
F(1250)=767476895
80568936999178927
70735217372394624
73500936993792414
59076297117041405
39724218387885529
62951090412321568
10495825130595867
25373159160966800
15791574354131667
63718960323987159
52911434545480699
13507248538315878
47481838130915181
04723762750273390
38726484850625

The xint bundle
Jean-François Burnol
jfbu (at) free (dot) fr

Package version: 1.2b (2015/10/29); documentation date: 2015/10/29.
From source file xint.dtx. Time-stamp: <29-10-2015 13:19:20 CET>.

..xintkernel...

xintcore

.

xinttools

.

bnumexpr

.

xint

.

xintbinhex

.

xintgcd

.

xintfrac

.

xintexpr

.

xintcfrac

.

xintseries

Dependency graph for the xint bundle components: modules at the bottom import modules at
the top when connected by a continuous line. No module will be loaded twice, this is managed
internally under Plain as well as LATEX. Dashed lines indicate a partial dependency, and to enable
the corresponding functionalities of the lower module it is necessary for the user to issue the suitable
\usepackage{top_module} in the preamble (or \input top_module.sty\relax in Plain TEX). The
bnumexpr package is a separate package (LATEX only) by the author.

http://www.ctan.org/pkg/bnumexpr
http://ctan.org/pkg/bnumexpr

1 Read this first

Contents

1 Read this first . 2
1.1 The packages of the xint bundle 2
1.2 Quick overview 4

1.3 Changes 6
1.4 Installation instructions 6

2 Introduction via examples . 7
2.1 Printing big numbers on the page 7
2.2 Randomly chosen examples 7

2.3 More examples, some quite elaborate, within
this document 10

3 The xint bundle . 11
3.1 Characteristics 11
3.2 Origins of the package 12
3.3 Expansion matters 13

3.4 User interface 15
3.5 Floating point macros 17

4 User interface . 18
4.1 Input formats 19
4.2 Output formats 21
4.3 Use of count registers 22
4.4 Dimensions 23
4.5 \ifcase, \ifnum, ... constructs 24

4.6 Expandable implementations of mathematical
algorithms 25

4.7 Possible syntax errors to avoid 25
4.8 Error messages 26
4.9 Package namespace, catcodes 27

5 Some utilities from the xinttools package . 27
5.1 Assignments 27
5.2 Utilities for expandable manipulations 28

5.3 A new kind of for loop 29
5.4 A new kind of expandable loop 29

6 Commands of the xintkernel package . . 29

7 Commands of the xinttools package . . . 30

8 Commands of the xintcore package 61

9 Commands of the xint package 65

10 Commands of the xintfrac package 74

11 Commands of the xintexpr package 86

12 Commands of the xintbinhex package . .114

13 Commands of the xintgcd package115

14 Commands of the xintseries package . .118

15 Commands of the xintcfrac package . . .132

1 Read this first
This section provides recommended reading on first discovering the package.

The packages of the xint bundle . 1.1, p. 2
Quick overview . 1.2, p. 4
Changes . 1.3, p. 6
Installation instructions . 1.4, p. 6

1.1 The packages of the xint bundle

2

1 Read this first

The xintcore and xint packages provide macros dedicated to expandable computations on num-
bers exceeding the TEX (and ε-TEX) limit of 2147483647 (i.e. on numbers of 10 digits or more.)

With package xintfrac also decimal numbers (with a dot . as decimal mark), numbers in scien-

tific notation (with a lowercase e), and even fractions (with a forward slash /) are acceptable

inputs.

Package xintexpr handles expressions written with the standard infix notations, thus pro-
viding a more convenient interface.

\xinttheexpr (2981.279/.2662176e2-3.17127e2/3.129791)^3\relax

700940076824200240480125531514043809/578437317896813777408040337792966557696[6]
(the A/B[n] notation on output means (A/B) × 10n), or also:

\xintthefloatexpr 1.23456789123456789^123456789\relax

1.906966400428566e11298145 (<- notice the size of this exponent).

Furthermore xintexpr is also able since release 1.1 of 2014/10/28 to do computations with
dummy variables, as in this example:

\xinttheexpr seq(1+reduce(add(mul((x-i+1)/i,i=1..j),j=1..floor(x/2))),

x=10..20, 31, 51)\relax

638, 1024, 2510, 4096, 9908, 16384, 39203, 65536, 155382, 262144, 616666, 1073741824,

1125899906842624

The reasonable range of use of the package arithmetics is with numbers of less than one
hundred or perhaps two hundred digits. Release 1.2 has significantly improved the speed of
the basic operations for numbers with more than 50 digits, the speed gains getting better for

bigger numbers. Although numbers up to about 19950 digits are acceptable inputs, the package

is not at his peak efficiency when confronted with such really big numbers having thousands of

digits.1

The ε-TEX extensions (dating back to 1999) must be enabled; this is the case by default in modern
distributions, except for the tex executable itself which has to be the pure D. Knuth software with

no additions. The name for the extended binary is etex. In TL2014 for example etex is a symbolic

link to the pdftex executable which will then run in DVI output mode, the ε-TEX extensions being
automatically active.

All components may be loaded with LATEX \usepackage or \RequirePackage or, for any other for-

mat based on TEX, directly via \input, e.g. \input xint.sty\relax. There are no package options.

Each package automatically loads those not already loaded it depends on (but in a few rare cases

there are some extra dependencies, for example the gcd function in xintexpr expressions requires

explicit loading of package xintgcd for its activation).

xinttools provides utilities of independent interest such as expandable and non-expandable
loops. It is not loaded automatically (nor needed) by the other bundle packages, apart

from xintexpr.

xintcore provides the expandable TEX macros doing additions, subtractions, multiplications,
divisions and powers on arbitrarily long numbers (loaded automatically by xint, and also

by package bnumexpr in its default configuration).

xint extends xintcore with additional operations on big integers.

xintfrac extends the scope of xint to decimal numbers, to numbers in scientific notation and
also to fractions with arbitrarily long such numerators and denominators separated by a

forward slash.

xintexpr extends xintfrac with expandable parsers doing algebra (exact or float, or limited
to integers) on comma separated expressions using standard infix notations with parenthe-

ses, numbers in decimal notation, and scientific notation, comparison operators, Boolean

1 The maximal handled size for inputs to multiplication is 19959 digits. This limit is observed with the current default values of
some parameters of the tex executable (input save stack size at 5000, maximal expansion depth at 10000). Nesting of macros will
reduce it and it is best to restrain numbers to at most 19900 digits. The output, as naturally is the case with multiplication, may
exceed the bound.

3

http://ctan.org/pkg/bnumexpr

1 Read this first

logic, twofold and threefold way conditionals, sub-expressions, some functions with one

or many arguments, user-definable variables, evaluation of sub-expressions over a dummy

variable range, with possible recursion, omit, abort, break instructions, nesting.

Further modules:

xintbinhex is for conversions to and from binary and hexadecimal bases.

xintseries provides some basic functionality for computing in an expandable manner partial
sums of series and power series with fractional coefficients.

xintgcd implements the Euclidean algorithm and its typesetting.

xintcfrac deals with the computation of continued fractions.

1.2 Quick overview
This documentation was build via successive layers; a complete re-write would be needed for a more

user-friendly access. I will try to add here a quick exposé of the package abilities, starting from

the arithmetic expressions handled by package xintexpr.

There are three expression parsers and two additional derived ones. They all admit comma sepa-

rated expressions, and will then output a comma separated list of results.

• \xinttheiiexpr ... \relax does exact computations on integers. The forward slash / does the

rounded integer division. There are two square root extractors sqrt and sqrtr for truncated,

respectively rounded square roots.

• \xintthefloatexpr ... \relax does computations with a given precision P, as specified via \⤸
xintDigits:=P;. The default is P=16 digits. An optional argument controls the precision on

output (this is not the precision of the computations themselves).
• \xinttheexpr ... \relax handles integers, decimal numbers, numbers in scientific notation

and fractions. The algebraic computations are done exactly. Currently, the only transcenden-

tal function implemented is sqrt. It computes according to the precision specified by \xintD⤸
igits, or according to its second optional argument.

Additional derived parsers:

• \xinttheiexpr ... \relax does all computations like \xinttheexpr ... \relax but rounds the

result to the nearest integer. With an optional argument [D], the rounding is to the nearest

fixed point number with D digits after the decimal mark.

• \xinttheboolexpr ... \relax does all computations like \xinttheexpr ... \relax but converts

the result to 1 if it is not zero (works also on comma separated expressions). See also

the booleans \xintifboolexpr, \xintifbooliiexpr, \xintifboolfloatexpr (which do not handle

comma separated expressions).

Here is the (partial) list of recognized symbols: the comma (to separate distinct compu-

tations or arguments to a function), the parentheses, infix operators +, -, *, /, ^ (or **),

branching operators ?, ??, boolean operators !, &&, ||, comparison operators = (or ==), <, >,

<=, >=, !=, factorial post-fix operator !, and functions num, reduce, abs, sgn, frac, floor,

ceil, sqr, sqrt, sqrtr, float, round, trunc, mod, quo, rem, gcd, lcm, max, min, `+`, `*`, not,

all, any, xor, if, ifsgn, even, odd, first, last, reversed, bool, togl, add, mul, seq, subs,

rseq, rrseq, iter. And " may serve for hexadecimal input (uppercase only; package xintbinhex

required).

1.2 has added qint, qfrac, qfloat to tell the parser to skip its usual token by token expan-

sion when gathering the digits of a number.

See subsection 11.3 for the complete syntax, as well as subsection 11.2 which focused on the

extensions brought with xintexpr 1.1.

Here is an example of a computation:
\xinttheexpr (31.567^2 - 21.56*52)^3/13.52^5\relax

4

1 Read this first

-1936508797861911919204831/4517347060908032[-8]
The result is a bit frightening but illustrates that \xinttheexpr..\relax does its computations

exactly. There is a variant which emulates floating point computations:
\xintthefloatexpr (31.567^2 - 21.56*52)^3/13.52^5\relax

-4.286827582100044

Such ``floating-point'' computations are done by default with 16 digits of precision (this can

be increased via a prior assignment such as \xintDigits:=24;).
xint has very few typesetting macros. LATEX users can do:
\[\xintFrac{\xintthefloatexpr (31.567^2 - 21.56*52)^3/13.52^5\relax }\]

-4286827582100044 · 10-15

but it probably is better to use packages dedicated to the typesetting of numbers in scientific

format (notice that the display above is not in scientific notation). However, when using \xint⤸
theexpr rather than \xintthefloatexpr the result will typically be in A/B[N] format and this is

unlikely to be understood by your favorite number formatting package.

The computations are done expandably: you can put them in an \edef or a \write or even force com-

plete expansion via \romannumeral-`0 (if you don't understand the latter sentence, this doesn't

matter; this manual should contain a description of expandability in TEX, but this is yet to arise.)

Let's just say that such expandable macros are maximally usable in almost all locations of TEX code.

However in contexts where TEX expects an integer, it will naturally not be able to digest a number

in scientific notation or a fraction. Fixed point decimal numbers however can be understood by TEX

in the context of manipulation of dimensions.
The underlying macros to which \xinttheexpr ...\relax and the other parsers map the infix oper-

ations are provided by packages xintcore, xint (for integers) and xintfrac (for fractions, decimal
numbers, and scientific numbers). They are nestable. For example to do something like 21+32*43,
the syntax would be (only xintcore is needed):

\xintiiAdd{21}{\xintiiMul{32}{43}}\par

\noindent\xintiiMul{21283978192739181739}{\xintiiSub {130938109831081320}{29810810281}}

1397

2786883239750586749695886589859356821
Needless to say this quickly becomes a bit painful. One more example (needs xintfrac):
\xintIrr {\xintiiPrd{{128}{81}{125}}/\xintiiPrd{{32}{729}{100}}}\par

\noindent\xintIrr{\xintAdd{31791327893/231938201832}{19831081392/189038013988310}}

5/9

3007184536151164197220487/21922568521170542034291960

This shows that package xintfrac knows natively how to handle fractions A/B. Notice that *, +

and - contrarily to the / which is treated as a special optional delimiter are not accepted in

the arguments to the xintfrac macros (see subsection 4.1 and subsection 4.3 for some exceptions).

There is \xintIrr to reduce to smallest terms (in an \xintexpr..\relax this would be the reduce

function).
Again, all computations done by \xinttheexpr..\relax are completely exact. Thus, very quickly

very big numbers are created (and computation times explode). To compute something like 1.23456⤸
789^10000 you will have to opt for the floating point version (the braces below are to limit the
scope of the assignment to \xintDigits):

{\xintDigits:=24; \xintthefloatexpr 1.23456789123456789^123456789\relax }

1.90696640042856610942910e11298145 (<- notice the size of the power of ten: this surely largely

exceeds your pocket calculator abilities).
It is also possible to do some (expandable...) computer algebra like evaluations (only numeri-

cally though):
\xinttheiiexpr add(i^5, i=100..200)\relax\par

\noindent\xinttheexpr add(x/(x+1), x = 1000..[3]..1020)\relax

10665624997500

7496590517023721933464/1072002928929935562560

The latter fraction is not in reduced terms, but it would be if we had used the reduce function

inside the expression.

5

1 Read this first

Make sure to read subsection 3.4, subsection 11.2 and section 11.

1.3 Changes
The initial xint (2013/03/28) was followed by xintfrac (2013/04/14) which handled exactly frac-

tions and decimal numbers. Later came xintexpr (2013/05/25) and at the same time xintfrac got

extended to handle floating point numbers. Later, xinttools was detached (2013/11/22). The main

focus of development during late 2013 and early 2014 was kept on xintexpr. One year later it got

a significant upgrade with 1.1 of 2014/10/28. The core integer routines remained essentially un-

modified during all this time (apart from a slight improvement of division early 2014) until their

complete rewrite with release 1.2 from 2015/10/10.

1.2 (2015/10/10): complete rewrite of the core arithmetic routines. The efficiency for numbers
with less than 20 or 30 digits is slightly compromised (for addition/subtraction) but it is

increased for bigger numbers. For multiplication and division the gains are there for almost

all sizes, and become quite noticeable for numbers with hundreds of digits. The allowable

inputs are constrained to have less than about 19950 digits (19968 for addition, 19959 for

multiplication).

1.1 (2014/10/28): many extensions to package xintexpr, such as the evaluation of expressions with
dummy variables, possibly iteratively, with allowed nesting. See subsection 11.2 for a de-

scription of these new functionalities. Also worthy of attention:

1. \xintiiexpr...\relax associates / with the rounded division (the // operator being pro-
vided for the truncated division) to be in synchrony with the habits of \numexpr,

2. the xintfrac macro \xintAdd (corresponding to + in expressions) does not anymore blindly

multiply denominators but first checks if one is a multiple of the other. However doing

systematic reduction to smallest terms, or systematically computing the LCM of the denom-

inators would be too costly (I think).

xint does not load xinttools anymore (only xintexpr does) and the core arithmetic macros are

moved to a new package xintcore (loaded automatically by xint, itself loaded by xintfrac,

itself loaded by xintexpr).

Package bnumexpr (which is LATEX only) now also loads only xintcore.

There is a file CHANGES.html (also CHANGES.pdf) which provides the detailed cumulative change

log since the initial release. To access it, issue on the command line texdoc --list xint (this

works TeXLive and there is probably an equivalent in MikTeX).

It is also available on CTAN via this link. Or, running etex xint.dtx in a working repertory will

extract a CHANGES.md file with Markdown syntax.

1.4 Installation instructions
xint is made available under the LaTeX Project Public License 1.3c. It is included in the major TEX

distributions, thus there is probably no need for a custom install: just use the package manager

to update if necessary xint to the latest version available.

After installation, issuing in terminal texdoc --list xint, on installations with a "texdoc" or

similar utility, will offer the choice to display one of the documentation files: xint.pdf (this

file), sourcexint.pdf (source code), README, README.pdf, README.html, CHANGES.pdf, and CHANGES.⤸
html.

For manual installation, follow the instructions from the README file which is to be found on

CTAN; it is also available there in PDF and HTML formats. The simplest method proposed is to use

the archive file xint.tds.zip, downloadable from the same location.

The next simplest one is to make use of the Makefile, which is also downloadable from CTAN. This

is for GNU/Linux systems and Mac OS X, and necessitates use of the command line. If for some reason

6

http://www.ctan.org/pkg/bnumexpr
http://ctan.org
http://mirrors.ctan.org/macros/generic/xint/CHANGES.html
http://www.latex-project.org/lppl/lppl-1-3c.txt
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://mirror.ctan.org/macros/generic/xint

2 Introduction via examples

you have xint.dtx but no internet access, you can recreate Makefile as a file with this name and

the following contents:
include Makefile.mk

Makefile.mk: xint.dtx ; etex xint.dtx

Then run make in a working repertory where there is xint.dtx and the file named Makefile and

having only the two lines above. The make will extract the package files from xint.dtx and display

some further instructions.

If you have xint.dtx, no internet access and can not use the Makefile method: etex xint.dtx

extracts all files and among them the README as a file with name README.md. Further help and options

will be found therein.

2 Introduction via examples
The main goal is to allow expandable computations with integers and fractions of arbitrary sizes.

2.1 Printing big numbers on the page
When producing very long numbers there is the question of printing them on the page, without going

beyond the page limits. In this document, I have most of the time made use of these macros (not

provided by the package:)
\def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax

\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }%

% \printnumber thus first ``fully'' expands its argument.

It may be used like this:

\printnumber {\xintiiQuo{\xintiiPow {2}{1000}}{\xintiFac{100}}}

or as \printnumber\mybiginteger or \printnumber{\mybiginteger} if \mybiginteger was previously

defined via a \newcommand, a \def or an \edef.

An alternative is to suitably configure the thousand separator with the numprint package (see

footnote 5. This will not allow linebreaks when used in math mode; I also tried siunitx but even in

text mode could not get it to break numbers accross lines). Recently I became aware of the seqsplit

package2 which can be used to achieve this splitting accross lines, and does work in inline math

mode (however it doesn't allow to separate digits by groups of three, for example).

2.2 Randomly chosen examples
Here are some examples of use of the package macros. The first one uses only the base module xint,

the next two require the xintfrac package, which deals with fractions. Then two examples with the

xintgcd package, one with the xintseries package, and finally a computation with a float. Some

inputs are simplified by the use of the xintexpr package.

• 12345699:

\xintiiPow {123456}{99}: 114738181166266556633273330008454586747025480423426102975889545⤸
4373590894697032027622647054266320583469027086822116813341525003240387627761689532221176⤸
3429587203376221608860691585075716801971671071208769703353650737748777873778498781606749⤸
9997983665812517232752154970541659566738491153332674854107560766971890623518995832377826⤸
3699981109532393993235189992220564587812701495877679143167735437253858445948715594121519⤸
7416398666125896983737258716757394949435520170950261865801665199030718414432231169678376⤸
96

• 1234/56789 with 1500 digits after the decimal point:

\xintTrunc {1500}{1234/56789}\dots: 0.02172956030217119512581661941573191991406786525559⤸

2 http://ctan.org/pkg/seqsplit

7

http://ctan.org/pkg/numprint
http://ctan.org/pkg/siunitx
http://ctan.org/pkg/seqsplit
http://ctan.org/pkg/seqsplit

2 Introduction via examples

5273732589057740055292398175703041081899663667259504481501699272746482593460001056542640⤸
3000581098452165031960414869076757822817799221680254978957192414023842645582771311345507⤸
0524221240028878832168201588335769251087358467308809804715701984539259363609149659264998⤸
5032312595749176777192766204722745602141259751008117769286305446477310746799556252091073⤸
9755938650090686576625754987761714416524326894292908837979186109986088855236049234887037⤸
9827079187870890489355332898976914543309443730299882019405166493511067284157143108700628⤸
6428709785345753579038194016446847100670904576590536899751712479529486344186374121748930⤸
2505766961911637817182905140079945059782704396978288048741833805842680800859321347444047⤸
2626741094225994470760182429695891810033633274049551849830072725351740653999894345735969⤸
9941890154783496803958513092324217718220077831974502104280758597615735441722868865449294⤸
7577875997112116783179841166423074891264153269119019528429801546074063639085034073500149⤸
6768740425082322280723379527725439785874024899188223071369455352268925320044374790892602⤸
4406134990931342337424501223828558347567310570709116202081389001391114476395076511296201⤸
7292081212910951064466710102308545669055626970011798059483350648893271584285689129937135⤸
7129021465424642096180598355315289932909542340946310024828752047051365581362587825106974⤸
9423303808836218281709485992005494021729560302171195125816619415731919914067865255595273⤸
732589057740055292398175703041081899663667...

• 0.99-100 with 200 (+1) digits after the decimal point.

\xinttheiexpr [201] .99^-100\relax: 2.73199902642902600384667172125783743550535164293857⤸
2070833430572508246455518705343044814301378480614036805562476501925307034269685489153194⤸
616612271015920671913840348851485747943086470963920731779793038

Notice that this is rounded, hence we asked \xinttheiexpr for one additional digit. To get a

truncated result with 200 digits after the decimal mark, we should have issued \xinttheexpr ⤸
trunc(.99^-100,200)\relax, rather.

The fraction 0.99^-100's denominator is first evaluated exactly (i.e. the integer 99^100
is evaluated exactly and then used to divide the suitable power of ten to get the re-

quested digits); for some longer inputs, such as for example 0.7123045678952^-243, the

exact evaluation before truncation would be costly, and it is more efficient to use float-

ing point numbers:

\xintDigits:=20; \np{\xintthefloatexpr .7123045678952^-243\relax}

6.342,022,117,488,416,127,3 × 1035
Side note: the exponent -243 didn't have to be put inside parentheses, contrarily to what

happens with some professional computational software. ;-)

• 200!:

\xinttheiiexpr 200!\relax: 7886578673647905035523632139321850622951359776871732632947425⤸
3324435944996340334292030428401198462390417721213891963883025764279024263710506192662495⤸
2829931113462857270763317237396988943922445621451664240254033291864131227428294853277524⤸
2424075739032403212574055795686602260319041703240623517008587961789222227896237038973747⤸
2000

• 2000! as a float. As xintexpr does not handle exp/log so far, the computation is done inter-

nally without the Stirling formula, by repeated multiplications truncated suitably:

\xintDigits:=50;

\xintthefloatexpr 2000!\relax: 3.3162750924506332411753933805763240382811172081058e5735

• Just to show off (again), let's print 300 digits (after the decimal point) of the decimal
expansion of 0.7-25:3

% % in the preamble:

3 the \np typesetting macro is from the numprint package.

8

2 Introduction via examples

% \usepackage[english]{babel}

% \usepackage[autolanguage,np]{numprint}

% \npthousandsep{,\hskip 1pt plus .5pt minus .5pt}

% \usepackage{xintexpr}

% in the body:

\np {\xinttheexpr trunc(.7^-25,300)\relax}\dots

7,456.739,985,837,358,837,609,119,727,341,853,488,853,339,101,579,533,584,812,792,108,

394,305,337,246,328,231,852,818,407,506,767,353,741,490,769,900,570,763,145,015,081,436,

139,227,188,742,972,826,645,967,904,896,381,378,616,815,228,254,509,149,848,168,782,309,

405,985,245,368,923,678,816,256,779,083,136,938,645,362,240,130,036,489,416,562,067,450,

212,897,407,646,036,464,074,648,484,309,937,461,948,589...

This computation is with \xinttheexpr from package xintexpr, which allows to use standard

infix notations and function names to access the package macros, such as here trunc which

corresponds to the xintfrac macro \xintTrunc. Regarding this computation, please keep in mind

that \xinttheexpr computes exactly the result before truncating. As powers with fractions
lead quickly to very big ones, it is good to know that xintexpr also provides \xintthefloatexpr

which does computations with floating point numbers.

• Computation of a Bezout identity with 7^200-3^200 and 2^200-1: (with xintgcd)

\xintAssign \xintBezout {\xinttheiiexpr 7^200-3^200\relax}

{\xinttheiiexpr 2^200-1\relax}\to\A\B\U\V\D

$\U\times(7^{200}-3^{200})+\xintiOpp\V\times(2^{200}-1)=\D$

-220045702773594816771390169652074193009609478853×(7200 - 3200) + 1432589493627636931859130⤸
6832683204654744168633877140891583816724789919211328201191274624371580391777549768571912⤸
87693144240605066991456336143205677696774891×(2200 - 1) = 1803403947125

• The Euclide algorithm applied to 22,206,980,239,027,589,097 and 8,169,486,210,102,119,257:

(with xintgcd)4

\xintTypesetEuclideAlgorithm {22206980239027589097}{8169486210102119257}

22206980239027589097 = 2 × 8169486210102119257 + 5868007818823350583
8169486210102119257 = 1 × 5868007818823350583 + 2301478391278768674
5868007818823350583 = 2 × 2301478391278768674 + 1265051036265813235
2301478391278768674 = 1 × 1265051036265813235 + 1036427355012955439
1265051036265813235 = 1 × 1036427355012955439 + 228623681252857796
1036427355012955439 = 4 × 228623681252857796 + 121932630001524255
228623681252857796 = 1 × 121932630001524255 + 106691051251333541
121932630001524255 = 1 × 106691051251333541 + 15241578750190714
106691051251333541 = 6 × 15241578750190714 + 15241578750189257
15241578750190714 = 1 × 15241578750189257 + 1457
15241578750189257 = 10460932567048 × 1457 + 321

1457 = 4 × 321 + 173
321 = 1 × 173 + 148
173 = 1 × 148 + 25
148 = 5 × 25 + 23
25 = 1 × 23 + 2
23 = 11 × 2 + 1
2 = 2 × 1 + 0

•
∑500
n=1(4n

2 - 9)-2 with each term rounded to twelve digits, and the sum to nine digits:

\def\coeff #1{\xintiRound {12}{1/\xintiiSqr{\the\numexpr 4*#1*#1-9\relax }[0]}}

4 this example is computed tremendously faster than the other ones, but we had to limit the space taken by the output hence
picked up rather small big integers as input.

9

2 Introduction via examples

\xintRound {9}{\xintiSeries {1}{500}{\coeff}[-12]}

0.062366080

The complete series, extended to infinity, has value π2

144 -
1
162 = 0.062,366,079,945,836,595,

346,844,45... 5 I also used (this is a lengthier computation than the one above) xintseries
to evaluate the sum with 100,000 terms, obtaining 16 correct decimal digits for the complete
sum. The coefficient macro must be redefined to avoid a \numexpr overflow, as \numexpr inputs
must not exceed 231 - 1; my choice was:

\def\coeff #1%

{\xintiRound {22}{1/\xintiiSqr{\xintiiMul{\the\numexpr 2*#1-3\relax}

{\the\numexpr 2*#1+3\relax}}[0]}}

• Computation of 2999,999,999 with 24 significant figures:

\numprint{\xintFloatPow [24]{2}{999999999}}

2.306,488,000,584,534,696,558,06 × 10301,029,995
where the numprint package was used (footnote 5), directly in text mode (it can also naturally

be used from inside math mode). xint provides a simple-minded \xintFrac typesetting macro,6

which is math-mode only:

$\xintFrac{\xintFloatPow [24]{2}{999999999}}$

230648800058453469655806 · 10301029972
The exponent differs, but this is because \xintFrac does not use a decimal mark in the signif-

icand of the output. Admittedly most users will have the need of more powerful (and customiz-

able) number formatting macros than \xintFrac. 7 We have already mentioned \numprint which is

used above, there is also \num from package siunitx. The raw output from

\xintFloatPow [24]{2}{999999999}

is 2.30648800058453469655806e301029995.

• As an example of nesting package macros, let us consider the following code snippet within a
file with filename myfile.tex:

\newwrite\outstream

\immediate\openout\outstream \jobname-out\relax

\immediate\write\outstream {\xintiiQuo{\xintiiPow{2}{1000}}{\xintiFac{100}}}

% \immediate\closeout\outstream

The tex run creates a file myfile-out.tex, and then writes to it the quotient from the eu-

clidean division of 21000 by 100!. The number of digits is \xintLen{\xintiiQuo{\xintiiPow{2}⤸
{1000}}{\xintiFac{100}}} which expands (in two steps) and tells us that [21000/100!] has 144

digits. This is not so many, let us print them here: 114813249641507505482278393872551066259⤸
8055177841861728836634780658265418947047379704195357988766304843582650600615037495317077⤸
93118627774829601.

2.3 More examples, some quite elaborate, within this document
• The utilities provided by xinttools (section 7), some completely expandable, others not, are

of independent interest. Their use is illustrated through various examples: among those, it

is shown in subsection 7.30 how to implement in a completely expandable way the Quick Sort

algorithm and also how to illustrate it graphically. Other examples include some dynamically

constructed alignments with automatically computed prime number cells: one using a completely

expandable prime test and \xintApplyUnbraced (subsection 7.13), another one with \xintFor*
(subsection 7.23).

5 This number is typeset using the numprint package, with \npthousandsep {,\hskip 1pt plus .5pt minus .5pt}. But the break-
ing across lines works only in text mode. The number itself was (of course...) computed initially with xint, with 30 digits of π
as input. See how xint may compute π from scratch. 6 Plain TEX users of xint have \xintFwOver. 7 There should be a
\xintFloatFrac, but it is lacking.

10

http://www.ctan.org/pkg/numprint
http://www.ctan.org/pkg/siunitx
http://www.ctan.org/pkg/numprint

3 The xint bundle

• One has also a computation of primes within an \edef (subsection 7.15), with the help of

\xintiloop. Also with \xintiloop an automatically generated table of factorizations (sub-

section 7.17).

• The code for the title page fun with Fibonacci numbers is given in subsection 7.24 with \xint-

For* joining the game.

• The computations of π and log 2 (subsection 14.11) using xint and the computation of the con-
vergents of e with the further help of the xintcfrac package are among further examples.

• There is also an example of an interactive session, where results are output to the log or to

a file.

• The new functionalities of xintexpr are illustrated with various examples in subsection 11.2.

Almost all of the computational results interspersed throughout the documentation are not hard-

coded in the source file of this document but are obtained via the expansion of the package macros

during the TEX run.
8

3 The xint bundle

3.1 Characteristics

The main characteristics are:

1. exact algebra on arbitrarily big numbers, integers as well as fractions,

2. floating point variants with user-chosen precision,

3. implemented via macros compatible with expansion-only context,

4. and with a parser of infix operations implementing features such as dummy variables, and

coming in various incarnations depending on the kind of computation desired: purely on

integers, on integers and fractions, or on floating point numbers.

`Arbitrarily big' currently means with less than about 19950 digits: the maximal number ofChanged!→
digits for addition is at 19968 digits, and it is 19959 for multiplication.

Integers with only 10 digits and starting with a 3 already exceed the TEX bound; and TEX does not have

a native processing of floating point numbers (multiplication by a decimal number of a dimension

register is allowed --- this is used for example by the pgf basic math engine.)

TEX elementary operations on numbers are done via the non-expandable \advance, \multiply, and
\divide assignments. This was changed with ε-TEX's \numexpr which does expandable computations us-
ing standard infix notations with TEX integers. But ε-TEX did not modify the TEX bound on acceptable
integers, and did not add floating point support.

The bigintcalc package by Heiko Oberdiek provided expandable operations (using some of \numex⤸
pr possibilities, when available) on arbitrarily big integers, beyond the TEX bound. The present

package does this again, using more of \numexpr (xint requires the ε-TEX extensions) for higher
speed, and also on fractions, not only integers. Arbitrary precision floating points operations

are a derivative, and not the initial design goal.9, 10

8 The CPU of my computer hates me for all those re-compilations after changing a single letter in the LATEX source, which require
each time to do all the zillions of evaluations contained in this document. . . 9 currently (v1.08), the only non-elementary operation
implemented for floating point numbers is the square-root extraction; no signed infinities, signed zeroes, NaN’s, error traps. . . , have
been implemented, only the notion of ‘scientific notation with a given number of significant figures’. 10 multiplication of two
floats with P=\xinttheDigits digits is first done exactly then rounded to P digits, rather than using a specially tailored multiplication
for floating point numbers which would be more efficient (it is a waste to evaluate fully the multiplication result with 2P or 2P-1
digits.)

11

http://mirror.ctan.org/graphics/pgf/base
http://www.ctan.org/pkg/bigintcalc

3 The xint bundle

The LATEX3 project has implemented expandably floating-point computations with 16 significant

figures (l3fp), including special functions such as exp, log, sine and cosine.11

More directly related to the xint bundle, there is the promising new version of the l3bigint

package. It was still in development a.t.t.o.w (2015/10/09, no division yet) and is part of the ex-

perimental trunk of the LATEX3 Project. It is devoted to expandable computations on big integers with

an associated expression parser. Its author (Bruno Le Floch) succeeded brilliantly into imple-

menting expandably the Karatsuba multiplication algorithm and he achieves sub-quadratic growth
for the computation time. This shows up very clearly with numbers having more than one thousand
digits (up to the maximum which a.t.t.o.w was at 8192 digits).

I report here briefly on a quick comparison, although as l3bigint is work in progress, the re-

ported results could well have to be modified soon. The test was on a comparison of \bigint_eva⤸
l:n {#1*#2} from the l3bigint as available in September 2015, on one hand, and on the other hand

\xinttheiiexpr #1*#2\relax from xintexpr 1.2 (rather than directly \xintiiMul, to be fairer to

the parsing time induced by use of \bigint_eval:n) and the computations were done with #1=#2=9999⤸
888877999988877...repeated.... I observed:

• \xintiiexpr's multiplication appears slightly faster (about 1.5x or 2x to give an average

order of magnitude) up to about 900 digits,

• at 1000 digits, l3bigint runs between 15% and 20% faster,

• then its sub-quadratic growth shows up, and at 8000 digits I observed it to be about 7.6x

faster (I tried on two computers and on my laptop the ratio was more like 8.5x--9x). Its com-

putation time increased from 1000 digits to 8000 digits by a factor smaller than 30, whereas

for \xintiiexpr it was a factor only slightly inferior to 200 (225 on my laptop) ... Karatsuba

multiplication brilliantly pays off !

• One observes the transition at the powers of two for the l3bigint algorithm, for example I

observed l3bigint to be 3.5x--4x faster at 4000 digits but only 3x--3.5x faster at 5000 digits.

Once one accepts a small overhead, one can on the basis of the lengths decide for the best al-

gorithm to use, and it is tempting viewing the above to imagine that some mixed approach could

combine the best of both. But again all this is a bit premature as both packages may still evolve

further.

Anyhow, all this being said, even the superior multiplication implementation from l3bigint

takes of the order of seconds on my laptop for a single multiplication of two 5000-digits num-

bers. Hence it is not possible to do routinely such computations in a document. I have long been

thinking that without the expandability constraint much higher speeds could be achieved, but per-

haps I have not given enough thought to sustain that optimistic stance.12

I remain of the opinion that if one really wants to do computations with thousands of digits,
one should drop the expandability requirement. Indeed, as clearly demonstrated long ago by the

pi computing file by D. Roegel one can program TEX to compute with many digits at a much higher

speed than what xint achieves: but, direct access to memory storage in one form or another seems a

necessity for this kind of speed and one has to renounce at the complete expandability.13 14

3.2 Origins of the package
Package bigintcalc by Heiko Oberdiek already provides expandable arithmetic operations on ``big

integers'', exceeding the TEX limits (of 2
31 - 1), so why another15 one?

11 at the time of writing (2014/10/28) the l3fp (exactly represented) floating point numbers have their exponents limited to
±9999. 12 The apnum package implements non-expandably arbitrary precision arithmetic operations. 13 2015/09/15: as I said
the latest developments on the l3bigint side do not really modify this conclusion, because the computations remain extremely slow
compared to what one can do in other programming structures. Another remark one could do is that it would be tremendously
easier to enhance ε-TEX than it is to embark into writing hundreds of lines of sometimes very clever TEX macro programming.
14 The LuaTEX project possibly makes endeavours such as xint appear even more insane that they are, in truth. 15 this section
was written before the xintfrac package; the author is not aware of another package allowing expandable computations with
arbitrarily big fractions.

12

http://www.ctan.org/pkg/l3kernel
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://www.ctan.org/pkg/pi
http://www.ctan.org/pkg/l3kernel
http://www.ctan.org/pkg/apnum
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint

3 The xint bundle

I got started on this in early March 2013, via a thread on the c.t.tex usenet group, where Ulrich

D i e z used the previously cited package together with a macro (\ReverseOrder) which I had con-

tributed to another thread.16 What I had learned in this other thread thanks to interaction with

Ulrich D i e z and GL on expandable manipulations of tokens motivated me to try my hands at addition

and multiplication.

I wrote macros \bigMul and \bigAdd which I posted to the newsgroup; they appeared to work com-

paratively fast. These first versions did not use the ε-TEX \numexpr primitive, they worked one
digit at a time, having previously stored carry-arithmetic in 1200 macros.

I noticed that the bigintcalc package used \numexpr if available, but (as far as I could tell)

not to do computations many digits at a time. Using \numexpr for one digit at a time for \bigAdd and

\bigMul slowed them a tiny bit but avoided cluttering TEX memory with the 1200 macros storing pre-

computed digit arithmetic. I wondered if some speed could be gained by using \numexpr to do four

digits at a time for elementary multiplications (as the maximal admissible number for \numexpr has

ten digits).

The present package is the result of this initial questioning.

For the record, xint 1.2 also got its impulse from a fast ``reversing'' macro, which I wrote after

my interest got awakened again as a result of correspondance with Bruno Le Floch: this new reverse

uses a TEXnique which requires the tokens to be digits. I wrote a routine which works (expandably)
in quasi-linear time, but a less fancy O(N^2) variant which I developed concurrently proved to

be faster all the way up to perhaps 7000 digits, thus I dropped the quasi-linear one. The less

fancy variant has the advantage that xint can handle numbers with more than 19900 digits (but not

much more than 19950). This is with the current common values of the input save stack and maximal

expansion depth: 5000 and 10000 respectively.

3.3 Expansion matters
By convention in this manual f-expansion (``full expansion'' or ``full first expansion'') is the
process of expanding repeatedly the first token seen until hitting against something not further

expandable like an unexpandable TEX-primitive or an opening brace { or a character (inactive). For

those familiar with LATEX3 (which is not used by xint) this is what is called in its documentation

full expansion. Technically, macro arguments in xint which are submitted to such a f-expansion
are so via prefixing them with \romannumeral-`0. An explicit or implicit space token stops such

an expansion and is gobbled. Most of the package macros, and all those dealing with computations,

are expandable in the strong sense that they expand to their final result via this f-expansion.
Again copied from LATEX3 documentation conventions, this will be signaled in the description of the

macro by a star in the margin. All17 expandable macros of the xint packages completely expand in⋆
two steps.

Furthermore the macros dealing with computations, as well as many utilities from xinttools,

apply this process of f-expansion to their arguments. Again from LATEX3's conventions this will be
signaled by a margin annotation. Some additional parsing which is done by most macros of xint isf
indicated with a variant; and the extended fraction parsing done by most macros of xintfrac has its

Num
f

own symbol. When the argument has a priori to obey the TEX bound of 2147483647 it is systematically
Frac
f

fed to a \numexpr..\relax hence the expansion is then a complete one, signaled with an x in the
num
x
margin. This means not only complete expansion, but that infix algebra is allowed, also with count

registers, etc...

The \xintApplyInline and \xintFor* macros from xinttools apply a special iterated f-expansion,
which gobbles spaces, to all those items which are found unbraced from left to right in the list
argument; this is denoted specially as here in the margin. Some other macros such as \xintSum from*f
xintfrac first do an f-expansion, then treat each found (braced or not) item (skipping spaces
between such items) via the general fraction input parsing, this is signaled as here in the marginf→ *

Frac
f

where the signification of the * is thus a bit different from the previous case.

16 the \ReverseOrder could be avoided in that circumstance, but it does play a crucial rôle here. 17 except \xintloop, \xintiloop
and \xintXTrunc.

13

3 The xint bundle

A few macros from xinttools do not expand, or expand only once their argument. This is alson , resp. o
signaled in the margin with notations à la LATEX3.

As the computations are done by f-expandable macros which f-expand their argument they may be
chained up to arbitrary depths and still produce expandable macros.

Conversely, wherever the package expects on input a ``big'' integers, or a ``fraction'', f-
expansion of the argument must result in a complete expansion for this argument to be acceptable.18

The main exception is inside \xintexpr...\relax where everything will be expanded from left to

right, completely.

Summary of important expansion aspects:

1. the macros f-expand their arguments, this means that they expand the first token seen (for
each argument), then expand, etc..., until something un-expandable such as a digit or a brace

is hit against. This example

\def\x{98765}\def\y{43210} \xintAdd {\x}{\x\y}

is not a legal construct, as the \y will remain untouched by expansion and not get converted
into the digits which are expected by the sub-routines of \xintAdd. It is a \numexpr which will

expand it and an arithmetic overflow will arise as 9876543210 exceeds the TEX bounds.

With \xinttheexpr one could write \xinttheexpr \x+\x\y\relax, or \xintAdd\x{\xinttheexpr\x⤸
\y\relax}.

2. using \if...\fi constructs inside the package macro arguments requires suitably mastering
TEXniques (\expandafter's and/or swapping techniques) to ensure that the f-expansion will in-
deed absorb the \else or closing \fi, else some error will arise in further processing. There-

fore it is highly recommended to use the package provided conditionals such as \xintifEq,

\xintifGt, \xintifSgn, \xintifOdd..., or, for LATEX users and when dealing with short inte-

gers the etoolbox19 expandable conditionals (for small integers only) such as \ifnumequal,

\ifnumgreater, Use of non-expandable things such as \ifthenelse is impossible inside
the arguments of xint macros.

One can use naive \if..\fi things inside an \xinttheexpr-ession and cousins, as long as the
test is expandable, for example

\xinttheiexpr\ifnum3>2 143\else 33\fi 0^2\relax→2044900=1430^2

3. after the definition \def\x {12}, one can not use -\x as input to one of the package macros:

the f-expansion will act only on the minus sign, hence do nothing. The only way is to use
the \xintOpp macro, or perhaps here rather \xintiOpp which does maintains integer format on

output, as they replace a number with its opposite.

Again, this is otherwise inside an \xinttheexpr-ession or \xintthefloatexpr-ession. There,
the minus sign may prefix macros which will expand to numbers (or parentheses etc...)

4. With the definition

\def\AplusBC #1#2#3{\xintAdd {#1}{\xintMul {#2}{#3}}}

one obtains an expandable macro producing the expected result, not in two, but rather in three

steps: a first expansion is consumed by the macro expanding to its definition. As the pack-

age macros expand their arguments until no more is possible (regarding what comes first),

this \AplusBC may be used inside them: \xintAdd {\AplusBC {1}{2}{3}}{4} does work and re-

turns 11/1[0].

If, for some reason, it is important to create a macro expanding in two steps to its final

value, one may either do:

\def\AplusBC #1#2#3{\romannumeral-`0\xintAdd {#1}{\xintMul {#2}{#3}}}

or use the lowercase form of \xintAdd:

\def\AplusBC #1#2#3{\romannumeral0\xintadd {#1}{\xintMul {#2}{#3}}}

18 this is not quite as stringent as claimed here, see subsection 4.3 for more details. 19 http://www.ctan.org/pkg/etoolbox

14

http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox

3 The xint bundle

and then \AplusBC will share the same properties as do the other xint `primitive' macros.

The \romannumeral0 and \romannumeral-`0 things above look like an invitation to hacker's terri-

tory; if it is not important that the macro expands in two steps only, there is no reason to follow

these guidelines. Just chain arbitrarily the package macros, and the new ones will be completely

expandable and usable one within the other.

Since release 1.07 the \xintNewExpr command automatizes the creation of such expandable macros:

\xintNewExpr\AplusBC[3]{#1+#2*#3}

creates the \AplusBC macro doing the above and expanding in two expansion steps.

3.4 User interface
The user interface for executing operations on numbers is via macros such as \xintAdd or \xint-
Mul which have two arguments, or via expressions \xintexpr..\relax which use infix notations such
as +, -, *, / and ^ (or **) for the basic operations, and recognize functions of one or more comma
separated arguments (such as max, or round, or sqrt), parentheses, logic operators of conjunction
&&, disjunction ||, as well as two-way ? and three-way ?? conditionals and more. A few examples:

\begin{enumerate}[nosep]

\item \xintiiAdd {2719873981798137981381789317981279}{13819093809180120910390190}

\item \xintiiMul {2719873981798137981381789317981279}{13819093809180120910390190}

\item \xintthefloatexpr (19317/21913+2198/9291)^3\relax

\item \xintDigits:=64;\xintthefloatexpr (19317/21913+2198/9291)^3\relax

% Let's compute the inner sum exactly, not as a float, before raising to third power:

\item \xintDigits:=16;\xintthefloatexpr \xintexpr 19317/21913+2198/9291\relax^3\relax

\end{enumerate}

1. 2719873995617231790561910228371469

2. 37586193703616733443988913707927291415140138710427005253010

3. 1.397807064706433

4. 1.397807064706431686226674924718879749420796705201219736804802622

5. 1.397807064706432

In \xintexpr..\relax the contents are expanded completely from left to right until the ending \re⤸
lax is found and swallowed, and spaces and even (to some extent) catcodes do not matter. Algebraic

operations are done exactly.
The \xintfloatexpr variant is for operations which are done using the precision set via the \xi⤸

ntDigits:=N; assignment (default is with significands of 16 digits).

For all \xintexpr variants, prefixing with \xintthe allows to print the result or use it in other

contexts. Shortcuts \xinttheexpr, \xintthefloatexpr, \xinttheiiexpr, ... are available.

The \xintiiexpr variant is only for big integers, it does not know fractions.

There are some important differences of syntax between \numexpr and \xintiiexpr and variants:

• Contrarily to \numexpr, the \xintiiexpr parser will stop expanding only after having encoun-

tered (and swallowed) a mandatory \relax token.

• In particular, spaces between digits (and not only around infix operators or parentheses) do

not stop \xintiiexpr, contrarily to the situation with numexpr: \the\numexpr 7 + 3 5\rela⤸
x expands (in one step) to 105\relax, whereas \xintthe\xintiiexpr 7 + 3 5\relax expands (in

two steps) to 42.

• Also worth mentioning is the fact that \numexpr -(1)\relax is illegal. But this is perfectly

legal and with the expected result in \xintiiexpr...\relax.

• Inside an \edef, expressions \xintiiexpr...\relax get fully evaluated, but need the prefix \⤸
xintthe to get printed or used as arguments to some macros, whereas expansion of \numexpr in

an \edef occurs only if prefixed with \the or \number (or \romannumeral, or the expression is

included in a bigger \numexpr which will be the one to have to be prefixed....)

15

3 The xint bundle

For macros such as \xintAdd or \xintMul the arguments are each subjected to the process of f-
expansion: repeated expansion of the first token until finding something unexpandable (or being

stopped by a space token).

Conversely this process of f-expansion always provokes the complete expansion of the package
macros and \xintexpr..\relax also will expand completely under f-expansion, but to a private for-
mat; the \xintthe prefix allows the computation result either to be passed as argument to one of

the package macros,20 or also end up on the printed page (or in an auxiliary file). To recapitulate,

all macros dealing with computations

1. expand completely under the sole process of repeated expansion of the first token, (and two
expansions suffice),21

2. apply this f-expansion to each one of their arguments.

Hence they can be nested one within the other up to arbitrary depths. Conditional evaluations

either within the macro arguments themselves, or with branches defined in terms of these macros

are made possible via macros such as as \xintifSgn or \xintifCmp.

There is no notion of declaration of a variable to xint, xintfrac, or xintexpr. The user
employs the \def, \edef, or \newcommand (in LATEX) as usual, for example:+

{
\def\x{1729728} \def\y{352827927} \edef\z{\xintMul {\x}{\y}}

\meaning\z

macro:->610296344513856/1[0] (see below for the A/B[N] output format; with \xintiiMul in

place of \xintMul there would not be the strange looking /1[0].)

The package provides \oodef which only expands twice its argument. This provokes full expan-

sion of the xint macros (nested to possibly many levels), inclusive of \xintexpr and variants.

However, it is typically slower then \edef (and quite slower for small things) when the expan-

sion ends up consisting of less than about one thousand digits. The second utility next to

\oodef is \fdef which applies full expansion upfront and appears to be competitive with and

even faster than \edef already in the case of expansion leading to a few dozen digits.

The xintexpr package has a private internal representation for the evaluated computation re-
sult. With

\edef\z {\xintexpr 3.141^18\relax}

the macro \z is already fully evaluated (two expansions were applied, and this is enough), and can
be reused in other \xintexpr-essions, such as for example

\edef\zz {\xintexpr \z+1/\z\relax}

% (using short macro names such as \z and \zz is not too recommended in real

% life, some may have already definitions; I did it all in a group).

But to print it, or to use it as argument to one of the package macros, it must be prefixed by
\xintthe (a synonym for \xintthe\xintexpr is \xinttheexpr). Application of this \xintthe prefix
outputs the value in the xintfrac semi-private internal format A/B[N],22 representing the fraction
(A/B) × 10N. The \zz above produces a somewhat large output:

\printnumber{\xintthe\zz }${}\approx{}$\xintFloat{\xintthe\zz}

78423407835958320534582113715181150039833844535303341010893156395674340001462932099627152003⤸
2210036563468096257420564737421041/885569917262089026719462557819167846594840519610952207046⤸
879321[-54] ≈ 8.855699172620890e8

20 the \xintthe prefix f -expands the \xintexpr-ession then unlocks it from its private format; it should not be used for sub-ex-
pressions inside a bigger one as it is more efficient for the expression parser to keep the result in the private format. 21 see in
subsection 3.3 for more details. 22 there is also the notion of \xintfloatexpr, for which the output format after the action of
\xintthe is a number in floating point scientific notation.

16

3 The xint bundle

By default, computations done by the macros of xintfrac or within \xintexpr..\relax are ex-

act. Inputs containing decimal points or scientific parts do not make the package switch to a

`floating-point' mode. The inputs, however long, are converted into exact internal represen-

tations.
Manipulating exactly big fractions quickly leads to ...bigger fractions. There is a command

\xintIrr (or the function reduce in an expression) to reduce to smallest terms, but it has to
be explicitely requested. Prior to release 1.1 addition and subtraction blindly multiplied
denominators; they now check if one is a multiple of the other. But systematic reduction of+

{
the result to its smallest terms would be too costly.
\xinttheexpr 27/25+46/50\relax\ is a bit simpler than \xinttheexpr (27*50+25*46)/(25*50)\relax,

but less so than \xinttheexpr reduce(27/25+46/50)\relax. And \xinttheexpr 3/75+4/50+2/100\relax\

looks weird, but systematically reducing fractions would be too costly.

100/50 is a bit simpler than 2500/1250, but less so than 2. And 52500/375000 looks weird, but

systematically reducing fractions would be too costly.

The A/B[N] shape is the output format of most xintfrac macros, it benefits from accelerated

parsing when used on input, compared to the normal user syntax which has no [N] part. An example

of valid user input for a fraction is

-123.45602e78/+765.987e-123

where both the decimal parts, the scientific exponent parts, and the whole denominator are op-

tional components. The corresponding semi-private form in this case would be

-12345602/765987[199]

The forward slash / is simply a delimiter to separate numerator and denominator, in order to allow

inputs having such denominators.

Reduction to the irreducible form of the output must be asked for explicitely via the \xintIrr

macro or the reduce function within \xintexpr..\relax. Elementary operations on fractions do very

little of the simplifications which could be obvious to (some) human beings.

3.5 Floating point macros
Floating point macros are provided to work with a given arbitrary precision. The default size for

significands is 16 digits. Working with significands of 24, 32, 48, 64, or even 80 digits is well

within the reach of the package. But routine multiplications and divisions will become too slow

if the precision goes into the hundreds, although the syntax to set it (\xintDigits:=P;) allows

values up to 32767.23 The exponents may be as big as ±2147483647.24

Currently, the only transcendental operation is the square root (\xintFloatSqrt). The

elementary functions are not yet implemented. The power function (\xintFloatPow, \xint-

FloatPower) accept only (positive or negative) integer exponents.

Floating point multiplication of two numbers with P digits of precision evaluates exactly
the exact product with 2P or 2P-1 digits, before rounding to P digits: obviously this is very

wasteful when P is large. But xint is initially an exact algebraic operator, not a floating

point one with a fixed maximal size for operands, and the author hasn't yet had the opportunity

to re-examine that point.

Here is such a floating point computation:

\xintFloatPower [48] {1.1547}{\xintiiPow {2}{35}}

23 for a one-shot conversion of a fraction to float format, or one addition, a precision exceeding 32767 may be passed as optional
argument to the used macro. 24 almost. . . as inner manipulations may either add or subtract the precision value to the exponent,
arithmetic overflow may occur if the exponents are a bit too close to the TEX bound ±2147483647.

17

4 User interface

which thus computes (1.1547)2
35
= (1.1547)34359738368 to be approximately

2.785,837,382,571,371,438,495,789,880,733,698,213,205,183,990,48 × 102,146,424,193
Notice that 235 exceeds TEX's bound, but \xintFloatPower allows it, what counts is the exponent of

the result which, while dangerously close to 231 is not quite there yet. The printing of the result

was done via the \numprint command from the numprint package25.

The same computation can be done via the non-expandable assignment \xintDigits:=48; and then

\xintthefloatexpr 1.1547^(2^35)\relax

Notice though that 2^35 will be evaluated as a floating point number, and if the floating point

precision had been too low, this computation would have given an inexact value. It is safer, and

also more efficient to code this as:

\xintthefloatexpr 1.1547^\xintiiexpr 2^35\relax\relax

The \xintiiexpr is a cousin of \xintexpr which is big integer-only and skips the overhead of frac-

tion management. Notice on this example that being embedded inside the floatexpr-ession has nil

influence on the iiexpr-ession: expansion proceeds in exactly the same way as if it had been at the

`top' level.

xintexpr provides no implementation of the IEEE standard: no NaNs, signed infinities, signed
zeroes, error traps, ...; what is achieved though is exact rounding for the basic operations. The

only non-algebraic operation currently implemented is square root extraction. The power functions

(there are three of them: \xintPow to which ^ is mapped in \xintexpr..\relax, \xintFloatPower for

^ in \xintfloatexpr..\relax, and \xintFloatPow which is slighty faster but limits the exponent to

the TEX bound) allow only integral exponents.

4 User interface

Input formats . 4.1, p. 19
Output formats . 4.2, p. 21
Use of count registers . 4.3, p. 22
Dimensions . 4.4, p. 23
\ifcase, \ifnum, ... constructs . 4.5, p. 24
Expandable implementations of mathematical algorithms . 4.6, p. 25
Possible syntax errors to avoid . 4.7, p. 25
Error messages . 4.8, p. 26
Package namespace, catcodes . 4.9, p. 27

This section will explain the various inputs which are recognized by the package macros and the

format for their outputs. Inputs have mainly five possible shapes:

1. expressions which will end up inside a \numexpr..\relax,

2. long integers in the strict format (no +, no leading zeroes, a count register or variable must

be prefixed by \the or \number)

3. long integers in the general format allowing both - and + signs, then leading zeroes, and a

count register or variable without prefix is allowed,

4. fractions with numerators and denominators as in the previous item, or also decimal numbers,

possibly in scientific notation (with a lowercase e), and also optionally the semi-private

A/B[N] format,

5. and finally expandable material understood by the \xintexpr parser.

Outputs are mostly of the following types:

25 http://ctan.org/pkg/numprint

18

http://ctan.org/pkg/numprint
http://ctan.org/pkg/numprint

4 User interface

1. long integers in the strict format,

2. fractions in the A/B[N] format where A and B are both strict long integers, and B is positive,

3. numbers in scientific format (with a lowercase e),

4. the private \xintexpr format which needs the \xintthe prefix in order to end up on the printed

page (or get expanded in the log) or be used as argument to the package macros.

4.1 Input formats
Some macro arguments are by nature `short' integers, i.e. less than (or equal to) in absolute value

num
x
2,147,483,647. This is generally the case for arguments which serve to count or index something.

They will be embedded in a \numexpr..\relax hence on input one may even use count registers or

variables and expressions with infix operators. Notice though that -(..stuff..) is surprisingly

not legal in the \numexpr syntax!

But xint is mainly devoted to big numbers; the allowed input formats for `long numbers' and

`fractions' are:

1. the strict format is for some macros of xint which only f-expand their arguments. After thisf
f-expansion the input should be a string of digits, optionally preceded by a unique minus
sign. The first digit can be zero only if the number is zero. A plus sign is not accepted. -0 is

not legal in the strict format. A count register can serve as argument of such a macro only if

prefixed by \the or \number. Macros of xint such as \xintiiAdd with a double ii require this

`strict' format for the inputs. The macros such as \xintiAdd with a single i will apply the

\xintNum normalizer described in the next item.

2. the macro \xintNum normalizes into strict format an input having arbitrarily many minus and

plus signs, followed by a string of zeroes, then digits:

\xintNum {+-+-+----++-++----00000000009876543210}=-9876543210

The extended integer format is thus for the arithmetic macros of xint which automatically
Num
f

parse their arguments via this \xintNum.26

3. the fraction format is what is expected on input by the macros of xintfrac. It has two variants:
Frac
f

general: these are inputs of the shape A.BeC/D.EeF. Example:
\noindent\xintRaw{+--0367.8920280e17/-++278.289287e-15}\newline

\xintRaw{+--+1253.2782e++--3/---0087.123e---5}\par

-3678920280/278289287[31]

-12532782/87123[7]

Notice that the input process does not reduce fractions to smallest terms. Here are the

rules of the format:27

• everything is optional, absent numbers are treated as zero, here are some extreme cases:

\xintRaw{}, \xintRaw{.}, \xintRaw{./1.e}, \xintRaw{-.e}, \xintRaw{e/-1}

0/1[0], 0/1[0], 0/1[0], 0/1[0], 0/1[0]

• AB and DE may start with pluses and minuses, then leading zeroes, then digits.

• C and F will be given to \numexpr and can be anything recognized as such and not provok-

ing arithmetic overflow (the lengths of B and E will also intervene to build the final

exponent naturally which must obey the TEX bound).

• the /, . (numerator and/or denominator) and e (numerator and/or denominator) are all

optional components.

26 A LATEX \value {countername} is accepted as macro argument. 27 Earlier releases were slightly more strict, the optional
decimal parts B, E were not individually f -expanded.

19

4 User interface

• each of A, B, C, D, E and F may arise from f-expansion of a macro.

• the whole thing may arise from f-expansion, however the /, ., and e should all come from
this initial expansion. The e of scientific notation is mandatorily lowercased.

restricted: these are inputs either of the shape A[N] or A/B[N] (representing the fraction A/⤸
B times 10^N) where the whole thing or each of A, B, N (but then not / or [) may arise from

f-expansion, A (after expansion) must have a unique optional minus sign and no leading
zeroes, B (after expansion) if present must be a positive integer with no signs and no
leading zeroes, N (which may be empty) will be given to \numexpr. This format is parsed

with smaller overhead than the general one, thus allowing more efficient nesting of macros

as it is the one used on output (except for the floating macros). Any deviation from the

rules above will result in errors.28

Examples of inputs and outputs:

\xintAdd{+--0367.8920280/-++278.289287}{-109.2882/+270.12898}\newline

\xintAdd{10.1e1}{101.010e3}\newline

\xintFloatAdd{10.1e1}{101.010e3}\newline

\xintiiPow {2}{100}\newline

\xintPow {2}{100}\newline

\xintFloatPow {2}{100}\par

-129792033529284840/7517400124223726[-1]

101111/1[0]

1.011110000000000e5

1267650600228229401496703205376

1267650600228229401496703205376/1[0]

1.267650600228229e30

Produced fractions having a denominator equal to one are, as a general rule, nevertheless

printed as fractions. In math mode \xintFrac will remove such dummy denominators, and in in-

line text mode one has \xintPRaw with the similar effect.

\xintPRaw{\xintAdd{10.1e1}{101.010e3}}=101111

\xintRaw{1.234e5/6.789e3}=1234/6789[2]

4. the expression format is for inclusion in an \xintexpr...\relax, it uses infix notations,

function names, complete expansion, recognizes decimal and scientific numbers, and is de-

scribed in subsection 11.2 and section 11.29

Even with xintfrac loaded, some macros by their nature cannot accept fractions on input. Those

parsing their inputs through \xintNum will now accept fractions, truncating them first to inte-

gers.

Generally speaking, there should be no spaces among the digits in the inputs (in arguments to

the package macros). Although most would be harmless in most macros, there are some cases where

spaces could break havoc.30 So the best is to avoid them entirely.

28 With earlier releases the N could not be empty and had to be given as explicit digits, not some macro or expression expanded
in \numexpr. 29 The isolated dot "." is not legal anymore in expressions with release 1.2: there must be digits either before orChanged! →
after. 30 The \xintNum macro does not remove spaces between digits beyond the first non zero ones; however this should not
really alter the subsequent functioning of the arithmetic macros, and besides, since xintcore v1.2 there is an initial parsing of the
entire number, during which spaces will be gobbled. However I have not done a complete review of the legacy code to be certain of
all possibilities after v1.2 release. One thing to be aware of is that \numexpr stops on spaces between digits (although it provokes
an expansion to see if an infix operator follows); the exponent for \xintiiPow or the argument of the factorial \xintiFac are only
subjected to such a \numexpr (there are a few other macros with such input types in xint). If the input is given as, say 1 2\x
where \x is a macro, the macro \x will not be expanded by the \numexpr, and this will surely cause problems afterwards. Perhaps
a later xint will force \numexpr to expand beyond spaces, but I decided that was not really worth the effort. Another immediate
cause of problems is an input of the type \xintiiAdd {<space>\x }{\y }, because the space will stop the initial expansion; this
will most certainly cause an arithmetic overflow later when the \x will be expanded in a \numexpr. Thus in conclusion, damages
due to spaces are unlikely if only explicit digits are involved in the inputs, or arguments are single macros with no preceding space.

20

4 User interface

This is entirely otherwise inside an \xintexpr-ession, where spaces are ignored (except when

they occur inside arguments to some macros, thus escaping the \xintexpr parser). See the documen-

tation.

Arithmetic macros of xint which parse their arguments automatically through \xintNum are sig-

naled by a special symbol in the margin. This symbol also means that these arguments may contain
Num
f
to some extent infix algebra with count registers, see the section Use of count registers.

With xintfrac loaded the symbol
Num
f means that a fraction is accepted if it is a whole number

in disguise; and for macros accepting the full fraction format with no restriction there is the

corresponding symbol in the margin.
Frac
f

4.2 Output formats
Package xintcore provides macros \xintiiAdd, \xintiiSub, \xintiiMul, \xintiiPow, which only f-
expand their arguments and \xintiAdd, \xintiSub, \xintiMul, \xintiPow which normalize them first

to strict format, thus have a bit of overhead. These macros always produce integers on output.

With xintfrac loaded \xintiiAdd, \xintiiSub, \xintiiMul, ... are not modified, and \xintiAdd,

\xintiSub, \xintiMul, ... are only extended to the extent of accepting fraction inputs but they

will be truncated to integers.31 The output will be an integer.

The fraction handling macros from xintfrac are called \xintAdd, \xintSub, \xintMul, etc...

they are not defined in the absence of xintfrac.Changed!→
They produce on output a fractional number f=A/B[n] (which stands for (A/B)×10^n) where A

and B are integers, with B positive, and n is a ``short'' integer (i.e less in absolute value
than 2147483647.)

The output fraction is not reduced to smallest terms. The A and B may end in zeroes (i.e, n
does not represent all powers of ten). The denominator B is always strictly positive. There is

no + sign on output but only possibly a - at the numerator. The output will be expressed as a

fraction even if the inputs are both integers.

• A macro \xintFrac is provided for the typesetting (math-mode only) of such a `raw' output. The

command \xintFrac is not accepted as input to the package macros, it is for typesetting only

(in math mode).

• \xintRaw prints the fraction directly as its internal representation A/B[n].

$\xintRaw{273.3734e5/3395.7200e-2}=\xintFrac {273.3734e5/3395.7200e-2}$

2733734/33957200[7] = 27337343395720010
7

• \xintPRaw does the same but without printing the [n] if n=0 and without printing /1 if B=1.

• \xintIrr reduces the fraction to its irreducible form C/D (without a trailing [0]), and it
prints the D even if D=1.

$\xintIrr{273.3734e5/3395.7200e-2}$

2971450000/3691

• \xintNum from package xint becomes when xintfrac is loaded a synonym to its macro \xintTTrunc

(same as \xintiTrunc{0}) which truncates to the nearest integer.

• See also the documentations of \xintTrunc, \xintiTrunc, \xintXTrunc, \xintRound, \xintiRound

and \xintFloat.

31 the power function does not accept a fractional exponent. Or rather, does not expect, and errors will result if one is provided.

21

4 User interface

• The \xintiAdd, \xintiSub, \xintiMul, \xintiPow macros and some others accept fractions on

input which they truncate via \xintTTrunc. On output they still produce an integer with no

fraction slash nor trailing [n].

• The \xintiiAdd, \xintiiSub, \xintiiMul, \xintiiPow, and others with `ii' in their names ac-

cept on input only integers in the strict format. They skip the overhead of the \xintNum pars-

ing and naturally they output integers, with no fraction slash nor trailing [n].

Some macros return a token list of two or more numbers or fractions; they are then each enclosed

in braces. Examples are \xintiiDivision which gives first the quotient and then the remainder

of euclidean division, \xintBezout from the xintgcd package which outputs five numbers, \xint-

FtoCv from the xintcfrac package which returns the list of the convergents of a fraction, ...

subsection 5.1 and subsection 5.2 mention utilities, expandable or not, to cope with such outputs.

Another type of multiple number output is when using commas inside \xintexpr..\relax:

\xinttheiexpr 10!,2^20,lcm(1000,725)\relax→3628800, 1048576, 29000
This returns a comma separated list, with a space after each comma.

4.3 Use of count registers
Inside \xintexpr..\relax and its variants, a count register or count control sequence is auto-

matically unpacked using \number, with tacit multiplication: 1.23\counta is like 1.23*\number\c⤸
ounta. There is a subtle difference between count registers and count variables. In 1.23*\counta
the unpacked \counta variable defines a complete operand thus 1.23*\counta 7 is a syntax error.

But 1.23*\count0 just replaces \count0 by \number\count0 hence 1.23*\count0 7 is like 1.23*57 if

\count0 contains the integer value 5.

Regarding now the package macros, there is first the case of arguments having to be short inte-

gers: this means that they are fed to a \numexpr...\relax, hence submitted to a complete expansion
which must deliver an integer, and count registers and even algebraic expressions with them like

\mycountA+\mycountB*17-\mycountC/12+\mycountD are admissible arguments (the slash stands here

for the rounded integer division done by \numexpr). This applies in particular to the number of

digits to truncate or round with, to the indices of a series partial sum, ...

The macros allowing the extended format for long numbers or dealing with fractions will to some
extent allow the direct use of count registers and even infix algebra inside their arguments: a
count register \mycountA or \count 255 is admissible as numerator or also as denominator, with no

need to be prefixed by \the or \number. It is possible to have as argument an algebraic expression

as would be acceptable by a \numexpr...\relax, under this condition: each of the numerator and
denominator is expressed with at most eight tokens.32 The slash for rounded division in a \num⤸
expr should be written with braces {/} to not be confused with the xintfrac delimiter between

numerator and denominator (braces will be removed internally). Example: \mycountA+\mycountB{/}1⤸
7/1+\mycountA*\mycountB, or \count 0+\count 2{/}17/1+\count 0*\count 2, but in the latter case

the numerator has the maximal allowed number of tokens (the braced slash counts for only one).

\cnta 10 \cntb 35 \xintRaw {\cnta+\cntb{/}17/1+\cnta*\cntb}->12/351[0]

For longer algebraic expressions using count registers, there are two possibilities:

1. encompass each of the numerator and denominator in \the\numexpr...\relax,

2. encompass each of the numerator and denominator in \numexpr {...}\relax.

\cnta 100 \cntb 10 \cntc 1

\xintPRaw {\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc+

2*\cnta*\cntb+2*\cnta*\cntc+2*\cntb*\cntc}\relax/%

\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc}\relax }

32 Attention! there is no problem with a LATEX \value{countername} if if comes first, but if it comes later in the input it will not
get expanded, and braces around the name will be removed and chaos will ensue inside a \numexpr. One should enclose the whole+

{
input in \the\numexpr...\relax in such cases.

22

4 User interface

12321/10101

The braces would not be accepted as regular \numexpr-syntax: and indeed, they are removed at some

point in the processing.

4.4 Dimensions
⟨dimen⟩ variables can be converted into (short) integers suitable for the xint macros by prefixing
them with \number. This transforms a dimension into an explicit short integer which is its value

in terms of the sp unit (1/65536 pt). When \number is applied to a ⟨glue⟩ variable, the stretch and
shrink components are lost.

For LATEX users: a length is a ⟨glue⟩ variable, prefixing a length command defined by \newlength
with \number will thus discard the plus and minus glue components and return the dimension compo-

nent as described above, and usable in the xint bundle macros.

This conversion is done automatically inside an \xintexpr-essions, with tacit multiplication

implied if prefixed by some (integral or decimal) number.

One may thus compute areas or volumes with no limitations, in units of sp^2 respectively sp^3, do

arithmetic with them, compare them, etc..., and possibly express some final result back in another

unit, with the suitable conversion factor and a rounding to a given number of decimal places.

A table of dimensions illustrates that the internal values used by TEX do not correspond al-

ways to the closest rounding. For example a millimeter exact value in terms of sp units is

72.27/10/2.54*65536=186467.981... and TEX uses internally 186467sp (it thus appears that TEX trun-

cates to get an integral multiple of the sp unit).

Unit definition Exact value in sp units
TEX’s value
in sp units Relative error

cm 0.01 m 236814336/127 = 1864679.811... 1864679 -0.0000%
mm 0.001 m 118407168/635 = 186467.981... 186467 -0.0005%
in 2.54 cm 118407168/25 = 4736286.720... 4736286 -0.0000%
pc 12 pt 786432 = 786432.000... 786432 0%
pt 1/72.27 in 65536 = 65536.000... 65536 0%
bp 1/72 in 1644544/25 = 65781.760... 65781 -0.0012%

3bp 1/24 in 4933632/25 = 197345.280... 197345 -0.0001%
12bp 1/6 in 19734528/25 = 789381.120... 789381 -0.0000%
72bp 1 in 118407168/25 = 4736286.720... 4736286 -0.0000%

dd 1238/1157 pt 81133568/1157 = 70124.086... 70124 -0.0001%
11dd 11*1238/1157 pt 892469248/1157 = 771364.950... 771364 -0.0001%
12dd 12*1238/1157 pt 973602816/1157 = 841489.037... 841489 -0.0000%

sp 1/65536 pt 1 = 1.000... 1 0%
TEX dimensions

There is something quite amusing with the Didot point. According to the TEXBook, 1157 dd=1238 p⤸
t. The actual internal value of 1 dd in TEX is 70124 sp. We can use xintcfrac to display the list of

centered convergents of the fraction 70124/65536:

\xintListWithSep{, }{\xintFtoCCv{70124/65536}}

1/1, 15/14, 61/57, 107/100, 1452/1357, 17531/16384, and we don't find 1238/1157 therein, but an-

other approximant 1452/1357!

And indeed multiplying 70124/65536 by 1157, and respectively 1357, we find the approximations

(wait for more, later):

``1157 dd''=1237.998474121093...pt

``1357 dd''=1451.999938964843...pt

and we seemingly discover that 1357 dd=1452 pt is far more accurate than the TEXBook formula 1157 d⤸
d=1238 pt ! The formula to compute N dd was

\xinttheexpr trunc(N\dimexpr 1dd\relax/\dimexpr 1pt\relax,12)\relax}

23

4 User interface

What's the catch? The catch is that TEX does not compute 1157 dd like we just did:
1157 dd=\number\dimexpr 1157dd\relax/65536=1238.000000000000...pt

1357 dd=\number\dimexpr 1357dd\relax/65536=1452.001724243164...pt

We thus discover that TEX (or rather here, e-TEX, but one can check that this works the same in

TEX82), uses indeed 1238/1157 as a conversion factor, and necessarily intermediate computations

are done with more precision than is possible with only integers less than 231 (or 230 for dimen-

sions). Hence the 1452/1357 ratio is irrelevant, a misleading artefact of the necessary rounding

(or, as we see, truncating) for one dd as an integral number of sp's.

Let us now use \xintexpr to compute the value of the Didot point in millimeters, if the above

rule is exactly verified:

\xinttheexpr trunc(1238/1157*25.4/72.27,12)\relax=0.376065027442...mm

This fits very well with the possible values of the Didot point as listed in the Wikipedia Article.

The value 0.376065 mm is said to be the traditional value in European printers' offices. So the
1157 dd=1238 pt rule refers to this Didot point, or more precisely to the conversion factor to be
used between this Didot and TEX points.

The actual value in millimeters of exactly one Didot point as implemented in TEX is

\xinttheexpr trunc(\dimexpr 1dd\relax/65536/72.27*25.4,12)\relax

=0.376064563929...mm

The difference of circa 5Å is arguably tiny!

By the way the European printers' offices (dixit Wikipedia) Didot is thus exactly
\xinttheexpr reduce(.376065/(25.4/72.27))\relax=543564351/508000000 pt

and the centered convergents of this fraction are 1/1, 15/14, 61/57, 107/100, 1238/1157, 11249/1⤸
0513, 23736/22183, 296081/276709, 615898/575601, 11382245/10637527, 22148592/20699453, 1885709⤸
81/176233151, 543564351/508000000. We do recover the 1238/1157 therein!

4.5 \ifcase, \ifnum, ... constructs
When using things such as \ifcase \xintSgn{\A} one has to make sure to leave a space after the
closing brace for TEX to stop its scanning for a number: once TEX has finished expanding \xintSgn⤸
{\A} and has so far obtained either 1, 0, or -1, a space (or something `unexpandable') must stop
it looking for more digits. Using \ifcase\xintSgn\A without the braces is very dangerous, because
the blanks (including the end of line) following \A will be skipped and not serve to stop the number
which \ifcase is looking for.

\begin{enumerate}[nosep]\def\A{1}

\item \ifcase \xintSgn\A 0\or OK\else ERROR\fi

\item \ifcase \xintSgn\A\space 0\or OK\else ERROR\fi

\item \ifcase \xintSgn{\A} 0\or OK\else ERROR\fi

\end{enumerate}

1. ERROR

2. OK

3. OK

In order to use successfully \if...\fi constructions either as arguments to the xint bundle

expandable macros, or when building up a completely expandable macro of one's own, one needs some

TEXnical expertise (see also item 2 on page 14).

It is thus much to be recommended to opt rather for already existing expandable branching macros,

such as the ones which are provided by xint/xintfrac: among them \xintSgnFork, \xintifSgn, \xint-

ifZero, \xintifOne, \xintifNotZero, \xintifTrueAelseB, \xintifCmp, \xintifGt, \xintifLt, \xint-

ifEq, \xintifOdd, and \xintifInt. See their respective documentations. All these conditionals

always have either two or three branches, and empty brace pairs {} for unused branches should not

be forgotten.

If these tests are to be applied to standard TEX short integers, it is more efficient to use

(under LATEX) the equivalent conditional tests from the etoolbox
33 package.

33 http://www.ctan.org/pkg/etoolbox

24

http://en.wikipedia.org/wiki/Point_%28typography%29#Didot
http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox

4 User interface

4.6 Expandable implementations of mathematical algorithms
It is possible to chain \xintexpr-essions with \expandafter's, like experts do with \numexpr to

compute multiple things at once. See subsection 7.24 for an example devoted to Fibonacci numbers

(this section provides the code which was used on the title page for the F(1250) evaluation.)

Notice that the 47th Fibonacci number is 2971215073 thus already too big for TEX and ε-TEX.
The \Fibonacci macro found in subsection 7.24 is completely expandable, (it is even f-expandable

in the sense previously explained) hence can be used for example within \message to write to the

log and terminal.

Also, one can thus use it as argument to the xint macros: for example if we are interested in

knowing how many digits F(1250) has, it suffices to issue \xintLen {\Fibonacci {1250}} (which

expands to 261). Or if we want to check the formula gcd(F(1859), F(1573)) = F(gcd(1859, 1573)) =

F(143), we only need34

$\xintiiGCD{\Fibonacci{1859}}{\Fibonacci{1573}}=\Fibonacci{\xintiiGCD{1859}{1573}}$

which outputs:

343358302784187294870275058337 = 343358302784187294870275058337

The \Fibonacci macro expanded its \xintiiGCD{1859}{1573} argument via the services of \numexpr:

this step allows only things obeying the TEX bound, naturally! (but F(2147483648) would be rather

big anyhow...).
In practice, whenever one typesets things, one has left the expansion only contexts; hence there

is no objection to, on the contrary it is recommended, assign the result of earlier computations
to macros via an \edef (or an \fdef, see 6.1), for later use. The above could thus be coded

\begingroup

\def\A {1859} \def\B {1573} \edef\C {\xintiiGCD\A\B}

\edef\X {\Fibonacci\A} \edef\Y {\Fibonacci\B}

The identity $\gcd(F(\A),F(\B))=F(\gcd(\A,\B))$ can be checked via evaluation

of both sides: $\gcd(F(\A),F(\B))=\gcd(\printnumber\X,\printnumber\Y)=

\printnumber{\xintiiGCD\X\Y} = F(\gcd(\A,\B))$.\par

% some further computations involving \A, \B, \C, \X, \Y

\endgroup % closing the group removes assignments to \A, \B, ...

% or choose longer names less susceptible to overwriting something. Note that there

% is no LaTeX \newecommand which would be to \edef like \newcommand is to \def

The identity gcd(F(1859), F(1573)) = F(gcd(1859, 1573)) can be checked via evaluation of both

sides: gcd(F(1859), F(1573)) = gcd(1440582791304425119877168915150404286991316149502348101422⤸
66863670108827259757549472248243775352961945979486922735762888221630935801826408085177531997⤸
42569560552943502886158524517372508867364222284929082289524558388949544219265576041299929025⤸
56597971133787610545221762349084152997981141319966008751768970341099752007999361070757601952⤸
0876324584695551467505894985013610208598628752325727241,244384192519511857332827945977762619⤸
98539902481570619232605360900784013394036743212445223278959909515869581103189177976905803274⤸
15163259530761668666101372520086675409656988895101002288801683145934731013156651772159324934⤸
47986343994793711957587665447658279589092823900703131971355481220049386445313295248477472731⤸
66471511289078393) = 343358302784187294870275058337 = F(143) = F(gcd(1859, 1573)).

One may thus legitimately ask the author: why expandability to such extremes, for things such as

big fractions or floating point numbers (even continued fractions...) which anyhow can not be used

directly within TEX's primitives such as \ifnum? the answer is that the author chose, seemingly,

at some point back in his past to waste from then on his time on such useless things!

4.7 Possible syntax errors to avoid
Here is a list of imaginable input errors. Some will cause compilation errors, others are more

annoying as they may pass through unsignaled.

• using - to prefix some macro: -\xintiSqr{35}/271.35

34 The \xintiiGCD macro is provided by the xintgcd package. 35 to the contrary, this is allowed inside an \xintexpr-ession.

25

4 User interface

• using one pair of braces too many \xintIrr{{\xintiPow {3}{13}}/243} (the computation goes

through with no error signaled, but the result is completely wrong).

• things like \xintiiAdd { \x}{\y} as the space will cause \x to be expanded later, most proba-

bly within a \numexpr thus provoking possibly an arithmetic overflow.

• using [] and decimal points at the same time 1.5/3.5[2], or with a sign in the denominator

3/-5[7]. The scientific notation has no such restriction, the two inputs 1.5/-3.5e-2 and -1.⤸
5e2/3.5 are equivalent: \xintRaw{1.5/-3.5e-2}=-15/35[2], \xintRaw{-1.5e2/3.5}=-15/35[2].

• generally speaking, using in a context expecting an integer (possibly restricted to the TEX

bound) a macro or expression which returns a fraction: \xinttheexpr 4/2\relax outputs 4/2,

not 2. Use \xintNum {\xinttheexpr 4/2\relax} or \xinttheiexpr 4/2\relax (which rounds the

result to the nearest integer, here, the result is already an integer) or \xinttheiiexpr 4/2⤸
\relax. Or, divide in your head 4 by 2 and insert the result directly in the TEX source.

4.8 Error messages
In situations such as division by zero, the package will insert in the TEX processing an undefined

control sequence (we copy this method from the bigintcalc package). This will trigger the writing

to the log of a message signaling an undefined control sequence. The name of the control sequence

is the message. The error is raised before the end of the expansion so as to not disturb further
processing of the token stream, after completion of the operation. Generally the problematic op-

eration will output a zero. Possible such error message control sequences:

\xintError:ArrayIndexIsNegative

\xintError:ArrayIndexBeyondLimit

\xintError:FactorialOfNegativeNumber

\xintError:FactorialOfTooBigNumber

\xintError:DivisionByZero

\xintError:NaN

\xintError:FractionRoundedToZero

\xintError:NotAnInteger

\xintError:ExponentTooBig

\xintError:TooBigDecimalShift

\xintError:TooBigDecimalSplit

\xintError:RootOfNegative

\xintError:NoBezoutForZeros

\xintError:ignored

\xintError:removed

\xintError:inserted

\xintError:unknownfunction

\xintError:we_are_doomed

\xintError:missing_xintthe!

There are now a few more if for example one attempts to use \xintAdd without having loaded xint-

frac (with only xint loaded, only \xintiAdd and \xintiiAdd are legal).Changed!→

\Did_you_mean_iiAbs?or_load_xintfrac

\Did_you_mean_iiOpp?or_load_xintfrac

\Did_you_mean_iiAdd?or_load_xintfrac

\Did_you_mean_iiSub?or_load_xintfrac

\Did_you_mean_iiMul?or_load_xintfrac

\Did_you_mean_iiPow?or_load_xintfrac

\Did_you_mean_iiSqr?or_load_xintfrac

\Did_you_mean_iiMax?or_load_xintfrac

\Did_you_mean_iiMin?or_load_xintfrac

\Did_you_mean_iMaxof?or_load_xintfrac

\Did_you_mean_iMinof?or_load_xintfrac

\Did_you_mean_iiSum?or_load_xintfrac

\Did_you_mean_iiPrd?or_load_xintfrac

\Did_you_mean_iiPrdExpr?or_load_xintfrac

\Did_you_mean_iiSumExpr?or_load_xintfrac

Don't forget to set \errorcontextlines to at least 2 to get from LATEX more meaningful error mes-

sages. Errors occuring during the parsing of \xintexpr-essions try to provide helpful information

about the offending token.

Release 1.1 employs in some situations delimited macros and there is the possibility in case of

an ill-formed expression to end up beyond the \relax end-marker. The errors inevitably arising

could then lead to very cryptic messages; but nothing unusual or especially traumatizing for the

daring experienced TEX/LATEX user.

26

5 Some utilities from the xinttools package

4.9 Package namespace, catcodes
The bundle packages needs that the \space and \empty control sequences are pre-defined with the

identical meanings as in Plain TEX or LATEX2e.

Private macros of xintkernel, xintcore, xinttools, xint, xintfrac, xintexpr, xintbinhex, xint-

gcd, xintseries, and xintcfrac use one or more underscores _ as private letter, to reduce the risk

of getting overwritten. They almost all begin either with \XINT_ or with \xint_, a handful of these

private macros such as \XINTsetupcatcodes, \XINTdigits and those with names such as \XINTinFloat⤸
... or \XINTinfloat... do not have any underscore in their names (for obscure legacy reasons).

xinttools provides \odef, \oodef, \fdef (if macros with these names already exist xinttools will

not overwrite them but provide \xintodef etc...) but all other public macros from the xint bundle

packages start with \xint.

For the good functioning of the macros, standard catcodes are assumed for the minus sign, the

forward slash, the square brackets, the letter `e'. These requirements are dropped inside an \xin⤸
texpr-ession: spaces are gobbled, catcodes mostly do not matter, the e of scientific notation may

be E (on input) ...

If a character used in the \xintexpr syntax is made active, this will surely cause problems; pre-

fixing it with \string is one option. There is \xintexprSafeCatcodes and \xintexprRestoreCatcodes

to temporarily turn off potentially active characters (but setting catcodes is an un-expandable

action).

For advanced TEX users. At loading time of the packages the catcode configuration may be

arbitrary as long as it satisfies the following requirements: the percent is of category code

comment character, the backslash is of category code escape character, digits have category

code other and letters have category code letter. Nothing else is assumed.

5 Some utilities from the xinttools package
This is a first overview. Many examples combining these utilities with the arithmetic macros of

xint are to be found in section 7.

5.1 Assignments
It might not be necessary to maintain at all times complete expandability. A devoted syntax is pro-

vided to make these things more efficient, for example when using the \xintiDivision macro which

computes both quotient and remainder at the same time:

\xintAssign \xintiiDivision{\xintiiPow {2}{1000}}{\xintFac{100}}\to\A\B

give: \meaning\A: macro:->114813249641507505482278393872551066259805517784186172883663478065⤸
826541894704737970419535798876630484358265060061503749531707793118627774829601 and \meaning\⤸
B: macro:->549362945213398322513812878622391280734105004984760505953218996123132766490228838⤸
8132878702444582075129603152041054804964625083138567652624386837205668069376. Another example

(which uses \xintBezout from the xintgcd package):

\xintAssign \xintBezout{357}{323}\to\A\B\U\V\D

is equivalent to setting \A to 357, \B to 323, \U to -9, \V to -10, and \D to 17. And indeed (-

9)×357-(-10)×323=17 is a Bezout Identity.
Thus, what \xintAssign does is to first apply an f-expansion to what comes next; it then defines

one after the other (using \def; an optional argument allows to modify the expansion type, see

subsection 7.26 for details), the macros found after \to to correspond to the successive braced

contents (or single tokens) located prior to \to. In case the first token (after the optional

parameter within brackets, cf. the \xintAssign detailed document) is not an opening brace {, \xi⤸

27

5 Some utilities from the xinttools package

ntAssign consider that there is only one macro to define, and that its replacement text should be

all that follows until the \to.

\xintAssign\xintBezout{3570902836026}{200467139463}\to\A\B\U\V\D

gives then \U: 5812117166, \V: 103530711951 and \D=3.
In situations when one does not know in advance the number of items, one has \xintAssignArray or

its synonym \xintDigitsOf:
\xintDigitsOf\xintiPow{2}{100}\to\DIGITS

This defines \DIGITS to be macro with one parameter, \DIGITS{0} gives the size N of the array
and \DIGITS{n}, for n from 1 to N then gives the nth element of the array, here the nth digit of
2100, from the most significant to the least significant. As usual, the generated macro \DIGITS is
completely expandable (in two steps). As it wouldn't make much sense to allow indices exceeding
the TEX bounds, the macros created by \xintAssignArray put their argument inside a \numexpr, so it
is completely expanded and may be a count register, not necessarily prefixed by \the or \number.
Consider the following code snippet:

% \newcount\cnta

% \newcount\cntb

\begingroup

\xintDigitsOf\xintiPow{2}{100}\to\DIGITS

\cnta = 1

\cntb = 0

\loop

\advance \cntb \xintiSqr{\DIGITS{\cnta}}

\ifnum \cnta < \DIGITS{0}

\advance\cnta 1

\repeat

|2^{100}| (=\xintiPow {2}{100}) has \DIGITS{0} digits and the sum of their squares is \the\cntb.

These digits are, from the least to the most significant: \cnta = \DIGITS{0} \loop

\DIGITS{\cnta}\ifnum \cnta > 1 \advance\cnta -1 , \repeat.\endgroup

2^{100} (=1267650600228229401496703205376) has 31 digits and the sum of their squares is 679.

These digits are, from the least to the most significant: 6, 7, 3, 5, 0, 2, 3, 0, 7, 6, 9, 4, 1, 0,

4, 9, 2, 2, 8, 2, 2, 0, 0, 6, 0, 5, 6, 7, 6, 2, 1.

Warning: \xintAssign, \xintAssignArray and \xintDigitsOf do not do any check on whether the
macros they define are already defined.

5.2 Utilities for expandable manipulations
The package now has more utilities to deal expandably with `lists of things', which were treated

un-expandably in the previous section with \xintAssign and \xintAssignArray: \xintReverseOrder

and \xintLength since the first release, \xintApply and \xintListWithSep since 1.04, \xint-

RevWithBraces, \xintCSVtoList, \xintNthElt since 1.06, \xintApplyUnbraced, since 1.06b, \xint-

loop and \xintiloop since 1.09g.36

As an example the following code uses only expandable operations:
2^{100} (=\xintiPow {2}{100}) has \xintLen{\xintiPow {2}{100}} digits and the sum of their

squares is \xintiiSum{\xintApply {\xintiSqr}{\xintiPow {2}{100}}}. These digits are, from the

least to the most significant: \xintListWithSep {, }{\xintRev{\xintiPow {2}{100}}}. The thirteenth

most significant digit is \xintNthElt{13}{\xintiPow {2}{100}}. The seventh least significant one

is \xintNthElt{7}{\xintRev{\xintiPow {2}{100}}}.

2100 (=1267650600228229401496703205376) has 31 digits and the sum of their squares is 679. These

digits are, from the least to the most significant: 6, 7, 3, 5, 0, 2, 3, 0, 7, 6, 9, 4, 1, 0, 4, 9,

2, 2, 8, 2, 2, 0, 0, 6, 0, 5, 6, 7, 6, 2, 1. The thirteenth most significant digit is 8. The seventh

least significant one is 3.

36 All these utilities, as well as \xintAssign, \xintAssignArray and the \xintFor loops are now available from the xinttools
package, independently of the big integers facilities of xint.

28

6 Commands of the xintkernel package

It would be more efficient to do once and for all \edef\z{\xintiPow {2}{100}}, and then use \z

in place of \xintiPow {2}{100} everywhere as this would spare the CPU some repetitions.

Expandably computing primes is done in subsection 7.12.

5.3 A new kind of for loop
As part of the utilities coming with the xinttools package, there is a new kind of for loop, \xint-

For. Check it out (subsection 7.19).

5.4 A new kind of expandable loop
Also included in xinttools, \xintiloop is an expandable loop giving access to an iteration index,

without using count registers which would break expandability. Check it out (subsection 7.15).

6 Commands of the xintkernel package

.1 \odef, \oodef, \fdef . 29

.2 \xintReverseOrder . 29
.3 \xintLength . 30

The xintkernel package contains mainly the common code base for handling the load-order of the

bundle packages, the management of catcodes at loading time, definition of common constants and

macro utilities which are used throughout the code etc ... it is automatically loaded by all pack-

ages of the bundle.

It provides a few macros possibly useful in other contexts.

6.1 \odef, \oodef, \fdef
\oodef\controlsequence {<stuff>} does

\expandafter\expandafter\expandafter\def

\expandafter\expandafter\expandafter\controlsequence

\expandafter\expandafter\expandafter{<stuff>}

This works only for a single \controlsequence, with no parameter text, even without parameters.
An alternative would be:

\def\oodef #1#{\def\oodefparametertext{#1}%

\expandafter\expandafter\expandafter\expandafter

\expandafter\expandafter\expandafter\def

\expandafter\expandafter\expandafter\oodefparametertext

\expandafter\expandafter\expandafter }

but it does not allow \global as prefix, and, besides, would have anyhow its use (almost) limited

to parameter texts without macro parameter tokens (except if the expanded thing does not see them,

or is designed to deal with them).

There is a similar macro \odef with only one expansion of the replacement text <stuff>, and \fdef

which expands fully <stuff> using \romannumeral-`0.

They can be prefixed with \global. It appears than \fdef is generally a bit faster than \ede⤸
f when expanding macros from the xint bundle, when the result has a few dozens of digits. \oodef

needs thousands of digits it seems to become competitive.

6.2 \xintReverseOrder
\xintReverseOrder{⟨list⟩} does not do any expansion of its argument and just reverses the ordern ⋆
of the tokens in the ⟨list⟩. Braces are removed once and the enclosed material, now unbraced, does
not get reversed. Unprotected spaces (of any character code) are gobbled.

29

7 Commands of the xinttools package

\xintReverseOrder{\xintDigitsOf\xintiPow {2}{100}\to\Stuff}

gives: \Stuff\to1002\xintiPow\xintDigitsOf

6.3 \xintLength
\xintLength{⟨list⟩} does not do any expansion of its argument and just counts how many tokens theren ⋆
are (possibly none). So to use it to count things in the replacement text of a macro one should do

\expandafter\xintLength\expandafter{\x}. One may also use it inside macros as \xintLength{#1}.

Things enclosed in braces count as one. Blanks between tokens are not counted. See \xintNthElt{0}

(from xinttools) for a variant which first f-expands its argument.
\xintLength {\xintiPow {2}{100}}=3

, \xintLen {\xintiPow {2}{100}}=31

7 Commands of the xinttools package

.1 \xintRevWithBraces . 30

.2 \xintZapFirstSpaces, \xintZapLastSpaces,
\xintZapSpaces, \xintZapSpacesB 31

.3 \xintCSVtoList . 31

.4 \xintNthElt . 33

.5 \xintKeep . 33

.6 \xintKeepUnbraced . 34

.7 \xintTrim . 34

.8 \xintTrimUnbraced . 34

.9 \xintListWithSep . 34

.10 \xintApply . 35

.11 \xintApplyUnbraced . 35

.12 \xintSeq . 35

.13 Completely expandable prime test 36

.14 \xintloop, \xintbreakloop,
\xintbreakloopanddo, \xintloopskiptonext 38

.15 \xintiloop, \xintiloopindex,
\xintouteriloopindex,
\xintbreakiloop, \xintbreakiloopanddo,

\xintiloopskiptonext,
\xintiloopskipandredo 41

.16 Another completely expandable prime test . . 43

.17 A table of factorizations 44

.18 \xintApplyInline . 45

.19 \xintFor, \xintFor* . 47

.20 \xintifForFirst, \xintifForLast 50

.21 \xintBreakFor, \xintBreakForAndDo 50

.22 \xintintegers, \xintdimensions,
\xintrationals . 50

.23 Another table of primes . 52

.24 Some arithmetic with Fibonacci numbers . . . 53

.25 \xintForpair, \xintForthree, \xintForfour 56

.26 \xintAssign . 57

.27 \xintAssignArray . 57

.28 \xintDigitsOf . 58

.29 \xintRelaxArray . 58

.30 The Quick Sort algorithm illustrated 58

These utilities used to be provided within the xint package; since 1.09g (2013/11/22) they have

been moved to an independently usable package xinttools, which has none of the xint facilities

regarding big numbers. Whenever relevant release 1.09h has made the macros \long so they accept

\par tokens on input.

First the completely expandable utilities up to \xintiloop, then the non expandable utilities.

This section contains various concrete examples and ends with a completely expandable implemen-

tation of the Quick Sort algorithm together with a graphical illustration of its action.

See also 6.2 and 6.3 which come with package xintkernel, automatically loaded by xinttools.

7.1 \xintRevWithBraces
\xintRevWithBraces{⟨list⟩} first does the f-expansion of its argument then it reverses the orderf ⋆
of the tokens, or braced material, it encounters, maintaining existing braces and adding a brace

pair around each naked token encountered. Space tokens (in-between top level braces or naked to-

kens) are gobbled. This macro is mainly thought out for use on a ⟨list⟩ of such braced material;
with such a list as argument the f-expansion will only hit against the first opening brace, hence

30

7 Commands of the xinttools package

do nothing, and the braced stuff may thus be macros one does not want to expand.

\edef\x{\xintRevWithBraces{12345}}

\meaning\x:macro:->{5}{4}{3}{2}{1}

\edef\y{\xintRevWithBraces\x}

\meaning\y:macro:->{1}{2}{3}{4}{5}

The examples above could be defined with \edef's because the braced material did not contain

macros. Alternatively:

\expandafter\def\expandafter\w\expandafter

{\romannumeral0\xintrevwithbraces{{\A}{\B}{\C}{\D}{\E}}}

\meaning\w:macro:->{\E }{\D }{\C }{\B }{\A }

The macro \xintReverseWithBracesNoExpand does the same job without the initial expansion of itsn ⋆
argument.

7.2 \xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB
\xintZapFirstSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of anyn ⋆
sort, nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all leading spaces.
This macro will be mostly of interest to programmers who will know what I will now be talking

about. The essential points, naturally, are the complete expandability and the fact that no brace
removal nor any other alteration is done to the input.
TEX's input scanner already converts consecutive blanks into single space tokens, but \xintZa⤸

pFirstSpaces handles successfully also inputs with consecutive multiple space tokens. However,

it is assumed that ⟨stuff ⟩ does not contain (except inside braced sub-material) space tokens of
character code distinct from 32.

It expands in two steps, and if the goal is to apply it to the expansion text of \x to define \y,

then one should do: \expandafter\def\expandafter\y\expandafter {\romannumeral0\expandafter\xi⤸
ntzapfirstspaces\expandafter{\x}}.

Other use case: inside a macro as \edef\x{\xintZapFirstSpaces {#1}} assuming naturally that #1

is compatible with such an \edef once the leading spaces have been stripped.

\xintZapFirstSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y } +++

\xintZapLastSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of anyn ⋆
sort, nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all ending spaces. The same
remarks as for \xintZapFirstSpaces apply.

\xintZapLastSpaces { \a { \X } { \b \Y } }-> \a { \X } { \b \Y }+++

\xintZapSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of any sort,n ⋆
nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all leading and all ending spaces.
The same remarks as for \xintZapFirstSpaces apply.

\xintZapSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB{⟨stuff ⟩} does not do any expansion of its argument, nor does it alter ⟨stuff ⟩n ⋆
in anyway apart from stripping away all leading and all ending spaces and possibly removing one

level of braces if ⟨stuff ⟩ had the shape <spaces>{braced}<spaces>. The same remarks as for \xint-
ZapFirstSpaces apply.

\xintZapSpacesB { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB { { \a { \X } { \b \Y } } }-> \a { \X } { \b \Y } +++

The spaces here at the start and end of the output come from the braced material, and are not

removed (one would need a second application for that; recall though that the xint zapping macros

do not expand their argument).

7.3 \xintCSVtoList
\xintCSVtoList{a,b,c...,z} returns {a}{b}{c}...{z}. A list is by convention in this manual simplyf ⋆

31

7 Commands of the xinttools package

a succession of tokens, where each braced thing will count as one item (``items'' are defined

according to the rules of TEX for fetching undelimited parameters of a macro, which are exactly

the same rules as for LATEX and command arguments [they are the same things]). The word `list' in

`comma separated list of items' has its usual linguistic meaning, and then an ``item'' is what is

delimited by commas.

So \xintCSVtoList takes on input a `comma separated list of items' and converts it into a `TEX

list of braced items'. The argument to \xintCSVtoList may be a macro: it will first be f-expanded.
Hence the item before the first comma, if it is itself a macro, will be expanded which may or may not

be a good thing. A space inserted at the start of the first item serves to stop that expansion (and

disappears). The macro \xintCSVtoListNoExpand does the same job without the initial expansion ofn ⋆
the list argument.

Apart from that no expansion of the items is done and the list items may thus be completely

arbitrary (and even contain perilous stuff such as unmatched \if and \fi tokens).

Contiguous spaces and tab characters, are collapsed by TEX into single spaces. All such spaces

around commas37 are removed , as well as the spaces at the start and the spaces at the end of the

list.38 The items may contain explicit \par's or empty lines (converted by the TEX input parsing

into \par tokens).

\xintCSVtoList { 1 ,{ 2 , 3 , 4 , 5 }, a , {b,T} U , { c , d } , { {x , y} } }

->{1}{2 , 3 , 4 , 5}{a}{{b,T} U}{ c , d }{ {x , y} }

One sees on this example how braces protect commas from sub-lists to be perceived as delimiters

of the top list. Braces around an entire item are removed, even when surrounded by spaces before

and/or after. Braces for sub-parts of an item are not removed.

We observe also that there is a slight difference regarding the brace stripping of an item: if

the braces were not surrounded by spaces, also the initial and final (but no other) spaces of the

enclosed material are removed. This is the only situation where spaces protected by braces are
nevertheless removed.

From the rules above: for an empty argument (only spaces, no braces, no comma) the output is {}

(a list with one empty item), for ``<opt. spaces>{}<opt. spaces>'' the output is {} (again a list

with one empty item, the braces were removed), for ``{ }'' the output is {} (again a list with one

empty item, the braces were removed and then the inner space was removed), for `` { }'' the output

is {} (again a list with one empty item, the initial space served only to stop the expansion, so

this was like ``{ }'' as input, the braces were removed and the inner space was stripped), for `` {

} '' the output is { } (this time the ending space of the first item meant that after brace removal

the inner spaces were kept; recall though that TEX collapses on input consecutive blanks into one

space token), for ``,'' the output consists of two consecutive empty items {}{}. Recall that on

output everything is braced, a {} is an ``empty'' item. Most of the above is mainly irrelevant for

every day use, apart perhaps from the fact to be noted that an empty input does not give an empty

output but a one-empty-item list (it is as if an ending comma was always added at the end of the

input).

\def\y{ \a,\b,\c,\d,\e} \xintCSVtoList\y->{\a }{\b }{\c }{\d }{\e }

\def\t {{\if},\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

\xintCSVtoList\t->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

The results above were automatically displayed using TEX's primitive \meaning, which adds a

space after each control sequence name. These spaces are not in the actual braced items of the

produced lists. The first items \a and \if were either preceded by a space or braced to prevent

expansion. The macro \xintCSVtoListNoExpand would have done the same job without the initial ex-

pansion of the list argument, hence no need for such protection but if \y is defined as \def\y{\a,⤸
\b,\c,\d,\e} we then must do:

\expandafter\xintCSVtoListNoExpand\expandafter {\y}

37 and multiple space tokens are not a problem; but those at the top level (not hidden inside braces) must be of character code
32. 38 let us recall that this is all done completely expandably... There is absolutely no alteration of any sort of the item apart
from the stripping of initial and final space tokens (of character code 32) and brace removal if and only if the item apart from
intial and final spaces (or more generally multiple char 32 space tokens) is braced.

32

7 Commands of the xinttools package

Else, we may have direct use:

\xintCSVtoListNoExpand {\if,\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

Again these spaces are an artefact from the use in the source of the document of \meaning (or rather

here, \detokenize) to display the result of using \xintCSVtoListNoExpand (which is done for real

in this document source).

For the similar conversion from comma separated list to braced items list, but without removal of

spaces around the commas, there is \xintCSVtoListNonStripped and \xintCSVtoListNonStrippedNoExpand.f ⋆n ⋆

7.4 \xintNthElt
\xintNthElt{x}{⟨list⟩} gets (expandably) the xth braced item of the ⟨list⟩. An unbraced item tokennum

x f ⋆
will be returned as is. The list itself may be a macro which is first f-expanded.

\xintNthElt {3}{{agh}\u{zzz}\v{Z}} is zzz

\xintNthElt {3}{{agh}\u{{zzz}}\v{Z}} is {zzz}

\xintNthElt {2}{{agh}\u{{zzz}}\v{Z}} is \u

\xintNthElt {37}{\xintFac {100}}=9 is the thirty-seventh digit of 100!.

\xintNthElt {10}{\xintFtoCv {566827/208524}}=1457/536

is the tenth convergent of 566827/208524 (uses xintcfrac package).

\xintNthElt {7}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=7

\xintNthElt {0}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=9

\xintNthElt {-3}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=7

If x=0, the macro returns the length of the expanded list: this is not equivalent to \xintLength
which does no pre-expansion. And it is different from \xintLen which is to be used only on integers

or fractions.

If x<0, the macro returns the |x|th element from the end of the list.

\xintNthElt {-5}{{{agh}}\u{zzz}\v{Z}} is {agh}

The macro \xintNthEltNoExpand does the same job but without first expanding the list argument:
num
x n ⋆

\xintNthEltNoExpand {-4}{\u\v\w T\x\y\z} is T.

In cases where x is larger (in absolute value) than the length of the list then \xintNthElt

returns nothing.

7.5 \xintKeep
\xintKeep{x}{⟨list⟩} expands the token list argument and returns a new list containing only thenum

x f ⋆
first x items. If x<0 the macro returns the last |x| elements (in the same order as in the initial

list). If |x| equals or exceeds the length of the list, the list (as arising from expansion of the

second argument) is returned. For x=0 the empty list is returned.

If x>0 the (non space) items from the original end up braced in the output: if one later wants to

remove all brace pairs (either added to a naked token, or initially present), one may use \xint-

ListWithSep with an empty separator.

On the other hand, if x<0 the macro acts by suppressing items from the head of the list, and no

brace pairs are added to the kept elements from the tail (originally present ones are not removed).Description
corrected
in 1.2a doc

→
\xintKeepNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintKeep {17}{\xintKeep {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{123456789}}\meaning\test\par

macro:->{32}{33}{34}{35}{36}{37}{38}{39}{40}{41}{42}{43}{44}{45}{46}{47}{48}

macro:->{1}{2}{3}{4}{5}{6}{7}

macro:->{3}{4}{5}{6}{7}{8}{9}

macro:->{1}{2}{3}{4}{5}{6}{7}

macro:->3456789

33

7 Commands of the xinttools package

7.6 \xintKeepUnbraced
Sames as \xintKeep but no brace pairs are added around the kept items from the head of the list.

Each item will lose one level of brace pairs. For x<0 is not different from \xintKeep.New with
1.2a \xintKeepUnbracedNoExpand does the same without first f-expanding its list argument.

\fdef\test {\xintKeepUnbraced {10}{\xintSeq {1}{100}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {-7}{123456789}}\meaning\test\par

macro:->12345678910

macro:->1234567

macro:->{3}{4}{5}{6}{7}{8}{9}

macro:->1234567

macro:->3456789

7.7 \xintTrim
\xintTrim{x}{⟨list⟩} expands the list argument and gobbles its first x elements. The remainingnum

x f ⋆
ones are left as they are (no brace pairs added). If x<0 the macro gobbles the last |x| elements,

and the kept elements from the head of the list end up braced in the output. If |x| equals or exceeds

the length of the list, the empty list is returned. For x=0 the full list is returned.
\xintTrimNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintTrim {17}{\xintTrim {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintTrim {-7}{123456789}}\meaning\test\par

macro:->{18}{19}{20}{21}{22}{23}{24}{25}{26}{27}{28}{29}{30}{31}

macro:->{8}{9}

macro:->{1}{2}

macro:->89

macro:->{1}{2}

7.8 \xintTrimUnbraced
Same as \xintTrim but in case of a negative x (cutting items from the tail), the kept items from

the head are not enclosed in brace pairs. They will lose one level of braces.New with
1.2a \xintTrimUnbracedNoExpand does the same without first f-expanding its list argument.

\fdef\test {\xintTrimUnbraced {-90}{\xintSeq {1}{100}}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {-7}{123456789}}\meaning\test\par

macro:->12345678910

macro:->{8}{9}

macro:->12

macro:->89

macro:->12

7.9 \xintListWithSep
\xintListWithSep{sep}{⟨list⟩} inserts the given separator sep in-between all items of the givenn f ⋆
list of braced items: this separator may be a macro (or multiple tokens) but will not be expanded.

34

7 Commands of the xinttools package

The second argument also may be itself a macro: it is f-expanded. Applying \xintListWithSep re-
moves the braces from the list items (for example {1}{2}{3} turns into 1,2,3 via \xintListWithSep{⤸
,}{{1}{2}{3}}). An empty input gives an empty output, a singleton gives a singleton, the separator

is used starting with at least two elements. Using an empty separator has the net effect of unbrac-

ing the braced items constituting the ⟨list⟩ (in such cases the new list may thus be longer than
the original).

\xintListWithSep{:}{\xintFac {20}}=2:4:3:2:9:0:2:0:0:8:1:7:6:6:4:0:0:0:0

The macro \xintListWithSepNoExpand does the same job without the initial expansion.n n ⋆

7.10 \xintApply
\xintApply{\macro}{⟨list⟩} expandably applies the one parameter command \macro to each item inf f ⋆
the ⟨list⟩ given as second argument and returns a new list with these outputs: each item is given
one after the other as parameter to \macro which is expanded at that time (as usual, i.e. fully
for what comes first), the results are braced and output together as a succession of braced items

(if \macro is defined to start with a space, the space will be gobbled and the \macro will not be

expanded; it is allowed to have its own arguments, the list items serve as last arguments to \m⤸
acro). Hence \xintApply{\macro}{{1}{2}{3}} returns {\macro{1}}{\macro{2}}{\macro{3}} where all

instances of \macro have been already f-expanded.
Being expandable, \xintApply is useful for example inside alignments where implicit groups make

standard loops constructs usually fail. In such situation it is often not wished that the new list

elements be braced, see \xintApplyUnbraced. The \macro does not have to be expandable: \xintApply

will try to expand it, the expansion may remain partial.

The ⟨list⟩ may itself be some macro expanding (in the previously described way) to the list of
tokens to which the command \macro will be applied. For example, if the ⟨list⟩ expands to some
positive number, then each digit will be replaced by the result of applying \macro on it.

\def\macro #1{\the\numexpr 9-#1\relax}

\xintApply\macro{\xintFac {20}}=7567097991823359999

The macro \xintApplyNoExpand does the same job without the first initial expansion which gavef n ⋆
the ⟨list⟩ of braced tokens to which \macro is applied.

7.11 \xintApplyUnbraced
\xintApplyUnbraced{\macro}{⟨list⟩} is like \xintApply. The difference is that after having ex-f f ⋆
panded its list argument, and applied \macro in turn to each item from the list, it reassembles
the outputs without enclosing them in braces. The net effect is the same as doing

\xintListWithSep {}{\xintApply {\macro}{⟨list⟩}}
This is useful for preparing a macro which will itself define some other macros or make assign-
ments, as the scope will not be limited by brace pairs.

\def\macro #1{\expandafter\def\csname myself#1\endcsname {#1}}

\xintApplyUnbraced\macro{{elta}{eltb}{eltc}}

\begin{enumerate}[nosep,label=(\arabic{*})]

\item \meaning\myselfelta

\item \meaning\myselfeltb

\item \meaning\myselfeltc

\end{enumerate}

(1) macro:->elta

(2) macro:->eltb

(3) macro:->eltc

The macro \xintApplyUnbracedNoExpand does the same job without the first initial expansionf n ⋆
which gave the ⟨list⟩ of braced tokens to which \macro is applied.

7.12 \xintSeq

35

7 Commands of the xinttools package

\xintSeq[d]{x}{y} generates expandably {x}{x+d}... up to and possibly including {y} if d>0 or down[
num
x]
num
x
num
x ⋆

to and including {y} if d<0. Naturally {y} is omitted if y-x is not a multiple of d. If d=0 the macro

returns {x}. If y-x and d have opposite signs, the macro returns nothing. If the optional argument

d is omitted it is taken to be the sign of y-x (beware that \xintSeq {1}{0} is thus not empty but

{1}{0}, use \xintSeq [1]{1}{N} if you want an empty sequence for N zero or negative).

The current implementation is only for (short) integers; possibly, a future variant could allow

big integers and fractions, although one already has access to similar functionality using \xint-

Apply to get any arithmetic sequence of long integers. Currently thus, x and y are expanded inside

a \numexpr so they may be count registers or a LATEX \value{countername}, or arithmetic with such

things.
\xintListWithSep{,\hskip2pt plus 1pt minus 1pt }{\xintSeq {12}{-25}}

12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15,
-16, -17, -18, -19, -20, -21, -22, -23, -24, -25

\xintiiSum{\xintSeq [3]{1}{1000}}

167167

Important: for reasons of efficiency, this macro, when not given the optional argument d, works
backwards, leaving in the token stream the already constructed integers, from the tail down (or

up). But this will provoke a failure of the tex run if the number of such items exceeds the input+
{
stack limit; on my installation this limit is at 5000.

However, when given the optional argument d (which may be +1 or -1), the macro proceeds differ-

ently and does not put stress on the input stack (but is significantly slower for sequences with

thousands of integers, especially if they are somewhat big). For example: \xintSeq [1]{0}{5000}

works and \xintiiSum{\xintSeq [1]{0}{5000}} returns the correct value 12502500.

The produced integers are with explicit litteral digits, so if used in \ifnum or other tests they

should be properly terminated39.

7.13 Completely expandable prime test
Let us now construct a completely expandable macro which returns 1 if its given input is prime and
0 if not:

\def\remainder #1#2{\the\numexpr #1-(#1/#2)*#2\relax }

\def\IsPrime #1%

{\xintANDof {\xintApply {\remainder {#1}}{\xintSeq {2}{\xintiSqrt{#1}}}}}

This uses \xintiSqrt and assumes its input is at least 5. Rather than xint's own \xintiRem we
used a quicker \numexpr expression as we are dealing with short integers. Also we used \xintANDof
which will return 1 only if all the items are non-zero. The macro is a bit silly with an even input,
ok, let's enhance it to detect an even input:

\def\IsPrime #1%

{\xintifOdd {#1}

{\xintANDof % odd case

{\xintApply {\remainder {#1}}

{\xintSeq [2]{3}{\xintiSqrt{#1}}}%

}%

}

{\xintifEq {#1}{2}{1}{0}}%

}

We used the xint provided expandable tests (on big integers or fractions) in oder for \IsPrime

to be f-expandable.
Our integers are short, but without \expandafter's with \@firstoftwo, or some other related

techniques, direct use of \ifnum..\fi tests is dangerous. So to make the macro more efficient we
are going to use the expandable tests provided by the package etoolbox40. The macro becomes:

\def\IsPrime #1%

{\ifnumodd {#1}

39 a \space will stop the TEX scanning of a number and be gobbled in the process, maintaining expandability if this is required;
the \relax stops the scanning but is not gobbled and remains afterwards as a token. 40 http://ctan.org/pkg/etoolbox

36

http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/etoolbox

7 Commands of the xinttools package

{\xintANDof % odd case

{\xintApply {\remainder {#1}}{\xintSeq [2]{3}{\xintiSqrt{#1}}}}}

{\ifnumequal {#1}{2}{1}{0}}}

In the odd case however we have to assume the integer is at least 7, as \xintSeq generates an
empty list if #1=3 or 5, and \xintANDof returns 1 when supplied an empty list. Let us ease up a bit
\xintANDof's work by letting it work on only 0's and 1's. We could use:

\def\IsNotDivisibleBy #1#2%

{\ifnum\numexpr #1-(#1/#2)*#2=0 \expandafter 0\else \expandafter1\fi}

where the \expandafter's are crucial for this macro to be f-expandable and hence work within the
applied \xintANDof. Anyhow, now that we have loaded etoolbox, we might as well use:

\newcommand{\IsNotDivisibleBy}[2]{\ifnumequal{#1-(#1/#2)*#2}{0}{0}{1}}

Let us enhance our prime macro to work also on the small primes:
\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes

{\xintANDof

{\xintApply

{ \IsNotDivisibleBy {#1}}{\xintSeq [2]{3}{\xintiSqrt{#1}}}}%

}}% END OF THE ODD BRANCH

{\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH

}

The input is still assumed positive. There is a deliberate blank before \IsNotDivisibleBy to

use this feature of \xintApply: a space stops the expansion of the applied macro (and disappears).

This expansion will be done by \xintANDof, which has been designed to skip everything as soon as

it finds a false (i.e. zero) input. This way, the efficiency is considerably improved.

We did generate via the \xintSeq too many potential divisors though. Later sections give two

variants: one with \xintiloop (subsection 7.16) which is still expandable and another one (sub-

section 7.23) which is a close variant of the \IsPrime code above but with the \xintFor loop, thus

breaking expandability. The xintiloop variant does not first evaluate the integer square root,

the xintFor variant still does. I did not compare their efficiencies.
Let us construct with this expandable primality test a table of the prime numbers up to 1000. We

need to count how many we have in order to know how many tab stops one shoud add in the last row.41

There is some subtlety for this last row. Turns out to be better to insert a \\ only when we know
for sure we are starting a new row; this is how we have designed the \OneCell macro. And for the
last row, there are many ways, we use again \xintApplyUnbraced but with a macro which gobbles its
argument and replaces it with a tabulation character. The \xintFor* macro would be more elegant
here.

\newcounter{primecount}

\newcounter{cellcount}

\newcommand{\NbOfColumns}{13}

\newcommand{\OneCell}[1]{%

\ifnumequal{\IsPrime{#1}}{1}

{\stepcounter{primecount}

\ifnumequal{\value{cellcount}}{\NbOfColumns}

{\\\setcounter{cellcount}{1}#1}

{&\stepcounter{cellcount}#1}%

} % was prime

{}% not a prime, nothing to do

}

\newcommand{\OneTab}[1]{&}

\begin{tabular}{|*{\NbOfColumns}{r}|}

\hline

2 \setcounter{cellcount}{1}\setcounter{primecount}{1}%

\xintApplyUnbraced \OneCell {\xintSeq [2]{3}{999}}%

41 although a tabular row may have less tabs than in the preamble, there is a problem with the | vertical rule, if one does that.

37

http://ctan.org/pkg/etoolbox

7 Commands of the xinttools package

\xintApplyUnbraced \OneTab

{\xintSeq [1]{1}{\the\numexpr\NbOfColumns-\value{cellcount}\relax}}%

\\

\hline

\end{tabular}

There are \arabic{primecount} prime numbers up to 1000.

The table has been put in float which appears on this page. We had to be careful to use in the

last row \xintSeq with its optional argument [1] so as to not generate a decreasing sequence from

1 to 0, but really an empty sequence in case the row turns out to already have all its cells (which

doesn't happen here but would with a number of columns dividing 168).

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97 101

103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293 307 311 313
317 331 337 347 349 353 359 367 373 379 383 389 397
401 409 419 421 431 433 439 443 449 457 461 463 467
479 487 491 499 503 509 521 523 541 547 557 563 569
571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809 811 821 823
827 829 839 853 857 859 863 877 881 883 887 907 911
919 929 937 941 947 953 967 971 977 983 991 997

There are 168 prime numbers up to 1000.

7.14 \xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext
\xintloop⟨stuff ⟩\if<test>...\repeat is an expandable loop compatible with nesting. However toI
break out of the loop one almost always need some un-expandable step. The cousin \xintiloop is

\xintloop with an embedded expandable mechanism allowing to exit from the loop. The iterated com-

mands may contain \par tokens or empty lines.

If a sub-loop is to be used all the material from the start of the main loop and up to the end of

the entire subloop should be braced; these braces will be removed and do not create a group. The

simplest to allow the nesting of one or more sub-loops is to brace everything between \xintloop

and \repeat, being careful not to leave a space between the closing brace and \repeat.

As this loop and \xintiloop will primarily be of interest to experienced TEX macro programmers,

my description will assume that the user is knowledgeable enough. Some examples in this document

will be perhaps more illustrative than my attemps at explanation of use.

One can abort the loop with \xintbreakloop; this should not be used inside the final test, and

one should expand the \fi from the corresponding test before. One has also \xintbreakloopanddo

whose first argument will be inserted in the token stream after the loop; one may need a macro

such as \xint_afterfi to move the whole thing after the \fi, as a simple \expandafter will not be

enough.

One will usually employ some count registers to manage the exit test from the loop; this breaks

expandability, see \xintiloop for an expandable integer indexed loop. Use in alignments will be

complicated by the fact that cells create groups, and also from the fact that any encountered un-

expandable material will cause the TEX input scanner to insert \endtemplate on each encountered &

or \cr; thus \xintbreakloop may not work as expected, but the situation can be resolved via \xin⤸
t_firstofone{&} or use of \TAB with \def\TAB{&}. It is thus simpler for alignments to use rather

38

7 Commands of the xinttools package

than \xintloop either the expandable \xintApplyUnbraced or the non-expandable but alignment com-

patible \xintApplyInline, \xintFor or \xintFor*.

As an example, let us suppose we have two macros \A{⟨i⟩}{⟨j⟩} and \B{⟨i⟩}{⟨j⟩} behaving like
(small) integer valued matrix entries, and we want to define a macro \C{⟨i⟩}{⟨j⟩} giving the ma-
trix product (i and j may be count registers). We will assume that \A[I] expands to the number of

rows, \A[J] to the number of columns and want the produced \C to act in the same manner. The code is

very dispendious in use of \count registers, not optimized in any way, not made very robust (the

defined macro can not have the same name as the first two matrices for example), we just wanted to

quickly illustrate use of the nesting capabilities of \xintloop.42

\newcount\rowmax \newcount\colmax \newcount\summax

\newcount\rowindex \newcount\colindex \newcount\sumindex

\newcount\tmpcount

\makeatletter

\def\MatrixMultiplication #1#2#3{%

\rowmax #1[I]\relax

\colmax #2[J]\relax

\summax #1[J]\relax

\rowindex 1

\xintloop % loop over row index i

{\colindex 1

\xintloop % loop over col index k

{\tmpcount 0

\sumindex 1

\xintloop % loop over intermediate index j

\advance\tmpcount \numexpr #1\rowindex\sumindex*#2\sumindex\colindex\relax

\ifnum\sumindex<\summax

\advance\sumindex 1

\repeat }%

\expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname

{\the\tmpcount}%

\ifnum\colindex<\colmax

\advance\colindex 1

\repeat }%

\ifnum\rowindex<\rowmax

\advance\rowindex 1

\repeat

\expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}%

\expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}%

\def #3##1{\ifx[##1\expandafter\Matrix@helper@size

\else\expandafter\Matrix@helper@entry\fi #3{##1}}%

}%

\def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }%

\def\Matrix@helper@entry #1#2#3%

{\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }%

\def\A #1{\ifx[#1\expandafter\A@size

\else\expandafter\A@entry\fi {#1}}%

\def\A@size #1#2]{\ifx I#23\else4\fi}% 3rows, 4columns

\def\A@entry #1#2{\the\numexpr #1+#2-1\relax}% not pre-computed...

\def\B #1{\ifx[#1\expandafter\B@size

\else\expandafter\B@entry\fi {#1}}%

\def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns

\def\B@entry #1#2{\the\numexpr #1-#2\relax}% not pre-computed...

\makeatother

\MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D

42 for a more sophisticated implementation of matrix multiplication, inclusive of determinants, inverses, and display utilities, with
entries big integers or decimal numbers or even fractions see http://tex.stackexchange.com/a/143035/4686 from November 11,
2013.

39

http://tex.stackexchange.com/a/143035/4686

7 Commands of the xinttools package

\MatrixMultiplication\C\D\E \MatrixMultiplication\C\E\F

\begin{multicols}2

\[\begin{pmatrix}

\A11&\A12&\A13&\A14\\

\A21&\A22&\A23&\A24\\

\A31&\A32&\A33&\A34

\end{pmatrix}

\times

\begin{pmatrix}

\B11&\B12&\B13\\

\B21&\B22&\B23\\

\B31&\B32&\B33\\

\B41&\B42&\B43

\end{pmatrix}

=

\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^2 = \begin{pmatrix}

\D11&\D12&\D13\\

\D21&\D22&\D23\\

\D31&\D32&\D33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^3 = \begin{pmatrix}

\E11&\E12&\E13\\

\E21&\E22&\E23\\

\E31&\E32&\E33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^4 = \begin{pmatrix}

\F11&\F12&\F13\\

\F21&\F22&\F23\\

\F31&\F32&\F33

\end{pmatrix}\]

\end{multicols}

*.,
1 2 3 4

2 3 4 5

3 4 5 6

+/- ×
*....,
0 -1 -2

1 0 -1

2 1 0

3 2 1

+////-
=
*.,
20 10 0

26 12 -2

32 14 -4

+/-
*.,
20 10 0

26 12 -2

32 14 -4

+/-
2

=
*.,
660 320 -20

768 376 -16

876 432 -12

+/-

*.,
20 10 0

26 12 -2

32 14 -4

+/-
3

=
*.,
20880 10160 -560

24624 11968 -688

28368 13776 -816

+/-
*.,
20 10 0

26 12 -2

32 14 -4

+/-
4

=
*.,
663840 322880 -18080

781632 380224 -21184

899424 437568 -24288

+/-
40

7 Commands of the xinttools package

7.15 \xintiloop, \xintiloopindex, \xintouteriloopindex, \xintbreakiloop,
\xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo

\xintiloop[start+delta]⟨stuff ⟩\if<test> ... \repeat is a completely expandable nestable loop.I
complete expandability depends naturally on the actual iterated contents, and complete expansion

will not be achievable under a sole f-expansion, as is indicated by the hollow star in the margin;
thus the loop can be used inside an \edef but not inside arguments to the package macros. It can be

used inside an \xintexpr..\relax. The [start+delta] is mandatory, not optional.

This loop benefits via \xintiloopindex to (a limited access to) the integer index of the iter-

ation. The starting value start (which may be a \count) and increment delta (id.) are mandatory
arguments. A space after the closing square bracket is not significant, it will be ignored. Spaces

inside the square brackets will also be ignored as the two arguments are first given to a \numexpr⤸
...\relax. Empty lines and explicit \par tokens are accepted.

As with \xintloop, this tool will mostly be of interest to advanced users. For nesting, one

puts inside braces all the material from the start (immediately after [start+delta]) and up to

and inclusive of the inner loop, these braces will be removed and do not create a loop. In case

of nesting, \xintouteriloopindex gives access to the index of the outer loop. If needed one could

write on its model a macro giving access to the index of the outer outer loop (or even to the nth

outer loop).

The \xintiloopindex and \xintouteriloopindex can not be used inside braces, and generally

speaking this means they should be expanded first when given as argument to a macro, and that this

macro receives them as delimited arguments, not braced ones. Or, but naturally this will break ex-

pandability, one can assign the value of \xintiloopindex to some \count. Both \xintiloopindex and

\xintouteriloopindex extend to the litteral representation of the index, thus in \ifnum tests, if

it comes last one has to correctly end the macro with a \space, or encapsulate it in a \numexpr..\⤸
relax.

When the repeat-test of the loop is, for example, \ifnum\xintiloopindex<10 \repeat, this means

that the last iteration will be with \xintiloopindex=10 (assuming delta=1). There is also \ifnum⤸
\xintiloopindex=10 \else\repeat to get the last iteration to be the one with \xintiloopindex=10.

One has \xintbreakiloop and \xintbreakiloopanddo to abort the loop. The syntax of \xintbreakil⤸
oopanddo is a bit surprising, the sequence of tokens to be executed after breaking the loop is not

within braces but is delimited by a dot as in:

\xintbreakiloopanddo <afterloop>.etc.. etc... \repeat

The reason is that one may wish to use the then current value of \xintiloopindex in <afterloop> but

it can't be within braces at the time it is evaluated. However, it is not that easy as \xintiloopi⤸
ndex must be expanded before, so one ends up with code like this:

\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.%

etc.. etc.. \repeat

As moreover the \fi from the test leading to the decision of breaking out of the loop must be

cleared out of the way, the above should be a branch of an expandable conditional test, else one

needs something such as:

\xint_afterfi{\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.}%

\fi etc..etc.. \repeat

There is \xintiloopskiptonext to abort the current iteration and skip to the next, \xintiloopskip-

andredo to skip to the end of the current iteration and redo it with the same value of the index

(something else will have to change for this not to become an eternal loop...).

Inside alignments, if the looped-over text contains a & or a \cr, any un-expandable material

before a \xintiloopindex will make it fail because of \endtemplate; in such cases one can always

either replace & by a macro expanding to it or replace it by a suitable \firstofone{&}, and simi-

larly for \cr.
As an example, let us construct an \edef\z{...} which will define \z to be a list of prime num-

bers:
\begingroup

41

7 Commands of the xinttools package

\edef\z

{\xintiloop [10001+2]

{\xintiloop [3+2]

\ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax

\xintouteriloopindex,

\expandafter\xintbreakiloop

\fi

\ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\else

\repeat

}% no space here

\ifnum \xintiloopindex < 10999 \repeat }%

\meaning\z\endgroup

macro:->10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103,

10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243,

10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337,

10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487,

10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631,

10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753,

10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891,

10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, and we should have taken

some steps to not have a trailing comma, but the point was to show that one can do that in an \edef !

See also subsection 7.16 which extracts from this code its way of testing primality.
Let us create an alignment where each row will contain all divisors of its first entry. Here is

the output, thus obtained without any count register:
\begin{multicols}2

\tabskip1ex \normalcolor

\halign{&\hfil#\hfil\cr

\xintiloop [1+1]

{\expandafter\bfseries\xintiloopindex &

\xintiloop [1+1]

\ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\xintiloopindex&\fi

\ifnum\xintiloopindex<\xintouteriloopindex\space % CRUCIAL \space HERE

\repeat \cr }%

\ifnum\xintiloopindex<30

\repeat

}

\end{multicols}

1 1
2 1 2
3 1 3
4 1 2 4

5 1 5
6 1 2 3 6

7 1 7
8 1 2 4 8

9 1 3 9

10 1 2 5 10

11 1 11
12 1 2 3 4 6 12

13 1 13

14 1 2 7 14

15 1 3 5 15

16 1 2 4 8 16

17 1 17
18 1 2 3 6 9 18

19 1 19
20 1 2 4 5 10 20

21 1 3 7 21

22 1 2 11 22
23 1 23
24 1 2 3 4 6 8 12 24

25 1 5 25
26 1 2 13 26

42

7 Commands of the xinttools package

27 1 3 9 27

28 1 2 4 7 14 28

29 1 29
30 1 2 3 5 6 10 15 30

We wanted this first entry in bold face, but \bfseries leads to unexpandable tokens, so the \exp⤸
andafter was necessary for \xintiloopindex and \xintouteriloopindex not to be confronted with a
hard to digest \endtemplate. An alternative way of coding:

\tabskip1ex

\def\firstofone #1{#1}%

\halign{&\hfil#\hfil\cr

\xintiloop [1+1]

{\bfseries\xintiloopindex\firstofone{&}%

\xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\xintiloopindex\firstofone{&}\fi

\ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL

\repeat \firstofone{\cr}}%

\ifnum\xintiloopindex<30 \repeat }

7.16 Another completely expandable prime test
The \IsPrime macro from subsection 7.13 checked expandably if a (short) integer was prime, here is

a partial rewrite using \xintiloop. We use the etoolbox expandable conditionals for convenience,

but not everywhere as \xintiloopindex can not be evaluated while being braced. This is also the

reason why \xintbreakiloopanddo is delimited, and the next macro \SmallestFactor which returns

the smallest prime factor examplifies that. One could write more efficient completely expandable

routines, the aim here was only to illustrate use of the general purpose \xintiloop. A little table

giving the first values of \SmallestFactor follows, its coding uses \xintFor, which is described

later; none of this uses count registers.
\let\IsPrime\undefined \let\SmallestFactor\undefined % clean up possible previous mess

\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes

{\if

\xintiloop [3+2]

\ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax

\expandafter\xintbreakiloopanddo\expandafter1\expandafter.%

\fi

\ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax

\else

\repeat 00\expandafter0\else\expandafter1\fi

}%

}% END OF THE ODD BRANCH

{\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH

}%

\catcode`_ 11

\newcommand{\SmallestFactor}[1] % returns the smallest prime factor of #1>1

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{#1}% 3,5,7 are primes

{\xintiloop [3+2]

\ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax

\xint_afterfi{\xintbreakiloopanddo#1.}%

\fi

\ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax

\xint_afterfi{\expandafter\xintbreakiloopanddo\xintiloopindex.}%

43

7 Commands of the xinttools package

\fi

\iftrue\repeat

}%

}% END OF THE ODD BRANCH

{2}% EVEN BRANCH

}%

\catcode`_ 8

{\centering

\begin{tabular}{|c|*{10}c|}

\hline

\xintFor #1 in {0,1,2,3,4,5,6,7,8,9}\do {&\bfseries #1}\\

\hline

\bfseries 0&--&--&2&3&2&5&2&7&2&3\\

\xintFor #1 in {1,2,3,4,5,6,7,8,9}\do

{\bfseries #1%

\xintFor #2 in {0,1,2,3,4,5,6,7,8,9}\do

{&\SmallestFactor{#1#2}}\\}%

\hline

\end{tabular}\par

}

0 1 2 3 4 5 6 7 8 9
0 -- -- 2 3 2 5 2 7 2 3

1 2 11 2 13 2 3 2 17 2 19

2 2 3 2 23 2 5 2 3 2 29

3 2 31 2 3 2 5 2 37 2 3

4 2 41 2 43 2 3 2 47 2 7

5 2 3 2 53 2 5 2 3 2 59

6 2 61 2 3 2 5 2 67 2 3

7 2 71 2 73 2 3 2 7 2 79

8 2 3 2 83 2 5 2 3 2 89

9 2 7 2 3 2 5 2 97 2 3

7.17 A table of factorizations
As one more example with \xintiloop let us use an alignment to display the factorization of some

numbers. The loop will actually only play a minor rôle here, just handling the row index, the row

contents being almost entirely produced via a macro \factorize. The factorizing macro does not

use \xintiloop as it didn't appear to be the convenient tool. As \factorize will have to be used

on \xintiloopindex, it has been defined as a delimited macro.

To spare some fractions of a second in the compilation time of this document (which has many many

other things to do), 2147483629 and 2147483647, which turn out to be prime numbers, are not given

to factorize but just typeset directly; this illustrates use of \xintiloopskiptonext.

The code next generates a table which has been made into a float appearing on page 46. Here is

now the code for factorization; the conditionals use the package provided \xint_firstoftwo and \⤸
xint_secondoftwo, one could have employed rather LATEX's own \@firstoftwo and \@secondoftwo, or,

simpler still in LATEX context, the \ifnumequal, \ifnumless ..., utilities from the package etoolb⤸
ox which do exactly that under the hood. Only TEX acceptable numbers are treated here, but it would

be easy to make a translation and use the xint macros, thus extending the scope to big numbers;

naturally up to a cost in speed.

The reason for some strange looking expressions is to avoid arithmetic overflow.
\catcode`_ 11

\def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi}

\def\factorize #1.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-2=\numexpr ((#1/2)-1)*2\relax

44

7 Commands of the xinttools package

\expandafter\xint_firstoftwo

\else\expandafter\xint_secondoftwo

\fi

{2&\expandafter\factorize\the\numexpr#1/2.}%

{\factorize_b #1.3.}}%

\def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-(#2-1)*#2<#2

#1\abortfactorize

\fi

\ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)*#2\relax

\expandafter\xint_firstoftwo

\else\expandafter\xint_secondoftwo

\fi

{#2&\expandafter\factorize_b\the\numexpr#1/#2.#2.}%

{\expandafter\factorize_b\the\numexpr #1\expandafter.%

\the\numexpr #2+2.}}%

\catcode`_ 8

\begin{figure*}[ht!]

\centering\phantomsection\label{floatfactorize}\normalcolor

\tabskip1ex

\centeredline{\vbox{\halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule}

\xintiloop ["7FFFFFE0+1]

\expandafter\bfseries\xintiloopindex &

\ifnum\xintiloopindex="7FFFFFED

\number"7FFFFFED\cr\noalign{\hrule}

\expandafter\xintiloopskiptonext

\fi

\expandafter\factorize\xintiloopindex.\cr\noalign{\hrule}

\ifnum\xintiloopindex<"7FFFFFFE

\repeat

\bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule}

}}}

\centeredline{A table of factorizations}

\end{figure*}

The next utilities are not compatible with expansion-only context.

7.18 \xintApplyInline
\xintApplyInline{\macro}{⟨list⟩} works non expandably. It applies the one-parameter \macro to theo *f
first element of the expanded list (\macro may have itself some arguments, the list item will be

appended as last argument), and is then re-inserted in the input stream after the tokens resulting

from this first expansion of \macro. The next item is then handled.

This is to be used in situations where one needs to do some repetitive things. It is not expand-

able and can not be completely expanded inside a macro definition, to prepare material for later

execution, contrarily to what \xintApply or \xintApplyUnbraced achieve.
\def\Macro #1{\advance\cnta #1 , \the\cnta}

\cnta 0

0\xintApplyInline\Macro {3141592653}.

0, 3, 4, 8, 9, 14, 23, 25, 31, 36, 39. The first argument \macro does not have to be an expandable

macro.

\xintApplyInline submits its second, token list parameter to an f-expansion. Then, each un-
braced item will also be f-expanded. This provides an easy way to insert one list inside another.

45

7 Commands of the xinttools package

2147483616 2 2 2 2 2 3 2731 8191
2147483617 6733 318949
2147483618 2 7 367 417961
2147483619 3 3 23 353 29389
2147483620 2 2 5 4603 23327
2147483621 14741 145681
2147483622 2 3 17 467 45083
2147483623 79 967 28111
2147483624 2 2 2 11 13 1877171
2147483625 3 5 5 5 7 199 4111
2147483626 2 19 37 1527371
2147483627 47 53 862097
2147483628 2 2 3 3 59652323
2147483629 2147483629
2147483630 2 5 6553 32771
2147483631 3 137 263 19867
2147483632 2 2 2 2 7 73 262657
2147483633 5843 367531
2147483634 2 3 12097 29587
2147483635 5 11 337 115861
2147483636 2 2 536870909
2147483637 3 3 3 13 6118187
2147483638 2 2969 361651
2147483639 7 17 18046081
2147483640 2 2 2 3 5 29 43 113 127
2147483641 2699 795659
2147483642 2 23 46684427
2147483643 3 715827881
2147483644 2 2 233 1103 2089
2147483645 5 19 22605091
2147483646 2 3 3 7 11 31 151 331
2147483647 2147483647

A table of factorizations

Braced items are not expanded. Spaces in-between items are gobbled (as well as those at the start
or the end of the list), but not the spaces inside the braced items.
\xintApplyInline, despite being non-expandable, does survive to contexts where the executed \⤸

macro closes groups, as happens inside alignments with the tabulation character &. This tabular

provides an example:
\centerline{\normalcolor\begin{tabular}{ccc}

N & N^2 & N^3 \\ \hline

\def\Row #1{ #1 & \xintiiSqr {#1} & \xintiiPow {#1}{3} \\ \hline }%

\xintApplyInline \Row {\xintCSVtoList{17,28,39,50,61}}

\end{tabular}}\medskip

N N2 N3

17 289 4913

28 784 21952

39 1521 59319

50 2500 125000

61 3721 226981

We see that despite the fact that the first encountered tabulation character in the first row

46

7 Commands of the xinttools package

close a group and thus erases \Row from TEX's memory, \xintApplyInline knows how to deal with this.

Using \xintApplyUnbraced is an alternative: the difference is that this would have prepared all

rows first and only put them back into the token stream once they are all assembled, whereas with

\xintApplyInline each row is constructed and immediately fed back into the token stream: when one

does things with numbers having hundreds of digits, one learns that keeping on hold and shuffling

around hundreds of tokens has an impact on TEX's speed (make this ``thousands of tokens'' for the

impact to be noticeable).

One may nest various \xintApplyInline's. For example (see the table on this page):
\begin{figure*}[ht!]

\centering\phantomsection\label{float}

\def\Row #1{#1:\xintApplyInline {\Item {#1}}{0123456789}\\ }%

\def\Item #1#2{&\xintiPow {#1}{#2}}%

\centeredline {\begin{tabular}{ccccccccccc} &0&1&2&3&4&5&6&7&8&9\\ \hline

\xintApplyInline \Row {0123456789}

\end{tabular}}

\end{figure*}

0 1 2 3 4 5 6 7 8 9
0: 1 0 0 0 0 0 0 0 0 0
1: 1 1 1 1 1 1 1 1 1 1
2: 1 2 4 8 16 32 64 128 256 512
3: 1 3 9 27 81 243 729 2187 6561 19683
4: 1 4 16 64 256 1024 4096 16384 65536 262144
5: 1 5 25 125 625 3125 15625 78125 390625 1953125
6: 1 6 36 216 1296 7776 46656 279936 1679616 10077696
7: 1 7 49 343 2401 16807 117649 823543 5764801 40353607
8: 1 8 64 512 4096 32768 262144 2097152 16777216 134217728
9: 1 9 81 729 6561 59049 531441 4782969 43046721 387420489

One could not move the definition of \Item inside the tabular, as it would get lost after the
first &. But this works:

\begin{tabular}{ccccccccccc}

&0&1&2&3&4&5&6&7&8&9\\ \hline

\def\Row #1{#1:\xintApplyInline {&\xintiPow {#1}}{0123456789}\\ }%

\xintApplyInline \Row {0123456789}

\end{tabular}

A limitation is that, contrarily to what one may have expected, the \macro for an \xintApplyInl⤸
ine can not be used to define the \macro for a nested sub-\xintApplyInline. For example, this does

not work:
\def\Row #1{#1:\def\Item ##1{&\xintiPow {#1}{##1}}%

\xintApplyInline \Item {0123456789}\\ }%

\xintApplyInline \Row {0123456789} % does not work

But see \xintFor.

7.19 \xintFor, \xintFor*
\xintFor is a new kind of for loop. Rather than using macros for encapsulating list items, itso n
behavior is more like a macro with parameters: #1, #2, ..., #9 are used to represent the items for
up to nine levels of nested loops. Here is an example:

\xintFor #9 in {1,2,3} \do {%

\xintFor #1 in {4,5,6} \do {%

\xintFor #3 in {7,8,9} \do {%

\xintFor #2 in {10,11,12} \do {%

$$#9\times#1\times#3\times#2=\xintiiPrd{{#1}{#2}{#3}{#9}}$$}}}}

47

7 Commands of the xinttools package

This example illustrates that one does not have to use #1 as the first one: the order is arbitrary.

But each level of nesting should have its specific macro parameter. Nine levels of nesting is

presumably overkill, but I did not know where it was reasonable to stop. \par tokens are accepted

in both the comma separated list and the replacement text.

A macro \macro whose definition uses internally an \xintFor loop may be used inside another

\xintFor loop even if the two loops both use the same macro parameter. Note: the loop definition

inside \macro must double the character # as is the general rule in TEX with definitions done

inside macros.

The macros \xintFor and \xintFor* are not expandable, one can not use them inside an \edef.

But they may be used inside alignments (such as a LATEX tabular), as will be shown in examples.

The spaces between the various declarative elements are all optional; furthermore spaces around

the commas or at the start and end of the list argument are allowed, they will be removed. If an item

must contain itself commas, it should be braced to prevent these commas from being misinterpreted

as list separator. These braces will be removed during processing. The list argument may be a macro

\MyList expanding in one step to the comma separated list (if it has no arguments, it does not have

to be braced). It will be expanded (only once) to reveal its comma separated items for processing,

comma separated items will not be expanded before being fed into the replacement text as #1, or #2,

etc..., only leading and trailing spaces are removed.

A starred variant \xintFor* deals with lists of braced items, rather than comma separated items.*f n
It has also a distinct expansion policy, which is detailed below.

Contrarily to what happens in loops where the item is represented by a macro, here it is truly

exactly as when defining (in LATEX) a ``command'' with parameters #1, etc... This may avoid the user

quite a few troubles with \expandafters or other \edef/\noexpands which one encounters at times

when trying to do things with LATEX's \@for or other loops which encapsulate the item in a macro

expanding to that item.

The non-starred variant \xintFor deals with comma separated values (spaces before and after
the commas are removed) and the comma separated list may be a macro which is only expanded once
(to prevent expansion of the first item \x in a list directly input as \x,\y,... it should be

input as {\x},\y,.. or <space>\x,\y,.., naturally all of that within the mandatory braces of

the \xintFor #n in {list} syntax). The items are not expanded, if the input is <stuff>,\x,<⤸
stuff> then #1 will be at some point \x not its expansion (and not either a macro with \x as

replacement text, just the token \x). Input such as <stuff>,,<stuff> creates an empty #1, the

iteration is not skipped. An empty list does lead to the use of the replacement text, once,

with an empty #1 (or #n). Except if the entire list is represented as a single macro with no

parameters, it must be braced.

The starred variant \xintFor* deals with token lists (spaces between braced items or sin-
gle tokens are not significant) and f-expands each unbraced list item. This makes it easy to
simulate concatenation of various list macros \x, \y, ... If \x expands to {1}{2}{3} and \y

expands to {4}{5}{6} then {\x\y} as argument to \xintFor* has the same effect as {{1}{2}{3}{⤸
4}{5}{6}}43. Spaces at the start, end, or in-between items are gobbled (but naturally not the
spaces which may be inside braced items). Except if the list argument is a single macro with no
parameters, it must be braced. Each item which is not braced will be fully expanded (as the

\x and \y in the example above). An empty list leads to an empty result.

42 braces around single token items are optional so this is the same as {123456}.

48

7 Commands of the xinttools package

The macro \xintSeq which generates arithmetic sequences may only be used with \xintFor* (num-

bers from output of \xintSeq are braced, not separated by commas).

\xintFor* #1 in {\xintSeq [+2]{-7}{+2}}\do {stuff with #1}

will have #1=-7,-5,-3,-1, and 1. The #1 as issued from the list produced by \xintSeq is the lit-

teral representation as would be produced by \arabic on a LATEX counter, it is not a count register.

When used in \ifnum tests or other contexts where TEX looks for a number it should thus be postfixed

with \relax or \space.
When nesting \xintFor* loops, using \xintSeq in the inner loops is inefficient, as the arith-

metic sequence will be re-created each time. A more efficient style is:
\edef\innersequence {\xintSeq[+2]{-50}{50}}%

\xintFor* #1 in {\xintSeq {13}{27}} \do

{\xintFor* #2 in \innersequence \do {stuff with #1 and #2}%

.. some other macros .. }

This is a general remark applying for any nesting of loops, one should avoid recreating the inner

lists of arguments at each iteration of the outer loop. However, in the example above, if the .. ⤸
some other macros .. part closes a group which was opened before the \edef\innersequence, then

this definition will be lost. An alternative to \edef, also efficient, exists when dealing with

arithmetic sequences: it is to use the \xintintegers keyword (described later) which simulates

infinite arithmetic sequences; the loops will then be terminated via a test #1 (or #2 etc...) and

subsequent use of \xintBreakFor.

The \xintFor loops are not completely expandable; but they may be nested and used inside align-

ments or other contexts where the replacement text closes groups. Here is an example (still using

LATEX's tabular):
\begin{tabular}{rccccc}

\xintFor #7 in {A,B,C} \do {%

#7:\xintFor* #3 in {abcde} \do {&($ #3 \to #7 $)}\\ }%

\end{tabular}

A: (a→ A) (b→ A) (c→ A) (d→ A) (e→ A)
B: (a→ B) (b→ B) (c→ B) (d→ B) (e→ B)
C: (a→ C) (b→ C) (c→ C) (d→ C) (e→ C)
When inserted inside a macro for later execution the # characters must be doubled.43 For example:
\def\T{\def\z {}%

\xintFor* ##1 in {{u}{v}{w}} \do {%

\xintFor ##2 in {x,y,z} \do {%

\expandafter\def\expandafter\z\expandafter {\z\sep (##1,##2)} }%

}%

}%

\T\def\sep {\def\sep{, }}\z

(u,x), (u,y), (u,z), (v,x), (v,y), (v,z), (w,x), (w,y), (w,z)

Similarly when the replacement text of \xintFor defines a macro with parameters, the macro char-

acter # must be doubled.

It is licit to use inside an \xintFor a \macro which itself has been defined to use internally

some other \xintFor. The same macro parameter #1 can be used with no conflict (as mentioned above,

in the definition of \macro the # used in the \xintFor declaration must be doubled, as is the

general rule in TEX with things defined inside other things).

The iterated commands as well as the list items are allowed to contain explicit \par tokens.

Neither \xintFor nor \xintFor* create groups. The effect is like piling up the iterated commands

with each time #1 (or #2 ...) replaced by an item of the list. However, contrarily to the completely

expandable \xintApplyUnbraced, but similarly to the non completely expandable \xintApplyInline

each iteration is executed first before looking at the next #144 (and the starred variant \xintFor*

43 sometimes what seems to be a macro argument isn’t really; in \raisebox{1cm}{\xintFor #1 in {a,b,c}\do {#1}} no doubling
should be done. 44 to be completely honest, both \xintFor and \xintFor* initially scoop up both the list and the iterated
commands; \xintFor scoops up a second time the entire comma separated list in order to feed it to \xintCSVtoList. The starred
variant \xintFor* which does not need this step will thus be a bit faster on equivalent inputs.

49

7 Commands of the xinttools package

keeps on expanding each unbraced item it finds, gobbling spaces).

7.20 \xintifForFirst, \xintifForLast
\xintifForFirst {YES branch}{NO branch} and \xintifForLast {YES branch}{NO branch} execute then n ⋆n n ⋆
YES or NO branch if the \xintFor or \xintFor* loop is currently in its first, respectively last,

iteration.

Designed to work as expected under nesting. Don't forget an empty brace pair {} if a branch is

to do nothing. May be used multiple times in the replacement text of the loop.

There is no such thing as an iteration counter provided by the \xintFor loops; the user is invited

to define if needed his own count register or LATEX counter, for example with a suitable \stepcounter

inside the replacement text of the loop to update it.

It is a known feature of these conditionals that they cease to function if put at a location

of the \xintFor replacement text which has closed a group, for example in the last cell of an

alignment created by the loop, assuming the replacement text of the \xintFor loop creates a

row. The conditional must be used before the first cell is closed. This is not likely to change

in future versions. It is not an intrinsic limitation as the branches of the conditional can

be the complete rows, inclusive of all &'s and the tabular newline \\.

7.21 \xintBreakFor, \xintBreakForAndDo
One may immediately terminate an \xintFor or \xintFor* loop with \xintBreakFor. As the criterion

for breaking will be decided on a basis of some test, it is recommended to use for this test the

syntax of ifthen45 or etoolbox46 or the xint own conditionals, rather than one of the various \if...⤸
\fi of TEX. Else (and this is without even mentioning all the various pecularities of the \if...\fi

constructs), one has to carefully move the break after the closing of the conditional, typically

with \expandafter\xintBreakFor\fi.47

There is also \xintBreakForAndDo. Both are illustrated by various examples in the next section

which is devoted to ``forever'' loops.

7.22 \xintintegers, \xintdimensions, \xintrationals
If the list argument to \xintFor (or \xintFor*, both are equivalent in this context) is \xint-

integers (equivalently \xintegers) or more generally \xintintegers[start+delta] (the whole
within braces!)48, then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run
through the arithmetic sequence of (short) integers with initial value start and increment delt⤸
a (default values: start=1, delta=1; if the optional argument is present it must contains both of

them, and they may be explicit integers, or macros or count registers). The #1 (or #2, ..., #9)

will stand for \numexpr <opt sign><digits>\relax, and the litteral representation as a string of

digits can thus be obtained as \the#1 or \number#1. Such a #1 can be used in an \ifnum test with

no need to be postfixed with a space or a \relax and one should not add them.
If the list argument is \xintdimensions or more generally \xintdimensions[start+delta] (within

braces!), then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run through the
arithmetic sequence of dimensions with initial value start and increment delta. Default values:

start=0pt, delta=1pt; if the optional argument is present it must contain both of them, and they

may be explicit specifications, or macros, or dimen registers, or length commands in LATEX (the

45 http://ctan.org/pkg/ifthen 46 http://ctan.org/pkg/etoolbox 47 the difficulties here are similar to those mentioned in
subsection 4.5, although less severe, as complete expandability is not to be maintained; hence the allowed use of ifthen. 48 the st⤸
art+delta optional specification may have extra spaces around the plus sign of near the square brackets, such spaces are removed.
The same applies with \xintdimensions and \xintrationals.

50

http://ctan.org/pkg/ifthen
http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/ifthen
http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/ifthen

7 Commands of the xinttools package

stretch and shrink components will be discarded). The #1 will be \dimexpr <opt sign><digits>sp\r⤸
elax, from which one can get the litteral (approximate) representation in points via \the#1. So #1

can be used anywhere TEX expects a dimension (and there is no need in conditionals to insert a \rel⤸
ax, and one should not do it), and to print its value one uses \the#1 . The chosen representation
guarantees exact incrementation with no rounding errors accumulating from converting into points

at each step.

\def\DimToNum #1{\number\dimexpr #1\relax }

\xintNewIExpr \FA [2] {protect(\DimToNum {#2})^3/protect(\DimToNum{#1})^2} %cube

\xintNewIExpr \FB [2] {sqrt (protect(\DimToNum {#2})*protect(\DimToNum {#1}))} %sqrt

\xintNewExpr \Ratio [2] {trunc(protect(\DimToNum {#2})/protect(\DimToNum{#1}),3)}

\xintFor #1 in {\xintdimensions [0pt+.1pt]} \do

{\ifdim #1>2cm \expandafter\xintBreakFor\fi

{\color [rgb]{\Ratio {2cm}{#1},0,0}%

\vrule width .1pt height \FB {2cm}{#1}sp depth -\FA {2cm}{#1}sp }%

}% end of For iterated text

The graphic, with the code on its right49, is for illustration only, not only because of pdf ren-

dering artefacts when displaying adjacent rules (which do not show in dvi output as rendered by
xdvi, and depend from your viewer), but because not using anything but rules it is quite inef-

ficient and must do lots of computations to not confer a too ragged look to the borders. With a

width of .5pt rather than .1pt for the rules, one speeds up the drawing by a factor of five, but the

boundary is then visibly ragged. 50

If the list argument to \xintFor (or \xintFor*) is \xintrationals or more generally \xint-
rationals[start+delta] (within braces!), then \xintFor does an infinite iteration where #1 (or
#2, ..., #9) will run through the arithmetic sequence of xintfrac fractions with initial value
start and increment delta (default values: start=1/1, delta=1/1). This loop works only with xint-
frac loaded. if the optional argument is present it must contain both of them, and they may be given
in any of the formats recognized by xintfrac (fractions, decimal numbers, numbers in scientific
notations, numerators and denominators in scientific notation, etc...) , or as macros or count
registers (if they are short integers). The #1 (or #2, ..., #9) will be an a/b fraction (without
a [n] part), where the denominator b is the product of the denominators of start and delta (for
reasons of speed #1 is not reduced to irreducible form, and for another reason explained later st⤸
art and delta are not put either into irreducible form; the input may use explicitely \xintIrr to
achieve that).

\begingroup\small

\noindent\parbox{\dimexpr\linewidth-3em}{\color[named]{OrangeRed}%

\xintFor #1 in {\xintrationals [10/21+1/21]} \do

{#1=\xintifInt {#1}

{\textcolor{blue}{\xintTrunc{10}{#1}}}

{\xintTrunc{10}{#1}}% display in blue if an integer

\xintifGt {#1}{1.123}{\xintBreakFor}{, }%

}}

\endgroup\smallskip
10/21=0.4761904761, 11/21=0.5238095238, 12/21=0.5714285714, 13/21=0.6190476190,

14/21=0.6666666666, 15/21=0.7142857142, 16/21=0.7619047619, 17/21=0.8095238095,

18/21=0.8571428571, 19/21=0.9047619047, 20/21=0.9523809523, 21/21=1.0000000000,

22/21=1.0476190476, 23/21=1.0952380952, 24/21=1.1428571428

49 see subsubsection 11.8.2 for the significance of the protect’s: they are needed because the expression has macro
parameters inside macros, and not only functions from the \xintexpr syntax. The \FA turns out to have meaning
macro:#1#2->\romannumeral`^^@\xintSPRaw::csv {\xintRound::csv {0}{\xintDiv {\xintPow {\DimToNum {#2}}{3}}{\xintPow
{\DimToNum {#1}}{2}}}}. The \romannumeral part is only to ensure it expands in only two steps, and could be removed.
The \xintRound::csv and \xintSPRaw::csv commands are used internally by \xintiexpr to round and pretty print its re-
sult (or comma separated results). See also the next footnote. 50 to tell the whole truth we cheated and divided by 10
the computation time through using the following definitions, together with a horizontal step of .25pt rather than .1pt.
The displayed original code would make the slowest computation of all those done in this document using the xint bundle

macros!

\def\DimToNum #1{\the\numexpr \dimexpr#1\relax/10000\relax } % no need to be more precise!
\def\FA #1#2{\xintDSH {-4}{\xintiQuo {\xintiPow {\DimToNum {#2}}{3}}{\xintiSqr {\DimToNum{#1}}}}}
\def\FB #1#2{\xintDSH {-4}{\xintiSqrt {\xintiMul {\DimToNum {#2}}{\DimToNum{#1}}}}}
\def\Ratio #1#2{\xintTrunc {2}{\DimToNum {#2}/\DimToNum{#1}}}
\xintFor #1 in {\xintdimensions [0pt+.25pt]} \do
{\ifdim #1>2cm \expandafter\xintBreakFor\fi
{\color [rgb]{\Ratio {2cm}{#1},0,0}%
\vrule width .25pt height \FB {2cm}{#1}sp depth -\FA {2cm}{#1}sp }%
}% end of For iterated text

51

7 Commands of the xinttools package

The example above confirms that computations are done exactly, and illustrates that the two

initial (reduced) denominators are not multiplied when they are found to be equal. It is thus

recommended to input start and delta with a common smallest possible denominator, or as fixed

point numbers with the same numbers of digits after the decimal mark; and this is also the reason

why start and delta are not by default made irreducible. As internally the computations are done

with numerators and denominators completely expanded, one should be careful not to input numbers

in scientific notation with exponents in the hundreds, as they will get converted into as many

zeroes.
\noindent\parbox{\dimexpr.7\linewidth}{\raggedright

\xintFor #1 in {\xintrationals [0.000+0.125]} \do

{\edef\tmp{\xintTrunc{3}{#1}}%

\xintifInt {#1}

{\textcolor{blue}{\tmp}}

{\tmp}%

\xintifGt {#1}{2}{\xintBreakFor}{, }%

}}\smallskip
0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000, 1.125,

1.250, 1.375, 1.500, 1.625, 1.750, 1.875, 2.000, 2.125
We see here that \xintTrunc outputs (deliberately) zero as 0, not (here) 0.000, the idea being

not to lose the information that the truncated thing was truly zero. Perhaps this behavior should

be changed? or made optional? Anyhow printing of fixed points numbers should be dealt with via

dedicated packages such as numprint or siunitx.

7.23 Another table of primes
As a further example, let us dynamically generate a tabular with the first 50 prime numbers af-

ter 12345. First we need a macro to test if a (short) number is prime. Such a completely expand-

able macro was given in subsection 7.12, here we consider a variant which will be slightly more

efficient. This new \IsPrime has two parameters. The first one is a macro which it redefines to

expand to the result of the primality test applied to the second argument. For convenience we use

the etoolbox wrappers to various \ifnum tests, although here there isn't anymore the constraint

of complete expandability (but using explicit \if..\fi in tabulars has its quirks); equivalent

tests are provided by xint, but they have some overhead as they are able to deal with arbitrarily

big integers.
\def\IsPrime #1#2% #1=\Result, #2=tested number (assumed >0).

{\edef\TheNumber {\the\numexpr #2}% hence #2 may be a count or \numexpr.

\ifnumodd {\TheNumber}

{\ifnumgreater {\TheNumber}{1}

{\edef\ItsSquareRoot{\xintiSqrt \TheNumber}%

\xintFor ##1 in {\xintintegers [3+2]}\do

{\ifnumgreater {##1}{\ItsSquareRoot} % ##1 is a \numexpr.

{\def#1{1}\xintBreakFor}

{}%

\ifnumequal {\TheNumber}{(\TheNumber/##1)*##1}

{\def#1{0}\xintBreakFor }

{}%

}}

{\def#1{0}}}% 1 is not prime

{\ifnumequal {\TheNumber}{2}{\def#1{1}}{\def#1{0}}}%

}

As we used \xintFor inside a macro we had to double the # in its #1 parameter. Here is now the

code which creates the prime table (the table has been put in a float, which should be found on page

53):
\newcounter{primecount}

\newcounter{cellcount}

52

http://ctan.org/pkg/etoolbox

7 Commands of the xinttools package

\begin{figure*}[ht!]

\centering

\begin{tabular}{|*{7}c|}

\hline

\setcounter{primecount}{0}\setcounter{cellcount}{0}%

\xintFor #1 in {\xintintegers [12345+2]} \do

% #1 is a \numexpr.

{\IsPrime\Result{#1}%

\ifnumgreater{\Result}{0}

{\stepcounter{primecount}%

\stepcounter{cellcount}%

\ifnumequal {\value{cellcount}}{7}

{\the#1 \\\setcounter{cellcount}{0}}

{\the#1 &}}

{}%

\ifnumequal {\value{primecount}}{50}

{\xintBreakForAndDo

{\multicolumn {6}{l|}{These are the first 50 primes after 12345.}\\}}

{}%

}\hline

\end{tabular}

\end{figure*}

12347 12373 12377 12379 12391 12401 12409
12413 12421 12433 12437 12451 12457 12473
12479 12487 12491 12497 12503 12511 12517
12527 12539 12541 12547 12553 12569 12577
12583 12589 12601 12611 12613 12619 12637
12641 12647 12653 12659 12671 12689 12697
12703 12713 12721 12739 12743 12757 12763
12781 These are the first 50 primes after 12345.

7.24 Some arithmetic with Fibonacci numbers
Here is the code employed on the title page to compute (expandably, of course!) the 1250th Fi-

bonacci number:
\catcode`_ 11

\def\Fibonacci #1{% \Fibonacci{N} computes F(N) with F(0)=0, F(1)=1.

\expandafter\Fibonacci_a\expandafter

{\the\numexpr #1\expandafter}\expandafter

{\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval 0\relax}}

%

\def\Fibonacci_a #1{%

\ifcase #1

\expandafter\Fibonacci_end_i

\or

\expandafter\Fibonacci_end_ii

\else

\ifodd #1

\expandafter\expandafter\expandafter\Fibonacci_b_ii

\else

\expandafter\expandafter\expandafter\Fibonacci_b_i

53

7 Commands of the xinttools package

\fi

\fi {#1}%

}% * signs are omitted from the next macros, tacit multiplications

\def\Fibonacci_b_i #1#2#3{\expandafter\Fibonacci_a\expandafter

{\the\numexpr #1/2\expandafter}\expandafter

{\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval (2#2-#3)#3\relax}%

}% end of Fibonacci_b_i

\def\Fibonacci_b_ii #1#2#3#4#5{\expandafter\Fibonacci_a\expandafter

{\the\numexpr (#1-1)/2\expandafter}\expandafter

{\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval (2#2-#3)#3\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval #2#4+#3#5\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiieval #2#5+#3(#4-#5)\relax}%

}% end of Fibonacci_b_ii

% code as used on title page:

%\def\Fibonacci_end_i #1#2#3#4#5{\xintthe#5}

%\def\Fibonacci_end_ii #1#2#3#4#5{\xinttheiiexpr #2#5+#3(#4-#5)\relax}

% new definitions:

\def\Fibonacci_end_i #1#2#3#4#5{{#4}{#5}}% {F(N+1)}{F(N)} in \xintexpr format

\def\Fibonacci_end_ii #1#2#3#4#5%

{\expandafter

{\romannumeral0\xintiieval #2#4+#3#5\expandafter\relax

\expandafter}\expandafter

{\romannumeral0\xintiieval #2#5+#3(#4-#5)\relax}}% idem.

% \FibonacciN returns F(N) (in encapsulated format: needs \xintthe for printing)

\def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-`0\Fibonacci }%

\catcode`_ 8

I have modified the ending: we want not only one specific value F(N) but a pair of successive

values which can serve as starting point of another routine devoted to compute a whole sequence F(N⤸
), F(N+1), F(N+2),..... This pair is, for efficiency, kept in the encapsulated internal xintexpr

format. \FibonacciN outputs the single F(N), also as an \xintexpr-ession, and printing it will

thus need the \xintthe prefix.
Here a code snippet which checks the routine via a \message of the first 51 Fibonacci numbers (this is not an efficient way to

generate a sequence of such numbers, it is only for validating \FibonacciN).
\def\Fibo #1.{\xintthe\FibonacciN {#1}}%

\message{\xintiloop [0+1] \expandafter\Fibo\xintiloopindex.,

\ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.}

The various \romannumeral0\xintiieval could very well all have been \xintiiexpr's but then we

would have needed more \expandafter's. Indeed the order of expansion must be controlled for the

whole thing to work, and \romannumeral0\xintiieval is the first expanded form of \xintiiexpr.

The way we use \expandafter's to chain successive \xintexpr evaluations is exactly analogous to

well-known expandable techniques made possible by \numexpr.

There is a difference though: \numexpr is NOT expandable, and to force its expansion we must
prefix it with \the or \number. On the other hand \xintexpr, \xintiexpr, ..., (or \xinteva⤸
l, \xintieval, ...) expand fully when prefixed by \romannumeral-`0: the computation is fully

executed and its result encapsulated in a private format.

Using \xintthe as prefix is necessary to print the result (this is like \the for \numexpr),

but it is not necessary to get the computation done (contrarily to the situation with \numexp⤸
r).

And, starting with release 1.09j, it is also allowed to expand a non \xintthe prefixed \xi⤸
ntexpr-ession inside an \edef: the private format is now protected, hence the error message

complaining about a missing \xintthe will not be executed, and the integrity of the format

54

7 Commands of the xinttools package

will be preserved.

This new possibility brings some efficiency gain, when one writes non-expandable algorithms

using xintexpr. If \xintthe is employed inside \edef the number or fraction will be un-locked

into its possibly hundreds of digits and all these tokens will possibly weigh on the upcoming

shuffling of (braced) tokens. The private encapsulated format has only a few tokens, hence

expansion will proceed a bit faster.

see footnote51

Our \Fibonacci expands completely under f-expansion, so we can use \fdef rather than \edef in a
situation such as

\fdef \X {\FibonacciN {100}}

but for the reasons explained above, it is as efficient to employ \edef. And if we want

\edef \Y {(\FibonacciN{100},\FibonacciN{200})},

then \edef is necessary.

Allright, so let's now give the code to generate a sequence of braced Fibonacci numbers {F(N)⤸
}{F(N+1)}{F(N+2)}..., using \Fibonacci for the first two and then using the standard recursion

F(N+2)=F(N+1)+F(N):
\catcode`_ 11

\def\FibonacciSeq #1#2{%#1=starting index, #2>#1=ending index

\expandafter\Fibonacci_Seq\expandafter

{\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}%

}%

\def\Fibonacci_Seq #1#2{%

\expandafter\Fibonacci_Seq_loop\expandafter

{\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}%

}%

\def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion

{#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi

\expandafter\Fibonacci_Seq_loop\expandafter

{\the\numexpr #1+1\expandafter}\expandafter

{\romannumeral0\xintiieval #2+#3\relax}{#2}{#4}%

}%

\def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter

#1\expandafter #2#3#4{\fi {#3}}%

\catcode`_ 8

Deliberately and for optimization, this \FibonacciSeq macro is completely expandable but not

f-expandable. It would be easy to modify it to be so. But I wanted to check that the \xintFor* does
apply full expansion to what comes next each time it fetches an item from its list argument. Thus,

there is no need to generate lists of braced Fibonacci numbers beforehand, as \xintFor*, without

using any \edef, still manages to generate the list via iterated full expansion.

I initially used only one \halign in a three-column multicols environment, but multicols only

knows to divide the page horizontally evenly, thus I employed in the end one \halign for each column

(I could have then used a tabular as no column break was then needed).
\newcounter{index}

\tabskip 1ex

\fdef\Fibxxx{\FibonacciN {30}}%

\setcounter{index}{30}%

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {30}{59}}\do

{\theindex &\xintthe#1 &

\xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}%

51 To be completely honest the examination by TEX of all successive digits was not avoided, as it occurs already in the locking-up
of the result, what is avoided is to spend time un-locking, and then have the macros shuffle around possibly hundreds of digit
tokens rather than a few control words.

55

7 Commands of the xinttools package

30. 832040 0
31. 1346269 514229
32. 2178309 514229
33. 3524578 196418
34. 5702887 710647
35. 9227465 75025
36. 14930352 785672
37. 24157817 28657
38. 39088169 814329
39. 63245986 10946
40. 102334155 825275
41. 165580141 4181
42. 267914296 829456
43. 433494437 1597
44. 701408733 831053
45. 1134903170 610
46. 1836311903 831663
47. 2971215073 233
48. 4807526976 831896
49. 7778742049 89
50. 12586269025 831985
51. 20365011074 34
52. 32951280099 832019
53. 53316291173 13
54. 86267571272 832032
55. 139583862445 5
56. 225851433717 832037
57. 365435296162 2
58. 591286729879 832039
59. 956722026041 1

60. 1548008755920 0
61. 2504730781961 1
62. 4052739537881 1
63. 6557470319842 2
64. 10610209857723 3
65. 17167680177565 5
66. 27777890035288 8
67. 44945570212853 13
68. 72723460248141 21
69. 117669030460994 34
70. 190392490709135 55
71. 308061521170129 89
72. 498454011879264 144
73. 806515533049393 233
74. 1304969544928657 377
75. 2111485077978050 610
76. 3416454622906707 987
77. 5527939700884757 1597
78. 8944394323791464 2584
79. 14472334024676221 4181
80. 23416728348467685 6765
81. 37889062373143906 10946
82. 61305790721611591 17711
83. 99194853094755497 28657
84. 160500643816367088 46368
85. 259695496911122585 75025
86. 420196140727489673 121393
87. 679891637638612258 196418
88. 1100087778366101931 317811
89. 1779979416004714189 514229

90. 2880067194370816120 0
91. 4660046610375530309 514229
92. 7540113804746346429 514229
93. 12200160415121876738 196418
94. 19740274219868223167 710647
95. 31940434634990099905 75025
96. 51680708854858323072 785672
97. 83621143489848422977 28657
98. 135301852344706746049 814329
99. 218922995834555169026 10946
100. 354224848179261915075 825275
101. 573147844013817084101 4181
102. 927372692193078999176 829456
103. 1500520536206896083277 1597
104. 2427893228399975082453 831053
105. 3928413764606871165730 610
106. 6356306993006846248183 831663
107. 10284720757613717413913 233
108. 16641027750620563662096 831896
109. 26925748508234281076009 89
110. 43566776258854844738105 831985
111. 70492524767089125814114 34
112. 114059301025943970552219 832019
113. 184551825793033096366333 13
114. 298611126818977066918552 832032
115. 483162952612010163284885 5
116. 781774079430987230203437 832037
117. 1264937032042997393488322 2
118. 2046711111473984623691759 832039
119. 3311648143516982017180081 1

Some Fibonacci numbers together with their residues modulo F(30)=832040

}\vrule

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {60}{89}}\do

{\theindex &\xintthe#1 &

\xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}%

}\vrule

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {90}{119}}\do

{\theindex &\xintthe#1 &

\xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}%

}%

This produces the Fibonacci numbers from F(30) to F(119), and computes also all the congruence

classes modulo F(30). The output has been put in a float, which appears above. I leave to the

mathematically inclined readers the task to explain the visible patterns...;-).

7.25 \xintForpair, \xintForthree, \xintForfour
The syntax is illustrated in this example. The notation is the usual one for n-uples, with paren-o n
theses and commas. Spaces around commas and parentheses are ignored.

{\centering\begin{tabular}{cccc}

\xintForpair #1#2 in { (A , a) , (B , b) , (C , c) } \do {%

56

7 Commands of the xinttools package

\xintForpair #3#4 in { (X , x) , (Y , y) , (Z , z) } \do {%

$\Biggl($\begin{tabular}{cc}

-#1- & -#3-\\

-#4- & -#2-\\

\end{tabular}$\Biggr)$&}\\\noalign{\vskip1\jot}}%

\end{tabular}\\} (
-A- -X-

-x- -a-

) (
-A- -Y-

-y- -a-

) (
-A- -Z-

-z- -a-

)
(
-B- -X-

-x- -b-

) (
-B- -Y-

-y- -b-

) (
-B- -Z-

-z- -b-

)
(
-C- -X-

-x- -c-

) (
-C- -Y-

-y- -c-

) (
-C- -Z-

-z- -c-

)
Only #1#2, #2#3, #3#4, ..., #8#9 are valid (no error check is done on the input syntax, #1#3 or

similar all end up in errors). One can nest with \xintFor, for disjoint sets of macro parameters.

There is also \xintForthree (from #1#2#3 to #7#8#9) and \xintForfour (from #1#2#3#4 to #6#7#8#9).

\par tokens are accepted in both the comma separated list and the replacement text.

7.26 \xintAssign
\xintAssign⟨braced things⟩\to⟨as many cs as they are things⟩ defines (without checking if some-
thing gets overwritten) the control sequences on the right of \to to expand to the successive

tokens or braced items found one after the other on the left of \to. It is not expandable.

A `full' expansion is first applied to the material in front of \xintAssign, which may thus be a

macro expanding to a list of braced items.

Special case: if after this initial expansion no brace is found immediately after \xintAssign,

it is assumed that there is only one control sequence following \to, and this control sequence

is then defined via \def to expand to the material between \xintAssign and \to. Other types of

expansions are specified through an optional parameter to \xintAssign, see infra.
\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R

\meaning\Q:macro:->7500, \meaning\R: macro:->2500

\xintAssign \xintiiPow {7}{13}\to\SevenToThePowerThirteen

\SevenToThePowerThirteen=96889010407

(same as \edef\SevenToThePowerThirteen{\xintiPow {7}{13}})

\xintAssign admits since 1.09i an optional parameter, for example \xintAssign [e]... or \xintAs⤸
sign [oo] With [f] for example the definitions of the macros initially on the right of \to

will be made with \fdef which f-expands the replacement text. The default is simply to make the
definitions with \def, corresponding to an empty optional paramter []. Possibilities: [], [g], [⤸
e], [x], [o], [go], [oo], [goo], [f], [gf].

In all cases, recall that \xintAssign starts with an f-expansion of what comes next; this pro-
duces some list of tokens or braced items, and the optional parameter only intervenes to decide

the expansion type to be applied then to each one of these items.

Note: prior to release 1.09j, \xintAssign did an \edef by default, but it now does \def. Use the
optional parameter [e] to force use of \edef.
Remark: since xinttools 1.1c, \xintAssign is less picky and a stray space right before the \to causes no

surprises, and the successive braced items may be separated by spaces, which will get discarded. In case

the contents up to \to did not start with a brace a single macro is defined and it will contain the spaces.

Contrarily to the earlier version, there is no problem if such contents do contain braces after the first

non-brace token.

7.27 \xintAssignArray
\xintAssignArray⟨braced things⟩\to\myArray first expands fully what comes immediately after \xi⤸
ntAssignArray and expects to find a list of braced things {A}{B}... (or tokens). It then defines

57

7 Commands of the xinttools package

\myArray as a macro with one parameter, such that \myArray{x} expands to give the xth braced thing

of this original list (the argument {x} itself is fed to a \numexpr by \myArray, and \myArray

expands in two steps to its output). With 0 as parameter, \myArray{0} returns the number M of

elements of the array so that the successive elements are \myArray{1}, ..., \myArray{M}.

\xintAssignArray \xintBezout {1000}{113}\to\Bez

will set \Bez{0} to 5, \Bez{1} to 1000, \Bez{2} to 113, \Bez{3} to -20, \Bez{4} to -177, and \Bez{5}

to 1: (-20) × 1000 - (-177) × 113 = 1. This macro is incompatible with expansion-only contexts.
\xintAssignArray admits now an optional parameter, for example \xintAssignArray [e].... This

means that the definitions of the macros will be made with \edef. The default is [], which makes

the definitions with \def. Other possibilities: [], [o], [oo], [f]. Contrarily to \xintAssign

one can not use the g here to make the definitions global. For this, one should rather do \xintAss⤸
ignArray within a group starting with \globaldefs 1.

Note that prior to release 1.09j each item (token or braced material) was submitted to an \edef,

but the default is now to use \def.

7.28 \xintDigitsOf
This is a synonym for \xintAssignArray, to be used to define an array giving all the digits of af N
given (positive, else the minus sign will be treated as first item) number.

\xintDigitsOf\xintiPow {7}{500}\to\digits

7500 has \digits{0}=423 digits, and the 123rd among them (starting from the most significant) is

\digits{123}=3.

7.29 \xintRelaxArray
\xintRelaxArray\myArray (globally) sets to \relax all macros which were defined by the previous

\xintAssignArray with \myArray as array macro.

7.30 The Quick Sort algorithm illustrated
First a completely expandable macro which sorts a list of numbers. The \QSfull macro expands its

list argument, which may thus be a macro; its items must expand to possibly big integers (or also

decimal numbers or fractions if using xintfrac), but if an item is expressed as a computation,

this computation will be redone each time the item is considered! If the numbers have many digits

(i.e. hundreds of digits...), the expansion of \QSfull is fastest if each number, rather than being

explicitely given, is represented as a single token which expands to it in one step.

If the interest is only in TEX integers, then one should replace the macros \QSMore, QSEqual, QS⤸
Less with versions using the etoolbox (LATEX only) \ifnumgreater, \ifnumequal and \ifnumless con-

ditionals rather than \xintifGt, \xintifEq, \xintifLt.
% THE QUICK SORT ALGORITHM EXPANDABLY

% \usepackage{xintfrac} in the preamble (latex), or \input xintfrac.sty (Plain)

\catcode`@ 11 % = \makeatletter

\def\QSMore #1#2{\xintifGt {#2}{#1}{{#2}}{ }}

% the spaces stop the \romannumeral-`0 done by \xintapplyunbraced each time

% it applies its macro argument to an item

\def\QSEqual #1#2{\xintifEq {#2}{#1}{{#2}}{ }}

\def\QSLess #1#2{\xintifLt {#2}{#1}{{#2}}{ }}

%

\def\QSfull {\romannumeral0\qsfull }

\def\qsfull #1{\expandafter\qsfull@a\expandafter{\romannumeral-`0#1}}

\def\qsfull@a #1{\expandafter\qsfull@b\expandafter {\xintLength {#1}}{#1}}

\def\qsfull@b #1{\ifcase #1

\expandafter\qsfull@empty

\or\expandafter\qsfull@single

58

http://ctan.org/pkg/etoolbox

7 Commands of the xinttools package

\else\expandafter\qsfull@c

\fi }

\def\qsfull@empty #1{ }% the space stops the \QSfull \romannumeral0

\def\qsfull@single #1{ #1}

\def\qsfull@c #1{\qsfull@ci #1\undef {#1}}% we pick up the first as Pivot

\def\qsfull@ci #1#2\undef {\qsfull@d {#1}}

\def\qsfull@d #1#2{\expandafter\qsfull@e\expandafter

{\romannumeral0\qsfull {\xintApplyUnbraced {\QSMore {#1}}{#2}}}%

{\romannumeral0\xintapplyunbraced {\QSEqual {#1}}{#2}}%

{\romannumeral0\qsfull {\xintApplyUnbraced {\QSLess {#1}}{#2}}}%

}

\def\qsfull@e #1#2#3{\expandafter\qsfull@f\expandafter {#2}{#3}{#1}}

\def\qsfull@f #1#2#3{\expandafter\space #2#1#3}

\catcode`@ 12 % = \makeatother

% EXAMPLE

\begingroup

\edef\z {\QSfull {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}%

{1.3}{1.1}{0.7}{1.6}{0.6}{0.9}{0.8}{0.2}{0.1}{1.9}}}

\printnumber{\meaning\z}

\def\a {3.123456789123456789}\def\b {3.123456789123456788}

\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\expandafter\def\expandafter\z\expandafter

{\romannumeral0\qsfull {{\a}\b\c\d}}% \a is braced to not be expanded

\printnumber{\meaning\z}

\endgroup

macro:->{0.1}{0.2}{0.3}{0.4}{0.5}{0.6}{0.7}{0.8}{0.9}{1.0}{1.1}{1.2}{1.3}{1.4}{1.5}{1.6}{1.7⤸
}{1.8}{1.9}{2.0}

macro:->{\d}{\b}{\a}{\c}

We then turn to a graphical illustration of the algorithm. For simplicity the pivot is always

chosen to be the first list item. We also show later how to illustrate the variant which picks up

the last item of each unsorted chunk as pivot.
% in LaTeX preamble:

% \usepackage{xintfrac}

% \usepackage{color}

% or, when using Plain TeX:

% \input xintfrac.sty

% \input color.tex

%

% Color definitions

\definecolor{LEFT}{RGB}{216,195,88}

\definecolor{RIGHT}{RGB}{208,231,153}

\definecolor{INERT}{RGB}{199,200,194}

\definecolor{PIVOT}{RGB}{109,8,57}

% Start of macro defintions

\catcode`@ 11 % = \makeatletter in latex

\def\QSMore #1#2{\xintifGt {#2}{#1}{{#2}}{ }}% space will be gobbled

\def\QSEqual #1#2{\xintifEq {#2}{#1}{{#2}}{ }}

\def\QSLess #1#2{\xintifLt {#2}{#1}{{#2}}{ }}

%

\def\QS@a #1{\expandafter \QS@b \expandafter {\xintLength {#1}}{#1}}

\def\QS@b #1{\ifcase #1

\expandafter\QS@empty

\or\expandafter\QS@single

\else\expandafter\QS@c

\fi }

\def\QS@empty #1{}

59

7 Commands of the xinttools package

\def\QS@single #1{\QSIr {#1}}

\def\QS@c #1{\QS@d #1!{#1}} % we pick up the first as pivot.

\def\QS@d #1#2!{\QS@e {#1}} % #1 = first element, #3 = list

\def\QS@e #1#2{\expandafter\QS@f\expandafter

{\romannumeral0\xintapplyunbraced {\QSMore {#1}}{#2}}%

{\romannumeral0\xintapplyunbraced {\QSEqual {#1}}{#2}}%

{\romannumeral0\xintapplyunbraced {\QSLess {#1}}{#2}}}

\def\QS@f #1#2#3{\expandafter\QS@g\expandafter {#2}{#3}{#1}}

% #2= elements < pivot, #1 = elements = pivot, #3 = elements > pivot

% Here \QSLr, \QSIr, \QSr have been let to \relax, so expansion stops.

\def\QS@g #1#2#3{\QSLr {#2}\QSIr {#1}\QSRr {#3}}

%

\def\DecoLEFT #1{\xintFor* ##1 in {#1} \do {\colorbox{LEFT}{##1}}}

\def\DecoINERT #1{\xintFor* ##1 in {#1} \do {\colorbox{INERT}{##1}}}

\def\DecoRIGHT #1{\xintFor* ##1 in {#1} \do {\colorbox{RIGHT}{##1}}}

\def\DecoPivot #1{\begingroup\color{PIVOT}\advance\fboxsep-\fboxrule\fbox{#1}\endgroup}

\def\DecoLEFTwithPivot #1{%

\xintFor* ##1 in {#1} \do {\xintifForFirst {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}

\def\DecoRIGHTwithPivot #1{%

\xintFor* ##1 in {#1} \do {\xintifForFirst {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}}

%

\def\QSinitialize #1{\def\QS@list{\QSRr {#1}}\let\QSRr\DecoRIGHT

\par\centerline{\QS@list}}

\def\QSoneStep {\let\QSLr\DecoLEFTwithPivot \let\QSIr\DecoINERT \let\QSRr\DecoRIGHTwithPivot

\centerline{\QS@list}%

\def\QSLr {\noexpand\QS@a}\let\QSIr\relax\def\QSRr {\noexpand\QS@a}%

\edef\QS@list{\QS@list}%

\let\QSLr\relax\let\QSRr\relax

\edef\QS@list{\QS@list}%

\let\QSLr\DecoLEFT \let\QSIr\DecoINERT \let\QSRr\DecoRIGHT

\centerline{\QS@list}}

\catcode`@ 12 % = \makeatother in latex

%% End of macro definitions.

%% Start of Example

\hypertarget{quicksort}{}

\begingroup\offinterlineskip

\small

\QSinitialize {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}%

{1.3}{1.1}{0.7}{1.6}{0.6}{0.9}{0.8}{0.2}{0.1}{1.9}}

\QSoneStep\QSoneStep\QSoneStep\QSoneStep\QSoneStep

\endgroup

1.0 0.5 0.3 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 0.1 1.9

1.0 0.5 0.3 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 0.1 1.9

0.5 0.3 0.4 0.7 0.6 0.9 0.8 0.2 0.1 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.9

0.5 0.3 0.4 0.7 0.6 0.9 0.8 0.2 0.1 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.9

0.3 0.4 0.2 0.1 0.5 0.7 0.6 0.9 0.8 1.0 1.2 1.4 1.3 1.1 1.5 1.8 2.0 1.7 1.6 1.9

0.3 0.4 0.2 0.1 0.5 0.7 0.6 0.9 0.8 1.0 1.2 1.4 1.3 1.1 1.5 1.8 2.0 1.7 1.6 1.9

0.2 0.1 0.3 0.4 0.5 0.6 0.7 0.9 0.8 1.0 1.1 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0 1.9

0.2 0.1 0.3 0.4 0.5 0.6 0.7 0.9 0.8 1.0 1.1 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0 1.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

If one wants rather to have the pivot from the end of the yet to sort chunks, then one should use

the following variants:
\makeatletter

\def\QS@c #1{\expandafter\QS@e\expandafter {\romannumeral0\xintnthelt {-1}{#1}}{#1}}

60

8 Commands of the xintcore package

\def\DecoLEFTwithPivot #1{%

\xintFor* ##1 in {#1} \do {\xintifForLast {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}

\def\DecoRIGHTwithPivot #1{%

\xintFor* ##1 in {#1} \do{\xintifForLast {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}}

\def\QSinitialize #1{\def\QS@list{\QSLr {#1}}\let\QSLr\DecoLEFT\par\centerline{\QS@list}}

\makeatother

\begingroup\offinterlineskip

\small

\QSinitialize {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}%

{1.3}{1.1}{0.7}{1.6}{0.6}{0.9}{0.8}{0.2}{0.1}{1.9}}

\QSoneStep\QSoneStep\QSoneStep\QSoneStep\QSoneStep

\QSoneStep\QSoneStep\QSoneStep\QSoneStep\QSoneStep

\endgroup

1.0 0.5 0.3 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 0.1 1.9

1.0 0.5 0.3 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 0.1 1.9

1.0 0.5 0.3 1.5 1.8 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 0.1 1.9 2.0

1.0 0.5 0.3 1.5 1.8 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 0.1 1.9 2.0

0.1 1.0 0.5 0.3 1.5 1.8 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 1.9 2.0

0.1 1.0 0.5 0.3 1.5 1.8 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 0.2 1.9 2.0

0.1 0.2 1.0 0.5 0.3 1.5 1.8 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 1.9 2.0

0.1 0.2 1.0 0.5 0.3 1.5 1.8 1.7 0.4 1.2 1.4 1.3 1.1 0.7 1.6 0.6 0.9 0.8 1.9 2.0

0.1 0.2 0.5 0.3 0.4 0.7 0.6 0.8 1.0 1.5 1.8 1.7 1.2 1.4 1.3 1.1 1.6 0.9 1.9 2.0

0.1 0.2 0.5 0.3 0.4 0.7 0.6 0.8 1.0 1.5 1.8 1.7 1.2 1.4 1.3 1.1 1.6 0.9 1.9 2.0

0.1 0.2 0.5 0.3 0.4 0.6 0.7 0.8 0.9 1.0 1.5 1.8 1.7 1.2 1.4 1.3 1.1 1.6 1.9 2.0

0.1 0.2 0.5 0.3 0.4 0.6 0.7 0.8 0.9 1.0 1.5 1.8 1.7 1.2 1.4 1.3 1.1 1.6 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 1.2 1.4 1.3 1.1 1.6 1.8 1.7 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 1.2 1.4 1.3 1.1 1.6 1.8 1.7 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.5 1.2 1.4 1.3 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.5 1.2 1.4 1.3 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.5 1.4 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.5 1.4 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

It is possible to modify this code to let it do \QSonestep repeatedly and stop automatically when

the sort is finished.52

8 Commands of the xintcore package

.1 \xintNum, \xintiNum . 62

.2 \xintSgn, \xintiiSgn . 62

.3 \xintiOpp, \xintiiOpp 63

.4 \xintiAbs, \xintiiAbs 63

.5 \xintiiFDg . 63

.6 \xintiiLDg . 63

.7 \xintDouble, \xintHalf 63

.8 \xintInc, \xintDec . 63

.9 \xintiAdd, \xintiiAdd 63

.10 \xintiSub, \xintiiSub 63

.11 \xintiMul, \xintiiMul 63

.12 \xintiSqr, \xintiiSqr 63

.13 \xintiPow, \xintiiPow 64

.14 \xintiDivision, \xintiiDivision 64

.15 \xintiQuo, \xintiiQuo 64

.16 \xintiRem, \xintiiRem 65

.17 \xintiDivRound, \xintiiDivRound 65

.18 \xintiDivTrunc, \xintiiDivTrunc 65

.19 \xintiMod, \xintiiMod 65

Prior to release 1.1 the macros which are now included in the separate package xintcore were part

of xint. Package xintcore is automatically loaded by xint.+
{

52 http://tex.stackexchange.com/a/142634/4686

61

http://tex.stackexchange.com/a/142634/4686

8 Commands of the xintcore package

xintcore provides the five basic arithmetic operations on big integers: addition, subtraction,

multiplication, division and powers. Division may be either rounded (\xintiiDivRound) (the round-

ing of 0.5 is 1 and the one of -0.5 is -1) or Euclidean (\xintiiQuo) (which for positive operands

is the same as truncated division), or truncated (\xintiiDivTrunc).

In the description of the macros the {N} and {M} symbols stand for explicit (big) integers within

braces or more generally any control sequence (possibly within braces) f-expanding to such a big
integer.

The macros with a single i in their names parse their arguments automatically through \xintNum.

This type of expansion applied to an argument is signaled by a
Num
f in the margin. The accepted input

format is then a sequence of plus and minus signs, followed by some string of zeroes, followed by

digits.

If xintfrac additionally to xintcore is loaded, \xintNum becomes a synonym to \xintTTrunc; this

means that arbitrary fractions will be accepted as arguments of the macros with a single i in their

names, but get truncated to integers before further processing. The format of the output will be

as with only xint loaded. The only extension is in allowing a wider variety of inputs.

The macros with ii in their names have arguments which will only be f-expanded, but will not be
parsed via \xintNum. Arguments of this type are signaled by the margin annotation f. For such big
integers only one minus sign and no plus sign, nor leading zeros, are accepted. -0 is not valid in

this strict input format. Loading xintfrac does not bring any modification to these macros whether

for input or output.

The letter x (with margin annotation
num
x) stands for something which will be inserted in-between

a \numexpr and a \relax. It will thus be completely expanded and must give an integer obeying the

TEX bounds. Thus, it may be for example a count register, or itself a \numexpr expression, or just

a number written explicitely with digits or something like 4*\count 255 + 17, etc...

For the rules regarding direct use of count registers or \numexpr expression, in the arguments

to the package macros, see the Use of count section.

Earlier releases of xintcore also provided macros \xintAdd, \xintMul,...as synonyms to \⤸
xintiAdd, \xintiMul,..., destined to be re-defined by xintfrac. It was announced some time+

{
ago that their usage was deprecated, because the output formats depended on whether xintfrac

was loaded or not. They now have been removed.Changed →
The macros \xintiAdd, \xintiMul, ..., or \xintiiAdd, \xintiiMul, ...which come with xint-

core are guaranteed to always output an integer without a trailing /B[n]. The latter have the

lesser overhead, and the former do not complain, if xintfrac is loaded, even if used with true

fractions, as they will then truncate their arguments to integers. But their output format

remains unmodified: integers with no fraction slash nor [N] thingy.

The ⋆'s in the margin are there to remind of the complete expandability, even f-expandability
of the macros, as discussed in subsection 3.3.

8.1 \xintNum, \xintiNum
\xintNum{N} removes chains of plus or minus signs, followed by zeroes.f ⋆

\xintNum{+---++----+--000000000367941789479}=-367941789479

All xint macros with a single i in their names, such as \xintiAdd, \xintiMul apply \xintNum to

their arguments.

When xintfrac is loaded, \xintNum becomes a synonym to \xintTTrunc. And \xintiNum preserved the

original integer only meaning.

8.2 \xintSgn, \xintiiSgn
\xintiiSgn{N} returns 1 if the number is positive, 0 if it is zero and -1 if it is negative. Itf ⋆

62

8 Commands of the xintcore package

skips the \xintNum overhead.

\xintSgn is the variant using \xintNum and getting extended by xintfrac to fractions.
Num
f ⋆

8.3 \xintiOpp, \xintiiOpp
\xintiOpp{N} return the opposite -N of the number N. \xintiiOpp is the strict integer-only variant

Num
f ⋆

which skips the \xintNum overhead.f ⋆

8.4 \xintiAbs, \xintiiAbs
\xintiAbs{N} returns the absolute value of the number. \xintiiAbs skips the \xintNum overhead.

Num
f ⋆f ⋆

8.5 \xintiiFDg
\xintiiFDg{N} returns the first digit (most significant) of the decimal expansion. It skips thef ⋆
overhead of parsing via \xintNum. The variant \xintFDg uses \xintNum and gets extended by xint-

Num
f ⋆

frac.

8.6 \xintiiLDg
\xintiiLDg{N} returns the least significant digit. When the number is positive, this is the samef ⋆
as the remainder in the euclidean division by ten. It skips the overhead of parsing via \xintNum.

The variant \xintLDg uses \xintNum and gets extended by xintfrac.
Num
f ⋆

8.7 \xintDouble, \xintHalf
\xintDouble{N} returns 2N and \xintHalf{N}is N/2 rounded towards zero. These macros remainf ⋆
integer-only, even with xintfrac loaded.

8.8 \xintInc, \xintDec
\xintInc{N} is N+1 and \xintDec{N} is N-1. These macros remain integer-only, even with xintfracf ⋆
loaded. They skip the overhead of parsing via \xintNum.

8.9 \xintiAdd, \xintiiAdd
\xintiAdd{N}{M} returns the sum of the two numbers. \xintiiAdd skips the \xintNum overhead.

Num
f
Num
f ⋆f f ⋆

8.10 \xintiSub, \xintiiSub
\xintiSub{N}{M} returns the difference N-M. \xintiiSub skips the \xintNum overhead.

Num
f
Num
f ⋆f f ⋆

8.11 \xintiMul, \xintiiMul
\xintiMul{N}{M} returns the product of the two numbers. \xintiiMul skips the \xintNum overhead.

Num
f
Num
f ⋆f f ⋆

8.12 \xintiSqr, \xintiiSqr
\xintiSqr{N} returns the square. \xintiiSqr skips the \xintNum overhead.

Num
f ⋆f ⋆

63

8 Commands of the xintcore package

8.13 \xintiPow, \xintiiPow
\xintiPow{N}{x} returns N^x. When x is zero, this is 1. If N=0 and x<0, if |N|>1 and x<0, an error

Num
f
num
x ⋆

is raised. There will also be an error naturally if x exceeds the maximal ε-TEX number 2147483647,
but the real limit for huge exponents comes from either the computation time or the settings of

some tex memory parameters.

Indeed, the maximal power of 2 which xint is able to compute explicitely is 2^(2^17)=2^131072

which has 39457 digits. This exceeds the maximal size on input for the xintcore multiplication,

hence any 2^N with a higher N will fail. On the other hand 2^(2^16) has 19729 digits, thus it

can be squared once to obtain 2^(2^17) or multiplied by anything smaller, thus all exponents

up to and including 2^17 are allowed (because the power operation works by squaring things and

making products).

Side remark: after all it does pay to think! I almost melted my CPU trying by dichotomy to pin-

point the exact maximal allowable N for \xintiiPow 2{N} before finally making the reasoning above.

Indeed, each such computation with N>130000 activates the fan of my laptop and results in so warm

a keyboard that I can hardly go on working on it! And it takes about 12 minutes for each \xintiiPo⤸
w2{N} with such N's of the order of 130000 (a.t.t.o.w.).

\xintiiPow is an integer only variant skipping the \xintNum overhead, it produces the same re-f
num
x ⋆

sult as \xintiPow with stricter assumptions on the inputs, and is thus a tiny bit faster.
xintfrac also provides the floating variants \xintFloatPow (for which the exponent must still

obey the TEX bound) and \xintFloatPower (which has no restriction at all on the size of the expo-
nent). Negative exponents do not then raise errors anymore. The float version is able to deal with
things such as 2^999999999 without any problem.

$\xintFloatPow[32]{2}{50000}<\xintFloatPow[32]{2}{999999999}$

3.1606994368563178961359246599457e15051 < 2.3064880005845346965580596105187e301029995 and both

are computed swiftly!53

Within an \xintiiexpr..\relax the infix operator ^ is mapped to \xintiiPow; within an \xint-

expr-ession it is mapped to \xintPow (as extended by xintfrac); in \xintfloatexpr, it is mapped

to \xintFloatPower.

8.14 \xintiDivision, \xintiiDivision
\xintiiDivision{N}{M} returns {quotient Q}{remainder R}. This is euclidean division: N = QM + ⤸f f ⋆
R, 0 ≤ R < |M|. So the remainder is always non-negative and the formula N = QM + R always holds
independently of the signs of N or M. Division by zero is an error (even if N vanishes) and returns

{0}{0}. It skips the overhead of parsing via \xintNum.

\xintiDivision submits its arguments to \xintNum and is extended by xintfrac to accept fractions
Num
f
Num
f ⋆

on input, which it truncates first, and is not to be confused with the xintfrac macro \xintDiv which

divides one fraction by another.

8.15 \xintiQuo, \xintiiQuo
\xintiiQuo{N}{M} returns the quotient from the euclidean division. It skips the overhead of pars-f f ⋆
ing via \xintNum.

\xintiQuo submits its arguments to \xintNum and is extended by xintfrac to accept fractions on
Num
f
Num
f ⋆

input, which it truncates first.

Note: \xintQuo is the former name of \xintiQuo. Its use is deprecated.

53 see however footnote 57.

64

9 Commands of the xint package

8.16 \xintiRem, \xintiiRem
\xintiiRem{N}{M} returns the remainder from the euclidean division. It skips the overhead of pars-f f ⋆
ing via \xintNum.

\xintiRem submits its arguments to \xintNum and is extended by xintfrac to accept fractions on
Num
f
Num
f ⋆

input, which it truncates first.

Note: \xintRem is the former name of \xintiRem. Its use is deprecated.

8.17 \xintiDivRound, \xintiiDivRound
\xintiiDivRound{N}{M} returns the rounded value of the algebraic quotient N/M of two big integers.f f ⋆
The rounding of half integers is towards the nearest integer of bigger absolute value. The macro

skips the overhead of parsing via \xintNum. The rounding is away from zero.

\xintiDivRound submits its arguments to \xintNum. It is extended by xintfrac to accept fractions
Num
f
Num
f ⋆

on input, which it truncates first before computing the rounded quotient.

8.18 \xintiDivTrunc, \xintiiDivTrunc
\xintiiDivTrunc{N}{M} computes the truncation towards zero of the algebraic quotient N/M. Itf f ⋆
skips the overhead of parsing the operands with \xintNum. For M > 0 it is the same as \xintiiQuo.

$\xintiiQuo {1000}{-57}, \xintiiDivRound {1000}{-57}, \xintiiDivTrunc {1000}{-57}$

-17, -18, -17

\xintiDivTrunc submits first its arguments to \xintNum.
Num
f
Num
f ⋆

8.19 \xintiMod, \xintiiMod
\xintiiMod{N}{M} computes N - M ∗ t(N/M), where t(N/M) is the algebraic quotient truncated towardsf f ⋆
zero . The macro skips the overhead of parsing the operands with \xintNum. For M > 0 it is the same
as \xintiiRem.

$\xintiiRem {1000}{-57}, \xintiiMod {1000}{-57},

\xintiiRem {-1000}{57}, \xintiiMod {-1000}{57}$

31, 31, 26, -31

\xintiMod submits first its arguments to \xintNum.
Num
f
Num
f ⋆

9 Commands of the xint package

.1 \xintReverseDigits . 66

.2 \xintLen . 66

.3 \xintCmp, \xintiiCmp . 67

.4 \xintEq, \xintiiEq . 67

.5 \xintNeq, \xintiiNeq . 67

.6 \xintGt, \xintiiGt . 67

.7 \xintLt, \xintiiLt . 67

.8 \xintLtorEq, \xintiiLtorEq 67

.9 \xintGtorEq, \xintiiGtorEq 67

.10 \xintIsZero, \xintiiIsZero 67

.11 \xintNot . 67

.12 \xintIsNotZero, \xintiiIsNotZero 67

.13 \xintIsOne, \xintiiIsOne 67

.14 \xintAND . 67

.15 \xintOR . 68

.16 \xintXOR . 68

.17 \xintANDof . 68

.18 \xintORof . 68

.19 \xintXORof . 68

.20 \xintGeq . 68

.21 \xintiMax, \xintiiMax 68

.22 \xintiMin, \xintiiMin 68

.23 \xintiMaxof, \xintiiMaxof 68

.24 \xintiMinof, \xintiiMinof 68

.25 \xintiiSum . 69

.26 \xintiiPrd . 69

.27 \xintSgnFork . 69

.28 \xintifSgn, \xintiiifSgn 69

.29 \xintifZero, \xintiiifZero 69

.30 \xintifNotZero, \xintiiifNotZero 70

.31 \xintifOne, \xintiiifOne 70

.32 \xintifTrueAelseB, \xintifFalseAelseB . 70

.33 \xintifCmp, \xintiiifCmp 70

.34 \xintifEq, \xintiiifEq 70

65

9 Commands of the xint package

.35 \xintifGt, \xintiiifGt 70

.36 \xintifLt, \xintiiifLt 70

.37 \xintifOdd, \xintiiifOdd 70

.38 \xintiFac . 71

.39 \xintiiMON, \xintiiMMON 71

.40 \xintiiOdd . 71

.41 \xintiiEven . 71

.42 \xintiSqrt, \xintiiSqrt, \xintiiSqrtR,
\xintiSquareRoot, \xintiiSquareRoot 71

.43 \xintDSL . 72

.44 \xintDSR . 72

.45 \xintDSH . 72

.46 \xintDSHr, \xintDSx . 72

.47 \xintDecSplit . 73

.48 \xintDecSplitL . 73

.49 \xintDecSplitR . 73

.50 \xintiiE . 73

Version 1.0 was released 2013/03/28. This is 1.2b of 2015/10/29. The core arithmetic macros have

been moved to separate package xintcore, which is automatically loaded by xint.

See the documentation of xintcore or subsection 3.3 for the significance of the
Num
f , f,

num
x and ⋆

margin annotations and some important background information.

9.1 \xintReverseDigits
\xintReverseDigits{N} will reverse the order of the digits of the number, preserving an optionalf ⋆
upfront minus sign. \xintRev is the former denomination and is kept as an alias to it. Leading

zeroes resulting from the operation are not removed. Contrarily to \xintReverseOrder this macro

can only be used with digits and it first expands its argument (but beware that -\x will give an

unexpected result as the minus sign immediately stops this expansion; one can use \xintiiOpp{\x}

as argument.)

This command has been rewritten for 1.2 and is faster for very long inputs. It is (almost) not

used internally by the xintcore code, but the use of related routines explains to some extent the

higher speed of release 1.2.
\fdef\x{\xintReverseDigits

{-98765432109876543210987654321098765432109876543210}}\meaning\x\par

\noindent\fdef\x{\xintReverseDigits {\xintReverseDigits

{-98765432109876543210987654321098765432109876543210}}}\meaning\x\par

macro:->-01234567890123456789012345678901234567890123456789

macro:->-98765432109876543210987654321098765432109876543210

Notice that the output in this case with its leading zero is not in the strict integer format

expected by the `ii' arithmetic macros.

9.2 \xintLen
\xintLen{N} returns the length of the number, not counting the sign.

Num
f ⋆

\xintLen{-12345678901234567890123456789}=29

Extended by xintfrac to fractions: the length of A/B[n] is the length of A plus the length of B

plus the absolute value of n and minus one (an integer input as N is internally represented in a

form equivalent to N/1[0] so the minus one means that the extended \xintLen behaves the same as the

original for integers).

\xintLen{-1e3/5.425}=10

The length is computed on the A/B[n] which would have been returned by \xintRaw: \xintRaw {-1e3/5⤸
.425}=-1/5425[6].

Let's point out that the whole thing should sum up to less than circa 231, but this is a bit

theoretical.

\xintLen is only for numbers or fractions. See also \xintNthElt from xinttools. See also \xint-

Length from xintkernel for counting tokens (or rather braced groups), more generally.

66

9 Commands of the xint package

9.3 \xintCmp, \xintiiCmp
\xintCmp{N}{M} returns 1 if N>M, 0 if N=M, and -1 if N<M. Extended by xintfrac to fractions (its

Num
f
Num
f ⋆

output naturally still being either 1, 0, or -1).

\xintiiCmp skips the \xintNum overhead.f f ⋆

9.4 \xintEq, \xintiiEq
\xintEq{N}{M} returns 1 if N=M, 0 otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

\xintiiEq skips the \xintNum overhead.f f ⋆

9.5 \xintNeq, \xintiiNeq
\xintNeq{N}{M} returns 0 if N=M, 1 otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

\xintiiNeq skips the \xintNum overhead.f f ⋆

9.6 \xintGt, \xintiiGt
\xintGt{N}{M} returns 1 if N>M, 0 otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

\xintiiGt skips the \xintNum overhead.f f ⋆

9.7 \xintLt, \xintiiLt
\xintLt{N}{M} returns 1 if N<M, 0 otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

\xintiiLt skips the \xintNum overhead.f f ⋆

9.8 \xintLtorEq, \xintiiLtorEq
\xintLtorEq{N}{M} returns 1 if N⩽M, 0 otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

\xintiiLtorEq skips the \xintNum overhead.f f ⋆

9.9 \xintGtorEq, \xintiiGtorEq
\xintGtorEq{N}{M} returns 1 if N⩾M, 0 otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

\xintiiGtorEq skips the \xintNum overhead.f f ⋆

9.10 \xintIsZero, \xintiiIsZero
\xintIsZero{N} returns 1 if N=0, 0 otherwise. Extended by xintfrac to fractions.

Num
f ⋆

\xintiiIsZero skips the \xintNum overhead.f ⋆

9.11 \xintNot
\xintNot is a synonym for \xintIsZero.

Num
f ⋆

9.12 \xintIsNotZero, \xintiiIsNotZero
\xintIsNotZero{N} returns 1 if N<>0, 0 otherwise. Extended by xintfrac to fractions.

Num
f ⋆

\xintiiIsNotZero skips the \xintNum overhead.f ⋆

9.13 \xintIsOne, \xintiiIsOne
\xintIsOne{N} returns 1 if N=1, 0 otherwise. Extended by xintfrac to fractions.

Num
f ⋆

\xintiiIsOne skips the \xintNum overhead.f ⋆

9.14 \xintAND
\xintAND{N}{M} returns 1 if N<>0 and M<>0 and zero otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

67

9 Commands of the xint package

9.15 \xintOR
\xintOR{N}{M} returns 1 if N<>0 or M<>0 and zero otherwise. Extended by xintfrac to fractions.

Num
f
Num
f ⋆

9.16 \xintXOR
\xintXOR{N}{M} returns 1 if exactly one of N or M is true (i.e. non-zero). Extended by xintfrac to

Num
f
Num
f ⋆

fractions.

9.17 \xintANDof
\xintANDof{{a}{b}{c}...} returns 1 if all are true (i.e. non zero) and zero otherwise. The listf→ *

Num
f ⋆

argument may be a macro, it (or rather its first token) is f-expanded first (each item also is
f-expanded). Extended by xintfrac to fractions.

9.18 \xintORof
\xintORof{{a}{b}{c}...} returns 1 if at least one is true (i.e. does not vanish). The list argumentf→ *

Num
f ⋆

may be a macro, it is f-expanded first. Extended by xintfrac to fractions.

9.19 \xintXORof
\xintXORof{{a}{b}{c}...} returns 1 if an odd number of them are true (i.e. does not vanish). Thef→ *

Num
f ⋆

list argument may be a macro, it is f-expanded first. Extended by xintfrac to fractions.

9.20 \xintGeq
\xintGeq{N}{M} returns 1 if the absolute value of the first number is at least equal to the absolute

Num
f
Num
f ⋆

value of the second number. If |N|<|M| it returns 0. Extended by xintfrac to fractions. Important:

the macro compares absolute values.

9.21 \xintiMax, \xintiiMax
\xintiMax{N}{M} returns the largest of the two in the sense of the order structure on the relative

Num
f
Num
f ⋆

integers (i.e. the right-most number if they are put on a line with positive numbers on the right):
\xintiMax {-5}{-6}=-5.

The \xintiiMax macro skips the overhead of parsing the operands with \xintNum.f f ⋆

9.22 \xintiMin, \xintiiMin
\xintiMin{N}{M} returns the smallest of the two in the sense of the order structure on the relative

Num
f
Num
f ⋆

integers (i.e. the left-most number if they are put on a line with positive numbers on the right):
\xintiMin {-5}{-6}=-6.

The \xintiiMin macro skips the overhead of parsing the operands with \xintNum.f f ⋆

9.23 \xintiMaxof, \xintiiMaxof
\xintiMaxof{{a}{b}{c}...} returns the maximum. The list argument may be a macro, it is f-expandedf→ *

Num
f ⋆

first. Each item is submitted to \xintNum normalization.

\xintiiMaxof does the same, skips \xintNum normalization of items.New with
1.2a

9.24 \xintiMinof, \xintiiMinof
\xintiMinof{{a}{b}{c}...} returns the minimum. The list argument may be a macro, it is f-expandedf→ *

Num
f ⋆

first. Each item is submitted to \xintNum normalization.

\xintiiMinof does the same, skips \xintNum normalization of items.New with
1.2a

68

9 Commands of the xint package

9.25 \xintiiSum
\xintiiSum{⟨braced things⟩} after expanding its argument expects to find a sequence of tokens (or*f ⋆
braced material). Each is f-expanded, and the sum of all these numbers is returned. Note: the
summands are not parsed by \xintNum.

\xintiiSum{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}=-96780210

\xintiiSum{1234567890}=45

An empty sum is no error and returns zero: \xintiiSum {}=0. A sum with only one term returns

that number: \xintiiSum {{-1234}}=-1234. Attention that \xintiiSum {-1234} is not legal input

and will make the TEX run fail. On the other hand \xintiiSum {1234}=10.

9.26 \xintiiPrd
\xintiiPrd{⟨braced things⟩} after expanding its argument expects to find a sequence of (of braced*f ⋆
items or unbraced single tokens). Each is expanded (with the usual meaning), and the product of
all these numbers is returned. Note: the operands are not parsed by \xintNum.

\xintiiPrd{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}=-98458861798080

\xintiiPrd{123456789123456789}=131681894400
An empty product is no error and returns 1: \xintiiPrd {}=1. A product reduced to a single term
returns this number: \xintiiPrd {{-1234}}=-1234. Attention that \xintiiPrd {-1234} is not legal
input and will make the TEX compilation fail. On the other hand \xintiiPrd {1234}=24.

$2^{200}3^{100}7^{100}=\printnumber

{\xintiiPrd {{\xintiPow {2}{200}}{\xintiPow {3}{100}}{\xintiPow {7}{100}}}}$

220031007100 = 2678727931661577575766279517007548402324740266374015348974459614815426412965499⤸
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892⤸
7862988084382716133376

With xintexpr, this would be easier:

\xinttheiiexpr 2^200*3^100*7^100\relax

9.27 \xintSgnFork
\xintSgnFork{-1|0|1}{⟨A⟩}{⟨B⟩}{⟨C⟩} expandably chooses to execute either the ⟨A⟩, ⟨B⟩ or ⟨C⟩ code,x n n n ⋆
depending on its first argument. This first argument should be anything expanding to either -1,

0 or 1 in a non self-delimiting way (i.e. a count register must be prefixed by \the and a \numexp⤸
r...\relax also must be prefixed by \the). This utility is provided to help construct expandable

macros choosing depending on a condition which one of the package macros to use, or which values

to confer to their arguments.

9.28 \xintifSgn, \xintiiifSgn
Similar to \xintSgnFork except that the first argument may expand to a (big) integer (or a fraction

Num
f n n n ⋆

if xintfrac is loaded), and it is its sign which decides which of the three branches is taken.

Furthermore this first argument may be a count register, with no \the or \number prefix.

\xintiiifSgn skips the \xintNum overhead.f ⋆

9.29 \xintifZero, \xintiiifZero
\xintifZero{⟨N⟩}{⟨IsZero⟩}{⟨IsNotZero⟩} expandably checks if the first mandatory argument N (a

Num
f n n ⋆

number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or

not. It then either executes the first or the second branch. Beware that both branches must be

present.

\xintiiifZero skips the \xintNum overhead.f ⋆

69

9 Commands of the xint package

9.30 \xintifNotZero, \xintiiifNotZero
\xintifNotZero{⟨N⟩}{⟨IsNotZero⟩}{⟨IsZero⟩} expandably checks if the first mandatory argument N (a

Num
f n n ⋆

number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is not zero

or is zero. It then either executes the first or the second branch. Beware that both branches must

be present.

\xintiiifNotZero skips the \xintNum overhead.f ⋆

9.31 \xintifOne, \xintiiifOne
\xintifOne{⟨N⟩}{⟨IsOne⟩}{⟨IsNotOne⟩} expandably checks if the first mandatory argument N (a num-

Num
f n n ⋆

ber, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is one or not. It

then either executes the first or the second branch. Beware that both branches must be present.

\xintiiifOne skips the \xintNum overhead.f ⋆

9.32 \xintifTrueAelseB, \xintifFalseAelseB
\xintifTrueAelseB{⟨N⟩}{⟨true branch⟩}{⟨false branch⟩} is a synonym for \xintifNotZero.

Num
f n n ⋆

1. with 1.09i, the synonyms \xintifTrueFalse and \xintifTrue are deprecated and will be removed in next

release.

2. These macros have no lowercase versions, use \xintifzero, \xintifnotzero.

\xintifFalseAelseB{⟨N⟩}{⟨false branch⟩}{⟨true branch⟩} is a synonym for \xintifZero.
Num
f n n ⋆

9.33 \xintifCmp, \xintiiifCmp
\xintifCmp{⟨A⟩}{⟨B⟩}{⟨if A<B⟩}{⟨if A=B⟩}{⟨if A>B⟩} compares its arguments and chooses accordingly

Num
f
Num
f n n n ⋆

the correct branch.

\xintiiifCmp skips the \xintNum overhead.f f ⋆

9.34 \xintifEq, \xintiiifEq
\xintifEq{⟨A⟩}{⟨B⟩}{⟨YES⟩}{⟨NO⟩} checks equality of its two first arguments (numbers, or fractions

Num
f
Num
f n n ⋆

if xintfrac is loaded) and does the YES or the NO branch.

\xintiiifEq skips the \xintNum overhead.f f ⋆

9.35 \xintifGt, \xintiiifGt
\xintifGt{⟨A⟩}{⟨B⟩}{⟨YES⟩}{⟨NO⟩} checks if A > B and in that case executes the YES branch. Extended

Num
f
Num
f n n ⋆

to fractions (in particular decimal numbers) by xintfrac.

\xintiiifGt skips the \xintNum overhead.f f ⋆

9.36 \xintifLt, \xintiiifLt
\xintifLt{⟨A⟩}{⟨B⟩}{⟨YES⟩}{⟨NO⟩} checks if A < B and in that case executes the YES branch. Extended

Num
f
Num
f n n ⋆

to fractions (in particular decimal numbers) by xintfrac.

\xintiiifLt skips the \xintNum overhead.f f ⋆

9.37 \xintifOdd, \xintiiifOdd
\xintifOdd{⟨A⟩}{⟨YES⟩}{⟨NO⟩} checks if A is and odd integer and in that case executes the YES

Num
f n n ⋆

branch.

\xintiiifOdd skips the \xintNum overhead.f ⋆

70

9 Commands of the xint package

The macros described next are all integer-only on input. Those with ii in their names skip

the \xintNum parsing. The others, with xintfrac loaded, can have fractions as arguments, which

will get truncated to integers via \xintTTrunc. On output, the macros here always produce

integers (with no /B[N]).

9.38 \xintiFac
\xintiFac{x} returns the factorial. It is an error on input if the argument is negative.

num
x ⋆

The macro will limit the acceptable inputs to a maximum of 9999. However the maximal computa-

tion depends on the values of some memory parameters of the tex executable: with the the current

default settings of TeXLive 2015, the maximal computable factorial (a.t.t.o.w. 2015/10/06)

turns out to be 5971! which has 19956 digits.

Package xintfrac provides \xintFloatFac which allows to evaluate faster significant digits of

big factorials and accepts (theoretically) inputs up to 99999999. See section 2 for the example

of 2000! with 50 significant digits.

\xintFac is the variant applying \xintNum on his input and thus, when xintfrac is loaded, ac-

cepting a fraction on input (but it truncates it first).

9.39 \xintiiMON, \xintiiMMON
\xintiiMON{N} returns (-1)^N and \xintiiMMON{N} returns (-1)^{N-1}. They skip the overhead off ⋆
parsing via \xintNum.

\xintiiMON {-280914019374101929}=-1, \xintiiMMON {-280914019374101929}=1

The variants \xintMON and \xintMMON use \xintNum and get extended to fractions by xintfrac.
Num
f ⋆

9.40 \xintiiOdd
\xintiiOdd{N} is 1 if the number is odd and 0 otherwise. It skips the overhead of parsing via \xint-f ⋆
Num. \xintOdd is the variant using \xintNum and extended to fractions by xintfrac.

Num
f ⋆

9.41 \xintiiEven
\xintiiEven{N} is 1 if the number is even and 0 otherwise. It skips the overhead of parsing viaf ⋆
\xintNum. \xintEven is the variant using \xintNum and extended to fractions by xintfrac.

Num
f ⋆

9.42 \xintiSqrt, \xintiiSqrt, \xintiiSqrtR, \xintiSquareRoot, \xintiiSquareRoot
\xintiSqrt{N} returns the largest integer whose square is at most equal to N. \xintiiSqrt is the

Num
f ⋆

variant skipping the \xintNum overhead. \xintiiSqrtR also skips the \xintNum overhead and it re-f ⋆
turns the rounded, not truncated, square root.f ⋆

\begin{itemize}[nosep]

\item \xintiiSqrt {3000000000000000000000000000000000000}

\item \xintiiSqrtR {3000000000000000000000000000000000000}

\item \xintiiSqrt {\xintiiE {3}{100}}

\end{itemize}

• 1732050807568877293

• 1732050807568877294

• 173205080756887729352744634150587236694280525381038

\xintiSquareRoot{N} returns {M}{d} with d>0, M^2-d=N and M smallest (hence =1+\xintiSqrt{N}).
Num
f ⋆

\xintiiSquareRoot is the variant skipping the \xintNum overhead.f ⋆

71

9 Commands of the xint package

\xintAssign\xintiiSquareRoot {17000000000000000000000000}\to\A\B

\xintiiSub{\xintiiSqr\A}\B=\A\string^2-\B

17000000000000000000000000=4123105625618^2-2799177881924

A rational approximation to
√
N is M - d2M (this is a majorant and the error is at most 1/2M; if N

is a perfect square k^2 then M=k+1 and this gives k+1/(2k+2), not k).

Package xintfrac has \xintFloatSqrt for square roots of floating point numbers.

The macros described next are strictly for integer-only arguments. These arguments are not
filtered via \xintNum. The macros are not usable with fractions, even with xintfrac loaded.

9.43 \xintDSL
\xintDSL{N} is decimal shift left, i.e. multiplication by ten.f ⋆

9.44 \xintDSR
\xintDSR{N} is decimal shift right, i.e. it removes the last digit (keeping the sign), equiva-f ⋆
lently it is the closest integer to N/10 when starting at zero.

9.45 \xintDSH
\xintDSH{x}{N} is parametrized decimal shift. When x is negative, it is like iterating \xintDSL |⤸

num
x f ⋆

x| times (i.e. multiplication by 10-x). When x positive, it is like iterating \DSR x times (and is
more efficient), and for a non-negative N this is thus the same as the quotient from the euclidean

division by 10^x.

9.46 \xintDSHr, \xintDSx
\xintDSHr{x}{N} expects x to be zero or positive and it returns then a value R which is correlated

num
x f ⋆

to the value Q returned by \xintDSH{x}{N} in the following manner:

• if N is positive or zero, Q and R are the quotient and remainder in the euclidean division by

10^x (obtained in a more efficient manner than using \xintiDivision),

• if N is negative let Q1 and R1 be the quotient and remainder in the euclidean division by 10 ⤸̂
x of the absolute value of N. If Q1 does not vanish, then Q=-Q1 and R=R1. If Q1 vanishes, then

Q=0 and R=-R1.

• for x=0, Q=N and R=0.

So one has N = 10^x Q + R if Q turns out to be zero or positive, and N = 10^x Q - R if Q turns out

to be negative, which is exactly the case when N is at most -10^x.

\xintDSx{x}{N} for x negative is exactly as \xintDSH{x}{N}, i.e. multiplication by 10-x. For x
num
x f ⋆

zero or positive it returns the two numbers {Q}{R} described above, each one within braces. So Q

is \xintDSH{x}{N}, and R is \xintDSHr{x}{N}, but computed simultaneously.

\xintAssign\xintDSx {-1}{-123456789}\to\M

\meaning\M:macro:->-1234567890.

\xintAssign\xintDSx {-20}{123456789}\to\M

\meaning\M:macro:->123456768900000000000000000000.

\xintAssign\xintDSx {0}{-123004321}\to\Q\R

\meaning\Q:macro:->-123004321, \meaning\R:macro:->0.

\xintDSH {0}{-123004321}=-123004321, \xintDSHr {0}{-123004321}=0

\xintAssign\xintDSx {6}{-123004321}\to\Q\R

72

9 Commands of the xint package

\meaning\Q:macro:->-123,\meaning\R:macro:->4321.

\xintDSH {6}{-123004321}=-123, \xintDSHr {6}{-123004321}=4321

\xintAssign\xintDSx {8}{-123004321}\to\Q\R

\meaning\Q:macro:->-1,\meaning\R:macro:->23004321.

\xintDSH {8}{-123004321}=-1, \xintDSHr {8}{-123004321}=23004321

\xintAssign\xintDSx {9}{-123004321}\to\Q\R

\meaning\Q:macro:->0,\meaning\R:macro:->-123004321.

\xintDSH {9}{-123004321}=0, \xintDSHr {9}{-123004321}=-123004321

9.47 \xintDecSplit
\xintDecSplit{x}{N} cuts the number into two pieces (each one within a pair of enclosing braces).

num
x f ⋆

First the sign if present is removed. Then, for x positive or null, the second piece contains the
x least significant digits (empty if x=0) and the first piece the remaining digits (empty when
x equals or exceeds the length of N). Leading zeroes in the second piece are not removed. When

x is negative the first piece contains the |x| most significant digits and the second piece the

remaining digits (empty if x equals or exceeds the length of N). Leading zeroes in this second
piece are not removed. So the absolute value of the original number is always the concatenation of

the first and second piece.
This macro's behavior for N non-negative is final and will not change. I am still hesitant about what to do with the sign

of a negative N.

\xintAssign\xintDecSplit {0}{-123004321}\to\L\R

\meaning\L:macro:->123004321, \meaning\R:macro:->.

\xintAssign\xintDecSplit {5}{-123004321}\to\L\R

\meaning\L:macro:->1230, \meaning\R:macro:->04321.

\xintAssign\xintDecSplit {9}{-123004321}\to\L\R

\meaning\L:macro:->, \meaning\R:macro:->123004321.

\xintAssign\xintDecSplit {10}{-123004321}\to\L\R

\meaning\L:macro:->, \meaning\R:macro:->123004321.

\xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R

\meaning\L:macro:->12300, \meaning\R:macro:->004321.

\xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R

\meaning\L:macro:->12300004321, \meaning\R:macro:->.

\xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R

\meaning\L:macro:->12300004321, \meaning\R:macro:->.

9.48 \xintDecSplitL
\xintDecSplitL{x}{N} returns the first piece after the action of \xintDecSplit.

num
x f ⋆

9.49 \xintDecSplitR
\xintDecSplitR{x}{N} returns the second piece after the action of \xintDecSplit.

num
x f ⋆

9.50 \xintiiE
\xintiiE{N}{x} serves to add zeros to the right of N.f

num
x ⋆

\xintiiE {123}{89}

123000

73

10 Commands of the xintfrac package

10 Commands of the xintfrac package

.1 \xintNum . 75

.2 \xintifInt . 75

.3 \xintLen . 75

.4 \xintRaw . 75

.5 \xintPRaw . 75

.6 \xintNumerator . 75

.7 \xintDenominator . 76

.8 \xintRawWithZeros . 76

.9 \xintREZ . 76

.10 \xintFrac . 76

.11 \xintSignedFrac . 76

.12 \xintFwOver . 77

.13 \xintSignedFwOver . 77

.14 \xintIrr . 77

.15 \xintJrr . 77

.16 \xintTrunc . 77

.17 \xintiTrunc . 78

.18 \xintTTrunc . 78

.19 \xintXTrunc . 78

.20 \xintRound . 79

.21 \xintiRound . 80

.22 \xintFloor, \xintiFloor 80

.23 \xintCeil, \xintiCeil 80

.24 \xintTFrac . 80

.25 \xintE . 81

.26 \xintFloatE . 81

.27 \xintDigits, \xinttheDigits 81

.28 \xintFloat . 81

.29 \xintPFloat . 81

.30 \xintAdd . 82

.31 \xintFloatAdd . 82

.32 \xintSub . 82

.33 \xintFloatSub . 82

.34 \xintMul . 82

.35 \xintSqr . 83

.36 \xintFloatMul . 83

.37 \xintDiv . 83

.38 \xintFloatDiv . 83

.39 \xintFac . 83

.40 \xintFloatFac . 83

.41 \xintPow . 83

.42 \xintFloatPow . 84

.43 \xintFloatPower . 84

.44 \xintFloatSqrt . 84

.45 \xintSum . 85

.46 \xintPrd . 85

.47 \xintCmp . 85

.48 \xintIsOne . 85

.49 \xintGeq . 85

.50 \xintMax . 85

.51 \xintMin . 85

.52 \xintMaxof . 86

.53 \xintMinof . 86

.54 \xintAbs . 86

.55 \xintSgn . 86

.56 \xintOpp . 86

.57 \xintiDivision, \xintiQuo, \xintiRem,
\xintFDg, \xintLDg, \xintMON, \xintMMON,
\xintOdd . 86

This package was first included in release 1.03 (2013/04/14) of the xint bundle. The general rule

of the bundle that each macro first expands (what comes first, fully) each one of its arguments

applies.

f stands for an integer or a fraction (see subsection 4.1 for the accepted input formats) or
Frac
f

something which expands to an integer or fraction. It is possible to use in the numerator or the

denominator of f count registers and even expressions with infix arithmetic operators, under some

rules which are explained in the previous Use of count registers section.

As in the xint.sty documentation, x stands for something which will internally be embedded in a
num
x
\numexpr. It may thus be a count register or something like 4*\count 255 + 17, etc..., but must

expand to an integer obeying the TEX bound.

The fraction format on output is the scientific notation for the `float' macros, and the A/B[n]

format for all other fraction macros, with the exception of \xintTrunc, \xintRound (which produce

decimal numbers) and \xintIrr, \xintJrr, \xintRawWithZeros (which returns an A/B with no trailing

[n], and prints the B even if it is 1), and \xintPRaw which does not print the [n] if n=0 or the B

if B=1.

To be certain to print an integer output without trailing [n] nor fraction slash, one should

use either \xintPRaw {\xintIrr {f}} or \xintNum {f} when it is already known that f evaluates

to a (big) integer. For example \xintPRaw {\xintAdd {2/5}{3/5}} gives a perhaps disappointing

74

10 Commands of the xintfrac package

5/5 whereas \xintPRaw {\xintIrr {\xintAdd {2/5}{3/5}}} returns 1. As we knew the result was an

integer we could have used \xintNum {\xintAdd {2/5}{3/5}}=1.

Some macros (such as \xintiTrunc, \xintiRound, and \xintFac) always produce directly integers

on output.

The macro \xintXTrunc uses \xintiloop from package xinttools, hence there is a partial depen-

dency of xintfrac on xinttools, and the latter must be required explicitely by the user intending+
{
to use \xintXTrunc.

10.1 \xintNum
The macro from xint is made a synonym to \xintTTrunc.54f ⋆
The original (which normalizes big integers to strict format) is still available as \xintiNum.

It is imprudent to apply \xintNum to numbers with a large power of ten given either in scientific

notation or with the [n] notation, as the macro will according to its definition add all the needed

zeroes to produce an explicit integer in strict format.

10.2 \xintifInt
\xintifInt{f}{YES branch}{NO branch} expandably chooses the YES branch if f reveals itself after

Frac
f n n ⋆

expansion and simplification to be an integer. As with the other xint conditionals, both branches

must be present although one of the two (or both, but why then?) may well be an empty brace pair {⤸
}. Spaces in-between the braced things do not matter, but a space after the closing brace of the

NO branch is significant.

10.3 \xintLen
The original macro is extended to accept a fraction on input.

Frac
f ⋆

\xintLen {201710/298219}=11, \xintLen {1234/1}=4, \xintLen {1234}=4

10.4 \xintRaw
This macro `prints' the fraction f as it is received by the package after its parsing and expansion,

Frac
f ⋆

in a form A/B[n] equivalent to the internal representation: the denominator B is always strictly

positive and is printed even if it has value 1.

\xintRaw{\the\numexpr 571*987\relax.123e-10/\the\numexpr -201+59\relax e-7}=

-563577123/142[-6]

10.5 \xintPRaw
PRaw stands for ``pretty raw''. It does not show the [n] if n=0 and does not show the B if B=1.

Frac
f ⋆

\xintPRaw {123e10/321e10}=123/321, \xintPRaw {123e9/321e10}=123/321[-1]

\xintPRaw {\xintIrr{861/123}}=7 vz. \xintIrr{861/123}=7/1

See also \xintFrac (or \xintFwOver) for math mode. As is examplified above the \xintIrr macro

which puts the fraction into irreducible form does not remove the /1 if the fraction is an integer.

One can use \xintNum{f} or \xintPRaw{\xintIrr{f}} which produces the same output only if f is an

integer (after simplication).

10.6 \xintNumerator
This returns the numerator corresponding to the internal representation of a fraction, with pos-

Frac
f ⋆

itive powers of ten converted into zeroes of this numerator:

\xintNumerator {178000/25600000[17]}=17800000000000000000000

54 In earlier releases than 1.1, \xintNum did \xintIrr and then complained if the denominator was not 1, else, it silently removed
the denominator.

75

10 Commands of the xintfrac package

\xintNumerator {312.289001/20198.27}=312289001

\xintNumerator {178000e-3/256e5}=178000

\xintNumerator {178.000/25600000}=178000

As shown by the examples, no simplification of the input is done. For a result uniquely associated

to the value of the fraction first apply \xintIrr.

10.7 \xintDenominator
This returns the denominator corresponding to the internal representation of the fraction:55

Frac
f ⋆

\xintDenominator {178000/25600000[17]}=25600000

\xintDenominator {312.289001/20198.27}=20198270000

\xintDenominator {178000e-3/256e5}=25600000000

\xintDenominator {178.000/25600000}=25600000000

As shown by the examples, no simplification of the input is done. The denominator looks wrong in the

last example, but the numerator was tacitly multiplied by 1000 through the removal of the decimal

point. For a result uniquely associated to the value of the fraction first apply \xintIrr.

10.8 \xintRawWithZeros
This macro `prints' the fraction f (after its parsing and expansion) in A/B form, with A as returned

Frac
f ⋆

by \xintNumerator{f} and B as returned by \xintDenominator{f}.

\xintRawWithZeros{\the\numexpr 571*987\relax.123e-10/\the\numexpr -201+59\relax e-7}=

-563577123/142000000

10.9 \xintREZ
This command normalizes a fraction by removing the powers of ten from its numerator and denomina-

Frac
f ⋆

tor:

\xintREZ {178000/25600000[17]}=178/256[15]

\xintREZ {1780000000000e30/2560000000000e15}=178/256[15]

As shown by the example, it does not otherwise simplify the fraction.

10.10 \xintFrac
This is a LATEX only command, to be used in math mode only. It will print a fraction, internally rep-

Frac
f ⋆

resented as something equivalent to A/B[n] as \frac {A}{B}10^n. The power of ten is omitted when

n=0, the denominator is omitted when it has value one, the number being separated from the power of

ten by a \cdot. $\xintFrac {178.000/25600000}$ gives 178000
2560000010

-3, $\xintFrac {178.000/1}$ gives

178000 · 10-3, $\xintFrac {3.5/5.7}$ gives 3557, and $\xintFrac {\xintNum {\xintFac{10}/\xintiSqr⤸
{\xintFac {5}}}}$ gives 252. As shown by the examples, simplification of the input (apart from

removing the decimal points and moving the minus sign to the numerator) is not done automatically

and must be the result of macros such as \xintIrr, \xintREZ, or \xintNum (for fractions being in

fact integers.)

10.11 \xintSignedFrac
This is as \xintFrac except that a negative fraction has the sign put in front, not in the numera-

Frac
f ⋆

tor.

\[\xintFrac {-355/113}=\xintSignedFrac {-355/113}\]

-355

113
= -
355

113

55 recall that the [] construct excludes presence of a decimal point.

76

10 Commands of the xintfrac package

10.12 \xintFwOver
This does the same as \xintFrac except that the \over primitive is used for the fraction (in case

Frac
f ⋆

the denominator is not one; and a pair of braces contains the A\over B part). $\xintFwOver {178⤸
.000/25600000}$ gives 178000

2560000010
-3, $\xintFwOver {178.000/1}$ gives 178000 · 10-3, $\xintFwOver {⤸

3.5/5.7}$ gives 3557, and $\xintFwOver {\xintNum {\xintFac{10}/\xintiSqr{\xintFac {5}}}}$ gives

252.

10.13 \xintSignedFwOver
This is as \xintFwOver except that a negative fraction has the sign put in front, not in the numer-

Frac
f ⋆

ator.

\[\xintFwOver {-355/113}=\xintSignedFwOver {-355/113}\]

-355

113
= -
355

113

10.14 \xintIrr
This puts the fraction into its unique irreducible form:

Frac
f ⋆

\xintIrr {178.256/256.178}=6856/9853 = 68569853
Note that the current implementation does not cleverly first factor powers of 2 and 5, so input such

as \xintIrr {2/3[100]} will make xintfrac do the Euclidean division of 2.10^{100} by 3, which is

a bit stupid.

Starting with release 1.08, \xintIrr does not remove the trailing /1 when the output is an inte-

ger. This was deemed better for various (stupid?) reasons and thus the output format is now always
A/B with B>0. Use \xintPRaw on top of \xintIrr if it is needed to get rid of a possible trailing /1.

For display in math mode, use rather \xintFrac{\xintIrr {f}} or \xintFwOver{\xintIrr {f}}.

10.15 \xintJrr
This also puts the fraction into its unique irreducible form:

Frac
f ⋆

\xintJrr {178.256/256.178}=6856/9853

This is faster than \xintIrr for fractions having some big common factor in the numerator and the

denominator.

\xintJrr {\xintiPow{\xintFac {15}}{3}/\xintiiPrdExpr {\xintFac{10}}{\xintFac{30}}{\xintFac{5⤸
}}\relax }=1001/51705840

But to notice the difference one would need computations with much bigger numbers than in this

example. Starting with release 1.08, \xintJrr does not remove the trailing /1 when the output is

an integer.

10.16 \xintTrunc
\xintTrunc{x}{f} returns the integral part, a dot, and then the first x digits of the decimal

num
x
Frac
f ⋆

expansion of the fraction f. The argument x should be non-negative.

In the special case when f evaluates to 0, the output is 0 with no decimal point nor decimal dig-

its, else the post decimal mark digits are always printed. A non-zero negative f which is smaller

in absolute value than 10^{-x} will give -0.000....

\xintTrunc {16}{-803.2028/20905.298}=-0.0384210165289200

\xintTrunc {20}{-803.2028/20905.298}=-0.03842101652892008523

\xintTrunc {10}{\xintPow {-11}{-11}}=-0.0000000000

\xintTrunc {12}{\xintPow {-11}{-11}}=-0.000000000003

\xintTrunc {12}{\xintAdd {-1/3}{3/9}}=0

The digits printed are exact up to and including the last one.

77

10 Commands of the xintfrac package

10.17 \xintiTrunc
\xintiTrunc{x}{f} returns the integer equal to 10^x times what \xintTrunc{x}{f} would produce.

num
x
Frac
f ⋆

\xintiTrunc {16}{-803.2028/20905.298}=-384210165289200

\xintiTrunc {10}{\xintPow {-11}{-11}}=0

\xintiTrunc {12}{\xintPow {-11}{-11}}=-3

The difference between \xintTrunc{0}{f} and \xintiTrunc{0}{f} is that the latter never has the

decimal mark always present in the former except for f=0. And \xintTrunc{0}{-0.5} returns ``-0.''

whereas \xintiTrunc{0}{-0.5} simply returns ``0''.

10.18 \xintTTrunc
\xintTTrunc{f} truncates to an integer (truncation towards zero). This is the same as \xintiTrun⤸

Frac
f ⋆

c {0}{f} and as \xintNum.

10.19 \xintXTrunc
\xintXTrunc{x}{f} is completely expandable but not f-expandable, as is indicated by the hollow

num
x
Frac
f I

star in the margin. It can not be used as argument to the other package macros, but is designed to

be used inside an \edef, or rather a \write. Here is an example session where the user after some

warming up checks that 1/66049 = 1/2572 has period 257 ∗ 256 = 65792 (it is also checked here that
this is indeed the smallest period).

To use \xintXTrunc the user must load xinttools, additionally to xintfrac. The interactive

session below does not show this because it was done at a time when xint (hence also xint-

frac) automatically loaded xinttools. This is not the case anymore. \xintXTrunc is the sole

dependency of xintfrac on xinttools.

xxx:_xint $ etex -jobname worksheet-66049

This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013)

restricted \write18 enabled.

**\relax

entering extended mode

*\input xintfrac.sty

(./xintfrac.sty (./xint.sty (./xinttools.sty)))

*\message{\xintTrunc {100}{1/71}}% Warming up!

0.01408450704225352112676056338028169014084507042253521126760563380281690140845

07042253521126760563380

*\message{\xintTrunc {350}{1/71}}% period is 35

0.01408450704225352112676056338028169014084507042253521126760563380281690140845

0704225352112676056338028169014084507042253521126760563380281690140845070422535

2112676056338028169014084507042253521126760563380281690140845070422535211267605

6338028169014084507042253521126760563380281690140845070422535211267605633802816

901408450704225352112676056338028169

*\edef\Z {\xintXTrunc {65792}{1/66049}}% getting serious...

*\def\trim 0.{}\oodef\Z {\expandafter\trim\Z}% removing 0.

*\edef\W {\xintXTrunc {131584}{1/66049}}% a few seconds

*\oodef\W {\expandafter\trim\W}

78

10 Commands of the xintfrac package

*\oodef\ZZ {\expandafter\Z\Z}% doubling the period

*\ifx\W\ZZ \message{YES!}\else\message{BUG!}\fi % xint never has bugs...

YES!

*\message{\xintTrunc {260}{1/66049}}% check visually that 256 is not a period

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423291798513225029902042423049

5541189117170585474420505

*\edef\X {\xintXTrunc {257*128}{1/66049}}% infix here ok, less than 8 tokens

*\oodef\X {\expandafter\trim\X}% we now have the first 257*128 digits

*\oodef\XX {\expandafter\X\X}% was 257*128 a period?

*\ifx\XX\Z \message{257*128 is a period}\else \message{257 * 128 not a period}\fi

257 * 128 not a period

*\immediate\write-1 {1/66049=0.\Z... (repeat)}

*\oodef\ZA {\xintNum {\Z}}% we remove the 0000, or we could use next \xintiMul

*\immediate\write-1 {10\string^65792-1=\xintiiMul {\ZA}{66049}}

*% This was slow :(I should write a multiplication, still completely

*% expandable, but not f-expandable, which could be much faster on such cases.

*\bye

No pages of output.

Transcript written on worksheet-66049.log.

xxx:_xint $

The \xintiiMul {\ZA}{66049} above can sadly not be executed with xint 1.2, due to the new
limitation to at most about 19950 digits for multiplication. On the other hand \edef\W {\xintX⤸
Trunc {131584}{1/66049}} produces the 131584 digits four times faster. The macro \xintXTrunc

has not yet been adapted to the new integer model underlying the 1.2 xintcore macros, and

perhaps some future improvements are possible. So far it only benefits from a faster division

routine, in that specific case for a divisor having more than four but less than nine digits.

Fraction arguments to \xintXTrunc corresponding to a A/B[N] with a negative N are treated some-

what less efficiently (additional memory impact) than for positive or zero N. This is because the

algorithm tries to work with the smallest denominator hence does not extend B with zeroes, and

technical reasons lead to the use of some tricks.56

Contrarily to \xintTrunc, in the case of the second argument revealing itself to be exactly zero,

\xintXTrunc will output 0.000..., not 0. Also, the first argument must be at least 1.

10.20 \xintRound
\xintRound{x}{f} returns the start of the decimal expansion of the fraction f, rounded to x digits

num
x
Frac
f ⋆

56 Technical note: I do not provide an \xintXFloat because this would almost certainly mean having to clone the entire core
division routines into a “long division” variant. But this could have given another approach to the implementation of \xintXTrunc,
especially for the case of a negative N. Doing these things with TEX is an effort. Besides an \xintXFloat would be interesting only
if also for example the square root routine was provided in an X version (I have not given thought to that). If feasible X routines
would be interesting in the \xintexpr context where things are expanded inside \csname ..\endcsname.

79

10 Commands of the xintfrac package

precision after the decimal point. The argument x should be non-negative. Only when f evaluates

exactly to zero does \xintRound return 0 without decimal point. When f is not zero, its sign is

given in the output, also when the digits printed are all zero.

\xintRound {16}{-803.2028/20905.298}=-0.0384210165289201

\xintRound {20}{-803.2028/20905.298}=-0.03842101652892008523

\xintRound {10}{\xintPow {-11}{-11}}=-0.0000000000

\xintRound {12}{\xintPow {-11}{-11}}=-0.000000000004

\xintRound {12}{\xintAdd {-1/3}{3/9}}=0

The identity \xintRound {x}{-f}=-\xintRound {x}{f} holds. And regarding (-11)-11 here is some

more of its expansion:

-0.00000000000350493899481392497604003313162598556370...

10.21 \xintiRound
\xintiRound{x}{f} returns the integer equal to 10^x times what \xintRound{x}{f} would return.

num
x
Frac
f ⋆

\xintiRound {16}{-803.2028/20905.298}=-384210165289201

\xintiRound {10}{\xintPow {-11}{-11}}=0

Differences between \xintRound{0}{f} and \xintiRound{0}{f}: the former cannot be used inside

integer-only macros, and the latter removes the decimal point, and never returns -0 (and removes

all superfluous leading zeroes.)

10.22 \xintFloor, \xintiFloor
\xintFloor {f} returns the largest relative integer N with N ⩽ f.

Frac
f ⋆

\xintFloor {-2.13}=-3/1[0], \xintFloor {-2}=-2/1[0], \xintFloor {2.13}=2/1[0]

\xintiFloor {f} does the same but without adding the /1[0].
Frac
f ⋆

\xintiFloor {-2.13}=-3, \xintiFloor {-2}=-2, \xintiFloor {2.13}=2

10.23 \xintCeil, \xintiCeil
\xintCeil {f} returns the smallest relative integer N with N > f.

Frac
f ⋆

\xintCeil {-2.13}=-2/1[0], \xintCeil {-2}=-2/1[0], \xintCeil {2.13}=3/1[0]

\xintiCeil {f} does the same but without adding the /1[0].
Frac
f ⋆

10.24 \xintTFrac
\xintTFrac{f} returns the fractional part, f=trunc(f)+frac(f). Thus if f<0, then -1<frac(f)<=0

Frac
f ⋆

and if f>0 one has 0<= frac(f)<1. The T stands for `Trunc', and there should exist also simi-

lar macros associated respectively with `Round', `Floor', and `Ceil', each type of rounding to

an integer deserving arguably to be associated with a fractional ``modulo''. By sheer laziness,

the package currently implements only the ``modulo'' associated with `Truncation'. Other types

of modulo may be obtained more cumbersomely via a combination of the rounding with a subsequent

subtraction from f.

Notice that the result is filtered through \xintREZ, and will thus be of the form A/B[N], where

neither A nor B has trailing zeros. But the output fraction is not reduced to smallest terms.Documen-
tation up-
dated.

→
The function call in expressions (\xintexpr, \xintfloatexpr) is frac. Inside \xintexpr..\rela⤸

x, the function frac is mapped to \xintTFrac. Inside \xintfloatexpr..\relax, frac first applies

\xintTFrac to its argument (which may be an exact fraction with more digits than the floating

point precision) and only in a second stage makes the conversion to a floating point number with

the precision as set by \xintDigits (default is 16).

\xintTFrac {1235/97}=71/97[0] \xintTFrac {-1235/97}=-71/97[0]

\xintTFrac {1235.973}=973/1[-3] \xintTFrac {-1235.973}=-973/1[-3]

\xintTFrac {1.122435727e5}=5727/1[-4]

80

10 Commands of the xintfrac package

10.25 \xintE
\xintE {f}{x} multiplies the fraction f by 10x. The second argument x must obey the TEX bounds.

Frac
f
num
x ⋆

Example:

\count 255 123456789 \xintE {10}{\count 255}->10/1[123456789]

Be careful that for obvious reasons such gigantic numbers should not be given to \xintNum, or

added to something with a widely different order of magnitude, as the package always works to get

the exact result. There is no problem using them for float operations:
\xintFloatAdd {1e1234567890}{1}=1.000000000000000e1234567890

10.26 \xintFloatE
\xintFloatE [P]{f}{x} multiplies the input f by 10x, and converts it to float format according to[

num
x]
Frac
f
num
x ⋆

the optional first argument or current value of \xintDigits.

\xintFloatE {1.23e37}{53}=1.230000000000000e90

10.27 \xintDigits, \xinttheDigits
The syntax \xintDigits := D; (where spaces do not matter) assigns the value of D to the number of

digits to be used by floating point operations. The default is 16. The maximal value is 32767. The

macro \xinttheDigits serves to print the current value.⋆

10.28 \xintFloat
The macro \xintFloat [P]{f} has an optional argument P which replaces the current value of \x⤸[

num
x]
Frac
f ⋆

intDigits. The (rounded truncation of the) fraction f is then printed in scientific form, with

P digits, a lowercase e and an exponent N. The first digit is from 1 to 9, it is preceded by an

optional minus sign and is followed by a dot and P-1 digits, the trailing zeroes are not trimmed.

In the exceptional case where the rounding went to the next power of ten, the output is 10.0...0eN

(with a sign, perhaps). The sole exception is for a zero value, which then gets output as 0.e0 (in

an \xintCmp test it is the only possible output of \xintFloat or one of the `Float' macros which

will test positive for equality with zero).

\xintFloat[32]{1234567/7654321}=1.6129020457856418616360615134902e-1

\xintFloat[32]{1/\xintFac{100}}=1.0715102881254669231835467595192e-158

The argument to \xintFloat may be an \xinttheexpr-ession, like the other macros; only its final

evaluation is submitted to \xintFloat: the inner evaluations of chained arguments are not at all

done in `floating' mode. For this one must use \xintthefloatexpr.

10.29 \xintPFloat
The macro \xintPFloat [P]{f} is like \xintFloat but ``pretty-prints'' the output, in the sense of[

num
x]
Frac
f ⋆

dropping the scientific notation if possible. Here are the rules:

1. if it is possible to drop the scientific part and express the number as a decimal number with

the same number of digits as in the significand and a decimal mark, it is done so,

2. if the number is less than one and at most four zeros need be inserted after the decimal mark

to express it without scientific part, it is done so,

3. if the number is zero it is printed as 0. All other cases have either a decimal mark or a

scientific part or both.

4. trailing zeros are not trimmed.

\begin{itemize}[noitemsep]

\item \xintPFloat {0}

81

10 Commands of the xintfrac package

\item \xintPFloat {123}

\item \xintPFloat {0.00004567}

\item \xintPFloat {0.000004567}

\item \xintPFloat {12345678e-12}

\item \xintPFloat {12345678e-13}

\item \xintPFloat {12345678.12345678}

\item \xintPFloat {123456789.123456789}

\item \xintPFloat {123456789123456789}

\item \xintPFloat {1234567891234567}

\end{itemize}

• 0

• 123.0000000000000

• 0.00004567000000000000

• 4.567000000000000e-6

• 0.00001234567800000000

• 1.234567800000000e-6

• 12345678.12345678

• 123456789.1234568

• 1.234567891234568e17

• 1234567891234567.

10.30 \xintAdd
Computes the addition of two fractions. To keep for integers the integer format on output use

Frac
f
Frac
f ⋆

\xintiAdd.

Checks if one denominator is a multiple of the other. Else multiplies the denominators.

10.31 \xintFloatAdd
\xintFloatAdd [P]{f}{g} first replaces f and g with their float approximations, with 2 safety[

num
x]
Frac
f
Frac
f ⋆

digits. It then adds exactly and outputs in float format with precision P (which is optional) or

\xintDigits if P was absent, the result of this computation.

10.32 \xintSub
Computes the difference of two fractions (\xintSub{F}{G} computes F-G). To keep for integers the

Frac
f
Frac
f ⋆

integer format on output use \xintiSub.

Checks if one denominator is a multiple of the other. Else multiplies the denominators.

10.33 \xintFloatSub
\xintFloatSub [P]{f}{g} first replaces f and g with their float approximations, with 2 safety[

num
x]
Frac
f
Frac
f ⋆

digits. It then subtracts exactly and outputs in float format with precision P (which is optional),

or \xintDigits if P was absent, the result of this computation.

10.34 \xintMul
Computes the product of two fractions. To keep for integers the integer format on output use \xint-

Frac
f
Frac
f ⋆

iMul.

No reduction attempted.

82

10 Commands of the xintfrac package

10.35 \xintSqr
Computes the square of one fraction. To maintain for integer input an integer format on output use

Frac
f ⋆

\xintiSqr.

10.36 \xintFloatMul
\xintFloatMul [P]{f}{g} first replaces f and g with their float approximations, with 2 safety dig-[

num
x]
Frac
f
Frac
f ⋆

its. It then multiplies exactly and outputs in float format with precision P (which is optional),

or \xintDigits if P was absent, the result of this computation.

It is obviously much needed that the author improves its algorithms to avoid going through

the exact 2P or 2P-1 digits (plus safety digits) before throwing to the waste-bin half of those

digits !

xint initially was purely an exact arbitrary precision arithmetic machine, and the intro-
duction of floating point numbers was an after-thought. I got it working in release 1.07 (201⤸
3/05/25) and never had time to come back to it.

10.37 \xintDiv
Computes the algebraic quotient of two fractions. (\xintDiv{F}{G} computes F/G). To keep for

Frac
f
Frac
f ⋆

integers the integer format on output use \xintiMul.

No reduction attempted.

10.38 \xintFloatDiv
\xintFloatDiv [P]{f}{g} first replaces f and g with their float approximations, with 2 safety[

num
x]
Frac
f
Frac
f ⋆

digits. It then divides exactly and outputs in float format with precision P (which is optional),

or \xintDigits if P was absent, the result of this computation.

10.39 \xintFac
The original is extended to allow a fraction f which will be truncated first to an integer n. See

Num
f ⋆

\xintiFac for a discussion of the maximal allowed input.

Output format is an integer without trailing /1[0].

The original macro (which parses its input via \numexpr) is still available as \xintiFac.
num
x ⋆

10.40 \xintFloatFac
\xintFloatFac[P]{f} returns the factorial.[

num
x]
Frac
f ⋆

$1000!\approx{}$\xintFloatFac [30]{1000}

1000! ≈ 4.02387260077093773543702433923e2567 The computation proceeds via doing explicitely theNew with
1.2 ! product, as the Stirling formula cannot be used for lack so far of exp/log. There is no a priori

limit set on the P optional argument, thus the Stirling approach would become complicated if that

freedom was to be obeyed.

The macro \xintFloatFac chooses dynamically an appropriate number of digits for the intermedi-

ate computations, large enough to achieve the desired accuracy (hopefully).

10.41 \xintPow
\xintPow{f}{g}: computes f^g with f a fraction and g possibly also, but g will first get truncated

Frac
f
Num
f ⋆

to an integer.

83

10 Commands of the xintfrac package

The output will now always be in the form A/B[n] (even when the exponent vanishes: \xintPow {2/⤸
3}{0}=1/1[0]).

The original is available as \xintiPow.

10.42 \xintFloatPow
\xintFloatPow [P]{f}{x} uses either the optional argument P or the value of \xintDigits. It com-[

num
x]
Frac
f
num
x ⋆

putes a floating approximation to f^x. The precision P must be at least 1, naturally.

The exponent x will be fed to a \numexpr, hence count registers are accepted on input for this

x. And the absolute value |x| must obey the TEX bound. For larger exponents use the slightly slower

routine \xintFloatPower which allows the exponent to be a fraction simplifying to an integer and

does not limit its size. This slightly slower routine is the one to which ^ is mapped inside \xint⤸
thefloatexpr...\relax.

The macro \xintFloatPow chooses dynamically an appropriate number of digits for the intermedi-

ate computations, large enough to achieve the desired accuracy (hopefully).

\xintFloatPow [8]{3.1415}{1234567890}=1.6122066e613749456

10.43 \xintFloatPower
\xintFloatPower[P]{f}{g} computes a floating point value f^g where the exponent g is not con-[

num
x]
Frac
f
Num
f ⋆

strained to be at most the TEX bound 2147483647. It may even be a fraction A/B but must simplify to

a (possibly big) integer.

\xintFloatPower [8]{1.000000000001}{1e12}=2.7182818e0

\xintFloatPower [8]{3.1415}{3e9}=1.4317729e1491411192

Note that 3e9>2^31. But the number following e in the output must at any rate obey the TEX 2147483647

bound.

Inside an \xintfloatexpr-ession, \xintFloatPower is the function to which ^ is mapped. The ex-

ponent may then be something like (144/3/(1.3-.5)-37) which is, in disguise, an integer.

The intermediate multiplications are done with a higher precision than \xintDigits or the op-

tional P argument, in order for the final result to hopefully have the desired accuracy.57

There is an important difference between (for example) \xintFloatPower [48]{X}{Y} and \xintthe⤸
floatexpr [48] X^Y \relax: in the former case the computation is done with 48 digits or precision

(but if X and Y are themselves floating point macros of xintfrac, their respective evaluations obey

only the precision set optionally in the macros), whereas with \xintthefloatexpr the evaluation

of the expression proceeds with \xintDigits digits of precision, but is rounded to 48 digits (thus

this example makes sense only if 48<\xintDigits.)

10.44 \xintFloatSqrt
\xintFloatSqrt[P]{f} computes a floating point approximation of

√
f, either using the optional[

num
x]
Frac
f ⋆

precision P or the value of \xintDigits. The computation is done for a precision of at least 17

figures (and the output is rounded if the asked-for precision was smaller).

\xintFloatSqrt [50]{12.3456789e12}

≈ 3.5136418286444621616658231167580770371591427181243e6
\xintDigits:=50;\xintFloatSqrt {\xintFloatSqrt {2}}

≈ 1.1892071150027210667174999705604759152929720924638e0

57 Release 1.2 did not change a single line of code to these macros because they don’t access low-level entry points. There is
some sure important efficiency gains to be obtained in maintaining internally the best inner format for the successive squarings
and multiplications, but I decided to postpone that, as the more urgent issue is to improve \xintFloatMul to not compute exactly
with all digits the product before keeping only the required digits.

84

10 Commands of the xintfrac package

10.45 \xintSum
This computes the sum of fractions. The output will now always be in the form A/B[n]. The original,f→ *

Frac
f ⋆

for big integers only (in strict format), is available as \xintiiSum.
\xintSum {{1282/2196921}{-281710/291927}{4028/28612}}

-15113784906302076/18350036010217404[0]

No simplification attempted.

10.46 \xintPrd
TThis computes the product of fractions. The output will now always be in the form A/B[n]. Thef→ *

Frac
f ⋆

original, for big integers only (in strict format), is available as \xintiiPrd.
\xintPrd {{1282/2196921}{-281710/291927}{4028/28612}}

-1454721142160/18350036010217404[0]

No simplification attempted.

10.47 \xintCmp
This compares two fractions F and G and produces -1, 0, or 1 according to F<G, F=G, F>G.

Frac
f
Frac
f ⋆

For choosing branches according to the result of comparing f and g, the following syntax is

recommended: \xintSgnFork{\xintCmp{f}{g}}{code for f<g}{code for f=g}{code for f>g}.

10.48 \xintIsOne
This returns 1 if the fraction is 1 and 0 if not.

Frac
f ⋆

\xintIsOne {21921379213/21921379213} but \xintIsOne {1.00000000000000000000000000000001}

1 but 0

10.49 \xintGeq
This compares the absolute values of two fractions.\xintGeq{f}{g} returns 1 if |f| ⩾ |g| and 0 if

Frac
f
Frac
f ⋆

not.

May be used for expandably branching as: \xintSgnFork{\xintGeq{f}{g}}{}{code for |f|<|g|}{co⤸
de for |f|⩾|g|}

10.50 \xintMax
The maximum of two fractions. But now \xintMax {2}{3} returns 3/1[0]. The original, for use with

Frac
f
Frac
f ⋆

(possibly big) integers only with no need of normalization, is available as \xintiiMax: \xintiiM⤸
ax {2}{3}=3.f f ⋆
There is also \xintiMax which works with fractions but first truncates them to integers.

Num
f
Num
f ⋆

\xintMax {2.5}{7.2} but \xintiMax {2.5}{7.2}

72/1[-1] but 7

10.51 \xintMin
The maximum of two fractions. The original, for use with (possibly big) integers only with no need

Frac
f
Frac
f ⋆

of normalization, is available as \xintiiMin: \xintiiMin {2}{3}=2.f f ⋆
There is also \xintiMin which works with fractions but first truncates them to integers.

Num
f
Num
f ⋆

\xintMin {2.5}{7.2} but \xintiMin {2.5}{7.2}

25/1[-1] but 2

85

11 Commands of the xintexpr package

10.52 \xintMaxof
The maximum of any number of fractions, each within braces, and the whole thing within braces.f→ *

Frac
f ⋆

\xintMaxof {{1.23}{1.2299}{1.2301}} and \xintMaxof {{-1.23}{-1.2299}{-1.2301}}

12301/1[-4] and -12299/1[-4]

10.53 \xintMinof
The minimum of any number of fractions, each within braces, and the whole thing within braces.f→ *

Frac
f ⋆

\xintMinof {{1.23}{1.2299}{1.2301}} and \xintMinof {{-1.23}{-1.2299}{-1.2301}}

12299/1[-4] and -12301/1[-4]

10.54 \xintAbs
The absolute value. Note that \xintAbs {-2}=2/1[0] whereas \xintiAbs {-2}=2.

Frac
f ⋆

10.55 \xintSgn
The sign of a fraction.

Frac
f ⋆

10.56 \xintOpp
The opposite of a fraction. Note that \xintOpp {3} now outputs -3/1[0] whereas \xintiOpp {3} re-

turns -3.

10.57 \xintiDivision, \xintiQuo, \xintiRem, \xintFDg, \xintLDg, \xintMON,
\xintMMON, \xintOdd

These macros accept a fraction (or two) on input but will truncate it (them) to an integer using
Frac
f
Frac
f ⋆

\xintNum (which is the same as \xintTTrunc). On output they produce integers without / nor [N].

All have variants from package xint whose names start with xintii rather than xint; these vari-

ants accept on input only integers in the strict format (they do not use \xintNum). They thus have

less overhead, and may be used when one is dealing exclusively with (big) integers.

\xintNum {1e80}

100

11 Commands of the xintexpr package

.1 The \xintexpr expressions 87

.2 Some features of the 1.1 release of xintexpr 88

.3 The syntax . 94

.4 \numexpr or \dimexpr expressions, count and
dimension registers and variables 104

.5 Catcodes and spaces . 104

.6 Expandability, \xinteval 105

.7 Memory considerations . 105

.8 The \xintNewExpr command 106

.9 \xintiexpr, \xinttheiexpr 110

.10 \xintiiexpr, \xinttheiiexpr 110

.11 \xintboolexpr, \xinttheboolexpr 111

.12 \xintfloatexpr, \xintthefloatexpr 111

.13 \xintifboolexpr . 112

.14 \xintifboolfloatexpr . 112

.15 \xintifbooliiexpr . 112

.16 \xintNewFloatExpr . 112

.17 \xintNewIExpr . 113

.18 \xintNewIIExpr . 113

.19 \xintNewBoolExpr . 113

.20 \xintthecoords . 113

.21 Technicalities . 113

.22 Acknowledgements (2013/05/25). 114

The xintexpr package was first released with version 1.07 (2013/05/25) of the xint bundle. It

was substantially enhanced with release 1.1 from 2014/10/28.

86

11 Commands of the xintexpr package

Release 1.2 removed a limitation to numbers of at most 5000 digits, and there is now a float

variant of the factorial. Also the ``pseudo-functions'' qint, qfrac, qfloat ('q' for quick), were

added to handle very big inputs and avoid scanning it digit per digit.

The package loads automatically xintfrac and xinttools (it is now the only arithmetic package

from the xint bundle which loads xinttools).

• for using the gcd and lcm functions, it is necessary to load package xintgcd.

\xinttheexpr lcm (2^5*7*13^10*17^5,2^3*13^15*19^3,7^3*13*23^2)\relax

2894379441338000036761046087608864

• for allowing hexadecimal numbers (uppercase letters) on input, it is necessary to load package
xintbinhex.

\xinttheexpr "A*"B*"C*"D*"D*"F, "FF.FF, reduce("FF.FFF + 16^-3)\relax

3346200, 25599609375[-8], 256

This documentation has repetitions, is a.t.t.o.w generally speaking not well structured,

and mixes old explanations dating back to the first release and some more recent ones.

11.1 The \xintexpr expressions
An xintexpression is a construct \xintexpr⟨expandable_expression⟩\relax where the expandable ex-x ⋆
pression is read and completely expanded from left to right.

An \xintexpr..\relax must end in a \relax (which will be absorbed). Like a \numexpr expression,
it is not printable as is, nor can it be directly employed as argument to the other package macros.

For this one must use one of the two equivalent forms:

• \xinttheexpr⟨expandable_expression⟩\relax, orx ⋆

• \xintthe\xintexpr⟨expandable_expression⟩\relax.x ⋆

The computations are done exactly, and with no simplification of the result. The result can be
modified via the functions round, trunc, float, or reduce.58 Here are some examples

\xinttheexpr 1/5!-1/7!-1/9!\relax=2951/362880

\xinttheexpr round(1/5!-1/7!-1/9!,18)\relax=0.008132164902998236

\xinttheexpr float(1/5!-1/7!-1/9!,18)\relax=813216490299823633[-20]

\xinttheexpr reduce(1/5!-1/7!-1/9!)\relax=2951/362880

\xinttheexpr 1.99^-2 - 2.01^-2 \relax=800/1599920001[4]

\xinttheexpr round(1.99^-2 - 2.01^-2, 10)\relax=0.0050002500

With 1.1 on has:

\xinttheiexpr [10] 1.99^-2 - 2.01^-2\relax=0.0050002500

• the expression may contain arbitrarily many levels of nested parenthesized sub-expressions.

• to let sub-contents evaluate as a sub-unit it should be either

1. parenthesized,

2. or a sub-expression \xintexpr...\relax.

When the parser scans a number and hits against either an opening parenthesis or a sub-

expression it inserts tacitly a *.

• to either give an expression as argument to the other package macros, or more generally to

macros which expand their arguments, one must use the \xinttheexpr...\relax or \xintthe\xint⤸
expr...\relax forms. Similarly, printing the result itself must be done with these forms.

58 In round and trunc the second optional parameter is the number of digits of the fractional part; in float it is the total number
of digits of the mantissa.

87

11 Commands of the xintexpr package

• one should not use \xinttheexpr...\relax as a sub-constituent of an \xintexpr...\relax but

rather the \xintexpr...\relax form which will be more efficient.

• each xintexpression, whether prefixed or not with \xintthe, is completely expandable and ob-

tains its result in two expansion steps.

In an algorithm implemented non-expandably, one may define macros to expand to infix expressions

to be used within others. One then has the choice between parentheses or \xintexpr...\relax: \def⤸
\x {(\a+\b)} or \def\x {\xintexpr \a+\b\relax}. The latter is the better choice as it allows also

to be prefixed with \xintthe. Furthemore, if \a and \b are already defined \edef\x {\xintexpr \a⤸
+\b\relax} will do the computation on the spot.

11.2 Some features of the 1.1 release of xintexpr
Release 1.1 brought many changes to xintexpr. This chapter is for people already familiar with

earlier versions. A more systematic item per item syntax description is provided in the next sec-

tion 11. Both this section and the next are in need of being improved.

First, there were some breaking changes:

• in \xintiiexpr, / does rounded division, rather than as in earlier releases the Euclidean divi-
sion (for positive arguments, this is truncated division). The new // operator does truncated

division,

• the : operator for three-way branching is gone, replaced with ??,

• 1e(3+5) is now illegal. The number parser identifies e and E in the same way it does for the

decimal mark, earlier versions treated e as E rather as postfix operators,

• the add and mul have a new syntax, old syntax is with `+` and `*` (quotes mandatory), sum and

prd are gone,

• no more special treatment for encountered brace pairs {..} by the number scanner, a/b[N] nota-

tion can be used without use of braces (the N will end up space-stripped in a \numexpr, it is

not parsed by the \xintexpr-ession scanner).

• although & and | are still available as Boolean operators the use of && and || is strongly

recommended. The single letter operators might be assigned some other meaning in later releases

(bitwise operations, perhaps). Do not use them.

• place holders for \xintNewExpr could be denoted #1, #2, ... or also, for special purposes $1,

$2, ... Only the first form is now accepted and the special cases previously treated via the

second form are now managed via a protect(...) function.

Let's now describle some of the numerous additional functionalities.

• \xintiexpr, \xinttheiexpr admit an optional argument within brackets [d], it then presents the
computation result (or results, if comma separated) after rounding to d digits after decimal mark,
(the whole computation is done exactly, as in xintexpr),

\xinttheiexpr [32] 1.23^50, 1.231^50\relax

31279.19531849524327730376474278479977, 32576.36681452374761163272615218241811

• \xintfloatexpr, \xintthefloatexpr similarly admit an optional argument which serves to keep
only d digits of precision, getting rid of cumulated uncertainties in the last digits (the whole
computation is done according to the precision set via \xintDigits),

\xintDigits:=32;\xintthefloatexpr 1.010101^10-1.0101^10\relax

\xintDigits:=16;\xintthefloatexpr 1.010101^10-1.0101^10\relax

\xintthefloatexpr [12] 1.010101^10-1.0101^10\relax

88

11 Commands of the xintexpr package

0.000010946651065064088084734476200000

0.00001094665106500000

0.0000109466510650

• \xinttheexpr and \xintthefloatexpr ``pretty-print'' if possible, the former removing unit de-

nominator or [0] brackets, the latter avoiding scientific notation if decimal notation is practi-

cal,

• the // does truncated division and /: is the associated modulo,

• multi-character operators &&, ||, ==, <=, >=, !=, **,

• multi-letter infix binary words 'and', 'or', 'xor', 'mod' (quotes mandatory),

• functions even, odd, first, last,

• \xintdefvar A3:=3.1415; for variable definitions (non expandable, naturally), usable in sub-

sequent expressions; variable names may contain letters, digits, underscores. They should not

start with a digit, the @ is reserved, and single lowercase and uppercase Latin letters are prede-

fined to work as dummy variables (see next),

• generation of comma separated lists a..b, a..[d]..b,

• Python syntax-like list extractors [list][n:], [list][:n], [list][a:b] and [list][n] (n=0 for

the number of list items), the step is always +1,

• function reversed, to reverse the order of list items,

• itemwise sequence operations a*[list], etc.., on both sides a*[list]^b,

• dummy variables in add and mul: add(x(x+1)(x-1), x=-10..10),

• variable substitutions with subs: subs(subs(add(x^2+y^2,x=1..y),y=t),t=20),

• sequence generation using seq with a dummy variable: seq(x^3, x=-10..10),

• simple recursive sequences with rseq, with @ given the last value, rseq(1;2@+1,i=1..10),

• higher recursion with rrseq, @1, @2, @3, @4, and @@(n) for earlier values, up to n=K where K is

the number of terms of the initial stretch rrseq(0,1;@1+@2,i=2..100),

• iteration with iter which is like rrseq but outputs only the last K terms, where K was the number

of initial terms,

• inside seq, rseq, rrseq, iter, possibility to use omit, abort and break to control termination,

• n++ potentially infinite index generation for seq, rseq, rrseq, and iter, it is advised to use

abort or break(..) at some point,

• the add, mul, seq, ... are nestable,59

• \xintthecoords converts a comma separated list of an even number of items to the format as

expected by the TikZ coordinates syntax,

• completely rewritten \xintNewExpr, new protect function to handle external macros. However not

all constructs are compatible with \xintNewExpr.

And now some examples:

• One can define variables (the definition itself is a non expandable step). The allowed names are
composed of letters, digits, and underscores. The variable should not start with a digit and single
letters a..z, A..Z are predefined for use as dummy variables --- see below. The @ is reserved.

\begingroup

\xintdefvar a_1 := 3.14159;\xintdefvar a2 := 2.71828;\xinttheiexpr [5] a_1+a2\relax

\endgroup

5.85987

59 but add(seq(x,x=1..t),t=1..2) fails for the reason that add will receive not a list of numbers but a list of lists.

89

11 Commands of the xintexpr package

• add and mul have a new syntax requiring a dummy variable:

\xinttheexpr add(x, x=1,3,19), mul(x^2, x=1,3,19), add(x(x+1), x= 1,3,19)\relax

23, 3249, 394
Use `+` and `*` (left ticks mandatory) for syntax without dummy variables:

\xinttheexpr `+`(1,3,19), `*`(1^2,3^2,19^2), `+`(1*2,3*4,19*20)\relax

23, 3249, 394

• The seq function generates sequences according to a given formula:

\xinttheexpr seq(x(x+1)(x+2), x=1,3,19), `+`(seq(x(x+1)(x+2), x=1,3,19)),

add(x(x+1)(x+2), x=1,3,19)\relax

6, 60, 7980, 8046, 8046

And this is nestable!

\xinttheexpr seq(seq(x^y, y=1..5),x=1..5), add(mul(x^y,y=1..5), x=1..5),

add(x^15, x=1..5)\relax % 15 = 1+2+3+4+5

And this is nestable! 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 3, 9, 27, 81, 243, 4, 16, 64, 256, 1024, 5, 25,

125, 625, 3125, 31605701625, 31605701625

One should use parentheses appropriately. The \xintexpr parser in normal operation is not bad

at identifying missing or extra opening or closing parentheses, but when it handles seq, add, mul

or similar constructs it switches to another mode of operation (it starts using delimited macros,

something which is almost non-existent in all its other operations) and ill-formed expressions

are much more likely to let the parser fetch tokens from beyond the mandatory ending \relax. Thus,

in case of a missing parenthesis in such circumstances the error message from TEX might be very

cryptic, even for the seasoned xint user.

• As seen in the last example a..b constructs the integers from a to b. This is (small) integer
only. A more general a..[d]..b works with big integers, or fractions, from a to b with step d.

\xinttheexpr seq(2x+1, x=1..10, 100..110, 3/5..[1/5]..7/5)\relax

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 11/5,

13/5, 15/5, 17/5, 19/5

• itemwise operations on lists are possible, as well as item extractions:

\xinttheiiexpr 2*[1,10,100]^3, 5+[2*[1,10,100]^3]*100 \relax

2, 2000, 2000000, 205, 200005, 200000005

\xinttheiiexpr 1+[seq(3^j, j=1..10, 21..30)][17], 1+3^27\relax

7625597484988, 7625597484988

We used the [list][n] construct which gives the nth item from the list. In this context there are

also the functions last and first. There is no real concept of a list object, nor list operations,

although itemwise manipulation are made possible as shown above via the [..] constructor. The

list manipulation utilities are so far a bit limited. There is no notion of an ``nuple'' object.

The variable nil is reserved, it represents an empty list.

• subs is similar to seq in syntax but is for variable substitution:

\xinttheexpr subs(100*subs(10*subs(3*x+5,x=y+50)+2,y=z^2),z=10)\relax % 100(10(3*150+5)+2)

455200

\xinttheexpr subs(subs(add(x^2+y^2,x=1..y),y=t),t=20)\relax

10870
The substituted variable may be a comma separated list (this is impossible with seq which will

always pick one item after the other of a list).

\xinttheexpr subs([x]^2,x=-123,17,32)\relax

15129, 289, 1024

90

11 Commands of the xintexpr package

• last but not least, seq has variants rseq and rrseq which allow recursive definitions. They
start with at least one initial value, then a semi-colon, then the formula, then the list of indices
to iterate over. @ (or @1) evaluates to the last computed item, and rrseq keeps the memory of the
K last results, where K was the number of initial terms. One accesses them via @1, @2, @3, @4 and
@@(N) for N>4. It is even possible to nest them and use @@@ to access the values of the master
recursion...

\xinttheiiexpr rseq(1; 2*@, i=1..10), `+`(rseq(1; 2*@, i=1..10))\relax

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047

\xinttheiiexpr rseq(2; @(@+1)/2, i=1..5)\relax

2, 3, 6, 21, 231, 26796

\xinttheiiexpr rseq(0,1; (@1,add(x,x=@1)), y=2..10)\relax

0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 4, 0, 1, 1, 2, 4, 8, 0, 1, 1, 2, 4, 8, 16, 0, 1, 1, 2, 4, 8, 16,

32, 0, 1, 1, 2, 4, 8, 16, 32, 64, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128,

256
Some Fibonacci fun

\xinttheiiexpr rrseq(0,1; @1+@2, x=2..10), last(rrseq(0,1; @1+@2, x=2..100))\relax

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 354224848179261915075

Sum of previous last three: \xinttheiiexpr rrseq(0,0,1; @1+@2+@3, i=1..20)\relax

Sum of previous last three: 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136,
5768, 10609, 19513, 35890, 66012, 121415

Big numbers: \printnumber{\xinttheexpr rseq(1; @(@+1), j=1..10)\relax }

Big numbers: 1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442, 1286493⤸
8683278671740537145998360961546653259485195806, 16550664732451996419846819544443918001751315⤸
2706377497841851388766535868639572406808911988131737645185442, 27392450308603031423410234291⤸
67468628119436436758091462794736794160869202622699363433211840458243863492954873728399236975⤸
8487974306317730580753883429460344956410077034761330476016739454649828385541500213920806
Nested recursion often quickly leads to gigantic outputs. This is an experimental feature,

susceptible to be removed or altered in the future.

\xinttheexpr rrseq(1; `+`(rrseq(0,1; @@@(1)+@1+@2, i=1..10)), j=1..5)\relax

1, 596, 217176, 79052296, 28775035976, 10474113095496

• The special keywords omit, abort and break(..) are available inside seq, rseq, rrseq, as well
as the n++ for a potentially infinite iteration. The n++ construct in conjunction with an abort or
break is often more efficient, because in other cases the list to iterate over is first completely
constructed.

First Fibonacci number at least |2^31| and its index

\xinttheiiexpr iter(0,1; (@1>=2^31)?{break(i)}{@2+@1}, i=1++)\relax

First Fibonacci number at least 2^31 and its index 2971215073, 47

Prime numbers are always cool

\xinttheiiexpr seq((seq((subs((x/:m)?{(m*m>x)?{1}{0}}{-1},m=2n+1))

??{break(0)}{omit}{break(1)},n=1++))?{x}{omit},

x=10001..[2]..10200)\relax

Prime numbers are always cool 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091,

10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193

The syntax in this last example may look a bit involved. First x/:m computes x modulo m (this is

the modulo with respect to truncated division, which here for positive arguments is like Euclidean

division; in \xintexpr...\relax, a/:b is such that a = b*(a//b)+a/:b, with a//b the algebraic

quotient a/b truncated to an integer.). The (x)?{yes}{no} construct checks if x (which must be
within parentheses) is true or false, i.e. non zero or zero. It then executes either the yes or

the no branch, the non chosen branch is not evaluated. Thus if m divides x we are in the second

91

11 Commands of the xintexpr package

(``false'') branch. This gives a -1. This -1 is the argument to a ?? branch which is of the type (⤸
y)??{y<0}{y=0}{y>0}, thus here the y<0, i.e., break(0) is chosen. This 0 is thus given to another

? which consequently chooses omit, hence the number is not kept in the list. The numbers which

survive are the prime numbers.

• The iter function is like rrseq but does not leave a trace of earlier items, it starts with K
initial values, then it iterates: either a fixed number of times, or until aborting or breaking.
And ultimately it prints K final values.

The first Fibonacci number beyond the \TeX{} bound is

\xinttheiiexpr subs(iter(0,1;(@1>N)?{break(i)}{@1+@2},i=1++),N=2^31)\relax{}

and the previous number was its index.

The first Fibonacci number beyond the TEX bound is 2971215073, 47 and the previous number was its
index. But this was a bit too easy, what is the smallest Fibonacci number not representable on 64
bits?

The first Fibonacci number beyond |2^64| bound is

\xinttheiiexpr subs(iter(0,1;(@1>N)?{break(i)}{@1+@2},i=1++),N=2^64)\relax{}

and the previous number was its index.

The first Fibonacci number beyond 2^64 bound is 19740274219868223167, 94 and the previous number

was its index.
One more recursion:

\def\syr #1{\xinttheiiexpr rseq(#1; (@<=1)?{break(i)}{odd(@)?{3@+1}{@//2}},i=0++)\relax}

The 3x+1 problem: \syr{231}\par

The 3x+1 problem: 231, 694, 347, 1042, 521, 1564, 782, 391, 1174, 587, 1762, 881, 2644, 1322, 661,

1984, 992, 496, 248, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91,

274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780,

890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958,

479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051,

6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 127
Ok, a final one:

\def\syrMax #1{\xinttheiiexpr iter(#1,#1;even(i)?

{(@2<=1)?{break(i/2)}{odd(@2)?{3@2+1}{@2//2}}}

{(@1>@2)?{@1}{@2}},i=0++)\relax }

With initial value 1161, the maximal number attained is \syrMax{1161} and that latter

number is the number of steps which was needed to reach 1.\par

With initial value 1161, the maximal number attained is 190996, 181 and that latter number is the

number of steps which was needed to reach 1.

Well, one more:

\newcommand\GCD [2]{\xinttheiiexpr rrseq(#1,#2; (@1=0)?{abort}{@2/:@1}, i=1++)\relax }

\GCD {13^10*17^5*29^5}{2^5*3^6*17^2}

4014838863509162883616357, 6741792, 3367717, 6358, 4335, 2023, 289, 0

and the ultimate:

\newcommand\Factors [1]{\xinttheiiexpr

subs(seq((i/:3=2)?{omit}{[L][i]},i=1..([L][0])),

L=rseq(#1;(p^2>[@][1])?{([@][1]>1)?{break(1,[@][1],1)}{abort}}

{(([@][1])/:p)?{omit}

{iter(([@][1])//p; (@/:p)?{break(@,p,e)}{@//p},e=1++)}},p=2++))\relax }

\Factors {41^4*59^2*29^3*13^5*17^8*29^2*59^4*37^6}

16246355912554185673266068721806243461403654781833, 13, 5, 17, 8, 29, 5, 37, 6, 41, 4, 59, 6

This might look a bit scary, I admit. xintexpr has minimal tools and is obstinate about doing

everything expandably! We are hampered by absence of a notion of ``nuple''. The algorithm divides

N by 2 until no more possible, then by 3, then by 4 (which is silly), then by 5, then by 6 (silly

again),

92

11 Commands of the xintexpr package

The variable L=rseq(#1;...) expands, if one follows the steps, to a comma separated list start-

ing with the initial (evaluated) N=#1 and then pseudo-triplets where the first item is N trimmed of

small primes, the second item is the last prime divisor found, and the third item is its exponent

in original N.

The algorithm needs to keep handy the last computed quotient by prime powers, hence all of them,

but at the very end it will be cleaner to get rid of them (this corresponds to the first line in the

code above). This is achieved in a cumbersome inefficient way; indeed each item extraction [L][i⤸
] is costly: it is not like accessing an array stored in memory, due to expandability, nothing can

be stored in memory! Nevertheless, this step could be done here in a far less inefficient manner

if there was a variant of seq which, in the spirit of \xintiloopindex, would know how many steps

it had been through so far. This is a feature to be added to \xintexpr! (as well as a ++ construct

allowing a non unit step).

Notice that in iter(([@][1])//p; the @ refers to the previous triplet (or in the first step to

N), but the latter @ showing up in (@/:p)? refers to the previous value computed by iter.

Parentheses are essential in ..([y][0]) else the parser will see ..[and end up in ultimate

confusion, and also in ([@][1])/:p else the parser will see the itemwise operator]/ on lists

and again be very confused (I could implement a]/: on lists, but in this situation this would

also be very confusing to the parser.)

For comparison, here is an f-expandable macro expanding to the same result, but coded directly
with the xint macros. Here #1 can not be itself an expression, naturally. But at least we let \Fac⤸
torize f-expand its argument.

\makeatletter

\newcommand\Factorize [1]

{\romannumeral0\expandafter\factorize\expandafter{\romannumeral-`0#1}}%

\newcommand\factorize [1]{\xintiiifOne{#1}{ 1}{\factors@a #1.{#1};}}%

\def\factors@a #1.{\xintiiifOdd{#1}

{\factors@c 3.#1.}%

{\expandafter\factors@b \expandafter1\expandafter.\romannumeral0\xinthalf{#1}.}}%

\def\factors@b #1.#2.{\xintiiifOne{#2}

{\factors@end {2, #1}}%

{\xintiiifOdd{#2}{\factors@c 3.#2.{2, #1}}%

{\expandafter\factors@b \the\numexpr #1+\@ne\expandafter.%

\romannumeral0\xinthalf{#2}.}}%

}%

\def\factors@c #1.#2.{%

\expandafter\factors@d\romannumeral0\xintiidivision {#2}{#1}{#1}{#2}%

}%

\def\factors@d #1#2#3#4{\xintiiifNotZero{#2}

{\xintiiifGt{#3}{#1}

{\factors@end {#4, 1}}% ultimate quotient is a prime with power 1

{\expandafter\factors@c\the\numexpr #3+\tw@.#4.}}%

{\factors@e 1.#3.#1.}%

}%

\def\factors@e #1.#2.#3.{\xintiiifOne{#3}

{\factors@end {#2, #1}}%

{\expandafter\factors@f\romannumeral0\xintiidivision {#3}{#2}{#1}{#2}{#3}}%

}%

\def\factors@f #1#2#3#4#5{\xintiiifNotZero{#2}

{\expandafter\factors@c\the\numexpr #4+\tw@.#5.{#4, #3}}%

{\expandafter\factors@e\the\numexpr #3+\@ne.#4.#1.}%

}%

\def\factors@end #1;{\xintlistwithsep{, }{\xintRevWithBraces {#1}}}%

93

11 Commands of the xintexpr package

\makeatother

The macro \Factorize puts a little stress on the input save stack in order not be bothered with

previously gathered things. I timed it to be about eight times faster than \Factors in test cases

such as 16246355912554185673266068721806243461403654781833 and others. Among the various things

explaining the speed-up, there is fact that we step by increments of two, not one, and also that we

divide only once, obtaining quotient and remainder in one go. These two things already make for a

speed-up factor of about four. Thus, our earlier \Factors was not completely inefficient, and was

quite easier to come up with than \Factorize.

If we only considered small integers, we could write pure \numexpr methods which would be very

much faster (especially if we had a table of small primes prepared first) but still ridiculously

slow compared to any non expandable implementation, not to mention use of programming languages

directly accessing the CPU registers...

To conclude with this overview of the new features in xintexpr 1.1, I will mention \xintthecoo⤸
rds which converts a comma separated list as produced by \xintfloatexpr or \xintiexpr [d] to the
format expected by the TikZ coordinates syntax.

{\centering\begin{tikzpicture}[scale=10]\xintDigits:=8;

\clip (-1.1,-.25) rectangle (.3,.25);

\draw [blue] (-1.1,0)--(1,0);

\draw [blue] (0,-1)--(0,+1);

\draw [red] plot[smooth] coordinates {\xintthecoords

% converts into (x1, y1) (x2, y2)... format

\xintfloatexpr seq((x^2-1,mul(x-t,t=-1+[0..4]/2)),x=-1.2..[0.1]..+1.2) \relax };

\end{tikzpicture}\par }

.

\xintthecoords should be followed immediately by \xintfloatexpr or \xintiexpr or \xintiiexpr,

but not \xintthefloatexpr, etc...

Besides, as TikZ will not understand the A/B[N] format which is used on output by \xintexpr, \xi⤸
ntexpr is not really usable with \xintthecoords for a TikZ picture, but one may use it on its own,

and the reason for the spaces in and between coordinate pairs is to allow if necessary to print on

the page for examination with about correct line-breaks.
\edef\x{\xintthecoords \xintexpr rrseq(1/2,1/3; @1+@2, x=1..20)\relax }

\meaning\x +++

macro:->(1/2, 1/3) (5/6, 7/6) (12/6, 19/6) (31/6, 50/6) (81/6, 131/6) (212/6, 343/6) (555/6,

898/6) (1453/6, 2351/6) (3804/6, 6155/6) (9959/6, 16114/6) (26073/6, 42187/6)+++

11.3 The syntax
An expression is enclosed between either \xintexpr, or \xintiexpr, or \xintiiexpr, or \xint-

floatexpr, or \xintboolexpr and a mandatory ending \relax. An expression may be a sub-unit of
another one.

Apart from \xintfloatexpr the evaluations of algebraic operations are exact. The variant \xint-
iiexpr does not know fractions and is provided for integer-only calculations. The variant \xint-

94

11 Commands of the xintexpr package

iexpr is exactly like \xintexpr except that it either rounds the final result to an integer, or

in case of an optional parameter [d], rounds to a fixed point number with d digits after decimal

mark. The variant \xintfloatexpr does float calculations according to the current value of the

precision set by \xintDigits.

The whole expression should be prefixed by \xintthe when it is destined to be printed on the

typeset page, or given as argument to a macro (assuming this macro systematically expands its

argument). As a shortcut to \xintthe\xintexpr there is \xinttheexpr. One gets used to not forget

the two t's.

\xintexpr-essions and \xinttheexpr-essions are completely expandable, in two steps.

• An expression is built the standard way with opening and closing parentheses, infix opera-

tors, and (big) numbers, with possibly a fractional part, and/or scientific notation (except

for \xintiiexpr which only admits big integers). All variants work with comma separated ex-

pressions. On output each comma will be followed by a space. A decimal number must have digits

either before or after the decimal mark.Changed!→
• as everything gets expanded, the characters ., +, -, *, /, ^, !, &, |, ?, :, <, >, =, (,), ",],

[, @ and the comma , should not (if used in the expression) be active. For example, the French

language in Babel system, for pdfLATEX, activates !, ?, ; and :. Turn off the activity before the

expressions.

Alternatively the command \xintexprSafeCatcodes resets all characters potentially needed

by \xintexpr to their standard catcodes and \xintexprRestoreCatcodes restores the status pre-

vailing at the time of the previous \xintexprSafeCatcodes.

• The infix operators are +, -, *, /, ^ (or **) for exact or floating point algebra (only integer

exponents for power operations), && and || 60 for combining ``true'' (non zero) and ``false''

(zero) conditions, as can be formed for example with the = (or ==), <, >, <=, >=, != comparison

operators.

• The ! is either a function (the logical not) requiring an argument within parentheses, or a

post-fix operator which does the factorial. In \xintfloatexpr it is mapped to \xintFloatFac,

else it computes the exact factorial.

• The ? may serve either as a function (the truth value) requiring an argument within parenthe-

ses), or as two-way post-fix branching operator (cond)?{YES}{NO}. The false branch will not be
evaluated.

• There is also ?? which branches according to the scheme (x)??{<0}{=0}{>0}.

• Comma separated lists may be generated with a..b and a..[d]..b and they may be manipulated to

some extent once put into brackets:

– a..b constructs the small integers from ⌈a⌉ to ⌊b⌋ (possibly a decreasing sequence),
\xinttheexpr 1.5..11.23\relax

2, 3, 4, 5, 6, 7, 8, 9, 10, 11

– a..[d]..b allows big integers, or fractions, it proceeds by step of d.
\xinttheexpr 1.5..[0.97]..11.23\relax

15[-1], 247[-2], 344[-2], 441[-2], 538[-2], 635[-2], 732[-2], 829[-2], 926[-2], 1023[-2],

1120[-2]

– [list][n] extracts the nth element, or give the number of items if n=0. If n<0 it extracts
from the tail.

\xinttheiexpr \empty[1..10][6], [1..10][0], [1..10][-1], [1..10][23*18-22*19]\relax\

(and 23*18-22*19 has value \the\numexpr 23*18-22*19\relax).

60 with releases earlier than 1.1, only single character operators & and | were available, because the parser did not handle
multi-character operators. Their usage in this rôle is now deprecated, as they may be assigned some new meaning in the future.+

{

95

11 Commands of the xintexpr package

6, 10, 10, 7 (and 23*18-22*19 has value -4).

See the frame coming next for the \empty token. As shown, it is perfectly legal to do oper-

ations in the index parameter, which will be handled by the parser as everything else. The

same remark applies to the next items.

– [list][:n] extracts the first n elements if n>0, or suppresses the last |n| elements if n<0.
\xinttheiiexpr [1..10][:6]\relax\ and \xinttheiiexpr [1..10][:-6]\relax

1, 2, 3, 4, 5, 6 and 1, 2, 3, 4

– [list][n:] suppresses the first n elements if n>0, or extracts the last |n| elements if n<0.
\xinttheiiexpr [1..10][6:]\relax\ and \xinttheiiexpr [1..10][-6:]\relax

7, 8, 9, 10 and 5, 6, 7, 8, 9, 10

– More generally, [list][a:b] works according to the Python ``slicing'' rules (inclusive of
negative indices). Notice though that there is no optional third argument for the step,
which always defaults to +1.

\xinttheiiexpr [1..20][6:13]\relax\ = \xinttheiiexpr [1..20][6-20:13-20]\relax

7, 8, 9, 10, 11, 12, 13 = 7, 8, 9, 10, 11, 12, 13

– It is naturally possible to nest these things:
\xinttheexpr [[1..50][13:37]][10:-10]\relax

24, 25, 26, 27

– itemwise operations either on the left or the right are possible:
\xinttheiiexpr 123*[1..10]^2\relax

123, 492, 1107, 1968, 3075, 4428, 6027, 7872, 9963, 12300

As list operations are implemented using square brackets, it is necessary in \xintiex⤸
pr and \xintfloatexpr to insert something before the first bracket if it belongs to a

list, to avoid confusion with the bracket of an optional parameter. We need something

expandable which does not leave a trace: the \empty does the trick.+
{

\xinttheiexpr \empty [1,3,6,99,100,200][2:4]\relax

6, 99

An alternative is to use parentheses

\xinttheiexpr ([1,3,6,99,100,200][2:4])\relax

6, 99

Notice though that ([1,3,6,99,100,200])[2:4] would not work. It is mandatory for][
and][: not to be interspersed with parentheses. On the other hand spaces are perfectly
legal:

\xinttheiiexpr [1..10] [: 7]\relax

1, 2, 3, 4, 5, 6, 7

Similarly all the +[, *[, ...and]**,]/, ...operators admit spaces but nothing else
in-between their constituent characters.

\xinttheiiexpr [1 . . 1 0] * * 1 1 \relax

1, 2048, 177147, 4194304, 48828125, 362797056, 1977326743, 8589934592, 31381059609,

100000000000

In an other vein, the parser will be confused by 1..[list][3], one must write 1..([list⤸
][3]). Also things such as [100,300,500,700][2]//11 will be confusing because the]/ is

an operator with higher priority than the][, and then there will a dangling /11 which

does not make sense. In fact even [100,300,500,700][2]/11 is a syntax error: one must

write ([100,300,500,700][2])//11.

96

11 Commands of the xintexpr package

• count registers and \numexpr-essions are accepted (LaTeX's counters can be inserted using \v⤸
alue) natively without \the or \number as prefix. Also dimen registers and control sequences,

skip registers and control sequences (LATEX's lengths), \dimexpr-essions, \glueexpr-essions are

automatically unpacked using \number, discarding the stretch and shrink components and giving

the dimension value in sp units (1/65536th of a TEX point). Furthermore, tacit multiplication

is implied, when the register, variable, or expression is immediately prefixed by a (decimal)

number.

• tacit multiplication (the parser inserts a *) applies when the parser is currently scanning the

digits of a number (or its decimal part or scientific part), or is looking for an infix operator,

and: (1.) encounters a register, variable or ε-TEX expression (as described in the previous
item), (2.) encounters a sub-\xintexpr-ession, or (3.) encounters an opening parenthesis.

• when defining a macro to expand to an expression either via

\def\x {\xintexpr \a + \b \relax} or \edef\x {\xintexpr \a+\b\relax}

one may then do \xintthe\x, either for printing the result on the page or to use it in some other

macros expanding their arguments. The \edef does the computation but keeps it in an internal

private format. Naturally, the \edef is only possible if \a and \b are already defined, either

as macros expanding to legal syntax like 37^23*17 or themselves in the same way \x above was

defined. Indeed in both cases (the `yet-to-be computed' and the `already computed') \x can

then be inserted in other expressions, as for example

\edef\y {\xintexpr \x^3\relax}

This would have worked also with \x defined as \def\x {(\a+\b)} but \edef\x would not have

been an option then, and \x could have been used only inside an \xintexpr-ession, whereas the

previous \x can also be used as \xintthe\x in any context triggering the expansion of \xintthe.

• there is also \xintboolexpr ... \relax and \xinttheboolexpr ... \relax. Same as \xintexpr
with the final result converted to 1 if it is not zero. See also \xintifboolexpr (subsec-
tion 11.13) and the discussion of the bool and togl functions in section 11. Here is an example:

\xintNewBoolExpr \AssertionA[3]{ #1 && (#2|#3) }

\xintNewBoolExpr \AssertionB[3]{ #1 || (#2) }

\xintNewBoolExpr \AssertionC[3]{ xor(#1,#2,#3) }

{\centering\normalcolor\xintFor #1 in {0,1} \do {%

\xintFor #2 in {0,1} \do {%

\xintFor #3 in {0,1} \do {%

#1 AND (#2 OR #3) is \textcolor[named]{OrangeRed}{\AssertionA {#1}{#2}{#3}}\hfil

#1 OR (#2 AND #3) is \textcolor[named]{OrangeRed}{\AssertionB {#1}{#2}{#3}}\hfil

#1 XOR #2 XOR #3 is \textcolor[named]{OrangeRed}{\AssertionC {#1}{#2}{#3}}\\}}}}

0 AND (0 OR 0) is 0 0 OR (0 AND 0) is 0 0 XOR 0 XOR 0 is 0

0 AND (0 OR 1) is 0 0 OR (0 AND 1) is 0 0 XOR 0 XOR 1 is 1

0 AND (1 OR 0) is 0 0 OR (1 AND 0) is 0 0 XOR 1 XOR 0 is 1

0 AND (1 OR 1) is 0 0 OR (1 AND 1) is 1 0 XOR 1 XOR 1 is 0

1 AND (0 OR 0) is 0 1 OR (0 AND 0) is 1 1 XOR 0 XOR 0 is 1

1 AND (0 OR 1) is 1 1 OR (0 AND 1) is 1 1 XOR 0 XOR 1 is 0

1 AND (1 OR 0) is 1 1 OR (1 AND 0) is 1 1 XOR 1 XOR 0 is 0

1 AND (1 OR 1) is 1 1 OR (1 AND 1) is 1 1 XOR 1 XOR 1 is 1

This example used for efficiency \xintNewBoolExpr. See also the subsection 11.8.

• there is \xintfloatexpr ... \relax where the algebra is done in floating point approximation
(also for each intermediate result). Use the syntax \xintDigits:=N; to set the precision. De-
fault: 16 digits.

\xintthefloatexpr 2^100000\relax: 9.990020930143845e30102
The square-root operation can be used in \xintexpr, it is computed as a float with the precision
set by \xintDigits or by the optional second argument:

\xinttheexpr sqrt(2,60)\relax

97

11 Commands of the xintexpr package

Here the [60] is to avoid truncation to |\xintDigits| of precision on output.

\printnumber{\xintthefloatexpr [60] sqrt(2,60)\relax}

141421356237309504880168872420969807856967187537694807317668[-59]

Here the [60] is to avoid truncation to \xintDigits of precision on output. 1.414213562373⤸
09504880168872420969807856967187537694807317668

• Floats are quickly indispensable when using the power function (which can only have an integer
exponent), as exact results will easily have hundreds, if not thousands, of digits.

\xintDigits:=48;\xintthefloatexpr 2^100000\relax

9.99002093014384507944032764330033590980429139054e30102

• hexadecimal TEX number denotations (i.e., with a " prefix) are recognized by the \xintexpr
parser and its variants. This requires xintbinhex . Except in \xintiiexpr, a (possibly empty)

fractional part with the dot . as ``hexadecimal'' mark is allowed.

\xinttheexpr "FEDCBA9876543210\relax→18364758544493064720
\xinttheiexpr 16^5-("F75DE.0A8B9+"8A21.F5746+16^-5)\relax→0

Letters must be uppercased, as with standard TEX hexadecimal denotations.

Note that 2^-10 is perfectly accepted input, no need for parentheses; operators of power ^,

division /, and subtraction - are all left-associative: 2^4^8 is evaluated as (2^4)^8. The minus

sign as prefix has various precedence levels: \xintexpr -3-4*-5^-7\relax evaluates as (-3)-(4*(⤸
-(5^(-7)))) and -3^-4*-5-7 as (-((3^(-4))*(-5)))-7.

If one uses directly macros within \xintexpr..\relax, rather than the operators or the functions

which are described next, one should obviously take into account that the parser will not see the
macro arguments.

Here is, listed from the highest priority to the lowest, the complete list of operators and

functions.

• Functions are at the same top level of priority. All functions even ? and ! (as prefix) require

parentheses around their arguments.

num, qint, qfrac, qfloat, reduce, abs, sgn, frac, floor, ceil, sqr, sqrt, sqrtr, float,

round, trunc, mod, quo, rem, gcd, lcm, max, min, `+`, `*`, ?, !, not, all, any, xor, if,

ifsgn, even, odd, first, last, reversed, bool, togl, add, mul, seq, subs, rseq, rrseq,

iter

quo, rem, even, odd, gcd and lcm will first truncate their arguments to integers; the

latter two require package xintgcd; togl requires the etoolbox package; all, any, xor,

`+`, `*`, max and min are functions with arbitrarily many comma separated arguments.

bool, togl use delimited macros to fetch their argument and the closing parenthesis

which thus must be explicit, not arising from expansion.

The same holds for qint, qfrac, qfloat.New with
1.2 Similarly add, mul, subs, seq, rseq, rrseq, iter use at some stages delimited macros.

They work with dummy variables, represented as one Latin letter (lowercase or uppercase)
followed by a mandatory = sign, then a comma separated list of values to assign in turn

to the dummy variable, which will be substituted in the expression which was parsed as

the first, comma delimited, argument to the function; additionally rseq, rrseq and iter

have a mandatory initial comma separated list which is separated by a semi-colon from the

expression to evaluate iteratively. seq, rseq, rrseq, iter but not add, mul, subs admit

the omit, abort, and break(..) keywords, possibly but not necessarily in combination with

a potentially infinite list generated by a n++ expression.

They may be nested.

functions with a single (numeric) argument

98

11 Commands of the xintexpr package

num truncates to the nearest integer (truncation towards zero).

\xinttheexpr num(3.1415^20)\relax

8764785276

qint skips the token by token parsing of the input. The ending parenthesis must be physically
present rather than arising from expansion. The q stands for ``quick''. This ``function''New with

1.2 handles the input exactly like do the i macros of xintcore, via \xintiNum. Hence leading
signs and the leading zeroes (coming next) will be handled appropriately but spaces will
not be systematically stripped. They should cause no harm and will be removed as soon as the
number is used with one of the basic operators. This input form does not accept decimal part
or scientific part.

\def\x{....many many many ... digits}\def\y{....also many many many digits...}

\xinttheiiexpr qint(\x)*qint(\y)+qint(\y)^2\relax

qfrac does the same as qint excepts that it accepts fractions, decimal numbers, scientific
numbers as they are understood by the macros of package xintfrac. Not to be used within an \⤸New with

1.2 xintiiexpr-ession, except if hidden inside functions such as round or trunc which produce

integers from fractions.

qfloat does the same as qfrac and converts to a float with the precision given by the setting of
\xintDigits.

reduce reduces a fraction to smallest terms
\xinttheexpr reduce(50!/20!/20!/10!)\relax

1415997888807961859400

Recall that this is NOT done automatically, for example when adding fractions.

abs absolute value
sgn sign
frac fractional part

\xinttheexpr frac(-355/113), frac(-1129.218921791279)\relax

-16/113, -218921791279[-12]

floor floor function
ceil ceil function
sqr square
sqrt in \xintiiexpr, truncated square root; in \xintexpr or \xintfloatexpr this is the floating
point square root, and there is an optional second argument for the precision.

sqrtr in \xintiiexpr only, rounded square root.
? ?(x) is the truth value, 1 if non zero, 0 if zero. Must use parentheses.
! !(x) is logical not, 0 if non zero, 1 if zero. Must use parentheses.
not logical not
even evenness of the truncation

\xinttheexpr seq((x,even(x)), x=-5/2..[1/3]..+5/2)\relax

-5/2, 1, -13/6, 1, -11/6, 0, -9/6, 0, -7/6, 0, -5/6, 1, -3/6, 1, -1/6, 1, 1/6, 1, 3/6, 1, 5/6,

1, 7/6, 0, 9/6, 0, 11/6, 0, 13/6, 1, 15/6, 1

odd oddness of the truncation
\xinttheexpr seq((x,odd(x)), x=-5/2..[1/3]..+5/2)\relax

-5/2, 0, -13/6, 0, -11/6, 1, -9/6, 1, -7/6, 1, -5/6, 0, -3/6, 0, -1/6, 0, 1/6, 0, 3/6, 0, 5/6,

0, 7/6, 1, 9/6, 1, 11/6, 1, 13/6, 0, 15/6, 0

functions with an alphabetical argument
bool,togl. bool(name) returns 1 if the TEX conditional \ifname would act as \iftrue and 0 oth-

erwise. This works with conditionals defined by \newif (in TEX or LATEX) or with primitive condi-

tionals such as \ifmmode. For example:

99

11 Commands of the xintexpr package

\xintifboolexpr{25*4-if(bool(mmode),100,75)}{YES}{NO}

will return NO if executed in math mode (the computation is then 100 - 100 = 0) and YES if not

(the if conditional is described below; the \xintifboolexpr test automatically encapsulates

its first argument in an \xintexpr and follows the first branch if the result is non-zero (see

subsection 11.13)).

The alternative syntax 25*4-\ifmmode100\else75\fi could have been used here, the usefulness

of bool(name) lies in the availability in the \xintexpr syntax of the logic operators of con-

junction &&, inclusive disjunction ||, negation ! (or not), of the multi-operands functions

all, any, xor, of the two branching operators if and ifsgn (see also ? and ??), which allow

arbitrarily complicated combinations of various bool(name).

Similarly togl(name) returns 1 if the LATEX package etoolbox
61 has been used to define a toggle

named name, and this toggle is currently set to true. Using togl in an \xintexpr..\relax without

having loaded etoolbox will result in an error from \iftoggle being a non-defined macro. If e⤸
toolbox is loaded but togl is used on a name not recognized by etoolbox the error message will

be of the type ``ERROR: Missing \endcsname inserted.'', with further information saying that

\protect should have not been encountered (this \protect comes from the expansion of the non-

expandable etoolbox error message).

When bool or togl is encountered by the \xintexpr parser, the argument enclosed in a parenthesis

pair is expanded as usual from left to right, token by token, until the closing parenthesis is

found, but everything is taken literally, no computations are performed. For example togl(2+3)

will test the value of a toggle declared to etoolbox with name 2+3, and not 5. Spaces are gobbled

in this process. It is impossible to use togl on such names containing spaces, but \iftoggle⤸
{name with spaces}{1}{0} will work, naturally, as its expansion will pre-empt the \xintexpr

scanner.

There isn't in \xintexpr... a test function available analogous to the test{\ifsometest} con-

struct from the etoolbox package; but any expandable \ifsometest can be inserted directly in
an \xintexpr-ession as \ifsometest10 (or \ifsometest{1}{0}), for example if(\ifsometest{1}{0⤸
},YES,NO) (see the if operator below) works.

A straight \ifsometest{YES}{NO} would do the same more efficiently, the point of \ifsometest1⤸
0 is to allow arbitrary boolean combinations using the (described later) & and | logic opera-

tors: \ifsometest10 & \ifsomeothertest10 | \ifsomethirdtest10, etc... YES or NO above stand

for material compatible with the \xintexpr parser syntax.

See also \xintifboolexpr, in this context.

functions with one mandatory and a second but optional argument
round For example round(-2^9/3^5,12)=-2.106995884774.
trunc For example trunc(-2^9/3^5,12)=-2.106995884773.
float For example float(-20^9/3^5,12)=-210699588477[-2].
sqrt in \xintexpr and \xintfloatexpr, uses the float evaluation with the precision given by the
optional second argument.

\xinttheexpr sqrt(2,31)\relax\ and \xinttheiiexpr sqrt(num(2e60))\relax

1414213562373095048801688724210[-30] and 1414213562373095048801688724209

functions with two arguments
quo first truncates the arguments then computes the Euclidean quotient.
rem first truncates the arguments then computes the Euclidean remainder.

mod computes the modulo associated to the truncated division, same as /: infix operator
\xinttheexpr mod(11/7,1/13), reduce(((11/7)//(1/13))*1/13+mod(11/7,1/13)),

mod(11/7,1/13)- (11/7)/:(1/13), (11/7)//(1/13)\relax

3/91, 11/7, 0, 20

61 http://www.ctan.org/pkg/etoolbox

100

http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox

11 Commands of the xintexpr package

the if conditional (twofold way)
if(cond,yes,no) checks if cond is true or false and takes the corresponding branch. Any non

zero number or fraction is logical true. The zero value is logical false. Both ``branches'' are

evaluated (they are not really branches but just numbers). See also the ? operator.

the ifsgn conditional (threefold way)
ifsgn(cond,<0,=0,>0) checks the sign of cond and proceeds correspondingly. All three are eval-

uated. See also the ?? operator.

functions with an arbitrary number of arguments
This argument may well be generated by one or many a..b or a..[d]..b constructs, separated by

commas.

all inserts a logical AND in between arguments and evaluates,
any inserts a logical OR in between all arguments and evaluates,
xor inserts a logical XOR in between all arguments and evaluates,
`+` adds (left ticks mandatory),

`*` multiplies (left ticks mandatory),

max maximum,
min minimum,
gcd first truncates to integers then computes the GCD, requires xintgcd,
lcm first truncates to integers then computes the LCM, requires xintgcd,

first first among comma separated items, first(list) is like [list][:1].
\xinttheiiexpr first(-7..3), [-7..3][:1]\relax

-7, -7

last last among comma separated items, last(list) is like [list][-1:].
\xinttheiiexpr last(-7..3), [-7..3][-1:]\relax

3, 3

reversed reverses the order
\xinttheiiexpr reversed(123..150)\relax

150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133,

132, 131, 130, 129, 128, 127, 126, 125, 124, 123

functions using dummy variables
They are nestable to arbitrary depth if suitably parenthesized.

subs for variable substitution, useful to get something evaluated only once
% ATTENTION that xz generates an error, 'unknown variable xz', one must use x*z

\xinttheexpr subs(subs(seq(x*z,x=1..10),z=y^2),y=10)\relax

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

add addition
\xinttheiiexpr add(x^3,x=1..50)\relax

1625625

mul multiplication
\xinttheiiexpr subs(mul(2n+1,n=1..N),N=30)\relax

1782151988659863326386101665566204817109375

seq comma separated values generated according to a formula
\xinttheiiexpr seq(x(x+1)(x+2)(x+3),x=1..10)\relax

24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160

\xinttheiiexpr seq(seq(i^2+j^2, i=0..j), j=0..10)\relax

101

11 Commands of the xintexpr package

0, 1, 2, 4, 5, 8, 9, 10, 13, 18, 16, 17, 20, 25, 32, 25, 26, 29, 34, 41, 50, 36, 37, 40, 45,

52, 61, 72, 49, 50, 53, 58, 65, 74, 85, 98, 64, 65, 68, 73, 80, 89, 100, 113, 128, 81, 82, 85,

90, 97, 106, 117, 130, 145, 162, 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200

rseq recursive sequence, @ for the previous value.
% ATTENTION y/2@ would give (y/2)@, that is (y/2)*@ !!

\printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/(2@), i=1..10),y=1000)\relax }

1.000000000000000, 500.5000000000000, 251.2490009990010, 127.6145581634591, 67.72532736⤸
082604, 41.24542607499115, 32.74526934448864, 31.64201586865079, 31.62278245070105, 31.6⤸
2277660168434, 31.62277660168379

In case the initial stretch is a comma separated list, @ refers at the first iteration to the
whole list. Use parentheses at each iteration to maintain this ``nuple''.

\printnumber{\xintthefloatexpr rseq(1,10^6;

(sqrt([@][1]*[@][2]),([@][1]+[@][2])/2), i=1..10)\relax }

1.000000000000000, 1000000.000000000, 1000.000000000000, 500000.5000000000, 22360.69095⤸
533499, 250500.2500000000, 74842.22521066670, 136430.4704776675, 101048.3052657827, 1056⤸
36.3478441671, 103316.8617608946, 103342.3265549749, 103329.5933734841, 103329.59415793⤸
48, 103329.5937657094, 103329.5937657095, 103329.5937657094, 103329.5937657095, 103329.5⤸
937657094, 103329.5937657095, 103329.5937657094, 103329.5937657095

rrseq recursive sequence with multiple initial terms. Say, there are K of them. Then @1, ...,
@4 and then @@(n) up to n=K refer to the last K values. Notice the difference with rseq for
which @ refers to the complete list of all initial terms (if there are more than one).

\xinttheiiexpr rrseq(0,1; @1+@2, i=2..30)\relax

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,

10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

\xinttheiiexpr rrseq(0,1,2,3,4,5; @1+@2+@3+@4+@@(5)+@@(6), i=1..20)\relax

0, 1, 2, 3, 4, 5, 15, 30, 59, 116, 229, 454, 903, 1791, 3552, 7045, 13974, 27719, 54984,

109065, 216339, 429126, 851207, 1688440, 3349161, 6643338

I implemented an Rseq which at all times keeps the memory of all previous items, but decided
to drop it as the package was becoming big.

iter same as rrseq but does not print any value until the last K.
\xinttheiiexpr iter(0,1; @1+@2, i=2..5, 6..10)\relax

% the iterated over list is allowed to have disjoint defining parts.

34, 55

Recursions may be nested, with @@@(n) giving access to the values of the outer recursion...and

there is even @@@@(n) but I never tried it!

With seq, rseq, rrseq, iter, but not with subs, add, mul, one has:

abort stop here and now.
omit omit this value.
break break(stuff) to abort and have stuff as last value.
n++ serves to generate a potentially infinite list

\xinttheiiexpr iter(1;(@>10^40)?{break(@)}{2@},i=1++)\relax

% this would not work with i=1,2,3++. Only n++ syntax, nothing before.

10889035741470030830827987437816582766592

Refer to subsection 11.2 for more examples.

• The postfix operators ! and the branching conditionals ?, ??.

! computes the factorial of an integer.
? is used as (cond)?{yes}{no}. It evaluates the (numerical) condition (any non-zero value
counts as true, zero counts as false). It then acts as a macro with two mandatory argu-

ments within braces (hence this escapes from the parser scope, the braces can not be hidden

102

11 Commands of the xintexpr package

in a macro), chooses the correct branch without evaluating the wrong one. Once the braces
are removed, the parser scans and expands the uncovered material so for example

\xinttheiexpr (3>2)?{5+6}{7-1}2^3\relax

is legal and computes 5+62^3=238333. Note though that it would be better practice to include

here the 2^3 inside the branches. The contents of the branches may be arbitrary as long as

once glued to what is next the syntax is respected: \xintexpr (3>2)?{5+(6}{7-(1}2^3)\rela⤸
x also works. Differs thus from the if conditional in two ways: the false branch is not at

all computed, and the number scanner is still active on exit, more digits may follow.

?? is used as (cond)??{<0}{=0}{>0}. cond is anything, its sign is evaluated and depending on
the sign the correct branch is un-braced, the two others are swallowed. The un-braced branch

will then be parsed as usual. Differs from the ifsgn conditional as the two false branches

are not evaluated and furthermore the number scanner is still active on exit.

\def\x{0.33}\def\y{1/3}

\xinttheexpr (\x-\y)??{sqrt}{0}{1/}(\y-\x)\relax=5773502691896258[-17]

• The . as decimal mark; the number scanner treats it as an inherent, optional and unique compo-

nent of a being formed number. One can do things such as

\xinttheexpr 0.^2+2^.0\relax

which is 0^2+2^0 and produces 1.

However a single dot "." as in \xinttheexpr .^2\relax is now illegal input.Changed!→
• The e and E for scientific notation. They are parsed like the decimal mark is.1e3^2 is 1[6]

• The " for hexadecimal numbers: it is treated with highest priority, allowed only at locations

where the parser expects to start forming a numeric operand, once encountered it triggers the

hexadecimal scanner which looks for successive hexadecimal digits (as usual skipping spaces

and expanding forward everything) possibly a unique optional dot (allowed directly in front)

and then an optional (possibly empty) fractional part. The dot and fractional part are not

allowed in \xintiiexpr..\relax. The " functionality requires package xintbinhex (there is

no warning, but an ``undefined control sequence'' error will naturally results if the package

has not been loaded). "A*"A^"A is 100000000000.

• The power operator ^, or **. It is left associative: \xinttheiexpr 2^2^3\relax evaluates to 64,

not 256. Note that if the float precision is too low, iterated powers within \xintfloatexpr..\r⤸
elax may fail: for example with the default setting (1+1e-8)^(12^16) will be computed with 12^1⤸
6 approximated from its 16 most significant digits but it has 18 digits (=184884258895036416),

hence the result is wrong:

1.879,985,375,897,266 × 10802,942,130
One should code

\xintthe\xintfloatexpr (1+1e-8)^\xintiiexpr 12^16\relax \relax

to obtain the correct floating point evaluation

1.000,000,0112
16 ≈ 1.879,985,676,694,948 × 10802,942,130

• Multiplication and division *, /. The division is left associative, too: \xinttheiexpr 100/50⤸
/2\relax evaluates to 1, not 4. Inside \xintiiexpr, / does rounded division.

• Truncated division // and modulo /: (equivalently 'mod', quotes mandatory) are at the same
level of priority than multiplication and division, thus left-associative with them. Apply
parentheses for disambiguation.

\xinttheexpr 100000//13, 100000/:13, 100000 'mod' 13, trunc(100000/13,10),

trunc(100000/:13/13,10)\relax

7692, 4, 4, 7692.3076923076, 0.3076923076

• The list itemwise operators *[, /[, ^[, **[,]*,]/,]^,]** are at the same precedence level

as, respectively, * and / or ^ and **.

• Addition and subtraction +, -. Again, - is left associative: \xinttheiexpr 100-50-2\relax

evaluates to 48, not 52.

103

11 Commands of the xintexpr package

• The list itemwise operators +[, -[,]+,]-, are at the same precedence level as + and -,

• Comparison operators <, >, = (same as ==), <=, >=, != all at the same level of precedence, use

parentheses for disambiguation.

• Conjunction (logical and): && or equivalently 'and' (quotes mandatory).

• Inclusive disjunction (logical or): || and equivalently 'or' (quotes mandatory).

• XOR: 'xor' with mandatory quotes is at the same level of precedence as ||.

• The comma: With \xinttheexpr 2^3,3^4,5^6\relax one obtains as output 8, 81, 15625.

• The parentheses.

11.4 \numexpr or \dimexpr expressions, count and dimension registers and
variables

Count registers, count control sequences, dimen registers, dimen control sequences (like \parind⤸
ent), skips and skip control sequences, \numexpr, \dimexpr, \glueexpr, \fontdimen can be inserted

directly, they will be unpacked using \number which gives the internal value in terms of scaled

points for the dimensional variables: 1 pt = 65536 sp (stretch and shrink components are thus dis-

carded).

Tacit multiplication is implied, when a number or decimal number prefixes such a register or

control sequence. LATEX lengths are skip control sequences and LATEX counters should be inserted using

\value.

Release 1.2 of the \xintexpr parser also recognizes and prefixes with \number the \ht, \dp,

and \wd TEX primitives as well as the \fontcharht, \fontcharwd, \fontchardp and \fontcharic ε-TEX
primitives.
In the case of numbered registers like \count255 or \dimen0 (or \ht0), the resulting digits

will be re-parsed, so for example \count255 0 is like 100 if \the\count255 would give 10. The same
happens with inputs such as \fontdimen6\font. And \numexpr 35+52\relax will be exactly as if 87
as been encountered by the parser, thus more digits may follow: \numexpr 35+52\relax 000 is like
87000. If a new \numexpr follows, it is treated as what would happen when \xintexpr scans a number
and finds a non-digit: it does a tacit multiplication.

\xinttheexpr \numexpr 351+877\relax\numexpr 1000-125\relax\relax{} is the same

as \xinttheexpr 1228*875\relax.

1074500 is the same as 1074500.

Control sequences however (such as \parindent) are picked up as a whole by \xintexpr, and the

numbers they define cannot be extended extra digits, a syntax error is raised if the parser finds

digits rather than a legal operation after such a control sequence.

A token list variable must be prefixed by \the, it will not be unpacked automatically (the parser

will actually try \number, and thus fail). Do not use \the but only \number with a dimen or skip, as

the \xintexpr parser doesn't understand pt and its presence is a syntax error. To use a dimension

expressed in terms of points or other TEX recognized units, incorporate it in \dimexpr...\relax.

Regarding how dimensional expressions are converted by TEX into scaled points see also subsec-

tion 4.4.

11.5 Catcodes and spaces
Active characters may (and will) break the functioning of \xintexpr. Inside an expression one may

prefix, for example a : with \string. Or, for a more radical way, there is \xintexprSafeCatcodes.

This is a non-expandable step as it changes catcodes.

11.5.1 \xintexprSafeCatcodes

This command sets the catcodes of the relevant characters to safe values. This is used internally

by \xintNewExpr (restoring the catcodes on exit), hence \xintNewExpr does not have to be protected

104

11 Commands of the xintexpr package

against active characters.

11.5.2 \xintexprRestoreCatcodes

Restores the catcodes to the earlier state.

Spaces inside an \xinttheexpr...\relax should mostly be innocuous (except inside macro argu-

ments).

\xintexpr and \xinttheexpr are for the most part agnostic regarding catcodes: (unbraced) dig-

its, binary operators, minus and plus signs as prefixes, dot as decimal mark, parentheses, may be

indifferently of catcode letter or other or subscript or superscript, ..., it doesn't matter.62

The characters +, -, *, /, ^, !, &, |, ?, :, <, >, =, (,), ", [,], ;, the dot and the comma

should not be active if in the expression, as everything is expanded along the way. If one of them

is active, it should be prefixed with \string.

The exclamation mark should have its standard catcode, because it is used for internal purposes

with a different one.

Digits, slash, square brackets, minus sign, in the output from an \xinttheexpr are all of catcode

12. For \xintthefloatexpr the `e' in the output has its standard catcode ``letter''.

A macro with arguments will expand and grab its arguments before the parser may get a chance to

see them, so the situation with catcodes and spaces is not the same within such macro arguments.

11.6 Expandability, \xinteval
As is the case with all other package macros \xintexpr f-expands (in two steps) to its final (non-
printable) result; and \xinttheexpr f-expands (in two steps) to the chain of digits (and possibly
minus sign -, decimal mark ., fraction slash /, scientific e, square brackets [,]) representing

the result.

Starting with 1.09j, an \xintexpr..\relax can be inserted without \xintthe prefix inside an \ede⤸
f, or a \write. It expands to a private more compact representation (five tokens) than \xinttheexpr

or \xintthe\xintexpr.

The material between \xintexpr and \relax should contain only expandable material.

The once expanded \xintexpr is \romannumeral0\xinteval. And there is similarly \xintieval, \xi⤸
ntiieval, and \xintfloateval. For the other cases one can use \romannumeral-`0 as prefix. For an

example of expandable algorithms making use of chains of \xinteval-uations connected via \expand⤸
after see subsection 7.24.

An expression can only be legally finished by a \relax token, which will be absorbed.

It is quite possible to nest expressions among themselves; for example, if one needs inside

an \xintiiexpr...\relax to do some computations with fractions, rounding the final result to an

integer, on just has to insert \xintiexpr...\relax. The functioning of the infix operators will

not be in the least affected from the fact that the surrounding ``environment'' is the \xintiiexpr

one.

11.7 Memory considerations
The parser creates an undefined control sequence for each intermediate computation evaluation:

addition, subtraction, etc...Thus, a moderately sized expression might create 10, or 20 such

control sequences. On my TEX installation, the memory available for such things is of circa 200,

000 multi-letter control words. So this means that a document containing hundreds, perhaps even

thousands of expressions will compile with no problem.

Besides the hash table, also TEX main memory is impacted. Thus, if xintexpr is used for computing

plots63, this may cause a problem.

62 Furthermore, although \xintexpr uses \string, it is (we hope) escape-char agnostic. 63 this is not very probable as so far
xint does not include a mathematical library with floating point calculations, but provides only the basic operations of algebra.

105

11 Commands of the xintexpr package

There is a (partial) solution.64

A document can possibly do tens of thousands of evaluations only if some formulas are being used

repeatedly, for example inside loops, with counters being incremented, or with data being fetched

from a file. So it is the same formula used again and again with varying numbers inside.

With the \xintNewExpr command, it is possible to convert once and for all an expression con-

taining parameters into an expandable macro with parameters. Only this initial definition of this

macro actually activates the \xintexpr parser and will (very moderately) impact the hash-table:

once this unique parsing is done, a macro with parameters is produced which is built-up recur-

sively from the \xintAdd, \xintMul, etc... macros, exactly as it would be necessary to do without

the facilities of the xintexpr package.

11.8 The \xintNewExpr command
The command is used as:

\xintNewExpr{\myformula}[n]{⟨stuff ⟩}, where

• ⟨stuff ⟩ will be inserted inside \xinttheexpr . . . \relax,

• n is an integer between zero and nine, inclusive, which is the number of parameters of \myfor⤸
mula,

• the placeholders #1, #2, ..., #n are used inside ⟨stuff ⟩ in their usual rôle,65 66

• the [n] is mandatory, even for n=0.67

• the macro \myformula is defined without checking if it already exists, LATEX users might prefer

to do first \newcommand*\myformula {} to get a reasonable error message in case \myformula

already exists,

• the definition of \myformula made by \xintNewExpr is global (i.e. it does not obey the scope

of environments). The protection against active characters is done automatically.

It will be a completely expandable macro entirely built-up using \xintAdd, \xintSub, \xintMu⤸
l, \xintDiv, \xintPow, etc...as corresponds to the expression written with the infix operators.

Macros created by \xintNewExpr can thus be nested.
\xintNewFloatExpr \FA [2]{(#1+#2)^10}

\xintNewFloatExpr \FB [2]{sqrt(#1*#2)}

\begin{enumerate}[nosep]

\item \FA {5}{5}

\item \FB {30}{10}

\item \FA {\FB {30}{10}}{\FB {40}{20}}

\end{enumerate}

1. 10000000000.00000

2. 17.32050807568877

3. 3.891379490446502e16

The use of \xintNewExpr circumvents the impact of the \xintexpr parsers on TEX's memory: it

is useful if one has a formula which has to be re-evaluated thousands of times with distinct

inputs each with dozens, or hundreds of characters.

A ``formula'' created by \xintNewExpr is thus a macro whose parameters are given to a possi-

bly very complicated combination of the various macros of xint and xintfrac. Consequently, one

64 which convinced me that I could stick with the parser implementation despite its potential impact on the hash-table and other
parts of TEX’s memory. 65 if \xintNewExpr is used inside a macro, the #’s must be doubled as usual. 66 the #’s will in pratice
have their usual catcode, but category code other #’s are accepted too. 67 there is some use for \xintNewExpr[0] compared to
an \edef as \xintNewExpr has some built-in catcode protection.

106

11 Commands of the xintexpr package

can not use at all any infix notation in the inputs, but only the formats which are recognized

by the xintfrac macros.

This is thus quite different from a macro with parameters which one would have defined via a

simple \def or \newcommand as for example:

\newcommand\myformula [1]{\xinttheexpr (#1)^3\relax}

Such a macro \myformula, if it was used tens of thousands of times with various big inputs

would end up populating large parts of TEX's memory. It would thus be better for such use cases

to go for:

\xintNewExpr\myformula [1]{#1^3\relax}

Here naturally the situation is over-simplified and it would be even simpler to go directly

for the use of the macro \xintPow or \xintPower.

\xintNewExpr tries to do as many evaluations as are possible at the time the macro parameters

are still parameters. Let's see a few examples. For this I will use \meaning which reveals the

contents of a macro.

1. in these examples we sometimes use \printnumber to avoid for the meaning to go into the right

margin, but this zaps all spaces originally in the output from \meaning,

2. the examples use a mysterious \fixmeaning macro, which is there to get in the display \roman⤸
numeral`^^@ rather than the frankly cabalistic \romannumeral`` which made the admiration of

the readers of the documentation dated 2015/10/19 (the second ` stood for an ascii code zero

token as per T1 encoded newtxtt font). Thus the true meaning is ``fixed'' to display something

different which is how the macro could be defined in a standard tex source file (modulo, as one

can see in example, the use of characters such as : as letters in control sequence names). Prior

to 1.2a, the meaning would have started with a more mundane \romannumeral-`0, but I decided at

the time of releasing 1.2a to imitate the serious guys and switch for the more hacky yet \roma⤸
nnumeral`^^@ everywhere in the source code (not only in the macros produced by \xintNewExpr),

or to be more precise for an equivalent as the caret has catcode letter in xint's source code,

and I had to use another character.

3. the meaning reveals the use of some private macros from the xint bundle, which should not be

directly used. If the things look a bit complicated, it is because they have to cater for many

possibilities.

4. the point of showing the meaning is also to see what has already been evaluated in the con-

struction of the macros.

\xintNewIIExpr\FA [1]{13*25*78*#1+2826*292}\fixmeaning\FA

macro:#1->\romannumeral`^^@\xintCSV::csv {\xintiiAdd {\xintiiMul {25350}{#1}}{825192}}

\xintNewIExpr\FA [2]{(3/5*9/7*13/11*#1-#2)*3^7}

\printnumber{\fixmeaning\FA}

macro:#1#2->\romannumeral`^^@\xintSPRaw::csv{\xintRound::csv{0}{\xintMul{\xintSub{\xintMul{3⤸
51/385[0]}{#1}}{#2}}{2187/1[0]}}}

% an example with optional parameter

\xintNewIExpr\FA [3]{[24] (#1+#2)/(#1-#2)^#3}

\printnumber{\fixmeaning\FA}

macro:#1#2#3->\romannumeral`^^@\xintSPRaw::csv{\xintRound::csv{24}{\xintDiv{\xintAdd{#1}{#2}⤸
}{\xintPow{\xintSub{#1}{#2}}{#3}}}}

\xintNewFloatExpr\FA [2]{[12] 3.1415^3*#1-#2^5}

\printnumber{\fixmeaning\FA}

macro:#1#2->\romannumeral`^^@\xintPFloat::csv{12}{\XINTinFloatSub{\XINTinFloatMul{3100353339⤸
837500[-14]}{#1}}{\XINTinFloatPower{#2}{5}}}

107

11 Commands of the xintexpr package

\xintNewExpr\DET[9]{ #1*#5*#9+#2*#6*#7+#3*#4*#8-#1*#6*#8-#2*#4*#9-#3*#5*#7 }

\printnumber{\fixmeaning\DET}

macro:#1#2#3#4#5#6#7#8#9->\romannumeral`^^@\xintSPRaw::csv{\xintSub{\xintSub{\xintSub{\xintA⤸
dd{\xintAdd{\xintMul{\xintMul{#1}{#5}}{#9}}{\xintMul{\xintMul{#2}{#6}}{#7}}}{\xintMul{\xintM⤸
ul{#3}{#4}}{#8}}}{\xintMul{\xintMul{#1}{#6}}{#8}}}{\xintMul{\xintMul{#2}{#4}}{#9}}}{\xintMul⤸
{\xintMul{#3}{#5}}{#7}}}

\xintNewExpr\FA[3]{ #1*#1+#2*#2+#3*#3-(#1*#2+#2*#3+#3*#1) }

\printnumber{\fixmeaning\FA }

macro:#1#2#3->\romannumeral`^^@\xintSPRaw::csv{\xintSub{\xintAdd{\xintAdd{\xintMul{#1}{#1}}{⤸
\xintMul{#2}{#2}}}{\xintMul{#3}{#3}}}{\xintAdd{\xintAdd{\xintMul{#1}{#2}}{\xintMul{#2}{#3}}}⤸
{\xintMul{#3}{#1}}}}
One can even do some quite daring things:
\xintNewExpr\FA[5]{[#1..[#2]..#3][#4:#5]}

And this works:

\begin{itemize}[nosep]

\item \FA{1}{3}{90}{20}{30}

\item \FA{1}{3}{90}{-40}{-15}

\item \FA{1.234}{-0.123}{-10}{3}{7}

\end{itemize}

\fdef\test {\FA {0}{10}{100}{3}{6}}\meaning\test +++

And this works:

• 61, 64, 67, 70, 73, 76, 79, 82, 85, 88

• 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43

• 865[-3], 742[-3], 619[-3], 496[-3]

macro:->30, 40, 50+++

In the last example though, do not hope to use empty #4 or #5: this is possible in an expression,

because the parser identifies][: or :] and handles them appropriately. Here the macro \FA is built

with idea that there is something non-empty as it found the place holders #4 and #5.

11.8.1 Conditional operators and \NewExpr

The ? and ?? conditional operators cannot be parsed by \xintNewExpr when they contain macro param-

eters #1,..., #9 within their scope. However replacing them with the functions if and, respec-

tively ifsgn, the parsing should succeed. And the created macro will not evaluate the branches to
be skipped, thus behaving exactly like ? and ?? would have in the \xintexpr.

\xintNewExpr\Formula [3]{ if((#1>#2) && (#2>#3), sqrt(#1-#2)*sqrt(#2-#3), #1^2+#3/#2) }%

\printnumber{\fixmeaning\Formula }

macro:#1#2#3->\romannumeral`^^@\xintSPRaw::csv{\xintiiifNotZero{\xintAND{\xintGt{#1}{#2}}{\x⤸
intGt{#2}{#3}}}{\xintMul{\XINTinFloatSqrtdigits{\xintSub{#1}{#2}}}{\XINTinFloatSqrtdigits{\x⤸
intSub{#2}{#3}}}}{\xintAdd{\xintPow{#1}{2}}{\xintDiv{#3}{#2}}}}

This formula (with its \xintiiifNotZero) will gobble the false branch without evaluating it when

used with given arguments.

Remark: the meaning above reveals some of the private macros used by the package. They are not

for direct use.

Another example
\xintNewExpr\myformula[3]{ ifsgn(#1,#2/#3,#2-#3,#2*#3) }%

\fixmeaning\myformula

macro:#1#2#3->\romannumeral`^^@\xintSPRaw::csv {\xintiiifSgn {#1}{\xintDiv {#2}{#3}}{\xintSub

{#2}{#3}}{\xintMul {#2}{#3}}}

Again, this macro gobbles the false branches, as would have the operator ?? inside an \xintexp⤸
r-ession.

108

11 Commands of the xintexpr package

11.8.2 External macros and \NewExpr; the protect function

For macros within such a created xint-formula command, there are two cases:

• the macro does not involve the numbered parameters in its arguments: it may then be left as is,

and will be evaluated once during the construction of the formula,

• it does involve at least one of the macro parameters as argument. Then:

the whole thing (macro + argument) should be protect-ed, not in the LATEX sense (!), but in

the following way: protect(\macro {#1}).+
{

Here is a silly example illustrating the general principle: the macros here have equivalent

functional forms which are more convenient; but some of the more obscure package macros of xint

dealing with integers do not have functions pre-defined to be in correspondance with them, use

this mechanism could be applied to them.
\xintNewExpr\myformI[2]{protect(\xintRound{#1}{#2}) - protect(\xintTrunc{#1}{#2})}%

\fixmeaning\myformI

\xintNewIIExpr\formula [3]{rem(#1,quo(protect(\the\numexpr #2\relax),#3))}%

\noindent\fixmeaning\formula

macro:#1#2->\romannumeral`^^@\xintSPRaw::csv {\xintSub {\xintRound {#1}{#2}}{\xintTrunc {#1}{#2}}}

macro:#1#2#3->\romannumeral`^^@\xintCSV::csv {\xintiiRem {#1}{\xintiiQuo {\the \numexpr #2\re-

lax }{#3}}}

Only macros involving the #1, #2, etc...should be protected in this way; the +, *, etc...symbols,

the functions from the \xintexpr syntax, none should ever be included in a protected string.

11.8.3 Limitations of \xintNewExpr

All depends on where the macro parameters arise #1, #2, ... we went to some effort to allow many

things but not everything goes through. \xintNewExpr tries to evaluate completely as many things

as possible which do not involve the macro parameters. A somewhat elaborate scheme allows to handle

also complicated situations with list operations:
\xintNewIExpr \FA [3] {[3] `+`([1.5..[3.5+#1]..#2]*#3)}

\begin{itemize}[nosep]

\item \FA {3.5}{50}{100} (cf. \xinttheiexpr [3] 1.5..[7]..50\relax)

\item \FA {-15}{-100}{20} (cf. \xinttheiexpr [3] 1.5..[-11.5]..-100\relax)

\item \FA {0}{20}{1} (cf. \xinttheiexpr [3] 1.5..[3.5]..20\relax)

\end{itemize}

• 15750.000 (cf. 1.500, 8.500, 15.500, 22.500, 29.500, 36.500, 43.500)

• -8010.000 (cf. 1.500, -10.000, -21.500, -33.000, -44.500, -56.000, -67.500, -79.000, -

90.500)

• 61.500 (cf. 1.500, 5.000, 8.500, 12.000, 15.500, 19.000)

Some things are definitely expected not to work therein: particularly the seq, rseq, rrseq, ite⤸
r with omit, abort, break. Also, but this is quite anecdotical, first and last should not work (I

did not try; actually I did not try the functions with dummy letters either, because each time I

think about compatibility with \xintNewExpr, my head starts spinning.)

Also, using sub-\xintexpr-essions (including some of the macro parameters) inside something

given to \xintNewExpr will probably not work.

Naturally, it is always possible to use, after the macro has been constructed, \xinttheexpr...⤸
\relax among the arguments.

109

11 Commands of the xintexpr package

11.9 \xintiexpr, \xinttheiexpr
Equivalent to doing \xintexpr round(...)\relax. Thus, only the final result is rounded to an in-x ⋆
teger. Half integers are rounded towards +∞ for positive numbers and towards -∞ for negative
ones. Comma separated lists of expressions are allowed.

An optional parameter within brackets is allowed: if strictly positive it instructs the expres-

sion to do its final rounding to the nearest value with that many digits after the decimal mark.

11.10 \xintiiexpr, \xinttheiiexpr
This variant does not know fractions. It deals almost only with long integers. Comma separatedx ⋆
lists of expressions are allowed.

It maps / to the rounded quotient. The operator // is, like in \xintexpr...\relax, mapped
to truncated division. The euclidean quotient (which for positive operands is like the trun-
cated quotient) was, prior to release 1.1, associated to /. The function quo(a,b) can still be

employed.

The \xintiiexpr-essions use the `ii' macros for addition, subtraction, multiplication, power,

square, sums, products, euclidean quotient and remainder.

The round, trunc, floor, ceil functions are still available, and are about the only places where

fractions can be used, but / within, if not somehow hidden will be executed as integer rounded

division. To avoid this one can wrap the input in qfrac: this means however that none of the normal

expression parsing will be executed on the argument.

To understand the illustrative examples, recall that round and trunc have a second (non nega-

tive) optional argument. In a normal \xintexpr-essions, round and trunc are mapped to \xintRound

and \xintTrunc, in \xintiiexpr-essions, they are mapped to \xintiRound and \xintiTrunc.
\xinttheiiexpr 5/3, round(5/3,3), trunc(5/3,3), trunc(\xintDiv {5}{3},3),

trunc(\xintRaw {5/3},3)\relax{} are problematic, but

%

\xinttheiiexpr 5/3, round(qfrac(5/3),3), trunc(qfrac(5/3),3), floor(qfrac(5/3)),

ceil(qfrac(5/3))\relax{} work!

2, 2000, 2000, 2000, 2000 are problematic, but 2, 1667, 1666, 1, 2 work!

On the other hand decimal numbers and scientific numbers can be used directly as arguments to

the num, round, or any function producing an integer.

Scientific numbers are either rounded (in case of negative exponent) or represented with

as many zeroes as necessary, thus one does not want to insert num(1e100000) for example in an

\xintiiexpression !

\xinttheiiexpr num(13.4567e3)+num(10000123e-3)\relax % should compute 13456+10000

23456

The reduce function is not available and will raise un error. The frac function also. The sqr⤸
t function is mapped to \xintiiSqrt which gives a truncated square root. The sqrtr function is

mapped to \xintiiSqrtR which gives a rounded square root.

One can use the Float macros if one is careful to use num, or round etc...on their output.
\xinttheiiexpr \xintFloatSqrt [20]{2}, \xintFloatSqrt [20]{3}\relax % no operations

\noindent The next example requires the |round|, and one could not put the |+| inside it:

\xinttheiiexpr round(\xintFloatSqrt [20]{2},19)+round(\xintFloatSqrt [20]{3},19)\relax

110

11 Commands of the xintexpr package

(the second argument of |round| and |trunc| tells how many digits from after the

decimal mark one should keep.)

14142135623730950488[-19], 17320508075688772935[-19]

The next example requires the round, and one could not put the + inside it:

31462643699419723423

(the second argument of round and trunc tells how many digits from after the decimal mark one

should keep.)

The whole point of \xintiiexpr is to gain some speed in integer-only algorithms, and the above
explanations related to how to nevertheless use fractions therein are a bit peripheral. We ob-

served (2013/12/18) of the order of 30% speed gain when dealing with numbers with circa one hundred

digits (v1.2: this info may be obsolete).

11.11 \xintboolexpr, \xinttheboolexpr
Equivalent to doing \xintexpr ...\relax and returning 1 if the result does not vanish, and 0 isx ⋆
the result is zero. As \xintexpr, this can be used on comma separated lists of expressions, and

will return a comma separated list of 0's and 1's.

11.12 \xintfloatexpr, \xintthefloatexpr
\xintfloatexpr...\relax is exactly like \xintexpr...\relax but with the four binary operationsx ⋆
and the power function mapped to \xintFloatAdd, \xintFloatSub, \xintFloatMul, \xintFloatDiv and

\xintFloatPower. The precision for the computation is from the current setting of \xintDigits.

Comma separated lists of expressions are allowed.

An optional parameter within brackets is allowed: the final float will have that many digits of

precision. This is provided to get rid of non-relevant last digits.

Note that 1.000000001 and (1+1e-9) will not be equivalent for D=\xinttheDigits set to nine or

less. Indeed the addition implicit in 1+1e-9 (and executed when the closing parenthesis is found)

will provoke the rounding to 1. Whereas 1.000000001, when found as operand of one of the four

elementary operations is kept with D+2 digits, and even more for the power function.

\xintDigits:= 9; \xintthefloatexpr (1+1e-9)-1\relax=0

\xintDigits:= 9; \xintthefloatexpr 1.000000001-1\relax=1.00000000e-9

For the fun of it: \xintDigits:=20;

\xintthefloatexpr (1+1e-7)^1e7\relax=2.7182816925449662712

\xintDigits:=36;

\xintthefloatexpr ((1/13+1/121)*(1/179-1/173))/(1/19-1/18)\relax

0.00564487459334466559166166079096852897

\xintFloat{\xinttheexpr ((1/13+1/121)*(1/179-1/173))/(1/19-1/18)\relax}

5.64487459334466559166166079096852912e-3

The latter result is the rounding of the exact result. The previous one has rounding errors

coming from the various roundings done for each sub-expression. It was a bit funny to discover that

maple, configured with Digits:=36; and with decimal dots everywhere to let it input the numbers

as floats, gives exactly the same result with the same rounding errors as does \xintthefloatexpr!

Using \xintthefloatexpr only pays off compared to using \xinttheexpr followed with \xintFloa⤸
t if the computations turn out to involve hundreds of digits. For elementary calculations with

hand written numbers (not using the scientific notation with exponents differing greatly) it will

generally be more efficient to use \xinttheexpr. The situation is quickly otherwise if one starts

using the Power function. Then, \xintthefloat is often useful; and sometimes indispensable to

achieve the (approximate) computation in reasonable time.

We can try some crazy things:

\xintDigits:=12;\xintthefloatexpr 1.000000000000001^1e15\relax

2.71828182846

Contrarily to some professional computing sofware which are our concurrents on this market, the

111

11 Commands of the xintexpr package

1.000000000000001 wasn't rounded to 1 despite the setting of \xintDigits; it would have been if

we had input it as (1+1e-15).

11.13 \xintifboolexpr
\xintifboolexpr{<expr>}{YES}{NO} does \xinttheexpr <expr>\relax and then executes the YES or thex n n ⋆
NO branch depending on whether the outcome was non-zero or zero. <expr> can involve various & and

|, parentheses, all, any, xor, the bool or togl operators, but is not limited to them: the most

general computation can be done, the test is on whether the outcome of the computation vanishes or

not.

Will not work on an expression composed of comma separated sub-expressions.

11.14 \xintifboolfloatexpr
\xintifboolfloatexpr{<expr>}{YES}{NO} does \xintthefloatexpr <expr>\relax and then executesx n n ⋆
the YES or the NO branch depending on whether the outcome was non zero or zero.

11.15 \xintifbooliiexpr
\xintifbooliiexpr{<expr>}{YES}{NO} does \xinttheiiexpr <expr>\relax and then executes the YESx n n ⋆
or the NO branch depending on whether the outcome was non zero or zero.

11.16 \xintNewFloatExpr
This is exactly like \xintNewExpr except that the created formulas are set-up to use \xintthefloa⤸
texpr. The precision used for the computation will be the one given by \xintDigits at the time of

use of the created formulas. However, the numbers hard-wired in the original expression will have

been evaluated with the then current setting for \xintDigits.
\xintNewFloatExpr \f [1] {sqrt(#1)}

\f {2} (with \xinttheDigits{} of precision).

{\xintDigits := 32;\f {2} (with \xinttheDigits{} of precision).}

\xintNewFloatExpr \f [1] {sqrt(#1)*sqrt(2)}

\f {2} (with \xinttheDigits {} of precision).

{\xintDigits := 32;\f {2} (?? we thought we had a higher precision. Explanation next)}

The sqrt(2) in the second formula was computed with only \xinttheDigits{} of

precision. Setting |\xintDigits| to a higher value at the time of definition will

confirm that the result above is from a mismatch of the precision for |sqrt(2)| at

the time of its evaluation and the precision for the new |sqrt(2)| with |#1=2| at

the time of use.

{\xintDigits := 32;\xintNewFloatExpr \f [1] {sqrt(#1)*sqrt(2)}

\f {2} (with \xinttheDigits {} of precision)}

1.414213562373095 (with 16 of precision).

1.4142135623730950488016887242097 (with 32 of precision).

2.000000000000000 (with 16 of precision).

1.9999999999999999309839899395125 (?? we thought we had a higher precision. Explanation next)

The sqrt(2) in the second formula was computed with only 16 of precision. Setting \xintDigits to

a higher value at the time of definition will confirm that the result above is from a mismatch of

the precision for sqrt(2) at the time of its evaluation and the precision for the new sqrt(2) with

#1=2 at the time of use.

2.0000000000000000000000000000000 (with 32 of precision)

112

11 Commands of the xintexpr package

11.17 \xintNewIExpr
Like \xintNewExpr but using \xinttheiexpr.

11.18 \xintNewIIExpr
Like \xintNewExpr but using \xinttheiiexpr.

11.19 \xintNewBoolExpr
Like \xintNewExpr but using \xinttheboolexpr.

11.20 \xintthecoords
From a comma separated output of an even number of items as output by \xintfloatexpr [P] ...\relax

or by \xintiexpr [D] ...\relax, creates coordinate pairs for TikZ. See an example on page 94.

11.21 Technicalities
As already mentioned \xintNewExpr\myformula[n] does not check the prior existence of a macro \my⤸
formula. And the number of parameters n given as mandatory argument within square brackets should

be (at least) equal to the number of parameters in the expression.

Obviously I should mention that \xintNewExpr itself can not be used in an expansion-only con-

text, as it creates a macro.

The \escapechar setting may be arbitrary when using \xintexpr.
The format of the output of \xintexpr⟨stuff ⟩\relax is a ! (with catcode 11) followed by various

things:
\fdef\f {\xintexpr 1.23^10\relax }\meaning\f

macro:->!\XINT_expr_usethe \XINT_protectii \XINT_expr_print \.=792594609605189126649/1[-20]

Note that \xintexpr is thus compatible with complete expansion, contrarily to \numexpr which

is non-expandable, if not prefixed by \the or \number, and away from contexts where TEX is

building a number. See subsection 7.24 for some illustration.

I decided to put all intermediate results (from each evaluation of an infix operators, or of

a parenthesized subpart of the expression, or from application of the minus as prefix, or of the

exclamation sign as postfix, or any encountered braced material) inside \csname...\endcsname, as

this can be done expandably and encapsulates an arbitrarily long fraction in a single token (left

with undefined meaning), thus providing tremendous relief to the programmer in his/her expansion

control.

As the \xintexpr computations corresponding to functions and infix or postfix operators

are done inside \csname...\endcsname, the f-expandability could possibly be dropped and one
could imagine implementing the basic operations with expandable but not f-expandable macros
(as \xintXTrunc.) I have not investigated that possibility.

Syntax errors in the input such as using a one-argument function with two arguments will generate

low-level TEX processing unrecoverable errors, with cryptic accompanying message.

Some other problems will give rise to `error messages' macros giving some indication on the

location and nature of the problem. Mainly, an attempt has been made to handle gracefully missing

or extraneous parentheses.

113

12 Commands of the xintbinhex package

However, this mechanism is completely inoperant for parentheses involved in the syntax of the

seq, add, mul, subs, rseq and rrseq functions.

Note that \relax is mandatory (contrarily to a \numexpr).

11.22 Acknowledgements (2013/05/25)
I was greatly helped in my preparatory thinking, prior to producing such an expandable parser, by

the commented source of the l3fp package, specifically the l3fp-parse.dtx file (in the version of

April-May 2013). Also the source of the calc package was instructive, despite the fact that here

for \xintexpr the principles are necessarily different due to the aim of achieving expandability.

12 Commands of the xintbinhex package

.1 \xintDecToHex . 114

.2 \xintDecToBin . 114

.3 \xintHexToDec . 114

.4 \xintBinToDec . 115

.5 \xintBinToHex . 115

.6 \xintHexToBin . 115

.7 \xintCHexToBin . 115

This package was first included in the 1.08 (2013/06/07) release of xint. It provides expandable

conversions of arbitrarily big integers to and from binary and hexadecimal.

The argument is first f-expanded. It then may start with an optional minus sign (unique, of cat-
egory code other), followed with optional leading zeroes (arbitrarily many, category code other)

and then ``digits'' (hexadecimal letters may be of category code letter or other, and must be up-

percased). The optional (unique) minus sign (plus sign is not allowed) is kept in the output.

Leading zeroes are allowed, and stripped. The hexadecimal letters on output are of category code

letter, and uppercased.

12.1 \xintDecToHex
Converts from decimal to hexadecimal.f ⋆
\xintDecToHex{2718281828459045235360287471352662497757247093699959574966967627724076630353⤸

547594571382178525166427427466391932003}

->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918⤸
814C63

12.2 \xintDecToBin
Converts from decimal to binary.f ⋆
\xintDecToBin{2718281828459045235360287471352662497757247093699959574966967627724076630353⤸

547594571382178525166427427466391932003}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010⤸
100110001100011

12.3 \xintHexToDec
Converts from hexadecimal to decimal.f ⋆
\xintHexToDec{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603⤸

2936BF37DAC918814C63}

114

http://www.ctan.org/pkg/l3kernel

13 Commands of the xintgcd package

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217⤸
8525166427427466391932003

12.4 \xintBinToDec
Converts from binary to decimal.f ⋆
\xintBinToDec{1000110101001001110010111110001100110100101001001101010010111000001010001111⤸

10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000⤸
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000⤸
11000100000010100110001100011}

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217⤸
8525166427427466391932003

12.5 \xintBinToHex
Converts from binary to hexadecimal.f ⋆
\xintBinToHex{1000110101001001110010111110001100110100101001001101010010111000001010001111⤸

10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000⤸
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000⤸
11000100000010100110001100011}

->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918⤸
814C63

12.6 \xintHexToBin
Converts from hexadecimal to binary.f ⋆
\xintHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603⤸

2936BF37DAC918814C63}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010⤸
100110001100011

12.7 \xintCHexToBin
Also converts from hexadecimal to binary. Faster on inputs with at least one hundred hexadecimalf ⋆
digits.

\xintCHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C60⤸
32936BF37DAC918814C63}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010⤸
100110001100011

13 Commands of the xintgcd package

.1 \xintGCD, \xintiiGCD . 116 .2 \xintGCDof . 116

115

13 Commands of the xintgcd package

.3 \xintLCM, \xintiiLCM . 116

.4 \xintLCMof . 116

.5 \xintBezout . 116

.6 \xintEuclideAlgorithm 116

.7 \xintBezoutAlgorithm . 117

.8 \xintTypesetEuclideAlgorithm 117

.9 \xintTypesetBezoutAlgorithm 117

This package was included in the original release 1.0 (2013/03/28) of the xint bundle.

Since release 1.09a the macros filter their inputs through the \xintNum macro, so one can use

count registers, or fractions as long as they reduce to integers.

Since release 1.1, the two ``typeset'' macros require the explicit loading by the user of package

xinttools.

13.1 \xintGCD, \xintiiGCD
\xintGCD{N}{M} computes the greatest common divisor. It is positive, except when both N and M

Num
f
Num
f ⋆

vanish, in which case the macro returns zero.

\xintGCD{10000}{1113}=1

\xintiiGCD{123456789012345}{9876543210321}=3

\xintiiGCD skips the \xintNum overhead.f f ⋆

13.2 \xintGCDof
\xintGCDof{{a}{b}{c}...} computes the greatest common divisor of all integers a, b, ... The listf→ *

Num
f ⋆

argument may be a macro, it is f-expanded first and must contain at least one item.

13.3 \xintLCM, \xintiiLCM
\xintGCD{N}{M} computes the least common multiple. It is 0 if one of the two integers vanishes.

Num
f
Num
f ⋆

\xintiiLCM skips the \xintNum overhead.f f ⋆

13.4 \xintLCMof
\xintLCMof{{a}{b}{c}...} computes the least common multiple of all integers a, b, ... The listf→ *

Num
f ⋆

argument may be a macro, it is f-expanded first and must contain at least one item.

13.5 \xintBezout
\xintBezout{N}{M} returns five numbers A, B, U, V, D within braces. A is the first (expanded, as

Num
f
Num
f ⋆

usual) input number, B the second, D is the GCD, and UA - VB = D.

\xintAssign {{\xintBezout {10000}{1113}}}\to\X

\meaning\X:macro:->\xintBezout {10000}{1113}.

\xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D

\A:10000, \B:1113, \U:-131, \V:-1177, \D:1.

\xintAssign {\xintBezout {123456789012345}{9876543210321}}\to\A\B\U\V\D

\A:123456789012345, \B:9876543210321, \U:256654313730, \V:3208178892607, \D:3.

13.6 \xintEuclideAlgorithm
\xintEuclideAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and

Num
f
Num
f ⋆

remainders.

\xintAssign {{\xintEuclideAlgorithm {10000}{1113}}}\to\X

\meaning\X:macro:->\xintEuclideAlgorithm {10000}{1113}.

The first token is the number of steps, the second is N, the third is the GCD, the fourth is M then

the first quotient and remainder, the second quotient and remainder, ...until the final quotient

and last (zero) remainder.

116

13 Commands of the xintgcd package

13.7 \xintBezoutAlgorithm
\xintBezoutAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and

Num
f
Num
f ⋆

remainders. Furthermore it computes the entries of the successive products of the 2 by 2 matrices(
q 1

1 0

)
formed from the quotients arising in the algorithm.

\xintAssign {{\xintBezoutAlgorithm {10000}{1113}}}\to\X

\meaning\X:macro:->\xintBezoutAlgorithm {10000}{1113}.

The first token is the number of steps, the second is N, then 0, 1, the GCD, M, 1, 0, the first

quotient, the first remainder, the top left entry of the first matrix, the bottom left entry, and

then these four things at each step until the end.

13.8 \xintTypesetEuclideAlgorithm
Requires explicit loading by the user of package xinttools.

This macro is just an example of how to organize the data returned by \xintEuclideAlgorithm.
Num
f
Num
f
Copy the source code to a new macro and modify it to what is needed.

\xintTypesetEuclideAlgorithm {123456789012345}{9876543210321}

123456789012345 = 12 × 9876543210321 + 4938270488493
9876543210321 = 2 × 4938270488493 + 2233335
4938270488493 = 2211164 × 2233335 + 536553

2233335 = 4 × 536553 + 87123
536553 = 6 × 87123 + 13815
87123 = 6 × 13815 + 4233
13815 = 3 × 4233 + 1116
4233 = 3 × 1116 + 885
1116 = 1 × 885 + 231
885 = 3 × 231 + 192
231 = 1 × 192 + 39
192 = 4 × 39 + 36
39 = 1 × 36 + 3
36 = 12 × 3 + 0

13.9 \xintTypesetBezoutAlgorithm
Requires explicit loading by the user of package xinttools.

This macro is just an example of how to organize the data returned by \xintBezoutAlgorithm. Copy
Num
f
Num
f
the source code to a new macro and modify it to what is needed.

\xintTypesetBezoutAlgorithm {10000}{1113}

10000 = 8 × 1113 + 1096
8 = 8 × 1 + 0
1 = 8 × 0 + 1
1113 = 1 × 1096 + 17
9 = 1 × 8 + 1
1 = 1 × 1 + 0
1096 = 64 × 17 + 8
584 = 64 × 9 + 8
65 = 64 × 1 + 1
17 = 2 × 8 + 1

1177 = 2 × 584 + 9
131 = 2 × 65 + 1

8 = 8 × 1 + 0
10000 = 8 × 1177 + 584
1113 = 8 × 131 + 65

117

14 Commands of the xintseries package

131 × 10000 - 1177 × 1113 = -1

14 Commands of the xintseries package

.1 \xintSeries . 118

.2 \xintiSeries . 119

.3 \xintRationalSeries . 120

.4 \xintRationalSeriesX . 123

.5 \xintPowerSeries . 124

.6 \xintPowerSeriesX . 126

.7 \xintFxPtPowerSeries . 126

.8 \xintFxPtPowerSeriesX 127

.9 \xintFloatPowerSeries 128

.10 \xintFloatPowerSeriesX 129

.11 Computing log 2 and π . 129

This package was first released with version 1.03 (2013/04/14) of the xint bundle.

The
Frac
f expansion type of various macro arguments is only a

Num
f if only xint but not xintfrac

is loaded. The macro \xintiSeries is special and expects summing big integers obeying the strict

format, even if xintfrac is loaded.

The arguments serving as indices are of the
num
x expansion type.

In some cases one or two of the macro arguments are only expanded at a later stage not immedi-

ately.

14.1 \xintSeries
\xintSeries{A}{B}{\coeff} computes

∑n=B
n=A “coeff–n˝. The initial and final indices must obey the \n⤸

num
x
num
x
Frac
f ⋆

umexpr constraint of expanding to numbers at most 2^31-1. The \coeff macro must be a one-parameter

f-expandable command, taking on input an explicit number n and producing some number or fraction
\coeff{n}; it is expanded at the time it is needed.68

\def\coeff #1{\xintiiMON{#1}/#1.5} % (-1)^n/(n+1/2)

\fdef\w {\xintSeries {0}{50}{\coeff}} % we want to re-use it

\fdef\z {\xintJrr {\w}[0]} % the [0] for a microsecond gain.

% \xintJrr preferred to \xintIrr: a big common factor is suspected.

% But numbers much bigger would be needed to show the greater efficiency.

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} = \xintFrac\z \]
n=50∑
n=0

(-1)n

n + 12
=
173909338287370940432112792101626602278714

110027467159390003025279917226039729050575

The definition of \coeff as \xintiiMON{#1}/#1.5 is quite suboptimal. It allows #1 to be a big

integer, but anyhow only small integers are accepted as initial and final indices (they are of the
num
x type). Second, when the xintfrac parser sees the #1.5 it will remove the dot hence create a
denominator with one digit more. For example 1/3.5 turns internally into 10/35 whereas it would

be more efficient to have 2/7. For info here is the non-reduced \w:

24489212733740439818553118189578822128979076445102691650390625

154936248757874299375548246172975814272155426442623138427734375
101

It would have been bigger still in releases earlier than 1.1: now, the xintfrac \xintAdd routine

does not multiply blindly denominators anymore, it checks if one is a multiple of the other. How-

ever it does not practice systematic reduction to lowest terms.
A more efficient way to code \coeff is illustrated next.
\def\coeff #1{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%

% The [0] in \coeff is a tiny optimization: in its presence the \xintfracname parser

% sees something which is already in internal format.

68 \xintiiMON is like \xintMON but does not parse its argument through \xintNum, for efficiency; other macros of this type are
\xintiiAdd, \xintiiMul, \xintiiSum, \xintiiPrd, \xintiiMMON, \xintiiLDg, \xintiiFDg, \xintiiOdd, . . .

118

14 Commands of the xintseries package

\fdef\w {\xintSeries {0}{50}{\coeff}}

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}=\xintFrac\w\]
n=50∑
n=0

(-1)n

n + 12
=
164344324681565538708346588536037139153384730

103975956465623552858889521778607543952793375

The reduced form \z as displayed above only differs from this one by a factor of 945.
\def\coeffleibnitz #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}

\cnta 1

\loop % in this loop we recompute from scratch each partial sum!

% we can afford that, as \xintSeries is fast enough.

\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}{\xintSeries {1}{\cnta}{\coeffleibnitz}}\dots

\endgraf

\ifnum\cnta < 30 \advance\cnta 1 \repeat

1. 1.000000000000...

2. 0.500000000000...

3. 0.833333333333...

4. 0.583333333333...

5. 0.783333333333...

6. 0.616666666666...

7. 0.759523809523...

8. 0.634523809523...

9. 0.745634920634...

10. 0.645634920634...

11. 0.736544011544...

12. 0.653210678210...

13. 0.730133755133...

14. 0.658705183705...

15. 0.725371850371...

16. 0.662871850371...

17. 0.721695379783...

18. 0.666139824228...

19. 0.718771403175...

20. 0.668771403175...

21. 0.716390450794...

22. 0.670935905339...

23. 0.714414166209...

24. 0.672747499542...

25. 0.712747499542...

26. 0.674285961081...

27. 0.711322998118...

28. 0.675608712404...

29. 0.710091471024...

30. 0.676758137691...

14.2 \xintiSeries
\xintiSeries{A}{B}{\coeff} computes

∑n=B
n=A “coeff–n˝ where \coeff{n} must f-expand to a (possibly

num
x
num
x f ⋆

long) integer in the strict format.
\def\coeff #1{\xintiTrunc {40}{\xintMON{#1}/#1.5}}%

% better:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr 2*\xintiiMON{#1}\relax/\the\numexpr 2*#1+1\relax [0]}}%

% better still:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%

% (-1)^n/(n+1/2) times 10^40, truncated to an integer.

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx

\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\dots\]

n=50∑
n=0

(-1)n

n + 12
≈ 1.5805993064935250412367895069567264144810

We should have cut out at least the last two digits: truncating errors originating with the first
coefficients of the sum will never go away, and each truncation introduces an uncertainty in the
last digit, so as we have 40 terms, we should trash the last two digits, or at least round at 38
digits. It is interesting to compare with the computation where rounding rather than truncation
is used, and with the decimal expansion of the exactly computed partial sum of the series:

\def\coeff #1{\xintiRound {40} % rounding at 40

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%

% (-1)^n/(n+1/2) times 10^40, rounded to an integer.

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx

\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\]

\def\exactcoeff #1%

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%

119

14 Commands of the xintseries package

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}

= \xintTrunc {50}{\xintSeries {0}{50}{\exactcoeff}}\dots\]

n=50∑
n=0

(-1)n

n + 12
≈ 1.5805993064935250412367895069567264144804

n=50∑
n=0

(-1)n

n + 12
= 1.58059930649352504123678950695672641448068680288367 . . .

This shows indeed that our sum of truncated terms estimated wrongly the 39th and 40th digits of the

exact result69 and that the sum of rounded terms fared a bit better.

14.3 \xintRationalSeries
\xintRationalSeries{A}{B}{f}{\ratio} evaluates

∑n=B
n=A F(n), where F(n) is specified indirectly via

num
x
num
x
Frac
f
Frac
f ⋆

the data of f=F(A) and the one-parameter macro \ratio which must be such that \macro{n} expands to

F(n)/F(n-1). The name indicates that \xintRationalSeries was designed to be useful in the cases

where F(n)/F(n-1) is a rational function of n but it may be anything expanding to a fraction. The

macro \ratio must be an expandable-only compatible command and expand to its value after iterated

full expansion of its first token. A and B are fed to a \numexpr hence may be count registers or

arithmetic expressions built with such; they must obey the TEX bound. The initial term f may be a

macro \f, it will be expanded to its value representing F(A).
\def\ratio #1{2/#1[0]}% 2/n, to compute exp(2)

\cnta 0 % previously declared count

\begin{quote}

\loop \fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%

\noindent$\sum_{n=0}^{\the\cnta} \frac{2^n}{n!}=

\xintTrunc{12}\z\dots=

\xintFrac\z=\xintFrac{\xintIrr\z}$\vtop to 5pt{}\par

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}∑0
n=0

2n

n! = 1.000000000000 · · · = 1 = 1∑1
n=0

2n

n! = 3.000000000000 · · · = 3 = 3∑2
n=0

2n

n! = 5.000000000000 · · · =
10
2 = 5∑3

n=0
2n

n! = 6.333333333333 · · · =
38
6 =

19
3∑4

n=0
2n

n! = 7.000000000000 · · · =
168
24 = 7∑5

n=0
2n

n! = 7.266666666666 · · · =
872
120 =

109
15∑6

n=0
2n

n! = 7.355555555555 · · · =
5296
720 =

331
45∑7

n=0
2n

n! = 7.380952380952 · · · =
37200
5040 =

155
21∑8

n=0
2n

n! = 7.387301587301 · · · =
297856
40320 =

2327
315∑9

n=0
2n

n! = 7.388712522045 · · · =
2681216
362880 =

20947
2835∑10

n=0
2n

n! = 7.388994708994 · · · =
26813184
3628800 =

34913
4725∑11

n=0
2n

n! = 7.389046015712 · · · =
294947072
39916800 =

164591
22275∑12

n=0
2n

n! = 7.389054566832 · · · =
3539368960
479001600 =

691283
93555

69 as the series is alternating, we can roughly expect an error of
√
40 and the last two digits are off by 4 units, which is not

contradictory to our expectations.

120

14 Commands of the xintseries package

∑13
n=0

2n

n! = 7.389055882389 · · · =
46011804672
6227020800 =

14977801
2027025∑14

n=0
2n

n! = 7.389056070325 · · · =
644165281792
87178291200 =

314533829
42567525∑15

n=0
2n

n! = 7.389056095384 · · · =
9662479259648
1307674368000 =

4718007451
638512875∑16

n=0
2n

n! = 7.389056098516 · · · =
154599668219904
20922789888000 =

1572669151
212837625∑17

n=0
2n

n! = 7.389056098884 · · · =
2628194359869440
355687428096000 =

16041225341
2170943775∑18

n=0
2n

n! = 7.389056098925 · · · =
47307498477912064
6402373705728000 =

103122162907
13956067125∑19

n=0
2n

n! = 7.389056098930 · · · =
898842471080853504
121645100408832000 =

4571749222213
618718975875∑20

n=0
2n

n! = 7.389056098930 · · · =
17976849421618118656
2432902008176640000 =

68576238333199
9280784638125

\def\ratio #1{-1/#1[0]}% -1/n, comes from the series of exp(-1)

\cnta 0 % previously declared count

\begin{quote}

\loop

\fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%

\noindent$\sum_{n=0}^{\the\cnta} \frac{(-1)^n}{n!}=

\xintTrunc{20}\z\dots=\xintFrac{\z}=\xintFrac{\xintIrr\z}$%

\vtop to 5pt{}\par

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}∑0
n=0

(-1)n

n! = 1.00000000000000000000 · · · = 1 = 1∑1
n=0

(-1)n

n! = 0 · · · = 0 = 0∑2
n=0

(-1)n

n! = 0.50000000000000000000 · · · =
1
2 =

1
2∑3

n=0
(-1)n

n! = 0.33333333333333333333 · · · =
2
6 =

1
3∑4

n=0
(-1)n

n! = 0.37500000000000000000 · · · =
9
24 =

3
8∑5

n=0
(-1)n

n! = 0.36666666666666666666 · · · =
44
120 =

11
30∑6

n=0
(-1)n

n! = 0.36805555555555555555 · · · =
265
720 =

53
144∑7

n=0
(-1)n

n! = 0.36785714285714285714 · · · =
1854
5040 =

103
280∑8

n=0
(-1)n

n! = 0.36788194444444444444 · · · =
14833
40320 =

2119
5760∑9

n=0
(-1)n

n! = 0.36787918871252204585 · · · =
133496
362880 =

16687
45360∑10

n=0
(-1)n

n! = 0.36787946428571428571 · · · =
1334961
3628800 =

16481
44800∑11

n=0
(-1)n

n! = 0.36787943923360590027 · · · =
14684570
39916800 =

1468457
3991680∑12

n=0
(-1)n

n! = 0.36787944132128159905 · · · =
176214841
479001600 =

16019531
43545600∑13

n=0
(-1)n

n! = 0.36787944116069116069 · · · =
2290792932
6227020800 =

63633137
172972800∑14

n=0
(-1)n

n! = 0.36787944117216190628 · · · =
32071101049
87178291200 =

2467007773
6706022400∑15

n=0
(-1)n

n! = 0.36787944117139718991 · · · =
481066515734
1307674368000 =

34361893981
93405312000∑16

n=0
(-1)n

n! = 0.36787944117144498468 · · · =
7697064251745
20922789888000 =

15549624751
42268262400∑17

n=0
(-1)n

n! = 0.36787944117144217323 · · · =
130850092279664
355687428096000 =

8178130767479
22230464256000

121

14 Commands of the xintseries package

∑18
n=0

(-1)n

n! = 0.36787944117144232942 · · · =
2355301661033953
6402373705728000 =

138547156531409
376610217984000∑19

n=0
(-1)n

n! = 0.36787944117144232120 · · · =
44750731559645106
121645100408832000 =

92079694567171
250298560512000∑20

n=0
(-1)n

n! = 0.36787944117144232161 · · · =
895014631192902121
2432902008176640000 =

4282366656425369
11640679464960000

We can incorporate an indeterminate if we define \ratio to be a macro with two parameters: \de⤸
f\ratioexp #1#2{\xintDiv{#1}{#2}}% x/n: x=#1, n=#2. Then, if \x expands to some fraction x, the

command

\xintRationalSeries {0}{b}{1}{\ratioexp{\x}}

will compute
∑n=b
n=0 x

n/n!:
\cnta 0

\def\ratioexp #1#2{\xintDiv{#1}{#2}}% #1/#2

\loop

\noindent

$\sum_{n=0}^{\the\cnta} (.57)^n/n! = \xintTrunc {50}

{\xintRationalSeries {0}{\cnta}{1}{\ratioexp{.57}}}\dots$

\vtop to 5pt {}\endgraf

\ifnum\cnta<50 \advance\cnta 10 \repeat∑0
n=0(.57)

n/n! = 1.00 . . .∑10
n=0(.57)

n/n! = 1.76826705137947002480668058035714285714285714285714 . . .∑20
n=0(.57)

n/n! = 1.76826705143373515162089324271187082272833005529082 . . .∑30
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915484884979430 . . .∑40
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915485219867776 . . .∑50
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915485219867776 . . .
Observe that in this last example the x was directly inserted; if it had been a more complicated

explicit fraction it would have been worthwile to use \ratioexp\x with \x defined to expand to

its value. In the further situation where this fraction x is not explicit but itself defined via a

complicated, and time-costly, formula, it should be noted that \xintRationalSeries will do again

the evaluation of \x for each term of the partial sum. The easiest is thus when x can be defined as

an \edef. If however, you are in an expandable-only context and cannot store in a macro like \x the

value to be used, a variant of \xintRationalSeries is needed which will first evaluate this \x and

then use this result without recomputing it. This is \xintRationalSeriesX, documented next.
Here is a slightly more complicated evaluation:
\cnta 1

\begin{multicols}{2}

\loop \fdef\z {\xintRationalSeries

{\cnta}

{2*\cnta-1}

{\xintiPow {\the\cnta}{\cnta}/\xintFac{\cnta}}

{\ratioexp{\the\cnta}}}%

\fdef\w {\xintRationalSeries {0}{2*\cnta-1}{1}{\ratioexp{\the\cnta}}}%

\noindent

$\sum_{n=\the\cnta}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!}/%

\sum_{n=0}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!} =

\xintTrunc{8}{\xintDiv\z\w}\dots$ \vtop to 5pt{}\endgraf

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{multicols}∑1
n=1

1n

n!/
∑1
n=0

1n

n! = 0.50000000 . . .∑3
n=2

2n

n!/
∑3
n=0

2n

n! = 0.52631578 . . .∑5
n=3

3n

n!/
∑5
n=0

3n

n! = 0.53804347 . . .∑7
n=4

4n

n!/
∑7
n=0

4n

n! = 0.54317053 . . .

∑9
n=5

5n

n!/
∑9
n=0

5n

n! = 0.54502576 . . .∑11
n=6

6n

n!/
∑11
n=0

6n

n! = 0.54518217 . . .∑13
n=7

7n

n!/
∑13
n=0

7n

n! = 0.54445274 . . .∑15
n=8

8n

n!/
∑15
n=0

8n

n! = 0.54327992 . . .

122

14 Commands of the xintseries package

∑17
n=9

9n

n!/
∑17
n=0

9n

n! = 0.54191055 . . .∑19
n=10

10n

n! /
∑19
n=0

10n

n! = 0.54048295 . . .∑21
n=11

11n

n! /
∑21
n=0

11n

n! = 0.53907332 . . .∑23
n=12

12n

n! /
∑23
n=0

12n

n! = 0.53772178 . . .∑25
n=13

13n

n! /
∑25
n=0

13n

n! = 0.53644744 . . .∑27
n=14

14n

n! /
∑27
n=0

14n

n! = 0.53525726 . . .

∑29
n=15

15n

n! /
∑29
n=0

15n

n! = 0.53415135 . . .∑31
n=16

16n

n! /
∑31
n=0

16n

n! = 0.53312615 . . .∑33
n=17

17n

n! /
∑33
n=0

17n

n! = 0.53217628 . . .∑35
n=18

18n

n! /
∑35
n=0

18n

n! = 0.53129566 . . .∑37
n=19

19n

n! /
∑37
n=0

19n

n! = 0.53047810 . . .∑39
n=20

20n

n! /
∑39
n=0

20n

n! = 0.52971771 . . .

14.4 \xintRationalSeriesX
\xintRationalSeriesX{A}{B}{\first}{\ratio}{\g} is a parametrized version of \xintRationalSeries

num
x
num
x
Frac
f
Frac
f f ⋆

where \first is now a one-parameter macro such that \first{\g} gives the initial term and \ratio

is a two-parameter macro such that \ratio{n}{\g} represents the ratio of one term to the previ-

ous one. The parameter \g is evaluated only once at the beginning of the computation, and can thus

itself be the yet unevaluated result of a previous computation.

Let \ratio be such a two-parameter macro; note the subtle differences between

\xintRationalSeries {A}{B}{\first}{\ratio{\g}}

and \xintRationalSeriesX {A}{B}{\first}{\ratio}{\g}.

First the location of braces differ... then, in the former case \first is a no-parameter macro
expanding to a fractional number, and in the latter, it is a one-parameter macro which will use \⤸
g. Furthermore the X variant will expand \g at the very beginning whereas the former non-X former

variant will evaluate it each time it needs it (which is bad if this evaluation is time-costly, but

good if \g is a big explicit fraction encapsulated in a macro).
The example will use the macro \xintPowerSeries which computes efficiently exact partial sums

of power series, and is discussed in the next section.
\def\firstterm #1{1[0]}% first term of the exponential series

% although it is the constant 1, here it must be defined as a

% one-parameter macro. Next comes the ratio function for exp:

\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)^{n-1}/n of the log(1+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(1+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes E(L(a/10)) for a=1,...,12.

\begin{multicols}{3}\raggedcolumns

\cnta 0

\loop

\noindent\xintTrunc {18}{%

\xintRationalSeriesX {0}{9}{\firstterm}{\ratioexp}

{\xintPowerSeries{1}{10}{\coefflog}{\the\cnta[-1]}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

\end{multicols}

1.000000000000000000...

1.099999999999083906...

1.199999998111624029...

1.299999835744121464...

1.399996091955359088...

1.499954310225476533...

1.599659266069210466...

1.698137473697423757...

1.791898112718884531...

1.870485649686617459...

1.907197560339468199...

1.845117565491393752...

1.593831932293536053...

These completely exact operations rapidly create numbers with many digits. Let us print in full

the raw fractions created by the operation illustrated above:

123

14 Commands of the xintseries package

E(L(1[-1]))=837588191708763593233567174687168686839043767250040308005177927752494629866184⤸
007635859046126459421356378683685505198743151968256/761443810644964678986073374720000000000[⤸
-90] (length of numerator: 129)

E(L(12[-2]))=85281706791717040474336745569417595859595883484964778227548803968303902814014⤸
62750410775245075221639397742094514261221418681795641855210942699861990610743717023845402454⤸
66764149586292947053094306437899694978421745516544/761443810644964678986073374720000000000[-⤸
180] (length of numerator: 219)

E(L(123[-3]))=8551013993474841738233155784033291664723025750879587881703381129666246322497⤸
19142331115922733076372551695958545295492787962370297931258555533483817301699338027676688217⤸
11937462646659548122843462038519313445955610033625003390580325399668592548664920048874872935⤸
7193753147231854444914269381901852177272347295744/761443810644964678986073374720000000000[-2⤸
70] (length of numerator: 309)

We see that the denominators here remain the same, as our input only had various powers of ten as

denominators, and xintfrac efficiently assemble (some only, as we can see) powers of ten. Notice

that 1 more digit in an input denominator seems to mean 90 more in the raw output. We can check that

with some other test cases:

E(L(1/7))=24692840377728453554200592536399443555184170751361088830947770205941207789331277⤸
8456047080539072743831005696/216062353313908320166111873421327988666012866884203817376345172⤸
792064291516013203517727545795543040000000000[0] (length of numerator: 108; length of denomina-

tor: 108)

E(L(1/71))=3169300311442099377360154109521651988619749469636812012996039128574586021477119⤸
41617633287791743518431089068458413689544226451199649958198207101271260417461397348496443539⤸
24405185605375986452422252984559104/31252822515609591082313658362898310090366346803217188055⤸
17909559920810648831070356023014954791927140195556483418027207701375854088819520711593349719⤸
4372055039374604062422190122738418253432587550720000000000[0] (length of numerator: 206; length

of denominator: 206)

E(L(1/712))=300356435377840602055967040841188592538909311419930838799656013626071029784174⤸
49681929088495804136203813242174405561415315426829241317287053037273453329055814153891517325⤸
75694112320026364569495366534918031439051104610487529796192058205725999641657806615904929048⤸
98946463533146662233869249/29993517810522090976696848959176310536177550755703969736435921535⤸
22460410892328532539738041911202121412424715881734049254716640082470987340985151932504281494⤸
24064596788874441470533147848207863549778847000617103264666638782677019019130113930837421531⤸
810478062025966102914017525760000000000[0] (length of numerator: 288; length of denominator:

288)

Thus decimal numbers such as 0.123 (equivalently 123[-3]) give less computing intensive tasks

than fractions such as 1/712: in the case of decimal numbers the (raw) denominators originate in

the coefficients of the series themselves, powers of ten of the input within brackets being treated

separately. And even then the numerators will grow with the size of the input in a sort of linear

way, the coefficient being given by the order of series: here 10 from the log and 9 from the exp,

so 90. One more digit in the input means 90 more digits in the numerator of the output: obviously

we can not go on composing such partial sums of series and hope that xint will joyfully do all at

the speed of light!

Hence, truncating the output (or better, rounding) is the only way to go if one needs a gen-

eral calculus of special functions. This is why the package xintseries provides, besides \xint-

Series, \xintRationalSeries, or \xintPowerSeries which compute exact sums, \xintFxPtPowerSeries
for fixed-point computations and a (tentative naive) \xintFloatPowerSeries.

14.5 \xintPowerSeries
\xintPowerSeries{A}{B}{\coeff}{f} evaluates the sum

∑n=B
n=A “coeff–n˝ ·fn. The initial and final in-

num
x
num
x
Frac
f
Frac
f ⋆

dices are given to a \numexpr expression. The \coeff macro (which, as argument to \xintPowerSeries

is expanded only at the time \coeff{n} is needed) should be defined as a one-parameter expandable

command, its input will be an explicit number.

124

14 Commands of the xintseries package

The f can be either a fraction directly input or a macro \f expanding to such a fraction. It

is actually more efficient to encapsulate an explicit fraction f in such a macro, if it has big

numerators and denominators (`big' means hundreds of digits) as it will then take less space in

the processing until being (repeatedly) used.

This macro computes the exact result (one can use it also for polynomial evaluation), using a
Horner scheme which helps avoiding a denominator build-up (this problem however, even if using a

naive additive approach, is much less acute since release 1.1 and its new policy regarding \xint-

Add).
\def\geom #1{1[0]} % the geometric series

\def\f {5/17[0]}

\[\sum_{n=0}^{n=20} \Bigl(\frac 5{17}\Bigr)^n

=\xintFrac{\xintIrr{\xintPowerSeries {0}{20}{\geom}{\f}}}

=\xintFrac{\xinttheexpr (17^21-5^21)/12/17^20\relax}\]
n=20∑
n=0

(5
17

)n
=
5757661159377657976885341

4064231406647572522401601
=
69091933912531895722624092

48770776879770870268819212

\def\coefflog #1{1/#1[0]}% 1/n

\def\f {1/2[0]}%

\[\log 2 \approx \sum_{n=1}^{20} \frac1{n\cdot 2^n}

= \xintFrac {\xintIrr {\xintPowerSeries {1}{20}{\coefflog}{\f}}}\]

\[\log 2 \approx \sum_{n=1}^{50} \frac1{n\cdot 2^n}

= \xintFrac {\xintIrr {\xintPowerSeries {1}{50}{\coefflog}{\f}}}\]

log 2 ≈
20∑
n=1

1

n · 2n =
42299423848079

61025172848640

log 2 ≈
50∑
n=1

1

n · 2n =
60463469751752265663579884559739219

87230347965792839223946208178339840

\setlength{\columnsep}{0pt}

\begin{multicols}{3}

\cnta 1 % previously declared count

\loop % in this loop we recompute from scratch each partial sum!

% we can afford that, as \xintPowerSeries is fast enough.

\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}

{\xintPowerSeries {1}{\cnta}{\coefflog}{\f}}\dots

\endgraf

\ifnum \cnta < 30 \advance\cnta 1 \repeat

\end{multicols}

1. 0.500000000000...

2. 0.625000000000...

3. 0.666666666666...

4. 0.682291666666...

5. 0.688541666666...

6. 0.691145833333...

7. 0.692261904761...

8. 0.692750186011...

9. 0.692967199900...

10. 0.693064856150...

11. 0.693109245355...

12. 0.693129590407...

13. 0.693138980431...

14. 0.693143340085...

15. 0.693145374590...

16. 0.693146328265...

17. 0.693146777052...

18. 0.693146988980...

19. 0.693147089367...

20. 0.693147137051...

21. 0.693147159757...

22. 0.693147170594...

23. 0.693147175777...

24. 0.693147178261...

25. 0.693147179453...

26. 0.693147180026...

27. 0.693147180302...

28. 0.693147180435...

29. 0.693147180499...

30. 0.693147180530...

\def\coeffarctg #1{1/\the\numexpr\ifodd #1 -2*#1-1\else2*#1+1\fi\relax }%

% the above gives (-1)^n/(2n+1). The sign being in the denominator,

% **** no [0] should be added ****,

125

14 Commands of the xintseries package

% else nothing is guaranteed to work (even if it could by sheer luck)

% Notice in passing this aspect of \numexpr:

% **** \numexpr -(1)\relax is ilegal !!! ****
\def\f {1/25[0]}% 1/5^2

\[\mathrm{Arctg}(\frac15)\approx \frac15\sum_{n=0}^{15} \frac{(-1)^n}{(2n+1)25^n}

= \xintFrac{\xintIrr {\xintDiv {\xintPowerSeries {0}{15}{\coeffarctg}{\f}}{5}}}\]

Arctg(
1

5
) ≈ 1
5

15∑
n=0

(-1)n

(2n + 1)25n
=
165918726519122955895391793269168

840539304153062403202056884765625

14.6 \xintPowerSeriesX
This is the same as \xintPowerSeries apart from the fact that the last parameter f is expanded once

num
x
num
x
Frac
f
Frac
f

and for all before being then used repeatedly. If the f parameter is to be an explicit big fraction
with many (dozens) digits, rather than using it directly it is slightly better to have some macro
\g defined to expand to the explicit fraction and then use \xintPowerSeries with \g; but if f has
not yet been evaluated and will be the output of a complicated expansion of some \f, and if, due to
an expanding only context, doing \edef\g{\f} is no option, then \xintPowerSeriesX should be used
with \f as last parameter.

\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)^{n-1}/n of the log(1+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(1+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes L(E(a/10)-1) for a=1,..., 12.

\begin{multicols}{3}\raggedcolumns

\cnta 1

\loop

\noindent\xintTrunc {18}{%

\xintPowerSeriesX {1}{10}{\coefflog}

{\xintSub

{\xintRationalSeries {0}{9}{1[0]}{\ratioexp{\the\cnta[-1]}}}

{1}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

\end{multicols}

0.099999999998556159...

0.199999995263443554...

0.299999338075041781...

0.399974460740121112...

0.499511320760604148...

0.593980619762352217...

0.645144282733914916...

0.398118280111436442...

-1.597091692317639401...

-12.648937932093322763...

-66.259639046914679687...

-304.768437445462801227...

14.7 \xintFxPtPowerSeries
\xintFxPtPowerSeries{A}{B}{\coeff}{f}{D} computes

∑n=B
n=A “coeff–n˝·f n with each term of the series

num
x
num
x ⋆

truncated to D digits after the decimal point. As usual, A and B are completely expanded through
Frac
f
Frac
f
num
x ⋆

their inclusion in a \numexpr expression. Regarding D it will be similarly be expanded each time

it is used inside an \xintTrunc. The one-parameter macro \coeff is similarly expanded at the time

it is used inside the computations. Idem for f. If f itself is some complicated macro it is thus

better to use the variant \xintFxPtPowerSeriesX which expands it first and then uses the result

of that expansion.

The current (1.04) implementation is: the first power f^A is computed exactly, then trun-
cated. Then each successive power is obtained from the previous one by multiplication by the

126

14 Commands of the xintseries package

exact value of f, and truncated. And \coeff{n}.f^n is obtained from that by multiplying by \co⤸
eff{n} (untruncated) and then truncating. Finally the sum is computed exactly. Apart from that

\xintFxPtPowerSeries (where FxPt means `fixed-point') is like \xintPowerSeries.

There should be a variant for things of the type
∑
cn
fn

n! to avoid having to compute the factorial

from scratch at each coefficient, the same way \xintFxPtPowerSeries does not compute f^n from

scratch at each n. Perhaps in the next package release.

e-
1
2 ≈

1.00000000000000000000

0.50000000000000000000

0.62500000000000000000

0.60416666666666666667

0.60677083333333333333

0.60651041666666666667

0.60653211805555555555

0.60653056795634920635

0.60653066483754960317

0.60653065945526069224

0.60653065972437513778

0.60653065971214266299

0.60653065971265234943

0.60653065971263274611

0.60653065971263344622

0.60653065971263342289

0.60653065971263342361

0.60653065971263342359

0.60653065971263342359

0.60653065971263342359

\def\coeffexp #1{1/\xintFac {#1}[0]}% 1/n!

\def\f {-1/2[0]}% [0] for faster input parsing

\cnta 0 % previously declared \count register

\noindent\loop

$\xintFxPtPowerSeries {0}{\cnta}{\coeffexp}{\f}{20}$\\

\ifnum\cnta<19 \advance\cnta 1 \repeat\par

% One should **not** trust the final digits, as the potential truncation

% errors of up to 10^{-20} per term accumulate and never disappear! (the

% effect is attenuated by the alternating signs in the series). We can

% confirm that the last two digits (of our evaluation of the nineteenth

% partial sum) are wrong via the evaluation with more digits:

\xintFxPtPowerSeries {0}{19}{\coeffexp}{\f}{25}= 0.6065306597126334236037992

It is no difficulty for xintfrac to compute exactly, with the help of \xintPowerSeries, the

nineteenth partial sum, and to then give (the start of) its exact decimal expansion:

\xintPowerSeries {0}{19}{\coeffexp}{\f} =
38682746160036397317757

63777066403145711616000

= 0.606530659712633423603799152126 . . .
Thus, one should always estimate a priori how many ending digits are not reliable: if there are N

terms and N has k digits, then digits up to but excluding the last k may usually be trusted. If we

are optimistic and the series is alternating we may even replace N with
√
N to get the number k of

digits possibly of dubious significance.

14.8 \xintFxPtPowerSeriesX
\xintFxPtPowerSeriesX{A}{B}{\coeff}{\f}{D} computes, exactly as \xintFxPtPowerSeries, the sum

num
x
num
x
of \coeff{n}.\f^n from n=A to n=B with each term of the series being truncated to D digits after

Frac
f
Frac
f
num
x ⋆

the decimal point. The sole difference is that \f is first expanded and it is the result of this

which is used in the computations.
Let us illustrate this on the numerical exploration of the identity
log(1+x) = -log(1/(1+x))

Let L(h)=log(1+h), and D(h)=L(h)+L(-h/(1+h)). Theoretically thus, D(h)=0 but we shall evaluate
L(h) and -h/(1+h) keeping only 10 terms of their respective series. We will assume h < 0.5. With
only ten terms kept in the power series we do not have quite 3 digits precision as 210 = 1024. So it
wouldn't make sense to evaluate things more precisely than, say circa 5 digits after the decimal
points.

\cnta 0

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}% (-1)^{n-1}/n

\def\coeffalt #1{\the\numexpr\ifodd#1 -1\else1\fi\relax [0]}% (-1)^n

\begin{multicols}2

\loop

127

14 Commands of the xintseries package

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}%

\xintAdd {\xintFxPtPowerSeriesX {1}{10}{\coefflog}{\the\cnta [-2]}{5}}

{\xintFxPtPowerSeriesX {1}{10}{\coefflog}

{\xintFxPtPowerSeriesX {1}{10}{\coeffalt}{\the\cnta [-2]}{5}}

{5}}\endgraf

\ifnum\cnta < 49 \advance\cnta 7 \repeat

\end{multicols}

D(0/100): 0/1[0]

D(7/100): 2/1[-5]

D(14/100): 2/1[-5]

D(21/100): 3/1[-5]

D(28/100): 4/1[-5]

D(35/100): 4/1[-5]

D(42/100): 9/1[-5]

D(49/100): 42/1[-5]
Let's say we evaluate functions on [-1/2,+1/2] with values more or less also in [-1/2,+1/2] and

we want to keep 4 digits of precision. So, roughly we need at least 14 terms in series like the
geometric or log series. Let's make this 15. Then it doesn't make sense to compute intermediate
summands with more than 6 digits precision. So we compute with 6 digits precision but return only
4 digits (rounded) after the decimal point. This result with 4 post-decimal points precision is
then used as input to the next evaluation.

\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}%

\dtt{\xintRound{4}

{\xintAdd {\xintFxPtPowerSeriesX {1}{15}{\coefflog}{\the\cnta [-2]}{6}}

{\xintFxPtPowerSeriesX {1}{15}{\coefflog}

{\xintRound {4}{\xintFxPtPowerSeriesX {1}{15}{\coeffalt}

{\the\cnta [-2]}{6}}}

{6}}%

}}\endgraf

\ifnum\cnta < 49 \advance\cnta 7 \repeat

\end{multicols}

D(0/100): 0

D(7/100): 0.0000

D(14/100): 0.0000

D(21/100): -0.0001

D(28/100): -0.0001

D(35/100): -0.0001

D(42/100): -0.0000

D(49/100): -0.0001

Not bad... I have cheated a bit: the `four-digits precise' numeric evaluations were left un-

rounded in the final addition. However the inner rounding to four digits worked fine and made the

next step faster than it would have been with longer inputs. The morale is that one should not use

the raw results of \xintFxPtPowerSeriesX with the D digits with which it was computed, as the last

are to be considered garbage. Rather, one should keep from the output only some smaller number of

digits. This will make further computations faster and not less precise. I guess there should be

some command to do this final truncating, or better, rounding, at a given number D'<D of digits.

Maybe for the next release.

14.9 \xintFloatPowerSeries
\xintFloatPowerSeries[P]{A}{B}{\coeff}{f} computes

∑n=B
n=A “coeff–n˝ ·f n with a floating point pre-[

num
x]
num
x
num
x
cision given by the optional parameter P or by the current setting of \xintDigits.

Frac
f
Frac
f ⋆

In the current, preliminary, version, no attempt has been made to try to guarantee to the final

result the precision P. Rather, P is used for all intermediate floating point evaluations. So

rounding errors will make some of the last printed digits invalid. The operations done are first

the evaluation of f^A using \xintFloatPow, then each successive power is obtained from this first

one by multiplication by f using \xintFloatMul, then again with \xintFloatMul this is multiplied

with \coeff{n}, and the sum is done adding one term at a time with \xintFloatAdd. To sum up, this

is just the naive transformation of \xintFxPtPowerSeries from fixed point to floating point.
\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}

128

14 Commands of the xintseries package

-6.9314718e-1

14.10 \xintFloatPowerSeriesX
\xintFloatPowerSeriesX[P]{A}{B}{\coeff}{f} is like \xintFloatPowerSeries with the difference[

num
x]
num
x
num
x
that f is expanded once and for all at the start of the computation, thus allowing efficient chain-

Frac
f
Frac
f ⋆

ing of such series evaluations.
\def\coeffexp #1{1/\xintFac {#1}[0]}% 1/n! (exact, not float)

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeriesX [8]{0}{30}{\coeffexp}

{\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}}

5.0000001e-1

14.11 Computing log 2 and π
In this final section, the use of \xintFxPtPowerSeries (and \xintPowerSeries) will be illustrated

on the (expandable... why make things simple when it is so easy to make them difficult!) computa-

tions of the first digits of the decimal expansion of the familiar constants log 2 and π.
Let us start with log 2. We will get it from this formula (which is left as an exercise):

log(2)=-2 log(1-13/256)-5 log(1-1/9)

The number of terms to be kept in the log series, for a desired precision of 10^{-D} was

roughly estimated without much theoretical analysis. Computing exactly the partial sums with

\xintPowerSeries and then printing the truncated values, from D=0 up to D=100 showed that it worked

in terms of quality of the approximation. Because of possible strings of zeroes or nines in the ex-

act decimal expansion (in the present case of log 2, strings of zeroes around the fourtieth and the

sixtieth decimals), this does not mean though that all digits printed were always exact. In the

end one always end up having to compute at some higher level of desired precision to validate the

earlier result.

Then we tried with \xintFxPtPowerSeries: this is worthwile only for D's at least 50, as the exact

evaluations are faster (with these short-length f's) for a lower number of digits. And as expected

the degradation in the quality of approximation was in this range of the order of two or three

digits. This meant roughly that the 3+1=4 ending digits were wrong. Again, we ended up having to

compute with five more digits and compare with the earlier value to validate it. We use truncation

rather than rounding because our goal is not to obtain the correct rounded decimal expansion but

the correct exact truncated one.
\def\coefflog #1{1/#1[0]}% 1/n

\def\xa {13/256[0]}% we will compute log(1-13/256)

\def\xb {1/9[0]}% we will compute log(1-1/9)

\def\LogTwo #1%

% get log(2)=-2log(1-13/256)- 5log(1-1/9)

{% we want to use \printnumber, hence need something expanding in two steps

% only, so we use here the \romannumeral0 method

\romannumeral0\expandafter\LogTwoDoIt \expandafter

% Nb Terms for 1/9:

{\the\numexpr #1*150/143\expandafter}\expandafter

% Nb Terms for 13/256:

{\the\numexpr #1*100/129\expandafter}\expandafter

% We print #1 digits, but we know the ending ones are garbage

{\the\numexpr #1\relax}% allows #1 to be a count register

}%

\def\LogTwoDoIt #1#2#3%

% #1=nb of terms for 1/9, #2=nb of terms for 13/256,

{% #3=nb of digits for computations, also used for printing

\xinttrunc {#3} % lowercase form to stop the \romannumeral0 expansion!

{\xintAdd

129

14 Commands of the xintseries package

{\xintMul {2}{\xintFxPtPowerSeries {1}{#2}{\coefflog}{\xa}{#3}}}

{\xintMul {5}{\xintFxPtPowerSeries {1}{#1}{\coefflog}{\xb}{#3}}}%

}%

}%

\noindent $\log 2 \approx \LogTwo {60}\dots$\endgraf

\noindent${}\approx{}$\printnumber{\LogTwo {65}}\dots\endgraf

\noindent${}\approx{}$\printnumber{\LogTwo {70}}\dots\endgraf

log 2 ≈ 0.693147180559945309417232121458176568075500134360255254120484 . . .
≈ 0.69314718055994530941723212145817656807550013436025525412068000711...
≈ 0.6931471805599453094172321214581765680755001343602552541206800094933723...

Here is the code doing an exact evaluation of the partial sums. We have added a +1 to the number
of digits for estimating the number of terms to keep from the log series: we experimented that this
gets exactly the first D digits, for all values from D=0 to D=100, except in one case (D=40) where
the last digit is wrong. For values of D higher than 100 it is more efficient to use the code using
\xintFxPtPowerSeries.

\def\LogTwo #1% get log(2)=-2log(1-13/256)- 5log(1-1/9)

{%

\romannumeral0\expandafter\LogTwoDoIt \expandafter

{\the\numexpr (#1+1)*150/143\expandafter}\expandafter

{\the\numexpr (#1+1)*100/129\expandafter}\expandafter

{\the\numexpr #1\relax}%

}%

\def\LogTwoDoIt #1#2#3%

{% #3=nb of digits for truncating an EXACT partial sum

\xinttrunc {#3}

{\xintAdd

{\xintMul {2}{\xintPowerSeries {1}{#2}{\coefflog}{\xa}}}

{\xintMul {5}{\xintPowerSeries {1}{#1}{\coefflog}{\xb}}}%

}%

}%

Let us turn now to Pi, computed with the Machin formula. Again the numbers of terms to keep in

the two arctg series were roughly estimated, and some experimentations showed that removing the

last three digits was enough (at least for D=0-100 range). And the algorithm does print the correct

digits when used with D=1000 (to be convinced of that one needs to run it for D=1000 and again, say

for D=1010.) A theoretical analysis could help confirm that this algorithm always gets better than

10^{-D} precision, but again, strings of zeroes or nines encountered in the decimal expansion may

falsify the ending digits, nines may be zeroes (and the last non-nine one should be increased) and

zeroes may be nine (and the last non-zero one should be decreased).
\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax/%

\the\numexpr 2*#1+1\relax [0]}%

%\def\coeffarctg #1{\romannumeral0\xintmon{#1}/\the\numexpr 2*#1+1\relax }%

\def\xa {1/25[0]}% 1/5^2, the [0] for faster parsing

\def\xb {1/57121[0]}% 1/239^2, the [0] for faster parsing

\def\Machin #1{% #1 may be a count register, \Machin {\mycount} is allowed

\romannumeral0\expandafter\MachinA \expandafter

% number of terms for arctg(1/5):

{\the\numexpr (#1+3)*5/7\expandafter}\expandafter

% number of terms for arctg(1/239):

{\the\numexpr (#1+3)*10/45\expandafter}\expandafter

% do the computations with 3 additional digits:

{\the\numexpr #1+3\expandafter}\expandafter

% allow #1 to be a count register:

{\the\numexpr #1\relax }}%

\def\MachinA #1#2#3#4%

{\xinttrunc {#4}

{\xintSub

130

14 Commands of the xintseries package

{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}

{\xintMul{4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

}}%

\begin{framed}

\[\pi = \Machin {60}\dots \]

\end{framed}

π = 3.141592653589793238462643383279502884197169399375105820974944 . . .

Here is a variant\MachinBis, which evaluates the partial sums exactly using \xintPowerSeries,
before their final truncation. No need for a ``+3'' then.

\def\MachinBis #1{% #1 may be a count register,

% the final result will be truncated to #1 digits post decimal point

\romannumeral0\expandafter\MachinBisA \expandafter

% number of terms for arctg(1/5):

{\the\numexpr #1*5/7\expandafter}\expandafter

% number of terms for arctg(1/239):

{\the\numexpr #1*10/45\expandafter}\expandafter

% allow #1 to be a count register:

{\the\numexpr #1\relax }}%

\def\MachinBisA #1#2#3%

{\xinttrunc {#3} %

{\xintSub

{\xintMul {16/5}{\xintPowerSeries {0}{#1}{\coeffarctg}{\xa}}}

{\xintMul{4/239}{\xintPowerSeries {0}{#2}{\coeffarctg}{\xb}}}%

}}%

Let us use this variant for a loop showing the build-up of digits:
\begin{multicols}{2}

\cnta 0 % previously declared \count register

\loop \noindent

\centeredline{\dtt{\MachinBis{\cnta}}}%

\ifnum\cnta < 30

\advance\cnta 1 \repeat

\end{multicols}

3.

3.1

3.14

3.141

3.1415

3.14159

3.141592

3.1415926

3.14159265

3.141592653

3.1415926535

3.14159265358

3.141592653589

3.1415926535897

3.14159265358979

3.141592653589793

3.1415926535897932

3.14159265358979323

3.141592653589793238

3.1415926535897932384

3.14159265358979323846

3.141592653589793238462

3.1415926535897932384626

3.14159265358979323846264

3.141592653589793238462643

3.1415926535897932384626433

3.14159265358979323846264338

3.141592653589793238462643383

3.1415926535897932384626433832

3.14159265358979323846264338327

3.141592653589793238462643383279
You want more digits and have some time? compile this copy of the \Machin with etex (or pdftex):
% Compile with e-TeX extensions enabled (etex, pdftex, ...)

\input xintfrac.sty

\input xintseries.sty

131

15 Commands of the xintcfrac package

% pi = 16 Arctg(1/5) - 4 Arctg(1/239) (John Machin's formula)

\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax/%

\the\numexpr 2*#1+1\relax [0]}%

\def\xa {1/25[0]}%

\def\xb {1/57121[0]}%

\def\Machin #1{%

\romannumeral0\expandafter\MachinA \expandafter

{\the\numexpr (#1+3)*5/7\expandafter}\expandafter

{\the\numexpr (#1+3)*10/45\expandafter}\expandafter

{\the\numexpr #1+3\expandafter}\expandafter

{\the\numexpr #1\relax }}%

\def\MachinA #1#2#3#4%

{\xinttrunc {#4}

{\xintSub

{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}

{\xintMul {4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

}}%

\pdfresettimer

\fdef\Z {\Machin {1000}}

\odef\W {\the\pdfelapsedtime}

\message{\Z}

\message{computed in \xintRound {2}{\W/65536} seconds.}

\bye

This will log the first 1000 digits of π after the decimal point. On my laptop (a 2012 model) this
took about 5.6 seconds last time I tried.70 As mentioned in the introduction, the file pi.tex by D.

Roegel shows that orders of magnitude faster computations are possible within TEX, but recall our

constraints of complete expandability and be merciful, please.

Why truncating rather than rounding? One of our main competitors on the market of scientific com-
puting, a canadian product (not encumbered with expandability constraints, and having barely ever

heard of TEX ;-), prints numbers rounded in the last digit. Why didn't we follow suit in the macros

\xintFxPtPowerSeries and \xintFxPtPowerSeriesX? To round at D digits, and excluding a rewrite or

cloning of the division algorithm which anyhow would add to it some overhead in its final steps,

xintfrac needs to truncate at D+1, then round. And rounding loses information! So, with more time

spent, we obtain a worst result than the one truncated at D+1 (one could imagine that additions and

so on, done with only D digits, cost less; true, but this is a negligeable effect per summand com-

pared to the additional cost for this term of having been truncated at D+1 then rounded). Rounding

is the way to go when setting up algorithms to evaluate functions destined to be composed one after

the other: exact algebraic operations with many summands and an f variable which is a fraction are

costly and create an even bigger fraction; replacing f with a reasonable rounding, and rounding

the result, is necessary to allow arbitrary chaining.

But, for the computation of a single constant, we are really interested in the exact decimal

expansion, so we truncate and compute more terms until the earlier result gets validated. Finally

if we do want the rounding we can always do it on a value computed with D+1 truncation.

15 Commands of the xintcfrac package

.1 Package overview. 133

.2 \xintCFrac . 138

.3 \xintGCFrac . 138

.4 \xintGGCFrac . 138

.5 \xintGCtoGCx . 139

.6 \xintFtoC . 139

.7 \xintFtoCs . 139

.8 \xintFtoCx . 139

70 With v1.09i and earlier xint, this used to be 42 seconds;
starting with v1.09j, and prior to v1.2, it was 16 seconds (this
was probably due to a more efficient division with denominators
at most 9999). The v1.2 xintcore achieves a further gain.

132

http://www.ctan.org/pkg/pi

15 Commands of the xintcfrac package

.9 \xintFtoGC . 140

.10 \xintFGtoC . 140

.11 \xintFtoCC . 140

.12 \xintCstoF . 140

.13 \xintCtoF . 141

.14 \xintGCtoF . 141

.15 \xintCstoCv . 142

.16 \xintCtoCv . 142

.17 \xintGCtoCv . 142

.18 \xintFtoCv . 142

.19 \xintFtoCCv . 143

.20 \xintCntoF . 143

.21 \xintGCntoF . 143

.22 \xintCntoCs . 143

.23 \xintCntoGC . 144

.24 \xintGCntoGC . 144

.25 \xintCstoGC . 144

.26 \xintiCstoF, \xintiGCtoF, \xintiCstoCv,
\xintiGCtoCv . 145

.27 \xintGCtoGC . 145

.28 Euler’s number e . 145

This package was first included in release 1.04 (2013/04/25) of the xint bundle. It was kept

almost unchanged until 1.09m of 2014/02/26 which brings some new macros: \xintFtoC, \xintCtoF,

\xintCtoCv, dealing with sequences of braced partial quotients rather than comma separated ones,

\xintFGtoC which is to produce ``guaranteed'' coefficients of some real number known approxi-

mately, and \xintGGCFrac for displaying arbitrary material as a continued fraction; also, some

changes to existing macros: \xintFtoCs and \xintCntoCs insert spaces after the commas, \xintCstoF

and \xintCstoCv authorize spaces in the input also before the commas.

This section contains:

1. an overview of the package functionalities,

2. a description of each one of the package macros,

3. further illustration of their use via the study of the convergents of e.

15.1 Package overview
The package computes partial quotients and convergents of a fraction, or conversely start from co-

efficients and obtain the corresponding fraction; three macros \xintCFrac, \xintGCFrac and \xint-

GGCFrac are for typesetting (the first two assume that the coefficients are numeric quantities

acceptable by the xintfrac \xintFrac macro, the last one will display arbitrary material), the

others can be nested (if applicable) or see their outputs further processed by other macros from

the xint bundle, particularly the macros of xinttools dealing with sequences of braced items or

comma separated lists.

A simple continued fraction has coefficients [c0,c1,...,cN] (usually called partial quotients,
but I dislike this entrenched terminology), where c0 is a positive or negative integer and the

others are positive integers.
Typesetting is usually done via the amsmath macro \cfrac:
\[c_0 + \cfrac{1}{c_1+\cfrac1{c_2+\cfrac1{c_3+\cfrac1{\ddots}}}}\]

c0 +
1

c1 +
1

c2 +
1

c3 +
1

...

Here is a concrete example:
\[\xintFrac {208341/66317}=\xintCFrac {208341/66317}\]%

133

15 Commands of the xintcfrac package

208341

66317
= 3 +

1

7 +
1

15 +
1

1 +
1

292 +
1

2

But it is the command \xintCFrac which did all the work of computing the continued fraction and
using \cfrac from amsmath to typeset it.
A generalized continued fraction has the same structure but the numerators are not restricted

to be 1, and numbers used in the continued fraction may be arbitrary, also fractions, irrationals,
complex, indeterminates.71 The centered continued fraction is an example:

\[\xintFrac {915286/188421}=\xintGCFrac {5+-1/7+1/39+-1/53+-1/13}

=\xintCFrac {915286/188421}\]

915286

188421
= 5 -

1

7 +
1

39 -
1

53 -
1

13

= 4 +
1

1 +
1

6 +
1

38 +
1

1 +
1

51 +
1

1 +
1

12

The command \xintGCFrac, contrarily to \xintCFrac, does not compute anything, it just typesets

starting from a generalized continued fraction in inline format, which in this example was input

literally. We also used \xintCFrac for comparison of the two types of continued fractions.
To let TEX compute the centered continued fraction of f there is \xintFtoCC:
\[\xintFrac {915286/188421}\to\xintFtoCC {915286/188421}\]

915286

188421
→ 5 + -1/7 + 1/39 + -1/53 + -1/13

The package macros are expandable and may be nested (naturally \xintCFrac and \xintGCFrac must
be at the top level, as they deal with typesetting).

\[\xintGCFrac {\xintFtoCC{915286/188421}}\]

5 -
1

7 +
1

39 -
1

53 -
1

13

The `inline' format expected on input by \xintGCFrac is
a0 + b0/a1 + b1/a2 + b2/a3 + · · · + bn-2/an-1 + bn-1/an

Fractions among the coefficients are allowed but they must be enclosed within braces. Signed in-
tegers may be left without braces (but the + signs are mandatory). No spaces are allowed around the
plus and fraction symbols. The coefficients may themselves be macros, as long as these macros are
f-expandable.

\[\xintFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiQuo {132}{25}}}

= \xintGCFrac {1+-1/57+\xintPow {-3}{7}/\xintiQuo {132}{25}}\]

71 xintcfrac may be used with indeterminates, for basic conversions from one inline format to another, but not for actual
computations. See \xintGGCFrac.

134

15 Commands of the xintcfrac package

1907

1902
= 1 -

1

57 -
2187

5

To compute the actual fraction one has \xintGCtoF:
\[\xintFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiQuo {132}{25}}}\]

1907

1902

For non-numeric input there is \xintGGCFrac.
\[\xintGGCFrac {a_0+b_0/a_1+b_1/a_2+b_2/\ddots+\ddots/a_{n-1}+b_{n-1}/a_n}\]

a0 +
b0

a1 +
b1

a2 +
b2

... +

...

an-1 +
bn-1

an

For regular continued fractions, there is a simpler comma separated format:
\[-7,6,19,1,33\to\xintFrac{\xintCstoF{-7,6,19,1,33}}=\xintCFrac{\xintCstoF{-7,6,19,1,33}}\]

-7, 6, 19, 1, 33→ -28077
4108

= -7 +
1

6 +
1

19 +
1

1 +
1

33

The command \xintFtoCs produces from a fraction f the comma separated list of its coefficients.
\[\xintFrac{1084483/398959}=[\xintFtoCs{1084483/398959}]\]

1084483

398959
= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 2]

If one prefers other separators, one can use the two arguments macros \xintFtoCx whose first
argument is the separator (which may consist of more than one token) which is to be used.

\[\xintFrac{2721/1001}=\xintFtoCx {+1/(}{2721/1001})\cdots)\]
2721

1001
= 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + 1/(4 + 1/(1 + 1/(1 + 1/(6 + 1/(2) · · ·)

This allows under Plain TEX with amstex to obtain the same effect as with LATEX+\amsmath+\xintCFrac:

$$\xintFwOver{2721/1001}=\xintFtoCx {+\cfrac1\\ }{2721/1001}\endcfrac$$
As a shortcut to \xintFtoCx with separator 1+/, there is \xintFtoGC:
2721/1001=\xintFtoGC {2721/1001}

2721/1001=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/2 Let us compare in that case with the output of
\xintFtoCC:

2721/1001=\xintFtoCC {2721/1001}

2721/1001=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2 To obtain the coefficients as a sequence of braced num-

bers, there is \xintFtoC (this is a shortcut for \xintFtoCx {}). This list (sequence) may then

be manipulated using the various macros of xinttools such as the non-expandable macro \xint-

AssignArray or the expandable \xintApply and \xintListWithSep.

Conversely to go from such a sequence of braced coefficients to the corresponding fraction there

is \xintCtoF.
The `\printnumber' (subsection 2.1) macro which we use in this document to print long numbers

can also be useful on long continued fractions.
\printnumber{\xintFtoCC {35037018906350720204351049/244241737886197404558180}}

135

15 Commands of the xintcfrac package

143+1/2+1/5+-1/4+-1/4+-1/4+-1/3+1/2+1/2+1/6+-1/22+1/2+1/10+-1/5+-1/11+-1/3+1/4+-1/2+1/2+1/4+⤸
-1/2+1/23+1/3+1/8+-1/6+-1/9 If we apply \xintGCtoF to this generalized continued fraction, we

discover that the original fraction was reducible:

\xintGCtoF {143+1/2+...+-1/9}=2897319801297630107/20197107104701740

When a generalized continued fraction is built with integers, and numerators are only 1's or -⤸
1's, the produced fraction is irreducible. And if we compute it again with the last sub-fraction

omitted we get another irreducible fraction related to the bigger one by a Bezout identity. Doing

this here we get:

\xintGCtoF {143+1/2+...+-1/6}=328124887710626729/2287346221788023

and indeed: �����2897319801297630107 328124887710626729

20197107104701740 2287346221788023

����� = 1
The various fractions obtained from the truncation of a continued fraction to its initial terms

are called the convergents. The commands of xintcfrac such as \xintFtoCv, \xintFtoCCv, and others

which compute such convergents, return them as a list of braced items, with no separator (as does

\xintFtoC for the partial quotients). Here is an example:
\[\xintFrac{915286/188421}\to

\xintListWithSep{,}{\xintApply\xintFrac{\xintFtoCv{915286/188421}}}\]
915286

188421
→ 4, 5, 34

7
,
1297

267
,
1331

274
,
69178

14241
,
70509

14515
,
915286

188421

\[\xintFrac{915286/188421}\to

\xintListWithSep{,}{\xintApply\xintFrac{\xintFtoCCv{915286/188421}}}\]
915286

188421
→ 5, 34

7
,
1331

274
,
70509

14515
,
915286

188421

We thus see that the `centered convergents' obtained with \xintFtoCCv are among the fuller list

of convergents as returned by \xintFtoCv.

Here is a more complicated use of \xintApply and \xintListWithSep. We first define a macro which

will be applied to each convergent:

\newcommand{\mymacro}[1]{$\xintFrac{#1}=[\xintFtoCs{#1}]$\vtop to 6pt{}}

Next, we use the following code:

$\xintFrac{49171/18089}\to{}$

\xintListWithSep {, }{\xintApply{\mymacro}{\xintFtoCv{49171/18089}}}

It produces:
49171
18089 → 2 = [2], 3 = [3],

8
3 = [2, 1, 2],

11
4 = [2, 1, 3],

19
7 = [2, 1, 2, 2],

87
32 = [2, 1, 2, 1, 1, 4],

106
39 =

[2, 1, 2, 1, 1, 5], 19371 = [2, 1, 2, 1, 1, 4, 2],
1264
465 = [2, 1, 2, 1, 1, 4, 1, 1, 6],

1457
536 = [2, 1, 2, 1, 1, 4, 1, 1, 7],

2721
1001 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 2],

23225
8544 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8],

49171
18089 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 2].

The macro \xintCntoF allows to specify the coefficients as a function given by a one-parameter
macro. The produced values do not have to be integers.

\def\cn #1{\xintiiPow {2}{#1}}% 2^n

\[\xintFrac{\xintCntoF {6}{\cn}}=\xintCFrac [l]{\xintCntoF {6}{\cn}}\]

3541373

2449193
= 1 +

1

2 +
1

4 +
1

8 +
1

16 +
1

32 +
1

64

Notice the use of the optional argument [l] to \xintCFrac. Other possibilities are [r] and (de-
fault) [c].

136

15 Commands of the xintcfrac package

\def\cn #1{\xintPow {2}{-#1}}%

\[\xintFrac{\xintCntoF {6}{\cn}}=\xintGCFrac [r]{\xintCntoGC {6}{\cn}}=

[\xintFtoCs {\xintCntoF {6}{\cn}}]\]

3159019

2465449
= 1 +

1

1
2 +

1

1
4 +

1

1
8 +

1

1
16 +

1

1
32 +

1

1
64

= [1, 3, 1, 1, 4, 14, 1, 1, 1, 1, 79, 2, 1, 1, 2]

We used \xintCntoGC as we wanted to display also the continued fraction and not only the fraction

returned by \xintCntoF.
There are also \xintGCntoF and \xintGCntoGC which allow the same for generalized fractions. An

initial portion of a generalized continued fraction for π is obtained like this
\def\an #1{\the\numexpr 2*#1+1\relax }%

\def\bn #1{\the\numexpr (#1+1)*(#1+1)\relax }%

\[\xintFrac{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}} =

\cfrac{4}{\xintGCFrac{\xintGCntoGC {5}{\an}{\bn}}} =

\xintTrunc {10}{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}}\dots\]

92736

29520
=

4

1 +
1

3 +
4

5 +
9

7 +
16

9 +
25

11

= 3.1414634146 . . .

We see that the quality of approximation is not fantastic compared to the simple continued frac-
tion of π with about as many terms:

\[\xintFrac{\xintCstoF{3,7,15,1,292,1,1}}=

\xintGCFrac{3+1/7+1/15+1/1+1/292+1/1+1/1}=

\xintTrunc{10}{\xintCstoF{3,7,15,1,292,1,1}}\dots\]

208341

66317
= 3 +

1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1

= 3.1415926534 . . .

When studying the continued fraction of some real number, there is always some doubt about how
many terms are valid, when computed starting from some approximation. If f ⩽ x ⩽ g and f, g both
have the same first K partial quotients, then x also has the same first K quotients and convergents.
The macro \xintFGtoC outputs as a sequence of braced items the common partial quotients of its two
arguments. We can thus use it to produce a sure list of valid convergents of π for example, starting
from some proven lower and upper bound:

$$\pi\to [\xintListWithSep{,}

{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}, \dots]$$

\noindent$\pi\to\xintListWithSep{,\allowbreak\;}

137

15 Commands of the xintcfrac package

{\xintApply{\xintFrac}

{\xintCtoCv{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}}}, \dots$

π → [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . .]
π → 3, 22

7 ,
333
106,

355
113,

103993
33102 ,

104348
33215 ,

208341
66317 ,

312689
99532 ,

833719
265381,

1146408
364913 ,

4272943
1360120,

5419351
1725033,

80143857
25510582,

165707065
52746197 ,

245850922
78256779 ,

411557987
131002976, . . .

15.2 \xintCFrac
\xintCFrac{f} is a math-mode only, LATEX with amsmath only, macro which first computes then displays

Frac
f

with the help of \cfrac the simple continued fraction corresponding to the given fraction. It

admits an optional argument which may be [l], [r] or (the default) [c] to specify the location of

the one's in the numerators of the sub-fractions. Each coefficient is typeset using the \xint-

Frac macro from the xintfrac package. This macro is f-expandable in the sense that it prepares
expandably the whole expression with the multiple \cfrac's, but it is not completely expandable

naturally as \cfrac isn't.

15.3 \xintGCFrac
\xintGCFrac{a+b/c+d/e+f/g+h/...+x/y} uses similarly \cfrac to prepare the typesetting with the a⤸f
msmath \cfrac (LATEX) of a generalized continued fraction given in inline format (or as macro which
will f-expand to it). It admits the same optional argument as \xintCFrac. Plain TEX with amstex
users, see \xintGCtoGCx.

\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}}\]

1 +
3375 · 10-3

1
7 -

3
5

720
This is mostly a typesetting macro, although it does provoke the expansion of the coefficients.

See \xintGCtoF if you are impatient to see this specific fraction computed.

It admits an optional argument within square brackets which may be either [l], [c] or [r]. De-

fault is [c] (numerators are centered).

Numerators and denominators are made arguments to the \xintFrac macro. This allows them to be

themselves fractions or anything f-expandable giving numbers or fractions, but also means however
that they can not be arbitrary material, they can not contain color changing commands for example.

One of the reasons is that \xintGCFrac tries to determine the signs of the numerators and chooses

accordingly to use + or -.

15.4 \xintGGCFrac
\xintGGCFrac{a+b/c+d/e+f/g+h/...+x/y} is a clone of \xintGCFrac, hence again LATEX specific withf
package amsmath. It does not assume the coefficients to be numbers as understood by xintfrac. The
macro can be used for displaying arbitrary content as a continued fraction with \cfrac, using only
plus signs though. Note though that it will first f-expand its argument, which may be thus be one
of the xintcfrac macros producing a (general) continued fraction in inline format, see \xintFtoCx
for an example. If this expansion is not wished, it is enough to start the argument with a space.

\[\xintGGCFrac {1+q/1+q^2/1+q^3/1+q^4/1+q^5/\ddots}\]

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

...

138

15 Commands of the xintcfrac package

15.5 \xintGCtoGCx
\xintGCtoGCx{sepa}{sepb}{a+b/c+d/e+f/...+x/y} returns the list of the coefficients of the gen-n n f ⋆
eralized continued fraction of f, each one within a pair of braces, and separated with the help of

sepa and sepb. Thus

\xintGCtoGCx :;{1+2/3+4/5+6/7} gives 1:2;3:4;5:6;7

The following can be used byt Plain TEX+amstex users to obtain an output similar as the ones pro-

duced by \xintGCFrac and \xintGGCFrac:
$$\xintGCtoGCx {+\cfrac}{\\}{a+b/...}\endcfrac$$

$$\xintGCtoGCx {+\cfrac\xintFwOver}{\\\xintFwOver}{a+b/...}\endcfrac$$

15.6 \xintFtoC
\xintFtoC{f} computes the coefficients of the simple continued fraction of f and returns them as

Frac
f ⋆

a list (sequence) of braced items.
\fdef\test{\xintFtoC{-5262046/89233}}\texttt{\meaning\test}

macro:->{-59}{33}{27}{100}

15.7 \xintFtoCs
\xintFtoCs{f} returns the comma separated list of the coefficients of the simple continued frac-

Frac
f ⋆

tion of f. Notice that starting with 1.09m a space follows each comma (mainly for usage in text
mode, as in math mode spaces are produced in the typeset output by TEX itself).

\[\xintSignedFrac{-5262046/89233} \to [\xintFtoCs{-5262046/89233}]\]

-
5262046

89233
→ [-59, 33, 27, 100]

15.8 \xintFtoCx
\xintFtoCx{sep}{f} returns the list of the coefficients of the simple continued fraction of fn

Frac
f ⋆

separated with the help of sep, which may be anything (and is kept unexpanded). For example, with
Plain TEX and amstex,

$$\xintFtoCx {+\cfrac1\\ }{-5262046/89233}\endcfrac$$
will display the continued fraction using \cfrac. Each coefficient is inside a brace pair { },
allowing a macro to end the separator and fetch it as argument, for example, again with Plain TEX
and amstex:

\def\highlight #1{\ifnum #1>200 \textcolor{red}{#1}\else #1\fi}

$$\xintFtoCx {+\cfrac1\\ \highlight}{104348/33215}\endcfrac$$

Due to the different and extremely cumbersome syntax of \cfrac under LATEX it proves a bit tortuous
to obtain there the same effect. Actually, it is partly for this purpose that 1.09m added \xint-
GGCFrac. We thus use \xintFtoCx with a suitable separator, and then the whole thing as argument
to \xintGGCFrac:

\def\highlight #1{\ifnum #1>200 \fcolorbox{blue}{white}{\boldmath\color{red}$#1$}%

\else #1\fi}

\[\xintGGCFrac {\xintFtoCx {+1/\highlight}{208341/66317}}\]

3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

2

139

15 Commands of the xintcfrac package

15.9 \xintFtoGC
\xintFtoGC{f} does the same as \xintFtoCx{+1/}{f}. Its output may thus be used in the package

Frac
f ⋆

macros expecting such an `inline format'.
566827/208524=\xintFtoGC {566827/208524}

566827/208524=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/1+1/1+1/8+1/1+1/1+1/11

15.10 \xintFGtoC
\xintFGtoC{f}{g} computes the common initial coefficients to two given fractions f and g. Notice

Frac
f
Frac
f ⋆

that any real number f<x<g or f>x>g will then necessarily share with f and g these common initial

coefficients for its regular continued fraction. The coefficients are output as a sequence of

braced numbers. This list can then be manipulated via macros from xinttools, or other macros of

xintcfrac.
\fdef\test{\xintFGtoC{-5262046/89233}{-5314647/90125}}\texttt{\meaning\test}

macro:->{-59}{33}{27}
\fdef\test{\xintFGtoC{3.141592653}{3.141592654}}\texttt{\meaning\test}

macro:->{3}{7}{15}{1}
\fdef\test{\xintFGtoC{3.1415926535897932384}{3.1415926535897932385}}\meaning\test

macro:->{3}{7}{15}{1}{292}{1}{1}{1}{2}{1}{3}{1}{14}{2}{1}{1}{2}{2}{2}
\xintRound {30}{\xintCstoF{\xintListWithSep{,}{\test}}}

3.141592653589793238386377506390
\xintRound {30}{\xintCtoF{\test}}

3.141592653589793238386377506390
\fdef\test{\xintFGtoC{1.41421356237309}{1.4142135623731}}\meaning\test

macro:->{1}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}

15.11 \xintFtoCC
\xintFtoCC{f} returns the `centered' continued fraction of f, in `inline format'.

Frac
f ⋆

566827/208524=\xintFtoCC {566827/208524}

566827/208524=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2+1/9+-1/2+1/11
\[\xintFrac{566827/208524} = \xintGCFrac{\xintFtoCC{566827/208524}}\]

566827

208524
= 3 -

1

4 -
1

2 +
1

5 -
1

2 +
1

7 -
1

2 +
1

9 -
1

2 +
1

11

15.12 \xintCstoF
\xintCstoF{a,b,c,d,...,z} computes the fraction corresponding to the coefficients, which may bef ⋆
fractions or even macros expanding to such fractions. The final fraction may then be highly re-
ducible. Starting with release 1.09m spaces before commas are allowed and trimmed automatically
(spaces after commas were already silently handled in earlier releases).

\[\xintGCFrac {-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}=

\xintSignedFrac{\xintCstoF {-1,3,-5,7,-9,11,-13}}=\xintSignedFrac{\xintGCtoF

140

15 Commands of the xintcfrac package

{-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}}\]

-1 +
1

3 +
1

-5 +
1

7 +
1

-9 +
1

11 +
1

-13

= -
75887

118187
= -
75887

118187

\[\xintGCFrac{{1/2}+1/{1/3}+1/{1/4}+1/{1/5}}=\xintFrac{\xintCstoF {1/2,1/3,1/4,1/5}}\]

1

2
+

1

1
3 +

1

1
4 +
1

1
5

=
159

66

A generalized continued fraction may produce a reducible fraction (\xintCstoF tries its best not

to accumulate in a silly way superfluous factors but will not do simplifications which would be

obvious to a human, like simplification by 3 in the result above).

15.13 \xintCtoF
\xintCtoF{{a}{b}{c}...{z}} computes the fraction corresponding to the coefficients, which may bef ⋆
fractions or even macros.

\xintCtoF {\xintApply {\xintiiPow 3}{\xintSeq {1}{5}}}

14946960/4805083
\[\xintFrac{14946960/4805083}=\xintCFrac {14946960/4805083}\]

14946960

4805083
= 3 +

1

9 +
1

27 +
1

81 +
1

243

In the example above the power of 3 was already pre-computed via the expansion done by \xintAppl⤸
y, but if we try with \xintApply { \xintiiPow 3} where the space will stop this expansion, we can

check that \xintCtoF will itself provoke the needed coefficient expansion.

15.14 \xintGCtoF
\xintGCtoF{a+b/c+d/e+f/g+......+v/w+x/y} computes the fraction defined by the inline general-f ⋆
ized continued fraction. Coefficients may be fractions but must then be put within braces. They
can be macros. The plus signs are mandatory.

\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}} =

\xintFrac{\xintGCtoF {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}}} =

\xintFrac{\xintIrr{\xintGCtoF

{1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}}}}\]

1 +
3375 · 10-3

1
7 -

3
5

720

=
88629000

3579000
=
29543

1193

\[\xintGCFrac{{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}} =

\xintFrac{\xintGCtoF {{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}}} \]

141

15 Commands of the xintcfrac package

1

2
+

2
3

4
5 +

1
2

1
5 +

3
2
5
3

=
4270

4140

The macro tries its best not to accumulate superfluous factor in the denominators, but doesn't

reduce the fraction to irreducible form before returning it and does not do simplifications which

would be obvious to a human.

15.15 \xintCstoCv
\xintCstoCv{a,b,c,d,...,z} returns the sequence of the corresponding convergents, each onef ⋆
within braces.
It is allowed to use fractions as coefficients (the computed convergents have then no reason to

be the real convergents of the final fraction). When the coefficients are integers, the conver-
gents are irreducible fractions, but otherwise it is not necessarily the case.

\xintListWithSep:{\xintCstoCv{1,2,3,4,5,6}}

1/1:3/2:10/7:43/30:225/157:1393/972
\xintListWithSep:{\xintCstoCv{1,1/2,1/3,1/4,1/5,1/6}}

1/1:3/1:9/7:45/19:225/159:1575/729
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintCstoCv {\xintPow

{-.3}{-5},7.3/4.57,\xintCstoF{3/4,9,-1/3}}}}\]
-100000

243
→ -72888949

177390
→ -2700356878

6567804

15.16 \xintCtoCv
\xintCtoCv{{a}{b}{c}...{z}} returns the sequence of the corresponding convergents, each onef ⋆
within braces.

\fdef\test{\xintCtoCv {11111111111}}\texttt{\meaning\test}

macro:->{1/1}{2/1}{3/2}{5/3}{8/5}{13/8}{21/13}{34/21}{55/34}{89/55}{144/89}

15.17 \xintGCtoCv
\xintGCtoCv{a+b/c+d/e+f/g+......+v/w+x/y} returns the list of the corresponding convergents.f ⋆
The coefficients may be fractions, but must then be inside braces. Or they may be macros, too.
The convergents will in the general case be reducible. To put them into irreducible form, one

needs one more step, for example it can be done with \xintApply\xintIrr.
\[\xintListWithSep{,}{\xintApply\xintFrac

{\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}\]

\[\xintListWithSep{,}{\xintApply\xintFrac{\xintApply\xintIrr

{\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}}\]

3,
17

7
,
834

342
,
1306

542

3,
17

7
,
139

57
,
653

271

15.18 \xintFtoCv
\xintFtoCv{f} returns the list of the (braced) convergents of f, with no separator. To be treated

Frac
f ⋆

with \xintAssignArray or \xintListWithSep.
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCv{5211/3748}}}\]

142

15 Commands of the xintcfrac package

1→ 3
2
→ 4
3
→ 7
5
→ 25
18
→ 32
23
→ 57
41
→ 317
228
→ 374
269
→ 691
497
→ 5211
3748

15.19 \xintFtoCCv
\xintFtoCCv{f} returns the list of the (braced) centered convergents of f, with no separator. To

Frac
f ⋆

be treated with \xintAssignArray or \xintListWithSep.
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCCv{5211/3748}}}\]

1→ 4
3
→ 7
5
→ 32
23
→ 57
41
→ 374
269
→ 691
497
→ 5211
3748

15.20 \xintCntoF
\xintCntoF{N}{\macro} computes the fraction f having coefficients c(j)=\macro{j} for j=0,1,...,⤸

num
x f ⋆

N. The N parameter is given to a \numexpr. The values of the coefficients, as returned by \macro do
not have to be positive, nor integers, and it is thus not necessarily the case that the original
c(j) are the true coefficients of the final f.

\def\macro #1{\the\numexpr 1+#1*#1\relax} \xintCntoF {5}{\macro}

72625/49902[0]

This example shows that the fraction is output with a trailing number in square brackets (rep-

resenting a power of ten), this is for consistency with what do most macros of xintfrac, and does

not have to be always this annoying [0] as the coefficients may for example be numbers in scien-

tific notation. To avoid these trailing square brackets, for example if the coefficients are known

to be integers, there is always the possibility to filter the output via \xintPRaw, or \xintIrr

(the latter is overkill in the case of integer coefficients, as the fraction is guaranteed to be

irreducible then).

15.21 \xintGCntoF
\xintGCntoF{N}{\macroA}{\macroB} returns the fraction f corresponding to the inline generalized

num
x f f ⋆

continued fraction a0+b0/a1+b1/a2+....+b(N-1)/aN, with a(j)=\macroA{j} and b(j)=\macroB{j}. The
N parameter is given to a \numexpr.

\def\coeffA #1{\the\numexpr #1+4-3*((#1+2)/3)\relax }%

\def\coeffB #1{\the\numexpr \ifodd #1 -\fi 1\relax }% (-1)^n

\[\xintGCFrac{\xintGCntoGC {6}{\coeffA}{\coeffB}} =

\xintFrac{\xintGCntoF {6}{\coeffA}{\coeffB}}\]

1 +
1

2 -
1

3 +
1

1 -
1

2 +
1

3 -
1

1

=
39

25

There is also \xintGCntoGC to get the `inline format' continued fraction.

15.22 \xintCntoCs
\xintCntoCs{N}{\macro} produces the comma separated list of the corresponding coefficients, from

num
x f ⋆

n=0 to n=N. The N is given to a \numexpr.
\xintCntoCs {5}{\macro}

1, 2, 5, 10, 17, 26

143

15 Commands of the xintcfrac package

\[\xintFrac{\xintCntoF{5}{\macro}}=\xintCFrac{\xintCntoF {5}{\macro}}\]

72625

49902
= 1 +

1

2 +
1

5 +
1

10 +
1

17 +
1

26

15.23 \xintCntoGC
\xintCntoGC{N}{\macro} evaluates the c(j)=\macro{j} from j=0 to j=N and returns a continued frac-

num
x f ⋆

tion written in inline format: {c(0)}+1/{c(1)}+1/...+1/{c(N)}. The parameter N is given to a \num⤸
expr. The coefficients, after expansion, are, as shown, being enclosed in an added pair of braces,
they may thus be fractions.

\def\macro #1{\the\numexpr\ifodd#1 -1-#1\else1+#1\fi\relax/\the\numexpr 1+#1*#1\relax}

\fdef\x{\xintCntoGC {5}{\macro}}\meaning\x

\[\xintGCFrac{\xintCntoGC {5}{\macro}}\]

macro:->{1/\the \numexpr 1+0*0\relax }+1/{-2/\the \numexpr 1+1*1\relax }+1/{3/\the \numexpr

1+2*2\relax }+1/{-4/\the \numexpr 1+3*3\relax }+1/{5/\the \numexpr 1+4*4\relax }+1/{-6/\the

\numexpr 1+5*5\relax }

1 +
1

-2
2 +

1

3
5 +

1

-4
10 +

1

5
17 +

1

-6
26

15.24 \xintGCntoGC
\xintGCntoGC{N}{\macroA}{\macroB} evaluates the coefficients and then returns the corresponding

num
x f f ⋆

{a0}+{b0}/{a1}+{b1}/{a2}+...+{b(N-1)}/{aN} inline generalized fraction. N is givent to a \nume⤸
xpr. The coefficients are enclosed into pairs of braces, and may thus be fractions, the fraction
slash will not be confused in further processing by the continued fraction slashes.

\def\an #1{\the\numexpr #1*#1*#1+1\relax}%

\def\bn #1{\the\numexpr \ifodd#1 -\fi 1*(#1+1)\relax}%

$\xintGCntoGC {5}{\an}{\bn}=\xintGCFrac {\xintGCntoGC {5}{\an}{\bn}} =

\displaystyle\xintFrac {\xintGCntoF {5}{\an}{\bn}}$\par

1 + 1/2 + -2/9 + 3/28 + -4/65 + 5/126 = 1 +
1

2 -
2

9 +
3

28 -
4

65 +
5

126

=
5797655

3712466

15.25 \xintCstoGC
\xintCstoGC{a,b,..,z} transforms a comma separated list (or something expanding to such a list)f ⋆
into an `inline format' continued fraction {a}+1/{b}+1/...+1/{z}. The coefficients are just

144

15 Commands of the xintcfrac package

copied and put within braces, without expansion. The output can then be used in \xintGCFrac for
example.

\[\xintGCFrac {\xintCstoGC {-1,1/2,-1/3,1/4,-1/5}}=\xintSignedFrac{\xintCstoF {-1,1/2,-1/3,1/4,-1/5}}\]

-1 +
1

1
2 +

1

-1
3 +

1

1
4 +
1

-1
5

= -
145

83

15.26 \xintiCstoF, \xintiGCtoF, \xintiCstoCv, \xintiGCtoCv
Essentially the same as the corresponding macros without the `i', but for integer-only input.f ⋆
Infinitesimally faster, mainly for internal use by the package.

15.27 \xintGCtoGC
\xintGCtoGC{a+b/c+d/e+f/g+......+v/w+x/y} expands (with the usual meaning) each one of the co-f ⋆
efficients and returns an inline continued fraction of the same type, each expanded coefficient
being enclosed within braces.

\fdef\x {\xintGCtoGC {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/%

\xintFac {6}+\xintCstoF {2,-7,-5}/16}} \meaning\x

macro:->{1}+{3375/1[-3]}/{1/7}+{-3/5}/{720}+{67/36}/{16}

To be honest I have forgotten for which purpose I wrote this macro in the first place.

15.28 Euler’s number e
Let us explore the convergents of Euler's number e. The volume of computation is kept minimal by

the following steps:

• a comma separated list of the first 36 coefficients is produced by \xintCntoCs,

• this is then given to \xintiCstoCv which produces the list of the convergents (there is also

\xintCstoCv, but our coefficients being integers we used the infinitesimally faster \xint-

iCstoCv),

• then the whole list was converted into a sequence of one-line paragraphs, each convergent

becomes the argument to a macro printing it together with its decimal expansion with 30 digits

after the decimal point.

• A count register \cnta was used to give a line count serving as a visual aid: we could also have

done that in an expandable way, but well, let's relax from time to time...

\def\cn #1{\the\numexpr\ifcase \numexpr #1+3-3*((#1+2)/3)\relax

1\or1\or2*(#1/3)\fi\relax }

% produces the pattern 1,1,2,1,1,4,1,1,6,1,1,8,... which are the

% coefficients of the simple continued fraction of e-1.

\cnta 0

\def\mymacro #1{\advance\cnta by 1

\noindent

\hbox to 3em {\hfil\small\dtt{\the\cnta.} }%

$\xintTrunc {30}{\xintAdd {1[0]}{#1}}\dots=

\xintFrac{\xintAdd {1[0]}{#1}}$}%

\xintListWithSep{\vtop to 6pt{}\vbox to 12pt{}\par}

{\xintApply\mymacro{\xintiCstoCv{\xintCntoCs {35}{\cn}}}}

145

15 Commands of the xintcfrac package

1. 2.000000000000000000000000000000 · · · = 2

2. 3.000000000000000000000000000000 · · · = 3

3. 2.666666666666666666666666666666 · · · = 83
4. 2.750000000000000000000000000000 · · · = 114
5. 2.714285714285714285714285714285 · · · = 197
6. 2.718750000000000000000000000000 · · · = 8732
7. 2.717948717948717948717948717948 · · · = 10639
8. 2.718309859154929577464788732394 · · · = 19371
9. 2.718279569892473118279569892473 · · · = 1264465
10. 2.718283582089552238805970149253 · · · = 1457536
11. 2.718281718281718281718281718281 · · · = 27211001

12. 2.718281835205992509363295880149 · · · = 232258544

13. 2.718281822943949711891042430591 · · · = 259469545

14. 2.718281828735695726684725523798 · · · = 4917118089

15. 2.718281828445401318035025074172 · · · = 517656190435

16. 2.718281828470583721777828930962 · · · = 566827208524

17. 2.718281828458563411277850606202 · · · = 1084483398959

18. 2.718281828459065114074529546648 · · · = 135806234996032

19. 2.718281828459028013207065591026 · · · = 146651065394991

20. 2.718281828459045851404621084949 · · · = 2824572910391023

21. 2.718281828459045213521983758221 · · · = 410105312150869313

22. 2.718281828459045254624795027092 · · · = 438351041161260336

23. 2.718281828459045234757560631479 · · · = 848456353312129649

24. 2.718281828459045235379013372772 · · · = 140136526895155334720

25. 2.718281828459045235343535532787 · · · = 148621090425467464369

26. 2.718281828459045235360753230188 · · · = 2887576173110622799089

27. 2.718281828459045235360274593941 · · · = 534625820200196677847971

28. 2.718281828459045235360299120911 · · · = 563501581931207300647060

29. 2.718281828459045235360287179900 · · · = 1098127402131403978495031

30. 2.718281828459045235360287478611 · · · = 225260496245518286870547680

31. 2.718281828459045235360287464726 · · · = 236241770266828690849042711

32. 2.718281828459045235360287471503 · · · = 4615022665123316977719590391

33. 2.718281828459045235360287471349 · · · = 1038929163353808382200680031313

146

15 Commands of the xintcfrac package

34. 2.718281828459045235360287471355 · · · = 1085079390005041399178399621704

35. 2.718281828459045235360287471352 · · · = 2124008553358849781379079653017

36. 2.718281828459045235360287471352 · · · = 5206128467061741719152276311294112

One can with no problem compute much bigger convergents. Let's get the 200th convergent. It
turns out to have the same first 268 digits after the decimal point as e-1. Higher convergents get
more and more digits in proportion to their index: the 500th convergent already gets 799 digits
correct! To allow speedy compilation of the source of this document when the need arises, I limit
here to the 200th convergent.

\fdef\z {\xintCntoF {199}{\cn}}%

\begingroup\parindent 0pt \leftskip 2.5cm

\indent\llap {Numerator = }\printnumber{\xintNumerator\z}\par

\indent\llap {Denominator = }\printnumber{\xintDenominator\z}\par

\indent\llap {Expansion = }\printnumber{\xintTrunc{268}\z}\dots\par\endgroup

Numerator = 568964038871896267597523892315807875293889017667917446057232024547192296961118⤸
23017524386017499531081773136701241708609749634329382906

Denominator = 331123817669737619306256360816356753365468823729314438156205615463246659728581⤸
86546133769206314891601955061457059255337661142645217223

Expansion = 1.7182818284590452353602874713526624977572470936999595749669676277240766303535⤸
475945713821785251664274274663919320030599218174135966290435729003342952605956⤸
307381323286279434907632338298807531952510190115738341879307021540891499348841⤸
675092447614606680822648001684774118...

One can also use a centered continued fraction: we get more digits but there are also more com-

putations as the numerators may be either 1 or -1.

This documentation has been compiled without the source code, which is available in the separate file:

sourcexint.pdf,

which should be among the candidates proposed by texdoc --list xint. To produce a single file including

both the user documentation and the source code, run tex xint.dtx to generate xint.tex (if not already

available), then edit xint.tex to set the \NoSourceCode toggle to 0, then run thrice latex on xint.tex

and finally dvipdfmx on xint.dvi. Alternatively, run pdflatex either directly on xint.dtx, or on xint.t⤸
ex with \NoSourceCode set to 0.

147

	Title page
	Dependency graph
	Contents
	Read this first
	The packages of the xint bundle
	Quick overview
	Changes
	Installation instructions

	Introduction via examples
	Printing big numbers on the page
	Randomly chosen examples
	More examples, some quite elaborate, within this document

	The xint bundle
	Characteristics
	Origins of the package
	Expansion matters
	User interface
	Floating point macros

	User interface
	Input formats
	Output formats
	Use of count registers
	Dimensions
	\ifcase, \ifnum, ... constructs
	Expandable implementations of mathematical algorithms
	Possible syntax errors to avoid
	Error messages
	Package namespace, catcodes

	Some utilities from the xinttools package
	Assignments
	Utilities for expandable manipulations
	A new kind of for loop
	A new kind of expandable loop

	Commands of the xintkernel package
	Contents
	\odef, \oodef, \fdef
	\xintReverseOrder
	\xintLength

	Commands of the xinttools package
	Contents
	\xintRevWithBraces
	\xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB
	\xintCSVtoList
	\xintNthElt
	\xintKeep
	\xintKeepUnbraced
	\xintTrim
	\xintTrimUnbraced
	\xintListWithSep
	\xintApply
	\xintApplyUnbraced
	\xintSeq
	Completely expandable prime test
	\xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext
	\xintiloop, \xintiloopindex, \xintouteriloopindex, \xintbreakiloop, \xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo
	Another completely expandable prime test
	A table of factorizations
	\xintApplyInline
	\xintFor, \xintFor*
	\xintifForFirst, \xintifForLast
	\xintBreakFor, \xintBreakForAndDo
	\xintintegers, \xintdimensions, \xintrationals
	Another table of primes
	Some arithmetic with Fibonacci numbers
	\xintForpair, \xintForthree, \xintForfour
	\xintAssign
	\xintAssignArray
	\xintDigitsOf
	\xintRelaxArray
	The Quick Sort algorithm illustrated

	Commands of the xintcore package
	Contents
	\xintNum, \xintiNum
	\xintSgn, \xintiiSgn
	\xintiOpp, \xintiiOpp
	\xintiAbs, \xintiiAbs
	\xintiiFDg
	\xintiiLDg
	\xintDouble, \xintHalf
	\xintInc, \xintDec
	\xintiAdd, \xintiiAdd
	\xintiSub, \xintiiSub
	\xintiMul, \xintiiMul
	\xintiSqr, \xintiiSqr
	\xintiPow, \xintiiPow
	\xintiDivision, \xintiiDivision
	\xintiQuo, \xintiiQuo
	\xintiRem, \xintiiRem
	\xintiDivRound, \xintiiDivRound
	\xintiDivTrunc, \xintiiDivTrunc
	\xintiMod, \xintiiMod

	Commands of the xint package
	Contents
	\xintReverseDigits
	\xintLen
	\xintCmp, \xintiiCmp
	\xintEq, \xintiiEq
	\xintNeq, \xintiiNeq
	\xintGt, \xintiiGt
	\xintLt, \xintiiLt
	\xintLtorEq, \xintiiLtorEq
	\xintGtorEq, \xintiiGtorEq
	\xintIsZero, \xintiiIsZero
	\xintNot
	\xintIsNotZero, \xintiiIsNotZero
	\xintIsOne, \xintiiIsOne
	\xintAND
	\xintOR
	\xintXOR
	\xintANDof
	\xintORof
	\xintXORof
	\xintGeq
	\xintiMax, \xintiiMax
	\xintiMin, \xintiiMin
	\xintiMaxof, \xintiiMaxof
	\xintiMinof, \xintiiMinof
	\xintiiSum
	\xintiiPrd
	\xintSgnFork
	\xintifSgn, \xintiiifSgn
	\xintifZero, \xintiiifZero
	\xintifNotZero, \xintiiifNotZero
	\xintifOne, \xintiiifOne
	\xintifTrueAelseB, \xintifFalseAelseB
	\xintifCmp, \xintiiifCmp
	\xintifEq, \xintiiifEq
	\xintifGt, \xintiiifGt
	\xintifLt, \xintiiifLt
	\xintifOdd, \xintiiifOdd
	\xintiFac
	\xintiiMON, \xintiiMMON
	\xintiiOdd
	\xintiiEven
	\xintiSqrt, \xintiiSqrt, \xintiiSqrtR, \xintiSquareRoot, \xintiiSquareRoot
	\xintDSL
	\xintDSR
	\xintDSH
	\xintDSHr, \xintDSx
	\xintDecSplit
	\xintDecSplitL
	\xintDecSplitR
	\xintiiE

	Commands of the xintfrac package
	Contents
	\xintNum
	\xintifInt
	\xintLen
	\xintRaw
	\xintPRaw
	\xintNumerator
	\xintDenominator
	\xintRawWithZeros
	\xintREZ
	\xintFrac
	\xintSignedFrac
	\xintFwOver
	\xintSignedFwOver
	\xintIrr
	\xintJrr
	\xintTrunc
	\xintiTrunc
	\xintTTrunc
	\xintXTrunc
	\xintRound
	\xintiRound
	\xintFloor, \xintiFloor
	\xintCeil, \xintiCeil
	\xintTFrac
	\xintE
	\xintFloatE
	\xintDigits, \xinttheDigits
	\xintFloat
	\xintPFloat
	\xintAdd
	\xintFloatAdd
	\xintSub
	\xintFloatSub
	\xintMul
	\xintSqr
	\xintFloatMul
	\xintDiv
	\xintFloatDiv
	\xintFac
	\xintFloatFac
	\xintPow
	\xintFloatPow
	\xintFloatPower
	\xintFloatSqrt
	\xintSum
	\xintPrd
	\xintCmp
	\xintIsOne
	\xintGeq
	\xintMax
	\xintMin
	\xintMaxof
	\xintMinof
	\xintAbs
	\xintSgn
	\xintOpp
	\xintiDivision, \xintiQuo, \xintiRem, \xintFDg, \xintLDg, \xintMON, \xintMMON, \xintOdd

	Commands of the xintexpr package
	Contents
	The \xintexpr expressions
	Some features of the 1.1 release of xintexpr
	The syntax
	\numexpr or \dimexpr expressions, count and dimension registers and variables
	Catcodes and spaces
	Expandability, \xinteval
	Memory considerations
	The \xintNewExpr command
	\xintiexpr, \xinttheiexpr
	\xintiiexpr, \xinttheiiexpr
	\xintboolexpr, \xinttheboolexpr
	\xintfloatexpr, \xintthefloatexpr
	\xintifboolexpr
	\xintifboolfloatexpr
	\xintifbooliiexpr
	\xintNewFloatExpr
	\xintNewIExpr
	\xintNewIIExpr
	\xintNewBoolExpr
	\xintthecoords
	Technicalities
	Acknowledgements (2013/05/25)

	Commands of the xintbinhex package
	Contents
	\xintDecToHex
	\xintDecToBin
	\xintHexToDec
	\xintBinToDec
	\xintBinToHex
	\xintHexToBin
	\xintCHexToBin

	Commands of the xintgcd package
	Contents
	\xintGCD, \xintiiGCD
	\xintGCDof
	\xintLCM, \xintiiLCM
	\xintLCMof
	\xintBezout
	\xintEuclideAlgorithm
	\xintBezoutAlgorithm
	\xintTypesetEuclideAlgorithm
	\xintTypesetBezoutAlgorithm

	Commands of the xintseries package
	Contents
	\xintSeries
	\xintiSeries
	\xintRationalSeries
	\xintRationalSeriesX
	\xintPowerSeries
	\xintPowerSeriesX
	\xintFxPtPowerSeries
	\xintFxPtPowerSeriesX
	\xintFloatPowerSeries
	\xintFloatPowerSeriesX
	Computing log(2) and pi

	Commands of the xintcfrac package
	Contents
	Package overview
	\xintCFrac
	\xintGCFrac
	\xintGGCFrac
	\xintGCtoGCx
	\xintFtoC
	\xintFtoCs
	\xintFtoCx
	\xintFtoGC
	\xintFGtoC
	\xintFtoCC
	\xintCstoF
	\xintCtoF
	\xintGCtoF
	\xintCstoCv
	\xintCtoCv
	\xintGCtoCv
	\xintFtoCv
	\xintFtoCCv
	\xintCntoF
	\xintGCntoF
	\xintCntoCs
	\xintCntoGC
	\xintGCntoGC
	\xintCstoGC
	\xintiCstoF, \xintiGCtoF, \xintiCstoCv, \xintiGCtoCv
	\xintGCtoGC
	Euler's number e

