
The adjustbox Package

Martin Scharrer
martin@scharrer-online.de

CTAN: http://www.ctan.org/pkg/adjustbox

Version v0.8 – 2011/11/14

Abstract

This package got inspired by the graphics/x package and extends it sets of
macros and generalises its key=value syntax for graphics to arbitray TEX material.
Its main feature is the \adjustbox macro and the corresponding adjustbox
environment which allow to adjust arbitrary TEX material in a multitude of ways,
similar like \includegraphics does it for image files. In addition to this a wide
set of dedicated macros are provided to modify a box. This startet with the
two macros \trimbox and \clipbox which are missing in graphics but was
extended over time.

The macros use the collectbox package to allow for verbatim content. Equiv-
alent environments are also provided. The trim operation is now implemented
in TEX and the clip operation uses pdftex primitives if available. Otherwise the
pgf package is used for clipping, which supports both DVI/PS and PDF output.
This package is still a little new and its implementation might not be fully stable
yet.

1 Introduction

The standard LATEX package graphicx (the extended version of graphics) provides
the macro \includegraphics[〈options〉]{〈file name〉} which can be used to in-
clude graphic files. Several options can be used to scale, resize, rotate, trim and/or
clip the graphic. The macros \scalebox, \resizebox and \rotatebox are also
provided to apply the corresponding operation on (LA)TEX material, which is subse-
quently placed inside a \hbox. However no macros are provided to trim or clip (LA)TEX
material, most likely because this operations are not done by TEX but by the output
format, i.e. using PostScript (PS) or PDF operations.

This package started by providing the missing macros \clipbox and \trimbox.
Then a general \adjustbox macro which allows to combine many operations using
a key=value syntax was added and further extended until it represented the main
feature of this package. Newly added keys are also provided as dedicated macros and
corresponding environments.

1.1 Driver dependent implementation

Certain operations, like clipping, depend on the output driver used, because they
must be implemented as part of the output format, e.g. PDF instructions for a PDF

1

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/adjustbox

output file. The trim operation is now implemented as driver independent TEX code.
The clip operation now uses pdftex primitives if possible, which are taken from the
pdftex driver file of graphics. For other output formats a pgfpicture environment
from the pgf package is used, which supports both PS and PDF output and comes
which is own clipping drivers. All LATEX compilers should be supported, but pdflatex
is the main target of the author.

1.2 Dependencies

The adjustbox package requires the author’s other package collectbox, as well as
the packages xkeyval, graphicx and ifpdf. The varwidth package is automati-
cally loaded if installed, otherwise the varwidth and stack keys are disables as well
as \stackbox/stackbox. For features which use colors the xcolor package must
also be loaded manually (the color package is fine, too). The experimental split
and pagebreak features also require the storebox package.

2 Package Option

Following v0.5 from 2011/08/13 this package accepts the following package options.
Some of them can also be used as optional keys for macros.

minimal Only define the minimal set of macros, i.e. \trimbox, \clipbox and \adjustbox
as with previous versions before v0.5.

export Export the now keys of \adjustbox also to \includegraphics so that they
can be used for images as well. This option is meaningless if minimal was used.

pgf Uses the pgf package for all clip operations. This overrides all automatically
detected drivers. At the moment only a pdftex driver is provided, all other
compilers and output formats use this option already.

PGF Uses the pgf package for clip operations and configures the macros to parse
lengths using pgfmath (compare with the pgf option below).

The following options define the way length values are processed by the provided
macros. They can be used either as package options and as keys for \adjustbox (but
not for \includegraphics even if the export option was used) to change the settings
locally. The only difference between these two usages is that they also load required
packages when used as package options. Therefore all keys used in the document
should be loaded as package options first or the required packages must be loaded
manually. (It is also possible to disable the advanced parsing of lengths using the
none option, but this is not recommended.)

etex Uses the ε-TEX primitive \glueexpr to parse length values. This allows for
additions, subtractions as well as multiplications and devision by a numeric
factor. See the official etex_man document for more details. This setting is
the default if ε-TEX is detected (which should be the case with all modern LATEX
distributions).

calc Uses the calc package to parse length values. It supports all operations men-
tioned for etex and also some other operation like \widthof{〈text〉}. See the

2

calc package manual for more details. This is the default setting if ε-TeX is not
detected.

pgfmath Uses the pgfmath package of the pgf bundle to parse length values. It sup-
ports all basic numeric operations and also advanced mathematical functions.
See the pgf manual for more details. Because the pgfmath package can’t be
loaded independently in the current version (v2.10) the whole pgf package will
be loaded.

One further option exists which can also be used as optional key for \adjustbox
(but not for \includegraphics):

defaultunit =〈unit〉This sets the default unit used for the values of \trimbox, \clipbox
and \marginbox including there starred versions as well as all related keys like
trim, viewport, margin, trim, viewport, Clip and Clip*. The standard
default unit is the same as for \includegraphics: ‘bp’ (big points, PostScript
points). However, for LATEX material TEX normal unit ‘pt’ (TEX points) are better
suited and will avoid rounding errors which otherwise get introduced by the
internal conversion. The default unit is only used if the particular value is only a
single number without unit, but not if any mathematical operations are used. If
the special value none is used no default unit is applied and the internal check
if the value is a single number is by-passed. This gives a small speed bonus
and can be used to avoid potential issues with complex values. At this moment
this setting will disable the default unit feature for the rest of the current group
(i.e. all further \adjustbox keys or globally if used as a package option) and
further usages of this option will have no affect. This might change in future
versions of this package.

2.1 Verbatim Support

The macros read the content as a horizontal TEX box and not as an macro argument
in order to support verbatim content. This functionality is now provided as dedicated
package collectbox which can also be used independently. This means that the
braces around the content can also be written as \bgroup and \egroup:

\trimbox{1 2 3 4}\bgroup 〈content〉\egroup

Special care is taken to allow the 〈text〉 to be a single macro (except \bgroup) without
any braces:

\clipbox{1 2 3 4}\somemacro
This is to support the questionable habit of some LATEX users to drop the braces for
single token arguments. All environments support verbatim content.

3 Usage

This sections explains the existing features of this package. Most features are available
as matching macro, environment and key.

Special care is taken so that the macros and the environments can have the same
name. For starred environments the star can be either part of the name or an optional
argument. Also the plainTEX syntax for environments (\foobar ... \endfoobar)
can not be used because it will trigger \foobar as a macro.

3

3.1 Adjust Box Content

\adjustbox{〈key/value pairs〉}{〈content〉}

The \adjustbox macro is the general form of all box modifying macros mentioned
in the introduction. It can be thought as an extended \includegraphics for (LA)TEX
material. It supports the same 〈key/value pairs〉 and many more. However, they
are provided as a mandatory not as an optional argument. An \adjustbox without
options would not make sense and can be replaced by a simple \mbox. There is no
starred version of this macro.

\begin{adjustbox}{〈key=value, . . . 〉}
〈content〉

\end{adjustbox}

The environment version of \adjustbox.

Adjust Images

\adjustimage{〈key/value pairs〉}{〈image filename〉}

This macro can be used as an extension of \includegraphics. While \adjustbox is
based on the same interface as \includegraphics it provides more keys and allows
global keys set by \adjustboxset. Most keys can be exported to \includegraphics
using the export option, but there is no support for global keys1. Therefore it can make
sense to use \adjustbox{〈key/value pairs〉}{\includegraphics{〈filename〉}}. The
\adjustimage macro is a wrapper for this. However, it does not use \includegraphics
directly, but an internal macro, to allow the redefinition of it. This does not require
the export option and therefore helps to avoid option clashes if adjustbox is loaded
at several places.

\adjincludegraphics[〈key/value pairs〉]{〈image filename〉}

Like \adjustimage but in the same format as \includegraphics. This macro
allows to use all features of \adjustbox on images, however any ‘[]’ inside the
optional argument must be wrapped in ‘{ }’ to mask them. It is possible to redefine
\includegraphics to use/be \adjincludegraphics and this is done by the Export
option (not to be confused with the export option).

3.1.1 Setting keys globally

1However some keys, but not all, can be set globally using \setkeys{Gin}{〈includegraphic key/value
pairs〉}

4

\adjustboxset{〈global keys to be executed before local keys〉}
\adjustboxset*{〈global keys to be executed after local keys〉}

Using these two macros all keys can be set globally, i.e. for all future \adjustbox
macros and adjustbox environments. Note that these settings are actually local
to the current TEX group and only really global if used in the preamble or outside
any group. The normal macro will place all given keys before the keys used in first
argument of \adjustbox / adjustbox, while the starred version will place them
afterwards.

If these macros are used several times there keys are accumulated. This happens
in the given order for the normal version and in reversed order for the starred version,
i.e. the keys of further \adjustboxset or \adjustboxset* are always added so they
face inwards. If used without any keys but an empty argument, all keys previously
set with the same macro are removed (from the current TEX scope). This means
\adjustboxset{} clears all keys set be previously usages of \adjustboxset{〈keys〉}
and \adjustboxset*{} clears all set by \adjustboxset*{〈keys〉}. Such resets are
again local to the current TEX group.

Examples:

The macros:

\adjustboxset{keya=1}
\adjustboxset*{keyc=3}
\adjustbox{keyb=2}{content}

are effectively the same as:

\adjustbox{keya=1,keyb=2,keyc=3}{content}

The macros:

\adjustboxset{keya=1,keyb=2}
\adjustboxset{keyc=3,keyd=4}
\adjustboxset*{keyg=7,keyh=8}
\adjustboxset*{keyi=9,keyj=10}
\adjustbox{keye=5,keyf=6}{content}

are effectively the same as:

\adjustbox{keya=1,keyb=2,keyc=3,keyd=4,keye=5,keyf=6,
keyi=9,keyj=10,keyg=7,keyh=8}{content}

3.1.2 Argument Values

All length values given in the arguments of all macros and keys provided by this pack- Parsing
age are parsed by and advanced version of \setlength(called \adjsetlength{)}
which uses either ε-TEX expressions (default), the calc package (default fall-back)
or the \pgfmathparse of the pgf package. This allows for arithmetic expressions in
these arguments. See the package options in section 2 to learn how to change the
used length parser. Note that early versions of this package used \pgfmathparse
by default. Older documents therefore might need now use the pgfmath option to
compile correctly.

Note that the four values for \trimbox and \clipbox as well as for the trim and Space=Separator
viewport option of \adjustbox are separated by spaces. If the expression of any

5

of this values holds a space or ends with a macro (eats trailing spaces!) it must be
wrapped into braces ‘{ }’.

\width \height \depth \totalheight

These LATEX lengths hold the current dimensions of the content and can be used as
part all length arguments. When the size of the content is changed by a key these
lengths will be adjusted to hold the new size for all further keys. The totalheight
is the height plus depth. With the patch option these lengths can also be used for
\includegraphics.

\Width \Height \Depth \Totalheight

These LATEX lengths hold the original dimension of original unchanged content and
are not modified. They are useful if the size of the content is modified by several keys,
but further keys should still work relative to the original content.

Default unit

If no unit is provided for of the bounding box coordinates (llx, lly, urx, ury) in the
trim and clip features then PostScript points (big points, bp, 72bp = 1inch) are
used, as it is the default behaviour of the trim and viewport options of graphicx’s
\includegraphics. Note that graphicx converts all values, independent if a unit
is provided or not, internally to bp, because graphics where traditionally stored in
Encapsulated PostScript (EPS) files. The more modern PDF files also use bp instead
of pt. Because the adjustbox package macros target (LA)TEX material and users will
mostly use pt values this internal conversion to bp got disabled for them to avoid
unnecessary rounding errors. Since v0.5 the default unit can be changed using the
defaultunit=〈unit〉 key (which is also usable as global package option).

3.2 Trimming and Clipping

Material can be trimmed (the official size is made smaller, so the remaining material
laps over the official boundaries) and clipped (overlapping material is not displayed).
The original keys provided by graphicx are also mentioned here for comparison.

\trimbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}
\trimbox{〈all sites〉}{〈content〉}
\trimbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\trimbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

The macro \trimbox trims the given amount from the lower left (ll) and the upper
right (ur) corner of the box. This means that the amount 〈llx〉 is trimmed from the
left side, 〈lly〉 from the bottom and 〈urx〉 and 〈ury〉 from the right and top of the box,
respectively. If only one value is given it will be used for all four sites. If only two
values are given the first one will be used for the left and right side (llx, urx) and the
second for the bottom and top side (lly, ury).

If the starred version is used the four coordinates are taken as the viewport
instead, i.e. the box is trimmed to the rectangle described by the coordinates. In this
case using all four values must be specified.

6

\begin{trimbox}{〈1, 2 or 4 trim values〉}
〈content〉

\end{trimbox}

\begin{trimbox*}{〈llx〉 〈lly〉 〈urx〉 〈ury〉}
〈content〉

\end{trimbox*}

The trimbox and trimbox* environments do the same as the corresponding macros.

trim=〈llx〉 〈lly〉 〈urx〉 〈ury〉
trim=〈all sites〉
trim=〈left/right〉 〈top/bottom〉

This key represents the original trim key of \includegraphics. It always trims the
original content independent from its position.

viewport=〈llx〉 〈lly〉 〈urx〉 〈ury〉

This key represents the original viewport key of \includegraphics. It always trims
the original content to the given view port independent from its position.

Trim=〈llx〉 〈lly〉 〈urx〉 〈ury〉
Trim=〈all sites〉
Trim=〈left/right〉 〈top/bottom〉
Viewport=〈llx〉 〈lly〉 〈urx〉 〈ury〉

The normal trim and viewport keys as described earlier are applied on the original
content before any resizing or other effects. This is because for \includegraphics
the trimming is done by the internal graphic driver, while the effects can be applied
later (but can also be driver dependent). If the trim and viewport keys are used
multiple times the last values will be used for the trimming, i.e. the content is only
trimmed once. The upper case variants trim and viewport will wrap the content
internally in a \trimbox or \trimbox* macro which can be applied multiple times,
e.g. before and after the content is rotated. These two keys awaits the same format as
the original keys. However, the clip key has no effect on them.

\clipbox{〈all sites〉}{〈content〉}
\clipbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\clipbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}
\clipbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

The \clipbox macro works like the \trimbox and trims the given amounts from the
〈text〉. However, in addition the trimmed material is also clipped, i.e. it is not shown
in the final document. Note that the material will still be part of the output file but is
simply not shown. It might be exported using special tools, so using \clipbox (or
\includegraphics[clip,trim=...]) to censor classified information would be a
bad idea. The starred version will again use the given coordinates as viewport.

7

\begin{clipbox}{〈1, 2 or 4 trim values〉}
〈content〉

\end{clipbox}

\begin{clipbox*}{〈llx〉 〈lly〉 〈urx〉 〈ury〉}
〈content〉

\end{clipbox*}

The environment versions of \clipbox and \clipbox*. The same rules as for the
trimming environments apply.

clip

This boolean key represents the original clip key of \includegraphics. It is in-
tended to be used to make trim or viewport clip the trimmed material.

Clip=〈llx〉 〈lly〉 〈urx〉 〈ury〉
Clip=〈all sites〉
Clip=〈left/right〉 〈top/bottom〉
Clip*=〈llx〉 〈lly〉 〈urx〉 〈ury〉

As stated above the clip boolean key which will make the default trim and viewport
keys clip the trimmed content, has no effect on the trim and viewport keys. Instead
Clip and Clip* are provided which wrap the content internally in a \clipbox or
\clipbox* macro. They can be used several times.

3.3 Margins

\marginbox{〈all sites〉}{〈content〉}
\marginbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\marginbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

\begin{marginbox*}{〈1, 2 or 4 margin values〉}
〈content〉

\end{marginbox*}

margin=〈all sites〉
margin=〈left/right〉 〈top/bottom〉
margin=〈llx〉 〈lly〉 〈urx〉 〈ury〉

This feature can be used to add a margin (white space) around the content. It can
be seen as the opposite of \trim. The original baseline of the content is preserved
because 〈lly〉 is added to the depth. It is also available as marginbox environment
and also usable as margin option (see below).

8

Example:

Before \fbox {\ marginbox {1ex 2ex 3ex 4ex}{ Text }} After

Before Text After

\marginbox*{〈all sites〉}{〈content〉}
\marginbox*{〈left/right〉 〈top/bottom〉}{〈content〉}
\marginbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

\begin{marginbox}{〈1, 2 or 4 margin values〉}
〈content〉

\end{marginbox}

margin*=〈all sites〉
margin*=〈left/right〉 〈top/bottom〉
margin*=〈llx〉 〈lly〉 〈urx〉 〈ury〉

This starred version is almost identical to the normal \marginbox, but also raises
the content by the 〈lly〉 amount, so that the original depth instead of the original
baseline is preserved. Note that while \marginbox is basically the opposite of \trim,
\marginbox* is not the opposite of \trim*. Instead it also takes the same values as
the normal value and not view port values like \trim*.

Example:

Before \fbox {\ marginbox *{1 ex 2ex 3ex 4ex}{ Text }} After

Before
Text

After

3.4 Minimum and Maximum Size

\minsizebox{〈width〉}{〈height〉}{〈content〉}
\minsizebox*{〈width〉}{〈totalheight〉}{〈content〉}

This macro is like \resizebox of the graphics/x package, but only resizes the
content if its natural size is smaller than the given 〈width〉 or 〈height〉. If only one
value should be set the other one can be replaced by ‘!’. If required the content is
scaled up so that the width and height is equal or larger than the given values, but
does not change the aspect ratio. The star variant uses the total height instead of
only the height. This macro is used internally for the min width, min height, min
totalheight and min totalsize options.

9

Examples:

\ minsizebox {3cm }{2 ex}{ Some Text} which will be enlarged

Some Text which will be enlarged

\ minsizebox {!}{4 ex }{\ fbox{Some Text }} which will be ↙
enlarged

Some Text which will be enlarged

\ minsizebox *{!}{4 ex }{\ fbox{Some Text }} which will be ↙
enlarged

Some Text which will be enlarged

\ minsizebox {3cm }{!}{ Some Text} which will be enlarged

Some Text which will be enlarged

\ minsizebox {1cm }{1 ex}{ Some Text}, already large enough

Some Text, already large enough

\maxsizebox{〈width〉}{〈height〉}{〈content〉}
\maxsizebox*{〈width〉}{〈totalheight〉}{〈content〉}

This macro is like \resizebox of the graphics/x package, but only resizes the
content if its natural size is larger than the given 〈width〉 or 〈height〉. If only one
value should be set the other one can be replaced by ‘!’. If required the content is
scaled down so that the width and height is equal or smaller than the given values,
but does not change the aspect ratio. The star variant uses the total height instead of
only the height. This macro is used internally for the max width, max height, max
totalheight and max totalsize options.

Examples:

\ maxsizebox {1cm }{1 ex}{ Some Text} which will be reduced

Some Text which will be reduced

\ maxsizebox {!}{1 ex }{\ fbox{Some Text }} which will be reduced

Some Text which will be reduced

\ maxsizebox *{!}{1 ex }{\ fbox{Some Text }} which will be ↙
reduced

Some Text which will be reduced

10

\ maxsizebox {1cm }{!}{ Some Text} which will be reduced

Some Text which will be reduced

\ maxsizebox {3cm }{1 cm}{ Some Text}, already small enough

Some Text, already small enough

min width=〈width〉
max width=〈width〉
min height=〈height〉
max height=〈height〉
min totalheight=〈total height〉
max totalheight=〈total height〉

These keys allow to set the minimum and maximum width, height or totalheight of
the content. The current size of the content is measured and the content is resized
if the constraint is not already met, otherwise the content is unchanged. Multiple
usages of these keys are checked one after each other, and therefore it is possible
that a later one is undoing the size changes of an earlier one. A good example is max
width=\textwidth which will limit large content to the text width but will not affect
smaller content.

min size={〈width〉}{〈height〉}
max size={〈width〉}{〈height〉}
min totalsize={〈width〉}{〈total height〉}
max totalsize={〈width〉}{〈total height〉}

These keys allow to specify the minimum or maximum width and (total)height of the
content together, which is more efficient than using the width and (total)height keys
described earlier.

3.4.1 Scaling

\scalebox{〈h-factor〉}[〈v-factor〉]{〈content〉}

With only the mandatory argument the content is evenly scaled accordantly to the
given factor. With the optional argument a different vertical scaling factor can be
given. This macro is provided by the loaded graphicx package and only mentioned
here for the sake of completeness. The content is read as normal macro argument
and therefore can’t hold verbatim or similar special material. An alternative which
boxes the content directly is provided by the author’s other package realboxes as
\Scalebox and as Scalebox environment.

scale=〈factor〉
scale={〈h-factor〉}{〈v-factor〉}

The normal scale key of graphicx only allows for one scale factor which is used for
both the horizontal and vertical scaling. With adjustbox it is also possible to provide

11

the horizontal and vertical scale factors separately.

Examples:

\ adjustbox { scale =2}{ Some text !} Some text!
\ adjustbox { scale ={2}{1}}{ Some text !} Some text!

\reflectbox{〈content〉}

Reflects the content like \scalebox{-1}[1] would do. This macro is provided by
the loaded graphicx package and only mentioned here for the sake of completeness.
The content is read as normal macro argument and therefore can’t hold verbatim
or similar special material. An alternative which boxes the content directly is pro-
vided by the author’s other package realboxes as \Reflectbox and as Reflectbox
environment.

reflect

This reflects the content by using \reflectbox internally, which is identical to
\scalebox{-1}[1], i.e. this key is identical to scale={-1}{1}.

Examples:

\ adjustbox { reflect }{ Some text !} Sometext!

3.4.2 Frame

fbox
fbox=〈rule width〉
fbox=〈rule width〉 〈sep〉
fbox=〈rule width〉 〈sep〉 〈margin〉

Draws a framed box around the content like \fbox would do. Using the optional
space separated values the rule width, the separation (inner padding) and the outer
margin can be set. If not they default to the values \fbox uses by default: \fboxrule,
\fboxsep and zero margin.

Examples:

\ adjustbox {fbox }{ Like \cs{fbox }} Like \fbox

\ adjustbox {fbox =1pt}{ With 1pt rule width}

With 1pt rule width

12

\ adjustbox {fbox =1pt 2pt}
{With 1pt rule width and 2pt separation }

With 1pt rule width and 2pt separation

\ adjustbox {fbox ={\ fboxrule } 1pt}
{With normal rule width and 1pt separation }

With normal rule width and 1pt separation

\ adjustbox {fbox =1pt 1pt 1pt}
{With 1pt for rule width , separation and outer margin }

With 1pt for rule width, separation and outer margin

frame
frame=〈rule width〉
frame=〈rule width〉 〈sep〉
frame=〈rule width〉 〈sep〉 〈margin〉

The frame key as the same effect as the fbox key but is modeled after LATEX’s \frame
macro (not the version beamer defines). This means it adds a tight frame with zero
separation around the content by default. Besides that it accepts the same space
separated values. This key is useful to easily add a tight frame around images where
the normal separation wouldn’t fit.

Examples:

\ adjustbox { frame }{ Tight box} Tight box

cfbox=〈color〉
cfbox=〈color〉 〈rule width〉
cfbox=〈color〉 〈rule width〉 〈sep〉
cfbox=〈color〉 〈rule width〉 〈sep〉 〈margin〉

Identical to fbox but uses the given color for the frame. The xcolor package must
be loaded manually in order for this key to work.

Example:

\ adjustbox { cfbox =blue 1pt}
{Like a blue \cs{fbox} with \cs{ fboxrule }=1 pt}

Like a blue \fbox with \fboxrule=1pt

13

cframe=〈color〉
cframe=〈color〉 〈rule width〉
cframe=〈color〉 〈rule width〉 〈sep〉
cframe=〈color〉 〈rule width〉 〈sep〉 〈margin〉

Identical to frame but uses the given color for the frame. The xcolor package must
be loaded manually in order for this key to work.

Example:

\ adjustbox { cfbox =blue !50! green}
{Like a blue and green \cs{ frame }}

Like a blue and green \frame

3.5 Vertical Alignment

valign=〈letter〉

This key allows to vertically align the content to the top, middle and bottom. The up-
percase letters T, M and B align to the content top (i.e. all depth, no height), the geomet-
ric, vertical center (equal height and depth) and to the bottom (all height, no depth),
respectively. This allows the alignment of content of different size, but will not result
in good alignment with text. The lowercase letters t, m and b are aligning the content
again to the top, center and bottom but take the current text size in account. The t
letter leaves a certain height given by the macro2 \adjboxvtop (by default set to the
height of \strut , i.e. \ht\strutbox, which is .7\baselineskip), while b sets a cer-
tain depth given (as negative length) by the macro \adjboxvbottom (by default equal
to the (negated) \strut depth, i.e. -\dp\strutbox, which is .3\baselineskip).
The m letter will center towards the vertical center of the text line which is determined
by the macro \adjboxvcenter (by default 1ex).

The following table shows the different alignments for three different sized blocks:

T M B Text

Mxy
Mxy
Mxy

t m b Text

Mxy
Mxy
Mxy

2A macro and not a length is used to allow for font size relative values like 1ex.

14

raise=〈amount〉
raise={〈amount〉}{〈height〉}
raise={〈amount〉}{〈height〉}{〈depth〉}

This key uses \raisebox{〈amount〉}{...} to raise the content upwards for the given
〈amount〉 (length). A negative length moves the content down. The two optional
arguments of \raisebox{〈amount〉}[〈height〉][〈depth〉]{...} are also available
as optional brace arguments. They can be used to set the official height and depth of
the content. This is also possible using the set height and set depth keys.

Examples:

Is \ adjustbox { raise =1ex}{ higher }
than the normal text Is higher than the normal text

Is \ adjustbox { raise ={1 ex }{\ height }}{ higher }
than the normal text but sill has
its original official height

Is higher than the normal text but sill has its original official height

Is \ adjustbox { raise ={1 ex }{1 ex }{0 pt }}{ higher and
\ rotatebox { -90}{ deeper }} but with limited official
height and no depth.

Is higher and d
eep

er

but with limited official height and no depth.

set height=〈height〉

This sets the official height of the content without actual changing it. This can be
seen as a form of trimming. It uses the same internal code as
\raisebox{0pt}[〈height〉]{〈content〉}.

Example:

\ adjustbox {set height =.5\ height }
{\ shortstack {some stacked \\ content }}

some stacked
content

set depth=〈depth〉

This sets the official depth of the content without actual changing it. This can be seen
as a form of trimming. It uses the same internal code as
\raisebox{0pt}[\height][〈depth〉]{〈content〉}.

Example:

\ adjustbox {set depth =0pt}
{\ shortstack {some stacked \\ content
with \ raisebox {-1ex}{ depth }}}

some stacked
content with depth

15

set vsize={〈height〉}{〈depth〉}

This sets the official height of depth of the content without actual changing it. This
key is simply the combination of set height and set depth.

Example:

\ adjustbox {set vsize ={2 pt }{1 pt}}
{\ shortstack {some stacked \\ content
with \ raisebox {-1ex}{ depth }}}

some stacked
content with depth

3.6 Horizontal Alignment

center
center=〈width〉

This key places the content in a horizontal box which is by default \linewidth wide
(i.e. as wide as a normal text paragraph) and centers it in it. The effect is very similar
to \centerline. The original content is unchanged, but simply identical white
space is added as a left and right margin. This is useful if the content is a figure or
table and can be used as a replacement for \centering. One important difference is
that the content will then have the given width which might influence (sub-)caption
placement. If the content is wider than the available width it will stick out on both
sides equally without causing an overfull hbox warning. Note that when \adjustbox
paragraph is used at the beginning of a paragraph the normal paragraph indention is
added, which will push the while box to the right and might cause an overfull line. In
such cases a \noindent must be added beforehand. The adjustbox environment
already uses this macro.

Examples:

\ adjustbox { center }{ Some content }

Some content

\ adjustbox { center =5cm}{ Some content }

Some content

right
right=〈width〉

Like center this key places the content in a box with the given width (by default
\linewidth) but right aligns it. If the content is wider than the available width it will
stick out into the left side without causing an overfull hbox warning.

16

Examples:

\ adjustbox { right }{ Some content }

Some content

\ adjustbox { right =5cm}{ Some content }

Some content

left
left=〈width〉

Like center this key places the content in a box with the given width (by default
\linewidth) but left aligns it. If the content is wider than the available width it will
stick out into the right side without causing an overfull hbox warning.

Examples:

\ adjustbox {left }{ Some content }

Some content

\ adjustbox {left =5cm}{ Some content }

Some content

inner
inner=〈width〉

Like center, left and right this key places the content in a box with the given
width (by default \linewidth) but aligns it towards the inner margin. If the content
is wider than the available width it will stick into the outer margin without causing
an overfull hbox warning. In twoside mode this key is equal to left for odd pages
and equal to right for even pages. For oneside mode it is always equal to center,
because there is no inner or outer margin. Note that the page-is-odd test might not
always lead to correct results for some material close to a page boundary, because
TEX might not have decided on which page it will be placed. This can be improved
by loading the changepage package with the strict option, which uses a reference to
determine the correct page number (and requires the usual additional compiler run).

outer
outer=〈width〉

Identical to inner but aligns the content towards the outer margin. If the content is
wider than the available width it will stick into the outer inner without causing an
overfull hbox warning.

17

3.7 Lapping

The following features can be used to make the content lap over its left or right
boundary. This is basically the same as trimming, but provides a different, more
dedicated interface.

\lapbox[〈width〉]{〈lap amount〉}{〈content〉}

This macro is a generalisation of the LATEX core macros \rlap{〈content〉} and \llap{〈content〉}
which lap the text to the right or left without taking any official space. The \lapbox
macro can be used to only partially lap the content to the right (positive amount)
or left (negative amount). As with all macros of this package the original width can
be references using \width. The resulting official width of the box is normally the
original width minus the absolute lap amount. However, it can also be set explicitly
using the option argument. It is also possible to use lap amount which absolute
values are larger than the original width. In this case the resulting official width will
be zero by default and the content will padded with the required white space. Note
that the lap amount always states the distance between the right side of the official
box and the right side of the actual content for positive amounts or the distance
between the left side of the official box and the left side of the actual content for
negative values.

Examples:

General lapping:

\ lapbox {1cm}{ Some Text} Some Text

\ lapbox {-1cm}{ Some Text} Some Text

\ lapbox [4cm]{1 cm}{ Some Text} Some Text

\ lapbox [3cm]{2 cm}{ Some Text} Some Text

Like \rlap:

\ lapbox [0pt]{\ width }{ Some Text} Some Text

Like \llap:

\ lapbox [0pt]{-\ width }{ Some Text} Some Text

A centering \clap macro can be achieved using:

\ lapbox [0pt]{ -.5\ width }{ Some Text} Some Text

\ lapbox [0pt]{.5\ width }{ Some Text} Some Text

lap=〈lap amount〉
lap={〈length〉}{〈lap amount〉}

This wraps the content into a \lapbox{〈lap amount〉}{...} and \lapbox[〈length〉]{〈lap
amount〉}{...}, respectively. Positive 〈amounts〉 lap the content to the right and
negative to the left. The optional 〈length〉 argument allows to set the final width.

18

Examples:

\ adjustbox {lap =.5\ width }{ Some content } Some content

\ adjustbox {lap = -.5\ width }{ Some content } Some content

\ adjustbox {lap =\ width }{ Some content } Some content

\ adjustbox {lap =-\ width }{ Some content } Some content

\ adjustbox {lap ={\ width }{\ width }}{ Some content }

Some content

\ adjustbox {lap ={\ width }{-\ width }}{ Some content }

Some content

rlap
llap

This makes the content to be officially 0pt wide and lap over to the right or left,
respectively, like the LATEX macros \rlap and \llap do. These are shortcuts for
lap=\width and lap=-\width, respectively. The values for these keys are ignored
and should not be used.

Examples:

\ adjustbox {rlap }{ Some content } Some content

\ adjustbox {llap }{ Some content } Some content

3.7.1 Background

bgcolor=〈color〉
bgcolor={〈model〉}{〈color〉}

This key adds a colored background to the content. The xcolor package (or color
or xxcolor) needs to be loaded as well in order for this to work. The value is passed
to an internal \color macro.

Examples:

\ adjustbox { bgcolor =blue }{ Text with blue background .}

Text with blue background.

\ adjustbox { bgcolor ={ rgb }{0 0 1}}{ Text with blue background ↙
in the RGB color model .}

Text with blue background in the RGB color model.

19

\ adjustbox { margin =1ex , bgcolor =green }{ green with a little ↙
more margin }

green with a little more margin

\ adjustbox { margin =1ex , bgcolor =green , margin =1pt , bgcolor =↙
yellow }{ Emulation of colored frame}

Emulation of colored frame

bgcolor*=〈color macro〉

Like bgcolor but awaits a full color macro as value. This allows to use other macros
as \color like \blendcolors. See the xcolor manual for more details.

Examples:

\color{blue}Blue text
\ adjustbox { bgcolor *=\ blendcolors {!10! yellow }\ color {.}}{ with↙

a yellow - bluish background }

Blue text with a yellow-bluish background

\color{green}Green text
\ adjustbox { bgcolor *=\ blendcolors {!10! yellow }\ color {.}}{ with↙

a yellow - greenish background }

Green text with a yellow-greenish background

bgimage=〈image filename〉
bgimage={〈key=value pairs for image〉}{〈image filename〉}

Adds a background image to the content. The image is stretched if required to fit ex-
actly to the content. It is also possible to provide \adjustbox or \includegraphics
keys to modify the image (before the resizing is done).

\bgimagebox[〈key=value pairs〉]{〈image filename〉}

Standalone version of the bgimage key. Also available as bgimagebox environment.

3.7.2 Pixel size

dpi=〈number (dots per inch)〉

The dpi key provides a simple interface to set the pixel size to the given DPI (dots
per inch) value. For pdflatex the length unit px can be used to specify pixels.
However, the equivalent dimension (length) of one pixel must be set using the
\pdfpxdimen length register. To set a specific DPI value this length must be set

20

using \setlength\pdfpxdimen{1in/〈dots〉}, which is done by the dpi=〈dots〉 key.
Note that the key won’t affect the setting for the content but only for the further used
keys. However, it is possible to use \setkeys{adjbox}{dpi=〈number〉} inside the
content or anywhere else in the document to set \pdfpxdimen using this interface.

Example:

\ adjustbox {dpi =72, trim =10px ,frame }{%
\ setkeys { adjbox }{ dpi =72}%
\ textcolor {green }{\ rule {50 px }{50 px }}%

}

pxdim=〈length〉

Alternatively to the dpi key the \pdfpxdimen length can be set directly to the given
value. Afterwards 1px will stand for the given 〈length〉.

Example:

\ adjustbox { pxdim =2pt ,trim =2px ,frame }
{\ textcolor {green }{\ rule {20 pt }{20 pt }}}

3.8 Minipage or other inner environments which change the pro-
cessing of the content

The following keys set the way the content is processed before it is stored it in a box.
These keys will overwrite each other and only the latest used key will take effect.
Because they affect the inner content directly their order relative to other, normal
keys is not meaningful. Also they are only defined for adjustbox but do not apply
for \includegraphics. Because they are therefore only used inside a mandatory
argument and never in an optional these keys allow for optional bracket arguments.

minipage=〈width〉
minipage=[〈position〉][〈height〉][〈inner position〉]{〈width〉}

This key wraps the inner content in a minipage with the given 〈width〉 before it is
stored as horizontal box. Its order relative to other keys is not meaningful (except
that future keys of this sub-section will overwrite it). This allows for line breaks and
footnotes in the adjustbox. All optional arguments of minipage are supported. I
only the width is given it does not have to be enclosed in braces. The 〈position〉
argument must be ‘t’ for top baseline, ‘b’ for bottom baseline and ‘c’ for center align-
ment relative to other text, i.e. defines the resulting baseline. If a 〈height〉 is defined
the 〈inner position〉 defaults to 〈position〉 but can also be ‘s’ to stretch the content
over the whole height. This requires the content to include some vertical stretchable
material. Note that all length arguments can include arithmetic expressions like for
other keys.

21

Examples:

\ adjustbox { minipage =5cm ,angle = -10}{%
Some example code which will
be automatically broken or can include \\
line breaks \ footnote {AND footnotes !!}\\
or verbatim \verb+@%^&}_+!%

}

Some example code which will be
automatically broken or can in-

clude
line breaksa

or verbatim @%^&}_!aAND footnotes!!

Before \begin { adjustbox }{ minipage =[b][3 cm][s]{5 cm}}
Some example code

\vfill
with line breaks \ footnote {AND footnotes !!}

\vfill
or verbatim \verb+@%^&}_+!%

\end{ adjustbox } After

Before

Some example code

with line breaksa

or verbatim @%^&}_!

aAND footnotes!! After

tabular=[〈position〉]{〈column specification〉}
tabular*=[〈position〉]{〈width〉}{〈column specification〉}
array=[〈position〉]{〈column specification〉}

Places the content in a tabular, tabular* or array environment, respectively.
These keys require different implementations for macro (\adjustbox) and environ-
ment mode (adjustbox environment) in order to insert the end code correctly. Note
that the environment mode is more efficient and fully stable, while the macro mode
requires the last row to end with an explicit \\ (which can be followed by \hline or
any other macro which uses \noalign internally). In macro mode the \\ is inter-
nally redefined to check for the closing brace. While this was successful tested for
normal usages it might still cause issues with unusual or complicated cases. Note that
these environments are taken as part of the content and so the usage of arithmetic
expressions for length arguments is not supported.

22

Examples:

\ adjustbox { tabular =lll }{%
\hline

A & B & C \\\ hline
a & b & c \\\ hline

}

A B C
a b c

\begin { adjustbox }{ tabular =lll}
A & B & C \\
a & b & c

\end{ adjustbox }

A B C
a b c

stack
stack=〈horizontal alignment〉
stack={〈horizontal alignment〉}{〈vertical alignment〉}

\stackbox[〈horizontal alignment〉][〈vertical alignment〉]{〈content〉}

\begin{stackbox}[〈horizontal alignment〉][〈vertical alignment〉]
〈content〉

\end{stackbox}

The stack key and its corresponding macro and environment can be used to stack
multiple lines similar to the \shortstack macro, but both the horizontal and vertical
alignment can be selected by a single letter each. Also a proper baseline skip is
inserted. This is implemented using the varwidth environment which is based
on the minipage environment. Its maximal width arguments is fixed internally to
\linewidth.

Possible horizontal alignments are: ‘l’ (left), ‘r’ (right), ‘c’ (centered, default), ‘j’
(justified). Possible vertical alignments are the same as for minipage: ‘t’ (top base-
line), ‘b’ (bottom baseline, default), ‘c’ (vertical centered). Because these arguments
are always single letters the ‘{ }’ around them can be skipped, so that the value can
simple be two concatenated letters.

Example:

.\ adjustbox {stack }{A\\B\\CC}.
.

A
B

CC.

.\ adjustbox {stack=r}{A\\B\\CC}.
.

A
B

CC.

.\ adjustbox {stack=ct}{A\\B\\CC}.
. A

B
CC

.

23

innerenv=〈environment name〉
innerenv={〈environment name〉}〈environment options〉

Wraps the inner content in the given 〈environment〉 before it is stored as horizontal
box. It should be kept in mind that there is some internal code between the begin
of the environment and the content. For this reason a tabular, array or similar
environment will not work here, because that code will be taken as part of the first
cell. Note that such a environment is taken as part of the content and so the usage of
arithmetic expressions for length arguments is not supported.

Example:

\ newenvironment {myenv }[2][]{ Before [#1](#2) }{ After}
\ adjustbox { innerenv ={ myenv }[ex]{ amble }}{ Content }

Before [ex](amble)ContentAfter

\ adjustbox { innerenv ={ myenv }{ amble }}{ Content }

Before [](amble)ContentAfter

innercode={〈begin code〉}{〈end code〉}

Places the given code before and after the inner content before it is stored as hori-
zontal box. Note that such code is taken as part of the content and so the usage of
arithmetic expressions for length arguments is not supported.

Example:

\ adjustbox { innercode ={\ color{green }}{!}}{ Content } Content!

3.9 Adding own Code or Environments

env=〈environment name〉
env={〈environment name〉}〈environment options〉

Adds an 〈environment〉 around the content and the already existing code around
it which was added by other keys beforehand. Potential 〈environment options〉 (or
any other code) can follow the environment name if it was set inside braces. At this
stage the content is already boxed and format macros won’t have any effect on any
included text. For this the innerenv key needs to be used instead.

addcode={〈code before〉}{〈code afters〉}

Adds some 〈code before〉 and some 〈code after〉 the content and the already existing
code around it which was added by other keys beforehand. At this stage the content
is already boxed and format macros won’t have any effect on any included text.

24

appcode=〈code afterwards〉

Appends come 〈code after〉 the content and the already existing code around it which
was added by other keys beforehand. More complex code should be enclosed in
braces.

precode=〈code before〉

Prepends come 〈code afterwards〉 the content and the already existing code around it
which was added by other keys beforehand. More complex code should be enclosed
in braces.

execute=〈code〉

Simply executes the code immediately. This is done in the key processing phase and
is intended mostly for debugging purposes. Previous (normal) keys won’t have an
effect yet.

Execute=〈code〉

Simply executes the code immediately. This is done in the key processing phase
for inner environments (see subsection 3.8) and is intended mostly for debugging
purposes. Only previously used special keys for modifying the boxing of the content
will have an effect yet. All other keys are not yet processed.

4 Other

\phantombox{〈width〉}{〈height〉}{〈depth〉}

This macro produces an empty box with the given width, height and depth. It is
equivalent to \phantom{\rule[-〈depth〉]{〈width〉}{〈height〉+〈depth〉}} but more
efficient and more user friendly.

Example:

Before \fbox {\ phantombox {1cm }{2 ex }{1 ex}} After

Before After

25

	Introduction
	Driver dependent implementation
	Dependencies

	Package Option
	Verbatim Support

	Usage
	Adjust Box Content
	Setting keys globally
	Argument Values

	Trimming and Clipping
	Margins
	Minimum and Maximum Size
	Scaling
	Frame

	Vertical Alignment
	Horizontal Alignment
	Lapping
	Background
	Pixel size

	Minipage or other inner environments which change the processing of the content
	Adding own Code or Environments

	Other

