\documentclass[12pt]{report} \usepackage{manual} \usepackage[english]{babel} \usepackage[autolanguage]{numprint} \usepackage{dcolumn} \newcommand*\boi{\textbackslash} \newcommand*\at{@} \fvset{label=source}% english \renewcommand\parameter[1]{\texttt{#1}\index{#1@\texttt{#1}}% \index{parameter!\texttt{#1}}} \begin{document} \begin{titlepage} \null\par\vfill \begin{center} \begin{minipage}{0.75\linewidth} \hrule width\linewidth height2pt depth0pt \hrule width0pt height3pt depth0pt \hrule width\linewidth height1pt depth0pt \hrule width0pt height18pt depth0pt \begin{center} \Huge\bfseries XLOP v \fileversion\par\vskip18pt User Manual \end{center} \hrule width0pt height6pt depth0pt \hrule width\linewidth height1pt depth0pt \hrule width0pt height3pt depth0pt \hrule width\linewidth height2pt depth0pt \end{minipage} \end{center} \vfill \begin{center} Jean-Côme Charpentier\\ \today \end{center} \vfill\null\par \end{titlepage} \newpage \pagenumbering{roman} \tableofcontents \newpage \pagenumbering{arabic} \chapter{Overview} \label{chap:Présentation} The \package{xlop} package is intended to make automatic arithmetic operation on arbitrary sized numbers and to display result either on display mode or inline mode. Here is a first exemple for an overview of the syntax: \begin{SideBySideExample} \opadd{45,05}{78,4} \end{SideBySideExample} We comment this first example in order to give an idea about how use \package{xlop}. Addition is displayed ``like in school'': this is the default displaying. We have an alignment on dots (operand's dot and result's dot), operator symbol is put on the left and it is vertically centered between the operands, and the decimal separator is a dot even though we have specified operands with comma. Finally, note that there is a carry above the first operand. Alignment on dot is obligatory. The other points above are deal with options. Many macros accept an optional argument which controls some aspects of displaying or computing operation. For that, we use a ``keyval-like'' syntax: we specify a sequence of parameter's modifications through an affectation's comma separated sequence. One affectation has one of the two possible syntax below: \begin{verbatim} = \end{verbatim} the second one is a shorthand for: \begin{verbatim} =true \end{verbatim} In this affectation sequence, we can put space(s) after comma. But don't put space around the equal sign nor before comma: if you put space(s) here, that means that parameter name or value has a space. So, if you want a comma as decimal separator , an operator symbol side by side with the second operand, and no carry, you have just to say: \begin{SideBySideExample} \opadd[decimalsepsymbol={,}, voperator=bottom, carryadd=false]{45.05}{78.4} \end{SideBySideExample} Note the trick which consists to put the comma between braces in the decimal separator symbol definition. In fact, if you say: \begin{Verbatim}[xrightmargin=0pt] \opadd[decimalsepsymbol=,,voperator=bottom, carryadd=false]{45.05}{78.4} \end{Verbatim} \package{xlop} drives mad! It don't understand what is this sort of list! Another important point, though it is less apparent, is that the figures are put in very precise places. Each figure is put in a box of fixed width and fixed height (user can change these values), decimal separator is put in a null-width box (by default), and the lines have a regular interspace (with or without horizontal rule). This allows exact spacing and to place what we want where we want. \begin{SideBySideExample} \psset{xunit=\opcolumnwidth, yunit=\oplineheight} \opadd{45.05}{78.4} \oplput(1.5,3){carry} \psline{->}(1,3.15)(-3.25,3.15) \end{SideBySideExample} This example uses package \package{pstricks}\index{pstricks@\package{pstricks}} We have said that \package{xlop} package is able to deal with arbitrary sized numbers. We come again about this subject and, for now, we just give an example which shows what is possible. Don't look at the code, some explanations will be given later in this manual, for now just admire the result! \begin{CenterExample}[xrightmargin=0pt] \opdiv[style=text,period]{1}{49} \end{CenterExample} The package \package{xlop} provides some other features. It is possible to manipulate numbers through variables. These variables can be created with an assignation or as a computation result. You can also manipulate the figures individually: \begin{SideBySideExample} \opadd*{45.05}{78.4}{r}% The first figure after dot of $45.05+78.4$ is \opgetdecimaldigit{r}{1}{d}% $\opprint{d}$. \end{SideBySideExample} you can make tests: \begin{SideBySideExample} \opadd*{45.05}{78.4}{r}% The sum $45.05+78.4$ is \opcmp{r}{100}% \ifopgt greater than \else\ifoplt less than \else equal to \fi\fi $100$. \end{SideBySideExample} you can use some operations and some functions: \begin{SideBySideExample} gcd of $182$ and $442$ is \opgcd{182}{442}{d}$\opprint{d}$ \end{SideBySideExample} you can compute complex expression in infix form: \begin{SideBySideExample} \opexpr{(2+3^2)/(gcd(22,33))}{r}% $$\frac{2+3^2}{\gcd(22,33)} = \opprint{r}$$ \end{SideBySideExample} \chapter{\package{xlop} Instructions} Except some macros which will be examined later, the \package{xlop}'s macros can have an optional argument between squared braces in order to localy modify parameter's values. The other arguments (mandatory) are (nearly) always numbers. The two sections of this chapter describe in details what is a number for \package{xlop} and how use parameters. \section{In the Beginning Was the Number} \label{sec:Au début etait le nombre} \subsection{Size} \label{subsec:Taille} Before we see the general syntax of number, we examin the very particular \package{xlop} feature: the ability to deal with arbitrary sized number. \index{number!size}To be precise, the theoric maximum size of a number is $2^{31}-1$ digits\index{number!limit}. In practice, this limit can't be reached for two essential reasons. The first one is that a multiplication with two numbers with $2^{25}$~digits needs more than $7\,000$ years to be performed on the author computer! The second one is more restrictive because it is linked to \TeX{} stack size limits. Here is a table showing a \TeX{} compilation for a multiplication with two operands of same size, on a linux computer, pentium~II~600 and 256~Mb RAM:\footnote{In fact it was the author computer in 2004. The actual author computer is \emph{more} powerfull but the author is lazy, and he have not remake the tests!} \begin{center} \begin{tabular}{|l|*{6}{c|}} \hline number of digits & 100 & 200 & 300 & 400 & 425 & 450 \\\hline compilation time (s) & 2 & 8 & 18 & 32 & 36 & crash \\\hline \end{tabular} \end{center} The ``crash'' in the table is due to an overstack for hash table. \index{hash table}% \index{overflow}% On \LaTeX{}, the limit before crash will be reduced. These tests are made on a minimal file. With a typical document, this limit will be reduced too. The spool size is another limit quickly reached. \index{spool size}% To typeset this document which contain many calls to the \package{xlop} macros, the author has grown up the spool size to~$250000$ ($125\,000$ was insufficient) editing the line \verb+pool_size+ in the \file{texmf.cnf} file. Also, the author has grown up the hash table to~\texttt{1000} in the line \verb+hash_extra+. \subsection{Syntax} \label{subsec:Syntaxe} Now we present the syntax using the BNF grammar. There will be human explanations later: \begin{syntaxBNF} \*number* & \{\*sign*\}\*positive* \alt \*name* \\ \*sign* & + \alt - \\ \*positive* & \*integer* \alt \*sep*\*integer* \alt \\ \sameline \*integer*\*sep* \alt \*integer*\*sep*\*integer* \\ \*sep* & . \alt , \\ \*integer* & \*digit*\{\*digit*\} \\ \*name* & \*start*\{character\} \\ \*start* & character \textnormal{except } \*sign*\textnormal{,} \*sep* \\ \sameline \textnormal{, and } \*digit* \end{syntaxBNF} \index{syntax!BNF}\index{BNF grammar} The \texttt{character} symbol means nearly any character accepted by \TeX{}. The exceptions are characters \verb+%+ and \verb+#+ which are completely prohibited. In fact, the use of active characters is risked. For instance, on \LaTeX{}, the \verb+~+ definition prohibits the use of it inside a variable name. In the other hand, the \verb+\ +is always the escape char, that is, the variable name will be the name \emph{after} all is expanded. There isn't any other restraint as the following code show it: \begin{SideBySideExample} \newcommand\prefix{a/b} \opadd*{2}{2}{a/b_{^c}!&$} \opprint{\prefix_{^c}!&$} \end{SideBySideExample} \index{number!name}% Note particullary that \verb+a/b_{^c}!&$+ and \verb+\prefix_{^c}!&$+ produce exactly the same name\ldots{} obviously if \verb+\prefix+ have the right definition! This possibility to have a name using macro could seem useless but it is not true. For instance, you can realize loops\index{loop} with names as \verb+r1+, \verb+r2+, \ldots, \verb+r+ using the code \verb+r\the\cpt+ as variable name, where \verb+cpt+ is a counter in the \TeX{} meaning. With \LaTeX{}, the code is more verbose with \verb+r\number\value{cpt}+ where \verb+cpt+ is now a \LaTeX{} counter. We will see an example using this syntax in the section~\ref{sec:Creation d'operations complexes} page~\pageref{sec:Creation d'operations complexes}. \index{number!valid}In practice, what does it mean all these rules? First, they means that a number writes in a decimal form can be preceded by any sequence of plus or minus signs. Obviously, if there is a odd number of minus signs, the number will be negative. Next, a decimal number admits only one decimal separator symbol which can be a dot or a comma, this one can be put anywhere in the number. Finally, a number is write in basis~10. Be carefull: these rules mean that \verb+-a+ is not valid. The package uses some private names and it is safe to not begin a variable name with the character \texttt{@}. \section{\package{xlop} Parameters} \label{sec:Parametres de xlop} \index{parameter!syntax|(} Parameter assignments are local to the macro when they are indicated in the optional argument. To make global a parameter assignment, you have to use the \macro{opset} macro. For example: \begin{Verbatim}[xrightmargin=0pt] \opset{decimalsepsymbol={,}} \end{Verbatim} give the comma as decimal separator symbol for the whole document, at least, until another redefinition with \verb+\opset+. \subsection{Symbols} \label{subsecSymboles} The \parameter{afterperiodsymbol} parameter indicates the symbol that follows a quotient in line in a division with period search\index{division!period}. Its default value is \verb+$\ldots$+ The \parameter{equalsymbol} parameter indicates the symbol used for equality. Its default value is \verb+$=$+. In fact, this parameter is defined with: \begin{Verbatim}[xrightmargin=0pt] \opset{equalsymbol={$=$}} \end{Verbatim} that is, with braces in order to protect the equal sign. Without theses braces, there will be a compilation error. You have to process like that when there is an equal sign or a comma in the value.\index{parameter!with ``='' or ``,''\quad} The parameter \parameter{approxsymbol} indicates the symbol used for approximations. Its default value is \verb+$\approx$+. The parameter \parameter{decimalsepsymbol} indicates the symbol used for the decimal separator. Its default value is a dot. Parameters \parameter{addsymbol}, \parameter{subsymbol}, \parameter{mulsymbol}, and \parameter{divsymbol} indicate the symbols used for the four arithmetic operations. The default value are \verb!$+$!, \verb!$-$!, \verb!$\times$! et \verb!$\div$! respectively. \subsection{General Displaying} \label{subsec:Presentation generale} The \parameter{voperation} parameter indicates the way a dispayed operation is put with respect to the baseline. The possible values are \verb+top+, \verb+center+, and \verb+bottom+, the latter one is the default value. \begin{SideBySideExample} top\quad \opadd[voperation=top]{45}{172}\par center\quad \opadd[voperation=center]{45}{172}\par bottom\quad \opadd[voperation=bottom]{45}{172} \end{SideBySideExample} The \parameter{voperator} parameter indicates how the operator symbol is put with repect to operands. The possible values are \verb+top+, \verb+center+ (default value), and \verb+bottom+. \begin{SideBySideExample} top\quad \opadd[voperator=top]{45}{172}\par center\quad \opadd[voperator=center]{45}{172}\par bottom\quad \opadd[voperator=bottom]{45}{172} \end{SideBySideExample} The \parameter{deletezero} parameter indicates if some numbers in operation should be displayed with or whithout non-significant zeros. Exact rôle of this parameter depends of the actual operation. We will see that when we will study the different operations. The \parameter{style} parameter indicates the way an operation is displayed: display with \verb+display+ value (default value) or inline with \verb+text+ value. We will see when we will study division because there is many possibilities with this operation. \begin{SideBySideExample} \opadd[style=text]{45}{172} \end{SideBySideExample} In inline operations, \package{xlop} takes care to not typeset the formula in mathematic mode in a direct way. This allow to specify what you want as in the next example, and it is also for that that you have to specify the classical values of symbols between mathematic delimiters. \begin{SideBySideExample} \opadd[addsymbol=plus, equalsymbol=equal, style=text]{42}{172} \end{SideBySideExample} Meanwhile, \package{xlop} introduces exactly the same penalities and the same spaces as for a mathematic formula. The \parameter{parenthesisnegative} parameter indicates how to typeset negative numbers in inline operations. The possible values are: \begin{itemize} \item \texttt{none} which typesets negative numbers without parenthesis; \item \texttt{all} which typesets negative numbers with parenthesis; \item \texttt{last} which typesets negative numbers with parenthesis but the first one. \end{itemize} \begin{SideBySideExample} \opadd[style=text, parenthesisnegative=none] {-12}{-23}\par \opadd[style=text, parenthesisnegative=all] {-12}{-23}\par \opadd[style=text, parenthesisnegative=last] {-12}{-23} \end{SideBySideExample} \subsection{Dimensions} \label{subsec:Dimensions} In displayed operations, figures are put in fixed size boxes. The width is given by the \parameter{lineheight} parameter and the height is given by the \parameter{lineheight} parameter. The default value of \texttt{lineheight} is \verb+\baselineskip+ that is, interline space in operation is the same (by default) as in the normal text. The default value for \texttt{columnwidth} is \texttt{2ex} because the ``normal'' width of figures would give bad results. \begin{SideBySideExample} \opadd[columnwidth=0.5em] {45.89}{127.5} \end{SideBySideExample} One reason for this bad result is that the decimal separator is put in a box which width is controlled by the \parameter{decimalsepwidth} parameter and the default value of this parameter is null. You can improve this presentation giving a ``normal'' width to the dot. \begin{SideBySideExample} \opadd[columnwidth=0.5em, decimalsepwidth=0.27778em] {45.89}{127.5} \end{SideBySideExample} It is better but give a positive width to the box that contain the decimal separator is risked. It will be more difficult to place extern object and it is counter against the idea to have a fixed grid. You should avoid this in normal time. The \parameter{columnwidth} and \parameter{lineheight} parameters correspond to the only dimensions that \package{xlop} provides as public one, that is, \verb+\opcolumnwidth+\index{opcolumnwidth@\texttt{$\backslash$opcolumnwidth}} and \verb+\oplineheight+\index{oplineheight@\texttt{$\backslash$oplineheight}} respectively. It is dangerous to directly modify these dimensions since a modification in a ``normal'' way doesn't only change the dimension value. Package \package{xlop} make these dimensions public only for reading, not for writting. The two next parameters allow to specify width of horizontal and vertical rules stroked by \package{xlop}. We have \parameter{hrulewidth} and \parameter{vrulewidth} parameters. The default values are both \texttt{0.4pt}. These rules are typeset with no change on grid. That is, with no space added. Therefore, with great values for thickness, the rules could run over numbers. \begin{SideBySideExample} \opadd[hrulewidth=8pt]{42}{172} \end{SideBySideExample} There is also a paramater which allows to control the horizontal shift of decimal separator. It is the \parameter{decimalsepoffset} paramater with a default value of~\texttt{-0.35}. This value indicates a length with the unit \verb+\opcolumnwidth+. We will see an example at section~\ref{sec:Division} page~\pageref{sec:Division}. \subsection{Figure's Styles} \label{subsec:Styles des chiffres} The \package{xlop} package provides five types of numbers and associates five style paramaters: \begin{itemize} \item operands with \parameter{operandstyle}; \item result with \parameter{resultstyle}; \item remainders with \parameter{remainderstyle}; \item intermediary numbers with \parameter{intermediarystyle}; \item carries with \parameter{carrystyle}. \end{itemize} \begin{SideBySideExample} \opadd[operandstyle=\blue, resultstyle=\red, carrystyle=\scriptsize\green] {45.89}{127.5} \end{SideBySideExample} Keep in mind that, in this manual, we use \package{pstricks}\index{pstricks} package. \index{parameter!index|(}% In fact, the management of these styles is even more powerfull since you can distingish different number of a same class. In one operation, you have several operands, and, possibly several remainders and several intermediary numbers. You can access to the style of these numbers adding an index to the matching style. \begin{SideBySideExample} \opadd[operandstyle=\blue, operandstyle.1=\lightgray, resultstyle=\red, carrystyle=\scriptsize\green] {45.89}{127.5} \end{SideBySideExample} In this example, we indicate that the first operand must be typesetted with the \verb+\lightgray+ style. We don't indicate anything for the second operand, so it takes the basic style for its class. (Then with \verb+\blue+ style.) This mechanism is even more powerfull since you can write two level index for operands, carries, and intermediary numbers (one level for result and carry) in order to access to each style figure of these numbers. To simplify index, a positive index indicates the rank of a figure in the integer part (right to left order, index~1 is for the unit figure) and a negative index indicates the rank of a figure in the decimal part (left to right order, $-1$ is for the tenth figure). \begin{SideBySideExample} \opadd[operandstyle.1.1=\white, operandstyle.1.-2=\white, operandstyle.2.3=\white, resultstyle.2=\white, deletezero=false] {045.89}{127.50} \end{SideBySideExample} You can also use a macro with one parameter as a style. \begin{SideBySideExample} \newcommand\hole[1]{$\bullet$} \opadd[operandstyle.1.1=\hole, operandstyle.1.-2=\hole, operandstyle.2.3=\hole, resultstyle.2=\hole] {45.89}{127.5} \end{SideBySideExample} \index{operation!with hole}% When the style is a macro with argument, this one is the figure. Here is a more complicated example using \package{pst-node} package of the \package{pstricks} bundle: \begin{SideBySideExample} \newcommand\OPoval[3]{% \dimen1=#2\opcolumnwidth \ovalnode{#1} {\kern\dimen1 #3\kern\dimen1}} \opadd[voperation=top, operandstyle.1.1=\OPoval{A}{0}, operandstyle.2.2=\OPoval{C}{0.8}] {45}{172}\qquad \begin{minipage}[t]{2cm} \pnode(0,0.2em){B}\ figure \ncarc{->}{A}{B}\par \pnode(0,0.2em){D}\ number \ncarc{<-}{D}{C} \end{minipage} \end{SideBySideExample} As for figures, the decimal separator take account to number style. To access individually to the decimal separator style, you have to use \texttt{d} index, numeric indexes are for figures. \begin{SideBySideExample} \newcommand\hole[1]{\texttt{\_}} \opmul[intermediarystyle=\hole, resultstyle=\hole, resultstyle.d=\white]{2.46}{35.7} \end{SideBySideExample} \index{parameter!index|)}% \index{parameter!syntax|)} \chapter{Arithmetic Operations} \label{chap:Opérations arithmétiques} \section{Addition} \label{sec:Addition} Addition is deal by the \macro{opadd} macro. When it is in display mode, it display only nonnegative numbers. Then, it displays a substraction when one of the operands is nonpositive.% \index{number!nonpositive in displayed operation} \begin{SideBySideExample} \opadd{-245}{72} \end{SideBySideExample} In a general manner, the principle is to display the operation that allows to find the result as you make it ``by hand''. On the contrary, the inline mode shows always an addition since we can now write nonpositive numbers. \begin{SideBySideExample} \opadd[style=text]{-245}{72} \end{SideBySideExample} In addition to the general parameters discussed in the section~\ref{sec:Parametres de xlop}, the macro \verb+\opadd+ uses parameters \texttt{carryadd}, \texttt{lastcarry}, and \texttt{deletezero}. The \parameter{carryadd} parameter is a boolean parameter\index{parameter!boolean}, that is, it accepts only the values \texttt{true} and \texttt{false}. By habit, when you don't specify the value and the equal sign, that is like assignment \texttt{=true}. This parameter indicates if the carries must be showed or not. Its default value is \texttt{true}. The \parameter{lastcarry} parameter is also a boolean parameter. It indicates if a carry without matching digit for the two operands must be showed or not. Its default value is \texttt{false}. Take care to the exact rôle of this parameter. For instance, if the second operand in the following example is~15307, the last carry would be showed for any value of the \texttt{lastcarry} parameter since there is a matching digit in the second operand. \begin{SideBySideExample} \opadd{4825}{5307} \end{SideBySideExample} \begin{SideBySideExample} \opadd[carryadd=false]{4825}{5307} \end{SideBySideExample} \begin{SideBySideExample} \opadd[lastcarry]{4825}{5307} \end{SideBySideExample} The \parameter{deletezero} parameter is also a boolean parameter. It indicates if non-significant zeros must be deleted or not. Its default value is \texttt{true}. When this parameter is \texttt{false}, the operands and the result have the same number of digits. For that, \package{xlop} package adds non-significant zeros. Also, the non-significant zeros of operands are not removed. \begin{SideBySideExample} \opadd{012.3427}{5.2773}\par \opadd[deletezero=false] {012.3427}{5.2773} \end{SideBySideExample} This parameter has exactly the same rôle for inline mode than for displayed mode. \begin{SideBySideExample} \opadd[style=text]{02.8}{1.2}\par \opadd[style=text, deletezero=false]{02.8}{1.2}\par \end{SideBySideExample} \section{Substraction} \label{sec:soustraction} Substraction is made by \macro{opsub} macro. In displayed mode, the substraction shows only nonnegative numbers. For that, it shows an addition when one operand is nonpositive. \begin{SideBySideExample} \opsub{-245}{72} \end{SideBySideExample} In a general way, the principle is to display the operation which allow to find the result as you make it ``by hand''. On the contrary, inline mode shows always a substraction since you can now write nonpositive numbers. \begin{SideBySideExample} \opsub[style=text]{-245}{72} \end{SideBySideExample} This principle apply also when the first operand is less than the second one (positive case). In this case, we have an operand inversion. \begin{SideBySideExample} \opsub{1.2}{2.45} \end{SideBySideExample} Of course, inline operation gives an exact result. \begin{SideBySideExample} \opsub[style=text]{1.2}{2.45} \end{SideBySideExample} In addition to general parameters we have seen at section~\ref{sec:Parametres de xlop}, \verb+\opsub+ takes account of \texttt{carrysub}, \texttt{lastcarry}, \texttt{offsetcarry}, \texttt{deletezero}, and \texttt{behaviorsub} parameters. The \parameter{carrysub} parameter is a boolean one which indicates if carries must be present or not. Its default value is \texttt{false}. (Remember that the default value of \texttt{carryadd} parameter is \texttt{true}.) \begin{SideBySideExample} \opsub[carrysub]{1234}{567} \end{SideBySideExample} In the last example, you can see that there is no carry above the last digit of 1234. This is quite common (at least in France). If you want display this last carry, you have to use the \parameter{lastcarry} parameter. This parameter does not have the same behavior in substraction and in addition since here, the last carry is not displayed when the second operand does not have correspondent digit. (For addition, last carry is not displayed when \emph{all} the operands do not have correspondent digit.) \begin{SideBySideExample} \opsub[carrysub,lastcarry]{1234}{567} \end{SideBySideExample} Note that, in this case, it is better to set the \parameter{deletezero} parameter to \texttt{false} in order to have a nicer result. \begin{SideBySideExample} \opsub[carrysub, lastcarry, deletezero=false]{1234}{567} \end{SideBySideExample} Perhaps it seems to you that showing carries for substraction is a bit more dense. You can enlarge the figure box with the \parameter{opcolumnwidth} parameter. You can also indicate the carry horizontal shift using the \parameter{offsetcarry} parameter. Its default value is \texttt{-0.35}. \begin{SideBySideExample} \opsub[carrysub, lastcarry, deletezero=false]{12.34}{5.67} \bigskip \opsub[carrysub, lastcarry, columnwidth=2.5ex, offsetcarry=-0.4, decimalsepoffset=-3pt, deletezero=false]{12.34}{5.67} \end{SideBySideExample} It is possible that a substraction with two positive numbers and with the first one less than the second one signs an user error. In this case, and only in this case, the \parameter{behaviorsub} parameter allows a call to order. The three possible values are: \begin{itemize} \item \texttt{silent} which is the default value and which gives the result; \item \texttt{warning} which gives also the result but shows the warning message: \begin{Verbatim}[xrightmargin=0pt,frame=none] xlop warning. Substraction with first operand less than second one See documentation for further information. \end{Verbatim} \item \texttt{error} which shows the error message: \begin{Verbatim}[xrightmargin=0pt,frame=none] xlop error. See documentation for further information. Type H for immediate help. ! Substraction with first operand less than second one. \end{Verbatim} and the operation is not performed. \end{itemize} \section{Multiplication} \label{sec:Multiplication} The multiplication is under the control of the \macro{opmul} macro. The parameters we will see below are \texttt{hfactor}, \texttt{displayintermediary}, \texttt{shiftintermediarysymbol}, and \texttt{deletezero}. We studied the other parameters in section~\ref{sec:Parametres de xlop}. The \parameter{shiftintermediarysymbol} parameter indicates what is the symbol used for showing the shifting of intermediary numbers (default value is \verb+$\cdot$+). The \parameter{displayshiftintermediary} parameter can take value \texttt{shift} (default value) which shows this symbol only for shifting greater than one level, value \texttt{all} which shows this symbol for all the shiftings, and the value \texttt{none} which means that this symbol will be never showed. \begin{CenterExample}[xrightmargin=0pt] \opmul[displayshiftintermediary=shift]{453}{1001205}\qquad \opmul[displayshiftintermediary=all]{453}{1001205}\qquad \opmul[displayshiftintermediary=none]{453}{1001205} \end{CenterExample} In fact, null intermediary numbers are not display because of the default value \texttt{none} of the \parameter{displayintermediary} parameter. The value \texttt{all} shows all the intermediary numbers, even null intermediary numbers. \begin{SideBySideExample} \opmul[displayintermediary=all] {453}{1001205} \end{SideBySideExample} Note that null intermediary numbers are displayed with the same width than the first factor width. The \parameter{displayintermediary} parameter accepts the value \texttt{nonzero} which means the same than the \texttt{none} value except when second factor has only one digit. \begin{CenterExample}[xrightmargin=0pt] \opmul{3.14159}{4}\qquad \opmul[displayintermediary=nonzero]{3.14159}{4} \end{CenterExample} The \parameter{hfactor} parameter indicates how align operands. The default value, \texttt{right}, gives a raggedleft alignment. The \texttt{decimal} value gives an alignment on dot. \begin{CenterExample}[xrightmargin=0pt] \opmul{3.1416}{12.8}\qquad\opmul[hfactor=decimal]{3.1416}{12.8} \end{CenterExample} For displayed multiplication, the \parameter{deletezero} parameter is only for operands. The result keeps its non-significant zeros since there are necessary in order to make a correct dot shifting when we work ``by hand''. \begin{CenterExample}[xrightmargin=0pt] \opmul[deletezero=false]{01.44}{25}\qquad \opmul{01.44}{25} \end{CenterExample} In the other hand, this parameter has its usual behaviour in inline multiplication. \begin{CenterExample}[xrightmargin=0pt] \opmul[deletezero=false,style=text]{01.44}{25}\qquad \opmul[style=text]{01.44}{25} \end{CenterExample} \section{Division} \label{sec:Division} The \package{xlop} package deals with ``normal'' division via \macro{opdiv} macro and with euclidean division via \macro{opidiv} macro. Division is a very complex operation so it is not strange that there are many parameters to control it. Pay attention that the \package{xlop} package v. 0.24 is unable to deal with ``english'' division. In this package version, the division is the ``french'' one, which is more or less used as it in some other countries. The \package{xlop} package v. 0.3 will allow ``enlish'' division (and many more feautures). \subsection{End Control} \label{subsec:Controle de l'arret} In the following text, term \emph{step} means the set of process which allow to get one digit for the quotient. This number of steps is (not only) under the control of \parameter{maxdivstep}, \parameter{safedivstep}, and \parameter{period} parameters. It is only partially true because a classical division will stop automatically when a remainder will be zero, whatever the values of these three parameters and a euclidean division will stop with an integer quotient without attention for these three parameters. \begin{SideBySideExample} \opdiv{25}{7} \end{SideBySideExample} \begin{SideBySideExample} \opidiv{25}{7} \end{SideBySideExample} The first example stops because of the value of \parameter{maxdivstep} which is 10 by default. Pay attention that the maximum step number could cause strange result when it is too small. \begin{SideBySideExample} \opdiv[maxdivstep=2]{1248}{3} \end{SideBySideExample} Clearly, the last result is false. In the other hand, \package{xlop} package did what we have ask, that is, obtain two digits (maximum) for the quotient. The inline mode differ with zero remainder or not and with the type of division (classical or euclidean). \begin{SideBySideExample} \opdiv[style=text]{3.14}{2}\par \opdiv[style=text]{3.14}{3}\par \opidiv[style=text]{314}{2}\par \opidiv[style=text]{314}{3} \end{SideBySideExample} Note the use of \parameter{equalsymbol} or \parameter{approxsymbol} parameter according to the case. Note also that \package{xlop} displays results with floor, not with round. We will see how obtain a round in section~\ref{sec:Operations evoluees}. For inline mode of \verb+\opdiv+, \package{xlop} take account of \parameter{maxdivstep}. It means that we can obtain results very false with too small values of this parametrer and, unlike with display mode division, inline mode don't allow to understand what is wrong. \begin{SideBySideExample} \opdiv[maxdivstep=2,style=text] {1248}{3} \end{SideBySideExample} In addition, if the last remainder is zero, we obtain a must: \begin{SideBySideExample} \opdiv[maxdivstep=1,style=text] {1208}{3} \end{SideBySideExample} because there is no approximation at all! A classical division can stop with period detection. For that, you have just to give the value \texttt{true} for the \parameter{period} parameter\index{division!period}. \begin{SideBySideExample} \opdiv[period]{100}{3} \end{SideBySideExample} To avoid comparizons between each remainder with all previous remainder, \package{xlop} calculates immediatly the period length. That allows to process only one comparizon for each step, then to have a much more efficient process.\footnote{Thanks to Olivier Viennet about mathematic precisions that allows to implement these calculations.} Unfortunately, these calculations are made with numbers that are directly accesible to \TeX{}. As consequence, you can't use operand with absolute value greater than $\left\lfloor\frac{2^{31}-1}{10}\right\rfloor = 214748364$. In order to avoid too long calculations, \package{xlop} don't process beyond the value of \parameter{safedivstep} parameter in division with period. Its default value is~50. However, \package{xlop} package show this problem. For example, if you ask for such a division with the code: \begin{Verbatim}[xrightmargin=0pt,frame=none] \opdiv[period]{1}{289} \end{Verbatim} you obtain the warning message: \begin{Verbatim}[xrightmargin=0pt,frame=none] xlop warning. Period of division is too big (272 > safedivstep). Division will stop before reach it. See documentation for further information. \end{Verbatim} which indicates that this division period is~272 and that it can be achieved because of the \texttt{safedivstep} value. The inline mode for division with period have some particularities. \begin{SideBySideExample} \opdiv[period,style=text]{150}{7} \end{SideBySideExample} We obtain an equality rather than an approximation, there is a rule under the period, and there is ellipsis after the period. All these components can be configured. The equality symbol is given by the \parameter{equalsymbol} parameter (default value is \verb+{$=$}+). The rule thickness is given by the \parameter{hrulewidth} parameter (default value is \texttt{0.4pt}). The vertical offset of this rule is given by \parameter{vruleperiod} parameter (default value is \texttt{-0.2}) which indicates a vertical offset taking \verb+\oplineheight+ as unit. The ellipsis are given by the parameter \parameter{afterperiodsymbol} (default value \verb+$\ldots$+). \begin{SideBySideExample} \opdiv[period,style=text, equalsymbol=$\approx$, hrulewidth=0.2pt, vruleperiod=0.7, afterperiodsymbol=] {150}{7} \end{SideBySideExample} \subsection{Other Features} \label{subsec:Elements supplementaires} Displayed divisions can include successive substractions which allow remainder calculations. For \package{xlop}, the numbers which are substracted are intermediary numbers, so the different ways to represent substractions use \parameter{displayintermediary} parameter see for multiplication. The default value, valeur \texttt{none}, don't display any substraction; the value \texttt{all} displays all the substractions, and the value \texttt{nonzero} displays substractions with non-zero numbers \begin{CenterExample}[xrightmargin=0pt] \opdiv[displayintermediary=none,voperation=top] {251}{25}\quad \opdiv[displayintermediary=nonzero,voperation=top] {251}{25}\quad \opdiv[displayintermediary=all,voperation=top] {251}{25} \end{CenterExample} When we write a display division, we can draw a ``bridge'' over the part of dividend which is taken in count for the first step of calculation. The \package{xlop} package allow to draw this symbol thanks to the boolean parameter \parameter{dividendbridge} (default value is \texttt{false}). \begin{SideBySideExample} \opdiv[dividendbridge]{1254}{30} \end{SideBySideExample} \subsection{Non Integer Numbers and Negative Numbers} \label{subsec:Nombres non entiers et negatifs} The \parameter{shiftdecimalsep} parameter governs non integer operands aspect/ Its default value is \texttt{both} which indicates that decimal separator is shifted in order to obtain integer divisor and integer dividend. The value \texttt{divisor} indicates that there is the shifting that allows an integer divisor. The value \texttt{none} indicates that there isn't any shifting. \begin{CenterExample}[xrightmargin=0pt] \opdiv[shiftdecimalsep=both]{3.456}{25.6}\quad \opdiv[shiftdecimalsep=divisor]{3.456}{25.6}\quad \opdiv[shiftdecimalsep=none]{3.456}{25.6} \end{CenterExample} Parameter \parameter{strikedecimalsepsymbol} gives the symbol used to show the old place of decimal separator when this one is shifted. The default value is empty, that is, there isn't any symbol. This explain why you don't see anything on previous examples. \begin{CenterExample}[xrightmargin=0pt] \opset{strikedecimalsepsymbol={\rlap{,}\rule[-1pt]{3pt}{0.4pt}}} \opdiv[shiftdecimalsep=both]{3.456}{25.6}\quad \opdiv[shiftdecimalsep=divisor]{3.456}{25.6}\quad \opdiv[shiftdecimalsep=none]{3.456}{25.6} \end{CenterExample} When there is a non empty symbol for the striked decimal separator, it is possible to have non-significant zeros in operands. \begin{SideBySideExample} \opdiv[shiftdecimalsep=divisor, strikedecimalsepsymbol=% \hspace{-3pt}\tiny$\times$] {0.03456}{2.56} \end{SideBySideExample} We have already seen that \macro{opidiv} macro gives integer quotient. This is true even with non integer operands. It is somewhere strange to perform an euclidian division with non integer operands. The \macro{opidiv} macro will be strict about the presentation. Parameters \parameter{maxdivstep}, \parameter{safedivstep}, and \parameter{period} haven't any effect, as for \parameter{shiftdecimalsep} parameter since operands are changed to integer ones. \begin{SideBySideExample} \opidiv[strikedecimalsepsymbol=% \hspace{-3pt}\tiny$\times$] {34.57}{7} \end{SideBySideExample} When operands are negative, the inline \macro{opidiv} numbers is different from the displayed \macro{opidiv} ones. Remainder will be between zero (include) and absolute value of divisor (exclude). \begin{SideBySideExample} \opdiv[style=text]{124}{7}\par \opidiv[style=text]{124}{7}\par \opidiv[style=text]{124}{-7}\par \opidiv[style=text]{-124}{7}\par \opidiv[style=text]{-124}{-7} \end{SideBySideExample} This condition for remainder is valid even with non integer divisor. \begin{SideBySideExample} \opidiv[style=text]{1.24}{0.7}\par \opidiv[style=text]{1.24}{-0.7}\par \opidiv[style=text]{-1.24}{0.7}\par \opidiv[style=text]{-1.24}{-0.7} \end{SideBySideExample} \chapter{Other Commands} \label{chap:Autres commandes} \section{Starred Macros} \label{sec:Macros etoilees} The five macros seen in previous chapter have a starred version. These starred macros perform the calculation and don't display anything. Result is record in a variable given as argument. Since these commands don't display anything, parameters don't make sens and aren't allowed for \macro{opadd*}, \macro{opsub*}, \macro{opmul*}, and \macro{opidiv*}. In the other hand, parameters \parameter{maxdivestep}, \parameter{safedivstep}, and \parameter{period} influence calculations, then \macro{opdiv*} macro accepts an optional argument to take account of them. \begin{SideBySideExample} \opmul*{2}{2}{a}% \opmul*{a}{a}{a}\opmul*{a}{a}{a}% \opadd[style=text]{a}{1} \end{SideBySideExample} For macros \macro{opdiv} and \macro{opidiv}, there are two extra arguments to record quotient and final remainder. \begin{SideBySideExample} \opdiv*[maxdivstep=1]{-88}{16}{q}{r}% \opmul*{q}{16}{bq}% \opmul[style=text]{16}{q}\par \opadd[style=text]{bq}{r} \end{SideBySideExample} \section{Input-Output} \label{sec:Entree-sorties} The \macro{opcopy} macro copies its first argument into its second one. Then, the first argument is a number write in decimal form or \emph{via} a variable, whereas the second one is a variable name. The \macro{opprint} macro displays its argument. The following example uses the counter \macro{time} which indicates numbers of minutes since midnight. \begin{SideBySideExample} \opidiv*{\the\time}{60}{h}{m}% It is \opprint{h}~hours \opprint{m}~minutes \end{SideBySideExample} We will see at section~\ref{sec:Comparaisons} how to improve this example with tests. The \macro{opdisplay} macro also displays a number but here, each figure is in a box. The width of this box is given by \parameter{columnwidth} and the height of this box is given by \parameter{lineheight}. Style is specified by the first argument. This macro accepts an optional argument in order to give a specific style for individual figures. \begin{SideBySideExample} \opdisplay[resultstyle.1=\bfseries, resultstyle.-2=\bfseries] {resultstyle}{129.192} \end{SideBySideExample} Macros \macro{oplput} and \macro{oprput} allow to put anything anywhere. The syntax of both of them is different from the other ones of \package{xlop} since the place is indicated with coordinates between parenthesis. The coordinates use \macro{opcolumnwidth} and \macro{oplineheight} as units. Then user is able to build his own ``operations''. \begin{SideBySideExample} \psset{xunit=\opcolumnwidth, yunit=\oplineheight}% \psgrid[subgriddiv=1,gridlabels=7pt, griddots=5](0,1)(10,-2) \oplput(2,0){Hello} \oprput(8,-1){world!} $\bullet$ \end{SideBySideExample} On example above, note that these macros don't move the reference point. As a precaution, they kill the trailing space and then, there is no need to protect the end of line with a \verb+%+. Macros \macro{ophline} and \macro{opvline} complete the previous ones to give all the tools the user needs to build its own operations. \macro{ophline} allows to draw a horizontal rule; its length is given by the parameter after coordinates. \macro{opvline} does the same for vertical rules. Remember that parameters \parameter{hrulewidth} and \parameter{vrulewidth} indicate the thickness of these rules. \begin{CenterExample}[xrightmargin=0pt] \par\vspace{2\oplineheight} \oplput(1,2){O}\oplput(2,2){N}\oplput(3,2){E} \oplput(0,1.5){$+$} \oplput(1,1){O}\oplput(2,1){N}\oplput(3,1){E} \ophline(0,0.8){4} \oplput(1,0){T}\oplput(2,0){W}\oplput(3,0){O} \end{CenterExample} Macro \macro{opexport}\refstepcounter{stuff}\label{macro-opexport} allow to export a number in a macro. It's an extra to version~0.23 which is very usefull to exchange datas between \package{xlop} and the outside world. The first argument is a number in the \package{xlop} sense, that is, either a number write with figures, or a variable name. The number is translated in a form directly acceptable for \TeX{} and hold in the second argument which should be a macro name. However, note that decimal separator will be the one specified by \parameter{decimalsepsymbol} (without its possible braces). \begin{SideBySideExample} \opmul*{5}{3.141592654}{F} \opexport{F}{\fivepi} \texttt{\meaning\fivepi} \end{SideBySideExample} We can use this macro to typeset numbers calculated by \package{xlop} in an array with a decimal alignment, or to initialize a counter or a length (don't forget the unit in the last case). \section{Figures of Numbers} \label{sec:Chiffres d'un nombre} Macros \macro{opwidth}, \macro{opintegerwidth}, and \macro{opdecimalwidth} indicate number of digits of the whole number, of its integer part, of its decimal part respectively. The first argument is the examined number and the second one indicates the variable where result will be record. \begin{SideBySideExample} \opcopy{123456.1234}{a}% \opwidth{a}{na}% \opintegerwidth{a}{ia}% \opdecimalwidth{a}{da}% \opprint{a} is written with \opprint{na} figures (\opprint{ia} in the integer part and \opprint{da} in the decimal part). \end{SideBySideExample} Macro \macro{opunzero} delete all the non-significant zeros\index{non-significant zero} of the number passed as argument. \begin{SideBySideExample} \opcopy{00150.00250}{a}% Before : \opprint{a}\par \opunzero{a}% After : \opprint{a} \end{SideBySideExample} Macros \macro{integer} and \macro{opdecimal} give the integer part and the decimal part of a number respectively. \index{number!integer part}\index{integer part}% \index{number!decimal part}\index{decimal part}% First argument is the number to process, and the second one is the variable name which hold the result. \begin{SideBySideExample} \opcopy{-37.69911}{a}% \opinteger{a}{ia}% \opdecimal{a}{da}% Integer part: \opprint{ia}\par Decimal part: \opprint{da} \end{SideBySideExample} Six macros allow to write or read a figure of a number. You can read or read a figure according to its place in the whole number, or in the integer part, or in the decimal part. Figures for whole number and for decimal part are numbered from right to left, figures for integer part are numbered from left to right. For instance, with the number 1234.56789, the second figure is 8, the second figure of the integer part is 3, and the second figure of the decimal part is 6. It is now easy to guess the rôle of the six next macros: \begin{itemize} \item \parameter{opgetdigit} ; \item \parameter{opsetdigit} ; \item \parameter{opgetintegerdigit} ; \item \parameter{opsetintegerdigit} ; \item \parameter{opgetdecimaldigit} ; \item \parameter{opsetdecimaldigit} ; \end{itemize} Syntax is the same for these macros. The first argument is the processed number (reading or writting), the second one is the index of te figure, and the third one is the variable name which hold the result (figure read or changed number). If index is out of the range, the reading macros give \texttt{0} as result and writing macros extend the number in order to reach this index (for that, zero will be created in new slots). \section{Comparisons} \label{sec:Comparaisons} When you want complex macros, often you need to realize tests. For that, \package{xlop} gives the macro \macro{opcmp}. The two arguments are numbers and this macro setup the tests \macro{ifopgt}, \macro{ifopge}, \macro{ifople}, \macro{ifoplt}, \macro{ifopeq}, and \macro{ifopneq} to indicate that first operand is greater, greater or equal, less or equal, less, equal, or different to the second operand respectively. For technical reasons, \package{xlop} give global definitions for the six tests above. Then, they are not protected by groups. Since these tests are used by many \package{xlop} macros, you must \emph{always} use tests \verb+\ifop...+ immediately after \macro{opcmp}, or, at least, before any use of a \package{xlop} macro. Otherwise, there will be bugs hard to fix! Let's resume the hour display macro see at section~\ref{sec:Entree-sorties}. But now, we check if argument is between 0 (include) and 1440 (exclude), then we process tests in order to know if ``hour'' is plural or not, as for ``minute''. \begin{CenterExample}[xrightmargin=0pt] \newcommand\hour[1]{% \opcmp{#1}{0}\ifopge \opcmp{#1}{1440}\ifoplt \opidiv*{#1}{60}{h}{m}% \opprint{h} hour% \opcmp{h}{1}\ifopgt s% \fi \opcmp{m}{0}\ifopneq \space\opprint{m} minute% \opcmp{m}{1}\ifopgt s% \fi \fi \fi\fi } \hour{60} -- \hour{1080} -- \hour{1081} -- \hour{1082} \end{CenterExample} \section{Advanced Operations} \label{sec:Operations evoluees} The macros left to be examined are either internal macros and which it will be a shame to keep private , or macro asked for users. Internal macros are \macro{opgcd}\index{gcd} which gives gcd of two numbers and macro \macro{opdivperiod}\index{division!period} which gives the period length of quotient of two numbers. For efficiency reason, these macros don't use \package{xlop} number, they rather use numbers directly understand by \TeX{}. There are two consequences: the numbers can't be greater than \texttt{2147483647} for \macro{opgcd}; it can't be greater than \texttt{214748364} for \macro{opdivperiod}. A warning is displayed for an overflow. Result is put in the third parameter. There is also some checks on the two first parameters: a gcd mustn't have null argument; length of period can't be processed with null quotient. Futhermore, if an argument is a non integer number, only the integer part will be take account. \begin{SideBySideExample} \opcopy{5376}{a}% \opcopy{2304}{b}% \opgcd{a}{b}{gcd(ab)}% $\gcd(\opprint{a},\opprint{b}) = \opprint{gcd(ab)}$ \end{SideBySideExample} You can play and find long period of divisions. Without going into mathematical details, square of prime numbers are good choices. For instance with $257^2=66049$ you obtain: \begin{SideBySideExample} \opdivperiod{1}{66049}{p}% $\frac{1}{66049}$ have a period of length $\opprint{p}$. \end{SideBySideExample} With macros \macro{opcastingoutnines}\index{casting out of nines} and \macro{opcastingoutelevens}\index{casting out of elevens} you can build casting out of nines and casting out of elevens. \package{xlop} don't typeset directly these ``operations'' since they need diagonal rules, and then, need some particular packages. In fact, macro \macro{opcastingoutnines} calculates the sum modulo~9 of first argument digits and put the result in second argument. Macro \macro{opcastingoutelevens} calculates the sum modulo~11 of the even rank digits of first argument, calculates the sum moldulo~11 of the odd rank digits of first argument, and calculates the difference of these two sums. \begin{SideBySideExample} \newcommand\castingoutnines[3]{% \opcastingoutnines{#1}{cna}% \opcastingoutnines{#2}{cnb}% \opmul*{cna}{cnb}{cna*cnb} \opcastingoutnines{cna*cnb}{cna*cnb}% \opcastingoutnines{#3}{cn(a*b)}% \begin{pspicture}(-3.5ex,-3.5ex)% (3.5ex,3.5ex) \psline(-3.5ex,-3.5ex)(3.5ex,3.5ex) \psline(-3.5ex,3.5ex)(3.5ex,-3.5ex) \rput(-2.75ex,0){\opprint{cna}} \rput(2.75ex,0){\opprint{cnb}} \rput(0,2.75ex){\opprint{cna*cnb}} \rput(0,-2.75ex){\opprint{cn(a*b)}} \end{pspicture} } \castingoutnines{157}{317}{49669} \end{SideBySideExample} In passing, this example shows that $157\times317\neq49669$! The right operation is \opmul[style=text]{157}{317}. The two next macros are very simple. We have \macro{opneg} which calculates the opposite of its first argument and store it in the variable indicated by the second argument. We have also \macro{opabs} which does the same with absolute value. Macro \macro{oppower} calculates integer powers of numbers. This macro has three parameters. The third one store the first argument to the power of the second argument. When the first argument is zero: if the second argument is zero, result is~1; if the second argument is positive, result is~0; if the second argument is negative, there is an error. There isn't any limitation on first parameter. This leads to some problems, for instance: \begin{CenterExample}[xrightmargin=0pt] \opcopy{0.8}{a}\opcopy{-17}{n}% \oppower{a}{n}{r}% $\opprint{a}^{\opprint{n}} = \opprint{r}$ \end{CenterExample} With $0.7$ rather than $0.8$, problem is worse: \begin{CenterExample}[xrightmargin=0pt] \opcopy{0.7}{a}\opcopy{-8}{n}% \oppower{a}{n}{r}% \opdecimalwidth{r}{dr} $\opprint{a}^{\opprint{n}}$ has \opprint{dr} figures after dot. \end{CenterExample} In fact, when exponent is negative, \emph{first} \package{xlop} calulates inverse of the number and \emph{after that}, it calculates the power with opposite of the exponent. In this example, if we had left $-17$ rather than $-8$, then there will be a capacity overflow capacity of \TeX{}. Three macros allow a control about precision. They allow to approximate a number giving the rank of the approximation. There are \macro{opfloor}, \macro{opceil}, and \macro{opround}. They need three parameters which are (in order): start number, rank of approximation, variable name to store the result. Rank is an integer value giving number of digits after decimal separator which must be present. If this rank is negative, approximation will be done before the decimal separator. If rank is positive and indicates more digits than decimal part has, then zeros will be added. If rank is negative and indicates more digits than integer part has, then approximation will be locked in order to give the first digit of the number at least. Here is a summary table which allow to understand how these macros work. \begin{center} \opcopy{3838.3838}{a} \begin{tabular}{|r|l|l|l|} \hline \multicolumn{4}{|c|}{\textbf{\texttt{\textbackslash op\ldots{}\{3838.3838\}\{n\}\{r\}}}}\\\hline \multicolumn{1}{|c|}{\textbf{\texttt{n}}} & \multicolumn{1}{c|}{\textbf{\texttt{floor}}} & \multicolumn{1}{c|}{\textbf{\texttt{ceil}}} & \multicolumn{1}{c|}{\textbf{\texttt{round}}} \\\hline \opcopy{6}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{4}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{3}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{0}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{-1}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{-2}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{-6}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\\hline \end{tabular} \opcopy{-3838.3838}{a} \begin{tabular}{|r|l|l|l|} \hline \multicolumn{4}{|c|}{\textbf{\texttt{\textbackslash op\ldots{}\{-3838.3838\}\{n\}\{r\}}}}\\\hline \multicolumn{1}{|c|}{\textbf{\texttt{n}}} & \multicolumn{1}{c|}{\textbf{\texttt{floor}}} & \multicolumn{1}{c|}{\textbf{\texttt{ceil}}} & \multicolumn{1}{c|}{\textbf{\texttt{round}}} \\\hline \opcopy{6}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{4}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{3}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{0}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{-1}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{-2}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\ \opcopy{-6}{n}$\opprint{n}$ & \opfloor{a}{n}{r}$\opprint{r}$ & \opceil{a}{n}{r}$\opprint{r}$ & \opround{a}{n}{r}$\opprint{r}$ \\\hline \end{tabular} \end{center} \index{complex expression|(} The very last macro we have to study is \macro{opexpr}. It calculates a complex expression. This macro needs two parameters: the first one is the expression in infix form (the natural one for human), the second one is the variable name where the result is stored. Initially, expression must have been polish one (for instance, notation used on old HP calculator, or PostScript language), but another work with Christophe Jorssen has given the actual form for expression in \package{xlop}, more pleasant for users. Formulas accept usual arithmetic operators \texttt{+}, \texttt{-}, \texttt{*}, and \texttt{/}. They accept also \texttt{:} operator for euclidian division, and \verb+^+ for power. The \texttt{-} operator has both rôle of substraction and unary operator for opposite. The \texttt{+} has also these rôles, here the unary operator do\dots{} nothing! Operands are written in decimal form or \emph{via} variable name. However, \macro{opexpr} introduces a restriction about variable name since variable names must be different to function names recognized by \macro{opexpr}. Accessible functions are: \begin{itemize} \item \texttt{abs(a)} ; \item \texttt{ceil(a,i)} ; \item \texttt{decimal(a)} ; \item \texttt{floor(a,i)} ; \item \texttt{gcd(a,b)} ; \item \texttt{integer(a)} ; \item \texttt{mod(a,b)} gives result of \texttt{a} modulo \texttt{b} ; \item \texttt{rest(a,b)} gives remainder of \texttt{a} divide by \texttt{b} (difference between remainider and modulo is the same as between non euclidian division and euclidian division); \item \texttt{round(a,i)}. \end{itemize} where functions that aren't listed above ask the matching macros. (function \texttt{xxx} calls macro \verb+\opxxx+) For functions \texttt{ceil}, \texttt{floor}, and \texttt{round}, the number \texttt{i} indicates rank for approximation. Macro \macro{opexpr} accept optional argument since it can realize division which can be controlled by \parameter{maxdivstep},\parameter{safedivstep}, and \parameter{period} parameters. Our first example is quite basic: \begin{CenterExample}[xrightmargin=0pt] \opexpr{3--gcd(15*17,25*27)*2}{r}% $3--\gcd(15\times17,25\times27)\times2 = \opprint{r}$ \end{CenterExample} Here is another example that shows that datas can come from a macro: \begin{CenterExample}[xrightmargin=0pt] \newcommand\try{2}% \opexpr{\try+1/ (\try+1/ (\try+1/ (\try+1/ (\try+1/ (\try)))))}{r} Continued fraction of base $u_n=2$ equal \opprint{r} at rank~5. \end{CenterExample} \index{complex expression|)} \appendix \chapter{Short Summary} \label{chap:Aide-mémoire} \section{Compilation times} \label{sec:Temps de compilation} Compilation times was measured on a computer with processor Pentium II 600\,MHz, RAM 256\,MB, on linux system (Debian woody).\footnote{In fact, these measures was done in 2004, when the 0.2 version was released. Author is somewhere lasy and he doesn't measure with his new computer (more efficient)!}. The principle is to do a minimal file \texttt{.tex}. The general canvas is: \begin{verbatim} \input xlop \count255=0 \loop \ifnum\count255<1000 \advance\count255 by1 \repeat \bye \end{verbatim} Compilation time with \verb++ empty was substract from the others test. Only the user time was take account. Results are given in millisecond and should be read with great precautions. \index{compilation time|(}\index{time (calculation)|(}% Next table gives operation times in milliseconds. Operands used had decimal notation but some trails with variable has shown that times was very closed. First line indicates the numbers of digits for both operands. Operands were build like this: \begin{itemize} \item $\mathrm{A} = 1$ et $\mathrm{B} = 9$ for one digit; \item $\mathrm{A} = 12$ et $\mathrm{B} = 98$ for two digits; \item $\mathrm{A} = 123$ et $\mathrm{B} = 987$ for three digits; \item $\mathrm{A} = 12345$ et $\mathrm{B} = 98765$ for five digits; \item $\mathrm{A} = 1234567890$ et $\mathrm{B} = 9876543210$ for ten digits; \item $\mathrm{A} = 12345678901234567890$ et $\mathrm{B} = 98765432109876543210$ for twenty digits; \end{itemize} Here is results, some comments follow: \bigskip\noindent\hbox to\linewidth{\hss \begin{tabular}{|r|*{6}{l|}} \cline{2-7} \multicolumn{1}{l|}{} & \multicolumn{1}{c|}{1} & \multicolumn{1}{c|}{2} & \multicolumn{1}{c|}{3} & \multicolumn{1}{c|}{5} & \multicolumn{1}{c|}{10} & \multicolumn{1}{c|}{20} \\\hline \verb+\opadd*{A}{B}{r}+ & 1.1 & 1.4 & 1.6 & 2.1 & 3.3 & 5.8 \\\cline{2-7} \verb+\opadd*{B}{A}{r}+ & 1.1 & 1.4 & 1.6 & 2.1 & 3.3 & 5.8 \\\hline \verb+\opsub*{A}{B}{r}+ & 1.7 & 2.1 & 2.4 & 3.0 & 4.8 & 8.3 \\\cline{2-7} \verb+\opsub*{B}{A}{r}+ & 1.5 & 1.7 & 2.0 & 2.6 & 4.0 & 7.0 \\\hline \verb+\opmul*{A}{B}{r}+ & 4.6 & 6.3 & 8.2 & 12.8 & 29.9 & 87.0 \\\cline{2-7} \verb+\opmul*{B}{A}{r}+ & 5.0 & 6.6 & 8.5 & 13.2 & 30.3 & 87.8 \\\hline \verb+\opdiv*{A}{B}{q}{r}+ & 46.4 & 53.8 & 53.8 & 64.3 & 85.8 & 124.7 \\\cline{2-7} \verb+\opdiv*{B}{A}{q}{r}+ & 12.4 & 48.9 & 55.7 & 58.6 & 72.8 & 111.0 \\\hline \verb+\opdiv*[maxdivstep=5]{A}{B}{q}{r}+ & 26.8 & 30.0 & 32.6 & 37.6 & 49.5 & 73.5 \\\cline{2-7} \verb+\opdiv*[maxdivstep=5]{B}{A}{q}{r}+ & 12.4 & 29.1 & 32.6 & 35.2 & 43.3 & 67.9 \\\hline \verb+\opidiv*{A}{B}{q}{r}+ & 10.8 & 12.2 & 13.5 & 16.0 & 22.3 & 35.5 \\\cline{2-7} \verb+\opidiv*{B}{A}{q}{r}+ & 11.6 & 13.0 & 14.2 & 16.6 & 23.0 & 36.7 \\\hline \verb+\opidiv*{A}{2}{q}{r}+ & 10.7 & 12.0 & 15.3 & 22.3 & 42.9 & 83.0 \\\hline \end{tabular} \hss } \par\bigskip It is normal that inversion of operands don't have sensible influence for addition. Then, it could be strange that there is influence for substraction. In fact, when the second operand is bigger than the second one, there is additional process (double inversion, operation on the sign of the result). It is normal that division time is greater than the multiplication one. It could be abnormal that division seems catch up! In fact, the multiplication complexity grows quickly with the operand length. In the other hand, division complexity is stopped by \parameter{maxdivstep} parameter. It is clear on example where there is only five steps. Some results seems odd. For instance \verb+\opdiv*{9}{1}{q}{r}+ is very fast. These is due to the one digit quotient. \verb+\opdiv*{123}{987}{q}{r}+, even more odd, is rather fast. Here, explanation is quite subtle: this is due to many zeros in the quotient. When operands have comparable length, euclidian division is much faster than non euclidian one. This is because quotient has few digits (only one for all the numbers \texttt{A} and \texttt{B}). The last line of the table is more relevant for this operation time. All these remarks are written to put the emphasis on the difficulty to evaluate the compilation time: it depends on too many parameters. On the other hand, this table give a pretty good idea of what can be expected. \index{compilation time|)}\index{time (calculation)|)}% \newpage \section{Macros List} \label{sec:Liste des macros} \index{macros!table of|(}% \noindent\begin{longtable}{|l|p{6.3cm}|} \hline \multicolumn{1}{|c|}{\textbf{Macro}} & \multicolumn{1}{c|}{\textbf{Description}} \\\hline\hline \endfirsthead \hline \multicolumn{1}{|c|}{\textbf{Macro}} & \multicolumn{1}{c|}{\textbf{Description}} \\\hline\hline \endhead \hline \multicolumn{2}{|c|}{$\ldots$ to be continued $\ldots$}\\ \hline \endfoot \hline \endlastfoot \verb+\opabs{n}{N}+ & \verb+N+ stores the absolute value of \verb+n+. \\\hline \verb+\opadd[P]{n1}{n2}+ & Displays result of \verb-n1+n2-. \\\hline \verb+\opadd*{n1}{n2}{N}+ & Calcules \verb-n1+n2- and put result in \verb+N+. \\\hline \verb+\opcastingoutelevens{n}{N}+ & Calcules difference (modulo 11) of sum of rank odd digits and sum of rank even digits of \verb+n+ and put the result in \verb+N+.\\\hline \verb+\opcastingoutnines{n}{N}+. & Calcules sum modulo 9 of digits of \verb+n+ and put result in \verb+N+. \\\hline \verb+\opceil{n}{T}{N}+ & Places in \verb+N+ the approximation (ceiling) of \verb+n+ to rank \verb+T+. \\\hline \verb+\opcmp{n1}{n2}+ & Compares numbers \verb+n1+ and \verb+n2+ and setup the tests \verb+\ifopeq+, \verb+\ifopneq+, \verb+\ifopgt+, \verb+\ifopge+, \verb+\ifople+ et \verb+\ifoplt+. \\\hline \verb+\opcopy{n}{N}+ & Copy number \verb+n+ in \verb+N+. \\\hline \verb+\opdecimal{n}{N}+ & Copy decimal part (positive integer number) of \verb+n+ in \verb+N+. \\\hline \verb+\opdecimalwidth{n}{N}+ & \verb+N+ stores the width of decimal part of number \verb+n+. \\\hline \verb+\opdisplay[P]{S}{n}+ & Display number \verb+n+ width style \verb+S+ puting each figure in a box which have a width of \verb+\opcolumnwidth+ and a height of \verb+\oplineheight+. \\\hline \verb+\opdiv[P]{n1}{n2}+ & Display result of n1/n2. \\\hline \verb+\opdiv*[P]{n1}{n2}{N1}{N2}+ & Calculates \verb+n1/n2+, put the quotient in \verb+N1+ and the remainder in \verb+N2+. \\\hline \verb+\opdivperiod{T1}{T2}{N}+ & Calculates length of period of \verb+T1+ divide by \verb+T2+ and put the result in \verb+N+. \\\hline \verb+\opexport[P]{n}\cmd+ & Copy number \verb+n+ in macro \verb+\cmd+. \\\hline \verb+\opexpr[P]{F}{N}+ & Evaluates formula \texttt{F} and put the final result in \texttt{N}. \\\hline \verb+\opfloor{n}{T}{N}+ & Put in \verb+N+ the apprimation (floor) of \verb+n+ at rank \verb+T+. \\\hline \verb+\opgcd{T1}{T2}{N}+ & Calculates gcd of \verb+T1+ and \verb+T2+ and put result in \verb+N+. \\\hline \verb+\opgetdecimaldigit{n}{T}{N}+ & Build the number \verb+N+ with the only digit in slot \verb+T+ of decimal part of \verb+n+. \\\hline \verb+\opgetdigit{n}{T}{N}+ & Build the number \verb+N+ with the only digit in slot \verb+T+ of number \verb+n+. \\\hline \verb+\opgetintegerdigit{n}{T}{N}+ & Build the number \verb+N+ width the only digit in slot \verb+T+ of integer part of \verb+n+. \\\hline \verb+\ophline(T1,T2){T3}+ & Draw a horizontal rule of length \verb+T3+, of thickness \verb+hrulewidth+, and which begin at \verb+(T1,T2)+ in relation to reference point. \\\hline \verb+\opidiv[P]{n1}{n2}+ & Display the result of \verb+n1/n2+. (euclidian division, that is, with integer division) \\\hline \verb+\opidiv*{n1}{n2}{N1}{N2}+ & Calculates \verb+n1/n2+ (euclidian division), put quotient (integer) in \verb+N1+ and remainder (between 0 (include) and \verb+|n2|+ (exclude)) in \verb+N2+. \\\hline \verb+\opinteger{n}{N}+ & Copy integer part (positive integer number) of \verb+n+ in \verb+N+. \\\hline \verb+\opintegerwidth{n}{N}+ & Number \verb+N+ stores the width of integer part of number \verb+n+. \\\hline \verb+\oplput(T1,T2){}+ & Put \verb++ to the right of the point with coordinates \verb+(T1,T2)+ in relation to reference point. \\\hline \verb+\opmul[P]{n1}{n2}+ & Display result of \verb+n1*n2+. \\\hline \verb+\opmul*{n1}{n2}{N}+ & Calculates \verb+n1*n2+ and put the result in \verb+N+. \\\hline \verb+\opneg{n}{N}+ & Number \verb+N+ stores opposite of \verb+n+. \\\hline \verb+\oppower{n}{T}{N}+ & Calculates \verb+n+ to the power of \verb+T+ and put the result in \verb+N+. \\\hline \verb+\opprint{n}+ & Display number \verb+n+ in a direct way. \\\hline \verb+\opround{n}{T}{N}+ & Put in \verb+N+ the approximation of \verb+n+ at rank \verb+T+. \\\hline \verb+\oprput(T1,T2){}+ & Put \verb++ to the left of the point with coordinates \verb+(T1,T2)+ in relation to reference point. \\\hline \verb+\opset{L}+ & Allocates globally \package{xlop} parameters given in the list \verb+L+. \\\hline \verb+\opsetdecimaldigit{n}{T}{N}+ & Modify the digit of rank \verb+T+ in decimal part of \verb+N+ in order to have the value \verb+n+ for this digit. \\\hline \verb+\opsetdigit{n}{T}{N}+ & Modify the digit of rank \verb+T+ of \verb+N+ in order to have the value \verb+n+ for this digit. \\\hline \verb+\opsetintegerdigit{n}{T}{N}+ & Modify the digit of rank \verb+T+ in integer part of \verb+N+ in order to have the value \verb+n+ for this digit. \\\hline \verb+\opsub[P]{n1}{n2}+ & Display result of \verb+n1-n2+. \\\hline \verb+\opsub*{n1}{n2}{N}+ & Calculates \verb+n1-n2+ and put the result in \verb+N+. \\\hline \verb+\opunzero{N}+ & Delete non-significant zeros of \verb+N+. \\\hline \verb+\opvline(T1,T2){T3}+ & Draw a vertical ruleof length \verb+T3+, of thickness \verb+hrulewidth+ and which begin at \verb+(T1,T2)+ in relation to reference point. \\\hline \verb+\opwidth{n}{N}+ & Number \verb+N+ stores number of digits of number \verb+n+. \\\hline \end{longtable}\index{macros!table of|)} In this table, parameters: \begin{itemize} \item \texttt{n} and \texttt{ni} (where \texttt{i} is an index) indicate that parameter must be a number given in decimal form or a variable name; \item \texttt{N} and \texttt{Ni} (where \texttt{i} is an index) indicate that parameter must be a number given in decimal form or a variable name; \item \texttt{[P]} indicates that the macro accept an optional parameter which allow to modify parameter of \package{xlop}; \item \texttt{T} and \texttt{Ti} (where \texttt{i} is an index) indicate that parameter must be a number given in decimal form or a variable name but must be less than numbers acceptable by \TeX{}, that is, $-2147483648 \le \mathtt{T} \le 2147483647$. \end{itemize} \section{Parameter list} \label{sec:Liste des parametres} \index{parameter@parameter!table of|(}% \begingroup \advance\hoffset by-1.75cm \advance\linewidth by1.75cm \begin{longtable}{|l|l|p{7cm}|} \hline \multicolumn{1}{|c|}{\textbf{Parameter}} & \multicolumn{1}{c|}{\textbf{Default}} & \multicolumn{1}{c|}{\textbf{Signification}} \\\hline\hline \endfirsthead \hline \multicolumn{1}{|c|}{\textbf{Parameter}} & \multicolumn{1}{c|}{\textbf{Default}} & \multicolumn{1}{c|}{\textbf{Signification}} \\\hline\hline \endhead \hline \multicolumn{3}{|c|}{$\ldots$ to be continued $\ldots$}\\ \hline \endfoot \hline \endlastfoot \verb+afterperiodsymbol+ & \verb+$\ldots$+ & Symbol used after a period of a division. \\\hline \verb+approxsymbol+ & \verb+$\approx$+ & Symbol used as approximation relation in inline operations. \\\hline \verb+equalsymbol+ & \verb+{$=$}+ & Symbol used as equality relation in inline operations. \\\hline \verb+addsymbol+ & \verb-$+$- & Symbol used as addition operator. \\\hline \verb+subsymbol+ & \verb+$-$+ & Symbol used as substraction operator. \\\hline \verb+mulsymbol+ & \verb+$\times$+ & Symbol used as multiplication operator. \\\hline \verb+divsymbol+ & \verb+$\div$+ & Symbol used as multiplication operator for inline operations. \\\hline \verb+decimalsepsymbol+ & \verb+.+ & Symbol used as decimal separator. \\\hline \verb+strikedecimalsepsymbol+ & & Symbol used as decimal separator moved in dividend and divisor for display division. \\\hline \verb+shiftintermediarysymbol+ & \verb+$\cdot$+ & Symbol used to show intermediary numbers shifting for display multiplication. \\\hline \verb+displayshiftintermediary+ & \verb+shift+ & Indicates that the shifting character for multiplications will be displayed only for additional shifting (value \verb+shift+), for all the shifting (value \verb+all+), or never (value \verb+none+). \\\hline \verb+voperation+ & \verb+bottom+ & Vertical alignement for displayed operation. The value \verb+bottom+ indicates that the bottom of operation will be aligned with baseline. The value \verb+top+ indicates that the top of operation will be aligned with baseline. The value \verb+center+ indicates that operation will be verticaly centred with baseline. \\\hline \verb+voperator+ & \verb+center+ & Vertical alignement for operators in displayed operations. The value \verb+top+ put operator at the level of first operand. The value \verb+bottom+ put operator at the level of second operand. The value \verb+center+ put operator between operands. \\\hline \verb+hfactor+ & \verb+decimal+ & Sort of operands alignement for displayed operation. The value \verb+decimal+ indicates an alignement on decimal separator. The value \verb+right+ indicates a flushright alignement. \\\hline \verb+vruleperiod+ & \verb+-0.2+ & Vertical position of rule which indicates period of quotient for inline division. \\\hline \verb+dividendbridge+ & \verb+false+ & Indicates if there is a ``bridge'' above dividend. \\\hline \verb+shiftdecimalsep+ & \verb+both+ & Indicates how shift decimal separator into operands for a displayed division. The value \verb+both+ indicates that shifting are made on both divisor and dividend in order to make integer numbers. The value \verb+divisor+ indicates that the shifting must give an integer divisor. The value \verb+none+ indicates that there is no shifting. \\\hline \verb+maxdivstep+ & \verb+10+ & Maximal number of steps in division. \\\hline \verb+safedivstep+ & \verb+50+ & Maximal number of steps in division when there is a period to reach. \\\hline \verb+period+ & \verb+false+ & Indicates if division must be stoped when a whole period is reached. \\\hline \verb+deletezero+ & \verb+true+ & Indicates that non-significant zeros are displayed (\verb+false+) or deleted (\verb+true+). \\\hline \verb+carryadd+ & \verb+true+ & Indicates that carries are displayed (\verb+true+) for displayed additions. \\\hline \verb+carrysub+ & \verb+false+ & Indicates that carries are displayed (\verb+true+) for displayed substractions. \\\hline \verb+offsetcarry+ & \verb+-0.35+ & Horizontal offset for carries into displayed substractions. \\\hline \verb+style+ & \verb+display+ & Indicates tha operation are inline (\verb+text+) or displayed (\verb+display+). \\\hline \verb+displayintermediary+ & \verb+nonzero+ & Indicates that all intermediary results are displayed (\verb+all+), only non null ones are displayed (\verb+nonzero+), or any intermediary result isn't displayed into displayed multiplications and divisions. \\\hline \verb+lastcarry+ & \verb+false+ & Indicates that carry with no figure just below it must be displayed (\verb+true+), or not (\verb+false+). \\\hline \verb+parenthesisnegative+ & \verb+none+ & Behavior to display negative numbers in inline operations. The value \verb+none+ displays them without parenthesis. The value \verb+all+ displays them always with parenthesis. The value \verb+last+ display parenthesis except for first operand of an expression. \\\hline \verb+columnwidth+ & \verb+2ex+ & With of box for one figure. \\\hline \verb+lineheight+ & \verb+\baselineskip+ & Height of box for one figure. \\\hline \verb+decimalsepwidth+ & \verb+0pt+ & Width of box that hold the decimal separator. \\\hline \verb+decimalsepoffset+ & \verb+0pt+ & Horizontal offset for decimal separator. \\\hline \verb+hrulewidth+ & \verb+0.4pt+ & Thickness of horizontal rules. \\\hline \verb+vrulewidth+ & \verb+0.4pt+ & Thickness of vertical rules. \\\hline \verb+behaviorsub+ & \verb+silent+ & \package{xlop} behavior for an ``impossible'' substraction, that is, a substraction with two positive operands, the second greater than the first one. The value \verb+silent+ does operation swapping the two operands in a slient way. With the value \verb+warning+, there are also a swapping but \package{xlop} gives a warning. The value \verb+error+ display an error message and operation isn't processed. \\\hline \verb+country+ & \verb+french+ & Indicates the displayed operation behavior depending of contry. Package \package{xlop} put forward only \verb+french+, \verb+american+, and \verb+russian+ but these different ways to display operations aren't encoded in version 0.24. \\\hline \verb+operandstyle+ & & Style for operands. \\\hline \verb+resultstyle+ & & Style for results. \\\hline \verb+remainderstyle+ & & Style for remainders. \\\hline \verb+intermediarystyle+ & & Style for intermediary results (intermediary numbers in multiplication and number to substract in division when successive substractions are displayed). \\\hline \verb+carrystyle+ & \verb+\scriptsize+ & Style for carries. The default value when compilation are made without \LaTeX{} is \verb+\sevenrm+. \\\hline \end{longtable}\index{parameter@parameter!table of|)} \endgroup \chapter{Tricks} \label{chap:Trucs et astuces} \section{\package{xlop} vs. \package{calc} and \package{fp}} You could believe that \package{xlop} can replace package such \package{calc}\index{package!calc}\index{calc} and \package{fp}\index{package!fp}\index{fp}. In fact, that is not so simple. Obviously \package{xlop} can do complex calculations, on arbitrary long numbers but, unlike \package{calc}, it don't allow to process directly dimensions. Comparison with \package{fp} is somewhere more realistic but remember that \package{xlop} can make memory usage too high. If you want to process calculations on length\index{length}, you can use that a dimen register allocation to a counter gives a number which correspond to this length with unit \texttt{sp}. \begin{CenterExample}[xrightmargin=0pt] \newcommand\getsize[2]{% \dimen0=#1\relax \count255=\dimen0 \opcopy{\the\count255}{#2}} \getsize{1pt}{r}$1\,\mathrm{pt}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1pc}{r}$1\,\mathrm{pc}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1in}{r}$1\,\mathrm{in}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1bp}{r}$1\,\mathrm{bp}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1cm}{r}$1\,\mathrm{cm}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1mm}{r}$1\,\mathrm{mm}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1dd}{r}$1\,\mathrm{dd}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1cc}{r}$1\,\mathrm{cc}=\opprint{r}\,\mathrm{sp}$\quad \getsize{1sp}{r}$1\,\mathrm{sp}=\opprint{r}\,\mathrm{sp}$\quad \end{CenterExample} However, don't forget that the \package{xlop} main goal is to \emph{display} operations. With this \macro{getsize} macro, it is possible to realise calculations on length. \begin{SideBySideExample} \newcommand\getsize[2]{% \dimen0=#1\relax \count255=\dimen0 \opcopy{\the\count255}{#2}} \getsize{1cm}{u}% \getsize{\textwidth}{w}% \getsize{\textheight}{h}% \opexpr{w*h/u^2}{S}% \opround{S}{2}{S}% Surface of spread is \opprint{S}\,$\mathrm{cm}^2$ \end{SideBySideExample} \section{Complex Operations} \label{sec:Creation d'operations complexes} Use of \package{xlop} macros with loop of \TeX{} allow to create operations as you want. Here, we give only two examples. The first one can express a number as a product of prime factors, the second one is a general calculation for continued fraction.\index{number!prime}\index{loop|(}% \index{product of prime factors} \begin{Verbatim}[xrightmargin=0pt] \newcount\primeindex \newcount\tryindex \newif\ifprime \newif\ifagain \newcommand\getprime[1]{% \opcopy{2}{P0}% \opcopy{3}{P1}% \opcopy{5}{try} \primeindex=2 \loop \ifnum\primeindex<#1\relax \testprimality \ifprime \opcopy{try}{P\the\primeindex}% \advance\primeindex by1 \fi \opadd*{try}{2}{try}% \ifnum\primeindex<#1\relax \testprimality \ifprime \opcopy{try}{P\the\primeindex}% \advance\primeindex by1 \fi \opadd*{try}{4}{try}% \fi \repeat } \newcommand\testprimality{% \begingroup \againtrue \global\primetrue \tryindex=0 \loop \opidiv*{try}{P\the\tryindex}{q}{r}% \opcmp{r}{0}% \ifopeq \global\primefalse \againfalse \fi \opcmp{q}{P\the\tryindex}% \ifoplt \againfalse \fi \advance\tryindex by1 \ifagain \repeat \endgroup } \end{Verbatim} \newcount\primeindex \newcount\tryindex \newif\ifprime \newif\ifagain \newcommand\getprime[1]{% \opcopy{2}{P0}% \opcopy{3}{P1}% \opcopy{5}{try} \primeindex=2 \loop \ifnum\primeindex<#1\relax \testprimality \ifprime \opcopy{try}{P\the\primeindex}% \advance\primeindex by1 \fi \opadd*{try}{2}{try}% \ifnum\primeindex<#1\relax \testprimality \ifprime \opcopy{try}{P\the\primeindex}% \advance\primeindex by1 \fi \opadd*{try}{4}{try}% \fi \repeat } \newcommand\testprimality{% \begingroup \againtrue \global\primetrue \tryindex=0 \loop \opidiv*{try}{P\the\tryindex}{q}{r}% \opcmp{r}{0}% \ifopeq \global\primefalse \againfalse \fi \opcmp{q}{P\the\tryindex}% \ifoplt \againfalse \fi \advance\tryindex by1 \ifagain \repeat \endgroup } With this code, we can create a prime numbers list (here the 20~first ones). \begin{SideBySideExample} \getprime{20}% \opprint{P0}, \opprint{P1}, \ldots, \opprint{P9}, \ldots \opprint{P19}. \end{SideBySideExample} Note that this code is very bad: it is very slow and don't give anything against native \TeX{} operations. It is only a educational example. Note also that the tricks to put loop into loop with macro \verb+\testprimality+ inside a group. \package{xlop} operations give global results.\index{global allocation} Once you have your prime numbers ``table'', you can use it to write a number as product of prime number. \begin{CenterExample}[xrightmargin=0pt] \newcommand\primedecomp[2][nil]{% \begingroup \opset{#1}% \opcopy{#2}{NbtoDecompose}% \opabs{NbtoDecompose}{NbtoDecompose}% \opinteger{NbtoDecompose}{NbtoDecompose}% \opcmp{NbtoDecompose}{0}% \ifopeq I refuse to factorize zero. \else \setbox1=\hbox{\opdisplay{operandstyle.1}% {NbtoDecompose}}% {\setbox2=\box2{}}% \count255=1 \primeindex=0 \loop \opcmp{NbtoDecompose}{1}\ifopneq \opidiv*{NbtoDecompose}{P\the\primeindex}{q}{r}% \opcmp{0}{r}\ifopeq \ifvoid2 \setbox2=\hbox{% \opdisplay{intermediarystyle.\the\count255}% {P\the\primeindex}}% \else \setbox2=\vtop{% \hbox{\box2} \hbox{% \opdisplay{intermediarystyle.\the\count255}% {P\the\primeindex}}} \fi \opcopy{q}{NbtoDecompose}% \advance\count255 by1 \setbox1=\vtop{% \hbox{\box1} \hbox{% \opdisplay{operandstyle.\the\count255}% {NbtoDecompose}} }% \else \advance\primeindex by1 \fi \repeat \hbox{\box1 \kern0.5\opcolumnwidth \opvline(0,0.75){\the\count255.25} \kern0.5\opcolumnwidth \box2}% \fi \endgroup } \getprime{20}% \primedecomp[operandstyle.2=\red, intermediarystyle.2=\red]{252} \end{CenterExample} Note the use of group for the whole macro in order to protect \package{xlop} parameter modifications.% \index{parameter!local modification} Note also that void parameter aren't allowed. It's not a bug, it's a feature. Author thinks that a user who write brackets without anything between these brackets is going to make a mistake. To obviate this prohibition\index{parameter!void}, there is the particular parameter \parameter{nil} which has exactly this rôle. \index{loop|)} Finally, note the trick \verb+{\setbox2=\box2}+ to obtain a void box register, and final manipulations to show the vertical rule in a easy-to-read way. The second example allow to calculates a continued fraction like: \def\dfrac#1#2{\frac{\displaystyle #1}{\displaystyle #2}} \[a_0+\dfrac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{a_3+\cdots}}}\] giving the sequence $a_0,a_1,a_2,a_3,\ldots$ to the macro. This example gives fractions corresponding to gold number, and square root for~2 and~3. \makeatletter \begin{CenterExample}[xrightmargin=0pt] \begingroup \long\gdef\continuedfraction#1#2{% \let\@mirror\relax \@for\op@Nb:=#1\do {% \ifx\@mirror\relax \edef\@mirror{\op@Nb}% \else \edef\@mirror{\op@Nb,\@mirror}% \fi }% \let\Op@result\relax \@for\op@Nb:=\@mirror\do {% \ifx\Op@result\relax \opcopy{\op@Nb}{result}% \else \opexpr{\op@Nb+1/result}{result}% \fi }% \opcopy{result}{#2}% } \endgroup \continuedfraction{1,1,1,1,1,1,1,1,1,1,1,1}{r}\opprint{r}\quad \continuedfraction{1,2,2,2,2,2,2,2,2,2,2,2}{r}\opprint{r}\quad \continuedfraction{1,1,2,1,2,1,2,1,2,1,2,1}{r}\opprint{r} \end{CenterExample} \makeatother It does no harm just this once, we use \LaTeX{} commands for the loop. \section{Direct Access to Number} \label{sec:Acces direct aux nombres} When a number is saved in a \package{xlop} variable, it is possible to process with it in many different ways. However, in certain situations, you would creat you own macro or use external macro giving such numbers as parameter. Giving directly \verb+\opprint{var}+ is ineffective since this macro is a complex a gives side effect. It is necessary to access directly to this number. When a variable hold a number, \package{xlop} creates a macro \texttt{$\backslash$Op@var}\index{Opvar@\texttt{\boi {Op\at var}}} which contain this number. Note the uppercase ``O'' and the lowercase ``p''. The at sign is here to do this definition a private one, that is, you have to enclose it with \macro{makeatletter} and \macro{makeatother} to access it (or \macro{catcode @=11} in \TeX). \begin{SideBySideExample} \opcopy{1234}{a}\opcopy{56}{b}% \opmul*{a}{b}{r}% \makeatletter \newcolumntype{.}{D{.}{.}{-1}} \begin{tabular}{l.} & \Op@a \\ $\times$ & \Op@b \\ $=$ & \Op@r \end{tabular} \makeatother \end{SideBySideExample} Note that this way of doing don't work when decimal separator is between braces since macro \verb+\opprint{var}+ contain such braces. In this case, the simplest is to use \macro{opexport} macro (see page~\pageref{macro-opexport}). \chapter{Future Versions} \label{chap:Versions futures} Version of \package{xlop} package is~0.24 which is only a debuging version of version~0.2, which is itself a correcting version of version~0.1 (first public release). The next release will be version~0.3 and its ``stable'' version will be version~0.4. The features of version~0.3 aren't definitively fixed but there are some points planned: \begin{itemize} \item international version for posées; \item opérations from 2 to 36~basis; \item additional high level functions with roots (\macro{oproot} for any roots and \macro{opsqrt} for square root), exponential function, logarithm, trigonometric functions (direct, inverse, hyperbolic); \item macro to have a formated writing, that is, write a number where length of decimal part and integer part are given (if these widths are not the ones of the number, there will be overflow or filling); this macro was present in version~0.1 and allow to display numbers decimal aligned, right aligned, or left aligned; \item macro for addition with more than two operands; \item parameter for scientific or engineer notation; \item macro to allow to write a multi-line number and/or with thousand separator; \item carries for multiplications; \item make public the successive remainders of a division; \item negative values of \parameter{maxdivstep} and \parameter{safedivstep} parameters will take acount of decimal digit of quotient. \end{itemize} For all requests or bug report, the author will be grateful to you to contact him at: \begin{verbatim} Jean-Come.Charpentier@wanadoo.fr \end{verbatim} placing the word ``xlop'' in the subject in order to help my spam killer. It would be nice to have a hacker manual which explain in details the source. This tool could be usefull in order to improve \package{xlop}. Unfortunately, the current code has more than~4000~lines and the work to do that may well be too long. %\printindex \chapter{Index} \label{chap:index} \begin{multicols}{2} \makeatletter \parindent \z@\relax \parskip \z@ \@plus.3\p@\relax \let\item\@idxitem \makeatother \renewenvironment{theindex}{}{}% \input\jobname.ind \end{multicols} \end{document}