
XY-pic Reference Manual

Kristoffer H. Rose
〈krisrose@tug.org〉×

Ross Moore
〈ross.moore@mq.edu.au〉†

Version 3.8.6 〈2011/05/27〉

Abstract

This document summarises the capabilities of the XY-pic
package for typesetting graphs and diagrams in TEX. For
a general introduction as well as availability information
and conditions refer to the User’s Guide [16].

A characteristic of XY-pic is that it is built around a
kernel drawing language which is a concise notation for
general graphics, e.g.,

A

B

was drawn by the XY-pic kernel code

\xy (3,0)*{A} ; (20,6)*+{B}*\cir{} **\dir{-}

? *_!/3pt/\dir{)} *_!/7pt/\dir{:}

?>* \dir{>} \endxy

It is an object-oriented graphic language in the most lit-
eral sense: ‘objects’ in the picture have ‘methods’ describ-
ing how they typeset, stretch, etc. However, the syntax
is rather terse.

Particular applications make use of extensions that
enhance the graphic capabilities of the kernel to handle
such diagrams as

Round

Square

Bend

which was typeset by

\xy *[o]=<40pt>\hbox{Round}="o"*\frm{oo},

+<5em,-5em>@+,

(46,11)*+\hbox{Square}="s" *\frm{-,},

-<5em,-5em>@+,

"o";"s" **{} ?*+\hbox{Bend}="b"*\frm{.},

"o";"s"."b" **\crvs{-},

"o"."b";"s" **\crvs{-} ?>*\dir{>}

\endxy

using the ‘curve’ and ‘frame’ extensions.
All this is made accessible through the use of features

that provide convenient notation such that users can en-
ter special classes of diagrams in an intuitive form, e.g.,

the diagram

U

y

x

X ×Z Y

q

p
X

f

Y
g

Z

was typeset using the ‘matrix’ features by theXY-pic input
lines

\xymatrix{

U \ar@/_/[ddr]_y \ar[dr] \ar@/^/[drr]^x \\

& X \times_Z Y \ar[d]^q \ar[r]_p

& X \ar[d]_f \\

& Y \ar[r]^g & Z }

Features exist for many kinds of input; here is a knot
typeset using the ‘knots and links’ feature:

The current implementation is programmed entirely
within “standard TEX and METAFONT”, i.e., using TEX
macros (no \specials) and with fonts designed using
METAFONT. Optionally special ‘drivers’ make it possi-
ble to produce DVI files with ‘specials’ for extra graphics
capabilities, e.g., using PostScript

1 or Adobe PDF.

×IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA.
†MPCE (Mathematics dept.), Macquarie University, North Ryde, Sydney, Australia NSW 2109.
1PostScript is a registered Trademark of Adobe, Inc. [1].

1

Contents

I The Kernel 4

1 The XY-pic implementation 4

1.1 Loading XY-pic 4

1.2 Logo, version, and messages 5

1.3 Fonts . 5

1.4 Allocations 5

2 Picture basics 5

2.1 Positions 6

2.2 Objects 6

2.3 Connections 6

2.4 Decorations 6

2.5 The XY-pic state 6

3 Positions 7

4 Objects 11

5 Decorations 15

6 Kernel object library 16

6.1 Directionals 16

6.2 Circle segments 18

6.3 Text . 18

7 XY-pic options 18

7.1 Loading 19

7.2 Option file format 19

7.3 Driver options 20

II Extensions 20

8 Curve and Spline extension 20

8.1 Curved connections 20

8.2 Circles and Ellipses 24

8.3 Quadratic Splines 24

9 Frame and Bracket extension 24

9.1 Frames . 24

9.2 Brackets 26

9.3 Filled regions 26

9.4 Framing as object modifier 27

9.5 Using curves for frames 27

10 More Tips extension 27

11 Line styles extension 27

12 Rotate and Scale extension 29

13 Colour extension 30

14 Pattern and Tile extension 31

15 Import graphics extension 33

16 Movie Storyboard extension 34

17 PostScript backend 35

17.1 Choosing the DVI-driver 35
17.2 Why use PostScript 36

18 TPIC backend 36

19 em-TeX backend 37

20 Necula’s extensions 37

20.1 Expansion 37
20.2 Polygon shapes 37

21 LaTeX Picture extension 37

III Features 38

22 All features 38

23 Dummy option 38

24 Arrow and Path feature 38

24.1 Paths . 38
24.2 Arrows . 41

25 Two-cell feature 43

25.1 Typesetting 2-cells in Diagrams 43
25.2 Standard Options 44
25.3 Nudging 44
25.4 Extra Options 45
25.5 2-cells in general XY-pictures 48

26 Matrix feature 48

26.1 XY-matrices 48
26.2 New coordinate formats 49
26.3 Spacing and rotation 50
26.4 Entries . 50

27 Graph feature 51

28 Polygon feature 54

29 Lattice and web feature 57

30 Circle, Ellipse, Arc feature 58

30.1 Full Circles 58
30.2 Ellipses 59
30.3 Circular and Elliptical Arcs 59

31 Knots and Links feature 62

32 Smart Path option 66

IV Drivers 67

33 Support for Specific Drivers 67

33.1 dvidrv driver 67
33.2 DVIPS driver 67
33.3 DVITOPS driver 67
33.4 OzTeX driver 67
33.5 OzTeX v1.7 driver 68
33.6 Textures driver 68
33.7 Textures v1.6 driver 68

2

33.8 XDVI driver 69

33.9 PDF driver 69

34 Extra features using PostScript drivers 69

34.1 Colour . 70

34.2 Frames . 70

34.3 Line-styles 71

34.4 Rotations and scaling 71

34.5 Patterns and tiles 71

35 Extra features using tpic drivers 71

35.1 frames. 71

Appendices 71

A Answers to all exercises 71

B Version 2 Compatibility 75

B.1 Unsupported incompatibilities 76

B.2 Obsolete kernel features 76

B.3 Obsolete extensions & features 77

B.4 Obsolete loading 77

B.5 Compiling v2-diagrams 78

C Common Errors 78

References 78

Index 80

List of Figures

1 〈pos〉itions. 8

2 Example 〈place〉s 10

3 〈object〉s. 12

4 〈decor〉ations. 16

5 Kernel library 〈dir〉ectionals 17

6 〈cir〉cles. 19

7 Syntax for curves. 22

8 Plain 〈frame〉s. 25

9 Bracket 〈frame〉s. 25

10 Rotations, scalings, and flips 30

11 Colour names after \UseCrayolaColors. . 31

12 The 38 standard Macintosh patterns. . . . 33

13 Importing a graphic for labelling. 34

14 〈path〉s . 39

15 〈arrow〉s. 42

16 Pasting diagram. 45

17 〈twocell〉s 46

18 〈graph〉s 52

19 〈knot-piece〉 construction set. 63

20 Knot crossings with orientations and label
positions. 64

21 Knot joins, with orientations, labels, and
shifts. 66

22 Extension implementation replaced by use
of 〈driver〉 specials. 70

Kristoffer Rose

Ross Moore

Preface

This reference manual gives concise descriptions of
the modules of XY-pic, written by the individual au-
thors. Please direct any TEXnical question or sug-
gestion for improvement directly to the author of the
component in question, preferably by electronic mail
using the indicated address. Complete documents
and printed technical documentation or software is
most useful.

The first part documents the XY-pic kernel which
is always loaded. The remaining parts describe the
three kinds of options: extensions in part II extend
the kernel graphic capabilities, features in part III
provide special input syntax for particular diagram
types, and drivers in part IV make it possible to
exploit the printing capabilities supported by DVI
driver programs. For each option it is indicated how
it should be loaded. The appendices contain answers
to all the exercises, a summary of the compatibil-
ity with version 2, and list some reasons why XY-pic
might sometimes halt with a cryptic TEX error.

License. XY-pic is free software in the sense that it
is available under the following license conditions:

XY-pic: Graphs and Diagrams with TEX
c© 1991–2011 Kristoffer H. Rose
c© 1994–2011 Ross Moore

The XY-pic package is free software; you can redis-
tribute it and/or modify it under the terms of the
GNU General Public License as published by the Free
Software Foundation; either version 2 of the License,
or (at your option) any later version.

TheXY-pic package is distributed in the hope that
it will be useful, but without any warranty ; without
even the implied warranty of merchantability or fit-

ness for a particular purpose. See the GNU General
Public License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this package; if not, see
http://www.gnu.org/licenses/.

In practice this means that you are free to use
XY-pic for your documents but if you distribute any

3

http://www.gnu.org/licenses/

part of XY-pic (including modified versions) to some-
one then you are obliged to ensure that the full source
text of XY-pic is available to them (the full text of the
license in the file COPYING explains this in somewhat
more detail ©̈⌣).

Notational conventions. We give descriptions of
the syntax of pictures as BNF2 rules; in explana-
tions we will use upper case letters like X and Y for
〈dimen〉sions and lower case like x and y for 〈factor〉s.

Part I

The Kernel

Vers. 3.8.6 by Kristoffer H. Rose 〈krisrose@tug.org〉

After giving an overview of the XY-pic environment
in §1, this part document the basic concepts of XY-
picture construction in §2, including the maintained
‘graphic state’. The following sections give the pre-
cise syntax rules of the main XY-pic constructions:
the position language in §3, the object constructions
in §4, and the picture ‘decorations’ in §5. §6 presents
the kernel repertoire of objects for use in pictures;
§7 documents the interface to XY-pic options like the
standard ‘feature’ and ‘extension’ options.

Details of the implementation are not discussed
here but in the complete TEXnical documenta-
tion [17].

1 The XY-pic implementation

This section briefly discusses the various aspects of
the presentXY-pic kernel implementation of which the
user should be aware.

1.1 Loading XY-pic

XY-pic is careful to set up its own environment in or-
der to function with a large variety of formats. For
most formats a single line with the command

\input xy

in the preamble of a document file should load the
kernel (see ‘integration with standard formats’ below
for variations possible with certain formats, in par-
ticular LATEX [9]).

The rest of this section describes things you need
to consider if you need to use XY-pic together with
other macro packages, style options, or formats. The
less your environment deviates from plain TEX the
easier it should be. Consult the TEXnical documen-
tation [17] for the exact requirements for other defi-
nitions to coexist with XY-pic.

Privacy: XY-pic will warn about control sequences
it redefines—thus you can be sure that there are
no conflicts betweenXY-pic-defined control sequences,
those of your format, and other macros, provided you
load XY-pic last and get no warning messages like

Xy-pic Warning: ‘ . . . ’ redefined.

In general the XY-pic kernel will check all control
sequences it redefines except that (1) generic tem-
poraries like \next are not checked, (2) predefined
font identifiers (see §1.3) are assumed intentionally
preloaded, and (3) some of the more exotic control
sequence names used internally (like @{-}) are only
checked to be different from \relax.

Category codes: The situation is complicated by
the flexibility of TEX’s input format. The culprit is
the ‘category code’ concept of TEX (cf. [6, p.37]):
when loadedXY-pic requires the characters \{}% (the
first is a space) to have their standard meaning and all
other printable characters to have the same category

as when XY-pic will be used—in particular this means
that (1) you should surround the loading of XY-pic
with \makeatother . . . \makeatletter when load-
ing it from within a LATEX package, and that (2) XY-
pic should be loaded after files that change category
codes like the german.sty that makes " active. Some
styles require that you reset the catcodes for every
diagram, e.g., with french.sty you should use the
command \english before every \xymatrix.
However, it is possible to ‘repair’ the problem in case
any of the characters #$&’+-.<=>‘ change category
code:

\xyresetcatcodes

will load the file xyrecat.tex (version 3.7) to do it.

Integration with standard formats This is han-
dled by the xyidioms.tex file and the integration as
a LATEX [9] package by xy.sty.

2BNF is the notation for “meta-linguistic formulae” first used by [11] to describe the syntax of the Algol programming language.
We use it with the conventions of the TEXbook [6]: ‘−→’ is read “is defined to be”, ‘ | ’ is read “or”, and ‘〈empty〉’ denotes
“nothing”; furthermore, ‘〈id〉’ denotes anything that expands into a sequence of TEX character tokens, ‘〈dimen〉’ and ‘〈factor〉’
denote decimal numbers with, respectively without, a dimension unit (like pt and mm), 〈number〉 denotes possibly signed integers,
and 〈text〉 denotes TEX text to be typeset in the appropriate mode. We have chosen to annotate the syntax with brief explanations
of the ‘action’ associated with each rule; here ‘←’ should be read ‘is copied from’.

4

xyidioms.tex: This included file provides some
common idioms whose definition depends on the used
format such that XY-pic can use predefined dimen-
sion registers etc. and yet still be independent of the
format under which it is used. The current version
(3.7) handles plain TEX (version 2 and 3 [6]), AMS-
TEX (version 2.0 and 2.1 [18]), LATEX (version 2.09 [8]
and 2ε [9]), AMS-LATEX (version 1.0, 1.1 [2], and 1.2),
and eplain (version 2.6 [3])3.

xy.sty: If you use LATEX then this file makes it
possible to load XY-pic as a ‘package’ using the
LATEX2ε [9] \usepackage command:

\usepackage [〈option〉,. . .] {xy}

where the 〈option〉s will be interpreted as if passed to
\xyoption (cf. §7).

The only exceptions to this are the options hav-
ing the same names as those driver package options
of part IV, which appear in cf. [4, table 11.2, p.317]
or the LATEX2ε graphics bundle. These will auto-
matically invoke any backend extension required to
best emulate the LATEX2ε behaviour. (This means
that, e.g., [dvips] and [textures] can be used as
options to the \documentclass command, with the
normal effect.)

The file also works as a LATEX 2.09 [8] ‘style op-
tion’ although you will then have to load options with
the \xyoption mechanism described in §7.

1.2 Logo, version, and messages

LoadingXY-pic prints a banner containing the version
and author of the kernel; small progress messages are
printed when each major division of the kernel has
been loaded. Any options loaded will announce them-
self in a similar fashion.

If you refer to XY-pic in your written text (please
do ©̈⌣) then you can use the command \Xy-pic to
typeset the “XY-pic” logo. The version of the ker-
nel is typeset by \xyversion and the release date by
\xydate (as found in the banner). By the way, the
XY-pic name4 originates from the fact that the first
version was little more than support for (x, y) coordi-
nates in a configurable coordinate system where the
main idea was that all operations could be specified
in a manner independent of the orientation of the co-
ordinates. This property has been maintained except
that now the package allows explicit absolute orien-
tation as well.

Messages that start with “Xy-pic Warning” are
indications that something needs your attention; an

“Xy-pic Error” will stop TEX because XY-pic does
not know how to proceed.

1.3 Fonts

TheXY-pic kernel implementation makes its drawings
using five specially designed fonts:

Font Characters Default
\xydashfont dashes xydash10

\xyatipfont arrow tips, upper half xyatip10

\xybtipfont arrow tips, lower half xybtip10

\xybsqlfont quarter circles for xybsql10

hooks and squiggles
\xycircfont 1

8 circle segments xycirc10

The first four contain variations of characters in a
large number of directions, the last contains 1/8 cir-
cle segments.

Note: The default fonts are not part of the XY-pic
kernel specification: they just set a standard for what
drawing capabilities should at least be required by an
XY-pic implementation. Implementations exploiting
capabilitites of particular output devices are in use.
Hence the fonts are only loaded by XY-pic if the con-
trol sequence names are undefined—this is used to
preload them at different sizes or prevent them from
being loaded at all.

1.4 Allocations

One final thing that you must be aware of is that XY-
pic allocates a significant number of dimension reg-
isters and some counters, token registers, and box
registers, in order to represent the state and do com-
putations. The current kernel allocates 4 counters,
28 dimensions, 2 box registers, 4 token registers,
1 read channel, and 1 write channel (when running
under LATEX; some other formats use slightly more
because standard generic temporaries are used). Op-
tions may allocate further registers (currently load-
ing everything loads 6 dimen-, 3 toks-, 1 box-, and
9 count-registers in addition to the kernel ones).

2 Picture basics

The basic concepts involved when constructing XY-
pictures are positions and objects, and how they com-
bine to form the state used by the graphic engine.

The general structure of an XY-picture is as fol-
lows:

\xy 〈pos〉 〈decor〉 \endxy

3The ‘v2’ feature introduces some name conflicts, in order to maintain compatibility with earlier versions of XY-pic.
4No description of a TEX program is complete without an explanation of its name.

5

builds a box with an XY-picture (LATEX users may
substitute \begin{xy} . . . \end{xy} if they prefer).

〈pos〉 and 〈decor〉 are components of the special
‘graphic language’ which XY-pictures are specified in.
We explain the language components in general terms
in this § and in more depth in the following §§.

2.1 Positions

All positions may be written <X,Y > where X is the
TEX dimension distance right and Y the distance up

from the zero position 0 of the XY-picture (0 has co-
ordinates <0mm,0mm>, of course). The zero position
of the XY-picture determines the box produced by the
\xy. . . \endxy command together with the four pa-
rameters Xmin, Xmax, Ymin, and Ymax set such that
all the objects in the picture are ‘contained’ in the
following rectangle:

◦

0TEX reference point

•

Xmin Xmax

Ymin

Ymax

where the distances follow the “up and right > 0”
principle, e.g., the indicated TEX reference point has
coordinates <Xmin,0pt> within the XY-picture. The
zero position does not have to be contained in the pic-
ture, but Xmin ≤ Xmax ∧ Ymin ≤ Ymax always holds.
The possible positions are described in detail in §3.

When anXY-picture is entered in math mode then
the reference point becomes the “vcenter” instead,
i.e., we use the point <Xmin,-\the\fontdimen22>

as reference point.

2.2 Objects

The simplest form of putting things into the picture
is to ‘drop’ an object at a position. An object is like
a TEX box except that it has a general Edge around
its reference point—in particular this has the extents

(i.e., it is always contained within) the dimensions L,
R, U , and D away from the reference point in each
of the four directions left, right, up, and down. Ob-
jects are encoded in TEX boxes using the convention
that the TEX reference point of an object is at its left
edge, thus shifted <−L,0pt> from the center—so a
TEX box may be said to be a rectangular object with
L = 0pt. Here is an example:

◦L R
D

U

TEX reference point

•

The object shown has a rectangle edge but others are
available even though the kernel only supports rect-
angle and circle edges. It is also possible to use entire
XY-pictures as objects with a rectangle edge, 0 as the
reference point, L = −Xmin, R = Xmax, D = −Ymin,
and U = Ymax. The commands for objects are de-
scribed in §4.

2.3 Connections

Besides having the ability to be dropped at a position
in a picture, all objects may be used to connect the
two current objects of the state, i.e., p and c. For
most objects this is done by ‘filling’ the straight line
between the centers with as many copies as will fit
between the objects:

p

c
◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

The ways the various objects connect are described
along with the objects.

2.4 Decorations

When the \xy command reaches something that can
not be interpreted as a continuation of the position
being read, then it is expected to be a decoration,
i.e., in a restricted set of TEX commands which add
to pictures. Most such commands are provided by
the various user options (cf. §7)—only a few are pro-
vided within the kernel to facilitate programming of
such options (and user macros) as described in §5.

2.5 The XY-pic state

Finally we summarise the user-accessible parts of the
XY-picture state of two positions together with the
last object associated with each: the previous , p, is
the position <Xp, Yp> with the object Lp, Rp, Dp,
Up, Edgep, and the current , c, is the position <Xc,

Yc> with the object Lc, Rc, Dc, Uc, Edgec.
Furthermore, XY-pic has a configurable carte-

sian coordinate system described by an origin

position <Xorigin,Yorigin> and two base vectors

<Xxbase,Yxbase> and <Xybase,Yybase> accessed by the
usual notation using parentheses:

(x,y) = < Xorigin + x×Xxbase + y ×Xybase ,

Yorigin + x× Yxbase + y × Yybase >

This is explained in full when we show how to set the
base in note 3d of §3.

Finally typesetting a connection will setup a
“placement state” for referring to positions on the

6

connection that is accessed through a special ? po-
sition construction; this is also discussed in detail in
§3.

The XY-pic state consists of all these parameters
together. They are initialised to zero except for
Xxbase = Yybase = 1mm.

The edges are not directly available but points on
the edges may be found using the different 〈corner〉
forms described in §3.

It is possible to insert an ‘initial’ piece of 〈pos〉
〈decor〉 at the start of every XY-picture with the dec-
laration

\everyxy={ 〈text〉 }

This will act as if the 〈text〉 was typed literally right
after each \xy command, parsing the actual contents
as if it follows this – thus it is recommended that
〈text〉 has the form 〈pos〉, such that users can con-
tinue with 〈pos〉 〈decor〉.

3 Positions

A 〈pos〉ition is a way of specifying locations as well
as dropping objects at them and decorating them—
in fact any aspect of the XY-pic state can be changed
by a 〈pos〉 but most will just change the coordinates
and/or shape of c.

All possible positions are shown in figure 1 with
explanatory notes below.

Exercise 1: Which of the positions 0, <0pt,0pt>,
<0pt>, (0,0), and /0pt/ is different from the others?

(p.71)

Notes

3a. When doing arithmetic with + and - then the
resulting current object inherits the size of the
〈coord〉, i.e., the right argument—this will be
zero if the 〈coord〉 is a 〈vector〉.

Exercise 2: How do you set c to an object the
same size as the saved object "ob" but moved
<X,Y >? (p.72)

3b. Skewing using ! just means that the reference
point of c is moved with as little change to the
shape of the object as possible, i.e., the edge of c
will remain in the same location except that it
will grow larger to avoid moving the reference
point outside c.

Exercise 3: What does the 〈pos〉 . . . !R-L do?
(p.72) Bug: The result of ! is always a

rectangle currently.

3c. A 〈pos〉 covers another if it is a rectangle with
size sufficiently large that the other is “under-
neath”. The . operation “extends” a 〈pos〉 to
cover an additional one—the reference point of c
is not moved but the shape is changed to a rect-
angle such that the entire p object is covered.

Bug: non-rectangular objects are first “trans-
lated” into a rectangle by using a diagonal
through the object as the diagonal of the rect-
angle.

3d. The operations : and :: set the base used for
〈coord〉inates having the form (x,y). The : op-
eration will set <Xorigin, Yorigin> to p, <Xxbase,

Yxbase> to c − origin, and <Xybase, Yybase> to
<−Yxbase, Xxbase> (this ensures that it is a usual
square coordinate system). The :: operation
may then be used afterwards to make nonsqare
bases by just setting ybase to c − origin. Here
are two examples: firstly 0;<1cm,0cm>: sets the
coordinate system

◦
origin

xbase

ybase × (1,1)

while <1cm,.5cm>;<2cm,1.5cm>:<1cm,1cm>::

defines

◦

ybase
before
::

origin

xbase
ybase

× (1,1)

where in each case the ◦ is at 0, the base vectors
have been drawn and the × is at (1,1).

When working with cartesian coordinates these
three special 〈factor〉s are particularly useful:

\halfroottwo 0.70710678 ≈ 1
2

√
2

\partroottwo 0.29289322 ≈ 1− 1
2

√
2

\halfrootthree 0.86602540 ≈ 1
2

√
3

More can be defined using \def (or \newcommand
in LATEX).

3e. An angle α in XY-pic is the same as the coor-
dinate pair (cosα, sinα) where α must be an
integer interpreted as a number of degrees. Thus
the 〈vector〉 a(0) is the same as (1,0) and a(90)

as (0,1), etc.

7

Syntax Action

〈pos〉 −→ 〈coord〉 c← 〈coord〉
| 〈pos〉 + 〈coord〉 c← 〈pos〉+ 〈coord〉3a
| 〈pos〉 - 〈coord〉 c← 〈pos〉 − 〈coord〉3a
| 〈pos〉 ! 〈coord〉 c← 〈pos〉 then skew3b c by 〈coord〉
| 〈pos〉 . 〈coord〉 c← 〈pos〉 but also covering3c 〈coord〉
| 〈pos〉 , 〈coord〉 c← 〈pos〉 then c← 〈coord〉
| 〈pos〉 ; 〈coord〉 c← 〈pos〉, swap p and c, c← 〈coord〉
| 〈pos〉 : 〈coord〉 c← 〈pos〉, set base3d, c← 〈coord〉
| 〈pos〉 :: 〈coord〉 c← 〈pos〉, ybase ← c− origin, c← 〈coord〉
| 〈pos〉 * 〈object〉 c← 〈pos〉, drop3f 〈object〉
| 〈pos〉 ** 〈object〉 c← 〈pos〉, connect3g using 〈object〉
| 〈pos〉 ? 〈place〉 c← 〈pos〉, c← 〈place〉3h
| 〈pos〉 @ 〈stacking〉 c← 〈pos〉, do 〈stacking〉3o
| 〈pos〉 = 〈saving〉 c← 〈pos〉, do 〈saving〉3p

〈coord〉 −→ 〈vector〉 〈pos〉 is 〈vector〉 with zero size
| 〈empty〉 | c reuse last c (do nothing)
| p p

| x | y axis intersection3k with pc

| s〈digit〉 | s{〈number〉} stack3o position 〈digit〉 or 〈number〉 below the top

| "〈id〉" restore what was saved3p as 〈id〉 earlier
| { 〈pos〉 〈decor〉 } the c resulting from interpreting the group3l

〈vector〉 −→ 0 zero
| < 〈dimen〉 , 〈dimen〉 > absolute
| < 〈dimen〉 > absolute with equal dimensions

| (〈factor〉 , 〈factor〉) in current base3d

| a (〈number〉) angle in current base3e

| 〈corner〉 from reference point to 〈corner〉 of c
| 〈corner〉 (〈factor〉) The 〈corner〉 multiplied with 〈factor〉
| / 〈direction〉 〈dimen〉 / vector 〈dimen〉 in 〈direction〉3m

〈corner〉 −→ L | R | D | U offset3n to left, right, down, up side

| CL | CR | CD | CU | C offset3n to center of side, true center

| LD | RD | LU | RU offset3n to actual left/down, . . . corner

| E | P offset3n to nearest/proportional edge point to p

| A vertical offset3n to math axis

〈place〉 −→ < 〈place〉 | > 〈place〉 shave3h (0)/(1) to edge of p/c, f ← 0/1

| (〈factor〉) 〈place〉 f ← 〈factor〉
| 〈slide〉 pick place3h and apply 〈slide〉
| ! {〈pos〉} 〈slide〉 intercept3j with line setup by 〈pos〉 and apply 〈slide〉

〈slide〉 −→ / 〈dimen〉 / slide3i 〈dimen〉 further along connection
| 〈empty〉 no slide

Figure 1: 〈pos〉itions.

8

3f. To drop an 〈object〉 at c with * means to actu-
ally physically typeset it in the picture with ref-
erence position at c—how this is done depends
on the 〈object〉 in question and is described in
detail in §4. The intuition with a drop is that it
typesets something at <Xc,Yc> and sets the edge
of c accordingly.

3g. The connect operation ** will first compute a
number of internal parameters describing the di-
rection from p to c and then typesets a connection
filled with copies of the 〈object〉 as illustrated
in §2.3. The exact details of the connection de-
pend on the actual 〈object〉 and are described in
general in §4. The intuition with a connection
is that it typesets something connecting p and c
and sets the ? 〈pos〉 operator up accordingly.

3h. Using ? will “pick a place” along the most recent
connection typeset with **. What exactly this
means is determined by the object that was used
for the connection and by the modifiers described
in general terms here.

The “shave” modifiers in a 〈place〉, < and >,
change the default 〈factor〉, f , and how it is used,
by ‘moving’ the positions that correspond to (0)

and (1) (respectively): These are initially set
equal to p and c, but shaving will move them
to the point on the edge of p and c where the
connection “leaves/enters” them, and change the
default f as indicated. When one end has already
been shaved thus then subsequent shaves will cor-
respond to sliding the appropriate position(s) a
TEX \jot (usually equal to 3pt) further towards
the other end of the connection (and past it). Fi-
nally the pick action will pick the position located
the fraction f of the way from (0) to (1) where
f = 0.5 if it was not set (by <, >, or explicitly).

All this is probably best illustrated with some
examples: each ⊗ in figure 2 is typeset by
a sequence of the form p; c **@{.} ?〈place〉
*{\oplus} where we indicate the ?〈place〉 in each
case. (We also give examples of 〈slide〉s.)

3i. A 〈slide〉 will move the position a dimension fur-
ther along the connection at the picked position.
For straight connections (the only ones kernel XY-
pic provides) this is the same as adding a vector
in the tangent direction, i.e., ? . . . /A/ is the same
as ? . . . +/A/.

3j. This special 〈place〉 finds the point where the
last connection intercepts with the line from p
to c as setup by the 〈pos〉, thus usually this will

have the form !{〈coord〉;〈coord〉}5, for example,
Bug: Only works for straight arrows at present.

\xy <1cm,0cm>:

(0,0)*=0{+}="+" ;

(2,1)*=0{\times}="*" **@{.} ,

(1,0)*+{A} ; (2,2)*+{B} **@{-}

?!{"+";"*"} *{\bullet}

\endxy

will typeset

+

×

A

B

•

3k. The positions denoted by the axis intersection

〈coord〉inates x and y are the points where the
line through p and c intersects with each axis.
The following figure illustrates this:

origin

xbaseybase

◦p

◦c

x
•

y
•

Exercise 4: Given predefined points A, B, C,
and D (stored as objects "A", "B", "C", and "D"),
write a 〈coord〉 specification that will return the
point where the lines AB and CD cross (the point
marked with a large circle here):

A

B
C
D

(p.72)

3l. A 〈pos〉 〈decor〉 grouped in {}-braces6 is inter-
preted in a local scope in the sense that any p
and base built within it are forgotten afterwards,
leaving only the c as the result of the 〈coord〉.
Note: Only p and base are restored – it is not a
TEX group.

Exercise 5: What effect is achieved by using
the 〈coord〉inate “{;}”? (p.72)

5The braces can be replaced by (*. . . *) once, i.e., there can be no other braces nested inside it.
6One can use (*. . . *) instead also here.

9

p is circular:

c is a
square
text!

⊕

?(0)

⊕

?(1)

⊕
? ⊕

?(.7)

⊕
?<>(.5)

⊕
?<>(.2)(.5)

⊕
?<

⊕
?<<<

⊕

?<<</1cm/

⊕
?<(0)

⊕
?>

⊕
?>>>>

⊕
?<>(.7)

⊕
?>(.7)

Figure 2: Example 〈place〉s

3m. The vector /Z/, where Z is a 〈dimen〉sion, is the
same as the vector <Z cosα,Z sinα> where α is
the angle of the last direction set by a connec-
tion (i.e., with **) or subsequent placement (?)
position.

It is possible to give a 〈direction〉 as described in
the next section (figure 3, note 4l in particular)
that will then be used to set the value of α. It is
also possible to omit the 〈dimen〉 in which case
it is set to a default value of .5pc.

3n. A 〈corner〉 is an offset from the current <Xc,Yc>

position to a specific position on the edge of the
c object (the two-letter ones may be given in any
combination):

cL R

D

U

LD
RD

LU
RU

CL
CR

DC

UC

C

P

A

p
E

The ‘edge point’ E lies on the edge along the line
from p to the centre of the object, in contrast to
the ‘proportional’ point P which is also a point
on the edge but computed in such a way that
the object looks as much ‘away from p’ as possi-
ble. The A point vector is special: it is equal to
<0pt,\fontdimen22\textfont2> and useful for
recentering entries.

Finally, a following (f) suffix will multiply the
offset vector by the 〈factor〉 f .

Exercise 6: What is the difference between the
〈pos〉itions c?< and c+E? (p.72)

Exercise 7: What does this typeset?

\xy *=<3cm,1cm>\txt{Box}*\frm{-}

!U!R(.5) *\frm{..}*{\bullet} \endxy

Hint : \frm is defined by the frame extension and
just typesets a frame of the kind indicated by the
argument. (p.72)

Bug: Currently only the single-letter corners (L,
R, D, U, C, E, and P) will work for any shape—the
others silently assume that the shape is rectan-
gular.

3o. The stack is a special construction useful for stor-
ing a sequence of 〈pos〉itions that are accessible
using the special 〈coord〉inates sn, where n is ei-
ther a single digit or a positive integer in {}s: s0
is always the ‘top’ element of the stack and if the
stack has depth d then the ‘bottom’ element of
the stack has number s{d− 1}. The stack is said
to be ‘empty’ when the depth is 0 and then it is
an error to access any of the sn or ‘pop’ which
means remove the top element, shifting what is
in s1 to s0, s2 to s1, etc. Similarly, ‘push c’
means to shift s0 to s1, etc., and then insert the
c as the new s0.

The stack is manipulated as follows:

@〈stacking〉 Action

@+〈coord〉 push 〈coord〉
@-〈coord〉 c← 〈coord〉 then pop
@=〈coord〉 load stack with 〈coord〉
@@〈coord〉 do 〈coord〉 for c← stack
@i initialise
@(enter new frame
@) leave current frame

To ‘load stack’, means to load the entire stack
with the positions set by 〈coord〉 within which ,

means ‘push c’.

10

To ‘do 〈coord〉 for all stack elements’ means to
set c to each element of the stack in turn, from
the bottom and up, and for each interpret the
〈coord〉. Thus the first interpretation has c set
to the bottom element of the stack and the last
has c set to s0. If the stack is empty, the 〈coord〉
is not interpreted at all.

These two operations can be combined to repeat
a particular 〈coord〉 for several points, like this:

\xy

@={(0,-10),(10,3),(20,-5)} @@{*{P}}

\endxy

will typeset

P

P

P

Finally, the stack can be forcibly cleared using
@i, however, this is rarely needed because of @(,
which saves the stack as it is, and then clears it,
such when it has been used (and is empty), and
@) is issued, then it is restored as it was at the
time of the @(.

Exercise 8: How would you change the exam-
ple above to connect the points as shown below?

(p.72)

3p. It is possible to define new 〈coord〉inates on the
form "〈id〉" by saving the current c using the
. . . ="〈id〉" 〈pos〉ition form. Subsequent uses of
"〈id〉" will then reestablish the c at the time of
the saving.

Using a "〈id〉" that was never defined is an error,
however, saving into a name that was previously
defined just replaces the definition without warn-
ing, i.e., "〈id〉" always refers to the last thing
saved with that 〈id〉.
However, many other things can be ‘saved’: in
general @〈saving〉 has either of the forms

@:"〈id〉" "〈id〉" restores current
base

@〈coord〉"〈id〉" "〈id〉" reinterprets 〈coord〉
@@"〈id〉" @="〈id〉" reloads this stack

The first form defines "〈id〉" to be a macro that
restores the current base.

The second does not depend on the state at the
time of definition at all; it is a macro definition.

You can pass parameters to such a macro by let-
ting it use coordinates named "1", "2", etc., and
then use ="1", ="2", etc., just before every use
of it to set the actual values of these. Note: it is
not possible to use a 〈coord〉 of the form "〈id〉"
directly: write it as {"〈id〉"}.

Exercise 9: Write a macro "dbl" to double the
size of the current c object, e.g., changing it from
the dotted to the dashed outline in this figure:

+

(p.72)

The final form defines a special kind of macro
that should only be used after the @= stack oper-
ation: the entire current stack is saved such that
the stack operation @="〈id〉" will reload it.

Note: There is no distinction between the ‘name
spaces’ of 〈id〉s used for saved coordinates and
other things.

4 Objects

Objects are the entities that are manipulated with
the * and ** 〈pos〉 operations above to actually get
some output in XY-pictures. As for 〈pos〉itions the
operations are interpreted strictly from left to right,
however, the actual object is built before all the
〈modifier〉s take effect. The syntax of objects is given
in figure 3 with references to the notes below.

Remark: It is never allowed to include braces
{} inside 〈modifier〉s! In case you wish to do some-
thing that requires {. . . } then check in this manual
whether you can use (*. . . *) instead. If not then you
will have to use a different construction.

Notes

4a. An 〈object〉 is built using \objectbox {〈text〉}.
\objectbox is initially defined as

\def\objectbox#1{%

\hbox{$\objectstyle{#1}$}}

\let\objectstyle=\textstyle

but may be redefined by options or the user.
The 〈text〉 should thus be in the mode required
by the \objectbox command—with the default
\objectbox shown above it should be in math
mode.

11

Syntax Action

〈object〉 −→ 〈modifier〉 〈object〉 apply 〈modifier〉 to 〈object〉
| 〈objectbox〉 build 〈objectbox〉 then apply its 〈modifier〉s

〈objectbox〉 −→ { 〈text〉 } build default4a object
| 〈library object〉 | @〈dir〉 use 〈library object〉 or 〈dir〉ectional (see §6)
| 〈TEX box〉 { 〈text〉 } build box4b object with 〈text〉 using the given 〈TEX box〉

command, e.g., \hbox
| \object 〈object〉 wrap up the 〈object〉 as a finished object box4c

| \composite { 〈composite〉 } build composite object box4d

| \xybox { 〈pos〉 〈decor〉 } package entire XY-picture as object4e

〈modifier〉 −→ ! 〈vector〉 〈object〉 has its reference point shifted4f by 〈vector〉
| ! 〈object〉 has the original reference point reinstated

| 〈add op〉 〈size〉 change 〈object〉 size4g
| h | i 〈object〉 is hidden4h, invisible4i
| [〈shape〉] 〈object〉 is given the specified 〈shape〉4j
| [= 〈shape〉] define 〈shape〉4k to reestablish current object style
| 〈direction〉 set current direction for this 〈object〉

〈add op〉 −→ + | - | = | += | -= grow, shrink, set, grow to, shrink to

〈size〉 −→ 〈empty〉 default size4g

| 〈vector〉 size as sides of rectangle covering the 〈vector〉
〈direction〉 −→ 〈diag〉 〈diag〉onal direction4l

| v 〈vector〉 direction4l of 〈vector〉
| q{ 〈pos〉 〈decor〉 } direction4l from p to c after 〈pos〉 〈decor〉
| 〈direction〉 : 〈vector〉 vector relative to 〈direction〉4m
| 〈direction〉 _ | 〈direction〉 ^ 90◦ clockwise/anticlockwise to 〈direction〉4m

〈diag〉 −→ 〈empty〉 last used direction (not necessarily diagonal4l)

| l | r | d | u left, right, down, up diagonal4l

| ld | rd | lu | ru left/down, . . . diagonal4l

〈composite〉 −→ 〈object〉 first object is required

| 〈composite〉 * 〈object〉 add 〈object〉 to composite object box4d

Figure 3: 〈object〉s.

12

4b. An 〈object〉 built from a TEX box with dimen-
sions w × (h + d) will have Lc = Rc = w/2,
Uc = Dc = (h + d)/2, thus initially be equipped
with the adjustment !C (see note 4f). In partic-
ular: in order to get the reference point on the
(center of) the base line of the original 〈TEX box〉
then you should use the 〈modifier〉 !; to get the
reference point identical to the TEX reference
point use the modifier !!L.

TEXnical remark: Any macro that expands to
something that starts with a 〈box〉 may be used
as a 〈TEX box〉 here.

4c. Takes an object and constructs it, building a box;
it is then processed according to the preceeding
modifiers. This form makes it possible to use
any 〈object〉 as a TEX box (even outside of XY-
pictures) because a finished object is always also
a box.

4d. Several 〈object〉s can be combined into a single
object using the special command \composite

with a list of the desired objects separated with
*s as the argument. The resulting box (and ob-
ject) is the least rectangle enclosing all the in-
cluded objects.

4e. Take an entire XY-picture and wrap it up as a
box as described in §2.1. Makes nesting of XY-
pictures possible: the inner picture will have its
own zero point which will be its reference point
in the outer picture when it is placed there.

4f. An object is shifted a 〈vector〉 by moving the
point inside it which will be used as the refer-
ence point. This effectively pushes the object the
same amount in the opposite direction.

Exercise 10: What is the difference between
the 〈pos〉itions 0*{a}!DR and 0*!DR{a}? (p.72)

4g. A 〈size〉 is a pair <W,H> of the width and height
of a rectangle. When given as a 〈vector〉 these
are just the vector coordinates, i.e., the 〈vector〉
starts in the lower left corner and ends in the up-
per right corner. The possible 〈add op〉erations
that can be performed are described in the fol-
lowing table.

〈add op〉 description
+ grow
- shrink
= set to
+= grow to at least
-= shrink to at most

In each case the 〈vector〉 may be omitted which
invokes the “default size” for the particular 〈add

op〉:

〈add op〉 default
+ +<2× objectmargin>

- -<2× objectmargin>

= =<objectwidth,objectheight>

+= +=<max(Lc +Rc, Dc + Uc)>
-= -=<min(Lc +Rc, Dc + Uc)>

The defaults for the first three are set with the
commands

\objectmargin 〈add op〉 {〈dimen〉}
\objectwidth 〈add op〉 {〈dimen〉}
\objectheight 〈add op〉 {〈dimen〉}

where 〈add op〉 is interpreted in the same way as
above.

The defaults for +=/-= are such that the result-
ing object will be the smallest containing/largest
contained square.

Exercise 11: How are the objects typeset by
the 〈pos〉itions “*+UR{\sum}” and “*+DL{\sum}”
enlarged? (p.72)

Bug: Currently changing the size of a circular
object is buggy—it is changed as if it is a rect-
angle and then the change to the R parameter
affects the circle. This should be fixed probably
by a generalisation of the o shape to be ovals or
ellipses with horizontal/vertical axes.

4h. A hidden object will be typeset but hidden from
XY-pic in that it won’t affect the size of the entire
picture as discussed in §2.1.

4i. An invisible object will be treated completely
normal except that it won’t be typeset, i.e., XY-
pic will behave as if it was.

4j. Setting the shape of an object forces the shape of
its edge to be as indicated. The kernel provides
three shapes that change the edge, namely [.],
[], and [o], corresponding to the outlines

× , ×L R
D

U

, and ×L R

D

U

where the × denotes the point of the reference
position in the object (the first is a point). Ex-
tensions can provide more shapes, however, all
shapes set the extent dimensions L, R, D, and
U .

The default shape for objects is [] and for plain
coordinates it is [.].

Furthermore the 〈shape〉s [r], [l], [u], and [d],
are defined for convenience to adjust the object to

13

the indicated side by setting the reference point
such that the reference point is the same dis-
tance from the opposite of the indicated edge
and the two neighbour edges but never closer
to the indicated side than the opposite edge,
e.g., the object [r]\hbox{Wide text} has refer-
ence point at the × in Wide text× but the object
[d]\hbox{Wide text} has reference point at the
× in Wide text× . Finally, [c] puts the reference
point at the center.

Note: Extensions can add new 〈shape〉 object
〈modifier〉s which are then called 〈style〉s. These
will always be either of the form [〈keyword〉] or
[〈character〉 〈argument〉]. Some of these 〈style〉s
do other things than set the edge of the object.

4k. While typesetting an object, some of the prop-
erties are considered part of the ‘current object
style’. Initially this means nothing but some of
the 〈style〉s defined by extensions have this sta-
tus, e.g., colours [red], [blue] say, using the
xycolor extension, or varying the width of lines
using xyline. Such styles are processed left-to-

right ; for example,

*[red][green][=NEW][blue]{A}

will typeset a blue A and define [NEW] to set the
colour to green (all provided that xycolor has
been loaded, of course).

Saving styles: Once specified for an 〈object〉,
the collection of 〈style〉s can be assigned a name,
using [=〈word〉]. Then [〈word〉] becomes a new
〈style〉, suitable for use with the same or other
〈objects〉s. Use a single 〈word〉 built from ordi-
nary letters. If [〈word〉] already had meaning
the new definition will still be imposed, but the
following type of warning will be issued:

Xy-pic Warning: Redefining style [〈word〉]

The latter warning will appear if the definition
occurs within an \xymatrix. This is perfectly
normal, being a consequence of the way that the
matrix code is handled. Similarly the message
may appear several times if the style definition is
made within an \ar.

The following illustrates how to avoid these mes-
sages by defining the style without typesetting
anything.

\setbox0=\hbox{%

\xy\drop[OrangeRed][=A]{}\endxy}

Note 1: The current colour is regarded as part
of the style for this purpose.

Note 2: Such namings are global in scope. They
are intended to allow a consistent style to be eas-
ily maintained between various pictures and dia-
grams within the same document.

If the same 〈style〉 is intended for several
〈object〉s occurring in succession, the [|*]

〈modifier〉 can be used on the later 〈object〉s.
This only works when [|*] precedes any other
〈style〉 modifiers; it is local in scope, recovering
the last 〈style〉s used at the same level of TEX
grouping.

4l. Setting the current direction is simply pretending
for the typesetting of the object (and the follow-
ing 〈modifier〉s) that some connection set it – the
〈empty〉 case just inherits the previous direction.
It is particularly easy to set 〈diag〉onal directions:

dl = ld

d

dr = rd

r

ur = ru

u

ul = lu

l

Alternatively v〈vector〉 sets the direction as if the
connection from 0 to the 〈vector〉 had been type-
set except that the origin is assumed zero such
that directions v(x,y) mean the natural thing,
i.e., is the direction of the connection from (0,0)

to (x,y).

In case the direction is not as simple, you can
construct { 〈pos〉 〈decor〉 } that sets up p and
c such that pc has the desired direction. Note:
that you must use the (*. . . *) form if this is to
appear in an object 〈modifier〉!

Exercise 12: What effect is achieved by using
〈modifier〉s v/1pc/ and v/-1pc/? (p.72)

4m. Once the initial direction is established as either
the last one or an absolute one then the remain-
der of the 〈direction〉 is interpreted.
Adding a single ^ or _ denotes the result of rotat-
ing the default direction a right angle in the pos-
itive and negative direction, i.e., anti-/clockwise,
respectively. Note: Do not use ^^ but only __

to reverse the direction!

A trailing :〈vector〉 is like v〈vector〉 but uses
the 〈direction〉 to set up a standard square base
such that :(0,1) and :(0,-1) mean the same as
:a(90) and :a(-90) and as ^ and _, respectively.

14

Exercise 13: What effect is achieved by us-
ing 〈modifier〉s v/1pc/:(1,0) and v/-1pc/__?

(p.72)

5 Decorations

〈Decor〉ations are actual TEX macros that decorate
the current picture in manners that depend on the
state. They are allowed after the 〈pos〉ition either of
the outer \xy. . . \endxy or inside {. . . }. The possi-
bilities are given in figure 4 with notes below.

Most options add to the available 〈decor〉, in
particular the v2 option loads many more since XY-
pic versions prior to 2.7 provided most features as
〈decor〉.

Notes

5a. Saving and restoring allows ‘excursions’ where
lots of things are added to the picture without
affecting the resulting XY-pic state, i.e., c, p, and
base, and without requiring matching {}s. The
independence of {} is particularly useful in con-
junction with the \afterPOS command, for ex-
ample, the definition

\def\ToPOS{\save\afterPOS{%

\POS**{}?>*@2{>}**@{-}\restore};p,}

will cause the code \ToPOS〈pos〉 to construct a
double-shafted arrow from the current object to
the 〈pos〉 (computed relative to it) such that \xy
*{A} \ToPOS +<10mm,2mm>\endxy will typeset
the pictureA .

Note: Saving this way in fact uses the same
state as the {} ‘grouping’, so the code p1,
{p2\save}, . . . {\restore} will have c = p1
both at the . . . and at the end!

5b. One very tempting kind of TEX commands to
perform as 〈decor〉 is arithmetic operations on
the XY-pic state. This will work in simple XY-
pictures as described here but be warned: it is

not portable because all XY-pic execution is indi-
rect, and this is used by several options in non-
trivial ways. Check the TEX-nical documenta-
tion [17] for details about this!

Macros that expand to 〈decor〉 will always do the
same, though.

5c. \xyecho will turn on echoing of all interpreted
XY-pic 〈pos〉 characters. Bug: Not completely
implemented yet. \xyverbose will switch on a
tracing of all XY-pic commands executed, with
line numbers. \xytracing traces even more: the

entire XY-pic state is printed after each modifica-
tion. \xyquiet restores default quiet operation.

5d. Ignoring means that the 〈pos〉 〈decor〉 is still
parsed the usual way but nothing is typeset and
the XY-pic state is not changed.

5e. It is possible to save an intermediate form of com-
mands that generate parts of an XY-picture to
a file such that subsequent typesetting of those
parts is significantly faster: this is called com-

piling . The produced file contains code to check
that the compiled code still corresponds to the
same 〈pos〉〈decor〉 as well as efficient XY-code to
redo it; if the 〈pos〉〈decor〉 has changed then the
compilation is redone.

There are two ways to use this. The direct is
to invent a 〈name〉 for each diagram and then
embrace it in \xycompileto{〈name〉}|{. . . } –
this dumps the compiled code into the file
〈name〉.xyc.
When many diagrams are compiled then it
is easier to add \xycompile{. . . } around the
〈pos〉〈decor〉 to be compiled. This will assign
file names numbered consecutively with a 〈prefix〉
which is initially the expansion of \jobname- but
may be set with

\CompilePrefix{〈prefix〉}

This has the disadvantage, however, that if addi-
tional compiled XY-pictures are inserted then all
subsequent pictures will have to be recompiled.
One particular situation is provided, though:
when used within constructions that typeset their
contents more than once (such as most AMS-
LATEX equation constructs) then the declaration

\CompileFixPoint{〈id〉}

can be used inside the environment to fix the
counter to have the same value at every passage.

Finally, when many ‘administrative typesetting
runs’ are needed, e.g., readjusting LATEX cross
references and such, then it may be an advan-
tage to not typeset any XY-pictures at all during
the intermediate runs. This is supported by the
following declarations which for each compilation
creates a special file with the extension .xyd con-
taining just the size of the picture:

\MakeOutlines

\OnlyOutlines

\ShowOutlines

\NoOutlines

The first does no more. The second uses the
file to typesets a dotted frame of the appropri-
ate size instead of the picture (unless the picture

15

Syntax Action

〈decor〉 −→ 〈command〉 〈decor〉 either there is a command. . .
| 〈empty〉 . . . or there isn’t.

〈command〉 −→ \save 〈pos〉 save state5a, then do 〈pos〉
| \restore restore state5a saved by matcing \save

| \POS 〈pos〉 interpret 〈pos〉
| \afterPOS { 〈decor〉 } 〈pos〉 interpret 〈pos〉 and then perform 〈decor〉
| \drop 〈object〉 drop 〈object〉 as the 〈pos〉 * operation
| \connect 〈object〉 connect with 〈object〉 as the 〈pos〉 ** operation
| \relax do nothing

| 〈TEX commands〉 any TEX commands5b and user-defined macros
that neither generates output (watch out for stray
spaces!), nor changes the grouping, may be used

| \xyverbose | \xytracing | \xyquiet tracing5c commands

| \xyignore {〈pos〉 〈decor〉} ignore5d XY-code

| \xycompile {〈pos〉 〈decor〉} compile5e to file 〈prefix〉〈no〉.xyc
| \xycompileto{〈name〉}{〈pos〉〈decor〉} compile5e to file 〈name〉.xyc

Figure 4: 〈decor〉ations.

has changed and is recompiled, then it is type-
set as always and the .xyd file is recreated for
subsequent runs). The third shows the outlines
as dotted rectangles. The last switches outline
processing completely off.

6 Kernel object library

In this section we present the library objects provided
with the kernel language—several options add more
library objects. They fall into three types: Most of
the kernel objects (including all those usually used
with ** to build connections) are directionals , de-
scribed in §6.1. The remaining kernel library objects
are circles of §6.2 and text of §6.3.

6.1 Directionals

The kernel provides a selection of directionals : ob-
jects that depend on the current direction. They all
take the form

\dir〈dir〉

to typeset a particular 〈dir〉ectional object. All have
the structure

〈dir〉 −→ 〈variant〉{〈main〉}

with 〈variant〉 being 〈empty〉 or one of the characters
^_23 and 〈main〉 some mnemonic code.

We will classify the directionals primarily in-
tended for building connections as connectors and
those primarily intended for placement at connection
ends or as markers as tips .

Figure 5 shows all the 〈dir〉ectionals defined by
the kernel with notes below; each 〈main〉 type has a
line showing the available 〈variant〉s. Notice that only
some variants exist for each 〈dir〉—when a nonexist-
ing variant of a 〈dir〉 is requested then the 〈empty〉
variant is used silently. Each is shown in either of the
two forms available in each direction as applicable:
connecting a © to a (typeset by **\dir〈dir〉) and
as a tip at the end of a dotted connection of the same
variant (i.e., typeset by the 〈pos〉 **\dir〈variant〉{.}
?> *\dir〈dir〉).

As a special case an entire 〈object〉 is allowed as
a 〈dir〉 by starting it with a *: \dir* is equivalent to
\object.

Notes

6a. You may use \dir{} for a “dummy” directional
object (in fact this is used automatically by
**{}). This is useful for a uniform treatment of
connections, e.g., making the ? 〈pos〉 able to find
a point on the straight line from p to c without
actually typesetting anything.

6b. The plain connectors group contains basic direc-
tionals that lend themself to simple connections.

By default XY-pic will typeset horizontal and ver-
tical \dir{-} connections using TEX rules. Un-

16

Dummy6a

\dir{}

Plain connectors6b

\dir{-} \dir2{-} \dir3{-}

\dir{.} \dir2{.} \dir3{.}

\dir{~} \dir2{~} \dir3{~}

\dir{--} \dir2{--} \dir3{--}

\dir{~~} \dir2{~~} \dir3{~~}

Plain tips6c

\dir{>} \dir^{>} \dir_{>} \dir2{>} \dir3{>}

\dir{<} \dir^{<} \dir_{<} \dir2{<} \dir3{<}

\dir{|} \dir^{|} \dir_{|} \dir2{|} \dir3{|}

\dir{(} \dir^{(} \dir_{(}

\dir{)} \dir^{)} \dir_{)}

\dir^{‘} \dir_{‘}

\dir^{’} \dir_{’}

Constructed tips6d

\dir{>>} \dir^{>>} \dir_{>>} \dir2{>>} \dir3{>>}

\dir{<<} \dir^{<<} \dir_{<<} \dir2{<<} \dir3{<<}

\dir{||} \dir^{||} \dir_{||} \dir2{||} \dir3{||}

\dir{|-} \dir^{|-} \dir_{|-} \dir2{|-} \dir3{|-}

\dir{>|} \dir{>>|} \dir{|<} \dir{|<<} \dir{*} •

\dir{+} \dir{x} \dir{/} \dir{//} \dir{o} ◦

Figure 5: Kernel library 〈dir〉ectionals

17

fortunately rules is the feature of the DVI format
most commonly handled wrong by DVI drivers.
Therefore XY-pic provides the 〈decor〉ations

\NoRules

\UseRules

that will switch the use of such off and on.

As can be seen by the last two columns, these
(and most of the other connectors) also ex-
ist in double and triple versions with a 2

or a 3 prepended to the name. For conve-
nience \dir{=} and \dir{:} are synonyms for
\dir2{-} and \dir2{.}, respectively; similarly
\dir{==} is a synonym for \dir2{--}.

6c. The group of plain tips contains basic objects
that are useful as markers and arrowheads mak-
ing connections, so each is shown at the end of a
dotted connection of the appropriate kind.

They may also be used as connectors and will
build dotted connections. e.g., **@{>} typesets

Exercise 14: Typeset the following two +s and
a tilted square:

+
+

Hint : the dash created by \dir{-} has the length
5pt (here). (p.72)

6d. These tips are combinations of the plain tips
provided for convenience (and optimised for ef-
ficiency). New ones can be constructed using
\composite and by declarations of the form

\newdir 〈dir〉 {〈composite〉}

which defines \dir〈dir〉 as the 〈composite〉 (see
note 4d for the details).

6.2 Circle segments

Circle 〈object〉s are round and typeset a segment of
the circle centered at the reference point. The syntax
of circles is described in figure 6 with explanations
below.

The default is to generate a full circle with the
specified radius, e.g.,

\xy*\cir<4pt>{}\endxy typesets “ ”
\xy*{M}*\cir{}\endxy — “M”

All the other circle segments are subsets of this and
have the shape that the full circle outlines.

Partial circle segments with 〈orient〉ation are the
part of the full circle that starts with a tangent vec-
tor in the direction of the first 〈diag〉onal (see note 4l)
and ends with a tangent vector in the direction of the
other 〈diag〉onal after a clockwise (for _) or anticlock-
wise (for ^) turn, e.g.,

\xy*\cir<4pt>{l^r}\endxy typesets “ ”
\xy*\cir<4pt>{l_r}\endxy — “ ”
\xy*\cir<4pt>{dl^u}\endxy — “ ”
\xy*\cir<4pt>{dl_u}\endxy — “ ”
\xy*+{M}*\cir{dr_ur}\endxy — “ M ”

If the same 〈diag〉 is given twice then nothing is type-
set, e.g.,

\xy*\cir<4pt>{u^u}\endxy typesets “ ”

Special care is taken to setup the 〈diag〉onal defaults:

• After ^ the default is the diagonal 90◦ anticlock-
wise from the one before the ^.

• After _ the default is the diagonal 90◦ clockwise
from the one before the _.

The 〈diag〉 before ^ or _ is required for \cir 〈objects〉.

Exercise 15: Typeset the following shaded circle
with radius 5pt:

(p.73)

6.3 Text

Text in pictures is supported through the 〈object〉
construction

\txt 〈width〉 〈style〉 {〈text〉}

that builds an object containing 〈text〉 typeset to
〈width〉 using 〈style〉; in 〈text〉 \\ can be used as an
explicit line break; all lines will be centered. 〈style〉
should either be a font command or some other stuff
to do for each line of the 〈text〉 and 〈width〉 should
be either <〈dimen〉> or 〈empty〉.

7 XY-pic options

Note: LATEX2ε users should also consult the para-
graph on “xy.sty” in §1.1.

18

Syntax Action

\cir 〈radius〉 { 〈cir〉 } 〈cir〉cle segment with 〈radius〉
〈radius〉 −→ 〈empty〉 use Rc as the radius

| 〈vector〉 use X of the 〈vector〉 as radius
〈cir〉 −→ 〈empty〉 full circle of 〈radius〉

| 〈diag〉 〈orient〉 〈diag〉 partial circle from first 〈diag〉onal through to the second
〈diag〉onal in the 〈orient〉ation

〈orient〉 −→ ^ anticlockwise
| _ clockwise

Figure 6: 〈cir〉cles.

7.1 Loading

XY-pic is provided with a growing number of options
supporting specialised drawing tasks as well as exotic
output devices with special graphic features. These
should all be loaded using this uniform interface in
order to ensure that the XY-pic environment is prop-
erly set up while reading the option.

\xyoption { 〈option〉 }
\xyrequire { 〈option〉 }

\xyoption will cause the loading of an XY-pic option
file which can have one of several names. These are
tried in sequence: xy〈option〉.tex, xy〈option〉.doc,
xy〈short〉.tex, and xy〈short〉.doc, where 〈short〉 is
〈option〉 truncated to 6 (six) characters to conform
with the TWG-TDS [19].

\xyrequire is the same except it is ignored if an
option with the same name is already present (thus
does not check the version etc.).

Sometimes some declarations of an option or
header file or whatever only makes sense after some
particular other option is loaded. In that case the
code should be wrapped in the special command

\xywithoption { 〈option〉 } { 〈code〉 }

which indicates that if the 〈option〉 is already loaded
then 〈code〉 should be executed now, otherwise it
should be saved and if 〈option〉 ever gets loaded
then 〈code〉 should be executed afterwards. Note:
The 〈code〉 should allow more than one execution;
it is saved with the catcodes at the time of the
\xywithoption command.

Finally, it is possible to declare 〈code〉 as
some commands to be executed before every ac-
tual execution of \xywithoption{〈option〉}{. . . },
and similarly 〈code〉 to be executed before ev-
ery \xyoption{〈option〉} and \xyrequire{〈option〉}

(collectively called ‘requests’):

\xyeverywithoption { 〈option〉 } { 〈code〉 }
\xyeveryrequest { 〈option〉 } { 〈code〉 }

This is most often used by an option to activate some
hook every time it is requested itself.

7.2 Option file format

Option files must have the following structure:

%% 〈identification〉
%% 〈copyright, etc.〉
\ifx\xyloaded\undefined \input xy \fi

\xyprovide{〈option〉}{〈name〉}{〈version〉}%
{〈author〉}{〈email〉}{〈address〉}

〈body of the option〉
\xyendinput

The 6 arguments to \xyprovide should contain the
following:

〈option〉 Option load name as used in the \xyoption
command. This should be safe and distinguish-
able for any operating system and is thus lim-
ited to characters chosen among the lowercase
letters (a–z), digits (0–9), and dash (-), and all
options should be uniquely identifiable by the
first 6 (six) characters only.

〈name〉 Descriptive name for the option.

〈version〉 Identification of the version of the option.

〈author〉 The name(s) of the author(s).

〈email〉 The electronic mail address(es) of the au-
thor(s) or the affiliation if no email is available.

〈address〉 The postal address(es) of the author(s).

19

This information is used not only to print a nice ban-
ner but also to (1) silently skip loading if the same
version was preloaded and (2) print an error message
if a different version was preloaded.

The ‘dummy’ option described in §23 is a minimal
option using the above features. It uses the special
DOCMODE format to include its own documentation for
this document (like all officialXY-pic options) but this
is not a requirement.

7.3 Driver options

The 〈driver〉 options described in part IV require spe-
cial attention because each driver can support several
extension options, and it is sometimes desirable to
change 〈driver〉 or even mix the support provided by
several.7

A 〈driver〉 option is loaded as other options with
\xyoption{〈driver〉} (or through LATEX2ε class or
package options as described in §1.1). The special
thing about a 〈driver〉 is that loading it simply de-
clares the name of it, establishes what extensions it
will support, and selects it temporarily. Thus the
special capabilities of the driver will only be exploited
in the produced DVI file if some of these extensions
are also loaded and if the driver is still selected when
output is produced. Generally, the order in which the
options are loaded is immaterial. (Known exceptions
affect only internal processing and are not visible to
the user in terms of language and expected output.)
In particular one driver can be preloaded in a format
and a different one used for a particular document.

The following declarations control this:

\UseSingleDriver forces one driver only
\MultipleDrivers allows multiple drivers
\xyReloadDrivers resets driver information

The first command restores the default behaviour:
that ony one 〈driver〉 is allowed, i.e., each loading
of a 〈driver〉 option cancels the previous. The sec-
ond allows consecutive loading of drivers such that
when loading a 〈driver〉 only the extensions actually
supported are selected, leaving other extensions sup-
ported by previously selected drivers untouched. Be-
ware that this can be used to create DVI files that
cannot be processed by any actual DVI driver pro-
gram!

The last command is sometimes required to reset
the XY-pic 〈driver〉 information to a sane state, for
example, after having applied one of the other two
in the middle of a document, or when using simple
formats like plain TEX that do not have a clearly dis-
tinguished preamble.

As the above suggests it sometimes makes sense
to load 〈driver〉s in the actual textual part of a doc-
ument, however, it is recommended that only drivers
also loaded in the preamble are reloaded later, and
that \xyReloadDrivers is used when there is doubt
about the state of affairs. In case of confusion
the special command \xyShowDrivers will list all
the presently supported and selected driver-extension
pairs to the TEX log.

It is not difficult to add support for additional
〈driver〉s; how is described in the TEXnical documen-
tation.

Most extensions will print a warning when a capa-
bility is used which is not supported by the presently
loaded 〈driver〉. Such messages are only printed once,
however, (for some formats they are repeated at the
end). Similarly, when the support of an extension
that exploits a particular 〈driver〉 is used a warn-
ing message will be issued that the DVI file is not
portable.

Part II

Extensions

This part documents the graphic capabilities added
by each standard extension option. For each is indi-
cated the described version number, the author, and
how it is loaded.

Many of these are only fully supported when a
suitable driver option (described in part IV) is also
loaded, however, all added constructions are always
accepted even when not supported.

8 Curve and Spline extension

Vers. 3.12 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{curve}

This option provides XY-pic with the ability to type-
set spline curves by constructing curved connections
using arbitrary directional objects and by encircling
objects similarly. Warning : Using curves can be
quite a strain on TEX’s memory; you should there-
fore limit the length and number of curves used on a
single page. Memory use is less when combined with
a backend capable of producing its own curves; e.g.,
the PostScript backend).

8.1 Curved connections

Simple ways to specify curves inXY-pic are as follows:

**\crv{〈poslist〉} curved connection

7The kernel support described here is based on the (now defunct) xydriver include file by Ross Moore.

20

**\crvs{〈dir〉} get 〈poslist〉 from the stack
\curve{〈poslist〉} as a 〈decor〉ation

in which 〈poslist〉 is a list of valid 〈pos〉itions. The
decoration form \curve is just an abbreviation for
\connect\crv. As usual, the current p and c are
used as the start and finish of the connection, respec-
tively. Within 〈poslist〉 the 〈pos〉itions are separated
by &. A full description of the syntax for \crv is given
in figure 7.

A

B

0

1

2

4

If 〈poslist〉 is empty a straight connection is com-
puted. When the length of 〈poslist〉 is one or two then
the curve is uniquely determined as a single-segment
Bézier quadratic or cubic spline. The tangents at p
and c are along the lines connecting with the adjacent
control point. With three or more 〈pos〉itions a cubic
B-spline construction is used. Bézier cubic segments
are calculated from the given control points.

The previous picture was typeset using:

\xy (0,20)*+{A};(60,0)*+{B}

**\crv{}

**\crv{(30,30)}

**\crv{(20,40)&(40,40)}

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

\endxy

except for the labels, which denote the number of en-
tries in the 〈poslist〉. (Extending this code to include
the labels is set below as an exercise).

The ?-operator of §3 (note 3h) is used to find ar-
bitrary 〈place〉s along a curve in the usual way.

Exercise 16: Extend the code given for the curves
in the previous picture so as to add the labels giving
the number of control points. (p.73)

Using ? will set the current direction to be tan-
gential at that 〈place〉, and one can 〈slide〉 specified
distances along the curve from a found 〈place〉 using
the ?. . . /〈dimen〉/ notation:

A

B

⊕x⊕x
′

⊗

Q

P

Exercise 17: Suggest code to produce something
like the above picture; the spline curve is the same as
in the previous picture. Hints : The line is 140pt long
and touches 0.28 of the way from A to B and the x
is 0.65 of the way from A to B. (p.73)

The positions in 〈poslist〉 specify control points

which determine the initial and final directions of
the curve—leaving p and arriving at c—and how the
curve behaves in between, using standard spline con-
structions. In general, control points need not lie
upon the actual curve.

A natural spline parameter varies in the interval
[0, 1] monotonically along the curve from p to c. This
is used to specify 〈place〉s along the curve, however
there is no easy relation to arc-length. Generally the
parameter varies more rapidly where the curvature is
greatest. The following diagram illustrates this effect
for a cubic spline of two segments (3 control points).

A

B

(<)

(>)

.1

.9

.2

.8

.3
.7

.4 .6
.5

Exercise 18: Write code to produce a picture such
as the one above. (Hint : Save the locations of places
along the curve for later use with straight connec-
tions.) (p.73)

To have the same 〈pos〉 occuring as a multiple
control point simply use a delimiter, which leaves the
〈pos〉 unchanged. Thus \curve{〈pos〉&} uses a cubic
spline, whereas \curve{〈pos〉} is quadratic.

Repeating the same control point three times in
succession results in straight segments to that con-
trol point. Using the default styles this is an expen-
sive way to get straight lines, but it allows for extra
effects with other styles.

21

Syntax Action

\curve〈modifier〉{〈curve-object〉〈poslist〉} construct curved connection

〈modifier〉 −→ 〈empty〉 zero or more modifiers possible; default is ~C
| ~〈curve-option〉 〈modifier〉 set 〈curve-option〉

〈curve-option〉 −→ p | P | l | L | c | C show only8d control points (p=points), joined by lines
(l=lines), or curve only (c=curve)

| pc | pC | Pc | PC show control points8f and curve8e

| lc | lC | Lc | LC show lines joining8g control points and curve8e

| cC plot curve twice, with and without specified formatting

〈curve-object〉 −→ 〈empty〉 use the appropriate default style

| ~*〈object〉 〈curve-object〉 specify the “drop” object8a and maybe more8c

| ~**〈object〉 〈curve-object〉 specify “connect” object8b and maybe more8c

〈poslist〉 −→ 〈empty〉 | 〈pos〉 〈delim〉 〈poslist〉 list of positions for control points

| ~@ | ~@ 〈delim〉 〈poslist〉 add the current stack8h to the control points

〈delim〉 −→ & allowable delimiter

Figure 7: Syntax for curves.

Notes

8a. The “drop” object is set once, then “dropped”
many times at appropriately spaced places along
the curve. If directional, the direction from p to
c is used. Default behaviour is to have tiny dots
spaced sufficiently closely as to give the appear-
ance of a smooth curve. Specifying a larger size
for the “drop” object is a way of getting a dotted
curve (see the example in the next note).

8b. The “connect” object is also dropped at each
place along the curve. However, if non-empty,
this object uses the tangent direction at each
place. This allows a directional object to be spec-
ified, whose orientation will always match the
tangent. To adjust the spacing of such objects,
use an empty “drop” object of non-zero size as
shown here:

A

B

.. .
.

.

\xy (0,0)*+{A}; (50,-10)*+{B}

**\crv{~*=<4pt>{.} (10,10)&(20,0)&(40,15)}

\crv{~*=<8pt>{}~!/-5pt/\dir{>}(10,-20)

&(40,-15)} \endxy

When there is no “connect” object then the tan-
gent calculations are not carried out, resulting in

a saving of time and memory; this is the default
behaviour.

8c. The “drop” and “connect” objects can be spec-
ified as many times as desired. Only the last
specification of each type will actually have any
effect. (This makes it easy to experiment with
different styles.)

8d. Complicated diagrams having several spline
curves can take quite a long time to process and
may use a lot of TEX’s memory. A convenient
device, especially while developing a picture, is
to show only the location of the control points or
to join the control points with lines, as a stylized
approximation to the spline curve. The 〈curve-
option〉s ~p and ~l are provided for this purpose.
Uppercase versions ~P and ~L do the same thing
but use any 〈curve-object〉s that may be speci-
fied, whereas the lowercase versions use plain de-
faults: small cross for ~p, straight line for ~l.
Similarly ~C and ~c set the spline curve using any
specified 〈curve-option〉s or as a (default) plain
curve.

8e. Use of ~p, ~l, etc. is extended to enable both the
curve and the control points to be easily shown in
the same picture. Mixing upper- and lower-case
specifies whether the 〈curve-option〉s are to be
applied to the spline curve or the (lines joining)
control points. See the examples accompanying
the next two notes.

8f. By default the control points are marked with a

22

small cross, specified by *\dir{x}. The “con-
nect” object is ignored completely.

A

B

......
....
...
...
...
...
.....
....................................

was typeset by . . .

\xy (0,0)*+{A};(50,-10)*+{B}

**\crv~pC{~*=<\jot>{.}(10,-10)&(20,15)

&(40,15)} \endxy

8g. With lines connecting control points the default
“drop” object is empty, while the “connect” ob-
ject is \dir{-} for simple straight lines. If non-
empty, the “drop” object is placed at each con-
trol point. The “connect” object may be used to
specify a fancy line style.

A

B

⊕
⊕

was typeset by . . .

\xy (0,0)*+{A};(50,-10)*+{B}

\crv~Lc{~\dir{--}~*{\oplus}

(20,20)&(35,15)} \endxy

8h. When a stack of 〈pos〉itions has been established
using the @i and @+ commands, these positions
can be used and are appended to the 〈poslist〉.

Intersection with a curved connection Just as
the intersection of two lines (3j) can be found, so can
the intersection of a straight line with a curved con-
nection, or the intersection of a curve with a straight
connection.

A

B
C

D

⊕

A

B
C

D

⊕

\xy*+{A}="A";p+/r5pc/+(0,15)*+{B}="B"

,p+<1pc,3pc>*+{C}="C"

,"A"+<4pc,-1pc>*+{D}="D",{\ar@/_/"C"}

,?!{"A";"B"**@{-}}*++{\oplus}

\endxy \quad \xy

+{A}="A";p+/r5pc/+(0,15)+{B}="B",

,p+<1pc,3pc>*+{C}="C"

,"A"+<4pc,-1pc>*+{D}="D","A";"B"**@{-}

,?!{"D",{\ar@/_/"C"}}*++{\oplus}

\endxy

When the line separates the end-points of a curve
an intersection can always be found. If there is more
than one then that occurring earliest along the curve
is the one found.

If the line does not separate the end-points then
there may be no intersection with the curve. If there
is one then either the line is tangential or necessarily
there will also be at least one other intersection. A
message

perhaps no curve intersection, or many.

is written to the log-file, but a search for an inter-
section will still be performed and a “sensible” place
found on the curve. In the usual case of a single
quadratic or cubic segment, the place nearest the line
is found and the tangent direction is established.

The following examples show this, and show how
to get the place on the line nearest to the curve.

A

B

C

D⊗
A

B

C

D

⊗

\xy *+{A}="A";p+/r5pc/+(0,15)*+{B}="B",

,p-<.5pc,2pc>*+{C}="C","A"+<6pc,-.5pc>

,*+{D}="D","A",{\ar@/_25pt/"B"}

,?!{"C";"D"**@{-}}*\dir{x}="E"

,+/_2pc/="F";"E"**@{-},?!{"C";"D"}

,*{\otimes}\endxy\qquad\xy

+{A}="A";p+/r5pc/+(0,15)+{B}="B",

,p-<.5pc,2pc>*+{C}="C"

,"A"+<7pc,.5pc>*+{D}="D","A"

,{\ar@/_40pt/"B"},?!{"C";"D"**@{-}}

,*{\otimes}\endxy

Sometimes TEX will run short of memory when many
curves are used without a backend with special sup-
port for curves. In that case the following commands,
that obey normal TEX groupings, may be helpful:

\SloppyCurves

\splinetolerance{〈dimen〉}
allow adjustment of the tolerance used to typeset
curves. The first sets tolerance to .8pt, after which
\splinetolerance{0pt} resets to the original de-
fault of fine curves.

23

8.2 Circles and Ellipses

Here we describe the means to a specify circles of arbi-
trary radius, drawn with arbitrary line styles. When
large-sized objects are used they are regularly spaced
around the circle. Similarly ellipses may be speci-
fied, but only those having major/minor axes aligned
in the standard directions; spacing of objects is no
longer regular, but is bunched toward the narrower
ends.

Such a circle or ellipse is specified using. . .

\xycircle〈vector〉{〈style〉}

where the components of the 〈vector〉 determine the
lengths of the axis for the ellipse; thus giving a cir-
cle when equal. The 〈style〉 can be any 〈conn〉, as
in 15 that works with curved arrows—many do. Al-
ternatively 〈style〉 can be any 〈object〉, which will be
placed equally-spaced about the circle at a separa-
tion to snugly fit the 〈object〉s. If 〈empty〉 then a
solid circle or ellipse is drawn.

•

•
c

................
..
...
..

\xy 0;/r5pc/:*\dir{*}

;p+(.5,-.5)*\dir{*}="c"

,**\dir{-},*+!UL{c},"c"

,*\xycircle(1,.4){++\dir{<}}

,*\xycircle(1,1){++\dir{>}}

,*\xycircle<15pt,10pt>{}

;*\xycircle<10pt>{{.}}

\endxy

8.3 Quadratic Splines

Quadratic Bézier splines, as distinct from cubic
Bézier splines, are constructed from parabolic arcs,
using ‘control points’ to determine the tangents where
successive arcs are joined.

Various implementations of such curves exist.
The one adopted here is consistent with the xfig

drawing utility and tpic implementations. These
have the property of beginning and ending with
straight segments, half the length to the correspond-
ing adjacent control-point. Furthermore the mid-
point between successive control-points lies on the

spline, with the line joining the control-points being
tangent there.

Such curves are specified, either as a 〈decor〉 or as
an 〈object〉, using. . .

\qspline{〈style〉}

where the start and end of the curve are at p and
c respectively. The control-points are taken from the
current stack, see 3o. If this stack is empty then a
straight line is constructed.

The following example compares the quadratic
spline with the gentler curving B-spline having the
same control points, using \crvs.

P

+

+

+ C

\xy /r1.5pc/:,+<5pc,3pc>*+{P};p

@(,+(2,2)*{+}@+, +(2,-2)*{+}@+

,+(2,2)*{+}@+, +(2,0)*+{C}="C"

,*\qspline{},"C",**\crvs{.}

,@i @)\endxy

9 Frame and Bracket extension

Vers. 3.13 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{frame}

The frame extension provides a variety of ways to
puts frames in XY-pictures.

The frames are XY-pic 〈object〉s on the form

\frm{ 〈frame〉 }

to be used in 〈pos〉itions: Dropping a frame with
*. . . \frm{〈frame〉} will frame the c object; connect-
ing with **. . . \frm{. . . 〈frame〉} will frame the result
of c.p.

Below we distinguish between ‘ordinary’ frames,
‘brackets’ and ‘fills’; last we present how some frames
can be added to other objects using object modifier
〈shape〉s.

9.1 Frames

Figure 8 shows the possible frames and the applicable
〈modifier〉s with reference to the notes below.

Notes

9a. The \frm{} frame is a dummy useful for not
putting a frame on something, e.g., in macros
that take a 〈frame〉 argument.

24

Framed with
\frm{}

frame9a

Framed with
\frm{.}

frame9b

Framed with
\frm<44pt>{.}

frame9b

Framed with
\frm{-}

frame9b

Framed with
\frm<8pt>{-}

frame9b

Framed with
\frm<44pt>{-}

frame9b

Framed with
\frm{=}

frame9b

Framed with
\frm<8pt>{=}

frame9b

Framed with
\frm<44pt>{=}

frame9b

Framed with
\frm{--}

frame9b

Framed with
\frm{o-}

frame9b

Framed with
\frm<44pt>{--}

frame9b

Framed with
\frm{,}

frame9c

Framed with
\frm<5pt>{,}

frame9c

Framed with
\frm{-,}

frame9c

Framed with
\frm{o}

frame9d

Framed with
\frm<8pt>{o}

frame9d

Framed with
\frm{.o}

frame9d

Framed with
\frm{oo}

frame9d

Framed with
\frm<8pt>{oo}

frame9d

Framed with
\frm{-o}

frame9d

Framed with
\frm{e}

frame9e

Framed with
\frm<20pt,8pt>{e}

frame9e

Framed with
\frm{.e}

frame9e

Framed with
\frm{ee}

frame9e

Framed with
\frm<20pt,8pt>{ee}

frame9e

Framed with
\frm{-e}

frame9e

These are
overlayed
with the
\frm{.}

frame above
to show the
way they are
centered on
the object

Figure 8: Plain 〈frame〉s.

Framed with
\frm{_\}}

frame9f
︸ ︷︷ ︸

Framed with
\frm{^\}}

frame9f

︷ ︸︸ ︷

Framed with
\frm{\{}

frame9f

Framed with
\frm{\}}

frame9f

Framed with
\frm{_)}

frame9g
︸ ︸

Framed with
\frm{^)}

frame9g

︷ ︷

Framed with
\frm{(}

frame9g

Framed with
\frm{)}

frame9g

Figure 9: Bracket 〈frame〉s.

25

9b. Rectangular frames include \frm{.}, \frm{-},
\frm{=}, \frm{--}, \frm{==}, and \frm{o-}.
They all make rectangular frames that essentially
trace the border of a rectangle-shaped object.

The 〈frame〉s \frm{-} and \frm{=} allow an op-
tional corner radius that rounds the corners of
the frame with quarter circles of the specified ra-
dius. This is not allowed for the other frames—
the \frm{o-} frame always gives rounded cor-
ners of the same size as the used dashes (when
\xydashfont is the default one then these are
5pt in radius).

Exercise 19: How do you think the author
typeset the following?

A

B

(p.73)

9c. The frame \frm{,} puts a shade, built from
rules, into the picture beneath the (assumed rect-
angular) object, thereby giving the illusion of
‘lifting’ it; \frm<〈dimen〉>{,} makes this shade
〈dimen〉 deep.
\frm{-,} combines a \frm{-} with a \frm{,}.

9d. Circles done with \frm{o} have radius as (R +
L)/2 and with \frm<〈dimen〉>{o} have radius
as the 〈dimen〉; \frm{oo} makes a double cir-
cle with the outermost circle being the same as
that of \frm{o}.

Exercise 20: What is the difference between
*\cir{} and *\frm{o}? (p.73)

9e. Ellipses specified using \frm{e} have axis lengths
(R + L)/2 and (U + D)/2, while those with
\frm<〈dimen,dimen〉>{e} use the given lengths
for the axes. \frm{ee} makes a double ellipse
with outermost ellipse being the same as that of
\frm{e}.

Without special support to render the ellipses,
either via a 〈driver〉 or using the arc feature, the
ellipse will be drawn as a circle of radius approx-
imately the average of the major and minor axes.

To Do: Allow 〈frame variant〉s like those used
for directionals, i.e., \frm2{-} should be the same as
\frm{=}. Add \frm{o,} and more brackets.

9.2 Brackets

The possible brackets are shown in figure 9 with notes
below.

Notes

9f. Braces are just the standard plain TEX large
braces inserted correctly in XY-pic pictures with
the ‘nib’ aligned with the reference point of the
object they brace.

Exercise 21: How do you think the author
typeset the following?

A

B

︷ ︸︸ ︷

︸ ︷︷ ︸

(p.73)

9g. Parenthesis are like braces except they have no
nib and thus do not depend on where the refer-
ence point of c is.

Bug: The brackets above require that the com-
puter modern cmex font is loaded in TEX font posi-
tion 3.

9.3 Filled regions

In addition to the above there is a special frame that
“fills” the inside of the current object with ink: \frm
{*} and \frm {**}; the latter is intended for em-

phasizing and thus “strokes” the outline, using the
thinnest black line available on the printer or out-
put device; furthermore it moits the actual filling
in case this would obscure further text typeset on
top. Some alteration to the shape is possible, using
\frm<dimen>{}. Hence rectangular, oval, circular
and elliptical shapes can be specified for filling. The
following examples illustrate this in each case:

〈object〉 \frm{*} \frm{**} \frm<6pt>{*}

However, filling non-rectangular shapes will result in
a rectangle unless a driver is used that supports ar-
bitrary filling. With some drivers the above fills will
thus all be identical, as rectangular.

26

9.4 Framing as object modifier

In addition, frames may be accessed using the special
[F〈frame〉] object modifier 〈shape〉s that will add the
desired 〈frame〉 to the current object. The frame ap-
propriate to the edge of the object will be chosen
(presently either rectangular or elliptical).

If shape modifiers need to be applied to the
〈frame〉 alone then they can be included using : as
separator. Thus [F-:red] will make a red frame
(provided the color extension is active, of course).
Additionally the variant of frames using <〈dimen〉>
can be accessed by specifying [. . . :<〈dimen〉>].

Here are some simple examples using this feature.

text with background

bold white on black

\xy *+<1.5pt>[F**:white]++[F**:red]

\txt{text with background}

,+!D+/d1pc/,*++[F**:black][white]

\txt\bf{bold white on black}\endxy

Notice that when multiple frame-modifiers are
used, the frames are actually placed in reverse or-
der, so that earlier ones are printed on top of later
ones.

To Do: The frame option is not quite com-
plete yet: some new frames and several new brackets
should be added.

9.5 Using curves for frames

If the curve option is loaded, then circular and ellipti-
cal frames of arbitrary radius can be constructed, by
specifying \UseCurvedFrames. This can be negated
by \UseFontFrames. Both of these commands obey
normal TEX grouping. Furthermore, dotted and
dashed frames now have a regular spacing of their
constituent objects. The usual warnings about mem-
ory requirements for large numbers of curves apply
here also.

10 More Tips extension

Vers. 3.9 by Kristoffer H. Rose 〈kris@diku.dk〉

Load as: \xyoption{tips}

This extension provides several additional styles of
‘tips’ for use (primarily) as arrow heads, and makes
it possible to define customised tips. This is used
to support tips that mimic the style of the Computer
Modern fonts8 by Knuth (see [7] and [6, appendix F])
and of the Euler math fonts distributed by the AMS.

Font selection is done with the command

\SelectTips {〈family〉} {〈size〉}

where the 〈family〉 and 〈size〉 should be selected from
the following table.

Family 10 11 12

xy − − −
cm − − −
eu − − −
lu − − −

Once a selection is made, the following commands
are available:

\UseTips activate selected tips
\NoTips deactivate

They are local and thus can be switched on and/or off
for individual pictures using the TEX grouping mech-
anism, e.g.,

\SelectTips{cm}{10}

\xy*{} \ar

@{*{\UseTips\dir_{<<}}-*{\NoTips\dir{>}}}

(20,5)*{} \endxy

will typeset

regardless of which tips are used otherwise in the doc-
ument.

11 Line styles extension

Vers. 3.10 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{line}

This extension provides the ability to request vari-
ous effects related to the appearance of straight lines;
e.g.. thickness, non-standard dashing, and colour.

These are effects which are not normally avail-
able within TEX. Instead they require a suitable
‘back-end’ option to provide the necessary \special

commands, or extra fonts, together with appropriate
commands to implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

The extension provides special effects that can be
used with any XY-pic 〈object〉, by defining [〈shape〉]
modifiers. The modification is local to the 〈object〉
currently being built, so will have no effect if this
object is never actually used.

8This function was earlier supported by the cmtip extension which is still included in the distribution but is now obsolete.

27

Adjusting line thickness The following table
lists the modifiers primarily to alter the thickness of
lines used by XY-pic. They come in two types — ei-
ther a single keyword, or using the key-character |

with the following text parsed.

[thicker] double line thickness
[thinner] halve line thickness
[|(〈num〉)] multiple of usual thickness
[|<〈dimen〉>] set thickness to 〈dimen〉
[|〈dimen〉] also sets to 〈dimen〉
[|=〈word〉] make [〈word〉] set current

style settings
[|*] reuse previous style
[butt] butt cap at ends
[roundcap] round cap at ends
[projcap] projecting square cap.

Later settings of the linewidth override earlier set-
tings; multiple calls to [thicker] and [thinner]

compound, but the other variants set an absolute
thickness. The line-thickness specification affects
arrow-tips as well as the thickness of straight lines
and curves. Three kinds of line-caps are available;
they are discussed below in the section on ‘poly-lines’.

CP

\xy/r8pc/:*++\txt\huge{C}="c"

,0*++\txt\huge{P}="p",

,"p",{\ar@*{[|(1)]}"p";"c"<20pt>}

,"p",{\ar@*{[|(4)]}"p";"c"<14pt>}

,"p",{\ar@*{[|(10)]}"p";"c"<4pt>}

,"p",{\ar@*{[|(20)]}"p";"c"<-16pt>}

\endxy

Using the PostScript back-end, the size of the
arrow-head grows aesthetically with the thickness of
the line used to draw it. This growth varies as the
square-root of the thickness; thus for very thick lines
(20+ times normal) the arrowhead begins to merge
with the stem.

The diagram in figure 10, page 30, uses different
line-thicknesses and colours.

Poly-lines By a ‘poly-line’ we mean a path built
from straight line segments having no gaps where
each segment abuts the next. The poly-line could
be the edges of a polygon, either closed or open if the
end-points are different.

The reason for considering a poly-line as a sep-
arate 〈object〉, rather than simply as a 〈path〉 built
from straight lines, becomes apparent only when the

lines have appreciable thickness. Then there are sev-
eral standard ways to fashion the ‘joins’ (where seg-
ments meet). Also the shape of the ‘caps’ at either
end of the poly-line can be altered.

The following modifiers are used to determine the
shapes of the line ‘caps’ and ‘joins’:

[|J〈val〉] join style, 〈val〉 = 0, 1 or 2
[mitre] mitre-join, same as [|J0]
[roundjoin] round join, same as [|J1]
[bevel] bevel-join, same as [|J2]
[|C〈val〉] end-cap, 〈val〉 = 0, 1 or 2
[butt] “butt” cap, same as [|C0]
[roundcap] round cap, same as [|C1]
[projcap] “projecting square” cap,

same as [|C2]
[|M(〈num〉)] set mitrelimit to 〈num〉≥ 1

These effects are currently implemented only
with the PostScript back-end or when using
\xypolyline (described below) with a PostScript

〈driver〉. In this case the ‘cap’ setting can be applied
to any segment, straight or curved, whether part of
a poly-line or not; however the ‘join’ setting applies
only to poly-lines. Arrow-tips are not affected. The
defaults are to use round joins and round-cap ends.

Adjusting the miter-limit affects how far miters
are allowed to protrude when two wide lines meet
at small angles. The 〈num〉 is in units of the line-
thickness. Higher values mean using bevels only at
smaller angles, while the value of 1 is equivalent to
using bevels at all angles. The default miter-limit is
10.

The path taken by the ‘poly-line’ this is read as
the list of 〈pos〉itions in the current ‘stack’, ignoring
size extents. The macro \xypolyline is used as a
〈decor〉; it reads the 〈pos〉itions from the stack, but
leaves the stack intact for later use.

The following diagram illustrates the use of line-
thickness, line-joins and line-caps with poly-lines. It
contains an example of each of the styles.

A B

\xycompileto{poly}%

{/r4pc/:,*[|<5pt>][thicker]\xybox{%

*+(3,2){}="X"

;@={p+CU,p+LU,p+LD,p+RD,p+RU,p+CU}

,{0*[miter]\xypolyline{}}

,{\xypolyline{*}},@i@)

28

,"X",*+(2.5,1.5){}="X"

,@={!CU,!LU,!LD,!RD,!RU,!CU}

,{0*[gray][roundjoin]\xypolyline{}}

,{0*[gray]\xypolyline{*}},@i@)

,"X",*+(2,1){}="X"

,@={!CU,!LU,!LD,!RD,!RU,!CU}

,{0*[white]\xypolyline{*}}

,{0*[bevel]\xypolyline{}},@i@)

,"X"-(.7,0)*++\txt\LARGE{A}="a"

,"X"+(.7,0)*++\txt\LARGE{B}="b"

,{\ar@{-}@*{[butt][thinner]}"a";"b"<1pc>}

,{\ar@{-}@*{[roundcap][thinner]}"a";"b"}

,{\ar@{-}@*{[projcap][thinner]}"a";"b"<-1pc>}

}}

Note the use of {0*[...]\xypolyline{..}} to apply
style-modifiers to a polyline. The @={!..} method
for loading the stack gives equivalent results to us-
ing ;@={p+..}, since \xypolyline ignores the edge
extents of each 〈pos〉 in the stack.

Note also that the argument #1 to \xypolyline

affects what is typeset. Allowable arguments are:

\xypolyline{} solid line
\xypolyline{.} dotted line
\xypolyline{-} dashed line
\xypolyline{*} fill enclosed polygon
\xypolyline{?} fill enclosed polygon using

even-odd rule
\xypolyline{{*}} use \dir{*} for lines
\xypolyline{<toks>} using \dir{<toks>}

The latter cases one has **\dir{...} being used
to connect the vertices of the polyline, with {{*}}

being needed to get **\dir{*}. Similarly **\dir is
used when a 〈driver〉 is not available to specifically
support polylines; in particular the two ‘fill’ options
* and ? will result in a dotted polygon outline the
region intended to be filled.

In all cases it is up to the user to load the stack be-
fore calling \xypolyline{. . . }. A particularly com-
mon case is the outline of an existing XY-pic 〈object〉,
as in the example above. Future extensions to \frm

will provide a simplified mechanism whereby the user
need not call \xypolyline explicitly for such effects.

12 Rotate and Scale extension

Vers. 3.8 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{rotate}

This extension provides the ability to request that
any object be displayed rotated at any angle as well
as scaled in various ways.

These are effects which are not normally avail-
able within TEX. Instead they require a suitable
‘back-end’ option to provide the necessary \special

commands, or extra fonts, together with appropriate
commands to implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

The extension provides special effects that can be
used with any XY-pic 〈object〉 by defining [〈shape〉]
modifiers. The modification is local to the 〈object〉
currently being built, so will have no effect if this
object is never actually used.

The following table lists the modifiers that have
so far been defined. They come in two types – either a
single keyword, or a key-character with the following
text treated as a single argument.

[@] align with current direc-
tion

[@〈direction〉] align to 〈direction〉
[@!〈number〉] rotate 〈number〉 degrees
[*〈number〉] scale by 〈number〉
[*〈num〉x,〈num〉y] scale x and y separately

[left] rotate anticlockwise by
90◦

[right] rotate (clockwise) by 90◦

[flip] rotate by 180◦; same as
[*-1,-1]

[dblsize] scale to double size
[halfsize] scale to half size

These [〈shape〉] modifiers specify transformations
of the 〈object〉 currently being built. If the object
has a rectangle edge then the size of the rectangle is
transformed to enclose the transformed object; with
a circle edge the radius is altered appropriately.

Each successive transformation acts upon the re-
sult of all previous. One consequence of this is that
the order of the shape modifiers can make a signif-
icant difference in appearance—in general, transfor-
mations do not commute. Even successive rotations
can give different sized rectangles if taken in the re-
verse order.

Sometimes this change of size is not desirable.
The following commands are provided to modify this
behaviour.

\NoResizing prevents size adjustment
\UseResizing restores size adjustments

The \NoResizing command is also useful to have at
the beginning of a document being typeset using a
driver that cannot support scaling effects, in partic-
ular when applied to whole diagrams. In any case an
unscaled version will result, but now the spacing and
positioning will be appropriate to the unscaled rather
than the scaled size.

29

A

B

♥

♣
la
b
el

1

.
lab

el 2×
label 3

label4 label 5×

label6

label 7

lab
el

8

spe
cial

effe
ct:

alig
ned

tex
t

Figure 10: Rotations, scalings, and flips

Scaling and Scaled Text The 〈shape〉 modifier
can contain either a single scale factor, or a pair in-
dicating different factors in the x- and y-directions.
Negative values are allowed, to obtain reflections in
the coordinate axes, but not zero.

Rotation and Rotated Text Within [@...] the
... are parsed as a 〈direction〉 locally, based on
the current direction. The value of count regis-
ter \Direction contains the information to deter-
mine the requested direction. When no 〈direction〉 is
parsed then [@] requests a rotation to align with the
current direction.

The special sequence [@!...] is provided to pass
an angle directly to the back-end. The XY-pic size
and shape of the 〈object〉 with \rectangleEdge is
unchanged, even though the printed form may appear
rotated. This is a feature that must be implemented
specially by the back-end. For example, using the
PostScript back-end, [@!45] will show the object
rotated by 45◦ inside a box of the size of the unro-
tated object.

To Do: Provide example of repeated, named
transformation.

Reflections Reflections can be specified by a com-
bination of rotation and a flip — either [hflip] or
[vflip].

Shear transformations To Do: Provide the
structure to support these; then implement it in
PostScript.

Example The diagram in figure 10 illustrates many
of the effects described above as well as some addi-
tional ones defined by the color and rotate exten-
sions.

Exercise 22: Suggest the code used by the author
to typeset figure 10. (p.73)

The actual code is given in the solution to the
exercise. Use it as a test of the capabilities of your
DVI-driver. The labels should fit snugly inside the
accompanying rectangles, rotated and flipped appro-
priately.

Bug: This figure also uses colours, alters line-
thickness and includes some PostScript drawing.
The colours may print as shades of gray, with the
line from A to B being thicker than normal. The
wider band sloping downwards may have different
width and length according to the DVI-driver used;
this depends on the coordinate system used by the
driver, when ‘raw’ PostScript code is included.

13 Colour extension

Vers. 3.11 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{color}

This extension provides the ability to request that
any object be displayed in a particular colour.

It requires a suitable ‘driver’ option to provide
the necessary \special commands to implement the
effects. Thus

Using this extension will have no effect
on the output unless used with a

dvi-driver that explicitly supports it.

Colours are specified as a 〈shape〉 modifier which
gives the name of the colour requested. It is applied
to the whole of the current 〈object〉 whether this be
text, an XY-pic line, curve or arrow-tip, or a compos-
ite object such as a matrix or the complete picture.
However some DVI drivers may not be able to sup-

30

GreenYellow Yellow Goldenrod
Dandelion Apricot Peach

Melon YellowOrange Orange
BurntOrange Bittersweet RedOrange

Mahogany Maroon BrickRed
Red OrangeRed RubineRed

WildStrawberry Salmon CarnationPink
Magenta VioletRed Rhodamine
Mulberry RedViolet Fuchsia
Lavender Thistle Orchid

DarkOrchid Purple Plum
Violet RoyalPurple BlueViolet

Periwinkle CadetBlue CornflowerBlue
MidnightBlue NavyBlue RoyalBlue

Blue Cerulean Cyan
ProcessBlue SkyBlue Turquoise

TealBlue Aquamarine BlueGreen
Emerald JungleGreen SeaGreen

Green ForestGreen PineGreen
LimeGreen YellowGreen SpringGreen
OliveGreen RawSienna Sepia

Brown Tan Gray
Black White

Figure 11: Colour names after \UseCrayolaColors.

port the colour in all of these cases.

[〈colour name〉] use named colour

\newxycolor{〈name〉}{〈code〉} define colour
\UseCrayolaColors load colour names (shown

in figure 11)

If the DVI-driver cannot support colour then a re-
quest for colour only produces a warning message in
the log file. After two such messages subsequent re-
quests are ignored completely.

Named colours and colour models New colour
names are created with \newxycolor, taking two ar-
guments. Firstly a name for the colour is given, fol-
lowed by the code which will ultimately be passed to
the output device in order to specify the colour. If
the current driver cannot support colour, or grayscale
shading, then the new name will be recognised, but
ignored during typesetting.

For PostScript devices, the XY-ps PostScript
dictionary defines operators rgb, cmyk and gray cor-
responding to the standard RGB and CMYK colour
models and grayscale shadings. Colours and shades
are described as: r g b rgb or c m y k cmyk or s
gray, where the parameters are numbers in the range
0 ≤ r, g, b, c,m, y, k, s ≤ 1. The operators link to the
built-in colour models or, in the case of cmyk for ear-
lier versions of PostScript, give a simple emulation
in terms of the RGB model.

Saving colour and styles When styles are saved
using [=〈word〉], see , then the current colour setting
(if any) is saved also. Subsequent use of [〈word〉]
recovers the colour and accompanying line-style set-
tings.

Further colour names are defined by the command
\UseCrayolaColours that loads the crayon option,
in which more colours are defined. Consult the file
xyps-col.doc for the colours and their specifications
in the RGB or CMYK models.

xycrayon.tex: This option provides the com-
mand to install definitions for the 68 colours recog-
nised by name by Tomas Rokicki’s dvips driver [13].
This command must be called from a 〈driver〉-file
which can actually support the colours.

14 Pattern and Tile extension

Vers. 3.8 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{tile}

This extension provides the ability to request that a
filled region be tiled using a particular pattern.

This is an effect not normally available within
TEX. Instead it requires a suitable 〈driver〉 option to
provide the necessary \special commands, together

31

with any extra commands needed to implement the
effects. Thus

Using this extension will have no effect
on the output unless used with a

dvi-driver that explicitly supports it.

All effects defined in the tile extension can be im-
plemented using most PostScript 〈driver〉s, loaded
as \xyoption{〈driver〉}.

Patterns Patterns are specified as a 〈shape〉 modi-
fier, similar to the way colours are specified by name.
The pattern is applied to the whole of the current
〈object〉 whether this be text, an XY-pic line, curve
or arrow-tip, or a composite object such as a matrix
or the complete picture. However some DVI-drivers
may not support use of patterns in all cases.

If the current DVI-driver cannot support patterns
then a request for one simply produces a warning
message in the log file. After two such messages sub-
sequent requests are ignored completely.

[〈name〉] use named pattern

\newxypattern{〈name〉}{〈data〉}
specify new pattern using 〈data〉

\UsePatternFile{〈file〉}
sets default file for patterns

\LoadAllPatterns{〈file〉}
load all patterns in 〈file〉

\LoadPattern{〈name〉}{〈file〉}
load named pattern from 〈file〉

\AliasPattern{〈alias〉}{〈name〉}{〈file〉}
let 〈alias〉 denote pattern from 〈file〉.

Although pattern data may be specified directly us-
ing \newxypattern, it is more usual to load it from
a 〈file〉 in which many patterns are defined by name,
each on a separate line. By convention such files al-
ways end in .xyp (XY-pattern) so no extension should
be specified. The pattern is then requested using ei-
ther the name supplied in the file or by an alias. Once
\UsePatternFile has been used, then a null 〈file〉 ar-
gument to the other commands will still find patterns
in the default file. The default remains in effect for
the current level of TEX grouping.

For example, the following picture

uses ‘filled’ frames from the frame feature:

\AliasPattern{bricks}{mac12}{xymacpat}

\AliasPattern{bars}{mac08}{xymacpat}

\xy *+<5pc,3.1pc>{},{*[bricks]\frm{**}}

,*+<2.5pc>[o]{},*[bars]\frm{**}

\endxy

Pattern data A region is tiled using copies of a
single ‘cell’ regularly placed so as to seamlessly tile
the entire region. The 〈data〉 appearing as an argu-
ment to \newxypattern is ultimately passed to the
dvi-driver.

The simplest form of pattern data is: 〈num〉 〈Hex-
data〉, where the data is a 16-character string of
Hexadecimal digits; i.e. 0–9, A–F . Each Hex-digit
equates to 4 binary bits, so this data contains 64 bits
representing pixels in an 8 × 8 array. The 〈num〉 is
an integer counting the number of ‘0’s among the 64
bits. Taken as a fraction of 64, this number or its
complement, represents the average density of ‘on’
pixels within a single cell of the pattern. Drivers un-
able to provide the fine detail of a pattern may simply
use this number, or its complement, as a gray-level
or part of a colour specification for the whole region
to be tiled.

The file xymacpat.xyp contains defining data for the
38 standard patterns available with the Macintosh
Operating system. Figure 12 displays all these pat-
terns.

Rotating and Resizing Patterns Some imple-
mentations of patterns are sufficiently versatile to al-
low extra parameters to affect the way the pattern
data is interpreted. PostScript is one such imple-
mentation in which it is possible to rotate the whole
pattern and even to expand or contract the sizes of
the basic cell.

Due to the raster nature of output devices, not
all such requests can be guaranteed to produce aes-
thetic results on all devices. In practice only rota-
tions through specific angles (e.g 30◦, 45◦, 60◦) and
particular scaling ratios can be reliably used. Thus
there is no sophisticated interface provided by XY-pic
to access these features. However the ‘PostScript
escape’ mechanism does allow a form of access, when
a PostScript 〈driver〉 is handling pattern requests.

Special PostScript operators pa and pf set
the pattern angle (normally 0) and ‘frequency’ mea-
sured in cells per inch. Hence, when used as an
〈object〉-modifier, [! 30 pa 18.75 pq] rotates the
pattern by 30◦ clockwise and uses a smaller pat-
tern cell (larger frequency). The default frequency
of 12.5 = 300/(8× 3) means that each pixel in a pat-
tern cell corresponds, on a device of resolution 300dpi,
to a 3 × 3 square of device pixels; on such a device
18.75 uses 2× 2 squares.

At 300dpi a frequency of 9.375 = 300/(8 × 4)
uses 4 × 4 squares. These match the natural size
for pixels on a 75dpi screen and are pretty close for
72dpi screens. Though appropriate for screen dis-
plays, these are ‘too chunky’ for high quality printed

32

mac01 mac02 mac03 mac04 mac05 mac06 mac07 mac08

mac09 mac10 mac11 mac12 mac13 mac14 mac15 mac16

mac17 mac18 mac19 mac20 mac21 mac22 mac23 mac24

mac25 mac26 mac27 mac28 mac29 mac30 mac31 mac32

mac33 mac34 mac35 mac36 mac37 mac38

Figure 12: The 38 standard Macintosh patterns.

work. Doubling the frequency is too fine for some
patterns, hence the intermediate choice of 12.5 as de-
fault. In order for printed output to match the screen
view, a PostScript operator macfreq has been de-
fined to facilitate requests for 9.375, via [!macfreq].

The next diagram displays changes to the fre-
quency.

filled
pattern

9.375

filled
pattern

12.5

filled
pattern

18.75

filled
pattern

37.5

filled
pattern

9.375

filled
pattern

12.5

filled
pattern

18.75

filled
pattern

37.5

Saving patterns: When styles are saved using
〈word〉], see note 4k of §4, then the current pattern
(if any) is also saved. Subsequent use of [〈word〉]
recovers the pattern as well as colour and line-style
settings. This includes any explicit variations applied
using the “Style Escape” mechanism.

Here is a variation of an earlier example, with ex-
tra effects.

Kilroy
was here

\UsePatternFile{xymacpat}

\AliasPattern{bricks}{mac12}{}

\LoadPattern{mac28}{}\LoadPattern{mac05}{}

\xy *=0[! macfreq -45 pa][mac28][|=Bars]{}

,*+<12pc,4pc>{}*[bricks]\frm{**}

,-<3.5pc,0pt>,*+<2.65pc>[o]{},*[Bars]\frm{**}

,*[thicker]\frm{o},+<6pc,0pt>

,*+<5pc, 2.7pc>{},*[mac05]\frm{**},*\frm{-,}

,*[white]\txt\Large\bf\sf{Kilroy\\was here}

\endxy

15 Import graphics extension

Vers. 3.13 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{import}

This feature provides the ability to easy add labels
and annotations to graphics prepared outside TEX or
LATEX. AnXY-pic graphics environment is established
whose coordinates match that within the contents of
the imported graphic, making it easy to specify ex-
actly where a label should be placed, or arrow drawn
to highlight a particular feature.

A command \xyimport is defined which is used,
in conjunction with imported graphics, to establish
a coordinate system appropriate to the particular
graphics. This enables 〈pos〉itions within the graphic
to be easily located, either for labelling or adding ex-
tra embellishing features. It is used in either of the
follow ways:

\xyimport(width,height){〈graphic〉}
\xyimport(width,height)(x-off,y-off){〈graphic〉}

Normally the 〈graphics〉 will be a box containing a
graphic imported using the commands from packages
such as graphics, epsf or epsfig, or using other
commands provided by the local TEX implementa-
tion. However the 〈graphic〉 could be any balanced
TEX material whatsoever; provided it occupies non-
zero size, both vertically and horizontally.

33

Framed contents of graphics file. Rational points on the elliptic curve: x3 + y3 = 7

1−1

1

−1
P

−P
−2P

2P

3P

−3P

∞ ∞

∞

Figure 13: Importing a graphic for labelling.

The width and height are 〈number〉s given in the
coordinate system for the contents of the 〈graphics〉.
These are not dimensions, but coordinate-lengths, us-
ing the units appropriate to the picture displayed by
〈graphic〉.

When provided, (x-off,y-off) give the distance
in coordinate units from bottom-left corner to where
the origin of coordinates should be located, usually
within area covered by the 〈graphic〉. Usually the
negatives of these numbers will give the coordinate
location of the bottom-left corner of the 〈graphic〉. If
no offsets are supplied then the origin is presumed to
lie at the bottom-left corner.

Normally the \xyimport command is used at the
beginning of an \xy..\endxy environment. It is not
necessary to give any basis setup, for this is deduced
by measuring the dimensions of the 〈graphic〉 and
using the supplied width, height and offsets. The
〈graphic〉 itself defines named 〈pos〉 called "import",
located at the origin and having appropriate extents
to describe the area covered by the 〈graphic〉. This
makes it particularly easy to surround the 〈graphic〉
with a frame, as on the left side of figure 13, or to
draw axes passing through the origin.

Here is the code used to apply the labelling in
figure 13:

\def\ellipA{\resizebox{6cm}{!}{%

\includegraphics{import1.eps}}}

\xy

\xyimport(3.7,3.7)(1.4,1.4){\ellipA}*\frm{-}

,!D+<2pc,-1pc>*+!U\txt{%

Framed contents of graphics file.}\endxy

\qquad\qquad

\xy\xyimport(3.7,3.7)(1.4,1.4){\ellipA}

,!D+<2pc,-1pc>*+!U\txt{Rational points

on the elliptic curve: $x^3+y^3=7$}

,(1,0)*+!U{1},(-1,0)*+!U{-1}

,(0,1)*+!R{1},(0,-1)*+!R{-1}

,(2,-1)*+!RU{P},(-1,2)*+!RU{-P}

,(1.3333,1.6667)*+!UR{-2P}

,(1.6667,1.3333)*!DL{\;2P}

,(-.5,1.9)*++!DL{3P},(1.9,-.5)*!DL{\;-3P}

,(-1,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)}

,(.5,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)}

,(2.3,-1)*+++!L{\infty}*=0{},{\ar+(.2,-.2)}

\endxy

This example uses the LATEX2ε standard
graphics package to import the graphics file
import1.eps; other packages could have been used
instead. e.g. epsfig, epsf, or the \picture

or \illustration commands in Textures on the
Macintosh.

The only possible problems that can occur are
when the graphics package is loaded after XY-pic has
been loaded. Generally it is advisable to have XY-pic
loading after all other macro packages.

16 Movie Storyboard extension

Vers. 3.9 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{movie}

This extension interprets the \scene primitive of the
movie class, setting the progress indicators to dummy
values. The following assumes that your are familiar
with the movie class.

34

The size of the frame is determined by the com-
mand

\MovieSetup{width=width,height=height,. . . }

(the . . . indicate the other arguments required by the
movie class but silently ignored by the XY-pic movie

extension).
Note: This extension still experimental and sub-

ject to change. The only documentation is in the
movie.cls source file.

17 PostScript backend

Vers. 3.12 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{ps}

XY-ps is a ‘back-end’ which provides XY-pic with the
ability to produce DVI files that use PostScript

\specials for drawing rather than the XY-pic fonts.
In particular this makes it possible to print XY-pic

DVI files on systems which do not have the ability
to load the special fonts. The penalty is that the
generated DVI files will only function with one par-
ticular DVI driver program. Hence whenever XY-ps is
activated it will warn the user:

XY-pic Warning: The produced DVI file
is not portable: It contains PostScript
\specials for 〈one particular〉 driver

A more complete discussion of the pros and cons of
using this backend is included below.

17.1 Choosing the DVI-driver

Including \xyoption{ps} within the document
preamble, tells XY-pic that the PostScript alterna-
tive to the fonts should be used, provided the means
to do this is also specified. This is done by also speci-
fying a dvi-driver which is capable of recognising and
interpreting \special commands. Although the file
xyps.tex is read when the option request is encoun-
tered, the macros contained therein will have no effect
until an appropriate driver has also been loaded.

With LATEX2ε both the backend and driver may
be specified, along with other options, via a single
\usepackage command, see [4, page 317]; e.g.

\usepackage[ps,textures,color,arrow]{xy}

The rebindings necessary to support PostScript are
not effected until the \begin{document} command is
encountered. This means that an alternative driver
may be selected, by another \xyoption{〈driver〉},
at any time until the \begin{document}. Only the

macros relevant to last named 〈driver〉 will actually
be installed.

The following table describes available support for
PostScript drivers. Please consult the individual
driver sections in part IV for the exact current list.
For each 〈driver〉 there is a corresponding file named
xy〈driver〉.tex which defines the necessary macros,
as well as a documentation file named xy〈driver〉.doc.
The spelling is all lower-case, designed to be both de-
scriptive and unique for the 1st 8 characters of the
file names.

〈driver〉 Description
dvips Tomas Rokicki’s dvips
dvips Karl Berry’s dvipsk
dvips Thomas Kiffe’s dvips for Macintosh
textures Blue Sky Research’s Textures v1.7+
16textures Blue Sky Research’s Textures v1.6
oztex Andrew Trevorrow’s OzTEX v1.8+
17oztex Andrew Trevorrow’s OzTEX v1.7

Other DVI-drivers may also work using one of
these files, if they use conventions similar to dvips,
OzTEX or Textures. Alternatively it should not be
too difficult to write the files required, using these
as a basis indicating the type of information needed
to support the specific \special commands. Any-
one attempting to do this should inform the author
and convey a successful implementation to him for
inclusion within the XY-pic distribution.

Note: In some previous versions of XY-
pic the PostScript backend and driver were
loaded simultaneously by a command of the
form \UsePSspecials{〈driver〉}. For backward-
compatibility these commands should still work,
but now loading the latest version of the given
〈driver〉. However their future use is discouraged
in favour of the option-loading mechanism, via
\xyoption{〈driver〉}. This latter mechanism is more
flexible, both in handling upgrades of the actual
driver support and in being extensible to support
more general forms of \special commands.

Once activated the PostScript backend can be
turned off and on again at will, using the user follow-
ing commands:

\NoPSspecials cancels PostScript
\UsePSspecials {} restores PostScript

These obey normal TEX scoping rules for environ-
ments; hence it is sufficient to specify \NoPSspecials
within an environment or grouping. Use of Post-

Script will be restored upon exiting from the envi-
ronment.

35

17.2 Why use PostScript

At some sites users have difficulty installing the ex-
tra fonts used by XY-pic. The .tfm files can always
be installed locally but it may be necessary for the
.pk bitmap fonts (or the .mf METAFONT fonts) to
be installed globally, by the system administrator, for
printing to work correctly. If PostScript is avail-
able thenXY-ps allows this latter step to be bypassed.

Note: with XY-ps it is still necessary to have the
.tfm font metric files correctly installed, as these con-
tain information vital for correct typesetting.

Other advantages obtained from using XY-ps are the
following:

• Circles and circle segments can be set for arbi-
trary radii.

• solid lines are straighter and cleaner.

• The range of possible angles of directionals is
greatly increased.

• Spline curves are smoother. True dotted and
dashed versions are now possible, using equally
spaced segments which are themselves curved.

• XY-pic enables special effects such as variable
line thickness, gray-level and colour. Also, ro-
tation of text and (portions of) diagrams is now
supported with some drivers. Similarly whole
diagrams can be scaled up or down to fit a given
area on the printed page.

Some of the above advantages are significant, but
they come at a price. Known disadvantages of using
XY-ps include the following:

• A DVI file with specials for a particular Post-
Script driver can only be previewed if a pre-
viewer is available that supports exactly the
same \special format. A separate Post-

Script previewer will usually be required.

However recent versions of xdvi sup-
port viewing of PostScript using either
the GhostScript program or via “Display
PostScript”. The PostScript produced by
XY-ps can be viewed this way

• DVI files created using XY-ps in fact lose their
“device-independence”. So please do not dis-
tribute DVI files with PostScript specials—
send either the TEX source code, expecting the
recipient to have XY-pic ©̈⌣, or send a (com-
pressed) PostScript file.

The latter comment applies to files in which any spe-
cial ‘back-end’ support is required, not just to Post-

Script. Of course it can be ignored when you know
the configuration available to the intended recipient.

PostScript header file: With some DVI-drivers
it is more efficient to have the PostScript com-
mands that XY-ps needs loaded initially from a sepa-
rate “header” file. To use this facility the following
commands are available. . .

\UsePSheader {}

\UsePSheader {<filename>}

\dumpPSdict {<filename>}

\xyPSdefaultdict

Normally it is sufficient to invoke \UsePSheader{},
which invokes the default name of xy38dict.pro, re-
ferring to the current version of XY-pic. The optional
〈filename〉 allows a different file to be used. Plac-
ing \dumpPSdict{..} within the document preamble
causes the dictionary to be written to the supplied
〈filename〉.

See the documentation for the specific driver to
establish where the dictionary file should be located
on any particular TEX system. Usually it is suffi-
cient to have a copy in the current working directory.
Invoking the command \dumpPSdict{} will place a
copy of the requisite file, having the default name, in
the current directory. This file will be used as the
dictionary for the current processing, provided it is
on the correct directory path, so that the driver can
locate it when needed. Consult your local system
administrator if you experience difficulties.

18 TPIC backend

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{tpic}

This option allows the XY-pic fonts to be replaced by
tpic \specials, when used with a dvi-driver capa-
ble of supporting them. Extra capabilities include
smoother lines, evenly spaced dotted/dashed curves,
variable line-widths, gray-scale fills of circles, ellipses
and polygonal regions.

Use of tpic \specials offers an alternative to
the XY-pic fonts. However they require a dvi-driver
that is capable of recognizing and interpreting them.
One such viewer is xdvik, Karl Berry’s modifica-
tion to the xdvi viewer on unix9 systems running
X-windows or a derivative. dvipsk, Karl Berry’s
modification to dvips also handles tpic \specials,
so xdvik/dvipsk is an good combination for quality
screen-display and PostScript printing.

9Unix is a trademark of Bell Labs.

36

Once loaded using \xyoption{tpic}, with an ap-
propriate 〈driver〉 also specified either already or sub-
sequently, the following commands are available to
turn the tpic backend off/on.

\NoTPICspecials turns off tpic specials.
\UseTPICspecials reinstates tpic specials.

There is a limit to the number of points allowable
in a path. For paths constructed by XY-pic, which
includes spline curves, when the limit is reached the
path is automatically flushed and a new path com-
menced. The following command can be used to cus-
tomise this limit—initially set at 300 for use with
xdvi—to suit alternative 〈driver〉s.

\maxTPICpoints{〈num〉} set maximum for paths

Of the curves defined in the xycurve extension, only
solid spline curves are supported. This is done by
treating the spline as a polygon (poly-line) with many
segments. The dotted or dashed variants do not work
correctly.

Implementations of tpic draw dashed polygons
such that the start and finish of each segment is solid.
Since these segments can be very short, the effect is
simply to create a solid line. Similarly the shortness
of the segments tends to give nothing at all for large
portions of a dotted curve. What is needed is an im-
plementation whereby the on/off nature of a dashed
or dotted polygon is determined by the accumulated
length, not the length along just the current segment.

19 em-TeX backend

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{emtex}

Eberhard Matte’s em-TEX implementation provides
a suite of \special commands to facilitate the draw-
ing of lines, both on-screen and with various printing
devices. This ‘back-end’ extension allows the lines in
XY-pic diagrams to be drawn using these methods.

Note that this extension does not have to be used
with em-TEX. Better results may be obtained using
the PostScript back-end and dvips 〈driver〉, since
a version of dvips is available for em-TEX. How-
ever, in particular for screen previewing purposes, it
may be convenient to use this back-end. Further-
more note that dvips is capable of supporting em-
TEX\specials.

Once loaded using \xyoption{emtex}, with an
appropriate 〈driver〉 also specified either already or
subsequently, the following commands are available
to turn the em-TEX backend off/on.

\NoEMspecials turns off em-TEX specials.

\UseEMspecials reinstates em-TEX specials.

Of the curves defined in the xycurve extension, only
solid spline curves are supported. This is done by
treating the spline as a polygon (poly-line) with many
segments.

20 Necula’s extensions

Vers. 3.4 by George C. Necula 〈necula@cs.cmu.edu〉

Load as: \xyoption{necula}

This option contains two extensions of the XY-pic
kernel: A way to expand TEX macros in object
〈modifier〉s, and a way to specify arbitrary polygons
as the 〈shape〉 of an object.

20.1 Expansion

The special syntax e|〈macros〉| is introduced in an
object 〈modifier〉s and 〈coord〉inates. It expands the
given TEX 〈macros〉 (with \edef) before reinterpre-
tation as a 〈modifier〉 of 〈coord〉, respectively.

This code may become part of the XY-pic kernel
at a certain point.

20.2 Polygon shapes

A polygon 〈shape〉 is specified as

[P:〈pos〉,. . . ,〈pos〉]

where [P:p1,. . . ,pn] denotes the shape obtained by
tracking the edge with each pi a position relative to
the object reference point. 〈vector〉s and 〈corner〉s
can be used directly; otherwise use -p to get the rel-
ative position.

Note: Do not use {} or [] in the 〈pos〉itions.
Bug: The algorithm assumes that the reference

point is always inside the polygon.
It is possible to frame polygons is also possible.
Bug: This code should be merged with the

‘frame’ and ‘poly’ options.
The example at the end of §32 illustrates the ex-

tensions.

21 LaTeX Picture extension

Vers. 3.6 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{picture}

This extension provides replacement commands for
the LATEX picture environment commands line and
vector. At the moment this option requires LATEX.

37

Part III

Features

This part documents the notation added by each
standard feature option. For each is indicated the
described version number, the author, and how it is
loaded.

The first two, ‘all’ and ‘dummy’, described in §§22
and 23, are trivial features that nevertheless prove
useful sometimes. The next two, ‘arrow’ and ‘2cell’,
described in §24 and 25, provide special commands
for objects that ‘point’. The following, ‘matrix’
in §26, ‘graph’ in §27, ‘poly’ in §28, and ‘knot’ in §31,
are input modes that support different overall struc-
turing of (parts of) XY-pictures.

22 All features

Vers. 3.8 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{all}

As a special convenience, this feature loads a subset
of XY-pic,

10 namely the extensions: curve (cf. §8),
frame (§9), tips (§10), line (§11), rotate (§12),
color (§13), and the following features: matrix

(§26), arrow (§24), and graph (§27).

23 Dummy option

Vers. 3.7 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{dummy}

This option is provided as a template for new options,
it provides neither features nor extensions but it does
count how many times it is requested.

24 Arrow and Path feature

Vers. 3.9 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{arrow}

This feature providesXY-pic with the arrow paradigm
presented in [14].

Note: \PATH command incompatibly changed for
version 3.3 (the \ar command is unaffected).

The basic concept introduced is the path: a con-
nection that starts from c (the current object), ends
at a specified object, and may be split into sev-
eral segments between intermediate specified objects
that can be individually labelled, change style, have
breaks, etc.

§24.1 is about the \PATH primitive, including the
syntax of paths, and §24.2 is about the \ar customi-
sation of paths to draw arrows usingXY-pic directional
objects.

24.1 Paths

The fundamental commands of this feature are \PATH
and \afterPATH that will parse the 〈path〉 according
to the grammar in figure 14 with notes below.

Notes

24a. An 〈action〉 can be either of the characters =/.
The associated 〈stuff〉 is saved and used to call

\PATHaction〈action〉{〈stuff〉}

before and after each segment (including all
〈labels〉) for = and /, respectively.

The default \PATHaction macro just expands to
“\POS 〈stuff〉 \relax” thus 〈stuff〉 should be of
the form 〈pos〉 〈decor〉. The user can redefine
this—in fact the \ar command described in §24.2
below is little more than a special \PATHaction
command and a clever defaulting mechanism.

24b. It is possible to include a number of de-
fault 〈labels〉 before the 〈labels〉 of the
actual 〈segment〉 are interpreted, using
~〈which〉{〈labels〉}. The specified 〈which〉 deter-
mines for which segments the indicated 〈labels〉
should be prefixed as follows:

〈which〉 applied to. . .
< next segment only
> last segment only
= every segment

(when several apply to the same segment they
are inserted in the sequence <>+).

This is useful to draw connections with a ‘center
marker’ in particular with arrows, e.g., the ‘map-
sto’ example explained below can be changed into
a ‘breakto’ example: typing

\xy*+{0}\PATH

~={**\dir{-}}

~>{|>*\dir{>}}

~+{|*\dir{/}}

’(10,1)*+{1} ’(20,-2)*+{2} (30,0)*+{3}

\endxy

will typeset

0 1
2

3

10The name ‘all’ hints at the fact that these were all the available options at the time ‘all’ was added.

38

Syntax Action

\PATH 〈path〉 interpret 〈path〉
\afterPATH{〈decor〉} 〈path〉 interpret 〈path〉 and then run 〈decor〉
〈path〉 −→ ~ 〈action〉 { 〈stuff〉 } 〈path〉 set 〈action〉24a to 〈stuff〉

| ~ 〈which〉 { 〈labels〉 } 〈path〉 add 〈labels〉 prefix for some segments24b

| ~ { 〈stuff〉 } 〈path〉 set failure continuation24c to 〈stuff〉
| ’ 〈segment〉 〈path〉 make straight segment24d

| ‘ 〈turn〉 〈segment〉 〈path〉 make turning segment24f

| 〈segment〉 make last segment24g

〈turn〉 −→ 〈diag〉 〈turnradius〉 1/4 turn24f starting in 〈diag〉
| 〈cir〉 〈turnradius〉 explicit turn24f

〈turnradius〉 −→ 〈empty〉 use default turn radius
| / 〈dimen〉 set turnradius to 〈dimen〉

〈segment〉 −→ 〈path-pos〉 〈slide〉 〈labels〉 segment24e with 〈slide〉 and 〈labels〉
〈slide〉 −→ 〈empty〉 | < 〈dimen〉 > optional slide24h: 〈dimen〉 in the “above” direction

〈labels〉 −→ ^ 〈anchor〉 〈it〉 〈alias〉 〈labels〉 label with 〈it〉24i above 〈anchor〉
| _ 〈anchor〉 〈it〉 〈alias〉 〈labels〉 label with 〈it〉24i below 〈anchor〉
| | 〈anchor〉 〈it〉 〈alias〉 〈labels〉 break with 〈it〉24j at 〈anchor〉
| 〈empty〉 no more labels

〈anchor〉 −→ - 〈anchor〉 | 〈place〉 label/break placed relative to the 〈place〉 where - is a
synonym for <>(.5)

〈it〉 −→ 〈digit〉 | 〈letter〉 | {〈text〉} | 〈cs〉 〈it〉 is a default label24k

| * 〈object〉 〈it〉 is an 〈object〉
| @ 〈dir〉 〈it〉 is a 〈dir〉ectional
| [〈shape〉] 〈it〉 use [〈shape〉] for 〈it〉

〈alias〉 −→ 〈empty〉 | ="〈id〉" optional name for label object24l

Figure 14: 〈path〉s

Note, however, that what goes into ~+{. . . } is
〈labels〉 and thus not a 〈pos〉 – it is not an action
in the sense explained above.

24c. Specifying ~{〈stuff〉} will set the “failure contin-
uation” to 〈stuff〉. This will be inserted when the
last 〈segment〉 is expected—it can even replace it
or add more 〈segment〉s, i.e.,
\xy *+{0} \PATH ~={**\dir{-}}

~{’(20,-2)*+{2} (30,0)*+{3}} ’(10,1)*+{1}

\endxy

is equivalent to

\xy *+{0} \PATH ~={**\dir{-}}

’(10,1)*+{1} ’(20,-2)*+{2} (30,0)*+{3}

\endxy

typesetting

0 1
2

3

because when \endxy is seen then the parser
knows that the next symbol is neither of the char-
acters ~’‘ and hence that the last 〈segment〉 is to
be expected. Instead, however, the failure con-
tinuation is inserted and parsed, and the 〈path〉
is finished by the inserted material.

Failure continuations can be nested:

\xy *+{0} \PATH ~={**\dir{-}}

~{~{(30,0)*+{3}}

’(20,-2)*+{2}} ’(10,1)*+{1}

\endxy

will also typeset the connected digits.

24d. A “straight segment” is interpreted as follows:

39

1. First p is set to the end object of the previ-
ous segment (for the first segment this is c
just before the path command) and c is set
to the 〈pos〉 starting the 〈segment〉, and the
current 〈slide〉 is applied.

2. Then the = and < segment actions are ex-
panded (in that sequence) and the < action
is cleared. The resulting p and c become the
start and end object of the segment.

3. Then all 〈labels〉 (starting with the ones de-
fined as described in note 24b below).

24e. A segment is a part of a 〈path〉 between a previ-
ous and a new target given as a 〈path-pos〉: nor-
mally this is just a 〈pos〉 as described in §3 but
it can be changed to something else by changing
the control sequence \PATHafterPOS to be some-
thing other than \afterPOS.

24f. A turning segment is one that does not go all
the way to the given 〈pos〉 but only as far as re-
quired to make a turn towards it. The c is set
to the actual turn object after a turning segment
such that subsequent turning or other segments
will start from there, in particular the last seg-
ment (which is always straight) can be used to
finish a winding line.

What the turn looks like is determined by the
〈turn〉 form:

〈empty〉 Nothing between the ‘ and the 〈pos〉
is interpreted the same as giving just the
〈diag〉 last used out of a turn.

〈diag〉 Specifying a single 〈diag〉 d is the same as
specifying either of the 〈cir〉cles d^ or d_, de-
pending on whether the specified 〈pos〉 has
its center ‘above’ or ‘below’ the line from p
in the 〈diag〉onal direction.

〈cir〉 When a full explicit 〈cir〉cle is available
then the corresponding 〈cir〉cle object is
placed such that its ingoing direction is a
continuation of a straight connection from p
and the outgoing direction points such that
a following straight (or last) segment will
connect it to c (with the same slide).

Here is an example using all forms of 〈turn〉s:

base

A

a

B

b

C

c d

e

was typeset by

\xy <4pc,0pc>:(0,0)

*+\txt{base}="base"

\PATH ~={**\dir{-}?>*\dir{>}}

‘l (-1,-1)*{A} ^a

‘ (1,-1)*{B} ^b

‘_ul (1, 0)*{C} ^c

‘ul^l "base" ^d

"base" ^e

\endxy

Bug: Turns are only really resonable for paths
that use straight lines like the one above.

Note: Always write a valid 〈pos〉 after a 〈turn〉,
otherwise any following ^ or _ labels can con-
fuse the parser. So if you intend the ^r in ‘^r

to be a label then write ‘,^r, using a dummy ,

〈pos〉ition.
The default used for turnradius can be set by the
operation

\turnradius 〈add op〉 {〈dimen〉}

that works like the kernel \objectmargin etc.
commands; it defaults to 10pt.

Exercise 23: Typeset

A

using 〈turn〉s. (p.74)

24g. The last segment is exactly as a straight one ex-
cept that the > action (if any) is executed (and
cleared) just after the < action.

24h. “Sliding” a segment means moving each of the
p, c objects in the direction perpendicular to the
current direction at each.

24i. Labelling means that 〈it〉 is dropped relative to
the current segment using a ? 〈pos〉ition. This
thus depends on the user setting up a connection
with a ** 〈pos〉 as one of the actions—typically
the = action is used for this (see note 24d for the
details). The only difference between ^ and _ is
that they shift the label in the ^ respectively _

direction; for straight segments it is placed in the
“superscript” or “subscript” position.

Labels will be separated from the connection by
the labelmargin that you can set with the opera-
tion

\labelmargin 〈add op〉 {〈dimen〉}

that works like the kernel \objectmargin com-
mand; in fact labelmargin defaults to use object-

margin if not set.

40

24j. Breaking means to “slice a hole” in the connec-
tion and insert 〈it〉 there. This is realized by
typesetting the connection in question in subseg-

ments , one leading to the break and one contin-
uing after the break as described in notes 24a
and 24d.

The special control sequence \hole is provided
to make it easy to make an empty break.

24k. Unless 〈it〉 is a full-fledged 〈object〉 (by using
the * form), it is typeset using a \labelbox ob-
ject (initially similar to \objectbox of basic XY-
pic but using \labelstyle for the style).

Remark: You can only omit the {}s around sin-
gle letters, digits, and control sequences.

24l. A label is an object like any other in the XY-
picture. Inserting an 〈alias〉 ="〈id〉" saves the
label object as "〈id〉" for later reference.

Exercise 24: Typeset

A

label

(p.74)

24.2 Arrows

Arrows are paths with a particularly easy syntax for
setting up arrows with tail , stem, and head in the
style of [14]. This is provided by a single 〈decor〉ation
the syntax of which is described in figure 15 (with the
added convention that a raised ‘*’ means 0 or more
repetitions of the preceeding nonterminal).

Notes

24m. Building an 〈arrow〉 is simply using the spec-
ified directionals (using \dir of §6.1) to build a
path: the first 〈tip〉 becomes the arrow tail of the
arrow, the 〈conn〉ection in the middle becomes
the arrow stem, and the second 〈tip〉 becomes
the arrow head . If a 〈variant〉 is given before the
{ then that variant \dir is used for all three. For
example,

\xy\ar @^{(->} (20,7)\endxy

typesets

Exercise 25: Typeset these arrows:

A

A′ A′′ A′′′

B

B′ B′′ B′′′

(p.74)

The above is a flexible scheme when used in con-
junction with the kernel \newdir to define all
sorts of arrowheads and -tails. For example,

\newdir{|>}{!/4.5pt/\dir{|}

*:(1,-.2)\dir^{>}

*:(1,+.2)\dir_{>}}

defines a new arrow tip that makes

\xy (0,0)*+{A}

\ar @{=|>} (20,3)*+{B}

\endxy

typeset

A
B

Notice that the fact that the directional uses only
〈tipchar〉 characters means that it blends natu-
rally with the existing tips.

Exercise 26: Often tips used as ‘tails’ have
their ink on the wrong side of the point where
they are placed. Fortunately space is also a
〈tipchar〉 so we can define \dir{ >} to generate
a ‘tail’ arrow. Do this such that

\xy (0,0)*+{A}="a", (20,3)*+{B}="b"

\ar @{>->} "a";"b" < 2pt>

\ar @{ >->} "a";"b" <-2pt>

\endxy

typesets

A
B

(p.74)

24n. Specifying a 〈dir〉 as a 〈tip〉 or 〈conn〉 means
that \dir〈dir〉 is used for that 〈tip〉 or 〈conn〉.
For example,

\xy\ar @{<^{|}>} (20,7)\endxy

typesets

When using this you must specify a {} dummy
〈dir〉ectional in order to ignore one of the tail,
stem, or tip components, e.g.,

\xy\ar @{{}{+}>} (20,7)\endxy

41

Syntax Action

\ar 〈arrow〉 〈path〉 make 〈arrow〉 along 〈path〉
〈arrow〉 −→ 〈form〉* 〈arrow〉 has the 〈form〉s
〈form〉 −→ @ 〈variant〉 use 〈variant〉 of arrow

| @ 〈variant〉 { 〈tip〉 } build arrow24m using 〈variant〉 of a standard stem and
〈tip〉 for the head

| @ 〈variant〉 { 〈tip〉 〈conn〉 〈tip〉 } build arrow24m using 〈variant〉 of 〈tip〉, 〈conn〉, 〈tip〉 as
arrow tail, stem, and head (in that order)

| @ 〈connchar〉 change stem to the indicated 〈connchar〉
| @! dash the arrow stem by doubling it

| @/ 〈direction〉 〈dist〉 / curve24o arrow the 〈dist〉ance towards 〈direction〉
| @(〈direction〉 , 〈direction〉) curve to fit with in-out directions24p

| @‘ { 〈control point list〉 } curve setup24q with explicit control points

| @[〈shape〉] add [〈shape〉] to object 〈modifier〉s24r for all objects

| @* { 〈modifier〉* } add object 〈modifier〉s24r for all objects

| @< 〈dimen〉 > slide arrow24s the 〈dimen〉
| | 〈anchor〉 〈it〉 break each segment at 〈anchor〉 with 〈it〉
| ^ 〈anchor〉 〈it〉 | _ 〈anchor〉 〈it〉 label each segment at 〈anchor〉 with 〈it〉
| @? reverse meaning of above and below24t

〈variant〉 −→ 〈empty〉 | ^ | _

| 0 | 1 | 2 | 3 〈variant〉: plain, above, below, double, or triple
〈tip〉 −→ 〈tipchar〉* directional named as the sequence of 〈tipchar〉s

| 〈dir〉 any 〈dir〉ectional24n
〈tipchar〉 −→ < | > | (|) | | | ’ | ‘ | + | / recognised tip characters

| 〈letter〉 | 〈space〉 more tip characters

〈conn〉 −→ 〈connchar〉* directional named as the sequence of 〈connchar〉s
| 〈dir〉 any 〈dir〉ectional24n

〈connchar〉 −→ - | . | ~ | = | : recognised connector characters

Figure 15: 〈arrow〉s.

typesets

In particular *〈object〉 is a 〈dir〉 so any 〈object〉
can be used for either of the tail, stem, or head
component:

\xy\ar @{*{x}*{y}*{z}} (20,7)\endxy

typesets

x

zyyyyyyyyy

Note: A * introduces an 〈object〉 whereas the
directional ‘•’ is typeset by the 〈dir〉 {*}.

Exercise 27: Typeset

using only one \ar command. (p.74)

24o. Curving the arrow using /dℓ/, where d is a
〈direction〉 and ℓ a 〈dimen〉sion, makes the stem
a curve which is similar to a straight line but has
had it’s center point ‘dragged’ the distance ℓ in d:

↑
↓

u

d

was typeset by

42

\xy

\POS (0,10) *\cir<2pt>{} ="a"

, (20,-10)*\cir<2pt>{} ="b"

\POS"a" \ar @/^1ex/ "b"|\uparrow

\POS"a" \ar @/_1ex/ "b"|\downarrow

%

\POS (20,10) *\cir<2pt>{} ="a"

, (40,-10)*\cir<2pt>{} ="b"

\POS"a" \ar @/u1ex/ "b"|u

\POS"a" \ar @/d1ex/ "b"|d

\endxy

ℓ defaults to .5pc if omitted.

This is really just a shorthand for curving using
the more general form described next: @/dℓ/ is
the same as @‘{{**{} ?+/d 2ℓ /}} which makes
the (quadratic) curve pass through the point de-
fined by the 〈pos〉 **{} ?+/dℓ/.

24p. Using @(d2,d2) where d1, d2 are simple
〈direction〉s (as described in note 4l except it is
not possible to use ()s) will typeset the arrow
curved such that it leaves the source in direction
d1 and enters the target from direction d2.

Exercise 28: Typeset

◦ •

(p.74)

To Do: implement this efficiently and properly
get rid of the no-() restriction!

24q. The final curve form is the most general one:
@‘{〈control point lists〉} sets the control points
explicitly to the ones in the 〈control point lists〉
(where they should be separated by ,). See the
curve extension described in §8 for the way the
control points are used; when the control points
list is parsed p is the source and c the target of
the arrow.

24r. @[. . .] and @*{. . . } formations define what ob-
ject 〈modifier〉s should be used when building ob-
jects that are part of the arrow. This is mostly
useful in conjunction with extensions that define
additional [〈shape〉] modifiers, e.g., if a [red]

〈modifier〉 changes the colour of an object to red
then @[red] will make the entire arrow red; sim-
ilarly if it is desired to make and entire arrow
invisible then @*{i} can be used.

24s. @<D> will slide (each segment of) the arrow the
dimension D as explained in note 24h.

24t. @? reverse the meaning of ‘above’ and ‘below’
for this particular arrow.

All the features of 〈path〉s described above are
available for arrows.

25 Two-cell feature

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{2cell}

This feature is designed to facilitate the typesetting
of curved arrows, either singly or in pairs, together
with labels on each part and between. The intended
mathematical usage is for typesetting categorical “2-
cell” morphisms and “pasting diagrams”, for which
special features are provided. These features also al-
low attractive non-mathematical effects.

25.1 Typesetting 2-cells in Diagrams

Categorical “2-cell” morphisms are used in the study
of tensor categories and elsewhere. The morphisms
are displayed as a pair of curved arrows, symmetri-
cally placed, together with an orientation indicated
by a short broad arrow, or Arrow. Labels may be
placed on all three components.

Bug: This document still uses version 2-style
commmands, as described in appendix B.

A

f

g

B

\diagram

A\rtwocell^f_g &B\\

\enddiagram

A

f

α

h

β
g B

\diagram

A\ruppertwocell^f{\alpha}

\rlowertwocell_h{\beta}

\rto_(.35)g & B\\

\enddiagram

These categorical diagrams frequently have a
matrix-like layout, as with commutative diagrams.
To facilitate this there are control sequences of the
form: \rtwocell , \ultwocell , \xtwocell , . . .
analogous to the names defined in xyv2 for use in
diagrams produced using xymatrix. As this involves
the definition of 21 new control sequences, many of

43

which may never be used, these are not defined im-
mediately upon loading xy2cell. Instead the user
must first specify \UseTwocells.

As in the second example above, just the
upper or lower curved arrow may be set using
control sequences of the form \..uppertwocell

and \..lowertwocell. These together with the
\..compositemap family, in which two abutting ar-
rows are set with an empty object at the join, al-
low for the construction of complicated “pasting dia-
grams” (see figure 16 for an example).

The following initialise the families of control se-
quences for use in matrix diagrams.

\UseTwocells two curves
\UseHalfTwocells one curve
\UseCompositeMaps 2 arrows, end-to-end
\UseAllTwocells (all the above)

Alternatively 2-cells can be set directly in XY-
pictures without using the matrix feature. In this
case the above commands are not needed. This is
described in §25.5.

Furthermore a new directional \dir{=>} can be
used to place an “Arrow” anywhere in a picture, after
the direction has been established appropriately. It
is used with all of the 2-cell types.

Labels are placed labels on the upper and lower
arrows, more correctly ‘anti-clockwise’ and ‘clock-
wise’, using ^ and _. These are entirely optional with
the following token, or grouping, giving the contents
of the label. When used with \..compositemap the
^ and _ specify labels for the first and second arrows,
respectively.

Normally the label is balanced text, set in TEX’s
math mode, with \twocellstyle setting the style.
The default definition is given by . . .

\def\twocellstyle{\scriptstyle}

This can be altered using \def in versions of TEX
or \redefine in LATEX. However labels are not re-
stricted to being simply text boxes. Any effect ob-
tainable using the XY-pic kernel language can be set
within an \xybox and used as a label. Alternatively
if the first character in the label is * then the label is
set as anXY-pic 〈object〉, as if with \drop<object> or
*<object> in the kernel language. The current direc-
tion is tangential to the curved arrows. Extra braces
are needed to get a * as the label, as in ^{{{*}}} or
_{{}*}.

The position of a label normal to the tangential
direction can also be altered by nudging (see below).
Although it is possible to specify multiple labels, only
the last usage of each of ^ and _ is actually set, pre-
vious specifications being ignored.

Similarly a label for the central Arrow must be
given, after the other labels, by enclosing it within
braces {...}. An empty group {} gives an empty
label; this is necessary to avoid misinterpretation of
subsequent tokens. As above if the first character is *
then the label is set as an XY-pic 〈object〉, the current
direction being along the Arrow.

25.2 Standard Options

The orientation of the central Arrow may be reversed,
turned into an equality, or omitted altogether. In
each case a label may still be specified, so in effect
the Arrow may be replaced by anything at all.

These effects are specified by the first token in the
central label, which thus has the form: {〈tok〉〈label〉}
where 〈tok〉 may be one of . . .

_ Arrow points clockwise
^ Arrow points anti-clockwise
= no tip, denotes equality

\omit no Arrow at all.

When none of these occurs then the default of _ is
assumed. If the label itself starts with one of these
characters then specify _ explicitly, or enclose the la-
bel within a group {...}. See Extra Options 1, for
more values of 〈tok〉. Also note that * has a special
role when used as the first character; however it is
considered to be part of the 〈label〉, see above.

25.3 Nudging

Positions of all labels may be adjusted, as can the
amount of curvature for the curved arrows. The way
this is done is by specifying a “nudge” factor 〈num〉
at the beginning of the label. Here 〈num〉 is a num-
ber which specifies the actual position of the label in
units of \xydashl@ (the length of a single dash, nor-
mally 5pt) except with \..compositemap, see below.
Movement is constrained to the perpendicular bisec-
tor of the line cp. When nudging the label for the
central Arrow it is the whole Arrow which is moved,
along with its label.

Curvature of the arrows themselves is altered by
a nudge of the form \..twocell〈num〉.... The sep-
aration of the arrows, along the bisector, is set to
be 〈num〉\xydashl@. When 〈num〉 is zero, that is
\..twocell<0>..., the result is a single straight ar-
row, its mid-point being the origin for nudging labels.
A negative value for 〈num〉 is also acceptable; but
check the orientation on the Arrow and which of ^
and _ correspond to which component.

The origin for nudging labels is where the arrow
crosses the bisector. Positive nudges move the label

44

f3

f4

f5

A

f1

f2

g1

f6

g4

f7 f8

B

g2

g3

Figure 16: Pasting diagram.

outwards while negative nudges move towards pc and
possibly beyond. The default position of a label is on
the outside, with edge at the origin.

The origin for nudging the Arrow is at the mid-
point of pc. A positive nudge moves in the clockwise
direction. This will be the direction of the arrowhead,
unless it has been reversed using ^.

Labels on a \..compositemap are placed relative
to the midpoint of the component arrows. Nudges
are in units of 1pt. Movement is in the usual XY-pic
above and below directions, such that a positive nudge
is always outside the triangle formed by the arrows
and line pc.

The special nudge value <\omit> typesets just the
Arrow, omitting the curved arrows entirely. When
used with labels, the nudge value <\omit> causes the
following label to be ignored.

Exercise 29: Give code to typeset figure 16.
Such code is relatively straight-forward, using “nudg-
ing” and \omit to help position the arrows, curves
and Arrows. It also uses an excursion, as described
below in the subsection Extra Options 3.

(p.74)

25.4 Extra Options

The following features are useful in non-mathematical
applications.

1. no Arrow

This is determined by special values for 〈tok〉 as the
first (or only) character in the central label, as in the
above description of the standard switches.

’ arrowheads pointing clockwise;
‘ arrowheads pointing anti-clockwise;
" arrow tips on both ends;
! no tips at all.

The central Arrow is omitted, leaving symmetrically
placed curved connections with arrowheads at the
specified ends. A label can be placed where the Ar-
row would have been.

If a special arrowhead is specified using ~’{..}

(see Extra Options 2, below) then this will be used
instead of the standard \dir{>}.

Clouds

precipitation

evaporation

H2O Oceans

\xymatrixcolsep{5pc}

\diagram

\relax\txt{Clouds }\rtwocell<10>

_{\hbox{\tiny evaporation }}

^{\hbox{\tiny precipitation }}

{’{\mathbf{H_2 O}}}

&\relax\txt{Oceans}\\

\enddiagram

Mathematics

theory

experiment

Physics

\xymatrixcolsep{5pc}

\diagram

\relax\txt{\llap{Math}ematics }\rtwocell

_{\hbox{\tiny experiment }}

^{\hbox{\tiny theory }}{"}

& \relax\txt{Physics} \\

\enddiagram

2. Changing Tips and Module Maps

The following commands are provided for specifying
the 〈object〉 to be used when typesetting various parts
of the twocells.

45

Syntax Action

〈twocell〉 −→ 〈2-cell〉〈switches〉〈Arrow〉 typeset 〈2-cell〉 with the 〈switches〉 and 〈Arrow〉
〈2-cell〉 −→ \..twocell typeset two curved arrows

| \..uppertwocell typeset upper curved arrow only
| \..lowertwocell typeset lower curved arrow only
| \..compositemap use consecutive straight arrows

〈Arrow〉 −→ {〈tok〉〈text〉} specifies orientation and label
| {〈nudge〉〈text〉} adjust position, use default orientation
| {〈text〉} use default position and orientation
| {〈tok〉*〈object〉} use 〈object〉 as the label
| {〈nudge〉*〈object〉} | {*〈object〉}

〈tok〉 −→ ^ | _ | = oriented anti-/clockwise/equality
| \omit no Arrow, default is clockwise
| ‘ | ’ | " | ! no Arrow; tips on two curved arrows as:

anti-/clockwise/double-headed/none

〈switches〉 −→ 〈switch〉〈switches〉 list of optional modifications

〈switch〉 −→ 〈empty〉 use defaults
| ^ 〈label〉 place 〈label〉 on the upper arrow
| _ 〈label〉 place 〈label〉 on the lower arrow
| 〈nudge〉 set the curvature, based on 〈nudge〉 value
| \omit do not set the curved arrows
| ! place \modmapobject midway along arrows
| ~ 〈what〉 { 〈object〉 } use 〈object〉 in place specified by 〈what〉

〈what〉 −→ 〈empty〉 set curves using the specified 〈object〉
| ^ | _ use 〈object〉 with upper/lower curve
| ‘ | ’ use 〈object〉 for arrow head/tail

〈label〉 −→ 〈text〉 | 〈nudge〉 〈text〉 set 〈text〉, displaced by 〈nudge〉
| *〈object〉 | 〈nudge〉*〈object〉 set 〈object〉, displaced by 〈nudge〉

〈nudge〉 −→ <〈number〉> use 〈number〉 in an appropriate way, e.g., to position
object or label along a fixed axis

| <\omit> do not typeset the object/label

Figure 17: 〈twocell〉s

46

command default

\modmapobject{〈object〉} \dir{|}
\twocellhead{〈object〉} \dir{>}

\twocelltail{〈object〉} \dir{}

\arrowobject{〈object〉} \dir{=>}

\curveobject{〈object〉}
\uppercurveobject{〈object〉} {}

\lowercurveobject{〈object〉} {}

These commands set the object to be used for all
subsequent 2-cells at the same level of TEX grouping.
\curveobject specifies both of the upper- and lower-
curve objects. For some of these there is also a way
to change the object for the current 2-cell only. This
requires a ~-〈switch〉 which is described below, except
for the \..curveobject types, which are discussed in
Extra Options 4.

These effects are specified by placing switches af-
ter the \..twocell control sequence, e.g. \rtwocell
switches labels Each switch is either a sin-
gle token 〈tok〉, or a ~〈tok〉 with a single argument:
~〈tok〉{arg}. Possibilities are listed in the following
table, in which {..} denotes the need for an argu-
ment.

\omit no arrows, Arrow and label only;
! place module-map indicator;

~’{..} change arrow-head to {..};
~‘{..} place/change tail on arrow(s);
~{..} change object used to set curves;
~^{..} use object {..} to set upper curve;
~_{..} use object {..} to set lower curve;

Here we discuss the use of !, ~’, ~‘ and \omit. The
description of ~^, ~_ and ~{..} is given in Extra Op-

tions 4.

The default module map indicator places a sin-
gle dash crossing the arrow at right-angles, located
roughly midway along the actual printed portion of
the arrow, whether curved or straight. This takes
into account the sizes of the objects being connected,
thereby giving an aesthetic result when these sizes dif-
fer markedly. This also works with \..compositemap

where an indicator is placed on each arrow. The ac-
tual object can be changed using \modmapobject.

Any of the standard XY-pic tips may be used for
arrow-heads. This is done using ~’{..}, for example
~’{\dir{>>}} gives double-headed arrows. Similarly
~‘{..} can be used to place an arrow-tail. Normally
the arrow-tail is , so is not placed; but if a non-empty
tail has been specified then it will be placed, using
\drop. No guarantee is offered for the desired result

being obtained when an arrow-tail is mixed with the
features of Extra Options 1.

P
⊗
M

⊗
M ′

f S

\modmapobject{\objectbox{\otimes}}

\xymatrixcolsep{5pc}

\diagram

P\rtwocell~!~’{\dir{>>}}~‘{\dir{|}}

^{<1.5>M}_{<1.5>M’}{=f} & S \\

\enddiagram

3. Excursions

Syntax for \xcompositemap and \x..twocell types
is a little different to what might be expected from
that for \xto, \xline, etc. For example,

\xtwocell[〈hop〉]{〈displace〉}...

connects to the 〈pos〉 displaced by 〈displace〉 from the
relative cell location specified by 〈hop〉. The displace-
ment can be any string of validXY-pic commands, but
they must be enclosed within a group {...}. When
the cell location is the target, a null grouping {} must

be given.

When used with the <\omit> nudge, such excur-
sions allow a labelled Arrow to be placed anywhere
within anXY-pic diagram; furthermore the Arrow can
be oriented to point in any direction.

4. Fancy curves

By specifying \curveobject an arbitrary object
may be used to construct the curved arrows. In-
deed with a \..twocell different objects can be
used with the upper and lower curves by specifying
\uppercurveobject and \lowercurveobject.

These specifications apply to all 2-cells subse-
quently constructed at the same level of TEX group-
ing. Alternatively using a ~-switch, as in Extra Op-

tions 2, allows such a specification for a single 2-cell
or curved part.

Objects used to construct curves can be of two
types. Either a single 〈object〉 is set once, with copies
placed along the curve. Alternatively a directional
object can be aligned with the tangent along the
curve. In this case use a specification takes the form:

\curveobject{〈spacer〉~**〈object〉}.
Here 〈spacer〉 may be any 〈object〉 of non-zero size.
Typically it is empty space, e.g. +〈dimen〉{}.

47

Exercise 30: Give code to typeset the following di-
agrams.

FUn
??

???
?????????

◦◦◦◦◦◦◦◦◦◦
◦

& gaMES

Ground
State

continuous power

pulsed emission

NiCd Excited
State

(p.74)

25.5 2-cells in general XY-pictures

Two-cells can also be set directly within any XY-
picture, without the matrix feature, using either
\drop or \connect.

\def\myPOS#1{\POS}\def\goVia#1{%

\afterPOS{\connect#1\myPOS}}

\xy

+{A}="A",+<1cm,1.5cm>+{B}="B",

+<2.0cm,0pt>*+{C}="C",

+<1cm,-1.5cm>*+{D}="D",

"A";\goVia{\uppertwocell^\alpha{}}"B"{}

;\goVia{\twocell^\zeta_\xi{\gamma}}"C"{}

;\goVia{\compositemap{}}"D"{},

"A";\goVia{\lowertwocell{}}"D"{}

\endxy

A

B C

D

α

ζ

ξ

γ

The code shown is a compact way to place a chain
of 2-cells within a picture. It illustrates a standard
technique for using \afterPOS to find a 〈pos〉 to be
used for part of a picture, then subsequently reuse it.
Also it is possible to use \drop or 〈decor〉s to specify
the 2-cells, giving the same picture.

\xy *+{A}="A",+<1cm,1.5cm>*+{B}="B",

+<2cm,0pt>*+{C}="C",

+<1cm,-1.5cm>*+{D}="D",

"A";"B",{\uppertwocell^\alpha{}},

"B";"C",{\twocell^\zeta_\xi{\gamma}},

"C"; \afterPOS{\drop\compositemap{}}"D"

\POS "A";

\afterPOS{\drop\lowertwocell{}}"D"

\endxy

The \connect variant is usually preferable as this
maintains the size of the object at c, while the \drop
variant leaves a rectangular object having p and c on
opposite sides.

26 Matrix feature

Vers. 3.14 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{matrix}

This option implements “XY-matrices”, i.e., matrices
where it is possible to refer to the entry objects by
their row/column address. We first describe the gen-
eral form of XY-matrices in §26.1, then in §26.2 we
summarise the new 〈coord〉inate forms used to refer
to entries. In §26.3 we explain what parameters can
be set to change the spacing and orientation of the
matrix, and in §26.4 we explain how the appearance
of the entries can be changed.

26.1 XY-matrices

The fundamental command of this feature is

\xymatrix 〈setup〉 {〈rows〉}

that reads a matrix of entries in the generic TEX
row&column format, i.e., where rows are separated
with \\ and contain columns separated with & (we
discuss in the following sections what 〈setup〉 can
be). Thus a matrix with maxrow rows and maxcol

columns where each entry contains row,col is entered
as

\xymatrix{

1,1 & 1,2 & · · · 1,maxcol \\

2,1 & 2,2 & 2,maxcol \\
...

. . .

maxrow,1 & maxrow,2 & maxrow,maxcol }

(TEXnically the & character represents any ‘alignment
tab’, i.e., character with category code 4).

A 〈matrix〉 can appear either in an XY-picture (as
〈decor〉) or “stand-alone”.

The aspects in which \xymatrix differs from or-
dinary matrix constructions, such as Plain TEX’s
\matrix{. . . } and LATEX’s array environment, are

48

• arbitrary XY-pic 〈decor〉ations may be specified
in each entry and will be interpreted in a state
where c is the current entry,

• the entire matrix is an object itself with refer-
ence point as the top left entry, and

• a progress message “<xymatrix rowsxcols

size>” is printed for each matrix with rows ×
cols entries and XY-pic complexity size (the
number of primitive operations performed), un-
less the declaration \SilentMatrices is issued.

• Entries starting with a * are special (described
in §26.4)11, so use {*} to get a *.

For example,

\xy

\xymatrix{A&B\\C&D}

\drop\frm{-}

\drop\cir<8pt>{}

\endxy

will typeset

A B

C D

Bug: Matrix nesting is not safe.
Matrices are often quite slow to typeset so as a

convenience all matrices can be set to compile (and
not) automatically with the declarations

\CompileMatrices

\NoCompileMatrices

Matrices can be compiled or not individually, by us-
ing the explicit commands \xymatrixcompile and
\xymatrixnocompile as well as by encapsulating in
the usual \xycompileto{name}{. . . } (see note 5e).

Note: Matrices will only compile correctly if all
entries start with a nonexpandable token, i.e., { or
\relax or some non-active character.

26.2 New coordinate formats

It is possible within entries to refer to all the entries of
theXY-matrix using the following special 〈coord〉inate
forms:

"r,c" Position and extents of en-
try in row r, column c (top
left is "1,1")

[∆r,∆c] ∆r rows below, ∆c
columns right of current
entry

[〈hop〉*] entry reached by 〈hop〉s;
each 〈hop〉 is one of dulr
describing one ‘move’ to a
neighbor entry

[〈hop〉+ 〈place〉] 〈place〉 on straight line to
non-empty [〈hop〉*]

So the current entry has the synonyms [0,0], [],
[rl], [ud], [dudu], etc., as well as its ‘absolute’
name "r,c".

These forms are useful for defining diagrams
where the entries are related, e.g.,

A

B C

was typeset by

$$\xy

\xymatrix{

A \POS[];[d]**\dir{~},

[];[dr]**\dir{-} \\

B & C \POS[];[l]**\dir{.} }

\endxy$$

If an entry outside the XY-matrix is referenced
then an error is reported.

In case several matrices are used in the same di-
agram, and they refer to each other, then it is useful
to give the matrices different "〈prefix〉" 〈setup〉 such
that they can refer to each other using the following
special coordinate forms that all have the same mean-
ing except the target entry is picked from a particular
matrix:

"〈prefix〉r,c"
["〈prefix〉"∆r,∆c]
["〈prefix〉" 〈hop〉*]

["〈prefix〉" 〈hop〉+ 〈place〉]

In fact absolute referencesmust always be given using
"〈prefix〉〈row〉,〈col〉", even inside the matrix itself .

Here is an example using this:

A B

C D

A′ B′

C ′ D′

was typeset (using the ‘frame’ extension and ‘arrow’
feature) by

\xy

\xymatrix"*"{%

A & B \\

C & D }%

11In general it is recommended that entries start with a non-expanding token, i.e., an ordinary (non-active) character, {, or
\relax, for compilation to work.

49

\POS*\frm{--}

\POS-(10,3)

\xymatrix{%

A’ \ar@{.}["*"] & B’ \ar@{.}["*"] \\

C’ \ar@{.}["*"] & D’ \ar@{.}["*"] }%

\POS*\frm{--}

\endxy

26.3 Spacing and rotation

Any matrix can have its spacing and orienta-
tion changed by adding 〈setup〉 ‘switches’ between
\xymatrix and the opening {.

The default spacing between entries of matrix is
changed with the switches

@R〈add op〉 〈dimen〉
@C〈add op〉 〈dimen〉
@ 〈add op〉 〈dimen〉

that change row spacing, column spacing, and both,
respectively, as indicated by the 〈add op〉 and
〈dimen〉, where the 〈dimen〉 may be omitted and can
be given as one of R and C to indicate the current
value of the parameter in question. Note: there is
no default .

In addition,XY-pic can be instructed to use a ‘fixed
grid’ for the matrix with the switches

@!R

@!C

@!

that ensure that the row spacing, column spacing,
and both, respectively, pretending that all entries
have the size of the largest entry (without modify-
ing the real size of the entries, of course, only the
spacing – to get the entries to really have the same
size use a @*. . . 〈setup〉 described in §26.4 below).
The special variants

@!0

@!=〈dimen〉

pretend that entries have zero or 〈dimen〉 height and
width for computing row and column spacing; as
above inserting R or C just after the ! makes this af-
fect only the row or column spacing, e.g., @!R0 means
that the row spacing only is between the centers of
the rows.

Finally, the spacing of things that are typeset can
be adjusted separately:

@M〈add op〉 〈dimen〉
@W〈add op〉 〈dimen〉
@H〈add op〉 〈dimen〉

@L〈add op〉 〈dimen〉

will adjust the entry margin, entry width, entry
height, and label separation used (the latter is ac-
tually passed to the arrow feature).

The spacing can also be changed for an entire TEX
group by the declarations

\xymatrixrowsep 〈add op〉 {〈dimen〉}
\xymatrixcolsep 〈add op〉 {〈dimen〉}

The default spacing for both is 2pc.
An entire matrix can be rotated by adding a ro-

tation 〈setup〉 of the form

@〈direction〉

This will set the orientation of the rows to 〈direction〉
(the default corresponds to r, i.e., rows are oriented
left to right).

26.4 Entries

The appearance of a single entry can be modified by
entering it as

* 〈object〉 〈pos〉 〈decor〉

This makes the particular entry ignore the entry mod-
ifiers and typeset as a kernel object with the same
reference point as the (center of) the default object
would have had.

Additional object 〈modifier〉s may be added to an
otherwise ordinary entry by using the forms

**[〈shape〉] 〈entry〉
**{〈modifier〉*} 〈entry〉

The first sets the default 〈shape〉 for objects
(cf. note 4j), the second a default size (change,
cf. note 4g), and the last makes it possible to add
any 〈object〉 modifier of §4, e.g., for recentering en-
tries after the default entry form which is equivalent
to ‘!C +<2 × objectmargin>’ (with the effect of cen-
tering the object and add the objectmargin) to all
sides.

Exercise 31: Typeset the following diagram:

A×B
/A

/B

B

×A

A
B×

B ×A

(p.74)
It is also possible to use these @〈setup〉s (as usual

between \xymatrix and the leading {):

@*[〈shape〉]

50

@* 〈add op〉 〈size〉

which are equivalent to changing all entries to behave
as if they had started with the similar **-form. To
Do: Allow **〈add op〉〈size〉 〈entry〉 for entries.

If the default set of entry modifiers should be
changed then the following declaration must be issued
before the \xymatrix command; this is the only way
to actually switch the initial default centering and
spacing off:

\entrymodifiers={ 〈modifier〉* }

Be warned, however, that changing the entry modi-
fiers in this way cancels any spacing setup commands
discussed in §26.3 above – indeed the default modi-
fiers combine two things: (1) align entry as if given
the modifiers +!!A, and (2) ensure that the entry has
at least the size requested by any spacing setup. The
default entry modifiers can be reestablished with

\entrymodifiers={!V\entrybox}

The default alignment was changed for version 3.8
following the analysis of Alex Perlis [12]; to use the
entry alignment used prior to version 3.8 you can use

\entrymodifiers={!C\entrybox}

Exercise 32: How did the author typeset the fol-
lowing matrix?

A

B

C

D

(p.75)
Bug: The four constructions @*[. . .], **[. . .],

@* 〈add op〉 〈size〉, and, **{. . . }, accumulate in re-

verse order . Only entries starting with a single *

completely override the modifiers 〈setup〉 with a @*-
construction.

Finally, @1 is short for @M=1pt, i.e., setting the
object margin to 1pt.

The individual entries can also be augmented us-
ing the following declaration, which will setup 〈decor〉
that should be inserted before everything else in each
entry. Initially it is empty but

\everyentry={ 〈decor〉 }

will insert 〈decor〉 first in each entry; inside the
counter registers \Row and \Col are set to the current
entry’s row and column, respectively. For example,

\everyentry={{\the\Row,\the\Col}}

\xymatrix @*[F]@*[o] {

{} \POS[];[r]**\dir{..} & \\

{} \POS[];[ur]**\dir{--}

}

will typeset

1, 1 1, 2

2, 1

Note: When using compilation, changes to
\everyentry and \entrymodifiers will not result
in recompilation even when the constructed matrix
changes – you may have to remove the .xyc file man-
ually.

Exercise 33: How did the author typeset the fol-
lowing diagram?

:
root

•
•
1

Hints : The arrow feature was used to make the bend-
ing arrows and the frame extension for the frames
around each cell. (p.75)

27 Graph feature

Vers. 3.11 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{graph}

This option implements ‘XY-graph’, a special combi-

natoric drawing language suitable for diagrams like
flow charts, directed graphs, and various forms of
trees. The base of the language is reminiscent of the
PIC [5] language because it uses a notion of the ‘cur-
rent location’ and is based on ‘moves’. But the central
construction is a ‘map’ combinator that is borrowed
from functional programming.

XY-graph makes use of facilities of the ‘arrow’ fea-
ture option of §24, which is therefore required.

Figure 18 summarises the syntax of a 〈graph〉 with
notes below. A 〈graph〉 can appear either in an XY-
picture (as 〈decor〉) or “stand-alone”.12 Note: If

12In fact LATEX users can use a graph environment.

51

Syntax Action

\xygraph{〈graph〉} typeset 〈graph〉
〈graph〉 −→ 〈step〉* interpret 〈step〉s in sequence

〈step〉 −→ 〈node〉 move27a to the 〈node〉
| -〈arrow〉 〈node〉 〈labels〉 draw27b line to 〈node〉, with 〈labels〉
| :〈arrow〉 〈node〉 〈labels〉 draw27b 〈arrow〉 to 〈node〉, with 〈labels〉
| (〈list〉) map27c current node over 〈list〉

〈node〉 −→ [〈move〉] new node 〈move〉d relative to current

| & | \\ new node in next column/row27d

| "〈id〉" previously saved27e node

| ? currently mapped27c node

| 〈node〉 〈it〉 〈node〉 with 〈it〉 typeset and saved27e there

| 〈node〉 = "〈id〉" 〈node〉 saved27e as "〈id〉"
| 〈node〉 ! 〈escape〉 augment node with material in another mode

〈move〉 −→ 〈hop〉* 〈hop〉s27f (dulr) from current node

| 〈hop〉* 〈place〉 〈move〉 do 〈hop〉s27f but use its 〈place〉 and 〈move〉 again
〈list〉 −→ 〈graph〉 , 〈list〉 | 〈graph〉 list of subgraphs27c

〈escape〉 −→ { 〈pos〉 〈decor〉 } perform 〈pos〉 〈decor〉27g
| M 〈matrix〉 insert 〈matrix〉27h
| P 〈polygon〉 insert 〈polygon〉27i
| E 〈ellipse〉 insert 〈ellipse〉27i
| ~ 〈setup〉 setup parameters27j

Figure 18: 〈graph〉s

you use \xygraph{. . . } inside constructions where &

is significant (like plain TEX’s \halign or LATEX’s
array environment) then make sure to add an extra
level of braces around it.

Notes

27a. A move is to establish a new current node.

27b. To draw something is simply to draw a line or
the specified 〈arrow〉 from the current node to the
specified target node. The target then becomes
the current node. All the features of arrows as
described in §24 can be used, in particular ar-
rows can be labelled and segmented, but with
the change that 〈path-pos〉 means 〈node〉 as ex-
plained in note §24e.

27c. To map over a list is simply to save the cur-
rent node and then interpret the 〈list〉 with the
following convention:

• Start each element of the list with the cur-
rent node as saved and p as the previous list
element, and

• let the ? 〈node〉 refer to the saved current
node explicitly.

27d. The & and \\ special moves are included to
make it simple to enter ‘matrix-like’ things as
graphs – note that they will not be automati-
cally aligned, however, for that you should use
the !M escape.

& is the same as [r] and \\ is the same as
[r]!{y+(0,-1)-(0,0)} which uses a kernel es-
cape to moves to the first column in the next row
(where the first column is on the y-axis of the
current coordinate system).

Note: If you use the form *{. . . } for nodes then
you don’t have to change them if you decide to
use an XY-matrix.

27e. Typeset 〈it〉 and make it the current node. Also
saves 〈it〉 for later reference using "〈id〉": if 〈it〉
is a simple letter, or digit, then just as "〈it〉"; if
〈it〉 is of the form {text} or *. . . {text} then as
"text".

With the = addition it is possible to save explic-

52

itly in case several nodes have the same text or
a node has a text that it is impractical to use for
reference. In fact using the form 〈it〉="〈id〉" will
only save the node as "〈id〉" and not as "〈it〉"! As
a special convenience "" (thus the empty 〈id〉) al-
ways refers to the last completed node, so adding
="" after a node merely means it should not be
saved under its proper name.

Exercise 34: How did the author typeset this?

A A A

(p.75)

27f. Moving by a series of hops is simply mov-
ing in a grid as the sequence of dulr (for
down/up/left/right) indicates. The grid is a
standard cartesian coordinate system with 3pc
unit unless the current base is redefined using
[]!{. . . } with an appropriate 〈pos〉ition contain-
ing : and :: as described in note 3d.

To Do: Describe the use of 〈move〉s with 〈place〉s
in detail . . . in particular (1) ‘until perpendicular
to . . . ’ and (2) ‘until intercepts with . . . ’ can be
coded. . .

27g. This ‘escapes’ into the XY-pic kernel language
and interprets the 〈pos〉 〈decor〉. The current
node is then set to the resulting c object and the
grid from the resulting base.

The effect of the 〈pos〉 〈decor〉 can be completely
hidden from XY-graph by entering it as {\save

〈pos〉 〈decor〉 \restore}.

27h. It is possible to insert a 〈matrix〉 in a graph
provided the ‘matrix’ option described in §26 has
been loaded: it overwrites the node with the re-
sult of \xymatrix〈matrix〉. Afterwards the graph
grid is set as the top left ‘square’ of the matrix,
i.e., with [d] and [r] adjusted as they work in
the top left entry.

Bug: [dr] immediately after the matrix will
work as expected, e.g., make the center of "2,2"
the current node, but others might not, e.g., [rr]
will not necessarily place the current node on top
of "1,3".

27i. It is possible to insert a 〈polygon〉 or an 〈ellipse〉
in a graph provided the poly option described
in §28 or the arc option described in §30 has
been loaded, respectively: it will have c as the
current node, p as the previous one, and the the
current base has the 〈hop〉s [r] and [u] as base
vectors.

Note: lattices, knots, etc., can also be used but
no special syntax is useful since the !{. . . } syntax
is adequate.

27j. This allows setting of some parameters of the
graph: !~〈setup〉 should be one of the following:

!~:{ 〈arrow〉 } include with every : arrow
!~-{ 〈arrow〉 } include with every - line
!~*{ 〈modifiers〉 } include with every non-*

node
!~〈letter〉{ 〈graph〉 } define new graph escape

!〈letter〉
These are destructive: the previous value is lost;
the default is established by the sequence !~:{}

!~-{@{-}} !~*{+} making : create simple ar-
rows, - plain lines, and formatting default nodes
in math mode with the default objectmargin.

The last possibility is also available as a com-
mand

\newgraphescape{〈letter〉}{〈graph〉}
that makes the specified escape generate the
〈graph〉 as a macro; with it it is possible to pass
arguments to the 〈graph〉 using the standard TEX
\def method: The declaration code

\newgraphescape{i}#1#2{

[]!{+0="o#2"*=<10pt>{};p!#1**{},"o#2"

-/4pt/*!E\cir<2pt>{}

+0;p-/:a(-30)24pt/**\dir{-}="X2"

;p-/:a(-60)24pt/="X1"**\dir{-}

;?(.5),="i#2",

p-/:a(-60)24pt/**\dir{-},

"o#2"."i#2"."X1"."X2"}}

is (rather complicated kernel code) that makes
the node escape !idn typeset an ‘inverter’ ori-
ented with the d corner as the output with input
named "in" and output named "on" such that
the graph

\xygraph{ []!iR1 ("i1"[l]x - "i1") - [r]z }

will typeset

x z

The final exercise illustrates much of the above.

Exercise 35: Typeset

w

x1

z

y

x2

(p.75)

53

28 Polygon feature

Vers. 3.11 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{poly}

This feature provides a means for specifying the loca-
tions of vertices for regular polygons, with any num-
ber (≥ 3) of sides. Polygons can be easily drawn
and/or the vertex positions used to constuct com-
plex graphics within anXY-picture. Many non-regular
polygons can be specified by setting a non-square ba-
sis.

A polygon is most easily specified using . . .

\xypolygon〈number〉{} with 〈number〉 sides;
\xypolygon〈number〉{〈tok〉} 〈tok〉 at vertices;
\xypolygon〈number〉{〈object〉}

with a general 〈object〉 at each vertex;

Here 〈number〉 is a sequence of digits, giving the num-
ber of sides. If used within an \xy. . . \endxy envi-
ronment then the polygon will be centred on c, the
current 〈pos〉. However an \xypolygon can be used
outside such an environment, as “stand-alone” poly-
gon; the whole picture must be specified within the
\xypolygon command.

In either case the shape is obtained by spacing ver-
tices equally around the “unit circle” with respect to
the current basis. If this basis is non-square then the
vertices will lie on an ellipse. Normally the polygon,
with at most 12 vertices, is oriented so as to have
a flat base when specified using a standard square
basis. With more than 12 vertices the orientation is
such that the line from the centre to the first vertex
is horizontal, pointing to the right. Any other de-
sired orientation can be obtained, with any number
of vertices, by using the ~={. . . } as described below.

The general form for \xypolygon is . . .

\xypolygon〈number〉"〈prefix〉"{〈switches〉. . . }

where the "〈prefix〉" and 〈switches〉 are optional.
Their uses will be described shortly.

A \xypolygon establishes positions for the ver-
tices of a polygon. At the same time various things
may be typeset, according to the specified 〈switches〉.
An 〈object〉 may be dropped at each vertex, “spokes”
drawn to the centre and successive vertices may
be connected as the polygon’s “sides”. Labels and
breaks can be specified along the spokes and sides.

Each vertex is automatically named: "1", "2",
. . . , "〈number〉" with "0" as centre. When a
〈prefix〉 has been given, names "〈prefix〉0", . . . ,
"〈prefix〉〈number〉" are used instead. While the poly-
gon is being constructed the macro \xypolynum ex-
pands to the number of sides, while \xypolynode

expands to the number of each vertex, spoke and
side at the time it is processed. This occurs in the
following order: vertex 1, spoke 1, vertex 2, spoke 2,
side 1, vertex 3, spoke 3, side 2, . . . , vertex n, spoke n,
side n − 1, side n where the final side joins the last
vertex to the first.

The macro \xypolyname holds the name of the
polygon, which is 〈prefix〉 if supplied. In this
case the value of \xypolynum is also stored as
\〈prefix〉NUMSIDES, accessible outside the polygon.

As stated above, a polygon with up to 12 ver-
tices is oriented so as to have a flat base, when drawn
using a standard square basis. Its vertices are num-
bered in anti-clockwise order, commencing with the
one at horizontal-right of centre, or the smallest angle
above this (see example below). With more than 12
vertices then vertex "1" is located on the horizontal,
extending to the right from centre (assuming a stan-
dard square basis). By providing a switch of the form
~={〈angle〉} then the vertex "1" will be located on
the unit circle at 〈angle〉◦ anti-clockwise from “hor-
izontal” — more correctly, from the X-direction in
the basis to be used when setting the polygon, which
may be established using a ~:{. . . } switch.

•

• •

1

2 3

0 1

23

4

5 6

0
1

2
3

4

5

6

7 8

9

Exercise 36: Give code to typeset these. (p.75)
One important use of 〈prefix〉 is to allow the ver-

tices of more than one polygon to be accessed sub-
sequently within the same picture. Here are some
examples of this, incorporating the ~:{. . . } switch
to perform simple rescalings. Firstly the edges of a
dodecahedron as a planar graph:

\xy /l1.5pc/:,{\xypolygon5"A"{}},

{\xypolygon5"B"{~:{(1.875,0):}~>{}}},

{\xypolygon5"C"{~:{(-2.95,0):}~>{}}},

{\xypolygon5"D"{~:{(-3.75,0):}}},

54

{"A1"\PATH~={**@{-}}’"B1"’"C4"’"B2"},

{"A2"\PATH~={**@{-}}’"B2"’"C5"’"B3"},

{"A3"\PATH~={**@{-}}’"B3"’"C1"’"B4"},

{"A4"\PATH~={**@{-}}’"B4"’"C2"’"B5"},

{"A5"\PATH~={**@{-}}’"B5"’"C3"’"B1"},

"C1";"D1"**@{-},"C2";"D2"**@{-},

"C3";"D3"**@{-},"C4";"D4"**@{-},

"C5";"D5"**@{-} \endxy

Next a hexagonal pyramid, a rectangular box and
an octahedral crystal specified as a triangular anti-
prism. Notice how the ~:{. . . } switch is used to
create non-square bases, allowing the illusion of 3D-
perspective in the resulting diagrams:

\xy/r2pc/: ="A", +(.2,1.5)="B","A",

{\xypolygon6{~:{(1,-.1):(0,.33)::}

~<>{;"B"**@{-}}}}\endxy

\quad \xy /r2pc/:

{\xypolygon4"A"{~:{(0,.7)::}}},+(.7,1.1),

{\xypolygon4"B"{~:{(.8,0):(0,.75)::}}},

"A1";"B1"**@{.},"A2";"B2"**@{.},

"A3";"B3"**@{.},"A4";"B4"**@{.}

\endxy\quad \xy /r2pc/:

{\xypolygon3"A"{~:{(0,.7)::}}},+(.7,1.1),

{\xypolygon3"B"{~:{(-.85,0):(-.15,.8)::}}}

,"A1"\PATH~={**@{.}}’"B2"’"A3"’"B1"

’"A2"’"B3"’"A1" \endxy

Vertex object: Unless the first character is ~, sig-
nifying a “switch”, then the whole of the braced ma-
terial is taken as specifying the 〈object〉 for each ver-
tex. It will be typeset with a circular edge using
\drop[o]..., except when there is just a single token
〈tok〉. In this case it is dropped as \drop=0{〈tok〉},
having zero size. An object can also be dropped at
each vertex using the switch ~*{. . . }, in which case
it will be circular, with the current objectmargin ap-
plied.

The next example illustrates three different ways
of specifying a \circ at the vertices.

◦
◦◦◦◦

◦
◦
◦ ◦ ◦ ◦

◦ ◦
◦

◦◦
◦
◦
◦
◦ ◦

◦

◦
◦◦

◦
◦
◦ ◦

◦

\xy/r2pc/: {\xypolygon12{\circ}},

+/r5pc/,{\xypolygon10{~<{-}~>{}{\circ}}},

+/r5pc/,{\xypolygon8{~*{\circ}~<=}}\endxy

Switches
The allowable switches are given in the following ta-
ble:

~:{. . . } useful for rescaling.
~*{〈object〉} 〈object〉 at each vertex.
~={〈angle〉} align first vertex.
~<{. . . } directional for “spokes”;
~<<{〈arrow〉} use 〈arrow〉 for spokes;
~<>{. . . } labels & breaks on spokes.
~>{. . . } directional for “sides”;
~><{〈arrow〉} use 〈arrow〉 for sides;
~>>{. . . } labels & breaks on sides.

Using ~<<{〈arrow〉} or ~><{〈arrow〉} is most ap-
propriate when arrowheads are required on the sides
or spokes, or when labels/breaks are required. Here
〈arrow〉 is as in figure 15, so it can be used simply to
specify the style of directional to be used. Thus ~<<{}
sets each spoke as a default arrow, pointing outwards
from the centre; ~<<{@{-}} suppresses the arrow-
head, while ~><{@{}} uses an empty arrow along the
sides. Labels and breaks are specified with ~<>{. . . }
and ~>>{. . . }, where the {. . . } use the notation for a
〈label〉, as in figure 14.

When no tips or breaks are required then the
switches ~<{. . . } and ~>{. . . } are somewhat faster,
since less processing is needed. Labels can still be
specified with ~<>{. . . } and ~>>{. . . }, but now us-
ing the kernel’s 〈place〉 notation of figure 1. In fact
any kernel code can be included using these switches.
With ~<> the current p and c are the centre and
vertex respectively, while for ~>> they are the cur-
rent vertex and the previous vertex. (The connection
from vertex "〈number〉" to vertex "1" is done last.)
The pyramid above is an example of how this can be
used. Both ~<{. . . } and ~<<{〈arrow〉} can be speci-
fied together, but only the last will actually be used;
similarly for ~>{. . . } and ~><{〈arrow〉}.

A

B α1

C

α2

D

α3

E
α4

Fα5

G

α6

α7

\def\alphanum{\ifcase\xypolynode\or A

\or B\or C\or D\or E\or F\or G\or H\fi}

\xy/r3pc/: {\xypolygon3{~={40}}},

{\xypolygon4{~={40}~>{{--}}}},

{\xypolygon5{~={40}}},

{\xypolygon6{~={40}~>{{--}}}},

{\xypolygon11{~={40}}},

{\xypolygon50{~={40}~>.}}, +/r8pc/,

55

{\xypolygon7{~<<{@{-}}~><{}

~<>{|*@{x}}~*{\alphanum}

~>>{_{\alpha_\xypolynode^{}}}}}

\endxy

Use of the ~={. . . } switch was described earlier.
When using the ~:{. . . } more can be done than just
setting the base. In fact any kernel code can be sup-
plied here. It is processed prior to any other part of
the polygon. The graphics state has c at the centre
of the polygon, p at the origin of coordinates within
the picture and has basis unchanged from what has
previously been established. The current point c will
be reset to the centre following any code interpreted
using this switch.

A further simplification exists for sides and spokes
without 〈arrow〉s. If 〈tok〉 is a single character then
~>〈tok〉, ~>{〈tok〉}, ~>{{〈tok〉}} all specify the direc-
tional \dir{〈tok〉}; similarly with the ~< switch. On
the other hand, compound directionals require all the
braces, e.g. ~>{{--}} and ~>{2{.}}.

After all switches have been processed, remaining
tokens are used to specify the 〈object〉 for each ver-
tex. Such tokens will be used directly after a \drop,
so can include object 〈modifier〉s as in figure 3. If
an 〈object〉 has already been specified, using the ~*

switch, then the following message will be written to
the TEX log:

Xy-pic Warning: vertex already specified,

discarding unused tokens:

with tokens at the end indicating what remains un-
processed. Similarly extra tokens before the {. . . }
generate a message:

Xy-pic Warning: discarding unused tokens:

Nested Polygons

When \xypolygon is specified within either a
~<>{. . . } or ~>>{. . . } switch for another polygon,
then the inner polygon inherits a name which in-
corporates also the number of the part on which it
occurs, as given by \xypolynode. This name is ac-
cessed using \xypolyname. In the following example
the inner polygon is placed using ~<> in order to eas-
ily adjust its orientation to the outward direction of
the spokes.

1

1, 1

1, 2

1, 3

1, 42 2, 1

2, 2

2, 3

2, 4

3

3, 1

3, 2

3, 3

3, 4 44, 1

4, 2

4, 3

4, 4

\xypolygon4{~:{/r5pc/:}

~<>{*\frm<8pt>{o}\xypolygon4{~:{/-2pc/:}

~*{\xypolyname\xypolynode}}}

[o]=<5pc>{\xypolynode}}

Notice how nested polygons inherit names "1,1",
"1,2", . . . , "4,1", . . . , "4,4" for their vertices. If
a 〈prefix〉 is supplied at the outermost level then the
names become: "〈prefix〉i, j". Specifying a 〈prefix〉
for the inner polygon overrides this naming scheme.
The same names may then be repeated for each of
the inner polygons, allowing access afterwards only
to the last—possibly useful as a memory saving fea-
ture when the vertices are not required subsequently.

Four levels of nesting gives a quite acceptable
“Sierpinski gasket”. The innermost triangle is pro-
vided by \blacktriangle from the AMS symbol font
msam5, at 5-point size. Further levels can be achieved
using the PostScript backend, otherwise line seg-
ments become too small to be rendered usingXY-fonts.

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

N
NN
N
NN

N
NN

\font\msamv=msam5 at 5pt

\def\blacktriangle{{\msamv\char’116}}

\def\objectstyle{\scriptscriptstyle}

\xypolygon3{~:{/r5.2pc/:}

~>{}~<>{?\xypolygon3"a"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"b"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"c"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"d"{~:{(.5,0):}

~<>{?*!/d.5pt/=0\hbox{\blacktriangle}}

}} }} }} }} }

Note the use of naming in this example; when pro-
cessing this manual it saves 13,000+ words of main

56

memory and 10,000+ string characters as well as 122
strings and 319 multi-letter control sequences.

29 Lattice and web feature

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{web}

This feature provides macros to facilitate typesetting
of arrangements of points within a 2-dimensional lat-
tice or “web-like” structure.

Currently the only routines implemented with this
feature are some “quick and dirty” macros for drop-
ping objects at the points of an integer lattice. To
Do: More sophisticated routines will be developed
for later versions of XY-pic, as the need arises.

Mathematically speaking, let ~u and ~v be vectors
pointing in independent directions within the plane.
Then the lattice spanned by ~u and ~v is the infinite
set of points L given by:

L =
{
a ~u+ b~v ; for a, b integers

}
.

Within XY-pic the vectors ~u and ~v can be established
as the current coordinate basis vectors. The following
macros typeset a finite subset of an abstract lattice.

\xylattice#1#2#3#4 points in lattice
\croplattice#1#2#3#4#5#6#7#8

. . . in specific rectangle.

The parameters #1 . . . #4 are to be integers amin,
amax, bmin and bmax, so that the portion of the lat-
tice to be typeset is that collection of vectors in L for
which amin ≤ a ≤ amax and bmin ≤ b ≤ bmax.

◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

◦
◦

◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦

•a
s(1)

s(2)

\def\latticebody{%

\ifnum\latticeA=1 \ifnum\latticeB=-1 %

\else\drop{\circ}\fi\else\drop{\circ}\fi}

\xy *\xybox{0;<1.5pc,1mm>:<1mm,1.5pc>::

,0,{\xylattice{-4}4{-3}3}

,(1,-1)="a"*{\bullet}*+<2pt>!UL{a}

,(-1,1)."a"*\frm{.}}="L"

,{"L"+L \ar "L"+R*+!L{s^{(1)}}}

,{"L"+D \ar "L"+U*+!D{s^{(2)}}}

\endxy

In the above code, notice how the basis is first
established then the \xylattice typeset. Doing
this within an \xybox allows axes to be sized and
placed appropriately. Since lattice points are deter-
mined by their (integer) coordinate displacements,
they can be revisited to add extra 〈object〉s into
the overall picture. More generally, the origin for
lattice-coordinates is the current 〈pos〉 c, when the
\xylattice command is encountered. Easy accessi-
bility is maintained, as seen in the next example.

When the basis vectors ~u and ~v are not perpendic-
ular the collection of points with a, b in these ranges
will fill out a skew parallelogram. Generally it is use-
ful to plot only those points lying within a fixed rect-
angle. This is the purpose of \croplattice, with its
extra parameters #5 . . . #8 determining the ‘cropping’
rectangle within which lattice points will be typeset.
Other points will not be typeset even when a and b
are within the specified ranges. Explicitly the hor-
izontal range of the cropping rectangle is Xmin to
Xmax, with Xmin being the X-coordinate of the vec-
tor #5 × ~u, where #5 is a 〈number〉 (not necessarily
an integer). Similarly Xmax is the X-coordinate of
#6×~u. The vertical extents are Ymin and Ymax, given
by the Y -coordinates of #7×~v and #8×~v respectively.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•α

•β
s(1)

s(2)

\def\latticebody{%

\ifnum\latticeA=1 \ifnum\latticeB=-1 %

\else \drop{\circ}\fi\else

\ifnum\latticeA=0 \ifnum\latticeB=1\else

\drop{\circ}\fi\else\drop{\circ}\fi\fi}

\xy +(2,2)="o",0*\xybox{%

0;<3pc,1.5mm>:<0.72pc,1.65pc>::,{"o"

\croplattice{-4}4{-4}4{-2.6}{2.6}{-3}3}

,"o"+(0,1)="a"*{\bullet}*+!D{\alpha}

,"o"+(1,-1)="b"*{\bullet}*+!L{\beta}

,"o"+(0,-1)="c","o"+(-1,1)="d"

,"a"."c"="e",!DR*{};"a"**\dir{.}

,"e",!UL*{};"c"**\dir{.}

,"b"."d"="f",!DL*{};"b"**\dir{.}

,"f",!UR*{};"d"**\dir{.}

57

,"e"."f"*\frm{.}}="L","o"."L"="L"

,{"L"+L \ar "L"+R*+!L{s^{(1)}}}

,{"L"+D \ar "L"+U*+!D{s^{(2)}}}

\endxy

The \latticebody macro. At each lattice point
within the specified range for a, b (and within the
cropping rectangle when \croplattice is used), a
macro called \latticebody is expanded. This is
meant to be user-definable, so as to be able to adapt
to any specific requirement. It has a default expan-
sion given by . . .

\def\latticebody{\drop{\bullet}} .

The following macros may be useful when specifying
what to do at each point of the lattice.

\latticebody expanded at lattice points
\defaultlatticebody resets to default
\latticeA a-value of lattice point
\latticeB b-value of lattice point
\latticeX X-coord, offset in pts. . .
\latticeY Y -coord, . . . from lattice

origin.

As in the examples presented above, the object
dropped at the lattice point can be varied according
to its location, or omitted altogether.

In the final example the \latticebodymacro per-
forms a calculation to decide which lattice points
should be emphasised:

.

.

.

.

.

.

.

•

.

.

.

.

•

.

.

.

•

.

•

•

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

.

.

.

.

.

.

.

•

.

.

.

.

.

σ(1)

σ(2)

\def\latticebody{\dimen0=\latticeX pt

\ifdim\dimen0>0pt \divide\dimen0 by 64

\dimen0=\latticeY\dimen0 \relax

\ifdim 0pt>\dimen0 \dimen0=-\dimen0 \fi

\ifdim 10pt>\dimen0 \drop{\bullet}%

\else\drop{.}\fi \else\drop{.}\fi}

\xy*\xybox{0;<3pc,2.57mm>:<.83pc,2.25pc>::

,0,{\croplattice{-3}5{-5}5

{-1.3}{4.5}{-3.4}{4.4}}}="L"

,{"L"+L \ar "L"+!R*+!L{\sigma^{(1)}}}

,{"L"+D \ar "L"+!U*+!D{\sigma^{(2)}}}

\endxy

30 Circle, Ellipse, Arc feature

Vers. 3.8 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{arc}

This feature provides a means to a specify circles of
arbitrary radius, drawn with a variety of line styles.
Similarly ellipses may be specified, having arbitrary
major/minor axes aligned in any direction. A circu-
lar arc joining two points can be constructed with
specified tangent direction at one end.

All the curves described here—circles, ellipses and
sectors of these—are constructed using the curves
from the xycurve extension. As such any com-
ments given there concerning memory requirements
are equally valid here, perhaps even more so. Use
of the xyps PostScript back-end is highly recom-
mended.

30.1 Full Circles

The xyarc feature allows a much wider range of pos-
sibilities for typesetting circles than is available with
\cir. Firstly the radius is no longer restricted to a
finite collection of sizes. Secondly fancy line (curve)
styles are available, as with curved arrows. Finally
there are a variety of ways of specifying the desired
radius, relative to other parts of the picture being
built, as in the following example.

•
p

• c

\xy 0;/r5pc/:*\dir{*}="p",*+!DR{p};

p+(.5,-.5)*\dir{*}="c",*+++!L{c}**\dir{-}

,{\ellipse<>{:}},{\ellipse(.5){}}

,0;(.5,.5)::,"p";"c",{\ellipse(.5){.}}

,{\ellipse<5pt>{=}}\endxy

The following give circles centred at c.

\ellipse<>{〈style〉} radius = dist(p, c)

58

\ellipse<〈dimen〉>{..} radius is the 〈dimen〉
\ellipse(〈num〉){〈style〉} unit circle scaled 〈num〉,

in the current basis.

Note that if the current basis is not square then the
latter variant, namely \ellipse(〈num〉), will type-
set an ellipse rather than a circle. On the other hand
the first two variants always specify true circles. In
the 2nd case, i.e. when 〈dimen〉 is 〈empty〉, the size
of the object at p is taken into account when drawing
the circle; if this is not desired then kill the size using
a null object, e.g. ;*{};.

Currently the \ellipse macro works only as a
〈decor〉. In future versions there will be an 〈object〉
called \arc having elliptical shape, via \circleEdge

with possibly unequal extents. Also it will be possible
to \connect\arc, which will set the current connec-
tion so that any place on the full ellipse, not just the
visible sector, will be accessible using an extension to
the usual 〈place〉 mechanism.

To Do: make this be!!

30.2 Ellipses

There are several ways to specify an ellipse, apart
from the method illustrated above in which the ba-
sis must be changed from square. Basically we must
specify the lengths of the major and minor axes. Also
it is necessary to specify an alignment for one axis.

In the following, the ellipse is centred on c and one
axis is aligned along the line pc, except with the final
variant where it aligns with the current basis. When
used 〈num〉 is treated as a scale factor, multiplying
an appropriate length.

\ellipse<〈dimen〉,〈dimen〉>{..} given axes lengths
\ellipse<,〈dimen〉>{〈style〉} one axis is pc
\ellipse(,〈num〉){〈style〉} ...perp. axis scaled
\ellipse(〈num〉,〈num〉){..} scaled axes aligned

with basis.

In the latter variant, if the second 〈num〉 is
〈empty〉 then this is equivalent to both 〈num〉s hav-
ing the same value, which is in turn equivalent to the
final variant for circles.

•
p

•
c

\xy 0;/r5pc/:*\dir{*},*++!DR(.5){p}

\frm{-};p+(.5,-.5)\dir{*}="c",

**\dir{-},*+!UL{c},"c",

,{\ellipse(1,.4){:}},{\ellipse(,.75){}}

,{\ellipse<15pt,10pt>{=}}

;*{};{\ellipse<,10pt>{.}}\endxy

30.3 Circular and Elliptical Arcs

The xyarc feature handles arcs to be specified in
two essentially different ways, according to what in-
formation is provided by the user. We call these
the “radius-unknown/end-points known” and the
“radius-known/end-points unknown” cases.

radius unknown, end-points known

The simplest case, though not necessarily the most
common, is that of a circular arc from p to c, with ra-
dius and centre unspecified. To uniquely specify the
arc, the tangent direction at p is taken to be along the
current direction, given by \Direction, as set by the
latest 〈connect〉ion. If no connection has been used,
then the default 〈direction〉 is “up”.

\ellipse_{〈style〉} clockwise arc from p to c
\ellipse^{〈style〉} counter-clockwise arc
\ellipse{〈style〉} also counter-clockwise

With this information only, a unique circle can be
found whose radius and centre need not be specified
in advance. For a unique arc it is sufficient to specify
the orientation around the circle.

The exception is when the current direction is
from p to c, in which case no circle exists. Instead a
straight line is typeset accompanied by the following
message:

Xy-pic Warning: straight arc encountered

The following example shows how, given three
points o, p and c, to continue the line op by a cir-
cular arc to c joining smoothly at p.

•
p

•
o

•
c

•
a

\xy 0;/r5pc/:*=+\dir{*}*+!UR{p};

p+(.5,-.5)*\dir{*}="o",*+!UL{o}

,+(0,.81)*=<6.1pt>\dir{*}*\frm{-}="c"

,*+!DL{c},"o",**\dir{-},

"c",{\ellipse_{}},{\ellipse^{.}}

%

,"o"+(1.5,.2)*\dir{*}="a"*+!UL{a}

,"o";p+/_1pc/,**{},"a",{\ellipse_{}}

\endxy

59

Note how the remainder of the circle can be specified
separately. The example also shows how to specify
an arc which leaves a particular point perpendicular
to a specific direction.

Slightly more complicated is when the tangent di-
rection at p is specified, but different from the current
direction; a unique circular arc can still be defined.
More complicated is when a specific tangent direction
is required also at c. In this case the arc produced is
a segment of an ellipse. (If the required tangent at
p points to c then a straight segment is drawn, as in
the circular case described above.)

\ellipse〈dir〉p,〈orient〉{..} circular
\ellipse〈dir〉p,〈orient〉,〈dir〉c{..} elliptical
\ellipse〈dir〉p,〈orient〉〈dir〉c{..} elliptical
\ellipse〈dir〉p,〈orient〉,=〈dir〉c{..} elliptical
\ellipse‘〈coord〉〈orient〉{..} elliptical

In these cases 〈dir〉p and 〈dir〉c are 〈direction〉 spec-
ifications, as in figure 3 and note 4l, and 〈orient〉
must be either ^ or _ for anti-/clockwise respec-
tively, defaulting to ^ if 〈empty〉. Beware that
the (*〈pos〉〈decor〉*) form must be used for this
〈direction〉 variant, as if an object modifier.

The second and third cases in the above table gen-
erally give identical results. The second ‘,’ is thus
optional, except in two specific situations:

1. 〈orient〉 is empty and 〈dir〉c has ^ or _ as the
first token;

2. 〈orient〉 is ^ and 〈dir〉c has ^ as first token.
Without the , then ^^ would be interpreted
by TEX as part of a special ligature for a hex-
adecimal character code.

If both 〈orient〉 and 〈dir〉c are 〈empty〉 then even the
first ‘,’ can be omitted.

•

p

•
o

• c

\xy 0;/r5pc/:*=<8.1pt>\dir{*}="p",*\frm{-}

,*++!U{p},"p";p+(.5,-.5)*+\dir{*}="o"

,*+!UL{o},+(0,.81)*=<8.1pt>\dir{*}="c"

,*\frm{-},*++!L{c},"o"**\dir{-},"c"

,{\ellipse :a(50),_:0{:}}

,{\ellipse :a(30),_:a(-45){}}

,{\ellipse :a(40),_{.}},

;*{};{\ellipse :a(20),^=_{=}}\endxy

Note that only the slope of 〈dir〉p and 〈dir〉c is
significant; rotations by 180◦ being immaterial.

•
p

• o

•
c • q

\xy 0;/r5pc/:*\dir{*}="p",*+!UR{p}

;p+(.5,-.5)*\dir{*}="o",*++!L{o}**\dir{-}

,p+(.5,.5)*\dir{*}="c",*++!D{c},"c"

;p+(1,.1)*\dir{*}="q",*++!L{q}**\dir{-}

,"o";"p",**{};"c"

,{\ellipse![["o";"p"]],_![["q";"c"]]{}}

,{\ellipse![["o";"p"]],![["c";"q"]]{.}}

\endxy

The = variant establishes the 〈direction〉 parsing
to begin with the direction resulting from 〈dir〉p in-
stead of the original direction. If 〈dir〉c is required to
be the original direction then use :0. It cannot be
〈empty〉 since this is interpreted as requiring a circu-
lar arc with unspecified tangent at c; see the example
above. However when 〈dir〉p and 〈dir〉c are parallel
there is a whole family13 of possible ellipses with the
specified tangents.

With no further hint available, a choice is made
based on the distance between p and c. If the required
direction is perpendicular to pc this choice results in a
circular arc. The optional factor in =(〈num〉) is used
to alter this choice; the default (1) is assumed when
nothing follows the =. This factor is used to “stretch”
the ellipse along the specified direction. For a nega-
tive 〈num〉 the orientation reverses.

•

p

•
o

•

c

\xy ;/r5pc/:*+=<10.1pt>\dir{*}="p";p*\frm{-}

,*++!UR{p},p+(.5,-.5)*\dir{*}="o",**\dir{-}

,*+!UL{o},+(0,.81)*=<8.1pt>\dir{*}="c"

,*\frm{-},*++!DL{c},"c"

,{\ellipse r,={}},{\ellipse r,=(2){.}}

,{\ellipse r,^=(3){.}},{\ellipse r,=(-2){}}

,{\ellipse r,=(-1){.}}\endxy

The final variant uses the directions from p and c
to the given 〈coord〉. If 〈orient〉 is 〈empty〉 then the

13Indeed this is always so. The algorithm used for the general case tends toward parallel lines—clearly unsuitable.

60

orientation is determined to give the shortest path
along the ellipse. Specifying an 〈orient〉 of ^ or _ will
force the orientation, even if this means travelling ‘the
long way’ around the ellipse. For example, see next
figure.

Alternative curves In some cases the circular or
elliptic curve can be replaced by a curve with differ-
ent shape, having the same tangent directions at the
end-points. When a full circle/ellipse is specified then
one gets instead a closed curve constructed from 4
spline segments. Other variants use a single segment,
2 or 3 segments, or some portion of all 4 segments.
Possibilities are given in the following table.

\ellipse~e ...{〈..〉} elliptical, as above
\ellipse~q ...{〈..〉} parabolic segments
\ellipse~c ...{〈..〉} cubic segments
\ellipse~i ...{〈..〉} interpolating cubic
\ellipse~p ...{〈..〉} cuspidal cubic
\ellipse~c(〈num〉)...{〈..〉} cubic segments,

with “looseness”

In the latter case the 〈num〉, typically between 0
and 1, controls how soon the curve begins to bend
away from the tangent direction. Smaller values give
tighter curves — 0 for straight lines — with ~c be-
ing the same as ~c(1) and ~q is ~c(.66667), that is
〈num〉= 2

3 .
The curve produced by the “interpolating” vari-

ant ~i actually passes through the control point "x",
with slope parallel to the line pc. Since the tan-
gents at p and c point toward "x" the curvature is
quite gentle until near "x" where the curve bends
rapidly, yet smoothly. This is obtained also by using
~c(1.33333), that is 〈num〉= 4

3 . Since <num> > 1
the “convex hull property” does not hold; indeed the
curve is entirely outside the convex hull of p, c and
"x", apart from those points themselves.

The ‘cuspidal’ variant ~p is equivalent to ~c(2).
It exhibits a cusp. For <num> > 2 the curve is so
“loose” that it exhibits loops. (The author offers no
guarantees on the usefulness of such curves for any
particular purpose; however they do look nice. ©̈⌣)

•
p

•
c

\xy 0;/r6pc/:*+\dir{*}="p",*+!UR{p},"p";

p+(.5,-.5)*+\dir{*}="c",*+!UL{c}

,"p"+(.825,-.25)="x"*\dir{+},"c"

,{\xycompile{\ellipse‘"x"{-}}}

,{\xycompile{\ellipse~q‘"x"^{.}}}

,{\xycompile{\ellipse~c‘"x"{.}}}

,{\xycompile{\ellipse~c(.3)‘"x"^{:}}}

,{\xycompile{\ellipse~c(2.3)‘"x"{-}}}

,{\xycompile{\ellipse~i‘"x"^{.}}}

,{\xycompile{\ellipse~p‘"x"^{-}}}

\endxy

Hint: When exploring to find the best location
for the “control-point” (e.g. the "x" in the above ex-
ample), then use \xycompile as shown, changing the
location outside of the compilation. This speeds up
the reprocessing with the changed value.

Avoiding overflows If 〈dir〉p and 〈dir〉c are in-
tended to be equal then the method of the previ-
ous paragraph should be used. However it may hap-
pen that “nearly parallel” directions may be specified,
perhaps by accident. There is then the possibility of
“numerical overflow” or a “division by zero” error.
The latter may be accompanied by a warning mes-
sage:

Xy-pic Warning: division by 0 in

\intersect@, replaced by 50

This indicates that the number 50 has been used
as the result of a division by zero. In many con-
texts this will produce an acceptable result. How-
ever it may lead to an “overflow” in other situa-
tions, or to drawing beyond the normal page bound-
ary. This can be controlled using a 〈decor〉 of type
,{\zeroDivideLimit{〈num〉}}, prior to specifying
the \ellipse. The value 50 will be replaced by 〈num〉
whenever a “division by zero” would otherwise be en-
countered in an intersection calculation.

radius known, end-points unknown

The language for these is a combination of most
of that used above, but the interpretation of the
〈direction〉s is different...

\ellipse<〈radius〉>〈dir〉1,〈orient〉,〈dir〉2{..}
\ellipse<〈radius〉>〈dir〉1,〈orient〉,=〈dir〉2{..}

where 〈radius〉 is one of the forms used above to de-
scribe a circle or ellipse. Not all of the ellipse will be
typeset—only that arc starting with 〈dir〉1 as tangent
vector, tracing via 〈orient〉 until the tangent points in
direction 〈dir〉2. This effectively extends the notation
used with \cir in 6.2. Note that rotating a given
〈dir〉i by 180◦ specifies a different arc on the same
ellipse/circle. Reversing the 〈orient〉 no longer gives

61

the complementary arc, but this complement rotated
180◦.

•
p

•
c

\xy 0;/r5pc/:*\dir{*}="p",*+!DR{p};

p+(.5,-.5)*\dir{*}="c",*+!UL{c}**\dir{-}

,"c",{\ellipse<15pt>_,=:a(45){=}}

,{\ellipse<>__,=:a(30){-}}

,{\ellipse(1,.4){.}}

,{\ellipse(1,.4)_,=:a(120){-}}

,{\ellipse(,.75){.}}

,{\ellipse(,.75)_,^,^{-}}\endxy

31 Knots and Links feature

Vers. 3.9 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{knot}

This feature provides a language for specifying knots,
links and general arrangements of crossing strings.

This knot feature is really a ‘construction kit’,
providing pieces which may be placed appropriately
to form knots and links. The types of pieces pro-
vided are of two kinds: the “crossings”, representing
one string crossing over or under another; and “joins”
which are used to connect what would otherwise be
loose ends. Several types of each are provided, along
with a simple way of specifying where to place arrow-
heads and labels.

All the pieces ultimately use curves from the
curve extension, usually indirectly via the arrow fea-
ture. As such, processing can be memory-intensive
and may seem rather slow. All the warnings and ad-
vice given elsewhere on techniques to handle pages
and individual diagrams with many curves are espe-
cially applicable when using this feature.

simple link figure-8 knot cinquefoil

Crossings

A “crossing” is intended to represent two strings pass-
ing close by, but not meeting. The macros provided
specify typesetting within a square cell of coordinate

values; using a non-square basis alters this shape, but
see also note 31c below, for the technique that was
used in the “cinquefoil” example above.

Notes

31a. Several families of crossing are provided. Those
having names as \v... and \h... are designed
to stack respectively vertically and horizontally.
More precisely the current 〈pos〉 starts at the top-
left corner and finishes at either the bottom-left
or top-right. Say that a crossing is either a ‘verti-
cal crossing’ or ‘horizontal crossing’ respectively.

This certainly applies to the \..cross.. and
\..twist.. families, see figure 20 in which the
strings enter and leave the square all with vertical
tangents or all with horizontal tangents. Indeed
all crossings are either vertical or horizontal, with
the final letter indicating which for the \xover..
families.

Furthermore there is a natural orientation for
each crossing, as well as along each strand. This
corresponds to the order in which ink is ap-
plied to the printed page, following the natural
parametrization of each strand as a curved con-
nection or arrow. This orientation determines
whether a crossing is ‘over’ (mathematically, pos-
itive or right-handed) or ‘under’ (mathematically,
negative or left-handed). It is used in determin-
ing the location of labels and the direction of
arrowheads placed along the strings. Note that
\..cross.. and \..twist.. crossings may set
the same curves, but with different orientation
and label-positioning.

Figure 20 displays the orientation on all the
crossings, grouping them into subfamilies con-
sisting of right-handed, left-handed and non-
crossings. Also indicated are the default po-
sitions for labels and arrow-tips; each piece
uses the same code for tips and labels, e.g.
\vover<>|>>><{x}|{y}>{z}.

The \x... crossings do not stack easily since
their tangents are at 45◦ to the coordinate axes.
It is the last letter in the name which denotes
whether the particular crossing is vertical or hor-
izontal. On the other hand \vover , \vunder

etc. stack vertically on top of a \vcross ,
\vtwist etc.; similarly \hover stacks at the left
of \hcross , \htwist etc.

62

Syntax Action

〈knot-piece〉 −→ 〈piece〉〈scale〉〈knot-labels〉 interpret knot-piece

〈piece〉 −→ 〈crossing〉 | 〈join〉 piece is a crossing31a or a join31l

〈scale〉 −→ 〈empty〉 | - | [〈num〉] invert or scale the knot piece31b;

| ~〈pos〉〈pos〉〈pos〉〈pos〉 alter size and shape31c using the 〈pos〉s
〈knot-labels〉 −→ 〈empty〉 | 〈knot-tips〉〈knot-labels〉 arrowtips at ends, aligned with orientation

| 〈where〉〈what〉〈knot-labels〉 list31k of arrowtips, breaks and labels31e

| @〈adjust〉〈knot-labels〉 adjust hole31d position for a 〈crossing〉;
adjust other parameter31n for a 〈join〉.

〈knot-tips〉 −→ == | =! arrowtips31k at both/neither end

| =< | => arrowtips31k also at start/finish

〈where〉 −→ | | |〈adjust〉 ‘over’ string on a 〈crossing〉;31f
middle31m place on a 〈join〉.

| < | <〈adjust〉 initial portion of ‘under’ string on a 〈crossing〉;31f
earlier31m place on a 〈join〉.

| > | >〈adjust〉 final portion of ‘under’ string on a 〈crossing〉;31f
later31m place on a 〈join〉.

〈adjust〉 −→ (+〈num〉) | (-〈num〉) adjustment31k from current value of parameter

| (=〈num〉) | (〈num〉) set parameter value31k

〈what〉 −→ > | < arrowhead aligned with/against orientation31i

| \knothole | \khole leave hole in the string31j

| {〈text〉} set31g 〈text〉 as label, using \labelstyle

| {*〈object〉} drop 〈object〉31h
| {〈anchor〉〈it〉} 〈break〉 or label31h as on an 〈arrow〉
| | null-break31k

Figure 19: 〈knot-piece〉 construction set.

$$\xy 0;/r1pc/:

,{\vunder\vtwist\vtwist\vunder-}\endxy

\qquad\qquad\qquad \xy 0;/r1pc/:+(0,-1.5)

,{\hover\hcross\hcross\hover-}\endxy$$

31b. The above examples also show how to use -

to get the mirror-image of a particular crossing.
Any numerical scale factor can be used by en-
closing it within [..] e.g. [2.3] scaling a sin-
gle piece without affecting the rest of the pic-
ture. The scale-factor must occur before any la-
bel or arrow-tip specifiers, see below). Vertical
crossings remain vertical under scalings; the cur-
rent 〈pos〉 still moves by 1 coordinate unit in the
‘down’ direction. Similarly horizontal crossings
remain horizontal. The single character - is a
shorthand version for [-1], effectively giving a
half-turn rotation in a rectangular basis.

31c. A knot-piece need not be rectangular. By spec-

ifying ~〈pos〉1〈pos2〉〈pos3〉〈pos4〉 the four corners
UL, UR, DL, DR are set to the given 〈pos〉s respec-
tively. The local basis is established so that

r–hop ↔ 1
2

(
〈pos2〉 − 〈pos1〉+ 〈pos4〉 − 〈pos3〉

)

u–hop ↔ 1
2

(
〈pos1〉 − 〈pos3〉+ 〈pos2〉 − 〈pos1〉

)
.

31d. With a non-rectangularly shaped piece it will
usually be necessary to adjust the place where the
‘hole’ occurs in the ‘under’ string. This is done
by specifying @(〈num〉), with 0 ≤ 〈num〉 ≤ 1 be-
ing the parameter value of the new location for
the hole.

31e. The knot feature allows for the easy placement
of the following objects along the strings of a
crossing:

• labels on the strings;

• arrowheads for direction or orientation;

63

y
x

z
x

z

y y

x z

y

x

z

x

zy y

x

z

\vcross \vcrossneg \vuncross \hcross \hcrossneg \huncross

y

x

z

x

z y y

x

z
y

x

z

x

z

y y

x z

\vtwist \vtwistneg \vuntwist \htwist \htwistneg \huntwist

yx

z

x

z

y y
x

z

y

x

z x

z

y

y

x z

\xoverv \xunderv \xunoverv \xoverh \xunderh \xunoverh

yx

z x

zy

y

x z

y

x

z

x

z

y

y

x

z

\vover \vunder \vunover \hover \hunder \hunover

Figure 20: Knot crossings with orientations and label positions.

• holes in strings, allowing another string to
be drawn passing over.

31f. The characters <, > and | are used to indi-
cate to which string portion the object is asso-
ciated; with | denoting the string which crosses
the other, while < and > denote the initial and
final portions of the ‘crossed’ string.

31g. A simple label enclosed in braces, for exam-
ple \vcross>{x}, is set in math-mode using the
\labelstyle, at a pre-determined place on the
string portion, shifted in either the ‘above’ or ‘be-
low’ direction from the curve at this point. (For
each crossing depicted in figure 20 only default
values are used for the place and shift-direction.)

31h. If the first character within the braces {..}

is * e.g. \htwist>{*〈object〉}, then a general
〈object〉 may be placed as a label. Furthermore
if the first character is ^ or _ or |, then the in-
terpretation is, e.g. \vtwist<{^〈anchor〉〈it〉}, as
in 15 to place 〈it〉 as a label along an \ar of the
arrow feature.

31i. A second character < or > specifies that an ar-
rowhead should appear at the pre-determined
place on the chosen string. Here > denotes
an arrowhead pointing with the natural orien-
tation, while < points against. Due to the
curvature of the strings, it is usually best to

\UseComputerModernTips rather than normal
arrow-tips.

31j. To generate a ‘hole’ use \knothole, or simply
\khole, as following token. This generates a
‘break’, in the sense of 24j. Indeed such a ‘hole’ is
used to separate the two portions of the ‘crossed’
string. Default size for the hole is 5pt, which is al-
terable via \knotholesize{〈dimen〉}; normally
used to set the size for all holes in a diagram.

31k. If the resulting \khole is either too large or
perhaps non-existent, this could be due to a tech-
nicality in the way breaks in curves are handled.
This problem should not occur with the standard
crossings, using a rectangular basis, but it may
occur with non-rectangular bases. An easy ‘fix’
is to include an extra null-break on the string,
using <|, >| or ||, which should place the zero-
sized break at parameter value .5 on the curve.
The specification should precede a \khole at a
higher parameter value, or come after one at a
lower value.

Multiple breaks, arrow-heads and labels may be
specified along the two strings of a crossing; sim-
ply place their specifications one after another;
e.g. <>|>>><{x}|{y}>{z} was used in figure 20.

The only proviso is that all ‘breaks’ along a sin-
gle strand must occur with increasing order of
parameter position. On the ‘crossed’ string this

64

includes the automatic ‘hole’ to create space for
the other string. Hence it is advisable to use just
the (+..) and (-..) variants for small adjust-
ments, and to keep these correctly ordered.

Adjustment of position along the strings can be
achieved using a 〈factor〉, as in \vover|(+.1)>.
Allowed syntax is (〈sign〉〈num〉) where 〈sign〉 is
+ or - to increment or decrement from the pre-
defined value. Also allowable are = or 〈empty〉 to
set the parameter position to 〈num〉, which must
lie between 0 and 1 to have any meaning.

Arrowheads can also be placed at either, or both,
ends of of the strings forming a crossing. This is
governed by a pair of booleans, initially {FF}. It
is changed for all subsequent strings in a diagram
by \knottips{..} where the recognised values
are {FF}, {FT}, {TF} and {TT}, denoting tips (T)
or not (F) at the start and end of each string.
To add arrowtips at the start of strings in a par-
ticular crossing, append the 2-character combi-
nation =< ; similarly => adds tips at the ends, if
not already requested. The combinations == and
=! specify both ({TT}) and none ({FF}) respec-
tively. These 2-character pairs can be mixed in
with any specifications for labels and breaks, etc.
Multiple pairs compound their effect; in particu-
lar =<=> gives the same result as ==, while =!=<

is needed to change {FT} into {TF}.

These are best used with single pieces, as in the
following equation.

∇
[]

−∇
[]

= −z∇
[]

\UseComputerModernTips \knottips{FT}

\def\Conway#1{\mathord{\nabla\Bigl[\,

\raise5pt\xybox{0;/r1pc/:#1}\,\Bigr]}}

$$

\Conway\htwist - \Conway\htwistneg

\;=\; -z\,\Conway\huntwist $$

Joins

31l. The “joins” are used to connect the loose ends of
crossing strings. In particular “loops” and “caps”
are for placing on ends of horizontal or vertical
‘twist’ and ‘cross’ crossings, leaving the current
〈pos〉 fixed. The “bends” join non-adjacent cross-
ings of the same type, either horizontal or verti-
cal.

The \xcap.. pieces are designed to join adja-
cent \xover.. pieces; they move c either verti-
cally or horizontally, as appropriate. Finally the
\xbend.. pieces allow for smooth joins of 45◦

slopes to horizontal or vertical slopes. For these

the actual positioning of the piece, see figure 21,
is not entirely obvious.

Figure 21 displays the orientation on the joins.
Also indicated are default positions for labels and
arrow-tips; each piece uses the same code, e.g.
\vloop <>|>>><{x}|{y}>{z}. Furthermore the
current 〈pos〉 before the piece is drawn is marked
using ◦ ; that afterwards is indicated by or .

The ability to scale in size and place arrow-tips,
breaks, labels etc. apply also to 〈join〉 pieces.
The only difference is. . .

31m. The three places referred to by < ,| ,> are all on
a single string. In particular | is always at the
middle of the 〈join〉, whereas < and > are at ear-
lier and later parameter values respectively. Any
adjustments31k involving breaks should occur in
increasing parameter order.

31n. A parameter can be altered, using @〈adjust〉,
to effect subtle adjustments to the shape of any
join. Within a rectangular basis the horizontal
or vertical tangents are preserved and overall re-
flection or rotation symmetry is preserved. Thus
this parameter affects the ‘flatness’ of a cap or
loop, or the amount of curvature is s-bends and
z-bends. For \xcap..s and \xbend..s the 45◦

angle is altered; this is especially useful to match
the tangents when a knot-piece has been specified
using the technique of note 31c.

The normal range for these parameters is be-
tween 0 and 1. Other values can be used with in-
teresting results—the parameter determines the
location of control points for a Bézier cubic curve.

piece value effect on. . .
\..cap .25 flatness of cap;
\..loop .75 flatness of loop;
\sbend.. .75 curvature in the ‘s’;
\zbend.. .75 curvature in the ‘z’;
\xcap.. .5 height of cap, slope at base;
\xbend.. .5 curvature, slope at base.

The following example gives three ways of spec-
ifying a ‘trefoil’ knot, using the poly feature to es-
tablish the location of the vertices for knot-pieces.
In each the 〈crossing〉s are calculated to fit together
smoothly; a different way of creating 〈join〉s is used
in each. Also the third displays subtle changes of the
31njoin control.

\def\TrefoilA{\xygraph{!{0;/r.75pc/:}

65

◦

x

y

z

◦

xyz
◦

xy z

◦

x

y

z ◦

x

y

z
◦

x
y
z

◦
x
y
z

◦
x

y

z
\vloop \vcap \vcap- \vloop- \hloop \hcap \hcap- \hloop-

◦

x

y

z ◦

x y z
◦

x
y z

◦ x

y
z

◦ x

y
z

◦

x
y

z

\xcapv \sbendv \zbendv \sbendh \zbendh \xcaph

◦

x
y z

◦

x
yz

◦

x

y
z

◦ x

y
z

\xbendr \xbendl \xbendu \xbendd

◦

x

y
z

◦x

y
z

◦
x

y z
◦

x
yz

\xbendd- \xbendu- \xbendl- \xbendr-

Figure 21: Knot joins, with orientations, labels, and shifts.

!P3"a"{~>{}}!P9"b"{~:{(1.3288,0):}~>{}}

!P3"c"{~:{(2.5,0):}~>{}}

!{\vover~{"b2"}{"b1"}{"a1"}{"a3"}}

!{"b4";"b2"**\crv{"c1"}}

!{\vover~{"b5"}{"b4"}{"a2"}{"a1"}}

!{"b7";"b5"**\crv{"c2"}}

!{\vover~{"b8"}{"b7"}{"a3"}{"a2"}}

!{"b1";"b8"**\crv{"c3"}}}}

%

\def\TrefoilB{\xygraph{!{0;/r.75pc/:}

!P3"a"{~>{}}!P9"b"{~:{(1.3288,0):}~>{}}

!P3"c"{~:{(2.5,0):}~>{}}

!{\vover~{"b2"}{"b1"}{"a1"}{"a3"}}

!{\vcap~{"c1"}{"c1"}{"b4"}{"b2"}@(+.1)}

!{\vover~{"b5"}{"b4"}{"a2"}{"a1"}}

!{\vcap~{"c2"}{"c2"}{"b7"}{"b5"}@(+.2)}

!{\vover~{"b8"}{"b7"}{"a3"}{"a2"}}

!{\vcap~{"c3"}{"c3"}{"b1"}{"b8"}}}}

%

\def\TrefoilC{\xygraph{!{0;/r.75pc/:}

!P3"a"{~>{}}

!P12"b"{~:{(1.414,0):}~>{}}

!{\vover~{"b2"}{"b1"}{"a1"}{"a3"}}

!{\save 0;"b2"-"b5":"b5",

\xcaph @(+.1)\restore}

!{\vover~{"b6"}{"b5"}{"a2"}{"a1"}}

!{\save 0;"b6"-"b9":"b9",

\xcaph @(+.2)\restore}

!{\vover~{"b10"}{"b9"}{"a3"}{"a2"}}

!{\save 0;"b10"-"b1":"b1",

\xcaph @(+.3)\restore} }}

$$\TrefoilA\quad\TrefoilB

\quad\TrefoilC$$

Changing the string-style

It is not necessary to use solid curves; any style avail-
able to curves and arrows can be chosen using. . .

\knotstyle{〈char〉} use \dir{〈char〉}
\knotstyles{〈char〉}{〈char〉} two styles
\knotSTYLE{〈code〉} use 〈code〉

In each case the new style applies to all subse-
quent knot pieces, except that the two styles apply
only to crossings. The latter case allows use of ob-
ject 〈modifier〉s. The 〈code〉 consists of two groups
{..}{..} , each containing 〈arrow〉 forms, as in 15
and notes 24m, 24r. Only the first 〈arrow〉 form is
used with 〈join〉s whereas the two forms are used re-
spectively with the two strings of a 〈crossing〉 in the
order that they are drawn.

32 Smart Path option

Vers. 3.6 by George C. Necula 〈necula@cs.cmu.edu〉

Load as: \xyoption{smart}

This extends the ‘arrow’ feature, which is there-
fore required, with a “smart” 〈path〉 between two
〈pos〉itions.

The 〈turn〉 syntax is extended with the construc-
tion

〈turn〉 −→‘s 〈diag〉 _ 〈diag〉 〈turnradius〉

\arin_out/5pt which draws a connector leaving p in
the in 〈diag〉onal direction and arrives at c in the out
〈diag〉onal direction, using 5pt turns. The connec-
tor contains only horizontal or vertical lines and 1

8
sectors of circles of the given (optional) 〈turnradius〉.

66

Bug: Any labels are placed at the end of the con-
nection.

Bug: This code should probably be merged with
the ‘arrow’ feature.

Part IV

Drivers

This part describes ‘drivers’ that customise the parts
of the DVI file generated from XY-pictures to exploit
special capabilities of particular DVI driver programs
through TEXś \special command. This makes the
DVI files non-portable but is needed for full support
of some of theXY-pic extensions (described in part II).

Figure 22 at the end of this part summarises the
extensions supported by all drivers.

33 Support for Specific Drivers

Other implementations not specifically mentioned
here may well work with one of the named 〈driver〉s,
though perhaps not all features will actually be sup-
ported.

33.1 dvidrv driver

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{dvidrv}

This driver provides support for the “emtex”
\special commands, when using one of the stan-
dard dvi-drivers: dvidot, dvihplj, dvimsp, dviscr
or dvivik, that come with Eberhard Mattes’ em-TEX
distribution.

Supported \special effects are...

• em-TEX line-drawing \specials.

• variable line-widths

33.2 DVIPS driver

Vers. 3.9 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{dvips}

This driver provides support for all extensions when
using the dvips driver by Tomas Rokicki [13]. It has
been tested with dvips version 5.55a and dvipsk ver-
sion 5.58f.

Supported \special effects are...

• colour, using direct color specials and PostScript.

• crayon colours.

• PostScript back-end.

• rotated/scaled diagrams and text, using Post-

Script.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript.

• tpic drawing commands.

• em-TEX drawing commands.

• lu tips.

33.3 DVITOPS driver

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{dvitops}

This file provides support for the dvitops driver by
James Clark. As of September 1995, it has not been
fully tested.

Supported \special effects are...

• colour, using direct color specials for gray, rgb and
hsb colour models; and PostScript colour within
diagrams;

• crayon colours.

• PostScript back-end.

• rotated/scaled diagrams and text, using dvitops

specials; however these may not be nested.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript

• tpic drawing commands.

33.4 OzTeX driver

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{oztex}

This driver provides the necessary interface to sup-
port the PostScript back-end and other Post-

Script effects when using the DVI driver of versions
1.8+ of OzTEX by Andrew Trevorrow,14 Earlier ver-

sions of OzTEX should instead use the driver option

\xyoption{17oztex}.

Effects such as colour, line-thickness and rotated
or scaled diagrams are only partially supported in
that the effects cannot be applied to any text or sym-
bols placed using fonts. This is due to the nature
of OzTEX 〈driver〉, whose optimization of the place-
ment of font-characters precludes the applicability of
such effects. Furthermore the PostScript dictionary

14OzTEX is a shareware implementation of TEX for Macintosh available from many bulletin boards and ftp sites; v1.5 and earlier
versions were freeware. Email contact: 〈akt@kagi.com〉.

67

must be available in a file called global.ps or ap-
pended to the OzTeXdict.pro. However with ver-
sion 1.8 and later of OzTEX, there is the alternative
of using the dvips 〈driver〉, which does support all
the PostScript effects available in XY-pic.

Note: To use XY-pic effectively with OzTEX re-
quires changing several memory parameters. In par-
ticular a ‘Big-TEX’ is needed, along with an increase
in the pool_size parameter. Explicit instructions
are contained in the file INSTALL.OzTeX of the XY-pic
distribution.

Supported \special effects are...

• colour, using PostScript, but not of font-
characters.

• crayon colours, similarly restricted.

• PostScript back-end.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript.

• rotated/scaled diagrams and text, recognised but
not supported.

33.5 OzTeX v1.7 driver

Vers. 3.8 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{17oztex}

This option provides the necessary interface to sup-
port the PostScript back-end and other Post-

Script effects when using the DVI driver of version
1.7 of OzTEX by Andrew Trevorrow,15 Later ver-

sions of OzTEX should instead use the driver option

\xyoption{oztex}. Upgrading to version 1.9+ of
OzTEX is recommended.

Does not support rotations, scaling and coloured
text within diagrams and the PostScript dictionary
must be available in a file called global.ps.

Note: To use XY-pic effectively with OzTEX re-
quires changing several memory parameters. In par-
ticular a ‘Big-TEX’ is needed, along with an increase
in the pool_size parameter. Explicit instructions
are contained in the file INSTALL.OzTeX of the XY-pic
distribution.

Supported \special effects are...

• colour, using PostScript, but not of font-
characters.

• crayon colours, similarly restricted.

• PostScript back-end.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript.

• rotated/scaled diagrams and text, recognised but
not supported.

33.6 Textures driver

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{textures}

This driver provides support for version 1.7+ of
Blue Sky Research’s Textures application for Mac-
intosh16. It incorporates support for colour and
all of XY-pic’s PostScript effects. Earlier versions
of Textures should instead use the driver option
\xyoption{16textures}.

Notice that version 1.7 suffers from a printing bug
which may cause a PostScript error. A fix is kludged
by making sure the first page has been shown in the
viewer before any pages with diagrams are sent to the
printer.

Supported \special effects are...

• colour, both on-screen and with PostScript

• crayon colours.

• PostScript back-end.

• rotated/scaled diagrams and text, using Post-

Script.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript.

33.7 Textures v1.6 driver

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{16textures}

This driver provides support for versions 1.5b and
1.6 of Blue Sky Research’s Textures application for
Macintosh17. It incorporates support for PostScript
colour and the XY-ps PostScript back-end. This will
not work with versions 1.7 and later; these require
the 〈driver〉 option \xyoption{textures}.

Supported \special effects are...

• colour, using PostScript

• crayon colours.

• PostScript back-end.

15OzTEX is a shareware implementation of TEX for Macintosh available from many bulletin boards and ftp sites; v1.5 and earlier
versions were freeware. Email contact: 〈akt@kagi.com〉.

16Macintosh is a trademark of Apple Computer Inc.
17Macintosh is a trademark of Apple Computer Inc.

68

• rotated/scaled diagrams and text, using Post-

Script.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript.

33.8 XDVI driver

Vers. 3.7 by Ross Moore 〈ross.moore@mq.edu.au〉

Load as: \xyoption{xdvi}

This driver provides support for extensions when us-
ing variants of the xdvi driver, by Eric Cooper, Bob
Scheifler, Mark Eichin and others. It has been used
successfully with xdvi patchlevel 20, by Paul Vojta,
and xdvik version 18f, by Karl Berry.

Some of the supported features assume that the
implementation of xdvi is linked to a PostScript

renderer; e.g. Ghostscript orDisplay PostScript. If
such support is not available, then invoking xdvi us-
ing the command xdvi -hushspecials will suppress
warning messages that might otherwise be produced.
One drawback of such a setup is that much of the
PostScript is not rendered until after all of the font
characters, etc. have been placed on the page. Thus
text that was meant to be placed on top of a filled
or patterned region may appear to be obscured by it.
However when printed, using a PostScript printer,
the correct placement is obtained.

Supported \special effects are...

• colour, using PostScript.

Not all versions of xdvi support color \specials,
so there is no direct support for colour. However
parts of pictures rendered using PostScript may
appear coloured, due to interpretation of colour
commands within the PostScript.

• crayon colours.

• PostScript back-end.

• rotated/scaled diagrams and text, using Post-

Script.

• variable line-widths and poly-lines, using Post-

Script.

• extra frames and fills, using PostScript.

• patterns and tiles, using PostScript.

• tpic drawing commands.

33.9 PDF driver

Vers. 1.7 by Daniel Müllner

〈http://math.stanford.edu/∼muellner〉

Load as: \xyoption{pdf}

When producing PDF output, the pdf option can
be used to improve the quality of drawn elements
by using native PDF constructs. The PDF driver
works with both TEX and LATEX in the occurrences
of pdfTEX, X ETEX and ε-TEX with dvipdfm(x) to
generate PDF files. It provides special routines
for the color, curve, frame and rotate exten-
sions. The tile and line extensions are presently
not supported. The documentation and source code
are available as a separate document xypdf.pdf [10],
which is also included in the XY-pic distribution.

34 Extra features using Post-

Script drivers

This section acknowledges the support for extra fea-
tures available when using a 〈driver〉 that supports
use of \special commands with native PostScript.
Extra macros are required to take advantage of this;
these are loaded automatically in conjunction with
extensions specified using the \xyoption command,
provided a 〈driver〉 which supports the extension, as
indicated in 22, has also been specified.

Commands are also provided to turn off/on use
of these features. Such switches are particularly use-
ful when developing complicated diagrams, or when
the intended output device does not support Post-

Script; e.g. for on-screen display. Alternatively,
when attempting to use drivers for which no explicit
support has been provided, some features may work
others may not. Please inform the authors of XY-pic
of any successes or failures of such attempts.

The included file xyps-ps.tex (version 3.12) pro-
vides support for PostScript \special commands
used by the ps backend extension as well as Post-

Script-based options, to produce special effects not
available directly with TEX.

PostScript escape

An extra 〈shape〉 modifier key allows arbitrary Post-

Script code to be applied to the current 〈object〉.

[!〈postscript code〉] for special effects
[psxy] stores current location.

Normally the 〈postscript code〉 will be a simple com-
mand to alter the PostScript graphics state: e.g.
[!1 0 0 setrgbcolor] changes the colour used to
render parts of the 〈object〉. Any number of such

69

http://math.stanford.edu/~muellner

〈driver〉

∖
〈extension〉 frame line rotate color tile ps

dvips + + + + + +
dvidrv - + - - - -
dvitops + + + + + +
oztex + + + + + +
17oztex + + + + + +
textures + + + + + +

16textures + + + + + +
xdvi + + + + + +
pdf + - + + - -

Figure 22: Extension implementation replaced by use of 〈driver〉 specials.

〈shape〉 modifiers is allowable, however it is more ef-
ficient to combine them into a single modifier, when-
ever possible.

It is very important that braces { and } do not
appear explicitly in any 〈postscript code〉, as this may
upset the XY-pic 〈object〉 parsing. However it is ac-
ceptable to have a control sequence name here, ex-
panding into more intricate PostScript code. This
will not be expanded until a later (safe) time.

Due to differences within the DVI-drivers, such
simple PostScript commands need not affect every
part of an 〈object〉. In particular the lines, curves and
arrowheads generated by XY-pic use a different mech-
anism, which should give the same result with all
drivers. This involves redefining some PostScript

procedures which are always read prior to rendering
one of these objects. One simple way to specify a
red line is as follows; the xycolor extension provides
more sophisticated support for colour. The 〈shape〉
modifiers described in the previous section also use
this mechanism, so should work correctly with all
drivers.

\def\colorxy(#1){%

/xycolor{#1 setrgbcolor}def}

...

\connect[!\colorxy(1 0 0)]\dir{-}

...

Note how the braces are inserted within the expan-
sion of the control sequence \colorxy, which happens
after parsing of the 〈connection〉. The following table
shows which graphics parameters are treated in this
way, their default settings, and the type of Post-

Script code needed to change them.

colour /xycolor{0 setgray}def

line-width /xywidth{.4 setlinewidth}def

dashing /xydash{[] 0 setdash}def

line-cap /xycap{1 setlinecap}def

line-join /xyjoin{1 setlinejoin}def

This feature is meant primarily for modifying the
rendering of objects specified in TEX and XY-pic, not

for drawing new objects within PostScript. No
guarantee can be given of the current location, or
scale, which may be different with different drivers.
However a good PostScript programmer will be
able to overcome such difficulties and do much more.
To aid in this the special modifier [psxy] is provided
to record the location where the reference point of
the current 〈object〉 will be placed. Its coordinates
are stored with keys xyXpos and xyYpos.

34.1 Colour

The included file xyps-c.tex (version 3.11) provides
PostScript support for the effects defined in the
color extension in §13.

This file is loaded and its effects are activated
automatically whenever \xyoption{color} is re-
quested and the current 〈driver〉 supports colours us-
ing PostScript. Should there be any need to turn
off this support, the following commands are avail-
able; they obey usual TEX groupings.

\NoPScolor remove PostScript support
\UsePScolor reinstate PostScript.

Without PostScript support some drivers may still
be able to provide some support for colours. These
commands are not guaranteed to work adequately
with all drivers. They are provided primarily for test-
ing and trouble-shooting; e.g. with 〈driver〉 configu-
rations untested by the authors of XY-pic, who should
be notified of any difficulties.

34.2 Frames

The included file xyps-f.tex (version 3.11) provides
PostScript support for the effects defined in the
frame extension described in §9. It implements some
effects otherwise unattainable.

70

This file is loaded and its effects are activated
automatically whenever \xyoption{frame} is re-
quested and the current 〈driver〉 supports Post-

Script effects for frames. Should there be any need
to turn off this support, the following commands are
available; they obey usual TEX groupings.

\NoPSframes remove PostScript support
\UsePSframes reinstate PostScript.

Without PostScript support ellipses may be shown
as circles and all filled regions may be represented
as black rectangles. These commands are provided
primarily for testing and trouble-shooting; e.g. with
〈driver〉 configurations untested by the authors of XY-
pic, who should be notified of any difficulties.

34.3 Line-styles

The included file xyps-l.tex (version 3.11) provides
PostScript support for the effects defined in the
line extension described in §11.

This file is loaded and its effects are activated au-
tomatically whenever \xyoption{line} is requested
and the current 〈driver〉 supports PostScript line
styles. Should there be any need to turn off this
support, the following commands are available; they
obey usual TEX groupings.

\NoPSlines remove PostScript support
\UsePSlines reinstate PostScript.

Without PostScript support lines can be expected
to be displayed in the default style, having thickness
of .4pt. These commands are provided primarily for
testing and trouble-shooting; e.g. with 〈driver〉 con-
figurations untested by the authors of XY-pic, who
should be notified of any difficulties.

34.4 Rotations and scaling

The included file xyps-r.tex (version 3.11) provides
PostScript support for the effects defined in the
rotate extension described in §12.

This file is loaded and its effects are activated
automatically whenever \xyoption{rotate} is re-
quested and the current 〈driver〉 supports Post-

Script rotations. Should there be any need to turn
off this support, the following commands are avail-
able; they obey usual TEX groupings.

\NoPSrotate remove PostScript support
\UsePSrotate reinstate PostScript.

Without PostScript support diagrams can be
expected to be displayed unrotated and unscaled.

These commands are provided primarily for testing
and trouble-shooting; e.g. with 〈driver〉 configura-
tions untested by the authors of XY-pic, who should
be notified of persistent difficulties.

34.5 Patterns and tiles

The included file xyps-t.tex (version 3.11) provides
PostScript support for the effects defined in the
tile extension described in §14.

This file is loaded and its effects are activated au-
tomatically whenever \xyoption{tile} is requested
and the current 〈driver〉 supports PostScript pat-
terns. Should there be any need to turn off this
support, the following commands are available; they
obey usual TEX groupings.

\NoPStiles remove PostScript support
\UsePStiles reinstate PostScript.

Without PostScript support tile patterns can be
expected to be displayed as solid black. These com-
mands are provided primarily for testing and trouble-
shooting; e.g. with 〈driver〉 configurations untested by
the authors of XY-pic, who should be notified of any
difficulties.

35 Extra features using tpic

drivers

Similarly a few extensions are supported better when
\special commands in the tpic format are sup-
ported.

35.1 frames.

The included file xytp-f.tex (version 3.7) pro-
vides tpic support for some of the effects de-
fined in the frame extension. This file is loaded
and its effects are activated automatically when-
ever \xyoption{frame} is requested and the current
〈driver〉 supports both tpic and frames. Should there
be any need to turn off this support, the following
commands are available; they obey usual TEX group-
ings.

\NoTPICframes remove tpic support
\UseTPICframes reinstate tpic.

Appendices

A Answers to all exercises

71

Answer to exercise 1 (p.7): In the default setup
they are all denote the reference point of the XY-
picture but the cartesian coordinate 〈pos〉 (0,0) de-
notes the point origo that may be changed to some-
thing else using the : operator.

Answer to exercise 2 (p.7): Use the 〈pos〉ition
<X,Y >+"ob".

Answer to exercise 3 (p.7): It first sets c accord-
ing to “. . . ”. Then it changes c to the point right of
c at the same distance from the right edge of c as its
width, w, i.e.,

The . . .
︸ ︷︷ ︸

w

×
︸ ︷︷ ︸

w

Answer to exercise 4 (p.9): The 〈coord〉
“{"A";"B": "C";"D", x}” returns the cross point.
Here is how the author typeset the diagram in the
exercise:

\xy

%

% set up and mark A, B, C, and D:

(0,0)="A" *\cir<1pt>{}*+!DR{A},

(7,10)="B" *\cir<1pt>{}*+!DR{B},

(13,8)="C" *\cir<1pt>{}*+!DL{C},

(15,4)="D" *\cir<1pt>{}*+!DL{D},

%

% goto intersection and name+circle it:

{"A";"B":"C";"D",x} ="I" *\cir<3pt>{},

%

% make dotted lines:

"I";"A"**{} +/1pc/;-/1pc/ **@{..},

"I";"D"**{} +/1pc/;-/1pc/ **@{..}

%

\endxy

A ?!. . . 〈place〉 could also have been used.

Answer to exercise 5 (p.9): To copy the p value
to c, i.e., equivalent to “p”.

Answer to exercise 6 (p.10): When using the
kernel connections that are all straight there is no
difference, e.g., **{}?< and **{}+E denote exactly
the same position. However, for other connections it
is not necessarily the case that the point where the
connection enters the current object, denoted by ?<,
and the point where the straight line from p enters
the object, denoted by +E, coincide.

Answer to exercise 7 (p.10): The code typesets
the picture

Box

•

Answer to exercise 8 (p.11): This does the job,
saving each point to make the previous point avail-
able for the next piece:

\xy

@={(0,-10),(10,3),(20,-5)},

s0="prev" @@{;"prev";**@{-}="prev"}

\endxy

Notice how we close the line by first saving s0, the
last point visited, such that the first point will be
connected to it.

Answer to exercise 9 (p.11): The author used

\xy ={.{+DL(2)}.{+UR(2)}}"dbl",

+<3pc,2pc>{+}\frm{.}, "dbl"*\frm{--}

\endxy

to typeset the figure in the exercise.

Answer to exercise 10 (p.13): The first type-
sets “a” centered around 0 and then moves c to the
lower right corner, the second typesets “a” above the
0 point and does not change c. With a “+” at 0 they
look like this: +a and +a .

Answer to exercise 11 (p.13): They have the
outlines

∑
+ and

∑
+

because the first is enlarged by the positive offset to
the upper right corner and the second by the negative
offset to the lower left corner.

Answer to exercise 12 (p.14): The first has no
effect since the direction is set to be that of a vector
in the current direction, however, the second reverses
the current direction.

Answer to exercise 13 (p.14): None in both
cases.

Answer to exercise 14 (p.18): One way is

$$\xy

{+}; p+(6,3){+} **{} ?(1)

*@{-} *!/-5pt/^\dir{-}

*^\dir{-} *!/^-5pt/\dir{-}

\endxy$$

Thus we first create the two +s as p and c and
connect them with the dummy connection **{} to
setup the direction parameters. Then we move ‘on

72

top of c’ with ?(1) and position the four sides of the
square using ^ and _ for local direction changes and
/〈dimen〉/ for skewing the resulting object by moving
its reference point in the opposite direction.

Answer to exercise 15 (p.18): One way is to add
extra half circles skewed such that they create the il-
lusion of a shade:

$$\xy

*\cir<5pt>{}

*!<-.2pt,.2pt>\cir<5pt>{dr^ul}

*!<-.4pt,.4pt>\cir<5pt>{dr^ul}

*!<-.6pt,.6pt>\cir<5pt>{dr^ul}

\endxy$$

Answer to exercise 16 (p.21): This is the code
that was actually used:

\xy (0,20)*[o]+{A};(60,0)*[o]+{B}="B"

**\crv{} \POS?(.4)*_+!UR{0},"B"

**\crv{(30,30)} \POS?*^+!D{1},"B"

**\crv{(20,40)&(40,40)} \POS?*^+!D{2},"B"

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

\POS?*+^!UR{4} \endxy

Answer to exercise 17 (p.21): This is the code
that was used to typeset the picture:

\xy (0,20)*+{A};(60,0)*+{B}

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

?<*\dir{<} ?>*\dir{>}

?(.65)*{\oplus} *!LD!/^-5pt/{x}

?(.65)/12pt/*{\oplus} *!LD!/^-5pt/{x’}

?(.28)*=0{\otimes}-/40pt/*+{Q}="q"

+/100pt/*+{P};"q" **\dir{-}

\endxy

Answer to exercise 18 (p.21): Here is the code
that was used to typeset the picture:

\def\ssz#1{\hbox{$_{^{#1}}$}}

\xy (0,0)*+{A};(30,-10)*+{B}="B",**\dir{-},

"B"**\crv{(5,20)&(20,25)&(35,20)}

?<(0)*\dir{<}="a" ?>(1)*\dir{>}="h"

?(.1)*\dir{<}="b" ?(.9)*\dir{>}="i"

?(.2)*\dir{<}="c" ?(.8)*\dir{>}="j"

?(.3)*\dir{<}="d" ?(.7)*\dir{>}="k"

?(.4)*\dir{<}="e" ?(.6)*\dir{>}="l"

?(.5)*\dir{|}="f",

"a"*!RC\txt{\ssz{(\lt)}};

"h"*!LC\txt{\ssz{\;(\gt)}},**\dir{.},

"b"*!RD{\ssz{.1}};

"i"*!L{\ssz{\;.9}},**\dir{-},

"c"*!RD{\ssz{.2}};

"j"*!L{\ssz{\;.8}},**\dir{-},

"d"*!RD{\ssz{.3}};

"k"*!L{\ssz{\;.7}},**\dir{-},

"e"*!RD{\ssz{.4}};

"l"*!LD{\ssz{.6}},**\dir{-},

"f"*!D!/^-3pt/{\ssz{.5}}

\endxy

Answer to exercise 19 (p.26): Here is how:

\xy

(0,0) *++={A} *\frm{o} ;

(10,7) *++={B} *\frm{o} **\frm{.}

\endxy

Answer to exercise 20 (p.26): The *\cir {} op-
eration changes c to be round whereas *\frm {o}

does not change c at all.

Answer to exercise 21 (p.26): Here is how:

\xy

(0,0) *+++{A} ;

(10,7) *+++{B} **\frm{.}

**\frm{^\}} ; **\frm{_\}}

\endxy

The trick in the last line is to ensure that the ref-
erence point of the merged object to be braced is the
right one in each case.

Answer to exercise 22 (p.30): This is how the
author specified the diagram:

\UseCrayolaColors

\xy\drop[*1.25]\xybox{\POS

(0,0)*{A};(100,40)*{B}**{}

?<<*[@_][red][o]=<5pt>{\heartsuit};

?>>>*[@_][Plum][o]=<3pt>{\clubsuit}

**[|*][|.5pt][thicker]\dir{-},

?(.1)*[left]!RD\txt{label 1}*[red]\frm{.}

?(.2)*[!gsave newpath

xyXpos xyYpos moveto 50 dup rlineto

20 setlinewidth 0 0 1 setrgbcolor stroke

grestore][psxy]{.},

?(.2)*[@]\txt{label 2}*[red]\frm{.},

?(.2)*[BurntOrange]{*},

?(.3)*[halfsize]\txt{label 3}*[red]\frm{.}

?(.375)*[flip]\txt{label 4}*[red]\frm{.}

?(.5)*[dblsize]\txt{label 5}*[red]\frm{.}

?(.5)*[WildStrawberry]{*},

?(.7)*[hflip]\txt{label 6}*[red]\frm{.}

?(.8)*[vflip]\txt{label 7}*[red]\frm{.}

?(.9)*[right]!LD\txt{label 8}*[red]\frm{.}

?(.5)*[@][*.66667]!/^30pt/

\txt{special effect: aligned text}

*[red]\frm{.}

}\endxy

73

Answer to exercise 23 (p.40): Here is what the
author did:

\xy *+{A}*\cir<10pt>{}="me"

\PATH ‘ul^ur,"me" "me" |>*:(1,-.25)\dir{>}

\endxy

The trick is getting the arrow head right: the :

modifier to the explicit \dir 〈object〉 does that.

Answer to exercise 24 (p.41): The author did

\xy(0,0)

\ar @{-->} (30,7) ^A="a"

\POS(10,12)*+\txt{label} \ar "a"

\endxy

Answer to exercise 25 (p.41): Here is the entire
XY-picture of the exercise:

\xy ;<1pc,0pc>:

\POS(0,0)*+{A}

\ar +(-2,3)*+{A’}*\cir{}

\ar @2 +(0,3)*+{A’’}*\cir{}

\ar @3 +(2,3)*+{A’’’}*\cir{}

\POS(6,0)*+{B}

\ar @1{||.>>} +(-2,3)*+{B’}*\cir{}

\ar @2{||.>>} +(0,3)*+{B’’}*\cir{}

\ar @3{||.>>} +(2,3)*+{B’’’}*\cir{}

\endxy

The first batch use the default {->} specification.

Answer to exercise 26 (p.41): The author used

\newdir{ >}{{}*!/-5pt/\dir{>}}

Answer to exercise 27 (p.42): The author used

\xy

\ar @{>>*\composite{\dir{x}*\dir{+}}<<}

(20,7)

\endxy

Answer to exercise 28 (p.43): The author used

\xy *{\circ}="b" \ar@(ur,ul) c

\ar@{.>}@(dr,ul) (20,0)*{\bullet}

\endxy

Note that it is essential that the curving specification
comes after the arrow style.

Answer to exercise 29 (p.45): Here is the code
used to typeset the pasting diagram in figure 16.

\xymatrixrowsep{1.5pc}

\xymatrixcolsep{3pc}

\diagram

&&\relax\rtwocell<0>^{f_3^{}\;\;}{\omit}

&\relax\ddtwocell<0>{\omit}

\drtwocell<0>^{\;\;f_4^{}}{<3>}

\ddrrtwocell<\omit>{<8>}\\

&&&&\relax\drtwocell<0>^{\;\;f_5^{}}{\omit}\\

A \uurrlowertwocell<-6>{\omit}\relax

\uurrcompositemap<2>_{f_1^{}}^{f_2^{}}{<.5>}

\drtwocell<0>_{g_1^{}\;}{\omit}

&&&\relax\urtwocell<0>{\omit}

&&\relax\rtwocell<0>^{f_6^{}\;}{\omit}

&\relax\rlowertwocell<-3>_{g_4^{}}{<-1>}

\rcompositemap<6>_{f_7^{}}^{f_8^{}}{\omit}

& B \\

&\relax\urrtwocell<0>{\omit}

\xcompositemap[-1,4]{}%

<-4.5>_{g_2^{}}^{g_3^{}}{\omit}\\

\enddiagram

For the straight arrows, it would have been simpler
to use \..to provided xyarrow has been loaded. In-
stead \..twocell<0>...{\omit } was used to illus-
trate the versatility of nudging and \omit ; thus
xy2cell can completely handle a wide range of di-
agrams, without requiring xyarrow. Note also the
use of \relax at the start of each new cell, to avoid
premature expansion of a complicated macro, which
can upset the compiling mechanism.

Answer to exercise 30 (p.47): Here is the code
used by the author to set the first diagram.

{\uppercurveobject{{?}}

\lowercurveobject{{\circ}}

\xymatrixcolsep{5pc}

\xymatrixrowsep{2pc}

\diagram

\relax\txt{ FUn }\rtwocell<8>{!\&}

& \relax\txt{ gaMES }

\enddiagram}

Here is the code used for the second diagram.

\xymatrixcolsep{2.5pc}

\xymatrixrowsep{4pc}

\diagram

\relax\txt<1.5cm>{\bf Ground State}

\rrtwocell<12>~^{+{}~**!/-2.5pt/\dir{>}}

~_{++{}~**!/5pt/\dir{<<}}

^{<1.5>\txt{\small continuous power}}

_{<1.5>\txt{\small pulsed emission}}{!}

& \relax\;\; N\!i\,C\!d\;\; \Circled

& \relax\txt<1.50cm>{\bf Excited State}

\enddiagram

Answer to exercise 31 (p.50): The author did

\xymatrix @!=1pc {

**[l] A\times B

\ar[r]^{/A} \ar[d]_{/B}

74

& B \ar[d]^{\times A}

\\

A \ar[r]_{B\times}

& **[r] B\times A

}

Answer to exercise 32 (p.51): Modifiers are
used to make all entries round with a frame – the
general form is used to ensure that the sequence is
well-defined. Finally the matrix is rotated to make it
possible to enter it as a simple square:

\entrymodifiers={=<1pc>[o][F-]}

\xymatrix @ur {

A \save[];[r] **\dir{-},

[];[dr]**\dir{-},

[];[d] **\dir{-}\restore

& B \\

C & D }

Answer to exercise 33 (p.51): Here is how:

\xymatrix @W=3pc @H=1pc @R=0pc @*[F-] {%

: \save+<-4pc,1pc>*\hbox{\it root}

\ar[]

\restore

\\

{\bullet}

\save*{}

\ar‘r[dd]+/r4pc/‘[dd][dd]

\restore

\\

{\bullet}

\save*{}

\ar‘r[d]+/r3pc/‘[d]+/d2pc/

‘[uu]+/l3pc/‘[uu][uu]

\restore

\\

1 }

Answer to exercise 34 (p.53): The first A was
named to allow reference from the last:

\xygraph{

[]A="A1" :@/^/ [r]A

:@/^/ [r]A

:@/^/ "A1" }

Answer to exercise 35 (p.53): The author did

\SelectTips{cm}{}

\objectmargin={1pt}

\xygraph{ !{0;(.77,-.77):0}

!~:{@{-}|@{>}}

w (:[r(.6)]{x_1}

,:[d]z:[r]y:[u(.6)]{x_2}:"x_1":"z"

:@({"w";"z"}, {"y";"z"})"z":"x_2") }

It also shows that one can use {}s inside delimited
arguments provided one adds a space to avoid the {}s
being shaved off!

Answer to exercise 36 (p.54): Here is the code
actually used to typeset the \xypolygon s, within an
\xygraph . It illustrates three different ways to place
the numbers. Other ways are also possible.

\def\objectstyle{\scriptscriptstyle}

\xy \xygraph{!{/r2pc/:}

[] !P3"A"{\bullet}

"A1"!{+U*++!D{1}} "A2"!{+LD*+!RU{2}}

"A3"!{+RD*+!LU{3}} "A0"

[rrr]*{0}*\cir<5pt>{}

!P6"B"{~<-\cir<5pt>{}}

"B1"1 "B2"2 "B3"3 "B4"4 "B5"5 "B6"6 "B0"

[rrr]0 !P9"C"{~*{\xypolynode}}}\endxy

B Version 2 Compatibility

Vers. 3.8 by Kristoffer H. Rose 〈krisrose@tug.org〉

Load as: \xyoption{v2}

This appendix describes the special backwards com-
patibility with XY-pic version 2: diagrams written ac-
cording to the “Typesetting diagrams with XY-pic:
User’s Manual” [15] should typeset correctly with this
loaded. The compatibility is available either as an
XY-option or through the special files xypic.sty and
xypic.tex described below.

There are a few exceptions to the compatibility:
the features described in §B.1 below are not provided
because they are not as useful as the author originally
thought and thus virtually never used. And one extra
command is provided to speed up typesetting of doc-
uments with XY-pic version 2 diagrams by allowing
the new compilation functionality with old diagrams.

The remaining sections list all the obsolete com-
mands and suggest ways to achieve the same things
using XY-pic 3.8.6, i.e., without the use of this option.
They are grouped as to what part of XY-pic replaces
them; the compilation command is described last.

Note: “version 2” is meant to cover all public
releases of XY-pic in 1991 and 1992, i.e., version 1.40
and versions 2.1 through 2.6. The published manual
cited above (for version 2.6) is the reference in case
of variations between these versions, and only things
documented in that manual will be supported by this
option!18

18In addition a few of the experimental facilities supported in v2.7–2.12 are also supported.

75

B.1 Unsupported incompatibilities

Here is a list of known incompatibilities with version
2 even when the v2 option is loaded.

• Automatic ‘shortening’ of arrow tails using |<<

breaks was a bug and has been ‘fixed’ so it does
not work any more. Put a |<\hole break before
it.

• The version 2.6 * position operator is not avail-
able. The version 2.6 construction t0;t1*(x,y)
should be replaced by the rather long but equiv-
alent construction

{ t0 ;p+/r/: t1 ="1";p+/u/,x;(0,0);:
"1";p+/r/,y;(0,0);:: (x,y)}

In most cases t0;t1**{}?(x), possibly with a
trailing +/^ . . . /, suffices instead.

• Using t0;t1:(x,y) as the target of an arrow
command does not work. Enclose it in braces,
i.e., write

{ t0 ; t1 :(x,y)}

• The older \pit, \apit, and \bpit commands
are not defined. Use \dir{>} (or \tip) with
variants and rotation.

• The even older notation where an argument in
braces to \rto and the others was automati-
cally taken to be a ‘tail’ is not supported. Use
the supported |<. . . notation.

If you do not use these features then your version 2
(and earlier) diagrams should typeset the same with
this option loaded except that sometimes the spac-
ing with version 3 is slightly different from that of
version 2.6 which had some spacing bugs.

B.2 Obsolete kernel features

The following things are added to the kernel by this
option and described here: idioms, obsolete positions,
obsolete connections, and obsolete objects. For each
we show the suggested way of doing the same thing
without this option:

Removed AMS-TEX idioms

Some idioms from AMS-TEX are no longer used
by XY-pic: the definition commands \define

and \redefine, and the size commands \dsize,
\tsize, \ssize, and \sssize. Please use
the commands recommended for your format—for
plain TEX these are \def for the first two and
\displaystyle, \textstyle, \scriptstyle, and
\scriptscriptstyle for the rest. The v2 option en-
sures that they are available anyway.

Version also 2 used the AMS-TEX \text and
a (non-object) box construction \Text which are
emulated—\text is only defined if not already de-
fined, however, using the native one (of AMS-TEX or
AMS-LATEX or whatever) if possible. Please use the
\txt object construction described in §6.3 directly
since it is more general and much more efficient!

Obsolete state

Upto version 2.6 users could access the state variables
\cL, \cR, \cH, and \cD, which are defined.

From v2.7 to 2.12 users could use the names
of the state \dimen registers \Xmin, \Xmax, \Ymin,
and \Ymax; \Xp, \Yp \Dp, \Up, \Lp, and \Rp; \Xc,
\Yc \Dc, \Uc, \Lc, and \Rc; \Xorigin, \Yorigin,
\Xxbase, \Yxbase, \Xybase, and \Yybase. Now the
same effect can be achieved using 〈corner〉s but v2

defines the aliases.

Obsolete position manipulation

In version 2 many things were done using individual
〈decor〉 control sequences that are now done using
〈pos〉 operators.

Version 2 positioning Replacement

\go〈pos〉 \POS;p,〈pos〉
\aftergo{〈decor〉}〈pos〉

\afterPOS{〈decor〉};p,〈pos〉
\merge \POS.p\relax

\swap \POS;\relax

\Drop{〈text〉} \drop+{〈text〉}

Obsolete connections

These connections are now implemented using direc-
tionals.

Version 2 connection Replacement

\none \connect h\dir{}

\solid \connect h\dir{-}

\Solid \connect h\dir2{-}

\Ssolid \connect h\dir3{-}

\dashed \connect h\dir{--}

\Dashed \connect h\dir2{--}

\Ddashed \connect h\dir3{--}

\dotted \connect h\dir{.}

\Dotted \connect h\dir2{.}

\Ddotted \connect h\dir3{.}

\dottedwith{〈text〉} \connect h{〈text〉}

Note how the ‘hidden’ specifier h should be used be-
cause version 2 connections did not affect the size of
diagrams.

76

Obsolete tips

These objects all have \dir-names now:

Version 2 tip Replacement

\notip \dir{}

\stop \dir{|}

\astop \dir^{|}

\bstop \dir_{|}

\tip \dir{>}

\atip \dir^{>}

\btip \dir_{>}

\Tip \dir2{>}

\aTip \object=<5pt>:(32,-1)\dir^{>}

\bTip \object=<5pt>:(32,+1)\dir_{>}

\Ttip \dir3{>}

\ahook \dir^{(}

\bhook \dir_{(}

\aturn \dir^{’}

\bturn \dir_{’}

The older commands \pit, \apit, and \bpit, are
not provided.

Obsolete object constructions

The following object construction macros are made
obsolete by the enriched 〈object〉 format:

Version 2 object Replacement

\rotate(〈factor〉)〈tip〉
\object:(〈factor〉,〈factor〉){〈tip〉}

\hole \object+{}

\squash〈tip〉 \object=0{〈tip〉}
\grow〈tip〉 \object+{〈tip〉}
\grow<〈dimen〉>〈tip〉 \object+<〈dimen〉>{〈tip〉}
\squarify{〈text〉} \object+={〈text〉}
\squarify<〈dimen〉>{〈text〉}

\object+=<〈dimen〉>{〈text〉}

where rotation is done in a slightly different manner
in version 3.8.6 (it was never accurate in version 2).

B.3 Obsolete extensions & features

Version 2 had commutative diagram functionality
corresponding to the frames extension and parts of
the matrix and arrow features. These are therefore
loaded and some extra definitions added to emulate
commands that have disappeared.

Frames

The version 2 frame commands are emulated us-
ing the frame extension (as well as the \dotframed,

\dashframed, \rounddashframed commands comm-
unicated to some users by electronic mail):

Version 2 object Replacement

\framed \drop\frm{-}

\framed<〈dimen〉> \drop\frm<〈dimen〉>{-}
\Framed \drop\frm{=}

\Framed<〈dimen〉> \drop\frm<〈dimen〉>{=}
\dotframed \drop\frm{.}

\dashframed \drop\frm{--}

\rounddashframed \drop\frm{o-}

\circled \drop\frm{o}

\Circled \drop\frm{oo}

Matrices

The \diagram 〈rows〉 \enddiagram command is pro-
vided as an alias for \xymatrix{ 〈rows〉 } centered
in math mode and \LaTeXdiagrams changes it to use
\begin . . . \end syntax. v2 sets a special internal
‘old matrix’ flag such that trailing \\ are ignored and
entries starting with * are safe.

\NoisyDiagrams is ignored because the matrix
feature always outputs progress messages.

Finally the version 2 \spreaddiagramrows,
\spreaddiagramcolumns spacing commands
are emulated using \xymatrixrowsep and
\xymatrixcolsep:

Arrows

The main arrow commands of version 2 were the
\morphism and \definemorphism commands which
now have been replaced by the \ar command.

v2 provides them as well as uses them to define
the version 2 commands \xto, \xline, \xdashed,
\xdotted, \xdouble, and all the derived commands
\dto, \urto, . . . ; the \arrow commands of the β-
releases of v3 is also provided.

Instead of commands like \rrto and \uldouble

you should use the arrow feature replacements
\ar[rr] and \ar@{=}[ul].

The predefined turning solid arrows \lltou, . . . ,
\tord are defined as well; these are now easy to do
with 〈turn〉s.

B.4 Obsolete loading

The v2 User’s Manual says that you can load XY-pic
with the command \input xypic and as a LATEX 2.09
‘style option’ [xypic]. This is made synonymous
with loading this option by the files xypic.tex and
xypic.sty distributed with the v2 option.

xypic.tex: This file (version 3.6) just loads the v2

feature.

77

xypic.sty: Loads xy.sty and the v2 feature.

B.5 Compiling v2-diagrams

In order to make it possible to use the new compila-
tion features even on documents written with XY-pic
v2, the following command was added in v2.12:

\diagramcompileto{ 〈name〉 } . . . \enddiagram

which is like the ordinary diagram command except
the result is compiled (see note 5e). Note that com-
pilation is not quite safe in all cases!

There is also the following command that switches
on automatic compilation of all diagrams created
with the v2 \diagram . . . \enddiagram command:

\CompileAllDiagrams { 〈prefix〉 }
\NoCompileAllDiagrams

\ReCompileAllDiagrams

will apply \xycompileto{〈prefix〉n}{. . . } to each di-
agram with n a sequence number starting from 1. Use
\CompileMatrices and \CompilePrefix instead!

If for some reason a diagram does not work when
compiled then replace the \diagram command with
\diagramnocompile (or in case you are using the
LATEX form, \begin{diagramnocompile}).

C Common Errors

In this appendix we describe some common cases
where small mistakes in XY-pictures result in TEX er-
ror messages that may seem cryptic.

! Box expected.
! A 〈box〉 was supposed to be here. This mes-
sage is common when an XY-pic 〈object〉 is mistyped
such that XY-pic expects but does not find a TEX
〈box〉 construction.

! LaTeX Error: Bad math environment delim-
iter.
! File ended while scanning use of \xycompiled.
! Argument of \codeof@ has an extra }. These
errors can happen while reading an incomplete com-
piled picture (such a beast is created when XY-pic
crashes during compilation due to a syntax error or
other such problem).

! Missing } inserted. This happens when \endxy

was left out.

To Do: Also include the more obscure ones. . .

References

[1] Adobe Systems Incorporated. PostScript Lan-

guage Reference Manual, second edition, 1990.

[2] American Mathematical Society. AMS-LATEX
Version 1.1 User’s Guide, 1.1 edition, 1991.

[3] Karl Berry. Expanded plain TEX, version 2.6 edi-
tion, May 1994. Available from CTAN.

[4] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, 1994.

[5] Brian W. Kernighan. PIC—a language for type-
setting graphics. Software Practice and Experi-

ence, 12(1):1–21, 1982.

[6] Donald E. Knuth. The TEXbook. Addison-
Wesley, 1984.

[7] Donald E. Knuth. Computer Modern Typefaces,
volume A of Computers & Typesetting. Addison-
Wesley, 1986.

[8] Leslie Lamport. LATEX—A Document Prepara-

tion System. Addison-Wesley, 1986.

[9] Leslie Lamport. LATEX—A Document Prepara-

tion System. Addison-Wesley, 2nd edition, 1994.

[10] Daniel Müllner. The xypdf
package. Available from
http://ctan.org/tex-archive/macros/generic/diagrams/xypic/xy/doc/xyp
May 2010.

[11] P. Naur et al. Report on the algorithmic lan-
guage ALGOL 60. Communications of the ACM,
3:299–314, 1960.

[12] Alexander R. Perlis. Axis alignment in XY-pic
diagrams. TUGboat, 22(4):330–334, 2001.

[13] Tomas Rokicki. DVIPS: A TEX Driver. Dis-
tributed with the dvips program found on CTAN
archives.

[14] Kristoffer H. Rose. How to typeset pretty dia-
gram arrows with TEX—design decisions used in
XY-pic. In Jǐŕı Zlatuška, editor, EuroTEX ’92—

Proceedings of the 7th European TEX Con-

ference, pages 183–190, Prague, Czechoslo-
vakia, September 1992. Czechoslovak TEX Users
Group.

[15] Kristoffer H. Rose. Typesetting diagrams with
XY-pic: User’s manual. In Jǐŕı Zlatuška, edi-
tor, EuroTEX ’92—Proceedings of the 7th Eu-

ropean TEX Conference, pages 273–292, Prague,
Czechoslovakia, September 1992. Czechoslovak
TEX Users Group.

78

http://ctan.org/tex-archive/macros/generic/diagrams/xypic/xy/doc/xypdf.pdf

[16] Kristoffer H. Rose. XY-pic User’s Guide.
DIKU, University of Copenhagen, Univer-
sitetsparken 1, DK–2100 København Ø, 3.0 edi-
tion, June 1995. Latest version is available from
http://xy-pic.sourceforge.net/.

[17] Kristoffer H. Rose and Ross R. Moore. XY-
pic complete sources with TEXnical commentary.
Available from http://xy-pic.sourceforge.net/,
June 2010.

[18] Michael D. Spivak. The Joy of TEX—A Gourmet

Guide to Typesetting with the AMS-TEX Macro

Package. American Mathematical Society, sec-
ond edition, 1990.

[19] TUG Working Group TWG-TDS. A directory
structure for TEX files version 0.98. URL, May
1995. Available with URL ftp://jasper.ora.com/
pub/twg-tds/.

79

http://xy-pic.sourceforge.net/
http://xy-pic.sourceforge.net/

Index

!, 8
&, 48
’, 39
(), 8
(0), 8
(0,0), 72
(1), 8
*, 8, 39, 41, 42, 49, 50, 76
**, 8, 40, 50
+, 8
,, 8, 40
-, 8, 39
., 8
.xyd, 15
/, 38, 39, 42
//, 8
:, 8, 12
::, 8
;, 8
<, 8, 38–40
<>, 8
<>(.5), 39
=, 8, 38–41
>, 8, 38–40
?, 8, 40
@, 8, 39, 42, 50
@!, 42, 50
@!0, 50
@!=, 50
@!C, 50
@!R, 50
@(, 10, 42, 43
@), 10
@*, 42, 50
@+, 10
@-, 10
@/, 42, 43
@1, 51
@<, 42, 43
@=, 10
@?, 42, 43
@@, 10
@C, 50
@H, 50
@L, 50
@M, 50
@R, 50
@W, 50
@‘, 42
@i, 10
[.], 13
[=, 12, 14, 31, 33
[P:, 37
[], 13

[c], 14
[d], 13
[dvips], 5
[l], 13
[o], 13
[r], 13
[textures], 5
[u], 13
\\, 48
^, 39, 40, 42
_, 39, 40, 42
‘, 39, 40
‘s, 66
|, 39, 42
|<<, 76
~, 39

0, 6, 8, 42
1, 42
2, 42
3, 42
10, 27
11, 27
12, 27

A, 8
a, 8
active characters, 4
〈add op〉, 12
\aftergo , 76
\afterPATH , 38
\afterPOS , 15, 16, 40
\ahook , 77
allocation, 5
AMS-LATEX, 5, 15
AMS-TEX, 5
\apit , 76
\ar , 14, 38, 66
array, 52
arrow head, 41
arrow stem, 41
arrow tail, 41
\astop , 77
\aTip , 77
\atip , 77
\aturn , 77

banner, 5
\bhook , 77
BNF, 4
〈body of the option〉, 19
\bpit , 76
\bstop , 77
\bTip , 77
\btip , 77
\bturn , 77

C, 8, 10
c, 6
c, 8
cartesian coordinate system, 6
category code, 4
CD, 8
\cD , 76
\cH , 76
〈cir〉, 19
\cir , 18, 74
\Circled , 77
\circled , 77
circles, 5
CL, 8
\cL , 76
cm, 27
\Col , 51
column spacing, 50
〈command〉, 16
\CompileFixPoint , 15
\CompilePrefix , 15
compiling, 15
〈composite〉, 12
\composite , 12, 13, 18
connect, 6
\connect , 16
〈coord〉, 8, 37
COPYING, 4
copyright, 3
〈corner〉, 8
CR, 8
\cR , 76
CU, 8
current object style, 12, 14

D, 6
D, 8, 10
Dc, 6
Dp, 6
\Dashed , 76
\dashed , 76
dashes, 5
\dashframed , 77
\Dc , 76
\Ddashed , 76
\Ddotted , 76
〈decor〉, 16
decoration, 6
default entry, 50
\define , 76
\definemorphism , 77
〈diag〉, 12
\diagram , 77
dimension registers, 5
\dir , 16, 18, 41

80

〈direction〉, 12
\documentclass , 5
\dotframed , 77
\Dotted , 76
\dotted , 76
\dottedwith , 76
\Dp , 76
〈driver〉, 20
\Drop , 76
\drop , 16
\dsize , 76
\dumpPSdict {<filename>}, 36

E, 8, 10
Edge, 6
Edgec, 6
Edgep, 6
\enddiagram , 77
\endxy , 5, 6, 15
entry alignment used prior to ver-

sion 3.8, 51
entry height, 50
entry margin, 50
entry modifiers, 50, 51
entry width, 50
\entrymodifiers , 51
Error, 5
〈escape〉, 52
eu, 27
\everyentry , 51
extension, 20
extents, 6
e|, 37

fixed grid, 50
fonts, 5
format dependencies, 5
formats, 4
\Framed , 77
\framed , 77
free software, 3
french.sty, 4
\frm , 10, 24
\frm {**}, 26
\frm {*}, 26

german.sty, 4
GNU General Public License, 3
\go , 76
〈graph〉, 52
\grow , 77

h, 12
\halfrootthree , 7
\halfroottwo , 7
\halign , 52
\hbox , 12
\hole , 41, 77

hooks, 5

i, 12
idioms, 5
\input xy, 4
\input xypic, 77

\jot , 9

L, 6
L, 8, 10
Lc, 6
Lp, 6
label separation, 50
\labelbox , 41
\labelmargin , 40
\labelstyle , 41
LATEX, 5
\LaTeXdiagrams , 77
LATEX2ε, 5
\Lc , 76
LD, 8
license, 3
line, 37
〈list〉, 52
loading, 4, 5
logo, 5
\Lp , 76
LU, 8
lu, 27

\makeatletter , 4
\makeatother , 4
\MakeOutlines , 15
math mode, 6
〈matrix〉, 48
matrix, 48
matrix orientation, 50
matrix spacing, 50
\merge , 76
messages, 5
〈modifier〉, 12, 37
\morphism , 77
〈move〉, 52
movie, 34
\MovieSetup , 35
\MultipleDrivers , 20

\newdir , 18, 41
\newgraphescape , 53
\newxycolor , 31
\newxypattern , 32
\next , 4
〈node〉, 52
\NoisyDiagrams , 77
\none , 76
\NoOutlines , 15
\NoPSspecials , 35
\NoRules , 18

\notip , 77
\NoTips , 27

〈object〉, 12
object, 6
\object , 12, 16
〈objectbox〉, 12
\objectbox , 11, 41
\objectheight , 13
\objectmargin , 13, 40
\objectwidth , 13
\OnlyOutlines , 15
〈orient〉, 19
orientation, 50

P, 8, 10
p, 6
p, 8
package, 5
\partroottwo , 7
\PATH , 38
\PATHaction , 38
\PATHafterPOS , 40
Perlis, 51
\pit , 76
〈place〉, 8
placement state, 6
plainTEX, 5
〈pos〉, 8
\POS , 16, 38
positions, 6
privacy, 4

q, 12

R, 6
R, 8, 10
Rc, 6
Rp, 6
〈radius〉, 19
\Rc , 76
RD, 8
\redefine , 76
redefined, 4
\relax , 4, 16
\restore , 16
\rotate , 77
\rounddashframed , 77
\Row , 51
row spacing, 50
\Rp , 76
RU, 8

s, 8
\save , 16
\scene , 34
\SelectTips , 27
\ShowOutlines , 15
\SilentMatrices , 49

81

〈size〉, 12
〈slide〉, 8
\Solid , 76
\solid , 76
spacing, 50
\spreaddiagramcolumns , 77
\spreaddiagramrows , 77
\squarify , 77
\squash , 77
squiggles, 5
\ssize , 76
\Ssolid , 76
\sssize , 76
state, 7
〈step〉, 52
\stop , 77
style, 14
style option, 5
\swap , 76
system dependencies, 5

TEX reference point, 6
\Text , 76
\text , 76
\Tip , 77
\tip , 77
tips, 5
\tsize , 76
\Ttip , 77
〈turn〉, 66
\turnradius , 40
\txt , 18

U , 6
U, 8, 10
Uc, 6
Up, 6
\Uc , 76
\Up , 76
\UseCrayolaColors , 31
\usepackage , 5
\UsePSheader {<filename>},

36
\UsePSheader {}, 36
\UsePSspecials {}, 35
\UseRules , 18
\UseSingleDriver , 20

\UseTips , 27

v, 12
〈vector〉, 8
vector, 37
version, 5

Warning, 5
warning messages, 4
warranty, 3

X, 6
x, 8, 9
Xorigin , 6
Xxbase , 6
Xybase , 6
Xc, 6
Xp, 6
Xmax, 6
Xmin, 6
\Xc , 76
\xdashed , 77
\xdotted , 77
\xdouble , 77
\xline , 77
\Xmax , 76
\Xmin , 76
\Xorigin , 76
\Xp , 76
\xto , 77
\Xxbase , 76
xy, 27
\Xy , 5
\xy , 5–7, 15
XY-pic, 5
XY-picture state, 6
xy.sty, 5
xyatip10, 5
\xyatipfont , 5
\Xybase , 76
\xybox , 12
xybsql10, 5
\xybsqlfont , 5
xybtip10, 5
\xybtipfont , 5
xycirc10, 5
\xycircfont , 5
\xycompile , 15, 16

\xycompileto , 16
xydash10, 5
\xydashfont , 5
\xydate , 5
\xyecho , 15
\xyendinput , 19
\xyeveryrequest , 19
\xyeverywithoption , 19
\xygraph , 52
xyidioms.tex, 5
\xyignore , 16
\xymatrix , 14, 48
\xymatrixcompile , 49
\xymatrixnocompile , 49
\xyoption , 5, 19
xypic.sty, 77
xypic.tex, 77
\xyprovide , 19
\xyPSdefaultdict , 36
\xyquiet , 15, 16
xyrecat.tex, 4
\xyReloadDrivers , 20
\xyrequire , 19
\xyShowDrivers , 20
\xytracing , 15, 16
\xyverbose , 15, 16
\xyversion , 5
\xywithoption , 19

Y , 6
y, 8, 9
Yorigin , 6
Yxbase , 6
Yybase , 6
Yc, 6
Yp, 6
Ymax, 6
Ymin, 6
\Yc , 76
\Ymax , 76
\Ymin , 76
\Yorigin , 76
\Yp , 76
\Yxbase , 76
\Yybase , 76

zero position, 6

82

	I The Kernel
	The Xy-pic implementation
	Loading Xy-pic
	Logo, version, and messages
	Fonts
	Allocations

	Picture basics
	Positions
	Objects
	Connections
	Decorations
	The Xy-pic state

	Positions
	Objects
	Decorations
	Kernel object library
	Directionals
	Circle segments
	Text

	Xy-pic options
	Loading
	Option file format
	Driver options

	II Extensions
	Curve and Spline extension
	Curved connections
	Circles and Ellipses
	Quadratic Splines

	Frame and Bracket extension
	Frames
	Brackets
	Filled regions
	Framing as object modifier
	Using curves for frames

	More Tips extension
	Line styles extension
	Rotate and Scale extension
	Colour extension
	Pattern and Tile extension
	Import graphics extension
	Movie Storyboard extension
	PostScript backend
	Choosing the DVI-driver
	Why use PS

	TPIC backend
	em-TeX backend
	Necula's extensions
	Expansion
	Polygon shapes

	LaTeX Picture extension

	III Features
	All features
	Dummy option
	Arrow and Path feature
	Paths
	Arrows

	Two-cell feature
	Typesetting 2-cells in Diagrams
	Standard Options
	Nudging
	Extra Options
	2-cells in general Xy-pictures

	Matrix feature
	Xy-matrices
	New coordinate formats
	Spacing and rotation
	Entries

	Graph feature
	Polygon feature
	Lattice and web feature
	Circle, Ellipse, Arc feature
	Full Circles
	Ellipses
	Circular and Elliptical Arcs

	Knots and Links feature
	Smart Path option

	IV Drivers
	Support for Specific Drivers
	dvidrv driver
	DVIPS driver
	DVITOPS driver
	OzTeX driver
	OzTeX v1.7 driver
	Textures driver
	Textures v1.6 driver
	XDVI driver
	PDF driver

	Extra features using PS drivers
	Colour
	Frames
	Line-styles
	Rotations and scaling
	Patterns and tiles

	Extra features using tpic drivers
	frames.

	Answers to all exercises
	Version 2 Compatibility
	Unsupported incompatibilities
	Obsolete kernel features
	Obsolete extensions & features
	Obsolete loading
	Compiling v2-diagrams

	Common Errors
	Index

