XY-pic User's Guide

Kristoffer H. Rose 〈krisrose@tug.org〉 ${ }^{\times}$

Version 3.8.2, June 17, 2010

Abstract

XY -pic is a package for typesetting graphs and diagrams using Knuth's $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ typesetting system. XY-pic works with most of the many formats available; e.g., plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$, and $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Several styles of input for various diagram types are supported; they all share a mnemonic notation based on the logical composition of visual components. This guide concentrates on how to typeset "matrix-like" diagrams, such as commutative diagrams, in the following style:

was typeset by the XY_{Y}-pic input lines

```
\xymatrix{
    U \ar@/_/[ddr]_y \ar@/^/[drr]^x
        \ar@{.>}[dr]|-{(x,y)} \\
    & X \times_Z Y \ar[d]^q \ar[r]_p
                & X \ar[d]_f \\
    & Y \ar[r]^g & Z }
```

Such diagrams have the following characteristics:

- Specified as a matrix of entries that are automatically aligned in rows and columns.
- Any entry may be connected to any other entry using a variety of arrow styles all rotated and stretched as required.
- Arrows may be decorated with labels that are tied to a specified point along the arrow and extend in a particular direction; and arrows may be paired, cross, and visit/bend around other entries "on the way."

Several other styles of input are supported; a short survey of the possibilities is included last at the end along with information on how X_{Y}-pic can be obtained.

Contents

Preface 2
1 Basics 2
1.1 Loading 2
1.2 Entries 2
1.3 Arrows 3
1.4 Labels 3
1.5 Breaks 3
1.6 Curving 4
1.7 Speeding up typesetting 4
2 More Arrows and Labels 4
2.1 Explicit label positioning 4
2.2 Labeling with any object 5
2.3 More arrow styles 6
2.4 Sliding arrows sideways 6
2.5 More targets 7
2.6 Changing the target 7
2.7 Arrows passing under 7
2.8 More bending arrows 8
2.9 Defining new arrow types 8
3 More Entries 9
3.1 Manual entry formatting 9
3.2 Extra entries outside the matrix 9
3.3 Spacing and rotation 10
3.4 Entry style 10
3.5 Naming for later use as targets 10
3.6 Grouping objects 11
4 Availability and Further Information 11
4.1 Getting XY-pic 11
4.2 Backwards compatibility 11
4.3 Further reading 12
4.4 Credits 13
A Answers to all exercises 13
References 14
Index 15

[^0]
Preface

This guide explains some features of X_{Y}-pic that are relevant to typesetting of "matrix-like diagrams" as used in, for example, category theory; please refer to the reference manual [4] for complete information on the described constructions. The guide assumes that you have some experience in using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ for typesetting mathematics, e.g., have studied [2, ch. 16-19], [3, sec. 3.3], or [5], and that X_{Y}-pic is installed on your $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ system as described in the INSTALL file accompanying the distribution.

The first section describes what you need to get started, in particular all that is needed to typeset the diagram in the abstract. Section 2 and 3 explain advanced use of arrows and entries, respectively. Finally, section 4 explains where and under what conditions XY -pic is available, gives the relation of version 3.8.2 to previous versions, and lists further sources of information.

Throughout we give exercises that you should be able to solve as you go along; all exercises are answered at the end just prior to the references and index.

1 Basics

This section explains the XY-diagram construction concepts needed to get started with typesetting matrix-like diagrams.

1.1 Loading

With $\operatorname{LAT}_{E} X 2_{\varepsilon}$, used by most users, X_{Y}-pic is loaded with

$$
\text{\usepackage[all]\{xy\}}
$$undefinedundefinedundefinedundefinedundefinedundefined

in the preamble of the document; this also automatically loads an appropriate "backend driver" for generating graphics in either PDF or PostScript ${ }^{1}$ format, when possible (by checking for document class options like pdftex, dvipdfm, or dvips), to ensure the highest output quality (and usually results in smaller files).

When not using $\mathrm{AT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$, or for portability, $\mathrm{X} Y$-pic can be loaded with the commands

```
\input xy
\xyoption{all}
```

in the definitions part of your document. If you wish to load only the features you use, or you wish to use
non-standard facilities like the v2 backwards compatibility mode ${ }^{2}$ then this is also possible as described in the reference manual [4]; in addition the driver you wish to use should be explicitly requested, for example with \xyoption\{pdf\}.

1.2 Entries

A diagram is created by the command
\xymatrix\{ ...\}
where the ". .." should be replaced by entries to be aligned in rows and columns where

- entries in a row are separated by \&, ${ }^{3}$ and
- entire rows are separated by $\backslash \backslash$.

For example,

was typeset by
\xymatrix\{
A \& * + [F] $\left\{\backslash\right.$ sum_ $\left._{-}\{i=n\} \wedge m\{i \wedge 2\}\right\} \backslash \backslash$ \& \{\bullet\} \& D \ar[ul] \}

Notice the following:

- entries are typeset as mathematics (using "text style"); entries should not start with a macro (as illustrated by the use of $\}$ around \backslash bullet.
- all entries are centered and the separation between rows and columns is usually quite large in a diagram,
- empty entries at the end of rows may be omitted,
- "XY-decorations" (here $\operatorname{\text {ar}}$ [ul]) in entries allow drawing of arrows and such relative to the entries without changing the overall layout, and
- "XY-modifiers" (here *+[F]) first in entries allow changing the format and shape in many ways.

[^1]
1.3 Arrows

An "arrow" in an XY-pic diagram is a generic term for the drawn decorations between the entries of the basic matrix structure. In XY-pic all arrows must be specified along with the entry in which they start; this is called their base entry. Each particular arrow command then refers explicitly to its target entry. This is obtained using the \ar command which accepts many options of which we will describe a few here and some more in section 2. In its simplest form an arrow is entered as $\backslash \mathrm{ar}$ [hop] where hop is a sequence of single letters: u for up, d for down, 1 for left, and r for right, e.g., the arrow $\backslash a r$ [ur] reads "typeset an arrow from the current entry to that one up and one right."

Exercise 1: Which entry does [] refer to?
The relative coordinates specified in this way are purely logical, e.g., if the diagram contains very wide entries then "diagonal" arrows will be nearly horizontal. The constructed arrows are aligned along the line between the centers of the base and target entries; they will not automatically disappear under entries that they cross (we discuss how this is achieved in section 2.7).

The arrow style kan be changed by writing the command as \ar@style[hop]. This will be described in more detail in section 2.3; here we just list the most common @styles (obvious variations also work):

Exercise 2: Typeset

1.4 Labels

You can put labels on arrows. Labels are conceptualized as sub- and superscripts on arrows such that they are placed in the usual positions (as "limits"), i.e., " reads "above" and _ "below" on an arrow pointing right. Notice that the positions depend only on the direction of the arrow, the absolute notions of "up," "down," etc. are not important. For example,

\$\xymatrix@1\{

$X \backslash \operatorname{ar}[r] \wedge a _b$ \& Y \& $Z \backslash \operatorname{ar}[1]{ }^{\wedge} A_{-} B$ \}\$
will set $X \underset{b}{a} Y<\frac{B}{A} Z \quad$ (the @1 is a special code that can be used for "one-line" diagrams to improve the placement on the line; more such spacing codes are described in section 3.3).

It is possible to use labels that are not single letters, digits, or control sequences: if a simple math formula in the default style (script style) is desired then simply enclose in $\{\ldots\}$. In practice anything can be used as a label as described in section 2.2.

Each label is placed perpendicular to the arrow at the point halfway between the centers of the base and target objects. This is usually the most æsthethic, however, in diagrams where the sizes of the entries vary much it is sometimes nicer to place the label at the center of the actual arrow. This behaviour is requested by inserting a - (minus) right after the or _: $A \times B \times C \times D \xrightarrow{+} B$ was typeset by
\$\xymatrix@1\{
A \times $\mathrm{B} \backslash$ times $\mathrm{C} \backslash$ times D \ar $[r]^{\wedge}-\{+\}$ \&B \}\$
(it becomes $A \times B \times C \times \bar{D} \longrightarrow B$ without the -). In fact - is in just one of the may possible placings of labels described in section 2.1.

Exercise 3: Typeset the second axiom of category theory as

1.5 Breaks

It is also possible to "break" an arrow with a label using the \mid character: $\$ \backslash x y m a t r i x @ 1\{A \backslash \operatorname{ar}[r] \mid f \& B\} \$$ will set $A-f \rightarrow B$.

If you just want an empty break you should use the special \hole break: the arrow $A \rightarrow B$ was typeset by including $\$ \backslash x y m a t r i x @ 1\{$ $A \backslash \operatorname{ar}[r] \mid$ hole \& B $\} \$$ in the text.

A different use of breaks is to place a label somewhere in a diagram outside the normal matrix mesh: this is accomplished by "breaking" an invisible arrow obtained using the @\{\} arrow style: the square

was typeset by
\xymatrix\{ $\operatorname{\text {ar}}$ @\{\} [dr] |\{=\}
$A \backslash \operatorname{ar}[d] \quad \operatorname{ar}[r] \& B \quad \operatorname{ar}[d] \quad \backslash$
B $\backslash \operatorname{ar}[r]$ \& C \}
There is more on breaks in section 2.7.

Exercise 4: Typeset the first axiom of category theory as the display

1.6 Curving

Arrows can be made to curve, for example to avoid going through another entry, using the special style @/ curving/. The simplest styles of curving are the following, shown applied to an arrow from A to B :

As the last example shows a dimension can be inserted just after ^ or _ if more or less curving is desired.

In case it is easier to specify the in- and out-going directions of the curving then that is also possible: use

```
@(in,out)
```

where in and out are one of the following directions:

In this case the curving is computed such that the curve begins at the base entry in the in direction and ends at the target entry from the out direction (this means that $@\left(d_{1}, d_{2}\right)$ and $@\left(d_{2}, d_{1}\right)$ are mirror images. See section 2.6 for more directions).

Exercise 5: Typeset

$$
\begin{equation*}
{ }^{G} \underset{\neq}{ } x \longleftrightarrow f(x) \tag{p.13}
\end{equation*}
$$

1.7 Speeding up typesetting

One thing that you will notice is that XY -pic is sometimes slow in typesetting diagrams (this is to be expected considering the number of drawing operations performed as reflected by the number last in each xymatrix message). If you follow the rule of starting all entries with a (nonexpandable) character or \{ then you can insert the declaration

\CompileMatrices

in the preamble of your document: this will create temporary files ${ }^{4}$ containing compiled versions of each matrix that can be loaded very quickly; they are automatically recreated when a matrix is changed.

If this causes some diagrams to not work, then such compilation can be explicitly switched off by using \xymatrixnocompile in place of \xymatrix. Compilation can be switched off completely with \backslash NoCompileMatrices (which respects $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ grouping as does \CompileMatrices, by the way).

And if you are still not satisfied with the speed then you can add the following:

\OnlyOutlines

which will omit all compiled pictures; the additional command \ShowOutlines will add a dotted rectangle outlining the size of the picture.

2 More Arrows and Labels

In this section we explain a number of variations of the arrow commands that are useful in commutative diagrams.

2.1 Explicit label positioning

The label commands explained in section 1.4 place the label text near the point along the arrow halfway between the centers of the base and target entries. This, however, may be changed by inserting a place between the ${ }^{\wedge}$, , or I, and the actual label (in fact is a place). In general you may insert the following:

- < will place the label at the point where the actual arrow begins, i.e., "appears from under" the base, so \$ ${ }^{\text {xymatrix@1 }\{A \backslash \operatorname{ar}[r] \sim<\{+\} \& B\} \$ ~}$ will typeset $A^{+} B$.
- Similarly, > will place the label at the point where the actual arrow ends, i.e., "disappears below" the target, so $\$ \backslash$ xymatrix@1\{A\ar $\left.[r]^{\wedge}>\{+\} \& B\right\} \$$ will typeset $A \longrightarrow{ }^{+} B$.

[^2]- << and >> will place the following label at a point just a bit ${ }^{5}$ further from the beginning and end of the arrow, so $\$ \backslash x y m a t r i x @ 1\left\{A \backslash a r[r]^{\wedge} \gg\{+\} \& B\right\} \$$ will typeset $A \longrightarrow B$. Using more $<\mathrm{s}$ or $>\mathrm{s}$ will move the label further in.
- A factor in ()s: (a) indicates that the label should be "tied" to the point a of the way from the center of the base entry (called (0)) to the center of the target (called (1)) instead of in the middle, so $\$ \backslash x y m a t r i x @ 1\left\{A \backslash a r[r]^{\wedge}(.3)\{+\} \& B\right\} \$$ will typeset $A \xrightarrow{+} B$.
- A factor can be given after some < or >s, in which case the place is computed as if the base was specified by the <s and target specified by the $>\mathrm{s}$. Hence \$ \backslash xymatrix@1\{A $\left.\operatorname{ar}[r]^{\wedge}<(0)\{+\} \& B\right\} \$ \quad$ will typeset $A^{+} B$.
- Finally, there is a simple way to denote the place on an arrow where it intersects with a straight line between two points: the place $!\left\{t_{1} ; t_{2}\right\}$ places the label relative to the point on the arrow where the line from the target t_{1} to the target t_{2} crosses it. Bug: Only works for straight arrows at present.

As usual more possibilities can be found in the reference manual [4, fig. 2].

Exercise 6: Typeset

2.2 Labeling with any object

XY-pic supports a general format for entering any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ text as labels (as well as entries to be explained later). The character $*$ is reserved for this: in its simplest form $*\{$ math $\}$ will typeset the math material as an object. This is like $\{m a t h\}$ except that the default style is ignored and there is no added blank margin.

However, in general the following form of *object is available:
*modifiers $\{$ text $\}$
where modifiers can be used to change the shape and size of the constructed object. The following are the most common, the full list of possibilities can be found in the reference manual [4, fig. 3]:

+	grow
+<dimen>	grow by dimen
+=	grow to enclosing square
-	shrink
-<dimen>	shrink by dimen
-=	shrink to contained square
!	do not center
[o]	round
[l] [r] [u] [d]	adjust left, right,...
[F] [F=]	frame double
[F.] [F--]	dotted [dashē]
[F-,] [F-: <3pt>]	shaded rounded

Since objects specified this way start with no margin, a single + is usually included to get the default spacing.

Exercise 7: Typeset $A \xrightarrow{(x} B$.

There can only be one boxing. This can be any box generation command. The following are the most useful boxing $\{$ text $\}$ combinations:

@variant\{tip\}	tip (or shaft) object
\txt\{..\}	ordinary text
\composite\{......\}	combined objects
\frm\{\} repeat last object	

(the possibilities for variant and tip are given in the following section). Finally, \hbox\{... $\}^{6}$ is a quick way to ensure text-mode interpretation of a single object. However, \txt allows the use of $\backslash \backslash$ in text to create a line break, and the special form $\backslash t x t<6 p c>\{\ldots\}$ will constrain the text to a centered 6 pc wide column. By the way, \txt can be used outside of XY-pic constructions.

Finally, several objects can be combined using the last form; the $*$ s serve to separate the composed object.

[^3]
2.3 More arrow styles

The arrow styles described in section 1.3 are all examples of the general arrow style constructions
@variant $\{$ tail shaft head\}
@variant $\{$ head $\}$
that in describes arrows with the indicated tail, shaft, and head (on the first form the tail and head can be omitted; the second style defaults to having no tail and a standard shaft).

The following possibilities exist for head and tail which we will denote tips (here shown as heads):

$<$	$<$	>	\ldots	X	. \times
<<	\longleftrightarrow	>>	\cdots	+	+
\|<	k	>1	\cdots	\|	1
\|<<	K	>>1	\cdots	\| 1	11
(C))	-	\bigcirc
/	1	//11		

and the shaft should be one of the following:

	$-1 \quad-\quad-$
~~~~	$\sim \sim \sim \sim$
-	

The variant should be empty or one of the following:

> - "above" variant
> - "below" variant
> 2 "double" variant
> 3 "triple" variant

Here are some standard arrows in this notation, all from $A$ to $B$ as usual:

$$
\begin{array}{cl}
@\{\langle-\rangle\} & A \longleftrightarrow B \\
@^{\wedge}\{\langle-\rangle\} & A \Longleftrightarrow B \\
@_{-}\{\langle-\rangle\} & A \Longleftarrow B \\
@ 2\{\langle-\rangle\} & A \Longleftrightarrow B \\
\text { @ } 3\{\langle-\rangle\} & A \Longleftrightarrow B
\end{array}
$$

As a special convenience $=$ and $:$ are provided as abbreviations for - and . with variant forced to 2 .

As it can be seen, the variant will affect the entire arrow. Sometimes this is not what is wanted. In that case a local variant can be used by entering any of the tail, shaft, and head, on the following form:
variant $\{$ shaft $\}$

Here are some arrows where this is required:

$$
\begin{array}{ll}
@\{\wedge( \}->\} & A \hookrightarrow B \\
@\left\{\mid-_\{>\}\right\} & A \longmapsto B
\end{array}
$$

Notice that there is no distinction between shafts and tips using this form, thus it is necessary to include all three of tail, shaft, and head, when using it. The advantage is that it is possible then to "fill with a tip." Furthermore, the following additional possibilities are available when using this notation:


The even more general form *object can be used, where object refers to any of the constructions described in section 2.2.

Exercise 9: Typeset $A \xlongequal[\times x \times x \times 0]{ } B$.

### 2.4 Sliding arrows sideways

It is often desirable to have several parallel arrows between two objects. This can be done by sliding either or both arrows sideways a distance given as a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ dimension enclosed in @<>s: it specifies how far "sideways" the arrow should be moved, e.g.,
\xymatrix\{
A $\backslash \operatorname{ar@<1ex>[dr]~a_ \{ .\} ~\ \ }$
\& B \ar@<1ex>[ul] $b \backslash a r @<1 e x>[r]^{\wedge} c$ \& C \ar@<1ex>[1]~d_\{.\} \}
will typeset


A positive distance will slide the arrow in the " ${ }^{\text {- }}$ direction," e.g., the two arrows above are slid in the direction of the labels $a, b, c$, and $d$, respectively; a negative distance in the "_-direction." The distance <@1ex> is often appropriate since it corresponds roughly to the height of letters like "x," in the type size being used.

Exercise 10: Typeset $A=B$.
(p.13)

### 2.5 More targets

The target address can be given in a large number of formats called positions. The full range of possibilities is described in the reference manual [4, fig. 1]; here is a number of useful ones in addition to the hop format described in section 1.3:

- $[r, c]$, where $r, c$ are integers, denotes the relative entry found $r$ rows below and $c$ columns to the right of the current entry (the current entry itself is thus $[0,0])$. This always corresponds to a [hop], e.g., [1,2] is the same as [drr] and $[-2,0]$ is the same as [uu].
- " $r, c$ ", where $r, c$ are positive integers, denotes the absolute entry found in the $r$ th row and $c$ th column of the diagram. The top left entry is "1,1".
- $t^{\prime} ; t$, where $t^{\prime}$ is any target, changes the base entry of the present arrow to $t^{\prime}$ and then sets the target to $t$ relative to the original base entry. For example,

```
\xymatrix{ A \\
    B & C \ar@<1ex>[ul]
                            \ar@<1ex>[ul];[] }
```

typesets

i.e., the second $\backslash \operatorname{ar}[u l]$ arrow starts at the [ul] entry and ends in the current entry.

See section 3.5 for how to use a label as a target.

### 2.6 Changing the target

It is possible to overwrite a target with another by appending something of the form *object to it. This has the effect of typesetting the object at the current position, thus effectively on top of the target, and then use what was typeset as the target.

A target may also have its position changed by one of the following constructions:

- +vector or -vector which changes the target to be a zero-sized one at the position obtained by adding or subtracting the vector to its center, or
- ! vector which moves the center of the target by the vector;
where a vector should have one of the following forms:
- 0 is the zero vector,
- $\left\langle D_{x}, D_{y}\right\rangle$, where $D_{x}, D_{y}$ are $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ dimensions, is the vector with those coordinates, and
- /d dimen/ is the vector going dimen in the particular direction $d$ which can be either the eight simple ones in section 1.6, empty to denote that the current direction (the last direction of an arrow) should be used, or one of the following:

```
va(\alpha) absolute angle
d:\textrm{a}(\alpha)}\mathrm{ relative angle in degrees
d:(x,y) relative vector
d^/d_ short for :a(90)/:a(-90)
```

where the $d$ in the last four may be empty to denote the "current direction."

- The "corner offsets" of a target are vectors as shown:

(they must be specified in upper case),
Many, many more possibilities are described in the reference manual [4].

Exercise 11: What is the difference between a target $t$ and the target $t+0$ ?

### 2.7 Arrows passing under

Arrows can pass under (or via) any other entry: Just insert ' $t$, i.e., a quote (apostrophe) character followed by a target, for each entry that should be visited except the last, "ordinary \& final" entry:

```
\xymatrix{
    {\circ}
        \ar@{|-->} '[dr] ^a
            '[rr]+D*{\bullet} `b
            [drrr] `c
            & {\circ} & {\circ} & {\circ} \\
    {\circ} & {\circ} & {\circ} & {\circ} }
```

typesets


As you see, labels are set separately on each segment.

Exercise 12: Typeset the "lambda cube"


Hint: "going under" an empty entry leaves a small gap at that location. The compactness is achieved using a trick described in section 3.3.
(p.13)

### 2.8 More bending arrows

Finally, arrows can bend around entries: just insert ' $d t$, i.e., a backquote and a direction $d$ followed by a target $t$, for each "turn" that starts out in the $d$ direction and ends in a quarter turn towards the target $t$. This is different from the curving described earlier in that all turns consist of a straight part ending in a turn which is a multiple of $1 / 8$ circle segments, and each segment allows separate labels.

The possible directions are those of section 1.6 and 2.6 , and the possible targets include all those discussed above. Actually the direction is only required for the first in a series of turns since the final direction of one turn is the obvious choice for the following turn. Furthermore, turns can be changed from the default by adding either ${ }^{\wedge} d$ for anticlockwise turn to $d$ or $d$ for clockwise turn to $d$, where $d$ is the "exit direction" of the turn.

Finally, the turns will have radius 10pt by default, but this can be changed to any dimension $R$ from a particular turn and onwards by inserting $/ R$ immediately after the ' of the turn. Here is an example involving all of these features:

```
\xymatrix{
    {\circ} \ar 'r[d] `a
        '[rr] ^b
        '/4pt[rr] "c
        '[rrr] ^d
        '_dl[drrr]^e
            [drrr]^f
        & {\circ} & {\circ} & {\circ} \\
    {\circ} & {\circ} & {\circ} & {\circ} }
```

typesets


The example illustrates the following points:

- If the segment can not be made as short as required then it will point "past" the target. This is useful for "going around" entries.
- There is one ' per turn thus each target appears as many times as there are turns towards it, except the last target that appears one more time namely both with ' for each turn towards it and once as an "ordinary" target to set the final stretch.
- The sizes of the intermediate targets are ignored.

Exercise 13: Typeset

### 2.9 Defining new arrow types

Last in this treatment of arrows we will explain how new arrows can be defined. The crucial fact is that the characters used for tips and shafts are restricted to the following:

```
><|ox+/()[]
-. ~:= shaft characters
```

When an arrow is interpreted by XY -pic it is first split into the three components and then each component is looked up in a library of so-called "directionals." It is possible to add new such directionals using the command

## \newdir\{ directional \}\{ composite \}

where directional should be a sequence either of tip characters or of shaft characters, and composite should be a list of objects separated with $*$ just like the argument to \composite described in section 2.2. If arrows of a particular variant (always one of the letters "_23) needs an alternate definition then another declaration can be given with the variant inserted between \newdir and the first \{.

There is one object modifier which is very useful in this context, in addition to those of section 2.2:

$$
!\text { vector shift object vector }
$$

(where the possibilities for vector are described in section 2.6). Combined with the direction code this is very powerful, for example,
\newdir\{|>\}\{\%
!/4.5pt/@\{|\}*: (1,-.2)@へ\{>\}*: (1,+.2)@_\{>\}\}
defines a new tip that makes
\xymatrix\{ A \ar @\{=|>\} [r] \& B \}
typeset $A \Longrightarrow B$. Notice how the "relative direction" is used here to rotate some of the composed components.

Exercise 14: Often tips used as "tails" have their ink on the wrong side of the point where they are placed. Fortunately space ( $\sqcup$ ) is also a tip character so we can define the directional $\leq>$ to generate a "tail-spaced" arrow. Do this such that

```
\xymatrix{ A \ar @{>->} @< 2pt> [r]
    \ar @{ >->} @<-2pt> [r] & B }
```

typesets

$$
\begin{equation*}
A \gg B \tag{p.14}
\end{equation*}
$$

Finally, when XY-pic diagrams are used in conjunction with Knuth's computer modern fonts then the declaration

```
\SelectTips {cm}{}
```

will change the tips to some that look similar, e.g.,

```
$\SelectTips{cm}{}
    \xymatrix@1{A\ar@{->>|}[r]&B}$
```

typesets $A \longrightarrow B$. The second argument (here \{\}) can be used to specify a point size $\{10\}$, $\{11\}$, or $\{12\}$, if desired (the default is $\{10\}^{7}$ ); $\{\mathrm{cm}\}$ can be replaced by \{eu\}, \{lu\}, and \{xy\}, to get tips in "Euler," "Lucida," and the default technical style, respectively. The declaration respects $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ grouping.

Exercise 15: Typeset $A \rightarrow \rightarrow B$. Hint: With the construction \object object one can typeset an XY-pic object (anything that could follow a $*$ in section 2.2 ) in any context.

## 3 More Entries

This section explains what can go in an entry and how the general form of the entries is changed.

### 3.1 Manual entry formatting

All the entries we have seen thus far have been simple math objects. However, it is possible to change the format of an individual entry by using the form:

## *object arrows

This allows complete control over what object is placed in the entry, overriding any spacing and other conventions for the entry. This was how the frame was obtained in the figure in section 1.2.

A simple use of this is to insert text in entries using \txt objects just like labels as described above in section 2.2:
\xymatrix\{

```
*\txt{A very long and stupid\\program}
    \ar[rr]^-{\txt{weird\\arrow}}
&&*\txt<2pc>{Com\-pli\-cated\\Code}}
```

will typeset
\(\underset{A very logram}{long and stupid} \xrightarrow{\substack{weird <br>

arrow}}\)| cated |
| :---: |
| com- |
| code |

Exercise 16: Typeset

(p.14)

### 3.2 Extra entries outside the matrix

It is possible to put extra entries in your diagrams that are not part of any "entry" of the matrix created by \& and $\backslash \backslash$. This is done with the excursion command

## \save $t$ \restore

where $t$ should be a target in one of the formats described in sections 2.5-2.6. $t$ can do any kind of typesetting desired, for example,

```
\xymatrix{
    A \ar@{-}[dr]
    &{}\save[]+<3cm,0cm>*\txt<8pc>{%
        This is a very big commentary
        but it does not otherwise affect
        the diagram.}
        \ar[l] \ar[d] \restore \\
    & B \ar@{-}[r] & C \ar@{-}[r] & D
}
```

will typeset


It illustrates how a "down" arrow does not necessarily have to point particularly straight down - in this case because it is based in the displaced pseudo entry.

[^4]
### 3.3 Spacing and rotation

The *object form described above can be used to space individual objects differently, however, it is also possible to change the overall spacing of a matrix by inserting the following codes between \xymatrix and the following \{:

$$
\begin{array}{ll}
@=\text { dimen } & \text { set spacing } \\
@ \mathrm{R}=\text { dimen } & \text { set row spacing } \\
@ \mathrm{C}=\text { dimen } & \text { set column spacing } \\
@ \mathrm{M}=\text { dimen } & \text { set entry default margin } \\
@ \mathrm{~W}=\text { dimen } & \text { set entry default width } \\
\text { @H=dimen } & \text { set entry default height } \\
\text { @L=dimen } & \text { set label margin }
\end{array}
$$

$=$ can be replaced by any of,$++=,-$, and $-=$ of section 2.2 with the same meaning, i.e., replace "set" with "increase," "increase to at most," "decrease," and "decrease to at least," respectively. For example, $\$ \backslash$ xymatrix@1@=0pt@M=0pt\{A\&B<br>C\&D\}\$ in the text typesets $A B$.

In case uniform spacing is desired, several alternative forms exist.

$$
\begin{aligned}
& @!\text { force all spaces equal } \\
& @!\bigcirc \text { - and ignore entry sizes } \\
& @!R \text { force equal row spacing } \\
& @!C \text { force equal column spacing }
\end{aligned}
$$

Finally a special notation allows rotation of an entire matrix:

## @ $d$ rotate towards $d$

Only the matrix grid will rotate, however, not the actual contents.

Exercise 17: Typeset the "strip lemma"


### 3.4 Entry style

As mentioned above, the entries of a diagram are set in math mode in text style. You may change this by redefinining the macro \objectstyle, and the label style by redefining \labelstyle. We can combine this with the above to get "small diagrams," e.g., typing
\$\left } (
\def\objectstyle\{\scriptstyle\}
\def \labelstyle\{\scriptstyle\}
\vcenter\{\xymatrix @-1.2pc @ur \{ $A \backslash \operatorname{ar}[r]^{\wedge}\{a\} \& B \backslash \operatorname{ar}[d] \wedge\{b\} \quad \backslash$ $\left.\left.A^{\prime} \backslash \operatorname{ar}[u] \sim\left\{a^{\prime}\right\} \& B^{\prime} \backslash \operatorname{ar}[1] \sim\{b \prime\}\right\}\right\}$
\right)\$
in a paragraph will typeset " $\left(\begin{array}{ccc}a^{a} \not{ }^{B} & \Downarrow^{b} \\ A & & B^{\prime} \\ a^{\prime} & & A^{\prime} \\ & { }^{\prime} b^{\prime}\end{array}\right)$."
You can even abandon the use of math mode entirely: the command \def \objectstyle $\{\backslash$ hbox $\}$ will change the format of entries to plain text.

Similarly, all entries are rectangular by default, but it is possible to change this to round by declaring the default modifiers to be applied to all entries that do not override them ( $c f$. section 2.2):

```
\entrymodifiers={++[o][F-]}
\SelectTips{cm}{}
\xymatrix @-1pc {
    *\txt{start} \ar[r]
    & 0 \ar@(r,u) []^b \ar[r]_a
    & 1 \ar[r]^b \ar@(r,d)[]_a
    & 2 \ar[r]^b
        \ar 'dr_l[l] '_ur[l] _(.2)a [l]
    &*++[o][F=]{3}
        \ar 'ur^l[lll]'`dr[lll]^b [lll]
        \ar 'dr_l[ll] '_ur[ll] [ll] }
```

will typeset


Notice how we obtain the double ring using the *object form which then has to include all the desired modifiers (and how the use of computer modern tips is nice for diagrams as these).

### 3.5 Naming for later use as targets

If you build an entry with a long and complicated excursion then you might wish to be able to refer to it later. XY -pic provides a mechanism for this: there is a special target form which we haven't discussed yet:

## t="name"

This will introduce the new target "name" which will refer to the target just before the $=$. This is particularly useful inside excursions, of course, and can also be used after labels.

Exercise 18: Typeset $A \xrightarrow{a \xrightarrow{\longrightarrow}} C$.
(p.14)

### 3.6 Grouping objects

Sometimes you wish to frame or otherwise treat a rectangle of objects as a single object. This is possible with the last two target position forms that we will mention:
$t . s$ merge $t$ with simple $s$
$\{t\}$ make $t$ simple

The first will enlarge $t$ to also "cover" the "simple" $s$ (simple means that it cannot have changes etc. attached unless encapsulated in \{\}s). Here is an example where we merge and frame:

```
\xymatrix @R=1pc {
    1,1 & 1,2 & 1,3 & 1,4 & 1,5 \\
    2,1& 2,2 & 2,3 & 2,4 & 2,5
    \save "1,2"."2,4"*[F.]\frm{}
    \ar"1,1"\ar"2,1"\ar"1,5" \ar"2,5"
    \restore }
```

will typeset


As you can see, the center of the merged object is the same as the one of the target before the ".."

Finally a more advanced example where we create two merged objects with center in their "real" center, name them and then connect to them. It also shows how macros can be used inside diagrams: they should always expand to "commands" like \ar..., etc.:

can be typeset by

```
\def\g#1{\save
    [].[dr]!C="g#1"*[F]\frm{}\restore}%
\xymatrix{
    \g1 A\ar[r]&B\ar[d]&\g2 A'\ar[r]&B'\ar[d]\\
        C\ar[u]&D\ar[1]& C'\ar[u]&D'\ar [1]
    \ar @{.>} "g1" ;"1,4"
    \ar @{-->} "2,1";"g2" }
```

Then we can make arrows from/to the two frames by using the two new targets "g1" and "g2" as shown.

Exercise 19: Change the lambda cube of exercise 12 such it is enclosed in a transparent (i.e., dotted) cube.
(p.14)

## 4 Availability and Further Information

Below we describe how to and the conditions for obtaining XY-pic version 3.8.2, the compatibility with previous versions, and we conclude with a few appetisers to lure the reader into reading more about XY-pic.

### 4.1 Getting XY-pic

The easiest way to retrieve XY -pic is to get it from CTAN ${ }^{8}$ or the "pictures" collection of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Live. ${ }^{9}$ The latest version of XY -pic can furthermore be obtained from the XY-pic home page. ${ }^{10}$

License: $\mathrm{X}_{Y}$-pic is free software in the sense that it is available under the following license conditions:

```
Xy-pic: Graphs and Diagrams with \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\)
    (c) 1991-2010 Kristoffer H. Rose
    (C) 1994-2010 Ross Moore
```

The XY -pic package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

The XY-pic package is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this package; if not, see http://www.gnu.org/licenses/.

In practice this means that you are free to use XY-pic for your documents but if you distribute any part of $\mathrm{X}_{Y}$-pic (including modified versions) to someone then you are obliged to ensure that the full source text of $\mathrm{XY}_{\mathrm{Y}}$-pic is available to them (the full text of the license in the file COPYING explains this in somewhat more detail $\Theta)$.

### 4.2 Backwards compatibility

The first widely distributed version of XY-pic was version 2 (from release 1.40 to release 2.6). A special compatibility mode is used automatically if the old style of loading is used (using files named xypic.tex and xypic.sty). You can also mix old and new diagrams in a document if you load as described in section 1.1 and add the declaration $\backslash x y o p t i o n\{v 2\}$.

[^5]This provides almost full backwards compatibility: the following are the only known exceptions:

- Automatic "shortening" of arrow tails by $1 \ll$ break was a bug and has been "fixed" so it does not work any more. Fix: Put a $\mid<\backslash$ hole break before it as described in section 2.3 .
- The release 2.6 * position operator is not available. Fix: Use the : and : : operators (described in detail in the reference manual [4]).
- Using $t_{1} ; t_{2}:(x, y)$ as the target of an arrow command does not work. Fix: Enclose it in braces, i.e., write $\left\{t_{1} ; t_{2}:(x, y)\right\}$.
- The old \pit, \apit, and \bpit commands are not defined. Fix: Use $* @\{>\}$ (or \tip) with variants and rotation.
- The even older notation where an argument in braces to \rto and the others was automatically taken to be a "tail" is not supported. Fix: Use the supported $\mid<.$. notation.
Finally note that sometimes the spacing with version 3.8.2 is "improved" relative to earlier versions $\Theta$. Please report all other things that do not work the same in version 3.8.2 and an earlier version to the author.


### 4.3 Further reading

The reference manual [4] describes several more input modes that are useful when the diagram is not organised as a matrix. We'll give some examples of such diagrams but refer to the reference manual for the details.

- The "graph" feature allows input of data structured as directed graphs to make it easy to produce such pictures as

- The "knot" feature allows drawing of mathematical knots and links like

- The "2cell" feature provides special support for categorical twocells like

- The "poly" feature allows polygon-like structures:

- The "web" feature allows composition in lattices such as

- The "arc" feature is suitable for effects like


In each case the figure is produced with relatively few lines using techniques documented in the respective sections of the reference manual together with the details of the $X_{Y}$-pic kernel and extensions, "arrow," and "matrix" features as used in this guide; further extensions provide support for use of colour, PostScript effects, and much more.

For further documentation, the $\mathrm{X}_{\mathrm{Y}}$-pic home page ${ }^{11}$ links to a number of tutorials on $X Y$-pic with focus on different things (and in different languages).

Finally, we maintain a collection of examples in the xysamples directory on CTAN. ${ }^{12}$

[^6]
### 4.4 Credits

XY-pic version 2 was a small package created by the author. Version 3 is been the result of more than ten years of active collaboration with Ross Moore. ${ }^{13}$ Most recently, version 3.8 was released to permit inclusion of Daniel Müllner's ${ }^{14}$ impressive xypdf backend, which permits high quality graphics also when generating PDF files. The release furthermore includes fonts by Y\&Y Inc. and Jeremy Gibbons, as well as macros by George Necula.

## A Answers to all exercises

Answer to exercise 1 (p.3): The target [] is the current entry itself.

Answer to exercise 2 (p.3): The author did

```
\xymatrix{
    {\bullet} \ar@{--}[d]\ar@{=}[dr]\ar@{-}[r]
            & {\bullet} \ar@{.}[d] \\
    {\bullet} & {\bullet} \ar[l] }
```

Notice how - has been enclosed in \{\} since it is an "expandable" entity, i.e., a defined macro: this is recommended.

Answer to exercise 3 (p.3): The author used

```
\xymatrix{
    A \ar[r] f \ar[dr]_{f;g}
    & B \ar[d]^g \ar[dr]^{g;h} \\
    & C \ar[r]_h & D }
```

Answer to exercise 4 (p.4): The author entered

```
\xymatrix{
    A \ar[d]_f \ar[r] f
        & B \ar[dl]|{i_B} \ar[d]^g \\
    B \ar[r]_g & C }
```

Answer to exercise 5 (p.4): The author did
\xymatrix\{
x \ar@(ul,dl)[]|\{id\} $\backslash \operatorname{ar@/\sim /[rr]|f}$
\&\& $\mathrm{f}(\mathrm{x})$ \ar@/~/[11]|\{f^\{-1\}\}\}
Note that both arrows are curved "above" relative to their direction.

Answer to exercise 6 (p.5): The author used the display

```
\xymatrix{
    1 \ar[rr] ^-{1000000x}
        \ar[dr] _(.2){2000x} |!{[d];[rr]}\hole
```

```
    \&\& 1000000 \\
\(1000 \backslash \operatorname{ar}[r] \quad\{2 x\}\)
    \ar [urr] _>>>>\{x^2\}
\& 2000 \}
```

In particular notice how the break was specified to happen exactly where the two arrows cross. For an easier but not so general method see exercise 12 last in section 2.7.

Answer to exercise 7 (p.5): The author typed
\xymatrix@1\{ A \ar[r]^*+[o][F-]\{x\} \& B \}

Answer to exercise 8 (p.5): The author did

```
\xymatrix@1{
    A \ar @{/*\composite{{+}*{\times}}/} [rr]
            **+\txt{High\\label}
    && B}
```

Answer to exercise 9 (p.6): The author entered
\xymatrix\{
A \ar @/~/ @\{^\{<\}-_\{>\}\} [r]
\ar @/_/ @\{\{*\}\{x\}\{*\}\}[r] \& B \}

Answer to exercise 10 (p.6): The author typed
\xymatrix@1\{
A \ar@/~/[r] \ar@/~/@<-1ex>[r] \& B \}

Answer to exercise 11 (p.7): The size: $t+0$ always has zero size.

Answer to exercise 12 (p.7): The author constructed

```
\xymatrix@!0{
    & \lambda\omega \ar@{-}[rr]\ar@{-}'[d][dd]
        & & \lambda C \ar@{-}[dd]
\\
    \lambda2 \ar@{-}[ur]\ar@{-}[rr]\ar@{-}[dd]
    & & \lambda P2 \ar@{-}[ur]\ar@{-}[dd]
\\
    & \lambda\underline\omega \ar@{-}'[r][rr]
        & & \lambda P\underline\omega
\\
    \lambda{\to} \ar@{-}[rr]\ar@{-}[ur]
    & & \lambda P \ar@{-}[ur]
}
```

A special thing is added: @! forces rows and columns to be equally spaced as discussed in section 3.3; @! 0 furthermore makes the spacing ignore the entry sizes, giving a completely fixed grid. The

[^7]gaps could also be made with the !... crossing notation of exercise 6 last in section 2.1 but the above is shorter.

Answer to exercise 13 (p.8): The author typed

```
\xymatrix@1{
    A \ar@<-2pt> 'd[r] '[r] [r]
        \ar@<+2pt> 'd[r] '[r] [r] & B }
```

Answer to exercise 14 (p.8): The author used \newdir\{ >\}\{\{\}*!/-5pt/@\{>\}\}

Answer to exercise 15 (p.9): The author typed
\xymatrix@1\{
A $\backslash \operatorname{ar}[r] \mid-\{\backslash$ SelectTips $\{\mathrm{cm}\}\{ \} \backslash$ object $@\{\gg\}\}$
$\mid>\{\backslash$ SelectTips $\{$ eu\} $\{ \} \backslash$ object $@\{>\}\}$
\& B $\}$

Answer to exercise 16 (p.9): The author typed

```
\xymatrix{
    *=0{\bullet}
    \ar@/^/[dr]!U|1
    \ar@/~/[drr]!U|2
    \ar@/^/[drrr]!U|3
\\
    &*+[F]\txt {x}
    &*+[F]\txt{x\\x}
    &*+[F]\txt{x\\x\\x}
}
```

Answer to exercise 17 (p.10): The author entered the display

```
\xymatrix@dr@C=1pc{
    a \ar[r]\ar@{->>}[d] & a' \ar@{.>>}[d] \\
    b \ar@{.>>}[r] & b' }
```

Answer to exercise 18 (p.10): The author typed

```
\xymatrix{
    A \ar[r] ^a="a" & B \ar[r] ^b="b" & C
    \ar @/~/ "a";"b" }
```

Notice the use of both explicit base and target in the arrow between the labels.

Answer to exercise 19 (p.11): The author added the XY-code

```
\save [].[dd].[ddrr].[rr]*[F.]\frm{}="back"
    \restore
```

in the entry with $\lambda \omega$, and

```
\save [].[dd].[ddrr].[rr]*[F.]\frm{}
```

\ar@\{.\} +UL;"back"+UL \ar@\{.\} +UR;"back"+UR \ar@\{.\} +DL;"back"+DL \ar@\{.\} +DR;"back"+DR \restore
in the entry with $\lambda 2$ to produce


## References

[1] Adobe Systems Incorporated. PostScript Language Reference Manual, second edition, 1990.
[2] Donald E. Knuth. The $T_{E} X b o o k . ~ A d d i s o n-W e s l e y, ~$ 1984.
[3] Leslie Lamport. ${ }^{A} T_{E} X-A$ Document Preparation System. Addison-Wesley, 2nd edition, 1994.
[4] Kristoffer H. Rose and Ross R. Moore. XY-pic Reference Manual. DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 København Ø, 3.0 edition, June 1995. Latest version is available from http://xy-pic.sourceforge.net/.
[5] Michael D. Spivak. The Joy of $T_{E} X-A$ Gourmet Guide to Typesetting with the $\mathcal{A}_{\mathcal{M}} \mathcal{S}-T_{E} X$ Macro Package. American Mathematical Society, second edition, 1990.

## Index

!, 5, 7, 8	[u], 5	coordinates, 3
! $\{;\}, 5$		
, 2, 5	COPYING, 11	
\&, 2	- , 3, 4, 6-8	copyright, 11
', 7	- \{'\}, 6	cover, 11
(, 6	- \{'\}, 6	crossing arrows, 5, 8
(), 5	- \{1-\}, 6	cube, 8
(0), 5	_, 3, 4, 6-8	current direction, 7
(1), 5	_\{'\}, 6	current entry, 7
), 6	_ $\{$ '\}, 6	curve, 4, 8
*, 5, 7-9, 12	_ $\{1-\}, 6$	d, 3
+, 5-7, 10	', 8	dashed arrow, 6
+=, 5, 10	\{*\}, 6	dashed frame, 5
-, 3, 5-7, 10	\{1-\}, 6	default modifier, 10
--, 6	$\{\mathrm{l}=\}, 6$	default spacing, 5
-=, 5,10	।, 3, 4, 6	defining arrows, 8
., 6	I<, 6	degrees, 7
/, 6-8	\| $\ll, 6,12$	directed graphs, 12
//, 6	\|1, 6	direction, 4, 7, 8
: (), 7	$\sim$	directionals, 8
: a()$, 7$	$\sim \sim, 6$	dotted arrow, 6
;, 7	2cell, 12	dotted frame, 5
<, 4, 6	3\{1-\}, 6	double arrow, 6
$\ll, 5,6$ $=, 10$	0, 7	double frame, 5
>, 4,6	absolute angle, 7	elliptical, 10
>>, 5, 6	absolute entry, 7	entries outside matrix, 9
>>1, 6	adjust, 5	entries with text, 9
>1, 6	adjusting position, 7	entry, 2, 9
@, 3, 5, 6, 10	\apit, 12	entry format, 9
@!, 10	\ar, 3, 4	entry outside matrix, 3
@(, 4	arc, 12	entry style, 10
@/~/, 4	arrow, 3, 4	excursion, 9
@/_/, 4	arrow head, 6	explicit positioning, 4
@1, 3	arrow passing under, 7	extra entries, 9
@<>, 6	arrow shaft, 6	format, 9
@=, 10	arrow style, 3, 6	frame, 5
@C=, 10	arrow tail, 6	free software, 11
@H=, 10	base entry, 3, 7	\frm, 5
@L=, 10	bend, 8	GNU General Public License, 11
$@ M=, 10$ $@ R=, 10$	\bpit, 12	going around, 8
@W=, 10	break, 3	graph, 12
@\{\}, 3	centered, 5	grouping, 11
[ $\mathrm{F}-$, ], 5	changing position, 7	grow, 5
[F--], 5	changing turn radius, 8	half arrow, 6
[F-: <3pt>], 5	circle segments, 8	$\backslash \mathrm{hbox}, 5$
[F.], 5	circular, 10	head, 6
[ $\mathrm{F}=$ ], 5	columns, 2, 7	\hole , 3
[F], 5	combined objects, 5, 8	hop, 3, 7
[], 3,7	commutative diagrams, 1,4	intersects, 5
[d], 5	compatibility, 11	invisible arrow, 3
[1], 5	\CompileMatrices , 4	
[o], 5	\composite , 5, 8	\jot , 5
[r], 5	computer modern fonts, 9	knot, 12

1, 3
label, 3, 4, 8
label centered on arrow, 3
label style, 10
label with any object, 5
labels as targets, 10
labels with text, 9
ebreak,5links,12merge,11movingtarget,7name,11newarrows,8\newdir,8\NoCompileMatrices,4o,6object,5\object,9objectmodifier,5,8,10\objectstyle,10oldstyleofloading,11\OnlyOutlines,4overwrite,7parallel,6\pit,12plaintextentries,10poly,12polygon-like,12position,7quarterturn,8r,3radius,8relativeangle,7relativeentry,7relativevector,7repeatlastobject,5retrieving$\mathrm{X}_{\mathrm{Y}}$-pic,11rotation,8,10round,10roundshape,5roundedframe,5rows,2,7segment,7$\backslash$SelectTips\{cm\}\{\},9shadedframe,5shaft,$5,6,8$shaftastip,6shaftcharacters,8shape,5\ShowOutlines,4shrink,5sideways,6size,5sliding,6spacing,10square,5squigglyarrow,6tail,6target,7,10targetentry,3text,5textinentries,9textlabel,5textstyle,2tip,5,8tipcharacters,8tipinshaft,6triplearrow,6turn,8twocells,12\txt,5,9u,3uniformspacing,10\usepackage,2v2,2va(),7variant,6,8vector,7vectorcoordinates,7vectorindirection,7vectortocorner,7version2,11warranty,11web,12x,6\xymatrix,2\xymatrixnocompile,4\xyoption,2,11xypic.sty,11xypic.tex,11undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined


[^0]:    ${ }^{\times}$IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA.

[^1]:    ${ }^{1}$ PostScript is a registered Trademark of Adobe, Inc. [1].
    ${ }^{2}$ If you use the version 2 loading command \input xypic (or the xypic document style option) then the v2 option described in section 4.2 will be loaded automatically.
    ${ }^{3}$ Thus when using XY-constructions involving \& inside other tabular constructions then enclose the XY-pic construction in an extra pair of braces!

[^2]:    ${ }^{4}$ The temporary files are named the same as your document but .tex is replaced by $-n . x y c$ where $n$ is a sequence number.

[^3]:    5 "A bit" is in fact a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ \jot which is usually 3 pt .
    ${ }^{6}$ The plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ command $\backslash$ hbox corresponds to $\backslash$ mbox in $\mathrm{IAT} \mathrm{T}_{\mathrm{E}}$ and $\backslash$ text in the $\mathcal{A}_{\mathcal{M}} \mathcal{S}$ variants.

[^4]:    ${ }^{7}$ Except when XY -pic is loaded as a $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$ package where the default size is used.

[^5]:    ${ }^{8}$ http://ctan.org/tex-archive/macros/generic/diagrams/xypic
    ${ }^{9}$ http://www.tug.org/texlive/, included with most modern systems such as Ubuntu GNU/Linux.
    ${ }^{10}$ http://xy-pic.sourceforge.net.

[^6]:    ${ }^{11}$ http://xy-pic.sourceforge.net.
    ${ }^{12}$ http://ctan.org/tex-archive/macros/generic/diagrams/xypic/xysamples/.

[^7]:    ${ }^{13}$ Mathematics Department, Macquarie University, Sydney, Australia 2109; e-mail: ross.moore@mq.edu.au.
    ${ }^{14}$ http://www.math.uni-bonn.de/people/muellner/

