

4
the door

O2

w
→
ε

I32

4
will be opened

I3

by the following code

{\def\ATcircle#1{\circle*{8}}

\def\ATleftbranch#1#2#3{\relax}

\def\ATrightbranch#1#2#3{\relax}

\unitlength.22ex

\ATl{with}{I^3_3}

{\ATs{the key}{O_3}}

{\ATre{I^3_2}

{\ATxl{\ATs{the door}{O_2}}}

{\ATs{will be opened}{I^3}}} }

Another important aspect of the package is that every adtree lies in a TEX box.
It means that all the standard commands to manipulate boxes are available.

For example

4�����
the appleO

2

����
r

←
�ε

I 2
2

@

@

@@
4Kim
eatsI 2

1

has been generated by

\rotatebox{-30}

{\ATlcLA{.3ex}{90}{I_2^2}

{\ATs{\cancel{the apple}}{O_2}}

{\ATs{Kim eats}{I_1^2}}}

20 MARCO BENINI AND FEDERICO GOBBO

Sometimes, scaling a box is required:

4
��

���the apple

O2

�
�
��

r
←

�ε
I22

@
@
@@
4

Kim eats

I21
has been generated by

\scalebox{1.5}

{\ATlcLA{.3ex}{90}{I_2^2}

{\ATs{\cancel{the apple}}{O_2}}

{\ATs{Kim eats}{I_1^2}}}

A final point is that, when the \smaller command is available, as in AMS-TEX,
changing the font size automatically makes the adposition blocks to be \smaller

than the size of the normal text, which is used to typeset the morpheme and
summary blocks. For example,

4
���

���
�

the apple

O2

��
����

s
←
�ε

I22

HH
HHHH
4

Kim eats

I21
which has been generated by

{\huge

\ATlcLA{.3ex}{120}{I_2^2}

{\ATs{\cancel{the apple}}{O_2}}

{\ATs{Kim eats}{I_1^2}}}

When the smaller command is not available, the size of the adposition block
is fixed to be \small. This can be changed modifying the (internal) command
\@ATsmall:

\makeatletter

\def\@ATsmall{\small}

\makeatother

Changing \small in the above code, modifies the size of the components of the
adposition block. We suggest to avoid such a change, except in a local group which
contains a complete adtree.

7. Linear Adtrees

Adtrees can be rendered in a linear format. This is not graphically pleasant, so
we discourage users to adopt it.

ADPOSITIONAL TREES IN LATEX 21

Nevertheless, it may be useful to have a very compact representation of adtrees.
This can be automatically obtained by prepending the \ATlinearise command to
an adtree. For example

�ε
←
I22:[phrase]

(((((
(somethingO:[object];[fruit], (Kim eats)I21

)

is the same as

(((
((something

O
[object]
[fruit]

�
�
�
�
�
��

r
←

�ε
I22

[phrase]

A
A
A
A
A
AA
4

Kim eats

I21

which shows how all the features of adtrees are rendered in the linear format.
The linear presentation has been generated by

\ATlinearise{\ATlcL{.3ex}{I_2^2}[phrase]

{\ATm{\cancel{something}}{O}[object][fruit]}

{\ATs{Kim eats}{I_1^2}}}

which differs from the code to draw the graphics presentation just for \ATlinearise.

Declaring \ATLinear in some point of the text makes linear all the adtrees from
that point on. To reestablish the standard behaviour of graphical adtrees, one
issues the command \ATNormal.

Linear adtrees are composed using the following commands

\def\ATlinearadpositionblock#1#2#3{%

{#2}${}^{\hbox{#1}}_{\hbox{#3}}$}

\def\ATlinearfirstattribute#1#2{{#1}:{#2}}

\def\ATlinearnextattribute#1#2{{#1};{#2}}

\def\ATlinearsubtrees#1#2{(#1,\linebreak[0] #2)}

\def\ATlinearmorphemeblock#1#2{{#1}${}_{\hbox{#2}}$}

\def\ATlinearsummaryblock#1#2{({#1})${}_{\hbox{#2}}$}

Their meaning should be intuitive after the explanations in Section 5.
Also, it must be remarked that \ATMorphemeBox, \ATGrammarCharacterBox,

and \ATAttributeBox are still used to write the corresponding elements.

Linear adtrees are useful when it is required to perform some computation on
an adtree inside LATEX, e.g., when trying to write a macro which manipulates an
argument which is an adtree.

The reason is double: first, the linear format require far less computation than
the graphical rendering; and, second, the building macros receive inputs which have
not been heavily preprocessed to prepare their graphical rendering, thus closer to
what the user has written in the source code.

22 MARCO BENINI AND FEDERICO GOBBO

For example, to list all the morpheme attributes occurring inside

4
the key

O
[third actant]

�
�
�
�
�
��

r
←

with

I22
[phrase]

A
A
A
A
A
AA

4
the door

O
[second actant]

�
�
�
�
�

�
�
�
�
�

q
→
ε

I21

A
A
A
A
A
4

will be opened

I3

[governor]

we can execute

{\def\ATlinearadpositionblock#1#2#3{\relax}

\def\ATlinearfirstattribute#1#2{#2}

\def\ATlinearnextattribute#1#2{[{#2}]}

\def\ATlinearsubtrees{\relax}

\def\ATlinearmorphemeblock#1{\relax}

\def\ATlinearsummaryblock#1{\relax}

\ATlinearise{\ATl{with}{I^2_2}[phrase]

{\ATs{the key}{O}[third actant]}

{\ATre{I^2_1}

{\ATxl{\ATs{the door}{O}[second actant]}}

{\ATs{will be opened}{I^2}[governor]}}} }

which produces
[third actant][second actant][governor]

It is needless to say that such computations require a real TEX magician, who is
able to understand (and, hopefully, improve) the code of the package! Nevertheless,
this opens the door to LATEX macros that operate on adtrees, treating them like
data structures.

(Marco Benini) Dipartimento di Scienza e Alta Tecnologia, Università degli Studi
dell’Insubria, via Valleggio 11, I-22100 Como, Italy

E-mail address: marco.benini@uninsubria.it

URL: http://marcobenini.wordpress.com

(Federico Gobbo) Faculty of Humanities, University of Amsterdam, Spuistraat 210,NL-
1012VT Amsterdam, The Netherlands

E-mail address: F.Gobbo@uva.nl
URL: http://federicogobbo.name

