The xint bundle

JEAN-FRANGOIS BURNOL
jfbu (at) free (dot) fr
Package version: 1.20 (2017/08/29); documentation date: 2017/08/29.
From source file xint.dtx. Time-stamp: <29-08-2017 at 22:20:23 CEST>.

Contents

1 Readthisfirst.................................
1.1 First examples 3
1.2 Quick overview (expressions with xintexpr) 5
1.3 Printing big numbers on the page 7
1.4 Randomly chosen examples 7
2 The syntax of xintexpr expressions...........
2.1 Built-in operators and precedences 12
2.2 Built-in functions 15
2.3 Tacit multiplication 23
2.4 More examples with dummy variables 24
2.5 User defined variables 24
2.6 User defined functions 26
3 Thexintbundle
3.1 Characteristics 36
3.2 Floating point evaluations 37
3.3 Expansion matters 38
3.4 Input formats for macros 40
3.5 Output formats of macros 42
3.6 Count registers and variables 42
3.7 Dimension registers and variables 43
4 Some utilities from the xinttools package
4.1 Assignments 49
4.2 Utilities for expandable manipulations 50
5 Additional examples using xinttools or xintexpr or both
5.1 Completely expandable prime test 51
5.2 Another completely expandable prime test 53
5.3 Miller-Rabin Pseudo-Primality expandably 55
5.4 A table of factorizations 57

Table of Precedence levels of operators in expressions
Table of Functions in expressions

6 Macros of the xintkernel package....... 68
7 Macros of the xintcore package......... 70
8 Macros of the xint package 75
9 Macros of the xintfrac package......... 84
10 Macros of the xintexpr package......... 104

1.5 More examples, some quite elaborate, within
this document

1.6 Installation instructions

1.7 Changes

2.7 List operations

2.8 Analogies and differences of \xintiiexpr
with \numexpr

2.9 Chaining expressions for expandable algo-
rithmics

3.8 \ifcase, \ifnum, ... constructs

3.9 No variable declarations are needed

3.10 When expandability is too much

3.11 Possible syntax errors to avoid

3.12 Error messages

3.13 Package namespace, catcodes

3.14 Origins of the package

4.3 A new kind of for loop

4.4 A new kind of expandable loop

5.5 Another table of primes
5.6 Factorizing again
5.7 The Quick Sort algorithm illustrated

11 Macros of the xintbinhex package

12 Macros of the xintgcd package

13 Macros of the xintseries package

14 Macros of the xintcfrac package

15 Macros of the xinttools package

10
11
11

12
30

32

32

45
45
46
47
47
48
49

51
51

58
60
61

Dependency graph for the xint bundle components: modules at the bottom automatically import
modules at the top when connected by a continuous line. No module will be loaded twice, this is
managed internally under Plain as well as IATEX. Dashed lines indicate a partial dependency, and
to enable the corresponding functionalities of the lower module it is necessary to use the suitable
\usepackage (IATEX) or \input (Plain TEX.)

Note: at 1.2n xintbinhex has no dependency on xintcore anymore, it only loads xintkernel.

The bnumexpr package is a separate package (IATEX only) by the author which uses (by default)
xintcore as its mathematical engine.

http://www.ctan.org/pkg/bnumexpr
http://ctan.org/pkg/bnumexpr

1 Read this first

1 Read this first

This section provides recommended reading on first discovering the package.

xinttools provides utilities of independent interest such as expandable and non-
expandable loops. It is loaded automatically (nor needed) by the other bundle
packages, apart from xintexpr.

xintcore provides the expandable TgX macros doing additions, subtractions, multipli-
cations, divisions, and powers on arbitrarily long numbers (loaded automatically
by xint, and also by package bnumexpr in its default configuration).

xint extends xintcore with additional operations on big integers. Loads automati-
cally xintcore.

xintfrac extends the scope of xint to decimal numbers, to numbers in scientific nota-
tion and also to fractions with arbitrarily long such numerators and denominators
separated by a forward slash. Loads automatically xint.

xintexpr extends xintfrac with expandable parsers doing algebra (exact, float, or
limited to integers) on comma separated expressions using standard infix nota-
tions with parentheses, numbers in decimal notation, scientific notation, com-
parison operators, Boolean logic, twofold and threefold way conditionals, sub-
expressions, some functions with one or many arguments, user-definable vari-
ables, user-definable functions, nestable use of dummy variables for evaluation
of sub-expressions, with iterations admitting omit, abort, and break instruc-
tions. Automatically loads xinttools and xintfrac (hence xint and xintcore too).

Further modules:

xintbinhex 1is for conversions to and from binary and hexadecimal bases.

xintseries provides some basic functionality for computing in an expandable manner
partial sums of series and power series with fractional coefficients.

xintgcd implements the Euclidean algorithm and its typesetting.

xintcfrac deals with the computation of continued fractions.

All macros from the xint packages doing computations are expandable, and naturally also the
parsers provided by xintexpr.

The reasonable range of use of the package arithmetics is with numbers of up to a few hundred
digits. Although numbers up to about 19950 digits are acceptable inputs, the package is not at
his peak efficiency when confronted with such really big numbers having thousands of digits.1

1.1 First examples

With \usepackage{xintexpr} if using BIgX, or \input xintexpr.sty\relax for other formats, you can
do computations such as the following.

with floats:

1 The maximal handled size for inputs to multiplication is 19959 digits. This limit is observed with the current default values
of some parameters of the tex executable (input stack size at 5000, maximal expansion depth at 10000). Nesting of macros will
reduce it and it is best to restrain numbers to at most 19900 digits. The output, as naturally is the case with multiplication, may
exceed the bound.

http://ctan.org/pkg/bnumexpr

1 Read this first

\thexintfloatexpr 3.254100/3.24100, 2241000000, sqrt(1000!), 10+-3.5\relax
4.713443069476886, 9.900656229295898e301029, 6.343400192933548e1283, 0.0003162277660168379

with fractions:
\thexintexpr reduce(add((-1)A(i-1)/i**2, i=1..25))\relax

196669262520424458517/238898057495217120000

with integers:
\thexintiiexpr 34159+24234\relax

7282510957931791370332035240020194155624159839406805975150495299651205982251

Float computations are done by default with 16 digits of precision. This can be changed by a
prior assignment to \xintDigits:

% use braces (or a LaTeX environment) to limit the scope of the \xintDigits assignment

{\xintDigits := 88;\thexintfloatexpr 3.254100-3.24100\relax}\par
1.215554966658265430322806638672591886136929518808939313995673252222064394651297590367526e51

We can even try daring things:2

{\xintDigits:=500;\printnumber{\thexintfloatexpr sqrt(2)\relax}}
1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875342
327641572735013846230912297024924836055850737212644121497099935831413222665927505592755799952
05011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214)
508397626036279952514079896872533965463318088296406206152583523950547457502877599617298355752
220337531857011354374603408498847160386899970699004815030544027790316454247823068492936918620
15805784631115966687130130156185689872372

This is release 1.20.
1. exp, cos, sin, etc... are yet to be implemented,
2. NaN, +Infty, -Infty, etc... are yet to be implemented,

3. powers work currently only with integral and half-integral exponents (but the latter only for
float expressions),

4. xint can handle numbers with thousands of digits, but execution times limit the practical
range to a few hundreds (if many such computations are needed),

5. computations in \thexintexpr and \thexintiiexpr are exact (except if using sqrt, naturally),

6. fractions are not systematically reduced to smallest terms, use reduce function,

7. for producing fixed point numbers with d digits after decimal mark, use (note the extra 'i
in the parser name!) \thexintiexpr [d] ...\relax. This is actually essentially synonymous
with \thexintexpr round(..,d)\relax (for d=0, \thexintiexpr [0] is the same as \thexintiexp)
r without optional argument, and is like \thexintexpr round(..)\relax). If truncation rather
than rounding is needed use thus \thexintexpr trunc(..,d)\relax (and \thexintexpr trunc(..)?
\relax for truncation to integers),

8. all three parsers allow some constructs with dummy variables as seen above; it is possible to
define new functions or to declare variables for use in upcoming computations,

9. \thexintiiexpr is slightly faster than \thexintexpr, but usually one can use the latter with
no significant time penalty also for integer-only computations.

2 The \printnumber is not part of the package, see subsection 1.3.

1 Read this first

All operations executed by the parsers are based on underlying macros from packages xintfrac and
xint which are loaded automatically by xintexpr. With extra packages xintbinhex and xintgcd the
parsers can handle hexadecimal notation on input (even fractional) and compute gcd's or lcm's of
integers.

All macros doing computations ultimately rely on (and reduce to) the \numexpr primitive from
e-TgX. These ¢-TiX extensions date back to 1999 and are by default incorporated into the pdftex
etc... executables from major modern TX installations since more than ten years now. Only the te)
X binary does not benefit from them, as it has to remain the original D. KnutH's software, but one
can then use etex on the command line. PDFTEX (in pdf or dvi output mode), LuaTgX, XeTiX all include
the &-TgX extensions.

1.2 Quick overview (expressions with xintexpr)

This section gives a first few examples of using the expression parsers which are provided by
package xintexpr. Loading xintexpr automatically also loads packages xinttools and xintfrac. The
latter loads xint which loads xintcore. All three provide the macros which ultimately do the com-
putations associated in expressions with the various symbols like +, *, A, ! and functions such
as max, sqrt, gcd (the latter requires explicit loading of xintgcd). The package xinttools does
not handle computations but provides some useful utilities.

Release 1.2h defines \thexintexpr as synonym to \xinttheexpr, \thexintfloatexpr as synonym
of \xintthefloatexpr, etc...

There are three expression parsers and two subsidiary ones. They all admit comma separated ex-

pressions, and will then output a comma separated list of results.

e \xinttheiiexpr ... \relax does exact computations only on integers. The forward slash / does
the rounded integer division (// does truncated division, and /: is the associated modulo).
There are two square root extractors sqrt and sqrtr for truncated and rounded square roots.
Scientific notation 6.02e23 is not accepted on input, one needs to wrap it as num(6.02e23)
which will convert to an integer notation 602000000000000000000000.

e \xintthefloatexpr ... \relax does computations with a given precision P, as specified via a
prior assignment \xintDigits:=P;. The default is P=16 digits. An optional argument controls
the precision for formatting the output (this is not the precision of the computations them-
selves). The four basic operations and the square root realize correct rounding.3

e \xinttheexpr ... \relax handles integers, decimal numbers, numbers in scientific notation
and fractions. The algebraic computations are done exactly. The sqrt function is available and
works according to the \xintDigits precision or according to its second optional argument.

Currently, the sole available non-algebraic function is the square root extraction sqrt. It
is allowed in \xintexpr..\relax but naturally can't return an exact value, hence computes as
if it was in \xintfloatexpr..\relax. The power operator * (equivalently **) works with inte-
gral exponents only in \xintiiexpr (non-negative) and \xintexpr (negative exponents allowed,
of course) and also with half-integral exponents in \xintfloatexpr (it proceeds via an inte-
gral power followed by a square-root extraction).

Two derived parsers:

e \xinttheiexpr ... \relax does all computations like \xinttheexpr ... \relax but rounds the
result to the nearest integer. With an optional positive argument [D], the rounding is to the
nearest fixed point number with D digits after the decimal mark.

when the inputs are already floating point numbers with at most P-digits mantissas.

1 Read this first

e \xinttheboolexpr ... \relax does all computations like \xinttheexpr ... \relax but converts
the result to 1 if it is not zero (works also on comma separated expressions). See also
the booleans \xintifboolexpr, \xintifbooliiexpr, \xintifboolfloatexpr (which do not handle
comma separated expressions).

Here is a (partial) list of the recognized symbols:

e the comma (to separate distinct computations or arguments to a function),

e parentheses,

e infix operators +, -, *, /, * (or #%),
e branching operators (x)?7{x non zero}{x zero}, (x)??{x<0}{x=0}{x>0},
e boolean operators !, & or 'and', || or 'or',

e comparison operators = (or ==), <, >, <=, >=, =,
e factorial post-fix operator !,
e " for hexadecimal input (uppercase only; package xintbinhex must be loaded additionally to

xintexpr),
e functions num, reduce, abs, sgn, frac, floor, ceil, sqr, sqrt, sqrtr, float, round, trunc,
mod, quo, rem, max, min, "+, "%, not, all, any, xor, if, ifsgn, even, odd, first, last,

reversed, bool, togl, factorial, binomial, pfactorial,

e multi-arguments gcd and lcm are available if xintgcd is loaded,

e functions with dummy variables add, mul, seq, subs, rseq, iter, rrseq, iterr.

See subsection 10.1 for basic information and section 2 for the built-in syntax elements.

The normal mode of operation of the parsers is to unveil the parsed material token by token. This
means that all elements may arise from expansion of encountered macros (or active characters).
For example a closing parenthesis does not have to be immediately visible, it may arise later from
expansion. This general behavior has exceptions, in particular constructs with dummy variables
need immediately visible balanced parentheses and commas. The expansion stops only when the ending
\relax has been found; it is then removed from the token stream, and the final computation result
is inserted.

Release 1.2 added the (pseudo) functions gint, gfrac, gfloat to allow swallowing in one-go all
digits of a big number, fraction, or float, skipping the token by token expansion.

Here is an example of a computation:

\xinttheexpr (31.56742 - 21.56%52)A3/13.52A5\relax
-1936508797861911919204831/4517347060908032[-8]

This illustrates that \xinttheexpr..\relax does its computations exactly. The same example as a
floating point evaluation:

\xintthefloatexpr (31.56742 - 21.56%52)A3/13.52A5\relax
-4.286827582100044

Again, all computations done by \xinttheexpr..\relax are completely exact. Thus, very quickly
very big numbers are created (and computation times increase, not to say explode if one goes into
handling numbers with thousands of digits). To compute something like 1.23456789410000 it is thus
better to opt for the floating point version:

\xintthefloatexpr 1.23456789410000\relax
1.411795173056392e915
(we can deduce that the exact value has 80000+916=80916 digits). A bigger example (the scope of
the assignment to \xintDigits is limited by the braces):

{\xintDigits:=24; \xintthefloatexpr 1.234567891234567894123456789\relax }
1.90696640042856610942910e11298145 (<- notice the size of the power of ten: this surely largely
exceeds your pocket calculator abilities).

It is also possible to do some computer algebra like evaluations (only numerically though):

\xinttheiiexpr add(iA5, i=100..200)\relax\par

\noindent\xinttheexpr reduce(add(x/(x+1), x = 1000..1014))\relax
10665624997500
4648482709767835886400149017599415343/310206597612274815392155150733157360
Were it not for the reduce function, the latter fraction would not have been obtained in reduced
terms:

1 Read this first

By default, the basic operations on fractions are not followed in an automatic manner by
reduction to smallest terms: A/B multiplied by C/D returns AC/BD, A/B added to C/D returns
(AD+BC) /BD except if either B divides D or D divides B.

Make sure to read section 10, section 2 and subsection 3.5.

1.3 Printing big numbers on the page

When producing very long numbers there is the question of printing them on the page, without going
beyond the page limits. In this document, I have most of the time made use of these macros (not
provided by the package:)

\def\allowsplits #1{\ifx #1\relax \else #l\hskip Opt plus lpt\relax

\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral- 0#1\relax }%

% \printnumber thus first " “fully'' expands its argument.

It may be used like this:

\printnumber {\xintiiQuo{\xintiiPow {2}{1000}}{\xintiiFac{100}}}
or as \printnumber\mybiginteger or \printnumber{\mybiginteger} if \mybiginteger was previously
defined via a \newcommand, a \def or an \edef.

An alternative is to suitably configure the thousand separator with the numprint package (see
footnote 7. This will not allow linebreaks when used in math mode; I also tried siunitx but even in
text mode could not get it to break numbers accross lines). Recently I became aware of the seqsplit
package? which can be used to achieve this splitting accross lines, and does work in inline math
mode (however it doesn't allow to separate digits by groups of three, for example).

1.4 Randomly chosen examples

Here are some examples of use of the package macros. The first one uses only the base module xint,
the next one requires the xintfrac package, which deals with decimal numbers, scientific numbers
(lowercase e), and also fractions (it loads automatically xint). Then some examples with expres-
sions, which require the xintexpr package (it loads automatically xintfrac). And finally some
examples using xintseries, xintgcd which are among the extra packages included in the xint dis-
tribution.

The printing of the outputs will either use a custom \printnumber macro as described in the
previous section, or sometimes the \np macro from the numprint package (see footnote 7).

e 123456%7:

\xintiiPow {123456}{99}: 114738181166266556633273330008454586747025480423426102975889545)
43735908946970320276226470542663205834690270868221168133415250032403876277616895322211762
3429587203376221608860691585075716801971671071208769703353650737748777873778498781606749)
99979836658125172327521549705416595667384911533326748541075607669718906235189958323778262
3699981109532393993235189992220564587812701495877679143167735437253858445948715594121519)
7416398666125896983737258716757394949435520170950261865801665199030718414432231169678376)
9%

e 1234/56789 with 1500 digits after the decimal point:
\xintTrunc {1500}{1234/56789}\dots: 0.02172956030217119512581661941573191991406786525559
52737325890577400552923981757030410818996636672595044815016992727464825934600010565426402
30005810984521650319604148690767578228177992216802549789571924140238426455827713113455072
0524221240028878832168201588335769251087358467308809804715701984539259363609149659264998)
50323125957491767771927662047227456021412597510081177692863054464773107467995562520910732

4 http://ctan.org/pkg/seqsplit

http://ctan.org/pkg/numprint
http://ctan.org/pkg/siunitx
http://ctan.org/pkg/seqsplit
http://www.ctan.org/pkg/numprint
http://ctan.org/pkg/seqsplit

1 Read this first

97559386500906865766257549877617144165243268942929088379791861099860888552360492348870372
98270791878708904893553328989769145433094437302998820194051664935110672841571431087006282
64287097853457535790381940164468471006709045765905368997517124795294863441863741217489302
2505766961911637817182905140079945059782704396978288048741833805842680800859321347444047)
2626741094225994470760182429695891810033633274049551849830072725351740653999894345735969
9941890154783496803958513092324217718220077831974502104280758597615735441722868865449294)
75778759971121167831798411664230748912641532691190195284298015460740636390850340735001492
67687404250823222807233795277254397858740248991882230713694553522689253200443747908926022
4406134990931342337424501223828558347567310570709116202081389001391114476395076511296201)
7292081212910951064466710102308545669055626970011798059483350648893271584285689129937135)
71290214654246420961805983553152899329095423409463100248287520470513655813625878251069742
94233038088362182817094859920054940217295603021711951258166194157319199140678652555952732
732589057740055292398175703041081899663667. . .

¢ 0.997100 with 200 (+1) digits after the decimal point.
\xinttheiexpr [201] .994-100\relax: 2.73199902642902600384667172125783743550535164293857)
2070833430572508246455518705343044814301378480614036805562476501925307034269685489153194)
616612271015920671913840348851485747943086470963920731779793038
Notice that this is rounded, hence we asked \xinttheiexpr for one additional digit. To get a
truncated result with 200 digits after the decimal mark, we should have issued \xinttheexpr 2
trunc(.994-100,200)\relax, rather.

The fraction 0.994-100's denominator is first evaluated exactly (i.e. the integer 992100
is evaluated exactly and then used to divide the suitable power of ten to get the re-
quested digits); for some longer inputs, such as for example 0.71230456789524-243, the
exact evaluation before truncation would be costly, and it is more efficient to use float-
ing point numbers:
\xintDigits:=20; \np{\xintthefloatexpr .71230456789524-243\relax}
6.342,022,117,488,416,127,3 x 103
Side note: the exponent -243 didn't have to be put inside parentheses, contrarily to what
happens with some professional computational software. ;-)

e 200!:
\xinttheiiexpr 200!\relax: 7886578673647905035523632139321850622951359776871732632947425)
3324435944996340334292030428401198462390417721213891963883025764279024263710506192662495)
2829931113462857270763317237396988943922445621451664240254033291864131227428294853277524)
2424075739032403212574055795686602260319041703240623517008587961789222227896237038973747)
2000

e 2000! as a float. As xintexpr does not handle exp/log so far, the computation is done inter-
nally without the Stirling formula, by repeated multiplications truncated suitably:
\xintDigits:=50;

\xintthefloatexpr 2000!\relax: 3.3162750924506332411753933805763240382811172081058e5735

e Just to show off (again), let's print 300 digits (after the decimal point) of the decimal
expansion of 0.77%5:°

% % in the preamble:

% \usepackage[english]{babel}

% \usepackage[autolanguage,np] {numprint}

% \npthousandsep{,\hskip 1pt plus .5pt minus .5pt}
% \usepackage{xintexpr}

5 the \np typesetting macro is from the numprint package.

1 Read this first

% in the body:
\np {\xinttheexpr trunc(.7+-25,300)\relax}\dots

7,456.739,985,837,358,837,609, 119,727, 341, 853,488,853, 339,101,579, 533, 584,812,792, 108,
394,305,337, 246, 328,231, 852,818,407,506,767,353,741,490, 769, 900,570,763, 145,015, 081,436,
139,227,188,742,972,826, 645,967,904, 896, 381,378,616, 815,228, 254,509, 149, 848, 168, 782, 309,
405,985, 245, 368,923,678,816, 256,779,083, 136,938, 645, 362, 240,130,036, 489, 416, 562,067,450,
212,897,407,646,036,464,074,648,484,309,937,461, 948, 589. . .

This computation is with \xinttheexpr from package xintexpr, which allows to use standard
infix notations and function names to access the package macros, such as here trunc which
corresponds to the xintfrac macro \xintTrunc. Regarding this computation, please keep in mind
that \xinttheexpr computes exactly the result before truncating. As powers with fractions
lead quickly to very big ones, it is good to know that xintexpr also provides \xintthefloatexpr
which does computations with floating point numbers.

e Computation of a Bezout identity with 74200-34200 and 24200-1: (with xintgcd)

\xintAssign \xintBezout {\xinttheiiexpr 74200-34200\relax}
{\xinttheiiexpr 24200-1\relax}\to\A\B\U\V\D
$\U\times(72{2003}-34{2003})+\xintiiOpp\V\times(24{200}-1)=\D$

-220045702773594816771390169652074193009609478853x (7290 - 3200y 1 14325894936276369318591302
6832683204654744168633877140891583816724789919211328201191274624371580391777549768571912)
87693144240605066991456336143205677696774891x (22%0 - 1) = 1803403947125

e The Euclide algorithm applied to 22, 206,980,239,027,589,097 and 8, 169,486,210, 102,119, 257:
(with xintgcd)6

\xintTypesetEuclideAlgorithm {22206980239027589097}{8169486210102119257}
22206980239027589097 = 2 X 8169486210102119257 + 5868007818823350583
8169486210102119257 =1 X 5868007818823350583 +2301478391278768674
5868007818823350583 =2 X 2301478391278768674 + 1265051036265813235
2301478391278768674 = 1 X 1265051036265813235 + 1036427355012955439
1265051036265813235 = 1 X 1036427355012955439 + 228623681252857796
1036427355012955439 = 4 X 228623681252857796 + 121932630001524255
228623681252857796 = 1 X 121932630001524255 + 106691051251333541
121932630001524255 =1 X 106691051251333541 + 15241578750190714
106691051251333541 = 6 X 15241578750190714 + 15241578750189257
15241578750190714 = 1 X 15241578750189257 + 1457
15241578750189257 = 10460932567048 X 1457 + 321
1457 =4 X 321+ 173
321 =1X 173 + 148
173 =1X 148 + 25
148 =5 X 25+ 23

25=1X23+2
23=11Xx2+1
2=2X1+0

. Zig? (4n? - 9) 72 with each term rounded to twelve digits, and the sum to nine digits:

\def\coeff #1{\xintiRound {12}{1/\xintiiSqr{\the\numexpr 4=#1=#1-9\relax }[0]}}
\xintRound {9}{\xintiSeries {1}{500}{\coeff}[-12]}

0.062366080

6 this example is computed tremendously faster than the other ones, but we had to limit the space taken by the output hence

picked up rather small big integers as input.

1 Read this first

The complete series, extended to infinity, has value %24 - le =0.062,366,079,945, 836,595,
346,844,45. . . 7 T also used (this is a lengthier computation than the one above) xintseries
to evaluate the sum with 100,000 terms, obtaining 16 correct decimal digits for the complete
sum. The coefficient macro must be redefined to avoid a \numexpr overflow, as \numexpr inputs
must not exceed 23! - 1; my choice was:

\def\coeff #1%
{\xintiRound {22}{1/\xintiiSqr{\xintiiMul{\the\numexpr 2x#1-3\relax}
{\the\numexpr 2*#1+3\relax}}[0]}}

e Computation of 2999,999.999 yith 24 significant figures:

\numprint{\xintFloatPow [24]{23}{999999999}}

2.306, 488,000,584, 534,696, 558, 06 x 10301,029,995
where the numprint package was used (footnote 7), directly in text mode (it can also naturally
be used from inside math mode). xint provides a simple-minded \xintFrac typesetting macro, 8
which is math-mode only:

$\xintFrac{\xintFloatPow [24]{23}{999999999}}%

230648800058453469655806 - 10301029972
The exponent differs, but this is because \xintFrac does not use a decimal mark in the signif-
icand of the output. Admittedly most users will have the need of more powerful (and customiz-
able) number formatting macros than \xintFrac. 9 We have already mentioned \numprint which is
used above, there is also \num from package siunitx. The raw output from

\xintFloatPow [24]{2}{999999999}
is 2.30648800058453469655806€301029995.

e As an example of nesting package macros, let us consider the following code snippet within a
file with filename myfile.tex:

\newwrite\outstream

\immediate\openout\outstream \jobname-out\relax

\immediate\write\outstream {\xintiiQuo{\xintiiPow{2}{1000}}{\xintiiFac{100}}}
% \immediate\closeout\outstream

The tex run creates a file myfile-out.tex, and then writes to it the quotient from the eu-
clidean division of 21000 by 100!. The number of digits is \xintLen{\xintiiQuo{\xintiiPow{2}
{1000} }{\xintiiFac{100}}} which expands (in two steps) and tells us that [21000 /10017 has 144
digits. This is not so many, let us print them here: 114813249641507505482278393872551066259)
80551778418617288366347806582654189470473797041953579887663048435826506006150374953170772
93118627774829601.

1.5 More examples, some quite elaborate, within this document

e The utilities provided by xinttools (section 15), some completely expandable, others not,
are of independent interest. Their use is illustrated through various examples: among those,
it is shown in subsection 5.7 how to implement in a completely expandable way the Quick Sort
algorithm and also how to illustrate it graphically. Other examples include some dynamically
constructed alignments with automatically computed prime number cells: one using a completely
expandable prime test and \xintApplyUnbraced (subsection 5.1), another one with \xintForx
(subsection 5.5).

e One has also a computation of primes within an \edef (subsection 15.14), with the help of
\xintiloop. Also with \xintiloop an automatically generated table of factorizations (subsec-
tion 5.4).

7 This number is typeset using the numprint package, with \npthousandsep {,\hskip Ipt plus .5pt minus .5pt}. But the break-
ing across lines works only in text mode. The number itself was (of course...) computed initially with xint, with 30 digits of «
as input. See how xint may compute x from scratch. & Plain TEX users of xint have \xintFwOver. ° There should be a
\xintFloatFrac, but it is lacking.

10

http://www.ctan.org/pkg/numprint
http://www.ctan.org/pkg/siunitx
http://www.ctan.org/pkg/numprint

1 Read this first

e The code for the title page fun with Fibonacci numbers is given in subsection 2.9 with \xint-
For* joining the game.

e The computations of 7 and log2 (subsection 13.11) using xint and the computation of the con-
vergents of e with the further help of the xintcfrac package are among further examples.

e Also included, an expandable implementation of the Brent-Salamin algorithm for evaluating x.

e The functionalities of xintexpr are illustrated with various examples, found in locations
such as in subsubsection 2.6.1 and functions with dummy variables and subsection 2.4.

Almost all of the computational results interspersed throughout the documentation are not hard-
coded in the source file of this document but are obtained via the expansion of the package macros
during the TgX run.

1.6 Installation instructions

xint is made available under the LaTeX Project Public License 1.3c. It is included in the major TgX
distributions, thus there is probably no need for a custom install: just use the package manager
to update if necessary xint to the latest version available.

After installation, issuing in terminal texdoc --list xint, on installations with a "texdoc" or
similar utility, will offer the choice to display one of the documentation files: xint.pdf (this
file), sourcexint.pdf (source code), README, README.pdf, README.html, CHANGES.pdf, and CHANGES.)
html.

For manual installation, follow the instructions from the README file which is to be found on
CTAN; it is also available there in PDF and HTML formats. The simplest method proposed is to use
the archive file xint.tds.zip, downloadable from the same location.

The next simplest one is to make use of the Makefile, which is also downloadable from CTAN. This
is for GNU/Linux systems and Mac OS X, and necessitates use of the command 1line. If for some reason
you have xint.dtx but no internet access, you can recreate Makefile as a file with this name and
the following contents:
include Makefile.mk
Makefile.mk: xint.dtx ; etex xint.dtx

Then run make in a working repertory where there is xint.dtx and the file named Makefile and
having only the two lines above. The make will extract the package files from xint.dtx and display
some further instructions.

If you have xint.dtx, no internet access and can not use the Makefile method: etex xint.dtx
extracts all files and among them the README as a file with name README.md. Further help and options
will be found therein.

1.7 Changes

This is release 1.20 of 2017/08/29.

1.20 does mass-deprecation of those macros which were so far defined by xintcore/xint to use au-
tomatically \xintNum; users of xintfrac (or a fortiori xintexpr) will see almost nothing of this,
as xintfrac does the proper definitions. See subsection 7.28, subsection 8.51, and subsection 8.52
for details.

1.2n removed the xintbinhex dependency upon xintcore: it now loads only xintkernel.

At 1.2m (again at 1.2n) the macros of xintbinhex for conversion routines between binary, dec-
imal, and hexadecimal bases have been entirely re-written. They are faster, the more so for long
inputs. But they have the drawback of now limiting their input to a maximal length of a few thou-
sands characters.

Since 1.21, the underscore _ is accepted inside the expression parsers as an ignored digit sep-
aratorlo, for long numbers:

10 The space character has already always been accepted in this réle by the xintexpr parsers, contrarily to the situation inside
\numexpr.

11

http://www.latex-project.org/lppl/lppl-1-3c.txt
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://mirror.ctan.org/macros/generic/xint

2 The syntax of xintexpr expressions

\xinttheiiexpr 123_456_78943\relax\newline

\xintthefloatexpr \xintexpr 123_456_789.1111_1111_11114-3\relax \relax
1881676371789154860897069
5.314410130734488e-25

It is not accepted in the arguments of the macros from xintfrac or xint though, only in expres-
sions from xintexpr.

Macro usage with non properly terminated inputs such as \xintiiAdd{\the\numexprl}{2} caused
crashes. This has been fixed at 1.21: the arithmetic macros of xintcore, the macros of xintfrac,
those of xintgcd, have been made robust against such inputs. Some routines of xintcore principally
destined to internal usage such as \xintInc remain incompatible though (to avoid adding some over-
head; check sourcexint.pdf for details).

See CHANGES.html or CHANGES.pdf for more information (either texdoc --list xint or on the in-
ternet via this link.)

2 The syntax of xintexpr expressions

.1 Built-in operators and precedences 12 | .7 Listoperations.......................... 30
.2 Built-in functions. 15 .8 Analogies and differences of \xintiiexpr

.3 Tacit multiplication...................... 23 with \numexpr 32
.4 More examples with dummy variables. 24 | .9 Chaining expressions for expandable algo-

.5 User defined variables.................... 24 rithmics 32
.6 User defined functions 26

2.1 Built-in operators and precedences

The Table 1 is hyperlinked to the more detailed discussion at each level. The levels are indicative
and there may be some evolution in future, perhaps to distinguish some of the constructs which
currently share the same precedence.

In case of equal precedence, the general rule is left-associativity: the first encountered op-
eration is executed first. Tacit multiplication has an elevated precedence level hence seemingly
breaks left-associativity: (1+2)/(3+4)(5+6) is computed as (1+2)/((3+4)=(5+6)) and x/2y is in-
terpreted as x/(2+y) when using variables.

oo At this highest level of precedence, one finds:

e functions and variables: we approximately describe the situation as saying they have high-
est precedence. Functions (even the logic functions ! and ? which are expressed as a single
character) must be used with parentheses. These parentheses may arise from expansion af-
ter the function name is parsed (there are exceptions which are documented at the relevant
locations.)

e the . as decimal mark; the number scanner treats it as an inherent, optional and unique
component of a being formed number. One can do things such as

\xinttheexpr 0.42+24.0\relax
which is 042+240 and produces 1.
Since release 1.2 an isolated decimal mark "." is illegal input in \xintexpr..\relax,
although it remains legal as argument to the macros of xintfrac.

e the e, equivalently E, for scientific notation are parsed like the decimal mark is.

e the " for hexadecimal numbers: it is allowed only at locations where the parser expects
to start forming a numeric operand, once encountered it triggers the hexadecimal scan-
ner which looks for successive hexadecimal digits as usual skipping spaces and expand-
ing forward everything; letters (only ABCDEF, not abcdef), an optional dot (allowed di-
rectly in front) and an optional (possibly empty) fractional part. The " functionality
’requires to load package xintbinhex |.

12

http://mirrors.ctan.org/macros/generic/xint/CHANGES.html

2 The syntax of xintexpr expressions

Precedence | " ‘Operators'' at this level

1) functions and variables, decimal mark ., e and E
of scientific notation, hexadecimal prefix "

10 postfix ! (factorial) and conditional branching
operators 7 and 77

= minus sign - as unary operator acquires the
precedence level of the previous infix operator

9 A, #% and list operators A[, #=[,]JA, =

8 tacit multiplication

7 #, /, //, /: (aka 'mod'), and list operators [,
/0, 1%, 1/

6 +, -, and list operators +[, -[, 1+, 1-

5 <, >, == (or =), <=, >=, =

4 && and its equivalent 'and'

3 || (aka 'or'), and 'xor'; also the sequence gen-
erators .., ..[,].., and the Python slicer :

2 the comma ,

1 the parentheses (,), list brackets [,], and

semi-colon ; in an iter or rseq

Table 1: Precedence levels (click on levels)

13

2 The syntax of xintexpr expressions

\xinttheexpr "FEDCBA9876543210\relax\newline
\xinttheiexpr 1625-("F75DE.0®A8B9+"8A21.F5746+16*-5)\relax

18364758544493064720
0

10 The postfix operators ! and the branching conditionals 7, ?7.

I computes the factorial of an integer.

?7 is used as (stuff)?{yes}{no}. It evaluates stuff and chooses the yes branch if the result
is non-zero, else it executes no. After evaluation of stuff it acts as a macro with two
mandatory arguments within braces, chooses the correct branch without evaluating the wrong
one. Once the braces are removed, the parser scans and expands the uncovered material so for
example

\xinttheiexpr (3>2)7{5+6}{7-1}243\relax
is legal and computes 5+6243=238333. It would be better practice to include here the 2/3
inside the branches. The contents of the branches may be arbitrary as long as once glued to
what is next the syntax is respected: \xintexpr (3>2)7{5+(6}{7-(1}223)\relax also works.

77 is used as (stuff)??7{<0}{=0}{>0}, where stuff is anything, its sign is evaluated and de-
pending on the sign the correct branch is un-braced, the two others are discarded with no
evaluation of their contents. The un-braced branch will then be parsed as usual.

\def\x{0.33}\def\y{1/3}
\xinttheexpr (\x-\y)??{sqrt}{0}{1/}(\y-\x)\relax=5773502691896257[-17]

= The minus sign - as prefix unary operator inherits the precedence of the infix operator it
follows. \xintexpr -3-4=-5A-7\relax evaluates as (-3)-(4*(-(52(-7)))) and -32-4=-5-7 as (-(Q
30(-4))*(-5)))-7.
27-10 is perfectly accepted input, no need for parentheses
9 The power operator *, or equivalently =#=. It is left associative: \xinttheiexpr 24243\relax
evaluates to 64, not 256. See \xintFloatPower for additional information.

8 see Tacit multiplication.

7 Multiplication and division *, /. The division is left associative, too: \xinttheiexpr 100/50

/2\relax evaluates to 1, not 4.

Also the truncated division // and modulo /: (equivalently 'mod', quotes mandatory).

Also at this level the list operators =[, /[,]+ and]/.

In an \xintiiexpr-ession, / does rounded division, to behave like the / of \numexpr.

Infix operators all at the same level of precedence are left-associative.!! Apply parenthe-
ses for disambiguation.

\xinttheexpr 100000//13, 100000/:13, 100000 'mod' 13, trunc(100000/13,10),
trunc(100000/:13/13,10)\relax

7692, 4, 4, 7692.3076923076, 0.3076923076

6 Addition and subtraction +, -. According to the rule above, - is left associative: \xinttheiex)
pr 100-50-2\relax evaluates to 48, not 52.
Also the list operators +[, -[,]+,]- are at this precedence level.

5 Comparison operators <, >, = (same as ==), <=, >=, !=all at the same level of precedence, use
parentheses for disambiguation.

4 Conjunction (logical and) && or equivalently 'and' (quotes mandatory).12

3 Inclusive disjunction (logical or) || and equivalently 'or' (quotes mandatory).
Also the 'xor' operator (quotes mandatory) is at this level.

11 12

i.e. the first two operands are operated upon first. with releases earlier than 1.1, only single character operators & and |
=y | were available, because the parser did not handle multi-character operators. Their usage in this réle is now deprecated, and they
may be assigned some new meaning in the future.

14

2 The syntax of xintexpr expressions

Also the list generation operators .., ..[,].. are at this level.
Also the : for Python slicing of lists.

2 The comma: with \xinttheexpr 243,344,546\relax one obtains as output 8, 81, 15625.13

1 The parentheses. The list outer brackets [,] share the same functional precedence as paren-
theses. The semi-colon ; in an iter or rseq has the same precedence as a closing parenthesis. 4

2.2 Built-in functions

See Table 2 whose elements are hyperlinked to the corresponding definitions.
Functions are at the same top level of priority. All functions even ? and ! (as prefix) require
parentheses around their arguments.

! ? E T+
abs add all any
binomial bool ceil even
factorial first | float floor
frac gcd if ifsgn
iter iterr last lcm
len max min mod
mul not num odd
pfactorial | gfloat | qfrac gint
quo reduce rem reversed
round rrseq rseq seq
sgn sqr sqrt sqrtr
subs togl trunc xor

Table 2: Functions (click on names)

Miscellaneous notes:

. ‘gcd and lcm require explicit loading of xintgcd |,

e togl is provided for the case etoolbox package is loaded,

e bool, togl use delimited macros to fetch their argument and the closing parenthesis must be
explicit, it can not arise from on the spot expansion. The same holds for qint, qfrac, gfloat.

e Also functions with dummy variables use delimited macros for some tasks. See the relevant
explanations there.

functions with a single (numeric) argument:

num truncates to the nearest integer (truncation towards zero). It has the same sign as x, except
of course with -1<x<1 as then num(x) is zero.

\xinttheexpr num(3.1415420), num(le20)\relax

13 The comma is really like a binary operator, which may be called “join”. It has lowest precedence of all (apart the parentheses)
because when it is encountered all postponed operations are executed in order to finalize its first operand; only a new comma
or a closing parenthesis or the end of the expression will finalize its second operand. 1# It is not apt to describle the opening
parenthesis as an operator, but the closing parenthesis is more closely like a postfix unary operator. It has lowest precedence because
when it is encountered all postponed operations are executed to finalize its operand. The start of this operand was decided by the
opening parenthesis.

15

2 The syntax of xintexpr expressions

8764785276, 100000000000000000000 The output is an explicit integer with as many zeros are as
necessary. Even in float expressions, there will be an intermediate stage where all needed dig-
its are there, but then the integer is immediately reparsed as a float to the target precision,
either because some operation applies to it, or from the output routine of \xintfloatexpr if it
stood there alone. Hence, inserting something like num(1e10000) is costly as it really creates
ten thousand zeros, even though later the whole thing becomes a float again. On the other hand
naturally 1e10000 without num() would be simply parsed as a floating point number and would
cause no specific overhead.

frac fractional part. For all numbers x=num(x)+frac(x), and frac(x) has the same sign as x except
when x is an integer, as then frac(x) vanishes.

\xintthefloatexpr frac(-355/113), frac(-1129.218921791279)\relax

-0.1415929203539820, -0.2189217912790000

gint achieves the same result as num, but skips the usual mode of operation of the parser which is
to expand token by token the input: the ending parenthesis must be physically present rather
than arising from expansion and the argument is grabbed as a whole and handed over to the \xint-
iNum macro. The g stands for " "quick'', and gint is thought out for use in \xintiiexpr...\relax
with integers having dozens of digits.

Testing showed that using qint() starts getting advantageous for inputs having more (or f-
expanding to more) than circa 20 explicit digits. But for hundreds of digits the input gain
becomes a negligible proportion of (for example) the cost of a multiplication.

Leading signs and then zeroes will be handled appropriately but spaces will not be system-
atically stripped. They should cause no harm and will be removed as soon as the number is used
with one of the basic operators. This input mode does not accept decimal part or scientific
part.

\def\x{....many many many ... digits}\def\y{....also many many many digits...}
\xinttheiiexpr qint(\x)*qint(\y)+qint(\y)~2\relax\par

gfrac does the same as gint excepts that it accepts fractions, decimal numbers, scientific numbers
as they are understood by the macros of package xintfrac. Thus, it is for use in \xintexpr.. .2
\relax. It is not usable within an \xintiiexpr-ession, except if hidden inside functions such
as round or trunc which then produce integers acceptable to the integer-only parser. It has
nothing to do with frac (sigh...).

gfloat does the same as gfrac and then converts to a float with the precision given by the setting of
\xintDigits. This can be used in \xintexpr to round a fraction as a float with the same result as
with the float() function (whereas using \xintfloatexpr A/B\relax inside \xintexpr...\relax
would first round A and B to the target precision); or it can be used inside \xintfloatexpr...\2
relax as a faster alternative to wrapping the fraction in a sub-\xintexpr-ession. For example,
the next two computations done with 16 digits of precision do not give the same result:

\xintthefloatexpr gfloat(12345678123456785001,/12345678123456784999)-0.5\relax\newline
\xintthefloatexpr 12345678123456785001/12345678123456784999-0.5\relax\newline
\xintthefloatexpr 1234567812345679/1234567812345678-0.5\relax\newline
\xintthefloatexpr \xintexpr12345678123456785001/12345678123456784999\relax-0.5\newline

5000000000000000

5000000000000010

5000000000000010

5000000000000000

because the second is equivalent to the third, whereas the first one is equivalent to the fourth
one. Equivalently one can use gfrac to the same effect (the subtraction provoking the rounding
of its two arguments before further processing.)

0.
0.
0.
0.

reduce reduces a fraction to smallest terms

\xinttheexpr reduce(50!/20!/20!/10!)\relax

16

2 The syntax of xintexpr expressions

1415997888807961859400
Recall that this is NOT done automatically, for example when adding fractions.

abs absolute value
sgn sign

floor floor function.
ceil ceil function.
sqr square.

sqrt in \xintiiexpr, truncated square root; in \xintexpr or \xintfloatexpr this is the floating
point square root, and there is an optional second argument for the precision.

sqrtr in \xintiiexpr only, rounded square root.

factorial factorial function (like the post-fix ! operator.) When used in \xintexpr or \xintfloate)
xpr there is an optional second argument. See discussion later.

? ?(x) is the truth value, 1 if non zero, 0 if zero. Must use parentheses.
! 1(x) is logical not, 0 if non zero, 1 if zero. Must use parentheses.

not logical not.

even (x) is the evenness of the truncation num(x).

\xintthefloatexpr [3] seq((x,even(x)), x=-5/2..[1/3]..+5/2)\relax

-2.50, 1.00, -2.17, 1.00, -1.83, 0., -1.50, 0., -1.17, 0., -0.833, 1.00, -0.500, 1.00, -0.167,
1.00, 0.167, 1.00, 0.500, 1.00, 0.833, 1.00, 1.17, O., 1.50, O., 1.83, 0., 2.17, 1.00, 2.50,
1.00

odd (%) is the oddness of the truncation num(x).
\xintthefloatexpr [3] seq((x,o0dd(x)), x=-5/2..[1/3]..+5/2)\relax

-2.50, 0., -2.17, 0., -1.83, 1.00, -1.50, 1.00, -1.17, 1.00, -0.833, 0., -0.500, 0., -0.167,
0., 0.167, 0., 0.500, 0., 0.833, 0., 1.17, 1.00, 1.50, 1.00, 1.83, 1.00, 2.17, 0., 2.50, O.

functions with an alphabetical argument:

bool bool(name) returns 1 if the TX conditional \ifname would act as \iftrue and 0 otherwise. This
works with conditionals defined by \newif (in TgX or KIX) or with primitive conditionals such
as \ifmmode. For example:

\xintifboolexpr{25*4-if(bool (mmode),100,75)}{YES}{NO}

will return NO if executed in math mode (the computation is then 100 - 100 = 0) and YES if not
(the if conditional is described below; the \xintifboolexpr test automatically encapsulates
its first argument in an \xintexpr and follows the first branch if the result is non-zero (see
subsection 10.14)).

The alternative syntax 25%4-\ifmmodel®0\else75\fi could have been used here, the useful-
ness of bool (name) lies in the availability in the \xintexpr syntax of the logic operators of
conjunction &&, inclusive disjunction ||, negation ! (or not), of the multi-operands functions
all, any, xor, of the two branching operators if and ifsgn (see also ? and ??), which allow ar-
bitrarily complicated combinations of various bool (name).

togl Similarly togl(name) returns 1 if the BIEX package etoolbox!® has been used to define a toggle
named name, and this toggle is currently set to true. Using togl in an \xintexpr..\relax without
having loaded etoolbox will result in an error from \iftoggle being a non-defined macro. If e)
toolbox is loaded but togl is used on a name not recognized by etoolbox the error message will
be of the type ~“ERROR: Missing \endcsname inserted.'', with further information saying that
\protect should have not been encountered (this \protect comes from the expansion of the non-
expandable etoolbox error message) .

15 http://www.ctan.org/pkg/etoolbox

17

http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox

2 The syntax of xintexpr expressions

When bool or togl is encountered by the \xintexpr parser, the argument enclosed in a paren-
thesis pair is expanded as usual from left to right, token by token, until the closing paren-
thesis is found, but everything is taken literally, no computations are performed. For example
togl (2+3) will test the value of a toggle declared to etoolbox with name 2+3, and not 5. Spaces
are gobbled in this process. It is impossible to use togl on such names containing spaces, but
\iftoggle{name with spaces}{1}{0} will work, naturally, as its expansion will pre-empt the
\xintexpr scanner.

There isn't in \xintexpr... a test function available analogous to the test{\ifsometest}
construct from the etoolbox package; but any expandable \ifsometest can be inserted directly
in an \xintexpr-ession as \ifsometestl® (or \ifsometest{1}{0}), for example if(\ifsometest{1)
}{0},YES,NO) (see the if operator below) works.

A straight \ifsometest{YES}{NO} would do the same more efficiently, the point of \ifsomete)
stl0 is to allow arbitrary boolean combinations using the (described later) &% and || logic op-
erators: \ifsometestl® && \ifsomeothertestl® || \ifsomethirdtestl®, etc... YES or NO above
stand for material compatible with the \xintexpr parser syntax.

See also \xintifboolexpr, in this context.
functions with one mandatory and a second but optional argument:

round Rounds its first argument to a fixed point number, having a number of digits after decimal
mark given by the second argument. For example round(-249/3A5,12)=-2.106995884774.

trunc Truncates its first argument to a fixed point number, having a number of digits after decimal
mark given by the second argument. For example trunc(-249/345,12)=-2.106995884773.

float Rounds its first argument to a floating point number, with a precision given by the second
argument. float(-249/345,12)=-210699588477[-11].

Note for this example and the earlier ones that when the surrounding parser is \xint-
floatexpr...\relax the fraction first argument (here 249/345) will already have been computed
as floating point number (with numerator and denominator handled separately first), even be-
fore the second argument is seen and a fortiori before the round, trunc or float is executed.
The general float precision is the one governing these initial steps. To avoid that, use \x
intexpr2+9/3A5\relax wrapper. Then the rounding or truncation will be applied on the exact
fraction.

sqrt in \xintexpr...\relax and \xintfloatexpr...\relax it achieves the precision given by the op-
tional second argument. For legacy reasons the sqrt function in \xintiiexpr truncates (to an
integer), whereas sqrt in \xintfloatexpr...\relax (and in \xintexpr...\relax which borrows
it) rounds (in the sense of floating numbers). There is sqrtr in \xintiiexpr for rounding to
nearest integer.

\xinttheexpr sqrt(2,31)\relax\ and \xinttheiiexpr sqrt(num(2e60))\relax

1414213562373095048801688724210[-30] and 1414213562373095048801688724209

factorial when the second optional argument is made use of inside \xintexpr...\relax, this switches
to the use of the float version, rather than the exact one.

\xinttheexpr factorial (100,32)\relax, {\xintDigits:=32;\xintthefloatexpr
factorial (100)\relax}\newline

\xinttheexpr factorial (50)\relax\newline

\xinttheexpr factorial (50, 32)\relax

93326215443944152681699238856267[126], 9.3326215443944152681699238856267e157
30414093201713378043612608166064768844377641568960512000000000000
30414093201713378043612608166065[33]

functions with two arguments:

quo first truncates the arguments to convert them to integers then computes the Euclidean quo-
tient. Hence it computes an integer.

18

2 The syntax of xintexpr expressions

rem first truncates the arguments to convert them to integers then computes the Euclidean remain-
der. Hence it computes an integer.
mod (f,g) computes f - g#num(f/g) where num(f/g) is the truncation of the ratio to an integer.
Hence its output is a general fraction or floating point number or integer depending on the
parser where it is used.
The /: infix operator computes the same thing: f/:g=mod(f,g).
\xinttheexpr mod(11/7,1/13), reduce(((11/7)//(1/13))*1/13+mod(11/7,1/13)),
mod(11/7,1/13)- (11/7)/:(1/13), (11/7)//(1/13)\relax\newline
\xintthefloatexpr mod(11/7,1/13)\relax\par
3/91, 11/7, 0, 20
0.03296703296703260
binomial computes binomial coefficients. For some obscure reason the initial version rather than
returning zero for binomial(x,y) with y<® or x<y deliberately raised an out-of-range error.
Changed This has been fixed in 1.2h. An error is raised only for x<® (or if x>99999999.)
(1-2h) \xinttheexpr seq(binomial (20, i), i=0..20)\relax

1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756, 167960, 125970, 77520,
38760, 15504, 4845, 1140, 190, 20, 1

\printnumber{\xintthefloatexpr seq(binomial (100, 50+i), i=-5..+5)\relax}%
6.144847121413618e28, 7.347099819081500e28, 8.441348728306404e28, 9.320655887504988e28, 9.2

891308288780803e28, 1.008913445455642e29, 9.891308288780803e28, 9.320655887504988e28, 8.44)
1348728306404e28, 7.347099819081500e28, 6.144847121413618e28

The arguments must be (expand to) short integers.
pfactorial computes partial factorials i.e. pfactorial(a,b) evaluates the product (a+1)...b.

\xinttheexpr seq(pfactorial(20, i), i=20..30)\relax
1, 21, 462, 10626, 255024, 6375600, 165765600, 4475671200, 125318793600, 3634245014400,

109027350432000
Changed The arguments must (expand to) short integers. See subsection 8.36 for the behaviour if the
(1.2h) arguments are negative.

if (twofold-way conditional)

if(cond,yes,no) checks if cond is true or false and takes the corresponding branch. Any non
zero number or fraction is logical true. The zero value is logical false. Both "~ “branches'' are
evaluated (they are not really branches but just numbers). See also the ? operator.

ifsgn (threefold-way conditional)
ifsgn(cond,<®,=0,>0) checks the sign of cond and proceeds correspondingly. All three are eval-
uated. See also the ?? operator.

functions with an arbitrary number of arguments:
This argument may well be generated by one or many a..b or a..[d]..b constructs, separated by
commas .

all inserts a logical AND in-between its arguments and evaluates the resulting logical assertion
(as for all functions, all arguments are evaluated, see the ? operator for " “lazy'' conditional
branching; an example is to be found in subsection 5.3.)

any inserts a logical OR in-between its arguments and evaluates the resulting logical assertion,
xor inserts a logical XOR in-between its arguments and evaluates the resulting logical assertion,
"+ adds (left ticks mandatory):

\xinttheexpr "+ (1,3,19), "+ (1%*2,3%4,19%20)\relax

23, 394

19

2 The syntax of xintexpr expressions

"% multiplies (left ticks mandatory):
\xinttheexpr “* (1,3,19), "= (142,342,1942), "= (1%2,3%4,19%20)\relax

57, 3249, 9120

max maximum of the (arbitrarily many) arguments,

min minimum of the (arbitrarily many) arguments,

ged first truncates the (arbitrarily many) arguments to integers then computes the GCD, requires
xintgcd,

lcm first truncates (arbitrarily many) arguments to integers then computes the LCM, requires
xintgcd,

first first item of the list argument:

\xinttheiiexpr first(last(-7..3), 58, 97..105)\relax

3
last last item of the list argument:
\xinttheiiexpr last(-7..3, 58, first(97..105))\relax

97
reversed reverses the order of the comma separated list:

\xinttheiiexpr first(reversed(123..150)), last(reversed(123..150))\relax

150, 123

len computes the number of items in a comma separated list. Earlier syntax was [a,b,...,z][0] but
since 1.2g this now returns the first element of the list.

\xinttheiiexpr len(1l..50, 101..150, 1001..1050)\relax

150

functions requiring dummy variables:

The " " functions'' add, mul, seq, subs, rseq, iter, rrseq, iterr use delimited macros to iden-
tify the "7 ,<letter>="" part.16 This is done in a way allowing nesting via correctly balanced
parentheses. The <letter> must not have been assigned a value before via \xintdefvar.

This ,<letter>= must be visible when the parser has finished absorbing the function name and
the opening parenthesis. For rseq, iter, rrseq and iterr this is delayed to after the parser has
assimilated a starting part delimited by a semi-colon; this mandatory segment may be generated
entirely by expansion and the ,<letter>= may appear during this expansion.

After ,<letter>=, the expansion and parsing will generate a 1list of values (for example from an
a..b specification, there may be multiple ones themselves separated by commas). After this step
is complete the parser will know the values which will be assigned to <letter>, with i++ syntax
offering a special variant.

seq, rseq, iter, rrseq, iterr but not add, mul, subs admit the omit, abort, and break(..) key-
words. In the case of a potentially infinite list generated by a <letter>++ expression, use of
abort or break() is mandatory, naturally.

Dummy variables are necessarily single-character letters, and all lowercase and uppercase
Latin letters are pre-configured for that usage.

subs for variable substitution

\xinttheexpr subs(subs(seq(x*z,x=1..10),z=y*2),y=10)\relax\newline

16 In the current implementation any token can be used rather than a =. What is looked for is a comma followed by two tokens,
the first one will be the <letter>.

20

Changed
(1.2g)

2 The syntax of xintexpr expressions

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
Attention that xz generates an error, one must use explicitely x*z, else the parser expects a
variable with name xz.

subs is useful when defining macros for which some argument will be used more than once but
may itself be a complicated expression or macro, and should be evaluated only once, for matters
of efficiency.

The substituted variable may be a comma separated list (this is impossible with seq which
will always pick one item after the other from a list).

\xinttheexpr subs([x]A2,x=-123,17,32)\relax
15129, 289, 1024
See the examples related to the 3x3 determinant in the subsection 10.6 for an illustration
of list substitution.

add addition

\xinttheiiexpr add(x*3,x=1..50), add(x(x+1), x=1,3,19)\relax\newline

1625625, 394
See '+ for syntax without a dummy variable.

mul multiplication

\xinttheiiexpr mul (x*2, x=1,3,19), mul(2n+1,n=1..10)\relax\newline

3249, 13749310575
See " for syntax without a dummy variable.

seq comma separated values generated according to a formula

\xinttheiiexpr seq(x(x+1) (x+2) (x+3),x=1..10), "= (seq(3x+2,x=1..10))\relax
24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160, 1162274713600
\xinttheiiexpr seq(seq(i?2+j*2, i=0..j), j=0..10)\relax
o0, 1,2, 4,5,38,9, 10, 13, 18, 16, 17, 20, 25, 32, 25, 26, 29, 34, 41, 50, 36, 37, 40, 45, 52,

61, 72, 49, 50, 53, 58, 65, 74, 85, 98, 64, 65, 68, 73, 80, 89, 100, 113, 128, 81, 82, 85, 90,
97, 106, 117, 130, 145, 162, 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200

rseq recursive sequence, @ for the previous value.

\printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/2@, i=1..10),y=1000)\relax }\newline

1.000000000000000, 500.5000000000000, 251.2490009990010, 127.6145581634591, 67.725327360822
604, 41.24542607499115, 32.74526934448864, 31.64201586865079, 31.62278245070105, 31.62277662
0168434, 31.62277660168379
Attention: in the example above y/2@ is interpreted as y/(2+*@). With versions 1.2c or earlier
it would have been interpreted as (y/2)=@.

In case the initial stretch is a comma separated list, @ refers at the first iteration to the
whole list. Use parentheses at each iteration to maintain this "~ "nuple''. For example:

\printnumber{\xintthefloatexpr rseq(l,1046;
(sqrr([e@][0]«[@][1]), ([@][0]+[@][1])/2), i=1..7)\relax }

1.000000000000000, 1.000000000000000e6, 1000.000000000000, 500000.5000000000, 22360.6909552
33499, 250500.2500000000, 74842.22521066670, 136430.4704776675, 101048.3052657827, 105636.32
478441671, 103316.8617608946, 103342.3265549749, 103329.5933734841, 103329.5941579348, 10332
29.5937657094, 103329.5937657095

iter is exactly like rseq, except that it only prints the last iteration. Strangely it was lacking

from 1.1 release, or rather what was available from 1.1 to 1.2f is what is called now iterr

(described below).
The new iter is convenient to handle compactly higher order iterations. We can illustrate
its use with an expandable (!) implementation of the Brent-Salamin algorithm for the computa-

tion of m:

21

2 The syntax of xintexpr expressions

\xintDigits:= 91;
\xintdeffloatfunc BS(a, b, t, p):= (a+b)/2, sqrt(axb), t-p(a-b)*2, \xintiiexpr 2p\relax;
\xintthefloatexpr [88] % use 3 guard digits (output value is =*roundedx)
iter(l, 1/sqrt(2), 1, 1; % initial values
([@][0]-[@][1]<2[-45])? % if a-b is small enough stop iterating and ...
{break(([@][0]+[@][1])+2/[@][2])} % ... do final computation,
{BS(@)}, % else do iteration via pre-defined (for convenience) function BS.
i=1++) % This generates infinite iteration. The i is not used.
\relax
\xintDigits:=16;%

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628035
You can try with \xintDigits:=1001; and 2[-501] in place of \xintDigits:=91; and 2[-45], but
don't make a final rounding to only 88 digits of course ... and better wrap the whole thing in
\message or \immediate\writel28 because it will run in the right margin (about 7s on my laptop
last time I tried).

rrseq recursive sequence with multiple initial terms. Say, there are K of them. Then @1, ..., @4
and then @@(n) up to n=K refer to the last K values. Notice the difference with rseq for which
@ refers to the complete list of all initial terms if there are more than one and may thus be a
""list'' object. This is impossible with rrseq. This construct is effective for scalar finite
order recursions, and may be perhaps a bit more efficient than using the rseq syntax with a
“Tlist'' value.

\xinttheiiexpr rrseq(®,1; @1+@2, i=2..30)\relax

0,1,1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

\xinttheiiexpr rseq(l; 2@, i=1..10)\relax
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
\xinttheiiexpr rseq(l; 2@+1, i=1..10)\relax
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047
\xinttheiiexpr rseq(2; @(@+1)/2, i=1..5)\relax
2, 3, 6, 21, 231, 26796
\xinttheiiexpr rrseq(9,1,2,3,4,5; @1+@2+@3+@4+@@(5)+@@(6), i=1..20)\relax
o, 1, 2,3, 4,5, 15, 30, 59, 116, 229, 454, 903, 1791, 3552, 7045, 13974, 27719, 54984, 109065,
216339, 429126, 851207, 1688440, 3349161, 6643338

I implemented an Rseq which at all times keeps the memory of all previous items, but decided
to drop it as the package was becoming big.

iterr same as rrseq but does not print any value until the last K.
\xinttheiiexpr iterr(®,1; @1+@2, i=2..5, 6..10)\relax
% the iterated over list is allowed to have disjoint defining parts.

34, 55

Recursions may be nested, with @@@(n) giving access to the values of the outer recursion. . . and
there is even @@@@(n) to access the outer outer recursion but I never tried it!
With seq, rseq, iter, rrseq, iterr, but not with subs, add, mul, one has:

abort stop here and now.
omit omit this value.
break break(stuff) to abort and have stuff as last value.

n+-4 serves to generate a potentially infinite list. The <integer>++ construct in conjunction
with an abort or break is often more efficient, because in other cases the list to iterate over
is first completely constructed.

22

Changed —
Iy

2 The syntax of xintexpr expressions

\xinttheiiexpr iter(1l;(@>10440)7?{break(@)}{2@},i=1++)\relax

10889035741470030830827987437816582766592 is the smallest power of 2 with at least fourty one
digits.

The i=<integer>++ syntax (any letter is allowed) works only in the form <letter>=<integer>++,
something like x=10,17,30++ is not legal syntax. The <integer> must be a TgX-allowable integer.

First Fibonacci number at least |2431| and its index
% we use iterr to refer via @1 and @ to the previous and previous to previous.
\xinttheiiexpr iterr(®,1; (@1>=2431)?{break(i)}{@2+@1}, i=1++)\relax

First Fibonacci number at least 2431 and its index 2971215073, 47

Some additional examples are to be found in subsection 2.4.

2.3 Tacit multiplication

Tacit multiplication (insertion of a *) applies when the parser is currently either scanning the
digits of a number (or its decimal part or scientific part, or hexadecimal input), or is looking for
an infix operator, and: (1.) encounters a count or dimen or skip register or variable or an £-TX
expression, or (2.) encounters a sub-\xintexpression, or (3.) encounters an opening parenthesis,
or (4.) encounters a letter (which is interpreted as signaling the start of either a variable or a
function name).

For example, if x, y, z are variables all three of (x+y)z, x(y+z), (x+y) (x+z) will create a
tacit multiplication.

Furthermore starting with release 1.2e, whenever tacit multiplication is applied, in all
cases it always "~ “ties'' more than normal multiplication or division, but still less than
power. Thus x/2y is interpreted as x/(2y) and similarly for x/2max(3,5) but xA2y is still
interpreted as (xA2)+*y and 2n! as 2#*n!.

\xintdefvar x:=30;\xintdefvar y:=5;%

\xinttheexpr (x+y)x, x/2y, x*2y, x!, 2x!, x/2max(x,y)\relax
1050, 30/10, 4500, 265252859812191058636308480000000, 530505719624382117272616960000000,
30/60

The " “tie more'' rule applies to all cases of tacit multiplication. It impacts only situa-
tions when a division was the last seen operator, as the normal rule for the xintexpr parsers
is left-associativity in case of equal precedence.

\xinttheexpr (1+2)/(3+4)(5+6), 2/x(10), 2/10x, 3/y\xintiiexpr 5+6\relax, 1/x(y)\relax
3/77, 2/300, 2/300, 3/55, 1/150

Note that y\xinttheiiexpr 5+6\relax would have tried to use a variable with name yl11l rather
than doing y*11: tacit multiplication works only in front of sub-\xintexpressions, not in front
of \xinttheexpressions which are unlocked into explicit digits.

Here is an expression whose meaning is completely modified by the " “tie more'' property of tacit
multiplication:

\xintdeffunc e(z):=1+z(1+z/2(1+z/3(1+z/4)));
will be parsed as 1+z*(1+z/(2*(1+z/(3*(1+z/4))))) which is not at all like the presumably hoped:

\xintdeffunc e(z):=1+z(1+z/2*(1+z/3*(1+z/4)));

This form can also be used, alternatively:

\xintdeffunc e(z):=(((z/4+1)z/3+1)z/2+1)z+1;

Attention! tacit multiplication before an opening parenthesis applies always, but tacit multi-
plication after a closing parenthesis does not apply in front of digits: (1+1)5 is not legal. But
subs((1+1)x,x=5) is, because in that case a variable is following the closing parenthesis.

23

2 The syntax of xintexpr expressions

2.4 More examples with dummy variables

These examples were first added to this manual at the time of the 1.1 release (2014/10/29).

Prime numbers are always cool

\xinttheiiexpr seq((seq((subs((x/:m)?{(m*m>x)7{1}{0}}{-1},m=2n+1))

??{break(®)}{omit}{break(1)},n=1++))?{x}{omit},
x=10001..[2]..10200)\relax

Prime numbers are always cool 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091,
10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193

The syntax in this last example may look a bit involved (... and it is so I admit). First x/2
:m computes x modulo m (this is the modulo with respect to truncated division, which here for
positive arguments is like Euclidean division; in \xintexpr...\relax, a/:b is such that a = b=
(a//b)+a/:b, with a//b the algebraic quotient a/b truncated to an integer.). The (x)?{yes}{no}
construct checks if x (which must be within parentheses) is true or false, i.e. non zero or zero.
It then executes either the yes or the no branch, the non chosen branch is not evaluated. Thus if
m divides x we are in the second (" "false'') branch. This gives a -1. This -1 is the argument to a
?? branch which is of the type (y)??{y<0}{y=03}{y>0}, thus here the y<0, i.e., break(®) is chosen.
This 0 is thus given to another ? which consequently chooses omit, hence the number is not kept in
the 1list. The numbers which survive are the prime numbers.

The first Fibonacci number beyond |2264| bound is

\xinttheiiexpr subs(iterr(0®,1;(@1>N)?{break(i)}{@1+@2},i=1++),N=2464)\relax{}

and the previous number was its index.
The first Fibonacci number beyond 2464 bound is 19740274219868223167, 94 and the previous number
was its index.

One more recursion:

\def\syr #l{\xinttheiiexpr rseq(#1; (@<=1)7{break(i)}{odd(@)?{3@+1}{@//2}},i=0++)\relax}

The 3x+1 problem: \syr{231}\par
The 3x+1 problem: 231, 694, 347, 1042, 521, 1564, 782, 391, 1174, 587, 1762, 881, 2644, 1322, 661,
1984, 992, 496, 248, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91,
274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780,
890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958,
479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051,
6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,
184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 127

OK, a final one:

\def\syrMax #l{\xinttheiiexpr iterr(#1,#1;even(i)?

{(@2<=1)7?{break(i/2)}{odd(@2)?{3@2+1}{@2//2}}}
{(@1>@2)7{@1}{@2}},i=0++)\relax }

With initial value 1161, the maximal number attained is \syrMax{1161} and that latter

number is the number of steps which was needed to reach 1.\par
With initial value 1161, the maximal number attained is 190996, 181 and that latter number is the
number of steps which was needed to reach 1.

Well, one more (but recall that gcd is already available as a multi-argument function if xintgcd
is loaded):

\newcommand\GCD [2]{\xinttheiiexpr rrseq(#1,#2; (@l=0)?{abort}{@2/:@1}, i=1++)\relax }

\GCD {13410%17A5%29A5}{2A5%346%1742}
4014838863509162883616357, 6741792, 3367717, 6358, 4335, 2023, 289, 0

Look at the Brent-Salamin algorithm implementation for a more interesting recursion.

2.5 User defined variables

Since release 1.1 it is possible to make an assignment to a variable name and let it be known to the
parsers of xintexpr.

\xintdefvar Pi:=3.141592653589793238462643;

\xintthefloatexpr PiA100\relax

24

2 The syntax of xintexpr expressions

\xintdefvar x_1 := 10;\xintdefvar x_2 := 20;\xintdefvar y@3 := 30;

\quad $x_1\cdot x_2\cdot y@3+1=\xinttheiiexpr x_1xx_2*y@3+1\relax$§.
5.187848314319574e49 x;-Xx -y@3+1=6001.

Legal variable names are composed of letters, digits, @ and _ signs.

e the first character must not be a digit,

e it may be a @ or _ but such variable names may be used either now or in the future by xint for

special purposes, hence should be avoided:

— currently @, @1, @2, @3, and @4 are reserved because they have special meanings for use in
iterations.

— the @@, @@@, @@@@ are also reserved but are technically functions, not variables: a user
may possibly define @@ as a variable name, but if it is followed by parentheses, the func-
tion interpretation will be applied, rather than the variable interpretation followed by
a tacit multiplication.

— since 1.21, the underscore _ may be used as separator of digits in long numbers. Hence a
variable whose name starts with it will not play well with the mechanism of tacit multi-
plication of variables by numbers: the underscore will be removed from input stream by the
number scanner, thus creating an undefined or wrong variable name, or none at all if the
variable name was an initial _ followed by digits.

x_1x is a licit variable name, as well as x_1x_ and x_1x_2 and x_1x_2y etc... hence we can not
rely on tacit multiplication being applied to something like x_1x_2; the parser goes not go to the
effort of tracing back its steps. Hence in such cases we have to insert explicit * infix operators
(one often falls into this trap when playing with variables and counting too much on the divinatory
talents of xintexpr...).

Single letter names a..z and A. .Z are pre-declared by the package for use as special type of vari-
ables called " “dummy variables''. It is allowed to overwrite their original meanings and assign
them values.

The assignments are done with \xintdefvar, \xintdefiivar, or with \xintdeffloatvar. The vari-
able will be computed using respectively \xintexpr, \xintiiexpr or \xintfloatexpr. Once defined,
it can be used in the other parsers, except naturally that in \xintiiexpr only integers are ac-
cepted.

When defining a variable with \xintdeffloatvar, it is important that reduction to \xint-
theDigits digits of precision happens inside \xintfloatexpr only if an operation is executed.
Thus, for a variable declaration with no operations, the value is recorded with all its digits.

\xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;%

\xinttheexpr e\relax\newline % shows the recorded value

\xintthefloatexpr e\relax\newline % output rounds

\xintthefloatexpr l+e\relax\newline % the rounding was done by addition (trust me...)

\xintdeffloatvar e:=float(2.7182818284590452353602874713526624977572470936999595749669676) ;%

\xinttheexpr e\relax\par % use of float forced immediate rounding
27182818284590452353602874713526624977572470936999595749669676[-61]

2.718281828459045
3.718281828459045
2718281828459045[-15]

In the next examples we examine the effect of cumulated float operations on rounding errors:

\xintdefvar e_l:=add(1l/i!, i=0..10);% exact sum

\xintdeffloatvar e_2:=add(1/i!, i=0..10);% float sum

\xintthefloatexpr e_1, e_2\relax\newline

\xintdefvar e_3:=e_l+add(l/i!, i=11..20);% exact sum

\xintdeffloatvar e_4:=e_2+add(1l/i!, i=11..20);% float sum

\xintthefloatexpr e_3, e_4\relax\newline

\xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;%

\xintDigits:=24;

\xintthefloatexpr[16] e, e~1000, e*1000000\relax (e rounded to 24 digits first)\newline

\xintDigits:=16;

25

New with
1.2k

—_——

2 The syntax of xintexpr expressions

\xintthefloatexpr e, er1000, e~1000000\relax (e rounded to 16 digits first)\par
.718281801146384, 2.718281801146385
.718281828459045, 2.718281828459046
.718281828459045, 1.970071114017047e434, 3.033215396802088e434294 (e rounded to 24 digits first)
.718281828459045, 1.970071114016876e434, 3.033215396539459e434294 (e rounded to 16 digits first)
With \xintverbosetrue the values of the assigned variables will be written to the log. For ex-
ample like this (the line numbers here are artificial):
Package xintexpr Info: (on line 2875)
Variable "e" defined with value 2718281828459045235360287471352662497757247
0936999595749669676[-61] .
Package xintexpr Info: (on line 2879)
Variable "e" defined with value 2718281828459045[-15].
Package xintexpr Info: (on line 2886)
Variable "e_1" defined with value 9864101/3628800[0].
Package xintexpr Info: (on line 2887)
Variable "e_2" defined with value 2718281801146385[-15].
Package xintexpr Info: (on line 2889)
Variable "e_3" defined with value 6613313319248080001/2432902008176640000[0

NN NN

1.
Package xintexpr Info: (on line 2890)
Variable "e_4" defined with value 2718281828459046[-15].
Package xintexpr Info: (on line 2892)
Variable "e" defined with value 2718281828459045235360287471352662497757247
0936999595749669676[-61] .

2.5.1 \xintunassignvar

Variable declarations are local. One can not really " ‘unassign'' a declared variable, but
\xintunassignvar redefines it to insert a zero and raise a TgX ~“undefined macro'' error.

Also, using \xintunassignvar on a letter will let it recover fully its original meaning as dummy
variable.

\xintFor #1 in {e_1, e_2, e_3, e_4, e} \do {\xintunassignvar {#1}}

2.5.2 \xintnewdummy

Any catcode 11 character can serve as a dummy variable, via this declaration:
\xintnewdummy{<character>}
For example with XeTiX or LuaBIgX the following works:
% use a Unicode engine
\input xintexpr.sty
\xintnewdummy &% or any other letter character !
\xinttheexpr add(¢, £=1..10)\relax
\bye
This macro is a public interface for a functionality existing since 1.2e.

2.6 User defined functions

2.6.1 \xintdeffunc

Since release 1.2c it is possible to declare functions:
\xintdeffunc
Rump(x,y) :=1335 y*6/4 + x*2 (11 x*2 y*2 - y*6 - 121 y* - 2) + 11 y*8/2 + x/2y;
(notice the numerous tacit multiplications in this expression; and that x/2y is interpreted as
x/(2y).)

26

2 The syntax of xintexpr expressions

The (dummy) variables used in the function declaration are necessarily single letters (low-
ercase or uppercase) which have not been re-declared via \xintdefvar as assigned variables.
The choice of the letters is entirely up to the user and has nil influence on the actual func-
tion, naturally.

A function can have at most nine variables.

A function must be defined for a specific parser, using either \xintdeffunc, \xintdefiifunc
or \xintdeffloatfunc.

17

Let's try the famous Rump test:

\xinttheexpr Rump(77617,33096)\relax.
-54767/66192. Nothing problematic for an exact evaluation, naturally

A function may be declared either via \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc. It will
then be known only to the parser which was used for its definition.

Thus to test the RumMp polynomial (it is not quite a polynomial with its x/2y final term) with
floats, we must also declare Rump as a function to be used there:

\xintdeffloatfunc

Rump (x,y):=333.75 y*6 + xA2 (11 xA2 y*2 - y*6 - 121 y*4 - 2) + 5.5 y*8 + x/2y;

The numbers are scanned with the current precision, hence as here it is 16, they are scanned
exactly in this case. We can then vary the precision for the evaluation.

\def\CR{\cr}

\halign

{\tabskiplex

\hfil\bfseries#&\xintDigits:=\xintiloopindex;\xintthefloatexpr Rump(77617,33096)#\cr

\xintiloop [8+1]

\xintiloopindex &\relax\CR

\ifnum\xintiloopindex<40® \repeat

}

8 7.0000000e29

9 -1.00000000e28
10 5.000000000e27
11 -3.0000000000e26
12 4.00000000000e25
13 3.000000000000e24
14 3.0000000000000e23
15 -2.00000000000000e22
16 1.000000000000000e21
17 -5.0000000000000000e20
18 1.17260394005317863
19 1.000000000000000001e18
20 -9.9999999999999998827e16
21 1.00000000000000011726e16
22 3.000000000000001172604e15
23 -9.9999999999998827396060e13
24 -1.99999999999988273960599¢e13
25 -1.999999999998827396059947e12
26 1.1726039400531786318588349
27 -5.99999999988273960599468214e10
28 -9.999999988273960599468213681e8
29 2.0000000117260394005317863186e8
30 1.00000011726039400531786318588e7
31 -999998.8273960599468213681411651

17

with the current syntax, the ; as used for iterr, rseq, rrseq must be hidden as {;} to not be confused with the ; ending the
declaration.

27

2 The syntax of xintexpr expressions

32 200001.17260394005317863185883490

33 -9998.82739605994682136814116509548

34 -1998.827396059946821368141165095480

35 -198.82739605994682136814116509547982

36 21.1726039400531786318588349045201837

37 -0.8273960599468213681411650954798162920

38 -0.82739605994682136814116509547981629200
39 -0.827396059946821368141165095479816292000
40 -0.8273960599468213681411650954798162919990

It is licit to overload a variable name (all Latin letters are predefined as dummy variables)
with a function name and vice versa. The parsers will decide from the context if the function or
variable interpretation must be used (dropping various cases of tacit multiplication as normally
applied).

\xintdefiifunc f(x):=x43;

\xinttheiiexpr add(£(f),f=100..120)\relax\newline

\xintdeffunc f(x,y):=xA2+y*2;

\xinttheexpr mul (f(£(£,£),f(£f,£)),f=1..10)\relax
28205100
186188134867578885427848806400000000

The mechanism for functions is identical with the one underlying the \xintNewExpr macro. A func-
tion once declared is a first class citizen, its expression is entirely parsed and converted into
a big nested f-expandable macro. When used its action is via this defined macro. For example

\xintdeffunc

e(z):=CCCCCCC((z/10+1)2/9+1)z/8+1)z/7+1)z/6+1)z/5+1)z/4+1)z/3+1)z/2+1) z+1;
creates a macro whose meaning one can find in the log file, after \xintverbosetrue. Here it is:
Function e for \xintexpr parser associated to \XINT_expr_userfunc_e with me

aning macro:#1,->\xintAdd {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\x

intDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\

xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {

\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {#13}{10}}{13}3}{#1}}{9

PHIFHALI B H I ML 73 {1 3 {#1 3 3 {6 {13} {#1 3 } {53 {13 3 {#13 3 {4} } {1} }{#1} }{3}

HI #1223 {13 3 {#13 {1}

This has the same limitations as the \xintNewExpr macro. The main one is that dummy variables
are usable only to the extent that their values are numerical. For example \xintdeffunc f(x):=ad)
d(ir2,i=1..x); is not possible. See subsubsection 10.6.3 and the next subsection.

In this example one could use the alternative syntax with list operations:18

\xintdeffunc f(x):="+ ([1..x]A2);\xinttheexpr seq(f(x), x=1..20)\relax
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870

Side remark: as the seq(f(x), x=1..10) does many times the same computations, an rseq here would
be more efficient:!®

\xinttheexpr rseq(l; (x>20)7?{abort}{@+xA2}, x=2++)\relax
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870

On the other hand a construct like the following has no issue, as the values iterated over do not
depend upon the function parameters:

\xintdeffunc f(x):=iter(1{;} @=x/i+1, i=10..1);% one must hide the first semi-colon !

\xinttheexpr e(1), f(1)\relax
9864101/3628800, 9864101/3628800

2.6.2 \ifxintverbose conditional

With \xintverbosetrue the meanings of the functions (or rather their associated macros) will be
written to the log. For example the first Rump declaration above generates this in the log file:
Function Rump for \xintexpr parser associated to \XINT_expr_userfunc_Rump w
ith meaning macro:#1,#2,->\xintAdd {\xintAdd {\xintAdd {\xintDiv {\xintMul {133

18 It turns out “+ (seq(i*2, i=1..x)) would work here, but this isn't always the case with seq constructs. 19 Note that omit
and abort are not usable in add or mul (currently).

28

1 |

New with
1.2h

2 The syntax of xintexpr expressions

5}{\xintPow {#23}{6}}}{4}}{\xintMul {\xintPow {#1}{2}}{\xintSub {\xintSub {\xint

Sub {\xintMul {11}{\xintMul {\xintPow {#13}{2}}{\xintPow {#23}{2}}}}{\xintPow {#2

{6} {\xintMul {121}{\xintPow {#2}{43}3}}}{2}}}}{\xintDiv {\xintMul {11}{\xintPo

w {#23}{8}}}{2}}}{\xintDiv {#1}{\xintMul {2}{#2}}}
and the declaration \xintdeffunc f(x):=iter(1{;} @+x/i+1, i=10..1); generates:

Function f for \xintexpr parser associated to \XINT_expr_userfunc_f with me

aning macro:#1,->\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\x

intAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\

xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {

\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul

{13 {#1}33{10/1[01 1} {1} {#133{9/1 (013} {133 {#133{8/1[01}}{1}}{#1}}{7/1[01}}{1}}{#1

13{6/10013 {13 {#13{5/1 01} {133 {#133{4/1[0]1 }} {1} }{#1}}{3/1[01}}{1}}{#1}}{2/1[

0133 {133 {#133{1/1[0]1}}{1}

Starting with 1.2d the definitions made by \xintNewExpr have local scope, hence this is also
the case with the definitions made by \xintdeffunc. One can not " “undeclare'' a function, but
naturally one can provide a new definition for it.

It is possible to define functions which expand to comma-separated values, for example the dec-
larations:

\xintdeffunc f(x):

\xintdeffunc g(x):
will generate

Function f for \xintexpr parser associated to \XINT_expr_userfunc_f with me
aning macro:#1,->#1,\xintPow {#1}{2},\xintPow {#1}{3},\xintPow {#1}{#1}
Function g for \xintexpr parser associated to \XINT_expr_userfunc_g with me

aning macro:#1,->\xintApply::csv {\xintPow {#1}}{\xintSeq::csv {0}{#1}}
and we can check that they work:

\xinttheexpr f(10)\relax; \xinttheexpr g(10)\relax
10, 100, 1000, 10000000000; 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
1000000000, 10000000000

N.B.: we declared in this section e, f, g as functions. Except naturally if the function decla-
rations are done in a group or a BIgX environment whose scope has ended, they can not be completely
undone, and if e, f, or g are used as dummy variables the tacit multiplication in front of paren-
theses will not be applied, it is their function interpretation which will prevail. However, with
an explicit * in front of the opening parenthesis, it does work:

\xinttheexpr add(fx(f+f), f= 1..10)\relax % f is used as variable, not as a function.

770

X, XA2, XA3, XAx;
xA[0..x];% xA[1, 2, 3, x] would be like f above.

2.6.3 \xintNewFunction

The syntax is analogous to the one of \xintNewExpr but achieves something completely different.
Here is an example:

\xintNewFunction {foo}[3]{add(mul (x+i, i=#1..#2),x=1..#3)}

We now have a genuine function foo(, ,) of three variables which we can use fully in the three
parsers, be it with numerical arguments or variables or whatever.

\xinttheexpr seq(foo(®, 3, j), j= 1..10)\relax
24, 144, 504, 1344, 3024, 6048, 11088, 19008, 30888, 48048

A notable aspect is that this syntax allows to make recursive definitions, contrarily (cur-
rently) to \xintdeffunc. See subsection 5.3 for an example.

However this construct is only syntactic sugar to benefit from functional notation. Each time
the function foo will be encountered the corresponding expression will be inserted as a sub-
expression (of the same type as the surrounding one), the macro parameters having been replaced
with the (already evaluated) function arguments, and the parser will then parse the expression.
It is very much like a macro substitution, but using functional notation.

Package xintexpr Info: (on line 3151)

Function foo for the expression parsers is associated to \XINT_expr_macrofu
nc_foo with meaning macro:#1,#2,#3,->add(mul (x+i, i=\XINT_expr_wrapit {#1}..\XI

29

2 The syntax of xintexpr expressions

NT_expr_wrapit {#2}),x=1..\XINT_expr_wrapit {#3})

This is thus very different from a function defined via \xintdeffunc which expands to some (pos-
sibly very complicated) nesting of various macro calls, which were determined at the time of the
function definition. But (see subsubsection 10.6.3) it is not currently possible to define a foo
function like the one above via \xintdeffunc.

One can declare a function foo with [0] arguments but it must be used as foo(nil), as foo() with
no argument would generate an error.

2.7 List operations

By list we hereby mean simply comma-separated values, for example 3, -7, le5. This section de-
scribes some syntax which allows to manipulate such lists, for example [3, -7, 1le5][1] extracts
-7 (we follow the Python convention of enumerating starting at zero.)

In the context of dummy variables, lists can be used in substitutions:

\xinttheiiexpr subs(C'+ (L), L =1, 3, 5, 7, 9)\relax\newline
25

and also the rseq and iter constructs allow @ to refer to a list:

\xinttheiiexpr iter(®, 1; ([@][1], [@][®]+[@][1]), i=1..10)\relax\newline
55, 89
where each step constructs a new list with two entries.

However, despite appearances there is not really internally a notion of a list type and it is
currently impossible to create, manipulate, or return on output a 1ist of lists. There is a special
reserved variable nil which stands for the empty list: for example len() is not legal but len(nil)
works.

The syntax which is explained next includes in particular what are called list itemwise opera-
tors such as:

\xinttheiiexpr 37+[13,100,1000]\relax\newline
50, 137, 1037
This part of the syntax is considered provisory, for the reason that its presence might make more
difficult some extensions in the future. On the other hand the Python-like slicing syntax should
not change.

e a..b constructs the small integers from the ceil [a] to the floor |b] (possibly a decreasing
sequence): one has to be careful if using this for algorithms that 1..0 for example is not
empty or 1 but expands to 1, 0. Again, a..b can not be used with a and b greater than 2311,
Also, only about at most 5000 integers can be generated (this depends upon some TgX memory
settings).

The .. has lower precedence than the arithmetic operations.
\xinttheexpr 1.5+0.4..2.3+1.1\relax; \xinttheexpr 1.9..3.4\relax; \xinttheexpr 2..3\relax

2,3;2,3;2,3

e a..[d]..b allows to generate big integers, or also fractions, it proceeds with step (non nec-
essarily integral nor positive) d. It does not replace a by its ceil, nor b by its floor. The
generated list is empty if b-a and d are of opposite signs; if d=0 or if a=b the list expands
to single element a.

\xinttheexpr 1.5..[1.01]..11.23\relax
15[-17, 251[-2], 352[-2], 453[-2], 554[-2], 655[-2], 756[-2], 857[-2], 958[-2], 1059[-2]

e [list][n] extracts the n+1th element if n>=0. If n<0 it extracts from the tail. List items are
numbered (since 1.2g) as in Python, the first element corresponding to n=0. len(list) computes
the number of items of the list.

\xinttheiexpr \empty[®..10][6], len(0..10), [0..10][-1], [0..10][23%18-22*19]\relax\
(and 23%18-22%19 has value \the\numexpr 23%18-22%19\relax).

30

2 The syntax of xintexpr expressions

6, 11, 10, 7 (and 23*18-22*19 has value -4).
See the next frame for why the example above has \empty token at start.

As shown, it is perfectly legal to do operations in the index parameter, which will be handled
by the parser as everything else. The same remark applies to the next items.

[1list][:n] extracts the first n elements if n>0, or suppresses the last |n| elements if n<0.
\xinttheiiexpr [0..10][:6]\relax\ and \xinttheiiexpr [0..10][:-6]\relax

0,1,2,3,4,5andoO0, 1, 2, 3, 4

[1list][n:] suppresses the first n elements if n>0, or extracts the last |n| elements if n<®0.
\xinttheiiexpr [0..10][6:]\relax\ and \xinttheiiexpr [0..10][-6:]\relax

6,7,8,9, 10and 5, 6, 7, 8, 9, 10

More generally, [list][a:b] works according to the Python " “slicing'' rules (inclusive of
negative indices). Notice though that there is no optional third argument for the step, which
always defaults to +1.

\xinttheiiexpr [1..20][6:13]\relax\ = \xinttheiiexpr [1..20][6-20:13-20]\relax
7, 8,9, 10, 11, 12, 13=7, 8, 9, 10, 11, 12, 13

It is naturally possible to nest these things:
\xinttheexpr [[1..50][13:37]]1[10:-10]\relax

24, 25, 26, 27

itemwise operations either on the left or the right are possible:
\xinttheiiexpr 123*[1..10]42\relax

123, 492, 1107, 1968, 3075, 4428, 6027, 7872, 9963, 12300

List operations are implemented using square brackets, but the \xintiexpr and \xintflo)
atexpr parsers also check to see if an optional parameter within brackets is specified
before the start of the expression. To avoid the resulting confusion if this [actually
serves to delimit comma separated values for list operations, one can either:

— insert something before the bracket such as \empty token,

\xinttheiexpr \empty [1,3,6,99,100,200][2:4]\relax

—_——

6, 99
— use parentheses:
\xinttheiexpr ([1,3,6,99,100,200][2:4])\relax

6, 99

Notice though that ([1,3,6,99,100,200])[2:4] would not work: it is mandatory for][and
][: not to be interspersed with parentheses. Spaces are perfectly legal:

\xinttheiexpr \empty[1..10] [: 7 J\relax

1,2,3,4,5,6,7

Similarly all the +[, =[, ...and]**,]/, ...operators admit spaces but nothing else
between their constituent characters.

\xinttheiexpr \empty [1 . . 1 8] =* * 1 1 \relax

1, 2048, 177147, 4194304, 48828125, 362797056, 1977326743, 8589934592, 31381059609,
100000000000

31

2 The syntax of xintexpr expressions

In an other vein, the parser will be confused by 1..[a,b,c][1], and one must write 1..([a,l
,c1[1]). And things such as [100,300,500,700][2]//11 or [100,300,500,700][2]/11 are syntax
errors and one must use parentheses, as in ([100,300,500,700][2])/11.

2.8 Analogies and differences of \xintiiexpr with \numexpr

\xintiiexpr..\relax is a parser of expressions knowing only (big) integers. There are, besides
the enlarged range of allowable inputs, some important differences of syntax between \numexpr and
\xintiiexpr and variants:

e Contrarily to \numexpr, the \xintiiexpr parser will stop expanding only after having encoun-
tered (and swallowed) a mandatory \relax token.

e In particular, spaces between digits (and not only around infix operators or parentheses) do
not stop \xintiiexpr, contrarily to the situation with numexpr: \the\numexpr 7 + 3 5\relax
expands (in one step)?? to 105\relax, whereas \xintthe\xintiiexpr 7 + 3 5\relax expands (in
two steps) to 42,21

e Inside an \edef, an expression \xintiiexpr...\relax get fully evaluated, whereas \numexpr
without \the or \number prefix would not, if not itself embedded in another \the\numexpr or
similar context.

e (ctd.) The private format to which \xintiiexpr...\relax (et al.) evaluates needs \xintthe
prefix to be printed on the page, or be used in macros (expanding their argument.) The \the TX
primitive prefix would not work here.

e (ctd.) As a synonym to \xintthe\xintiiexpr one can use \xinttheiiexpr, or (since 1.2h) \thex)
intiiexpr.

e (ctd.) One can embed a \numexpr...\relax (with its \relax!) inside an \xintiiexpr...\relax
without \the or \number, but the reverse situation requires use of \xinthe.

e \numexpr -(1)\relax is illegal. But \xintiiexpr -(1)\relax is perfectly legal and gives the
expected result (what else 7).

e \numexpr 2\cnta\relax is illegal (with \cnta a \count register.) But \xintiiexpr 2\cnta\rel)
ax is perfectly legal and will do the tacit multiplication.

e \the\numexpr or \number\numexpr expands in one step, but \xintthe\xintiiexpr or \xinttheiie)
xpr needs two steps.

2.9 Chaining expressions for expandable algorithmics

We will see in this section how to chain \xintexpr-essions with \expandafter's, like it is possible
with \numexpr. For this it is convenient to use \romannumeral®\xinteval which is the once-expanded
form of \xintexpr, as we can then chain using only one \expandafter each time.
For example, here is the code employed on the title page to compute (expandably, of course!) the
1250th Fibonacci number:
\catcode _ 11
\def\Fibonacci #1{% \Fibonacci{N} computes F(N) with F(0)=0, F(1)=1.
\expandafter\Fibonacci_a\expandafter
{\the\numexpr #1\expandafter}\expandafter
{\romannumeral®\xintiieval 1\expandafter\relax\expandafter}\expandafter
{\romannumeral®\xintiieval 1\expandafter\relax\expandafter}\expandafter

20 The \numexpr triggers continued expansion after the space following the 3 to check if some operator like + is upstream. But
after having found the 5 it treats it as and end-marker. 21 Since 1.21 one can also use the underscore _ to separate digits for
readability of long numbers.

32

2 The syntax of xintexpr expressions

{\romannumeral®\xintiieval 1\expandafter\relax\expandafter}\expandafter
{\romannumeral®\xintiieval ®\relax}}
%
\def\Fibonacci_a #1{%
\ifcase #1
\expandafter\Fibonacci_end_i
\or
\expandafter\Fibonacci_end_ii
\else
\ifodd #1
\expandafter\expandafter\expandafter\Fibonacci_b_ii
\else
\expandafter\expandafter\expandafter\Fibonacci_b_i
\fi
\fi {#1}%
}% * signs are omitted from the next macros, tacit multiplications
\def\Fibonacci_b_i #1#2#3{\expandafter\Fibonacci_a\expandafter
{\the\numexpr #1/2\expandafter}\expandafter
{\romannumeral®\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter
{\romannumeral®\xintiieval (2#2-#3)#3\relax}%
1% end of Fibonacci_b_i
\def\Fibonacci_b_ii #1#2#3#4#5{\expandafter\Fibonacci_a\expandafter
{\the\numexpr (#1-1)/2\expandafter}\expandafter
{\romannumeral®\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter
{\romannumeral®\xintiieval (2#2-#3)#3\expandafter\relax\expandafter}\expandafter
{\romannumeral®\xintiieval #2#4+#3#5\expandafter\relax\expandafter}\expandafter
{\romannumeral®\xintiieval #2#5+#3(#4-#5)\relax}%
1% end of Fibonacci_b_ii
% code as used on title page:
%\def\Fibonacci_end_i #1#2#3#4#5{\xintthe#5}
%\def\Fibonacci_end_ii #1#2#3#4#5{\xinttheiiexpr #2#5+#3(#4-#5)\relax}
% new definitions:
\def\Fibonacci_end_i #1#2#3#4#5{{#4}{#5}}% {F(N+1)}{F(N)} in \xintexpr format
\def\Fibonacci_end_ii #1#2#3#4#5%
{\expandafter
{\romannumeral®\xintiieval #2#4+#3#5\expandafter\relax
\expandafter}\expandafter
{\romannumeral®\xintiieval #2#5+#3(#4-#5)\relax}}% idem.
% \FibonacciN returns F(N) (in encapsulated format: needs \xintthe for printing)
\def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-"0\Fibonacci }%
\catcode _ 8
The macro \Fibonacci produces not one specific value F(N) but a pair of successive values {F(N2
)}{F(N+1)} which can then serve as starting point of another routine devoted to compute a whole
sequence F(N), F(N+1), F(N+2),..... Each of F(N) and F(N+1) is kept in the encapsulated internal
xintexpr format.
\FibonacciN produces the single F(N). It also keeps it in the private format; thus printing it
will need the \xintthe prefix.
Here a code snippet which checks the routine via a \message of the first 51 Fibonacci numbers (this is not an efficient way to
generate a sequence of such numbers, it is only for validating \FibonacciN).
\def\Fibo #1.{\xintthe\FibonacciN {#13}1}%
\message{\xintiloop [0+1] \expandafter\Fibo\xintiloopindex.,
\ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.}
The way we use \expandafter's to chain successive \xintiieval evaluations is exactly analogous
to what is possible with \numexpr. The various \romannumeral®\xintiieval could very well all have
been \xintiiexpr's but then we would have needed \expandafter\expandafter\expandafter each time.

33

2 The syntax of xintexpr expressions

There is a difference though: \numexpr does NOT expand inside an \edef, and to force its
expansion we must prefix it with \the or \number or \romannumeral or another \numexpr which is
itself prefixed, etc....

But \xintexpr, \xintiexpr, ..., expand fully in an \edef, with the completely expanded re-
sult encapsulated in a private format.

Using \xintthe as prefix is necessary to print the result (like \the or \number in the case
of \numexpr), but it is not necessary to get the computation done (contrarily to the situation
with \numexpr).

Our \Fibonacci expands completely under f-expansion, so we can use \fdef rather than \edef in a

situation such as

\fdef \X {\FibonacciN {100}}

but it is usually about as efficient to employ \edef. And if we want

\edef \Y {(\FibonacciN{100},\FibonacciN{2003})},

then \edef is necessary.

Allright, so let's now give the code to generate {F(N)}{F(N+1)}{F(N+2)}..., using \Fibonacci

for the first two and then using the standard recursion F(N+2)=F(N+1)+F(N):

\catcode _ 11
\def\FibonacciSeq #1#2{%#l=starting index, #2>#l=ending index
\expandafter\Fibonacci_Seq\expandafter
{\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-13}%
1%
\def\Fibonacci_Seq #1#2{%
\expandafter\Fibonacci_Seq_loop\expandafter
{\the\numexpr #1\expandafter}\romannumeral®\Fibonacci {#1}{#21}%
1%
\def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion
{#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi
\expandafter\Fibonacci_Seq_loop\expandafter
{\the\numexpr #1+1\expandafter}\expandafter
{\romannumeral®\xintiieval #2+#3\relax}{#2}{#4}%
1%
\def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter
#1\expandafter #2#3#4{\fi {#3}}%
\catcode _ 8
This \FibonacciSeq macro is completely expandable but it is not f-expandable.
This is not a problem in the next example which uses \xintFor* as the latter applies repeatedly

full expansion to what comes next each time it fetches an item from its list argument. Thus \xint-
For* still manages to generate the list via iterated full expansion.

\newcounter{index}
\tabskip lex
\fdef\Fibxxx{\FibonacciN {30}}%
\setcounter{index}{30}%
\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr
\xintFor* #1 in {\FibonacciSeq {30} {59}}\do
{\theindex &\xintthe#1 &
\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }3}%
H\vrule
\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr
\xintFor* #1 in {\FibonacciSeq {60}{89}}\do
{\theindex &\xintthe#l1 &
\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }3}%
H\vrule
\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

34

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54,
55.
56.
57.
58.
59.

832040
1346269
2178309
3524578
5702887
9227465
14930352
24157817
39088169
63245986
102334155
165580141
267914296
433494437
701408733
1134903170
1836311903
2971215073
4807526976
7778742049
12586269025
20365011074
32951280099
53316291173
86267571272
139583862445
225851433717
365435296162
591286729879
956722026041

0
514229
514229
196418
710647

75025
785672
28657
814329
10946
825275
4181
829456
1597
831053
610
831663
233
831896
89
831985
34
832019
13
832032

5
832037

2
832039

1

60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

3 The xint bundle

1548008755920
2504730781961
4052739537881
6557470319842
10610209857723
17167680177565
27777890035288
44945570212853
72723460248141
117669030460994
190392490709135
308061521170129
498454011879264
806515533049393
1304969544928657
2111485077978050
3416454622906707
5527939700884757
8944394323791464
14472334024676221
23416728348467685
37889062373143906
61305790721611591
99194853094755497
160500643816367088
259695496911122585
420196140727489673
679891637638612258

1100087778366101931
1779979416004714189

Ui W N = = O

8

13

21

34

55

89

144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.

2880067194370816120 0
4660046610375530309 514229
7540113804746346429 514229
12200160415121876738 196418
19740274219868223167 710647
31940434634990099905 75025
51680708854858323072 785672
83621143489848422977 28657
135301852344706746049 814329
218922995834555169026 10946
354224848179261915075 825275
573147844013817084101 4181
927372692193078999176 829456
1500520536206896083277 1597
2427893228399975082453 831053
3928413764606871165730 610
6356306993006846248183 831663
10284720757613717413913 233
16641027750620563662096 831896
26925748508234281076009 89
43566776258854844738105 831985
70492524767089125814114 34
114059301025943970552219 832019
184551825793033096366333 13
298611126818977066918552 832032
483162952612010163284885 5
781774079430987230203437 832037
1264937032042997393488322 2
2046711111473984623691759 832039
3311648143516982017180081 1

Some Fibonacci numbers together with their residues modulo F(30)=832040

\xintFor* #1 in {\FibonacciSeq {90}{119}}\do
{\theindex &\xintthe#l1 &
\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}%

}%
This produces the Fibonacci numbers from F(30) to F(119), and computes also all the congruence

classes modulo F(30). The output has been put in a float, which appears above. I leave to the

mathematically inclined readers the task to explain the visible patterns. .

3 The xint bundle

NO Vvidh WN =

Characteristics ..., 36
Floating point evaluations 37
Expansion matters....................... 38
Input formats for macros................. 40
Output formats of macros 42
Count registers and variables............. 42
Dimension registers and variables......... 43

35

.14

N

.8 \ifcase, \ifnum, ... constructs 45
.9 No variable declarations are needed....... 45
.10 When expandability is too much.......... 46
.11 Possible syntax errors to avoid 47
.12 Errormessages.............. 47
.13 Package namespace, catcodes............ 48

Origins of the package................... 49

3 The xint bundle

3.1 Characteristics

The main characteristics are:
1. exact algebra on "~ "big numbers'', integers as well as fractions,
2. floating point variants with user-chosen precision,
3. the computational macros are compatible with expansion-only context,

4. the bundle comes with parsers (integer-only, or handling fractions, or doing floating
point computations) of infix operations implementing beyond infix operations extra fea-
tures such as dummy variables.

Since 1.2 "“big numbers'' must have less than about 19950 digits: the maximal number of
digits for addition is at 19968 digits, and it is 19959 for multiplication. The reasonable
range of use of the package is with numbers of up to a few hundred digits.22

TgX does not know off-hand how to print on the page such very long numbers, see subsection 1.3.

Integers with only 10 digits and starting with a 3 already exceed the TgX bound; and TgX does not have
a native processing of floating point numbers (multiplication by a decimal number of a dimension
register is allowed --- this is used for example by the pgf basic math engine.)

TgX elementary operations on numbers are done via the non-expandable \advance, \multiply, and
\divide assignments. This was changed with &-TgX's \numexpr which does expandable computations us-
ing standard infix notations with TgX integers. But &-TgX did not modify the TgX bound on acceptable
integers, and did not add floating point support.

The bigintcalc package by HE1ko OBERDIEK provided expandable macros (using some of \numexpr pos-
sibilities, when available) on arbitrarily big integers, beyond the TgX bound. It does not provide
an expression parser.?3 xint did it again using more of \numexpr for higher speed, and in a later
evolution added handling of exact fractions, of scientific numbers, and an expression parser. Ar-
bitrary precision floating points operations were added as a derivative, and not part of the ini-
tial design goal. Currently (1.20), the only non-elementary operation implemented for floating
point numbers is the square-root extraction; no signed infinities, signed zeroes, NaN's, error
traps. . ., have been implemented, only the notion of “scientific notation with a given number of
significant figures' .24

The BIEX3 project has implemented expandably floating-point computations with 16 significant
figures (13fp), including functions such as exp, log, sine and cosine.?’

More directly related to the xint bundle there is the 13bigint package, also devoted to big
integers and in development a.t.t.o.w (2015/10/09, no division yet). It is part of the experimen-
tal trunk of the KX3 Project and provides an expression parser for expandable arithmetic with big
integers. Its author Bruno L FLocH succeeded brilliantly into implementing expandably the Karat-
suba multiplication algorithm and he achieves sub-quadratic growth for the computation time. This

22 For example multiplication of integers having from 50 to 100 digits takes roughly of the order of the millisecond on a 2012
desktop computer. | compared this to using Python3: using timeit module on a wrapper defined as return wz with random
integers of 100 digits, | observe on the same computer a computation time of roughly 4.107’s per call. And with return str(w:)
z) then this becomes more like 16.1077s per call. And with return str(int(W)+int(Z)) where W and Z are strings, this becomes
about 26.107’s (I am deliberately ignoring Python's Decimal module here...) Anyway, my sentence from earlier version of this
documentation: this is, | guess, at least about 1000 times slower than what can be expected with any reasonable programming
language, is about right. | then added: nevertheless as compilation of a typical ATEX document already takes of the order of
seconds and even dozens of seconds for long ones, this leaves room for reasonably many computations via xintexpr or via direct
use of the macros of xint/xintfrac. 23 One can currently use package bnumexpr to associate the bigintcalc macros with an
expression parser. This may be unavailable in future if bnumexpr becomes more tightly associated with future evolutions or variants
of xintcore. 2* multiplication of two floats with P=\xinttheDigits digits is first done exactly then rounded to P digits, rather
than using a specially tailored multiplication for floating point numbers which would be more efficient (it is a waste to evaluate
fully the multiplication result with 2P or 2P-1 digits.) 2° at the time of writing (2014/10/28) the I3fp (exactly represented)
floating point numbers have their exponents limited to £9999.

36

http://mirror.ctan.org/graphics/pgf/base
http://www.ctan.org/pkg/bigintcalc
http://www.ctan.org/pkg/l3kernel
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org
http://ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/l3kernel

3 The xint bundle

shows up very clearly with numbers having thousands of digits, up to the maximum which a.t.t.o.w
is at 8192 digits.

The 13bigint multiplication from late 2015 is observed to be roughly 3x--4x faster than the one
from \xintiiexpr in the range of 4000 to 5000 digits integers, and isn't far from being 9x faster
at 8000 digits. On the other hand \xintiiexpr's multiplication is found to be on average roughly
2.5x faster than 13bigint's for numbers up to 100 digits and the two packages achieve about the
same speed at 900 digits: but each such multiplication of numbers of 900 digits costs about one or
two tenths of a second on a 2012 desktop computer, whereas the order of magnitude is rather the ms
for numbers with 50--100 digits.26

Even with the superior 13bigint Karatsuba multiplication it takes about 3.5s on this 2012 desk-
top computer for a single multiplication of two 5000-digits numbers. Hence it is not possible to do
routinely such computations in a document. I have long been thinking that without the expandabil-
ity constraint much higher speeds could be achieved, but perhaps I have not given enough thought
to sustain that optimistic stance.?’

I remain of the opinion that if one really wants to do computations with thousands of digits,
one should drop the expandability requirement. Indeed, as clearly demonstrated long ago by the
pi computing file by D. ROEGEL one can program TgX to compute with many digits at a much higher
speed than what xint achieves: but, direct access to memory storage in one form or another seems a
necessity for this kind of speed and one has to renounce at the complete expandability.?2

3.2 Floating point evaluations

Floating point macros are provided by package xintfrac to work with a given arbitrary precision P.
The default value is P = 16 meaning that the significands of the produced (non-zero) numbers have
16 decimal digits. The syntax to set the precision to P is

\xintDigits:=P;
The value is local to the group or environment (if using BIgX). To query the current value use
\xinttheDigits.

Most floating point macros accept an optional first argument [P] which then sets the target pre-
cision and replaces the \xintDigits assigned value (the [P] must be repeated if the arguments are
themselves xintfrac macros with arguments of their own.) In this section P refers to the prevailing
\xinttheDigits float precision or to the target precision set in this way as an optional argument.

\xintfloatexpr[Q]...\relax also admits an optional argument [Q] but it has an altogether dif-
ferent meaning: the computations are always done with the prevailing \xinttheDigits precision and
the optional argument Q is used for the final rounding. This makes sense only if Q<\xinttheDigits
and is intended to clean up the result from dubious last digits.

The IEEE 7542° requirement of correct rounding for addition, subtraction, multiplication,
division and square root is achieved (in arbitrary precision) by the macros of xintfrac hence
also by the infix operators +, -, *, /.

This means that for operands given with at most P significant digits (and arbitrary expo-
nents) the output coincides exactly with the rounding of the exact theoretical result (barring

overflow or underflow).

Due to a typographical oversight, this documentation (up to 1.2j) adjoined * and ** to the above list of infix
operators. But as is explained in subsection 9.74, what is guaranteed regarding integer powers is an error of at most
0.52ulp, not the correct rounding. Half-integer powers are computed as square roots of integer powers.

The rounding mode is " “round to nearest, ties away from zero''. It is not customizable.

26 | have tested this again on 2016/12/19, but the macros have not changed on the I3bigint side and barely on the xintcore
side, hence | got again the same results... 27 The apnum package implements (non-expandably) arbitrary precision fixed point
algebra and (v1.6) functions exp, log, sqrt, the trigonometrical direct and inverse functions. 28 The LuaTEX project possibly
makes endeavours such as xint appear even more insane that they are, in truth: xint is able to handle fast enough computations
involving numbers with less than one hundred digits and brings this to all engines.

37

http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://www.ctan.org/pkg/pi
http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint
http://www.ctan.org/pkg/apnum

3 The xint bundle

Currently xintfrac has no notion of NaNs or signed infinities or signed zeroes, but this is
intended for the future.

Currently, the only non-elementary operation is the square root. Since release 1.2f, square root
extraction achieves correct rounding in arbitrary precision.

The elementary transcendantal functions are not yet implemented. The power function in the
expression parsers accepts integer exponents and also half-integer exponents for float expres-
sions. 30

The maximal floating point decimal exponent is currently 2147483647 which is the maximal number
handled by TgX. The minimal exponent is its opposite. But this means that overflow or underflow are
detected only via low-level \numexpr arithmetic overflows which are basically un-recoverable.
Besides there are some border effects as the routines need to add or subtract lengths of numbers
from exponents, possibly triggering the low-level overflows. In the future not only the Precision
but also the maximal and minimal exponents Emin and Emax will be specifiable by the user.

Since 1.2f, the float macros round their inputs to the target precision P before further pro-
cessing. Formerly, the initial rounding was done to P+2 digits (and at least P+3 for the power
operation.)

The more ambitious model would be for the computing macros to obey the intrinsic precision of
their inputs, i.e. to compute the correct rounding to P digits of the exact mathematical result
corresponding to inputs allowed to have their own higher precision.3! This would be feasible by
xintfrac which after all knows how to compute exactly, but I have for the time being decided that
for reasons of efficiency, the chosen model is the one of rounding inputs to the target precision
first.

The float macros of xintfrac have to handle inputs which not only may have much more digits than
the target float precision, but may even be fractions: in a way this means infinite precision.

From releases 1.08a to 1.2j a fraction input AeM/BeN had its numerator and denominator A and
B truncated to Q+2 digits of precision, then the substituted fraction was correctly rounded to
Q digits of precision (usually with Q set to P+2) and then the operation was implemented on such
rounded inputs. But this meant that two fractions representing the same rational number could end
up being rounded differently (with a difference of one unit in the last place), if it had numerators
and denominators with at least Q+3 digits.

Starting with release 1.2k a fractional input AeM/BeN is handled intrinsically: the fraction,
independently of its representation AeM/BeN, is correctly rounded to P digits during the input
parsing. Hence the output depends only on its arguments as mathematical fractions and not on their
representatives as quotients.

Notice that in float expressions, the / is treated as operator, and is applied to arguments
which are generally already P-floats, hence the above discussion becomes relevant in this context
only for the special input form gqfloat(A/B) or when using a sub-expression \xintexpr A/B\relax
embedded in the float expression with A or B having more digits than the prevailing float precision
P.

3.3 Expansion matters

3.3.1 Full expansion of the first token

The whole business of xint is to build upon \numexpr and handle arbitrarily large numbers. Each
basic operation is thus done via a macro: \xintiiAdd, \xintiiSub, \xintiiMul, \xintiiDivision. In

29 The IEEE 754-1985 standard was for hardware implementations of binary floating-point arithmetic with a spe-
cific value for the precision (24 bits for single precision, 53 bits for double precision). The newer IEEE 754-2008
(https://en.wikipedia.org/wiki/IEEE_floating_point) normalizes five basic formats, three binaries and two decimals (16 and
34 decimal digits) and discusses extended formats with higher precision. These standards are only indirectly relevant to libraries
like xint dealing with arbitrary precision. 30 Half-integer exponents work inside expressions, but not via the \xintFloatPower
macro. 3! The MPFR library http://www.mpfr.org/ implements this but it does not know fractions!

38

https://en.wikipedia.org/wiki/IEEE_floating_point
http://www.mpfr.org/

3 The xint bundle

order to handle more complex operations, it must be possible to nest these macros. An expandable
macro can not execute a \def or an \edef. But the macro must expand its arguments to find the
digits it is supposed to manipulate. TgX provides a tool to do the job of (expandable !) repeated
expansion of the first token found until hitting something non expandable, such as a digit, a \de)
f token, a brace, a \count token, etc... is found. A space token also will stop the expansion (and
be swallowed, contrarily to the non-expandable tokens).

By convention in this manual f-expansion (" " full expansion'' or " full first expansion'') will
be this TX process of expanding repeatedly the first token seen. For those familiar with BIEX3
(which is not used by xint) this is what is called in its documentation full expansion (whereas
expansion inside \edef would be described I think as *exhaustive'' expansion).

Most of the package macros, and all those dealing with computations32, are expandable in the
strong sense that they expand to their final result via this f-expansion. This will be signaled in
their descriptions via a star in the margin.

These macros not only have this property of f-expandability, they all begin by first applying
f-expansion to their arguments. Again from BX3's conventions this will be signaled by a margin
annotation next to the description of the arguments.

3.3.2 Summary of important expandability aspects

1. the macros f-expand their arguments, this means that they expand the first token seen (for
each argument), then expand, etc..., until something un-expandable such as a digit or a brace
is hit against. This example

\def\x{98765}\def\y{43210} \xintiiAdd {\x}{\x\y}
is not a legal construct, as the \y will remain untouched by expansion and not get converted
into the digits which are expected by the sub-routines of \xintiiAdd. It is a \numexpr which
will expand it and an arithmetic overflow will arise as 9876543210 exceeds the TgX bounds. The
same would hold for \xintAdd.

To the contrary \xinttheiiexpr and others have no issues with things such as \xinttheiiexpr 2
\x+\x\y\relax.

2. using \if...\fi constructs inside the package macro arguments requires suitably mastering
TgXniques (\expandafter's and/or swapping techniques) to ensure that the f-expansion will in-
deed absorb the \else or closing \fi, else some error will arise in further processing. There-
fore it is highly recommended to use the package provided conditionals such as \xintifEq,
\xintifGt, \xintifSgn, ... or, for BIX users and when dealing with short integers the etool-
box33 expandable conditionals (for small integers only) such as \ifnumequal, \ifnumgreater,
. ... Use of non-expandable things such as \ifthenelse is impossible inside the arguments of
xint macros.

One can use naive \if..\fi things inside an \xinttheexpr-ession and cousins, as long as the
test is expandable, for example
\xinttheiexpr\ifnum3>2 143\else 33\fi 042\relax—2044900=143042

3. after the definition \def\x {12}, one can not use -\x as input to one of the package macros:
the f-expansion will act only on the minus sign, hence do nothing. The only way is to use the
\xintOpp macro (or \xintiiOpp which is integer only) which obtains the opposite of a given
number.

Again, this is otherwise inside an \xinttheexpr-ession or \xintthefloatexpr-ession. There,
the minus sign may prefix macros which will expand to numbers (or parentheses etc...)

4. With the definition
\def\AplusBC #1#2#3{\xintAdd {#1}{\xintMul {#23}{#3}}}
one obtains an expandable macro producing the expected result, not in two, but rather in three

32 except \xintXTrunc. 33 http://www.ctan.org/pkg/etoolbox

39

http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox

Changed
(1.20)

num
X

Num

3 The xint bundle

steps: a first expansion is consumed by the macro expanding to its definition. As the pack-
age macros expand their arguments until no more is possible (regarding what comes first),
this \AplusBC may be used inside them: \xintAdd {\AplusBC {1}{2}{3}}{4} does work and re-
turns 11/1[0].
If, for some reason, it is important to create a macro expanding in two steps to its final
value, one may either do:

\def\AplusBC #1#2#3{\romannumeral- 0\xintAdd {#1}{\xintMul {#23}{#3}}}
or use the lowercase form of \xintAdd:

\def\AplusBC #1#2#3{\romannumeral®\xintadd {#1}{\xintMul {#23}{#3}1}}

and then \AplusBC will share the same properties as do the other xint “primitive' macros.

. The \romannumeral® and \romannumeral-"0 things above look like an invitation to hacker's ter-

ritory; if it is not important that the macro expands in two steps only, there is no reason to
follow these guidelines. Just chain arbitrarily the package macros, and the new ones will be
completely expandable and usable one within the other.

Since release 1.07 the \xintNewExpr macro automatizes the creation of such expandable macros:
\xintNewExpr\AplusBC[3] {#1+#2=#3}
creates the \AplusBC macro doing the above and expanding in two expansion steps.

. In the expression parsers of xintexpr such as \xintexpr..\relax, \xintfloatexpr..\relax the

contents are expanded completely from left to right until the ending \relax is found and swal-
lowed, and spaces and even (to some extent) catcodes do not matter.

. For all variants, prefixing with \xintthe allows to print the result or use it in other con-

texts. Shortcuts \xinttheexpr, \xintthefloatexpr, \xinttheiiexpr, ... are available.

3.4 Input formats for macros

Macros can have different types of arguments (we do not consider here the \xintexpr-parsers but
only the macros of xintcore/xint/xintfrac). In a macro description, a margin annotation signals
what is the argument type.

1.

TgX integers are handled inside a \numexpr..\relax hence may be count registers or variables.

Beware that -(1+1) is not legal and raises an error, but 0-(1+1) is. Also 2\cnta with \cnta a \»
count isn't legal. Integers must be kept less than 2147483647 in absolute value, although the

scaling operation (a*b)/c computes the intermediate product with twice as many bits.

The slash / does a division which is a fact of 1life of \numexpr which I have found very
annoying in at least nine cases out of ten, not to say ninety-nine cases out of one hundred.
Besides, it is at odds with TgX's \divide which does a truncated division (non-expandably).
But to follow-suit / also does rounded integer division in \xintiiexpr..\relax, and the oper-
ator // does there the truncated division.

. the strict format applies to macros handling big integers but only f-expanding their argu-

ments. After this f-expansion the input should be a string of digits, optionally preceded by
a unique minus sign. The first digit can be zero only if it is the only digit. A plus sign is
not accepted. -0 is not legal in the strict format. Macros of xint with a double ii require
this “strict' format for the inputs.

. the extended integer format applies when the macro parses its arguments via \xintNum. The

input may then have arbitrarily many leading minus and plus signs, followed by leading zeroes,
and further digits. With xintfrac loaded, \xintNum is extended to accept fractions and its
action is to truncate them to integers.

At 1.20 many macros from xintcore/xint which use \xintNum to parse their arguments got depre-
cated, see subsection 7.28, subsection 8.51, and subsection 8.52.

40

Frac

f

Frac

3 The xint bundle

4. the fraction input format applies to the arguments of xintfrac macros handling genuine frac-
tions. It allows two types of inputs: general and restricted. The restricted type is parsed
faster, but... is restricted.

general: inputs of the shape A.BeC/D.EeF. Example:

\noindent\xintRaw{+--0367.8920280e17/-++278.289287e-15}\newline
\xintRaw{+--+1253.2782e++--3/---0087.123e---5}\par

-3678920280/278289287[31]
-12532782/87123[7]

The input parser does not reduce fractions to smallest terms. Here are the rules of this
general fraction format:

e everything is optional, absent numbers are treated as zero, here are some extreme cases:
\xintRaw{}, \xintRaw{.}, \xintRaw{./1.e}, \xintRaw{-.e}, \xintRaw{e/-1}

o/1[ol1, o/1[o1, 0/1[01, 0/1[0], 0/1[0]
e AB and DE may start with pluses and minuses, then leading zeroes, then digits.

e Cand F will be given to \numexpr and can be anything recognized as such and not provok-
ing arithmetic overflow (the lengths of B and E will also intervene to build the final
exponent naturally which must obey the TgX bound) .

e the /, . (numerator and/or denominator) and e (numerator and/or denominator) are all
optional components.

e each of A, B, C, D, E and F may arise from f-expansion of a macro.

e the whole thing may arise from f-expansion, however the /, ., and e should all come from
this initial expansion. The e of scientific notation is mandatorily lowercased.

restricted: inputs either of the shape A[N] or A/B[N], which represents the fraction A/B times
10AN. The whole thing or each of A, B, N (but then not / or [) may arise from f-expansion,
A (after expansion) must have a unique optional minus sign and no leading zeroes, B (after
expansion) if present must be a positive integer with no signs and no leading zeroes, [N)
] if present will be given to \numexpr. Any deviation from the rules above will result in
errors.

Notice that *, + and - contrarily to the / (which is treated simply as a kind of delimiter) are
not acceptable within arguments of this type (see subsection 3.6 for some exceptions to this.)

Generally speaking, there should be no spaces among the digits in the inputs (in arguments to
the package macros). Although most would be harmless in most macros, there are some cases where
spaces could break havoc.3* So the best is to avoid them entirely.

This is entirely otherwise inside an \xintexpr-ession, where spaces are ignored (except when
they occur inside arguments to some macros, thus escaping the \xintexpr parser). See the sec-
tion 10.

There are also some slighly more obscure expansion types: in particular, the \xintApplyInline
and \xintFor* macros from xinttools apply a special iterated f-expansion, which gobbles spaces,
to the non-braced items (braced items are submitted to no expansion because the opening brace stops

34 The \xintNum macro does not remove spaces between digits beyond the first non zero ones; however this should not really
alter the subsequent functioning of the arithmetic macros, and besides, since xintcore 1.2 there is an initial parsing of the entire
number, during which spaces will be gobbled. However | have not done a complete review of the legacy code to be certain of all
possibilities after 1.2 release. One thing to be aware of is that \numexpr stops on spaces between digits (although it provokes an
expansion to see if an infix operator follows); the exponent for \xintiiPow or the argument of the factorial \xintiiFac are only
subjected to such a \numexpr (there are a few other macros with such input types in xint). If the input is given as, say 1 2\x
where \x is a macro, the macro \x will not be expanded by the \numexpr, and this will surely cause problems afterwards. Perhaps
a later xint will force \numexpr to expand beyond spaces, but | decided that was not really worth the effort. Another immediate
cause of problems is an input of the type \xintiiAdd {<space>\x }{\y }, because the space will stop the initial expansion; this
will most certainly cause an arithmetic overflow later when the \x will be expanded in a \numexpr. Thus in conclusion, damages
due to spaces are unlikely if only explicit digits are involved in the inputs, or arguments are single macros with no preceding space.

41

:':f

Frac

fo = f

n, resp. o

3 The xint bundle

it) coming from their list argument; this is denoted by a special symbol in the margin. Some other
macros such as \xintSum from xintfrac first do an f-expansion, then treat each found (braced or
not) item (skipping spaces between such items) via the general fraction input parsing, this is
signaled as here in the margin where the signification of the * is thus a bit different from the
previous case.

A few macros from xinttools do not expand, or expand only once their argument. This is also
signaled in the margin with notations a la BIEX3.

3.5 Output formats of macros

We do not consider here the \xintexpr-parsers but only the macros from xintcore, xint and xint-
frac. Macros of other components of the bundle may have their own output formats, for example for
continuous fractions with xintcfrac. There are mainly three types of outputs:

e arithmetic macros from xintcore/xint deliver integers in the strict format as described in
the previous section.

e arithmetic macros from xintfrac produce on output the strict fraction format A/B[N], which
stands for (A/B)X10AN, where A and B are integers, B is positive, and Nis a ~"short'' integer.
The output is not reduced to smallest terms. The A and B may end with zeroes (i.e, N does not
represent all powers of ten). The denominator B is always strictly positive. There is no +
sign. The - is always first if present (i.e. the denominator on output is always positive.)
The output will be expressed as such a fraction even if the inputs are both integers and the
mathematical result is an integer. The B=1 is not removed.>’

e macros with Float in their names produce on output scientific format with P=\xinttheDigits
digits, a lowercase e and an exponent N. The first digit is not zero, it is preceded by an
optional minus sign and is followed by a dot and P-1 digits. Trailing zeroes are not trimmed.
There is one exceptional case:

— if the value is mathematically zero, it is output as 0.e0, i.e. zeros after the decimal mark
are removed and the exponent is always 0.
Future versions of the package may modify this.

3.6 Count registers and variables

Inside \xintexpr..\relax and its variants, a count register or count control sequence is auto-
matically unpacked using \number, with tacit multiplication: 1.23\counta is like 1.23*\number\c)
ounta. There is a subtle difference between count registers and count variables. In 1.23*\counta
the unpacked \counta variable defines a complete operand thus 1.23*\counta 7 is a syntax error.
But 1.23*\count® just replaces \count® by \number\count® hence 1.23*\count® 7 is like 1.23%57 if
\count® contains the integer value 5.

Regarding now the package macros, there is first the case of arguments having to be short inte-
gers: this means that they are fed to a \numexpr...\relax, hence submitted to a complete expansion
which must deliver an integer, and count registers and even algebraic expressions with them like
\mycountA+\mycountB=17-\mycountC/12+\mycountD are admissible arguments (the slash stands here
for the rounded integer division done by \numexpr). This applies in particular to the number of
digits to truncate or round with, to the indices of a series partial sum, ...

The macros allowing the extended format for long numbers or dealing with fractions will to some
extent allow the direct use of count registers and even infix algebra inside their arguments: a
count register \mycountA or \count 255 is admissible as numerator or also as denominator, with no
need to be prefixed by \the or \number. It is possible to have as argument an algebraic expression
as would be acceptable by a \numexpr...\relax, under this condition: each of the numerator and

35 refer to the documentation of \xintPRaw for an alternative.

42

—_—

3 The xint bundle

denominator is expressed with at most nine tokens.3® 37 Important: a slash for rounded division
in a \numexpr should be written with braces {/} to not be confused with the xintfrac delimiter
between numerator and denominator (braces will be removed internally and the slash will count for
one token). Example: \mycountA+\mycountB{/}17/1+\mycountA*\mycountB, or \count 0+\count 2{/}172
/1+\count O*\count 2.

\cnta 10 \cntb 35 \xintRaw {\cnta+\cntb{/}17/1+\cnta*\cntb}->12/351[0]
For longer algebraic expressions using count registers, there are two possibilities:

1. let the numerator and the denominator be presented as \the\numexpr...\relax,

2. or as \numexpr {...}\relax (the braces are removed during processing; they are not legal for

\numexpr...\relax syntax.)
\cnta 100 \cntb 10 \cntc 1
\xintPRaw {\numexpr {\cnta*\cnta+\cntb=\cntb+\cntc*\cntc+
2x\cntax\cntb+2*\cntax\cntc+2*\cntb*\cntc}\relax/%
\numexpr {\cnta*\cnta+\cntb=\cntb+\cntc*\cntc}\relax }
12321/10101

3.7 Dimension registers and variables

(dimen) variables can be converted into (short) integers suitable for the xint macros by prefixing
them with \number. This transforms a dimension into an explicit short integer which is its value
in terms of the sp unit (1/65536pt). When \number is applied to a {glue) variable, the stretch and
shrink components are lost.

For WX users: a length is a (glue) variable, prefixing a length macro defined by \newlength with
\number will thus discard the plus and minus glue components and return the dimension component
as described above, and usable in the xint bundle macros.

This conversion is done automatically inside an \xintexpr-essions, with tacit multiplication
implied if prefixed by some (integral or decimal) number.

One may thus compute areas or volumes with no limitations, in units of spA2 respectively sp*3, do
arithmetic with them, compare them, etc..., and possibly express some final result back in another
unit, with the suitable conversion factor and a rounding to a given number of decimal places.

A table of dimensions illustrates that the internal values used by TgX do not correspond al-
ways to the closest rounding. For example a millimeter exact value in terms of sp units is
72.27/10/2.54%65536=186467.981... and TX uses internally 186467sp (TX truncates to get an in-
tegral multiple of the sp unit; see at the end of this section the exact rules applied internally
by TX) .

There is something quite amusing with the Didot point. According to the TgXBook, 1157 dd=1238
t. The actual internal value of 1dd in TgX is 70124 sp. We can use xintcfrac to display the list of
centered convergents of the fraction 70124/65536:

\xintListWithSep{, }{\xintFtoCCv{70124/65536}}

1/1, 15/14, 61/57, 107/100, 1452/1357, 17531/16384, and we don't find 1238/1157 therein, but an-
other approximant 1452/1357!

And indeed multiplying 70124/65536 by 1157, and respectively 1357, we find the approximations
(wait for more, later):

"71157dd''=1237.998474121093. . . pt

"71357dd''=1451.999938964843. . . pt
and we seemingly discover that 1357 dd=1452pt is far more accurate than the TgXBook formula 1157 d)
d=1238pt ! The formula to compute Ndd was

\xinttheexpr trunc(N\dimexpr 1ldd\relax/\dimexpr 1pt\relax,12)\relax}

36 The 1.2k and earlier versions manual claimed up to 8 tokens, but low-level TeX error arose if the \numexpr ...\relax occupied
exactly 8 tokens and evaluated to zero. With 1.21 and later, up to 9 tokens are always safe and one may even drop the ending \0
relax. But well, all these explanations are somewhat silly because prefixing by \the or \number is always working with arbitrarily
many tokens. 37 Attention! in the IATEX context a \value{countername} will behave ok only if it is first in the input, if not it
will not get expanded, and braces around the name will be removed and chaos will ensue inside a \numexpr. One should enclose
the whole input in \the\numexpr...\relax in such cases.

43

3 The xint bundle

TgX's value Relative

Unit definition Exact value in sp units . .
in sp units error
cm 0.01m 236814336/127 = 1864679.811... 1864679 -0.0000%
mm 0.001m 118407168/635 = 186467.981. .. 186467 -0.0005%
in 2.54 cm 118407168/25 = 4736286.720. .. 4736286 -0.0000%
pc 12 pt 786432 = 786432.000... 786432 0%
pt 1/72.27 in 65536 = 65536.000... 65536 0%
bp 1/72 in 1644544/25 = 65781.760. .. 65781 -0.0012%
3bp 1/24 in 4933632/25 = 197345.280. .. 197345 -0.0001%
12bp 1/6 in 19734528/25 =789381.120... 789381 -0.0000%
72bp 1in 118407168/25 = 4736286.720. .. 4736286 -0.0000%
dd 1238/1157 pt 81133568/1157 =70124.086. .. 70124 -0.0001%
11dd 11*1238/1157 pt 892469248/1157 =771364.950... 771364 -0.0001%
12dd 12%1238/1157 pt 973602816/1157 = 841489.037... 841489 -0.0000%
sp 1/65536 pt 1=1.000... 1 0%

TgX dimensions

What's the catch? The catch is that TX does not compute 1157 dd like we just did:

1157 dd=\number\dimexpr 1157dd\relax/65536=1238.000000000000. . .pt

1357 dd=\number\dimexpr 1357dd\relax/65536=1452.001724243164. . .pt
We thus discover that TgX (or rather here, e-TgX, but one can check that this works the same in
TgX82), uses 1238/1157 as a conversion factor (and necessarily intermediate computations simulate
higher precision than a priori available with integers less than 231 or rather 23° for dimensions).
Hence the 1452/1357 ratio is irrelevant, an artefact of the rounding (or rather, as we see, trun-
cating) for one dd to be expressed as an integral number of sp's.

Let us now use \xintexpr to compute the value of the Didot point in millimeters, if the above
rule is exactly verified:

\xinttheexpr trunc(1238/1157%25.4/72.27,12)\relax=0.376065027442. . .mm
This fits very well with the possible values of the Didot point as listed in the Wikipedia Article.
The value 0.376065mm is said to be the traditional value in European printers' offices. So the
1157 dd=1238 pt rule refers to this Didot point, or more precisely to the conversion factor to be
used between this Didot and TgX points.

The actual value in millimeters of exactly one Didot point as implemented in TX is

\xinttheexpr trunc(\dimexpr 1dd\relax/65536/72.27+%25.4,12)\relax

=0.376064563929...mm
The difference of circa 5A is arguably tiny!

By the way the European printers' offices (dixit Wikipedia) Didot is thus exactly

\xinttheexpr reduce(.376065/(25.4/72.27))\relax=543564351/508000000 pt
and the centered convergents of this fraction are 1/1, 15/14, 61/57, 107/100, 1238/1157, 11249/1)
0513, 23736/22183, 296081/276709, 615898/575601, 11382245/10637527, 22148592/20699453, 1885709
81/176233151, 543564351/508000000. We do recover the 1238/1157 therein!

Here is how TgX converts abc.xyz...<unit>. First the decimal is rounded to the nearest inte-
gral multiple of 1/65536, say X/65536. The <unit> is associated to a ratio N/D, which repre-
sents <unit>/pt. For the Didot point the ratio is indeed 1238/1157. TgX truncates the fraction
XN/D to an integer M. The dimension is represented by M sp.

For more details refer to:

44

http://en.wikipedia.org/wiki/Point_%28typography%29#Didot

3 The xint bundle

http://tex.stackexchange.com/questions/338297/why-pdf-file-cannot-be-reproduced/338510#
338510.

3.8 \ifcase, \ifnum, ... constructs

When using things such as \ifcase \xintSgn{\A} one has to make sure to leave a space after the
closing brace for TgX to stop its scanning for a number: once TgX has finished expanding \xintSgn)
{\A} and has so far obtained either 1, 0, or -1, a space (or something “unexpandable') must stop
it looking for more digits. Using \ifcase\xintSgn\A without the braces is very dangerous, because
the blanks (including the end of 1ine) following \A will be skipped and not serve to stop the number
which \ifcase is looking for.

\begin{enumerate}[nosep]\def\A{1}

\item \ifcase \xintSgn\A O\or OK\else ERROR\fi

\item \ifcase \xintSgn\A\space 0\or OK\else ERROR\fi

\item \ifcase \xintSgn{\A} O\or OK\else ERROR\fi

\end{enumerate}
1. ERROR
2. 0K

3. 0K

In order to use successfully \if...\fi constructions either as arguments to the xint bundle
expandable macros, or when building up a completely expandable macro of one's own, one needs some
TgXnical expertise (see also item 2 on page 39).

It is thus much to be recommended to use the expandable branching macros, provided by xint-
frac succh as \xintifSgn, \xintifZero, \xintifOne, \xintifNotZero, \xintifTrueAelseB, \xint-
ifCmp, \xintifGt, \xintifLt, \xintifEq, \xintifInt... See their respective documentations. All
these conditionals always have either two or three branches, and empty brace pairs {} for unused
branches should not be forgotten.

If these tests are to be applied to standard TgX short integers, it is more efficient to use
(under BEX) the equivalent conditional tests from the etoolbox3® package.

3.9 No variable declarations are needed

There is no notion of a declaration of a variable.

To do a computation and assign its result to some macro \z, the user will employ the \def, \edef,
or \newcommand (in BIgX) as usual, keeping in mind that two expansion steps are needed, thus \edef
is initially the main tool:

\def\x{1729728} \def\y{352827927} \edef\z{\xintiiMul {\x}{\y}}

\meaning\z
macro:->610296344513856

As an alternative to \edef the package provides \oodef which expands exactly twice the replace-
ment text, and \fdef which applies f-expansion to the replacement text during the definition.

\def\x{1729728} \def\y{352827927} \oodef\w {\xintiiMul\x\y} \fdef\z{\xintiiMul {\x}{\y}}

\meaning\w, \meaning\z
macro:->610296344513856, macro:->610296344513856

In practice \oodef is slower than \edef, except for computations ending in very big final re-
placement texts (thousands of digits). On the other hand \fdef appears to be slightly faster than
\edef already in the case of expansions leading to only a few dozen digits.

xintexpr does provide an interface to declare and assign values to identifiers which can then
be used in expressions: subsection 2.5.

38 http://www.ctan.org/pkg/etoolbox

45

http://tex.stackexchange.com/questions/338297/why-pdf-file-cannot-be-reproduced/338510#338510
http://tex.stackexchange.com/questions/338297/why-pdf-file-cannot-be-reproduced/338510#338510
http://www.ctan.org/pkg/etoolbox
http://www.ctan.org/pkg/etoolbox

3 The xint bundle

3.10 When expandability is too much

Let's use the macros of subsection 2.9 related to Fibonacci numbers. Notice that the 47th Fibonacci
number is 2971215073 thus already too big for TX and &-TgX.

The \FibonacciN macro found in subsection 2.9 is completely expandable, it is even f-expandable.
We need a wrapper with \xintthe prefix

\def\theFibonacciN{\xintthe\FibonacciN}
to print in the document or to use within \message (or B X typeout) to write to the log and terminal.

The \xintthe prefix also allows its use it as argument to the xint macros: for example if we
are interested in knowing how many digits F(1250) has, it suffices to issue \xintLen {\theFibon
acciN {12503}} (which expands to 261). Or if we want to check the formula gcd(F(1859), F(1573)) =
F(gcd(1859, 1573)) =F(143), we only need3

$\xintiiGCD{\theFibonacciN{1859}}{\theFibonacciN{1573}}=%

\theFibonacciN{\xintiiGCD{1859}{1573}}$
which produces:

343358302784187294870275058337 = 343358302784187294870275058337

The \theFibonacciN macro expanded its \xintiiGCD{1859}{1573} argument via the services of \nw
mexpr: this step allows only things obeying the TgX bound, naturally! (but F(2147483648) would be
rather big anyhow...).

This is very convenient but of course it repeats the complete evaluation each time it is done.
In practice, it is often useful to store the result of such evaluations in macros. Any \edef will
break expandability, but if the goal is at some point to print something to the dvi or pdf output,
and not only to the log file, then expandability has to be broken one day or another!

Hence, in practice, if we want to print in the document some computation results, we can proceed
like this and avoid having to repeat identical evaluations:

\begingroup

\def\A {1859} \def\B {1573}

\edef\X {\theFibonacciN\A} \edef\Y {\theFibonacciN\B}
\edef\GCDAB {\xintiiGCD\A\B}\edef\Z {\theFibonacciN\GCDAB}
\edef\GCDXY{\xintiiGCD\X\Y}

The identity $\gcd(F(\A),F(\B))=F(\gcd(\A,\B))$ can be checked via evaluation

of both sides: $\gcd(F(\A),F(\B))=\gcd(\printnumber\X, \printnumber\Y)=

\printnumber{\GCDXY} = F(\gcd(\A,\B)) = F(\GCDAB) =\printnumber\Z$.\par

% some further computations involving \A, \B, \X, \Y

\endgroup % closing the group removes assignments to \A, \B,

% or choose longer names less susceptible to overwrite something.

% Note: there is no LaTeX \newecommand which would be to \edef like \newcommand is to \def
The identity gcd(F(1859), F(1573)) = F(gcd(1859, 1573)) can be checked via evaluation of both
sides: gcd(F(1859), F(1573)) = gcd(14405827913044251198771689151504042869913161495023481014226)
68636701088272597575494722482437753529619459794869227357628882216309358018264080851775319974»
256956055294350288615852451737250886736422228492908228952455838894954421926557604129992902552
659797113378761054522176234908415299798114131996600875176897034109975200799936107075760195202
876324584695551467505894985013610208598628752325727241, 244384192519511857332827945977762619%
85399024815706192326053609007840133940367432124452232789599095158695811031891779769058032741)
51632595307616686661013725200866754096569888951010022888016831459347310131566517721593249344)
79863439947937119575876654476582795890928239007031319713554812200493864453132952484774727316)
6471511289078393) = 343358302784187294870275058337 = F(gcd (1859, 1573)) = F(143) = 3433583027841)
87294870275058337.

One may legitimately ask the author: why expandability to such extremes, for things such as big
fractions or floating point numbers (even continued fractions...) which anyhow can not be used
directly within TgX's primitives such as \ifnum? Why insist on a concept which is foreign to the
vast majority of TgX users and even programmers?

I have no answer: it made definitely sense at the start of xint (see subsection 3.14) and once
started I could not stop.

39 The \xintiiGCD macro is provided by the xintgcd package.

46

Changed
(1.21

3 The xint bundle

3.11 Possible syntax errors to avoid

Here is a list of imaginable input errors. Some will cause compilation errors, others are more
annoying as they may pass through unsignaled.

e using - to prefix some macro: —\xin‘ciiSqr{BS}/271.40

e using one pair of braces too many \xintIrr{{\xintiiPow {3}{133}}/243} (the computation goes
through with no error signaled, but the result is completely wrong) .

e things like \xintiiAdd { \x}{\y} as the space will cause \x to be expanded later, most proba-
bly within a \numexpr thus provoking possibly an arithmetic overflow.

e using [] and decimal points at the same time 1.5/3.5[2], or with a sign in the denominator
3/-5[7]. The scientific notation has no such restriction, the two inputs 1.5/-3.5e-2 and -1.2
5e2/3.5 are equivalent: \xintRaw{l.5/-3.5e-2}=-15/35[2], \xintRaw{-1.5e2/3.5}=-15/35[2].

e generally speaking, using in a context expecting an integer (possibly restricted to the TgX
bound) a macro or expression which returns a fraction: \xinttheexpr 4/2\relax outputs 4/2,
not 2. Use \xintNum {\xinttheexpr 4/2\relax} or \xinttheiexpr 4/2\relax (which rounds the
result to the nearest integer, here, the result is already an integer) or \xinttheiiexpr 4/2)
\relax. Or, divide in your head 4 by 2 and insert the result directly in the TX source.

3.12 Error messages

In situations such as division by zero, the T run will be interrupted with some error message.
The user is asked to hit the RETURN key thrice, which will display additional information. In non-
interactive nonstopmode the TgX run goes on uninterrupted and the error data will be found in the
compilation log.

Here is an example interactive run:

! Undefined control sequence.

<argument> \ ! /

DivisionByZero (hit <RET> thrice)
1.11 \xintiiDivision{1233}{0}

?
! Undefined control sequence.
<argument> \ ! /

Division of 123 by 0
1.11 \xintiiDivision{123}{0}

?
! Undefined control sequence.
<argument> \ ! /

next: {0}{0}
1.11 \xintiiDivision{123}{0}

?

[1] (./temptest.aux))

Output written on temptest.dvi (1 page, 216 bytes).

Transcript written on temptest.log.

This is an experimental feature, which is in preparation for next major release.?! For the good
functioning of this the macro with the weird appearance \ ! / (yes, this is a single control se-

quence) must be left undefined. I trust it will be ;-) .42

40 to the contrary, this is allowed inside an \xintexpr-ession. #! The related macros checking or resetting error flags are
implemented in embryonic form but no user interface is provided with 1.21 release. 42 The implementation is cloned from
IATEX3, the \ ! / was chosen for its shortness.

47

0 |

3 The xint bundle

Deprecated macros also generate an (expandable) error message. Just hit the RETURN key once to
proceed. Most deprecated macros at 1.20 are listed either in subsection 7.28 or subsection 8.51
or subsection 8.52. They will get removed at some future release. Replace them with the correctly
named ones (possibly with additional usage of \xintNum if really needed); in most cases loading
xintfrac resolves these deprecations from xintcore/xint.

The expression parsers are at 1.21 still using a slightly less evolved method which lets TgX
display an undefined control sequence name giving some indication of the underlying problem (we
copied this method from the bigintcalc package). The name of the control sequence is the message.

\xintError:ignored \xintError:unknownfunction
\xintError:removed \xintError:we_are_doomed
\xintError:inserted \xintError:missing_xintthe!

Some constructs in xintexpr-essions use delimited macros and there is thus possibility in case
of an i11-formed expression to end up beyond the \relax end-marker. Such a situation can also occur
from a non-terminated \numexpr:

\xinttheexpr 3 + \numexpr 5+4\relax followed by some LaTeX code...
as the \numexpr will swallow the \relax whose presence is mandatory for \xinttheexpr, errors will
inevitably arise and may lead to very cryptic messages; but nothing unusual or especially trauma-
tizing for the daring experienced TgX/BIEX user, whose has seen zillions of un-helpful error mes-
sages already in her daily practice of TEX/ESI'EX.‘l3

3.13 Package namespace, catcodes

The bundle packages needs that the \space and \empty control sequences are pre-defined with the
identical meanings as in Plain TgX (or BIFX2e which has the same macros).

Private macros of xintkernel, xintcore, xinttools, xint, xintfrac, xintexpr, xintbinhex, xint-
gcd, xintseries, and xintcfrac use one or more underscores _ as private letter, to reduce the risk
of getting overwritten. They almost all begin either with \XINT_ or with \xint_, a handful of these
private macros such as \XINTsetupcatcodes, \XINTdigits and those with names such as \XINTinFloat)

. or \XINTinfloat... do not have any underscore in their names (for obscure legacy reasons).

xintkernel provides \odef, \oodef, \fdef: if macros with these names already exist xinttools
will not overwrite them. The same meanings are independently available under the names \xintodef,
\xintoodef, etc...

Apart from \thexintexpr, \thexintiexpr, ... all other public macros from the xint bundle pack-
ages start with \xint.

For the good functioning of the macros, standard catcodes are assumed for the minus sign, the
forward slash, the square brackets, the letter “e'. These requirements are dropped inside an \xin
texpr-ession: spaces are gobbled, catcodes mostly do not matter, the e of scientific notation may
be E (on input) ...

If a character used in the \xintexpr syntax is made active, this will surely cause problems; pre-
fixing it with \string is one option. There is \xintexprSafeCatcodes and \xintexprRestoreCatcodes
to temporarily turn off potentially active characters (but setting catcodes is an un-expandable
action).

For advanced TgX users. At loading time of the packages the catcode configuration may be
arbitrary as long as it satisfies the following requirements: the percent is of category code
comment character, the backslash is of category code escape character, digits have category
code other and letters have category code letter. Nothing else is assumed.

As pointed out in previous section the control sequence \ ! / must be left undefined.

43 not to mention the IATEX error messages used by Emacs AUCTEX mode also for Plain TEX runs...

48

4 Some utilities from the xinttools package

3.14 Origins of the package

2013/03/28. Package bigintcalc by HEiko OBERDIEK already provides expandable arithmetic opera-
tions on " "big integers'', exceeding the TgX limits (of 231 - 1), so why another** one?

I got started on this in early March 2013, via a thread on the c.t.tex usenet group, where ULRICH
D1iEz used the previously cited package together with a macro (\ReverseOrder) which I had con-
tributed to another thread.?’ What I had learned in this other thread thanks to interaction with
ULrRIcH DI Ez and GL on expandable manipulations of tokens motivated me to try my hands at addition
and multiplication.

I wrote macros \bigMul and \bigAdd which I posted to the newsgroup; they appeared to work com-
paratively fast. These first versions did not use the &-TgX \numexpr primitive, they worked one
digit at a time, having previously stored carry-arithmetic in 1200 macros.

I noticed that the bigintcalc package used \numexpr if available, but (as far as I could tell)
not to do computations many digits at a time. Using \numexpr for one digit at a time for \bigAdd and
\bigMul slowed them a tiny bit but avoided cluttering TgX memory with the 1200 macros storing pre-
computed digit arithmetic. I wondered if some speed could be gained by using \numexpr to do four
digits at a time for elementary multiplications (as the maximal admissible number for \numexpr has
ten digits).

2013/04/14. This initial xint was followed by xintfrac which handled exactly fractions and dec-
imal numbers.

2013/05/25. Later came xintexpr and at the same time xintfrac got extended to handle floating
point numbers.

2013/11/22. Later, xinttools was detached.

2014/10/28. Release 1.1 significantly extended the xintexpr parsers.

2015/10/10. Release 1.2 rewrote the core integer routines which had remained essentially unmod-
ified, apart from a slight improvement of division early 2014.

This 1.2 release also got its impulse from a fast ' "reversing'' macro, which I wrote after my
interest got awakened again as a result of correspondance with Bruno LE FrLocH during September
2015: this new reverse uses a TgXnique which requires the tokens to be digits. I wrote a routine
which works (expandably) in quasi-linear time, but a less fancy O(N*2) variant which I developed
concurrently proved to be faster all the way up to perhaps 7000 digits, thus I dropped the quasi-
linear one. The less fancy variant has the advantage that xint can handle numbers with more than
19900 digits (but not much more than 19950). This is with the current common values of the input
save stack and maximal expansion depth: 5000 and 10000 respectively.

4 Some utilities from the xinttools package

This is a first overview. Many examples combining these utilities with the arithmetic macros of
xint are to be found in section 15. See also section 5.

4.1 Assignments

It might not be necessary to maintain at all times complete expandability. A devoted syntax is pro-
vided to make these things more efficient, for example when using the \xintiiDivision macro which
computes both quotient and remainder at the same time:
\xintAssign \xintiiDivision{\xintiiPow {2}{1000}}{\xintiiFac{1003}}\to\A\B

give: \meaning\A: macro:->1148132496415075054822783938725510662598055177841861728836634780652
826541894704737970419535798876630484358265060061503749531707793118627774829601 and \meaning\p
B: macro:->5493629452133983225138128786223912807341050049847605059532189961231327664902288382
8132878702444582075129603152041054804964625083138567652624386837205668069376. Another example

a4

this section was written before the xintfrac package; the author is not aware of another package allowing expandable compu-
tations with arbitrarily big fractions. “° the \ReverseOrder could be avoided in that circumstance, but it does play a crucial réle
here.

49

4 Some utilities from the xinttools package

(which uses \xintBezout from the xintgcd package):

\xintAssign \xintBezout{357}{323}\to\A\B\U\V\D
is equivalent to setting \A to 357, \B to 323, \U to -9, \V to -10, and \D to 17. And indeed (-
9)x357-(-10)%323=17 is a Bezout Identity.

Thus, what \xintAssign does is to first apply an f-expansion to what comes next; it then defines
one after the other (using \def; an optional argument allows to modify the expansion type, see
subsection 15.21 for details), the macros found after \to to correspond to the successive braced
contents (or single tokens) located prior to \to. In case the first token (after the optional
parameter within brackets, cf. the \xintAssign detailed document) is not an opening brace {, \xi»
ntAssign consider that there is only one macro to define, and that its replacement text should be
all that follows until the \to.

\xintAssign\xintBezout{35709028360263}{200467139463}\to\A\B\U\V\D
gives then \U with meaning 5812117166, \V with meaning 103530711951 and \D with meaning 3.

In situations when one does not know in advance the number of items, one has \xintAssignArray or
its synonym \xintDigitsOf:

\xintDigitsOf\xintiiPow{2}{100}\to\DIGITS
This defines \DIGITS to be macro with one parameter, \DIGITS{0} gives the size N of the array
and \DIGITS{n}, for n from 1 to N then gives the nth element of the array, here the nth digit of
2100, from the most significant to the least significant. As usual, the generated macro \DIGITS is
completely expandable (in two steps). As it wouldn't make much sense to allow indices exceeding
the TgX bounds, the macros created by \xintAssignArray put their argument inside a \numexpr, so it
is completely expanded and may be a count register, not necessarily prefixed by \the or \number.
Consider the following code snippet:

% \newcount\cnta

% \newcount\cntb

\begingroup

\xintDigitsOf\xintiiPow{2}{100}\to\DIGITS

\cnta = 1

\cntb = 0

\loop

\advance \cntb \xintiiSqr{\DIGITS{\cnta}}

\ifnum \cnta < \DIGITS{0}

\advance\cnta 1

\repeat

|2A{100} | (=\xintiiPow {2}{100}) has \DIGITS{0} digits and the sum of their squares is \the\cntb.

These digits are, from the least to the most significant: \cnta = \DIGITS{0} \loop

\DIGITS{\cnta}\ifnum \cnta > 1 \advance\cnta -1 , \repeat.\endgroup

2+{100} (=1267650600228229401496703205376) has 31 digits and the sum of their squares is 679.
These digits are, from the least to the most significant: 6, 7, 3, 5, 0, 2, 3,0, 7,6, 9, 4,1, 0,
4,9,2,2,8,2,2,0,0,6,0,5,6,7,6, 2, 1.

Warning: \xintAssign, \xintAssignArray and \xintDigitsOf do not do any check on whether the
macros they define are already defined.

4.2 Utilities for expandable manipulations

The package now has more utilities to deal expandably with “lists of things', which were treated
un-expandably in the previous section with \xintAssign and \xintAssignArray: \xintReverseOrder
and \xintLength since the first release, \xintApply and \xintListWithSep since 1.04, \xint-
RevWWithBraces, \xintCSVtoList, \xintNthElt since 1.06, \xintApplyUnbraced, since 1.06b, \xint-
loop and \xintiloop since 1.09g.4®

As an example the following code uses only expandable operations:

$2A4{100}$ (=\xintiiPow {2}{100}) has \xintLen{\xintiiPow {2}{100}} digits and the sum of their

46 All these utilities, as well as \xintAssign, \xintAssignArray and the \xintFor loops are now available from the xinttools
package, independently of the big integers facilities of xint.

50

5 Additional examples using xinttools or xintexpr or both

squares is \xintiiSum{\xintApply {\xintiiSqr}{\xintiiPow {2}{1003}}}. These digits are, from the
least to the most significant: \xintListWithSep {, }{\xintRev{\xintiiPow {2}{100}}}. The thirteenth
most significant digit is \xintNthElt{13}{\xintiiPow {2}{100}}. The seventh least significant one
is \xintNthElt{7}{\xintRev{\xintiiPow {2}{100}}}.
2100 (=1267650600228229401496703205376) has 31 digits and the sum of their squares is 679. These
digits are, from the least to the most significant: 6, 7, 3, 5, 0, 2, 3,0, 7, 6,9, 4, 1,0, 4,9,
2,2,8,2,2,0,0,6,0,5,6, 7, 6,2, 1. The thirteenth most significant digit is 8. The seventh
least significant one is 3.
It would be more efficient to do once and for all \edef\z{\xintiiPow {23}{100}}, and then use \z
in place of \xintiiPow {2}{100} everywhere as this would spare the CPU some repetitions.
Expandably computing primes is done in subsection 15.12.

4.3 A new kind of for loop

As part of the utilities coming with the xinttools package, there is a new kind of for loop, \xint-
For. Check it out (subsection 15.16 and also in next section).

4.4 A new kind of expandable loop

Also included in xinttools, \xintiloop is an expandable loop giving access to an iteration index,
without using count registers which would break expandability. Check it out (subsection 15.14 and
also in next section).

5 Additional examples using xinttools or xintexpr or both

Note: xintexpr.sty automatically loads xinttools.sty.

5.1 Completely expandable prime test

Let us now construct a completely expandable macro which returns 1 if its given input is prime and
0 if not:
\def\remainder #1#2{\the\numexpr #1-(#1/#2)+*#2\relax }
\def\IsPrime #1%
{\xintANDof {\xintApply {\remainder {#1}}{\xintSeq {2}{\xintiiSqrt{#1}}}}}

This uses \xintiiSqrt and assumes its input is at least 5. Rather than xint's own \xintiiRem we
used a quicker \numexpr expression as we are dealing with short integers. Also we used \xintANDof
which will return 1 only if all the items are non-zero. The macro is a bit silly with an even input,
ok, let's enhance it to detect an even input:

\def\IsPrime #1%

{\xintiiifodd {#1}
{\xintANDof % odd case
{\xintApply {\remainder {#1}}
{\xintSeq [2]{3}{\xintiiSqrt{#1}}}%
1%
}
{\xintifEq {#1}{23}{1}{03}}%
}

We used the xint expandable tests (on big integers or fractions) in order for \IsPrime to be
f-expandable.

Our integers are short, but without \expandafter's with \@firstoftwo, or some other related
techniques, direct use of \ifnum..\fi tests is dangerous. So to make the macro more efficient we
are going to use the expandable tests provided by the package etoolbox*’. The macro becomes:

\def\IsPrime #1%

47 http://ctan.org/pkg/etoolbox

51

http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/etoolbox

5 Additional examples using xinttools or xintexpr or both

{\ifnumodd {#1}

{\xintANDof % odd case

{\xintApply {\remainder {#1}}{\xintSeq [2]{3}{\xintiiSqrt{#1}}}}}
{\ifnumequal {#1}{23}{1}{0}}}

In the odd case however we have to assume the integer is at least 7, as \xintSeq generates an
empty list if #1=3 or 5, and \xintANDof returns 1 when supplied an empty list. Let us ease up a bit
\xintANDof's work by letting it work on only 0's and 1's. We could use:

\def\IsNotDivisibleBy #1#2%

{\ifnum\numexpr #1-(#1/#2)=#2=0 \expandafter 0\else \expandafterl\fi}
where the \expandafter's are crucial for this macro to be f-expandable and hence work within the
applied \xintANDof. Anyhow, now that we have loaded etoolbox, we might as well use:

\newcommand{\IsNotDivisibleBy}[2]{\ifnumequal {#1- (#1/#2)=#2}{0}{0}{1}}

Let us enhance our prime macro to work also on the small primes:

\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}
{\ifnumless {#1}{8}
{\ifnumequal {#1}{1}{0}{13}3}% 3,5,7 are primes
{\xintANDof
{\xintApply
{ \IsNotDivisibleBy {#1}}{\xintSeq [2]{3}{\xintiiSqrt{#13}}}}%
}3}% END OF THE ODD BRANCH
{\ifnumequal {#13}{2}{1}{03}}% EVEN BRANCH

}

The input is still assumed positive. There is a deliberate blank before \IsNotDivisibleBy to
use this feature of \xintApply: a space stops the expansion of the applied macro (and disappears).
This expansion will be done by \xintANDof, which has been designed to skip everything as soon as
it finds a false (i.e. zero) input. This way, the efficiency is considerably improved.

We did generate via the \xintSeq too many potential divisors though. Later sections give two
variants: one with \xintiloop (subsection 5.2) which is still expandable and another one (sub-
section 5.5) which is a close variant of the \IsPrime code above but with the \xintFor loop, thus
breaking expandability. The xintiloop variant does not first evaluate the integer square root,
the xintFor variant still does. I did not compare their efficiencies.

Let us construct with this expandable primality test a table of the prime numbers up to 1000. We
need to count how many we have in order to know how many tab stops one shoud add in the last row.48
There is some subtlety for this last row. Turns out to be better to insert a \\ only when we know
for sure we are starting a new row; this is how we have designed the \OneCell macro. And for the
last row, there are many ways, we use again \xintApplyUnbraced but with a macro which gobbles its
argument and replaces it with a tabulation character. The \xintFor* macro would be more elegant
here.

\newcounter{primecount}

\newcounter{cellcount}

\newcommand{\NbOfColumns}{13}

\newcommand{\OneCell}[1]{%

\ifnumequal{\IsPrime{#1}}{1}
{\stepcounter{primecount}
\ifnumequal{\value{cellcount}}{\NbOfColumns}
{\\\setcounter{cellcount}{1}#1}
{&\stepcounter{cellcount}#1}%
} % was prime
{}% not a prime, nothing to do

}

\newcommand{\OneTab}[1]{&}

\begin{tabular}{|*{\NbOfColumns}{r}|}

\hline

2 \setcounter{cellcount}{1}\setcounter{primecount}{13}%

48 although a tabular row may have less tabs than in the preamble, there is a problem with the | vertical rule, if one does that.

52

http://ctan.org/pkg/etoolbox

5 Additional examples using xinttools or xintexpr or both

\xintApplyUnbraced \OneCell {\xintSeq [2]{3}{999}}%
\xintApplyUnbraced \OneTab

{\xintSeq [1]{1}{\the\numexpr\NbOfColumns-\value{cellcount}\relax}}%
A\

\hline

\end{tabular}

There are \arabic{primecount} prime numbers up to 1000.

The table has been put in float which appears on the current page. We had to be careful to use in
the last row \xintSeq with its optional argument [1] so as to not generate a decreasing sequence
from 1 to 0, but really an empty sequence in case the row turns out to already have all its cells
(which doesn't happen here but would with a number of columns dividing 168).

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97 101
103 107 109 113 127 131 137 139 149 151 157 163 167
173 179 181 191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293 307 311 313
317 331 337 347 349 353 359 367 373 379 383 389 397
401 409 419 421 431 433 439 443 449 457 461 463 467
479 487 491 499 503 509 521 523 541 547 557 563 569
571 577 587 593 599 601 607 613 617 619 631 641 643
647 653 659 661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809 811 821 823
827 829 839 853 857 859 863 877 881 883 887 907 0911
919 929 937 941 947 953 967 971 977 983 991 997

There are 168 prime numbers up to 1000.

5.2 Another completely expandable prime test

The \IsPrime macro from subsection 5.1 checked expandably if a (short) integer was prime, here is
a partial rewrite using \xintiloop. We use the etoolbox expandable conditionals for convenience,
but not everywhere as \xintiloopindex can not be evaluated while being braced. This is also the
reason why \xintbreakiloopanddo is delimited, and the next macro \SmallestFactor which returns
the smallest prime factor examplifies that. One could write more efficient completely expandable
routines, the aim here was only to illustrate use of the general purpose \xintiloop. A little table
giving the first values of \SmallestFactor follows, its coding uses \xintFor, which is described
later; none of this uses count registers.
\let\IsPrime\undefined \let\SmallestFactor\undefined % clean up possible previous mess
\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not
{\ifnumodd {#1}
{\ifnumless {#13}{8}
{\ifnumequal {#13}{1}{0}{1}3}% 3,5,7 are primes
{\if
\xintiloop [3+2]
\1ifnum#l<\numexpr\xintiloopindex=*\xintiloopindex\relax
\expandafter\xintbreakiloopanddo\expandafterl\expandafter.%
\fi

53

5 Additional examples using xinttools or xintexpr or both

\1ifnum#l=\numexpr (#1/\xintiloopindex)=\xintiloopindex\relax
\else
\repeat 00\expandafter@\else\expandafterl\fi
1%
}% END OF THE ODD BRANCH
{\ifnumequal {#1}{2}{1}{03}}% EVEN BRANCH
1%
\catcode _ 11
\newcommand{\SmallestFactor}[1] % returns the smallest prime factor of #1>1
{\ifnumodd {#1}
{\ifnumless {#1}{8}
{#1}% 3,5,7 are primes
{\xintiloop [3+2]
\1ifnum#1l<\numexpr\xintiloopindex*\xintiloopindex\relax
\xint_afterfi{\xintbreakiloopanddo#1.}%
\fi
\1ifnum#l=\numexpr (#1/\xintiloopindex)=\xintiloopindex\relax
\xint_afterfi{\expandafter\xintbreakiloopanddo\xintiloopindex.}%
\fi
\iftrue\repeat
1%
}% END OF THE ODD BRANCH
{2}% EVEN BRANCH

1%
\catcode _ 8
{\centering
\begin{tabular}{|c|={10}c|}
\hline
\xintFor #1 in {0,1,2,3,4,5,6,7,8,9}\do {&\bfseries #1}\\
\hline
\bfseries 0&--&--&2&3&2&5&2&7&2&3\\
\xintFor #1 in {1,2,3,4,5,6,7,8,9}\do
{\bfseries #1%
\xintFor #2 in {0,1,2,3,4,5,6,7,8,9}\do
{&\SmallestFactor{#1#2}}\\1}%
\hline
\end{tabular}\par
}
0 1 2 3 4 5 6 7 8 9
0o|-- -- 2 3 2 5 2 7 2 3
1 2 11 2 13 2 3 2 17 2 19
2 2 3 2 23 2 5 2 3 2 29
3 2 31 2 3 2 5 2 37 2 3
4 2 41 2 43 2 3 2 47 2 7
5 2 3 2 53 2 5 2 3 2 59
6 2 61 2 3 2 5 2 67 2 3
7 2 71 2 73 2 3 2 7 2 79
8 2 3 2 83 2 5 2 3 2 89
9 2 7 2 3 2 5 2 97 2 3

54

5 Additional examples using xinttools or xintexpr or both

5.3 Miller-Rabin Pseudo-Primality expandably

This section is based on my http://tex.stackexchange.com/a/165008 post. But I have modified it
to use \xintNewFunction which is available since 1.2i. This is good opportunity to illustrate how
\xintNewFunction can be used to define a recursive function Chere modular exponentiation.)

The isPseudoPrime(n) is usable in \xintiiexpr-essions and establishes if its (positive) ar-
gument is a Miller-Rabin PseudoPrime to the bases 2,3,5,7,11,13,17. If this is true and n <
341550071728321 (which has 15 digits) then n really is a prime number.

Similarly n = 3825123056546413051 (19 digits) is the smallest composite number which is a strong
pseudo prime for bases 2, 3,5,7, 11, 13, 17, 19 and 23. It is easy to extend the code below to include
these additional tests (we could make the list of tested bases an argument too, now that I think
about it.)

For more information see

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test
and
http://primes.utm.edu/prove/prove2_3.html

In particular, according to JAESCHKE On strong pseudoprimes to several bases, Math. Comp., 61
(1993) 915-926, if n < 4,759, 123, 141 it is enough to establish Rabin-Miller pseudo-primality
to bases a = 2,7,61 to prove that n is prime. This range is enough for TgX numbers and we could
then write a very fast expandable primality test for such numbers using only \numexpr. Left as an
exercise. . .

55 Il oo e e e Modular Exponentiation

% #1=x, #2=m, #3=N, compute x*m modulo N (with m non negative)

% We will always use it with 1< x < N hence we skip an initial reduction modulo N.

% We can not use \xintdefiifunction for such recursive definition but
% \xintNewFunction succeeds!
\xintNewFunction{powmod}[3]{% x = #1, m = #2, n = #3

(#2)?

% m non zero (assume positive), and look if m=1

{(#2=1)72{#1/:#3}

{odd (#2) ?{ (#1*sqr (powmod (#1,#2//2,#3)))/:#3}
{sqr(powmod (#1,#2//2,#3))/:#3}3}}
% m is zero, return 1

{13}

% See http://tex.stackexchange.com/a/165008 for a (probably faster) macro-only approach
% not using \xintexpr.

% I —————-mmm e - Miller-Rabin compositeness witness
% n=2Ak m + 1 with m odd and k at least 1

% Choose 1<x<n.

% compute y=x*m modulo n

% if equals 1 we can't say anything

% if equals n-1 we can't say anything

% else put j=1, and

% compute repeatedly the square, incrementing j by 1 each time,
% thus always we have yA{2A{j-1}}

% -> if at some point n-1 mod n found, we can't say anything and break out
% -> if however we never find n-1 mod n before reaching

% z=yAr{27{k-1}} with j=k

% we then have zA2=xA{n-1}.

% Suppose z is not -1 mod n. If zA2 is 1 mod n, then n can be prime only if
% z is 1 mod n, and we can go back up, until initial y, and we have already

55

http://tex.stackexchange.com/a/165008
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test
http://primes.utm.edu/prove/prove2_3.html

5 Additional examples using xinttools or xintexpr or both

% excluded y=1. Thus if z is not -1 mod n and z*2 is 1 then n is not prime.
% But if zA2 is not 1, then n is not prime by Fermat. Hence (z not -1 mod n)
% implies (n is composite). (Miller test)

% let's use again xintexpr indecipherable (except to author) syntax. Of course
% doing it with macros only would be faster.

% Here \xintdefiifunction is not usable because not compatible with iter, break,
% but \xintNewFunction comes to the rescue.

\xintNewFunction{isCompositeWitness}[4]{% x=#1, n=#2, m=#3, k=#4
subs ((y==1)7{0}
{iter(y; (j=#4)?{break(! (@==#2-1))}
{(@==#2-1)?{break(0)}{sqr(@) /:#23}},j=1++)}
,y=powmod (#1,#3,#2))}

55 JRIRIL e e e e e e Strong Pseudo Primes

% cf

% http://oeis.org/A014233

% <http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html>
% <http://mathworld.wolfram.com/StrongPseudoprime.html>

% check if positive integer <49 si a prime.
% 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47
\def\IsVerySmallPrime #1%
{A\ifnum#1=1 \xintdothis®\fi
\ifnum#1=2 \xintdothisl\fi
\ifnum#1=3 \xintdothisl\fi
\ifnum#1=5 \xintdothis1\fi
\1ifnum#l=\numexpr (#1/2)*2\relax\xintdothis@\fi
\1fnum#l=\numexpr (#1/3)*3\relax\xintdothis@\fi
\1fnum#l=\numexpr (#1/5)*5\relax\xintdothis@\fi
\xintorthat 1}

\xintNewFunction{isPseudoPrime}[1]{% n = #1
(#1<49)7?% use ? syntax to evaluate only what is needed
{\IsVerySmallPrime{\xintthe#1}}% macro needs to be fed with #1 unlocked.
{(even(#1))?
{0}
{subs (%
% L expands to two values m, k hence isCompositeWitness does get
% its four variables x, n, m, k
isCompositeWitness(2, #1, L)?
{03%
{isCompositeWitness(3, #1, L)?
{03}%
{isCompositeWitness(5, #1, L)?
{0}%
{isCompositeWitness(7, #1, L)?
{03%
% above enough for N<3215031751 hence all TeX numbers
{isCompositeWitness(11l, #1, L)?
{03%
% above enough for N<2152302898747, hence all 12-digits numbers
{isCompositeWitness(13, #1, L)?
{0}%

56

5 Additional examples using xinttools or xintexpr or both

% above enough for N<3474749660383
{isCompositeWitness(17, #1, L)?
{03}%
% above enough for N<341550071728321
{1}%
}% not needed to comment-out end of lines spaces inside
1% \xintexpr but this is too much of a habit for me with TeX!
1% I left some after the ? characters.
1%
1%
}% this computes (m, k) such that n = 24k m + 1, m odd, k>=1
, L=iter(#1//2; (even(@))?{@//2}{break(@,k)},k=1++))%
1%
1%

% if needed:
%\def\IsPseudoPrime #l{\xinttheiiexpr isPseudoPrime (#1)\relax}

\noindent The smallest prime number at least equal to 3141592653589 is
\xinttheiiexpr
seq(isPseudoPrime(3141592653589+n)?
{break(3141592653589+n) } {omit}, n=0++)\relax.
% we could not use 3141592653589++ syntax because it works only with TeX numbers
\par
The smallest prime number at least equal to 3141592653589 is 3141592653601.

5.4 A table of factorizations

As one more example with \xintiloop let us use an alignment to display the factorization of some
numbers. The loop will actually only play a minor réle here, just handling the row index, the row
contents being almost entirely produced via a macro \factorize. The factorizing macro does not
use \xintiloop as it didn't appear to be the convenient tool. As \factorize will have to be used
on \xintiloopindex, it has been defined as a delimited macro.

To spare some fractions of a second in the compilation time of this document (which has many many
other things to do), 2147483629 and 2147483647, which turn out to be prime numbers, are not given
to factorize but just typeset directly; this illustrates use of \xintiloopskiptonext.

The code next generates a table which has been made into a float appearing on page 59. Here is
now the code for factorization; the conditionals use the package provided \xint_firstoftwo and \2
xint_secondoftwo, one could have employed rather BX's own \@firstoftwo and \@secondoftwo, or,
simpler still in BIEX context, the \ifnumequal, \ifnumless ..., utilities from the package etoolb)
ox which do exactly that under the hood. Only TX acceptable numbers are treated here, but it would
be easy to make a translation and use the xint macros, thus extending the scope to big numbers;
naturally up to a cost in speed.

The reason for some strange looking expressions is to avoid arithmetic overflow.

\catcode _ 11

\def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi}

\def\factorize #1.{\ifnum#1=1 \abortfactorize\fi
\ifnum\numexpr #1-2=\numexpr ((#1/2)-1)=2\relax
\expandafter\xint_firstoftwo
\else\expandafter\xint_secondoftwo
\fi
{2&\expandafter\factorize\the\numexpr#1/2.3}%
{\factorize_b #1.3.}}%

57

5 Additional examples using xinttools or xintexpr or both

\def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-(#2-1)*#2<#2
#1\abortfactorize

\fi
\ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)=#2\relax

\expandafter\xint_firstoftwo
\else\expandafter\xint_secondoftwo
\fi
{#2&\expandafter\factorize_b\the\numexpr#1l/#2.#2.}%
{\expandafter\factorize_b\the\numexpr #1l\expandafter.%

\the\numexpr #2+2.}3}%

\catcode _ 8

\begin{figurex}[ht!]
\centering\phantomsection\label{floatfactorize}\normalcolor

\tabskiplex

\centeredline{\vbox{\halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule}

11

\xintiloop ["7FFFFFE®+1]

\expandafter\bfseries\xintiloopindex &

\ifnum\xintiloopindex="7FFFFFED
\number"7FFFFFED\cr\noalign{\hrule}

\expandafter\xintiloopskiptonext

\fi

\expandafter\factorize\xintiloopindex.\cr\noalign{\hrule}

\ifnum\xintiloopindex<"7FFFFFFE

\repeat

\bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule}

\centeredline{A table of factorizations}
\end{figure=}

5.5 Another table of primes

As a further example, let us dynamically generate a tabular with the first 50 prime numbers af-
ter 12345. First we need a macro to test if a (short) number is prime. Such a completely expandable
macro was given in subsection 5.1, here we consider a variant which will be slightly more effi-
cient. This new \IsPrime has two parameters. The first one is a macro which it redefines to ex-
pand to the result of the primality test applied to the second argument. For convenience we use
the etoolbox wrappers to various \ifnum tests, although here there isn't anymore the constraint
of complete expandability (but using explicit \if..\fi in tabulars has its quirks); equivalent
tests are provided by xint, but they have some overhead as they are able to deal with arbitrarily

big integers.
\def\IsPrime #1#2% #1=\Result, #2=tested number (assumed >0).
{\edef\TheNumber {\the\numexpr #2}% hence #2 may be a count or \numexpr.
\ifnumodd {\TheNumber}
{\ifnumgreater {\TheNumber}{1}
{\edef\ItsSquareRoot{\xintiiSqrt \TheNumber}%
\xintFor ##1 in {\xintintegers [3+2]}\do
{\ifnumgreater {##1}{\ItsSquareRoot} % ##1 is a \numexpr.

{\def#1{1}\xintBreakFor}
{}%

\ifnumequal {\TheNumber}{(\TheNumber/##1)«##1}

1

{\def#1{0}\xintBreakFor }
{}%

{\def#1{0}}}% 1 is not prime
{\ifnumequal {\TheNumber}{2}{\def#1{1}}{\def#1{0}}}%

58

http://ctan.org/pkg/etoolbox

5 Additional examples using xinttools or xintexpr or both

2147483616 2 2 2 2 2 3 2731 8191
2147483617 6733 318949

2147483618 2 7 367 417961

2147483619 3 3 23 353 29389

2147483620 2 2 5 4603 23327

2147483621 14741 145681

2147483622 2 3 17 467 45083

2147483623 79 967 28111

2147483624 2 2 2 11 13 1877171
2147483625 3 5 5 5 7 199 4111
2147483626 2 19 37 1527371

2147483627 47 53 862097

2147483628 2 2 3 3 59652323

2147483629 2147483629

2147483630 2 5 6553 32771

2147483631 3 137 263 19867

2147483632 2 2 2 2 7 73 262657
2147483633 5843 367531

2147483634 2 3 12097 29587

2147483635 5 11 337 115861

2147483636 2 2 536870909

2147483637 3 3 3 13 6118187

2147483638 2 2969 361651

2147483639 7 17 18046081

2147483640 2 2 2 3 5 29 43 113 127
2147483641 2699 795659

2147483642 2 23 46684427

2147483643 3 715827881

2147483644 2 2 233 1103 2089

2147483645 5 19 22605091

2147483646 2 3 3 7 11 31 151 331

2147483647 2147483647

A table of factorizations

}

As we used \xintFor inside a macro we had to double the # in its #1 parameter. Here is now the
code which creates the prime table (the table has been put in a float, which should be found on page
60):

\newcounter{primecount}

\newcounter{cellcount}

\begin{figure=}[ht!]

\centering

\begin{tabular}{|*{7}c|}

\hline

\setcounter{primecount}{0}\setcounter{cellcount}{0}%

\xintFor #1 in {\xintintegers [12345+2]} \do

% #1 is a \numexpr.

{\IsPrime\Result{#1}%
\ifnumgreater{\Result}{0}
{\stepcounter{primecount}%

\stepcounter{cellcount}%
\ifnumequal {\value{cellcount}}{7}

59

5 Additional examples using xinttools or xintexpr or both

{\the#1 \\\setcounter{cellcount}{0}}
{\the#1 &}}
{}%
\ifnumequal {\value{primecount}}{50}
{\xintBreakForAndDo
{\multicolumn {6}{1|}{These are the first 50 primes after 12345.}\\}}
{3%
Nhline
\end{tabular}
\end{figure=}

12347 12373 12377 12379 12391 12401 12409
12413 12421 12433 12437 12451 12457 12473
12479 12487 12491 12497 12503 12511 12517
12527 12539 12541 12547 12553 12569 12577
12583 12589 12601 12611 12613 12619 12637
12641 12647 12653 12659 12671 12689 12697
12703 12713 12721 12739 12743 12757 12763
12781 These are the first 50 primes after 12345.

5.6 Factorizing again

Here is an f-expandable macro which computes the factors of an integer. It uses the xint macros
only.
\catcode \@ 11
\let\factorize\relax
\newcommand\Factorize [1]
{\romannumeral®\expandafter\factorize\expandafter{\romannumeral-"0#1}3}%

\newcommand\factorize [1]{\xintiiifOne{#13}{ 1}{\factors@a #1.{#1};}}%
\def\factors@a #1.{\xintiiifOodd{#1}

{\factors@c 3.#1.1}%

{\expandafter\factors@ \expandafterl\expandafter.\romannumeral®\xinthalf{#1}.}}%
\def\factors@b #1.#2.{\xintiiifOne{#2}

{\factors@end {2, #1}1}%

{\xintiiifodd{#2}{\factors@c 3.#2.{2, #1}}%

{\expandafter\factors@b \the\numexpr #1+\@ne\expandafter.%
\romannumeral®\xinthal f{#2}.}}%

1%
\def\factors@c #1.#2.{%

\expandafter\factors@d\romannumeral®\xintiidivision {#2}{#1}{#1}{#2}%
1%
\def\factors@d #1#2#3#4{\xintiiifNotZero{#2}

{\xintiiifGt{#3}{#1}

{\factors@end {#4, 1}}% ultimate quotient is a prime with power 1
{\expandafter\factors@c\the\numexpr #3+\tw@.#4.3}3}%

{\factors@e 1.#3.#1.}%
1%
\def\factors@e #1.#2.#3.{\xintiiifOne{#3}

{\factors@end {#2, #13}1}%

{\expandafter\factors@f\romannumeral®\xintiidivision {#3}{#2}{#1}{#2}{#3}}%
%
\def\factors@f #1#2#3#4#5{\xintiiifNotZero{#2}

60

5 Additional examples using xinttools or xintexpr or both

{\expandafter\factors@c\the\numexpr #4+\tw@.#5.{#4, #3}}%
{\expandafter\factors@e\the\numexpr #3+\@ne.#4.#1.3}%
1%
\def\factors@end #1;{\xintlistwithsep{, }{\xintRevWithBraces {#1}}}%
\catcode @ 12
The macro will be acceptably efficient only with numbers having somewhat small prime factors.
\Factorize{16246355912554185673266068721806243461403654781833}
16246355912554185673266068721806243461403654781833, 13, 5, 17, 8, 29, 5, 37, 6, 41, 4, 59, 6
It puts a little stress on the input save stack in order not be bothered with previously gathered
things.49
Its output is a comma separated list with the number first, then its prime factors with multi-
plicity. Let's produce something prettier:
\catcode _ 11
\def\ShowFactors #1{\expandafter\ShowFactors_a\romannumeral- 0\Factorize{#1},\relax,\relax,}
\def\ShowFactors_a #1,{#1=\ShowFactors_b}
\def\ShowFactors_b #1,#2,{\if\relax#1\else#1*{#2}\expandafter\ShowFactors_b\fi}
\catcode _ 8
$$\ShowFactors{16246355912554185673266068721806243461403654781833}%%

16246355912554185673266068721806243461403654781833 = 13°17829°37%414595

If we only considered small integers, we could write pure \numexpr methods which would be very
much faster (especially if we had a table of small primes prepared first) but still ridiculously
slow compared to any non expandable implementation, not to mention use of programming languages
directly accessing the CPU registers. . .

5.7 The Quick Sort algorithm illustrated

First a completely expandable macro which sorts a comma separated list of numbers. >°

The \QSx macro expands its list argument, which may thus be a macro; its comma separated items
must expand to integers or decimal numbers or fractions or scientific notation as acceptable to
xintfrac, but if an item is itself some (expandable) macro, this macro will be expanded each time
the item is considered in a comparison test! This is actually good if the macro expands in one step
to the digits, and there are many many digits, but bad if the macro needs to do many computations.
Thus \QSx should be used with either explicit numbers or with items being macros expanding in one
step to the numbers (particularly if these numbers are very big).

If the interest is only in TgX integers, then one should replace the \xintifCmp macro with a
suitable conditional, possibly helped by tools such as \ifnumgreater, \ifnumequal and \ifnumlesp
s from etoolbox (BEX only; I didn't see a direct equivalent to \xintifCmp.) Or, if we are dealing
with decimal numbers with at most four+four digits, then one should use suitable \ifdim tests.
Naturally this will boost consequently the speed, from having skipped all the overhead in parsing
fractions and scientific numbers as are acceptable by xintfrac macros, and subsequent treatment.

% THE QUICK SORT ALGORITHM EXPANDABLY

% \usepackage{xintfrac} in the preamble (latex)

\makeatletter

% use extra safe delimiters

\catcode ! 3 \catcode'? 3

\def\QSx {\romannumeral®\gqsx }%

% first we check if empty list (else \gsx@finish will not find a comma)

49 2015/11/18 | have not revisited this code for a long time, and perhaps | could improve it now with some new techniques.
50 The code in earlier versions of this manual handled inputs composed of braced items. | have switched to comma separated inputs
on the occasion of http://tex.stackexchange.com/a/273084. The version here is like code 3 on http://tex.stackexchange.com
(which is about 3x faster than the earlier code it replaced in this manual) with a modification to make it more efficient if the data
has many repeated values. A faster routine (for sorting hundreds of values) is provided as code 6 at the link mentioned in the
footnote, it is based on Merge Sort, but limited to inputs which one can handle as TEX dimensions.This code 6 could be extended
to handle more general numbers, as acceptable by xintfrac. | have also written a non expandable version, which is even faster,
but this matters really only when handling hundreds or rather thousands of values.

61

http://ctan.org/pkg/etoolbox
http://tex.stackexchange.com/a/273084
http://tex.stackexchange.com

5 Additional examples using xinttools or xintexpr or both

\def\gsx #1{\expandafter\gsx@a\romannumeral- 0#1,!,?3}%
\def\gsx@a #1{\ifx,#1\expandafter\gsx@abort\else
\expandafter\gsx@start\fi #13}%
\def\gsx@abort #1?{ }%
\def\gsx@start {\expandafter\gsx@finish\romannumeral®\qgsx@b,}%
\def\gsx@finish ,#1{ #13}%
%
% we check if empty of single and if not pick up the first as Pivot:
\def\qsx@b ,#1#2,#3{\ifx?#3\xintdothis\qsx@empty\fi
\ifx!#3\xintdothis\gsx@single\fi
\xintorthat\gsx@separate {#1#2}{}{}{#1#2}#3}%
\def\qsx@empty #1#2#3#4#5{ 1%
\def\qsx@single #1#2#3#4#57{, #4}%
\def\qsx@separate #1#2#3#4#5#6,%
{%
\ifx!#5\expandafter\gsx@separate@done\fi
\xintifCmp {#5#6}{#431%
\gsx@separate@appendtosmaller
\gsx@separate@appendtoequal
\gsx@separate@appendtogreater {#5#6}{#1}{#2}{#3}{#4}%
1%
%
\def\gsx@separate@appendtoequal #1#2{\qsx@separate {#2,#1}}%
\def\gsx@separate@appendtogreater #1l#2#3{\gsx@separate {#2}{#3,#1}}%
\def\gsx@separate@appendtosmaller #1#2#3#4{\qsx@separate {#2}{#3}{#4,#1}}%
%
\def\gsx@separate@done\xintifCmp #1%
\gsx@separate@appendtosmaller
\gsx@separate@appendtoequal
\gsx@separate@appendtogreater #2#3#4#5#6#77%
{%
\expandafter\gsx@f\expandafter {\romannumeral®\qsx@b #4,!,?}{\gsx@b #5,!,?}{#3}%
1%
%
\def\qgsx@f #1#2#3{#2, #3#1}%
%
\catcode’! 12 \catcode'? 12
\makeatother

% EXAMPLE

\begingroup

\edef\z {\QSx {1.0, 0.5, 0.3, 1.
1.3, 1.1, 0.7, 1.

5, 1.8, 2.0, 1.7, 0.4, 1.2,
6, 0.6, 0.9, 0.8, 0.2, 0.1

1.4,
, 1.931

\meaning\z

\def\a {3.123456789123456789}\def\b {3.123456789123456788}

\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\oodef\z {\QSx { \a, \b, \c, \d}}%

% The space before \a to let it not be expanded during the conversion from CSV

% values to List. The \oodef expands exactly twice (via a bunch of \expandafter's)

\meaning\z

\endgroup

macro:->0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6, 1.7, 1.8,
1.9, 2.0

macro:->\d , \b , \a , \c (the spaces after \d, etc... come from the use of the \meaning primi-
tive.)

The choice of pivot as first element is bad if the list is already almost sorted. Let's add a

62

5 Additional examples using xinttools or xintexpr or both

variant which will pick up the pivot index randomly. The previous routine worked also internally
with comma separated lists, but for a change this one will use internally lists of braced items
(the initial conversion via \xintCSVtoList handles all potential spurious space problems).

% QuickSort expandably on comma separated values with random choice of pivots

% ====> Requires availability of \pdfuniformdeviate <====
% \usepackage{xintfrac, xinttools} in preamble
\makeatletter

\def\QSx {\romannumeral®\gsx }% This is a f-expandable macro.
% This converts from comma separated values on input and back on output.
% wwx% NOTE: these steps (and the other ones too, actually) are costly if input
% has thousands of items.
\def\gsx #1{\xintlistwithsep{, }%
{\expandafter\gsx@sort@a\expandafter{\romannumeral®@\xintcsvtolist{#1}}}1}%
%
% we check if empty or single or double and if not pick up the first as Pivot:
\def\gsx@sort@a #1%
{\expandafter\gsx@sort@\expandafter{\romannumeral®\xintlength{#1}3}{#1}}%
\def\gsx@sort@ #1{\ifcase #1
\expandafter\qsx@sort@empty
\or\expandafter\gsx@sort@single
\or\expandafter\qsx@sort@double
\else\expandafter\gsx@sort@c\fi {#1}3}%
\def\qsx@sort@empty #1#2{ }%
\def\gsx@sort@single #1#2{#23}%
\catcode _ 11
\def\gsx@sort@double #1#2{\xintifGt #2{\xint_exchangetwo_keepbraces}{}#2}%
\catcode _ 8
\def\gsx@sort@c #1#2{%
\expandafter\gsx@sort@sep@a\expandafter
{\romannumeral®\xintnthelt{\pdfuniformdeviate #1+\@ne}{#23}3}#27}%
\def\qsx@sort@sep@a #1{\qsx@sort@sep@loop {}{}{}{#1}}%
\def\qsx@sort@sep@loop #1#2#3#4#5%
{%
\ifx?#5\expandafter\gsx@sort@sep@done\fi
\xintifCmp {#5}{#4}%
\gsx@sort@sep@appendtosmaller
\gsx@sort@sep@appendtoequal
\gsx@sort@sep@appendtogreater {#5}{#1}{#2}{#3}{#41%
1%
%
\def\gsx@sort@sep@appendtoequal #1#2{\qsx@sort@sep@loop {#2{#1}}}%
\def\gqsx@sort@sep@appendtogreater #1#2#3{\qsx@sort@sep@loop {#2}{#3{#1}}1%
\def\gsx@sort@sep@appendtosmaller #1#2#3#4{\qsx@sort@sep@loop {#2}{#3}{#4{#1}}}%
%
\def\qsx@sort@sep@done\xintifCmp #1%
\gsx@sort@sep@appendtosmaller
\gsx@sort@sep@appendtoequal
\gsx@sort@sep@appendtogreater #2#3#4#5#6%
{%
\expandafter\gsx@sort@recurse\expandafter
{\romannumeral®\gsx@sort@a {#4}}{\gsx@sort@a {#5}}{#3}%
1%
%
\def\gsx@sort@recurse #1#2#3{#2#3#1}%
%
\makeatother

63

5 Additional examples using xinttools or xintexpr or both

% EXAMPLES

\begingroup

\edef\z {\QSx {1.0, 0.5, 6.3, 1.5, 1.8,
1.3, 1.1, 0.7, 1.6, 0.6,

\meaning\z

2.0, 1.7, 0.4, 1.2, 1.4,
0.9, 0.8, 0.2, 0.1, 1.9}}

\def\a {3.123456789123456789}\def\b {3.123456789123456788}
\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\oodef\z {\QSx { \a, \b, \c, \d}}%

% The space before \a to let it not be expanded during the conversion from CSV
% values to List. The \oodef expands exactly twice (via a bunch of \expandafter's)

\meaning\z

\def\somenumbers{%

3997.6421, 8809.9358, 1805.4976, 5673.6478, 3179.1328, 1425.4503, 4417.7691,
2166.9040, 9279.7159, 3797.6992, 8057.1926, 2971.9166, 9372.2699, 9128.4052,
1228.0931, 3859.5459, 8561.7670, 2949.6929, 3512.1873, 1698.3952, 5282.9359,
1055.2154, 8760.8428, 7543.6015, 4934.4302, 7526.2729, 6246.0052, 9512.4667,
7423.1124, 5601.8436, 4433.5361, 9970.4849, 1519.3302, 7944.4953, 4910.7662,
3679.1515, 8167.6824, 2644.4325, 8239.4799, 4595.1908, 1560.2458, 6098.9677,
3116.3850, 9130.5298, 3236.2895, 3177.6830, 5373.1193, 5118.4922, 2743.8513,
8008.5975, 4189.2614, 1883.2764, 9090.9641, 2625.5400, 2899.3257, 9157.1094,
8048.4216, 3875.6233, 5684.3375, 8399.4277, 4528.5308, 6926.7729, 6941.6278,
9745.4137, 1875.1205, 2755.0443, 9161.1524, 9491.1593, 8857.3519, 4290.0451,
2382.4218, 3678.2963, 5647.0379, 1528.7301, 2627.8957, 9007.9860, 1988.5417,
2405.1911, 5065.8063, 5856.2141, 8989.8105, 9349.7840, 9970.3013, 8105.4062,
3041.7779, 5058.0480, 8165.0721, 9637.7196, 1795.0894, 7275.3838, 5997.0429,
7562.6481, 8084.0163, 3481.6319, 8078.8512, 2983.7624, 3925.4026, 4931.5812,

1323.1517, 6253.09453}%

\oodef\z {\QSx \somenumbers}% produced as a comma+space separated list
% black magic as workaround to the shrinkability of spaces in last line...

\hsize 87\fontcharwd\font 0
\lccode ~=32

\lowercase{\def~}{\discretionary{}{}{\kern\fontcharwd\font 0}}\catcode32 13
\noindent\scantokens\expandafter{\meaning\z}\par

\endgroup

macro:->0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

1.9, 2.0

macro:->\d , \b , \a, \c

macro:->1055.2154, 1228.0931, 1323.
1698.3952, 1795.0894, 1805.4976, 1875.
2405.1911, 2625.5400, 2627.8957, 2644.
2971.9166, 2983.7624, 3041.7779, 3116.
3512.1873, 3678.2963, 3679.1515, 3797
4189.2614, 4290.0451, 4417.7691, 4433.
4934.4302, 5058.0480, 5065.8063, 5118
5673.6478, 5684.3375, 5856.2141, 5997
6941.6278, 7275.3838, 7423.1124, 7526.
8048.4216, 8057.1926, 8078.8512, 8084.
8399.4277, 8561.7670, 8760.8428, 8809.
9128.4052, 9130.5298, 9157.1094, 9161.
9512.4667, 9637.7196, 9745.4137, 9970.

All the previous examples were with

1517, 1425.4503, 1519.3302, 1528.7301, 1560.2458,
1205, 1883.2764, 1988.5417, 2166.9040, 2382.4218,
4325, 2743.8513, 2755.0443, 2899.3257, 2949.6929,
3850, 3177.6830, 3179.1328, 3236.2895, 3481.6319,

.6992, 3859.5459, 3875.6233, 3925.4026, 3997.6421,

5361, 4528.5308, 4595.1908, 4910.7662, 4931.5812,

.4922, 5282.9359, 5373.1193, 5601.8436, 5647.0379,
.0429, 6098.9677, 6246.0052, 6253.0945, 6926.7729,

2729, 7543.6015, 7562.6481, 7944.4953, 8008.5975,
0163, 8105.4062, 8165.0721, 8167.6824, 8239.4799,
9358, 8857.3519, 8989.8105, 9007.9860, 9090.9641,
1524, 9279.7159, 9349.7840, 9372.2699, 9491.1593,
3013, 9970.4849

numbers which could have been handled via \ifdim tests

rather than the \xintifCmp macro from xintfrac; using \ifdim tests would naturally be faster.

64

5 Additional examples using xinttools or xintexpr or both

Even faster routine is code 6 at http://tex.stackexchange.com/a/273084 which uses \pdfescapestr)
ing and a Merge Sort algorithm.
We then turn to a graphical illustration of the algorithm.51 For simplicity the pivot is always
chosen as the first list item. Then we also give a variant which picks up the last item as pivot.
% in LaTeX preamble:
% \usepackage{xintfrac, xinttools}
% \usepackage{color}
% or, when using Plain TeX:
% \input xintfrac.sty \input xinttools.sty
% \input color.tex
%
% Color definitions
\definecolor{LEFT}{RGB}{216,195,88}
\definecolor{RIGHT}{RGB}{208,231,153}
\definecolor{INERT}{RGB}{199,200,194}
\definecolor{INERTpiv}{RGB}{237,237,237}
\definecolor{PIVOT}{RGB}{109,8,57}
% Start of macro defintions
\makeatletter
% \catcode'? 3 % a bit too paranoid. Normal ? will do.
%
% argument will never be empty
\def\QS@cmp@a #1{\QS@cmp@b #1?7?}%
\def\QS@cmp@h #1{\noexpand\QS@sep@A\@ne{#1}\QS@cmp@d {#1}}%
\def\QS@cmp@ed #1#2{\ifx ?#2\expandafter\QS@cmp@done\fi
\xintifCmp {#1}{#2}\tw@\@ne\z@{#2}\QS@cmp@d {#13}3}%
\def\QS@cmp@done #1?{?}%
%
\def\QS@sep@A #1?7{\QSLr\QS@sep@L #1\thr@@?#1\thr@@?#1\thre@?}%
\def\QS@sep@L #1#2{\ifcase #1{#2}\or\or\else\expandafter\QS@sep@I@start\fi \QS@sep@L}%
\def\QS@sep@I@start\QS@sep@L {\noexpand\empty?\QSIr\QS@sep@I}%
\def\QS@sep@I #1#2{\ifcase#l\or{#2}\or\else\expandafter\QS@sep@R@start\fi\QS@sep@I}%
\def\QS@sep@RA@start\QS@sep@I {\noexpand\empty?\QSRr\QS@sep@R}%
\def\QS@sep@R #1#2{\ifcase#1\or\or{#2}\else\expandafter\QS@sep@done\fi\QS@sep@R}%
\def\QS@sep@done\QS@sep@R {\noexpand\empty?}%
%
\def\QS@loop {%
\xintloop
% pivot phase
\def\QS@pivotcount{03}%
\let\QSLr\DecoLEFTwithPivot \1let\QSIr \DecoINERT
\1let\QSRr\DecoRIGHTwithPivot \1let\QSIrr\DecoINERT
\centerline{\QS@list}%
% sorting phase
\1fnum\QS@pivotcount>\z@
\def\QSLr {\QS@cmp@a}\def\QSRr {\QS@cmp@a}%
\def\QSIr {\QSIrr}\let\QSIrr\relax
\edef\QS@list{\QS@list}% compare
\let\QSLr\relax\let\QSRr\relax\let\QSIr\relax
\edef\QS@list{\QS@list}% separate
\def\QSLr ##1##2?{\ifx\empty##1\else\noexpand \QSLr {{##1}##2}\fi}%
\def\QSIr ##1##2?{\ifx\empty##1\else\noexpand \QSIr {{##1}##2}\fil}%
\def\QSRr ##1##2?{\ifx\empty##1\else\noexpand \QSRr {{##1}##2}\fi}%

51 | have rewritten (2015/11/21) the routine to do only once (and not thrice) the needed calls to \xintifCmp, up to the price of
one additional \edef, although due to the context execution time on our side is not an issue and moreover is anyhow overwhelmed
by the TikZ's activities. Simultaneously | have updated the code http://tex.stackexchange.com/a/142634/4686. The variant with
the choice of pivot on the right has more overhead: the reason is simply that we do not convert the data into an array, but maintain
a list of tokens with self-reorganizing delimiters.

65

http://tex.stackexchange.com/a/273084
http://tex.stackexchange.com/a/142634/4686

5 Additional examples using xinttools or xintexpr or both

\edef\QS@list{\QS@list}% gather
\1let\QSLr\DecoLEFT \let\QSRr\DecoRIGHT
\let\QSIr\DecoINERTwithPivot \1let\QSIrr\DecoINERT
\centerline{\QS@list}%
\repeat }%
%
% \xintFor* loops handle gracefully empty lists.
\def\DecoLEFT #1{\xintFor* ##1 in {#1} \do {\colorbox{LEFT}{##1}}}%
\def\DecoINERT #1{\xintFor* ##1 in {#1} \do {\colorbox{INERT}{##13}3}3}%
\def\DecoRIGHT #1{\xintFors* ##1 in {#1} \do {\colorbox{RIGHT}{##1}}}%
\def\DecoPivot #1{\begingroup\color{PIVOT}\advance\fboxsep-\fboxrule\fbox{#1}\endgroup}%
%
\def\DecoLEFTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@nel}%
\xintFor* ##1 in {#1} \do
{\xintifForFirst {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}%
\def\DecoINERTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%
\xintFor* ##1 in {#1} \do
{\xintifForFirst {\colorbox{INERTpiv}{##1}}{\colorbox{INERT} {##1}}}}%
\def\DecoRIGHTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%
\xintFor* ##1 in {#1} \do
{\xintifForFirst {\DecoPivot {##13}}{\colorbox{RIGHT}{##13}3}3}3}%
%
\def\QuickSort #1{% warning: not compatible with empty #1.
% initialize, doing conversion from comma separated values to a list of braced items
\edef\QS@list{\noexpand\QSRr{\xintCSVtoList{#1}}}% many \edef's are to follow anyhow
% earlier I did a first drawing of the list, here with the color of RIGHT elements,
% but the color should have been for example white, anyway I drop this first line
%\1et\QSRr\DecoRIGHT
%\par\centerline{\QS@list}%
%
% loop as many times as needed
\QS@loop 1}%
%
% \catcode'? 12 % in case we had used a funny ? as delimiter.
\makeatother
%% End of macro definitions.
%% Start of Example
\begingroup\offinterlineskip

\small
% \QuickSort {1.9, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,
% 1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}
% \medskip
% with repeated values
\QuickSort {1.0, 0.5, 0.3, 0.8, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 0.3, 1.6, 0.6, 0.3, 0.8, 0.2, 0.8, 0.7, 1.2}
\endgroup
[1.0]0.5 0.3 0.8 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 0.3 1.6 0.6 0.3 0.8 0.2 0.8 0.7 1.2
0.5 0.3 0.8 0.4 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.2
[0.5/0.3 0.8 0.4 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.0[1.5/1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.2
0.3 0.4 0.3 0.3 0.2 0.5 0.8 0.7 0.6 0.8 0.8 0.7 1.0 1.2 1.4 1.3 1.1 1.2 1.5 1.8 2.0 1.7 1.6
[0.3/0.4 0.3 0.3 0.2 0.5[0.8]/0.7 0.6 0.8 0.8 0.7 1.0[1.2]1.4 1.3 1.1 1.2 1.5[1.8|2.0 1.7 1.6
0.2 0.3 0.3 0.3 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0
[0.2]0.3 0.3 0.3[0.4]0.5[0.7/0.6 0.7 0.8 0.8 0.8 1.0[1.1]1.2 1.2[1.4|1.3 1.5[1.7]1.6 1.8(2.0]
0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4 0.5[0.6]/0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2[1.3|1.4 1.5[1.6/1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

66

5 Additional examples using xinttools or xintexpr or both

Here is the variant which always picks the pivot as the rightmost element.
\makeatletter
%
\def\QS@cmp@a #1{\noexpand\QS@sep@A\expandafter\QS@cmp@d\expandafter
{\romannumeral®\xintnthelt{-1}{#1}}#17?}%
%
\def\DecoLEFTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@nel}%
\xintFor* ##1 in {#1} \do
{\xintifForLast {\DecoPivot {##13}}{\colorbox{LEFT}{##13}3}}}
\def\DecoINERTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%
\xintFor* ##1 in {#1} \do
{\xintifForLast {\colorbox{INERTpiv}{##1}}{\colorbox{INERT}{##1}}}}
\def\DecoRIGHTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%
\xintFor* ##1 in {#1} \do
{\xintifForLast {\DecoPivot {##13}}{\colorbox{RIGHT} {##13}3}}}
\def\QuickSort #1{%
% initialize, doing conversion from comma separated values to a list of braced items
\edef\QS@list{\noexpand\QSLr {\xintCSVtoList{#1}}}% many \edef's are to follow anyhow
%
% loop as many times as needed
\QS@loop }%

\makeatother
\begingroup\offinterlineskip
\small
% \QuickSort {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,
% 1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}
% \medskip
% with repeated values
\QuickSort {1.0, 0.5, 0.3, 0.8, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 0.3, 1.6, 0.6, 0.3, 0.8, 0.2, 0.8, 0.7, 1.2}
\endgroup
1.0 0.5 0.3 0.8 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 0.3 1.6 0.6 0.3 0.8 0.2 0.8 0.7 [1.2]
1.0 0.5 0.3 0.8 0.4 1.1 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.2 1.2 1.5 1.8 2.0 1.7 1.4 1.3 1.6
1.0 0.5 0.3 0.8 0.4 1.1 0.7 0.3 0.6 0.3 0.8 0.2 0.8/0.7/1.2 1.2 1.5 1.8 2.0 1.7 1.4 1.3[1.6]
0.5 0.3 0.4 0.3 0.6 0.3 0.2 0.7 0.7 1.0 0.8 1.1 0.8 0.8 1.2 1.2 1.5 1.4 1.3 1.6 1.8 2.0 1.7
0.5 0.3 0.4 0.3 0.6 0.3[0.2/0.7 0.7 1.0 0.8 1.1 0.8[0.8]1.2 1.2 1.5 1.4[1.3][1.6 1.8 2.0[1.7|
0.2 0.5 0.3 0.4 0.3 0.6 0.3 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.7 1.8 2.0
0.2 0.5 0.3 0.4 0.3 0.6[0.3]/0.7 0.7 0.8 0.8 0.8 1.0[1.1|1.2 1.2 1.3 1.5[1.4]1.6 1.7 1.8[2.0]
0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.5 0.4[0.6]/0.7 0.7 0.8 0.8 0.8[1.0]1.1 1.2 1.2 1.3 1.4[1.5]1.6 1.7[1.8]2.0
0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.5/0.4/0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4/0.5/0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0
0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

The choice of the first or last item as pivot is not a good one as nearly ordered lists will take
quadratic time. But for explaining the algorithm via a graphical interpretation, it is not that
bad. If one wanted to pick up the pivot randomly, the routine would have to be substantially rewrit-
ten: in particular the \Deco..withPivot macros need to know where the pivot is, and currently this
is implemented by using either \xintifForFirst or \xintifForLast.

67

6 Macros of the xintkernel package

6 Macros of the xintkernel package

.1 \odef, \oodef, \fdef 68 .4 \xintLastItem 69
.2 \xintReverseOrder 638 .5 \xintreplicate 69
.3 \xintLength............................ 68 .6 \xintgobble............. 69

The xintkernel package contains mainly the common code base for handling the load-order of the
bundle packages, the management of catcodes at loading time, definition of common constants and
macro utilities which are used throughout the code etc ... it is automatically loaded by all pack-
ages of the bundle.

It provides a few macros possibly useful in other contexts.

6.1 \odef, \oodef, \fdef

\oodef\controlsequence {<stuff>} does
\expandafter\expandafter\expandafter\def
\expandafter\expandafter\expandafter\controlsequence
\expandafter\expandafter\expandafter{<stuff>}
This works only for a single \controlsequence, with no parameter text, even without parameters.
An alternative would be:
\def\oodef #1#{\def\oodefparametertext{#1}%
\expandafter\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter\def
\expandafter\expandafter\expandafter\oodefparametertext
\expandafter\expandafter\expandafter }
but it does not allow \global as prefix, and, besides, would have anyhow its use (almost) limited
to parameter texts without macro parameter tokens (except if the expanded thing does not see them,
or is designed to deal with them).
There is a similar macro \odef with only one expansion of the replacement text <stuff>, and \fdef
which expands fully <stuff> using \romannumeral-"0.
They can be prefixed with \global. It appears than \fdef is generally a bit faster than \ede)
f when expanding macros from the xint bundle, when the result has a few dozens of digits. \oodef
needs thousands of digits it seems to become competitive.

6.2 \xintReverseOrder

\xintReverseOrder{(list)} does not do any expansion of its argument and just reverses the order
of the tokens in the (Iist). Braces are removed once and the enclosed material, now unbraced, does
not get reversed. Unprotected spaces (of any character code) are gobbled.
\xintReverseOrder{\xintDigitsOf\xintiiPow {2}{100}\to\Stuff}
gives: \Stuff\tol002\xintiiPow\xintDigitsOf

6.3 \xintLength

\xintLength{(list)} counts how many tokens (or braced items) there are (possibly none). It does
no expansion of its argument, so to use it to count things in the replacement text of a macro \x
one should do \expandafter\xintLength\expandafter{\x}. Blanks between items are not counted. See
also \xintNthE1t{0} (from xinttools) which first f-expands its argument and then applies the same
code.

\xintLength {\xintiiPow {2}{100}}=3

\xintLen {\xintiiPow {2}{100}}=31

68

6 Macros of the xintkernel package

6.4 \xintLastItem

nx \xintLastItem{(list)} returns the last item (unbraced) of its argument. If the list has no items
New with the output is empty.
1.2i It does no expansion, which should be obtained via suitable \expandafter's. See also \xint-
NthElt{-1} from xinttools which obtains the same result (but with another code) after having how-
ever f-expanded its argument first.

6.5 \xintreplicate

"X'n * \romannumeral\xintreplicate{x}{(stuff)} is simply copied over from BIX3's \prg_replicate:nn

New with with some minor changes.®? It does not do any expansion of its second argument but inserts it in
1.2i the upcoming token stream precisely x times. Using it with a negative x raises no error and does
nothing. >3
Note that expansion must be triggered by a \romannumeral.

6.6 \xintgobble

X % \romannumeral\xintgobble{x} is a Gobbling macro written in the spirit of BIFX3's \prg_replicate:?
New with nn (which I cloned as \xintreplicate.) It gobbles x tokens upstream, with x allowed to be as large
1.2i as 531440. Don't use it with x<0.

Note that expansion must be triggered by a \romannumeral.

\xintgobble looks as if it must be related to \xintTrim from xinttools, but the latter uses
different code (using directly \xintgobble is not possible because one must make sure not to gobble
more than the number of available items; and counting available items first is an overhead which
\xintTrim avoids.) It is rather\xintKeep with a negative first argument which hands over to \xint-
gobble (because in that case it is needed to count anyhow beforehand the number of items, hence
\xintgobble can then be used safely.)

I wrote an \xintcount in the same spirit as \xintreplicate and \xintgobble. But it needs to be
counting hundreds of tokens to be worth its salt compared to \xintLength.

52 | started with the code from Joseph WRIGHT's answer to http://tex.stackexchange.com/questions/16189/repeat-command-n-times.
53 This behavior may change in future.

69

http://tex.stackexchange.com/questions/16189/repeat-command-n-times

0 |

0 |

Changed
(1.20)

7 Macros of the xintcore package

O 00 NO VI B WN =

=R
= O

.12
.13
.14

7 Macros of the xintcore package

\XintiNum......... ..o, 71
\xintDouble............ 71
\xintHalf............ 71
\XINtINC ..ot 71
\XintDecC 71
\XintDSL 71
\XINtDSR 71
\XINtDSRro 71
\XIntFDg ... 71
\XIintLDg ... 71
\xintiiSgn......... L 71
\XintiiOpp ... 72
\xintiiAbs........ 72
\xintiiAdd.......... o 72

.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26
.27
.28

Package xintcore is automatically loaded by xint.
xintcore provides for big integers the four basic arithmetic operations (addition, subtraction,

\xintiilmp....... ..o 72
\xintiiSub........ 72
\xintiiMul......... 72
\xintiiSqr......... 72
\xintiiPow........... 72
\xintiiFac........... 72
\xintiiDivision 73
\xintiiQuo.............. 73
\xintiiRem.......... ..., 73
\xintiiDivRound 73
\xintiiDivTrunc 73
\xintiiMod........... 73
\XintNum........ ... 74
Deprecated macros 74

multiplication, division), as well as powers and factorials.

In the descriptions of the macros {N} and {M} stand for (big) integers or macros f-expanding to
such big integers in strict format as described in subsection 3.4.
All macros require strict integer format on input and produce strict integer format on output,
except:
e \xintiNum which converts to strict integer format an input in extended integer format, i.e.
admitting multiple leading plus or minus signs, then possibly leading zeroes, then digits,
e \xintNum which is an alias for the former, which gets redefined by xintfrac to accept more
generally also decimal numbers or fractions as input and which truncates them to integers.
e most macros listed in subsection 7.28. They will get removed at some future release.
Most deprecated macros listed in subsection 7.28 were by design applying \xintNum to their in-

puts. This was signaled in the macro description by a f sign in the margin,and typically the macro
had a single i in its name, for example \xintiAdd was such a companion to \xintiiAdd. xintfrac re-
defined \xintNum to be the a macro accepting general fractional input and truncating it to an

integer. Hence a macro such as \xintiAdd was compatible with the output format of xintfrac macros,
contrarily to \xintiiAdd which handles only strict integer format for its inputs. Of course, xint-
frac defined also its own \xintAdd which did the addition of its arguments without truncating them
to integers... (but whose output format is the A/B[N] format explained in subsection 3.5, hence
even if representing a small integer it can not be used directly in a TgX context such as \ifnum,

contrarily to deprecated \xintiAdd or to \xintiiAdd.)

This situation was the result of some early-on design decisions which now appear misguided
and impede further development. Hence, at 1.20 it has been decided to deprecate all such i-

macros.

The ii in the names of the macros such as \xintiiAdd serves to stress that they accept only
strict integers as input (this is signaled by the margin annotation f), or macros f-expanding to
such strict format (big) integers and that they produce strict integers as output.

Other macros, such as \xintDouble, lack the ii, but this is only a legacy of the history of the

package and they have the same requirements for input and format of output as the ii-macros.

54

54 Regarding \xintFDg and \xintLDg, this is a breaking change because formerly they used \xintNum.

£

£

f*

fx

New with

1.2i

£

7 Macros of the xintcore package

The letter x (with margin annotation "X") stands for an argument which will be handled embedded
in \numexpr..\relax. It will thus be completely expanded and must give an integer obeying the TX
bounds. See also subsection 3.6. This is the case for the argument of \xintiiFac or the exponent
argument of \xintiiPow.

The *'s in the margin are there to remind of the complete expandability, even f-expandability
of the macros, as discussed in subsubsection 3.3.1.

7.1 \xintiNum

\xintiNum{N} removes chains of plus or minus signs, followed by zeroes.
\xintiNum{+---++----+--000000000367941789479}
-367941789479

7.2 \xintDouble

\xintDouble{N} computes 2N.

7.3 \xintHalf

\xintHalf{N} computes N/2 truncated towards zero.

7.4 \xintInc

\xintInc{N} evaluates N+1.

7.5 \xintDec

\xintDec{N} evaluates N-1.

7.6 \xintDSL

\xintDSL{N} is decimal shift left, i.e. multiplication by ten.

7.7 \xintDSR

\xintDSR{N} is truncated decimal shift right, i.e. it is the truncation of N/10 towards zero.

7.8 \xintDSRr

\xintDSRr{N} is rounded decimal shift right, i.e. it is the rounding of N/10 away from zero. It is
needed in xintcore for use by \xintiiDivRound.

7.9 \xintFDg

\xintFDg{N} outputs the first digit (most significant) of the number.

7.10 \xintLDg

\xintLDg{N} outputs the least significant digit. When the number is positive, this is the same as
the remainder in the euclidean division by ten.

7.11 \xintiiSgn

\xintiiSgn{N} returns 1 if the number is positive, 0 if it is zero and -1 if it is negative.

71

ffx

ffx

ffx

ffx

f*

num
fx %

num
X *x

7 Macros of the xintcore package

7.12 \xintiiOpp

\xintiiOpp{N} outputs the opposite -N of the number N.

Important note: an input such as -\foo is not legal, generally speaking, as argument to the
macros of the xint bundle (except, naturally in \xintexpr-essions). The reason is that the minus
sign stops the f-expansion done during parsing of the inputs. One must use the syntax \xintiiOpp{2
\foo} if one wants to pass -\foo as argument to other macros.

7.13 \xintiiAbs

\xintiiAbs{N} outputs the absolute value of the number.
7.14 \xintiiAdd

\xintiiAdd{N}{M} computes the sum of the two (big) integers.
7.15 \xintiiCmp

\xintiiCmp{N}{M} produces 1 if N>M, 0 if N=M, and -1 if N<M.

At 1.21 this macro was moved from package xint to xintcore.

7.16 \xintiiSub

\xintiiSub{N}{M} computes the difference N-M.

7.17 \xintiiMul

\xintiiMul {N}{M} computes the product of two (big) integers.
7.18 \xintiiSqr

\xintiiSqr{N} produces the square.

7.19 \xintiiPow

\xintiiPow{N}{x} computes NAx. For x=0, this is 1. For N=0 and x<0, or if |N|>1 and x<0, an error
is raised. There will also be an error if x exceeds the maximal &-TgX number 2147483647, but the
real limit for exponents comes from either the computation time or the settings of some TX memory
parameters.

Indeed, the maximal power of 2 which xint is able to compute explicitely is 24(2417)=24131072
which has 39457 digits. This exceeds the maximal size on input for the xintcore multiplication,
hence any 22N with a higher N will fail. On the other hand 24(2416) has 19729 digits, thus it
can be squared once to obtain 24(2417) or multiplied by anything smaller, thus all exponents
up to and including 2417 are allowed (because the power operation works by squaring things and
making products).

7.20 \xintiiFac

\xintiiFac{x} computes the factorial.

72

ffx

ffx

ffx

ffx

ffx

ffx

7 Macros of the xintcore package

The (theoretically) allowable range is 0 < x < 10000.

However the maximal possible computation depends on the values of some memory parameters of
the tex executable: with the current default settings of TeXLive 2015, the maximal computable
factorial (a.t.t.o.w. 2015/10/06) turns out to be 5971! which has 19956 digits.

The factorial function, or equivalently ! as post-fix operator is available in \xintiiexpr,
\xintexpr:

\printnumber{\xinttheiiexpr 200!\relax}\par
788657867364790503552363213932185062295135977687173263294742533244359449963403342920304284012
1984623904177212138919638830257642790242637105061926624952829931113462857270763317237396988%
43922445621451664240254033291864131227428294853277524242407573903240321257405579568660226031)
90417032406235170085879617892222278962370389737472002
0000000

See also \xintFloatFac from package xintfrac for the float variant, used in \xintfloatexpr.

7.21 \xintiiDivision

\xintiiDivision{N}{M} produces {quotient}{remainder}, in the sense of (mathematical) Euclidean
division: N = QM + R, ® < R < |M|. So the remainder is always non-negative and the formula N =)
QM + R always holds independently of the signs of N or M. Division by zero is an error (even if N
vanishes) and returns {0}{0}.

7.22 \xintiiQuo

\xintiiQuo{N}{M} computes the quotient from the euclidean division.

7.23 \xintiiRem

\xintiiRem{N}{M} computes the remainder from the euclidean division.

7.24 \xintiiDivRound

\xintiiDivRound{N}{M} returns the rounded value of the algebraic quotient N/M of two big integers.
The rounding is * "away from zero.''

\xintiiDivRound {100}{3}, \xintiiDivRound {101}{3}
33, 34

7.25 \xintiiDivTrunc

\xintiiDivTrunc{N}{M} computes the truncation towards zero of the algebraic quotient N/M. For
M>0 it is the same as \xintiiQuo.

$\xintiiQuo {1000} {-57}, \xintiiDivRound {10003}{-57}, \xintiiDivTrunc {1000}{-57}%
-17, -18, -17

7.26 \xintiiMod

\xintiiMod{N}{M} computes N- M= t(N/M), where t(N/M) is the algebraic quotient truncated towards
zero. For M> 0 it is the same as \xintiiRem.

$\xintiiRem {1000}{-57}, \xintiiMod {10003}{-57},

\xintiiRem {-1000}{57}, \xintiiMod {-1000}{57}$
31, 31, 26, -31

73

7 Macros of the xintcore package

7.27 \xintNum

£ % \xintNum is originally an alias for \xintiNum. But with xintfrac loaded its meaning is modified to
accept more general inputs. It then becomes an alias to \xintTTrunc which truncates the general
input to an integer in strict format.

7.28 Deprecated macros

These macros work as in earlier releases but will also generate an error (in interactive mode, just
Deprecated! hit the return key to proceed). They will get removed at some future release: \xintiiFDg (renamed
(1.20) to \xintFDg), \xintiilDg (renamed to \xintLDg), \xintiOpp, \xintiAbs, \xintiAdd, \xintCmp (it
gets defined by xintfrac, so deprecation will usually not be seen; the macro with this name from
former xintcore should have been called \xintiCmp actually), \xintSgn (it also gets its proper
definition from xintfrac), \xintiSub, \xintiMul, \xintiDivision, \xintiQuo, \xintiRem, \xintiDip
vRound, \xintiDivTrunc, \xintiMod, \xintiSqr, \xintiPow, \xintiFac.

74

Changed
(1.20)

8 Macros of the xint package

8 Macros of the xint package

This package loads automatically xintcore (and xintkernel) hence all macros described in section 7
are still available.

O o0 N VI A WDNRE

=
= O

.12
.13
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
.25
.26

\xintilen............ ..., 76
\xintReverseDigits.................... 76
\xintDecSplit 76
\xintDecSplitL, \xintDecSplitR 76
\XIntiiE 77
\XIntDSH 77
\xintDSHr, \xintDSx 7
\XintiiEq.......... 77
\xintiiNotEqQ 77
\xintiiGeq........... ... i 77
\XIntiiGt.......... 77
\XIntiilt ... 77
\xintiiGtorEq 78
\xintiiltorEq 78
\xintiiIsZero, 78
\xintiiIsNotZero 78
\xintiiIsOne 78
\xintiiOdd.......... 78
\xintiiEven............................ 78
\XintiiMON........ 78
\XIntiiMMON....... 78
\xintiiifSgn 78
\xintiiifZero 78
\xintiiifNotZero 78
\xintiiifOne 79
\xintiiifCmp 79

This is 1.20 of 2017/08/29.

Version 1.0 was released 2013/03/28. Since 1.1 2014/10/28 the core arithmetic macros have been
moved to a separate package xintcore, which is automatically loaded by xint. Only the \xintiiSum,
\xintiiPrd, \xintiiSquareRoot, \xintiiPFactorial, \xintiiBinomial genuinely add to the arith-
metic macros from xintcore. (\xintiiFac which computes factorials is already in xintcore.)

With the exception of \xintLen, of the «Boolean logic macros» (see next paragraph) all macros
require inputs being integers in strict format, see subsection 3.4.°° The ii in the macro names is
here as a reminder of that fact. The output is an integer in strict format, or a pair of two braced
such integers for \xintiiSquareRoot, with the exception of \xintiiE which may produce strings of
zero's if its first argument is zero.

Macros \xintDecSplit and \xintReverseDigits are non-arithmetic and have their own specific
rules.

For all macros described here for which it makes sense, package xintfrac defines a similar one
without ii in its name. This will handle more general inputs: decimal, scientific numbers, frac-
tions. The ii macros provided here by xint can be nested inside macros of xintfrac but the opposite
does not apply, because the output format of the xintfrac macros, even for representing integers,

is not understood by the ii macros. The «Boolean macros» \xintAND etc...

.27
.28
.29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
.51
.52

\XintiiifEq.........ccoviiiiii 79
\XintiiifGt......... i 79
\xintiiifLt...... 79
\xintiiifOdd 79
\xintiiSum.......... 79
\xintiiPrd........... 79
\xintiiSquareRoot 80
\xintiiSqrt, \xintiiSqrtR............. 80
\xintiiBinomial 80
\xintiiPFactorial 81
\xintiiMax......... ..., 82
\xintiiMin.......... i 82
\xintiiMaxof 82
\xintiiMinof 82
\xintifTrueAelseB..................... 82
\xintifFalseAelseB.................... 82
\XIntNOTo 82
\XintAND 82
\XIntOR 82
\XIntXOR 83
\xintANDof........... 83
\xintORof 83
\xintXORof.............. 83
\xintLen 83
Deprecated macros (they require xintfrac) 83
Deprecated macros using \xintNum....... 83

are exceptions though,

they work fine if served as inputs some xintfrac output, despite doing only f-expansion. Prior to
1.20, these macros did apply the \xintNum or the more general xintfrac general parsing, but this

55 of course for conditionals such as \xintiiifCmp this constraint applies only to the first two arguments.

75

Changed
(1.20)

Num

f %
New with
1.20

num

X fx

Changed
(1.2i)

num

X fx
num

X fx

8 Macros of the xint package

overhead was deemed superfluous as it serves only to handle hand-written input and is not needed
if the input is obtained as a nested chain of xintfrac macros for example.

Prior to release 1.20, xint defined additional macros which applied \xintNum to their input
arguments. All these macros are now deprecated and they will get removed at some future release.

Num
See subsubsection 3.3.1 for the significance of the f, f, "% and % margin annotations.

8.1 \xintiLen

\xintiLen{N} returns the length of the number, after its parsing via \xintiNum. The count does not
include the sign.

\xintilLen{-12345678901234567890123456789}
29

Prior to 1.20, the package defined only \xintLen, which is extended by xintfrac to fractions or
decimal numbers, hence acquires a bit more overhead then.

8.2 \xintReverseDigits

\xintReverseDigits{N} will reverse the order of the digits of the number. \xintRev is the former
denomination and is kept as an alias. Leading zeroes resulting from the operation are not removed.
Contrarily to \xintReverseOrder this macro f-expands its argument; it is only usable with digit
tokens. It does not apply \xintNum to its argument (so this must be done explicitely if the argument
is an integer produced from some xintfrac macros). It does accept a leading minus sign which will
be left upfront in the output.
\oodef\x{\xintReverseDigits
{98765432109876543210987654321098765432109876543210} }\meaning\x\par
\noindent\oodef\x{\xintReverseDigits {\xintReverseDigits
{98765432109876543210987654321098765432109876543210}} }\meaning\x\par
macro:->01234567890123456789012345678901234567890123456789
macro:->98765432109876543210987654321098765432109876543210

8.3 \xintDecSplit

\xintDecSplit{x}{N} cuts the N (a list of digits) into two pieces L and R: it outputs {L}{R} where
the original N is the concatenation LR. These two pieces are decided according to x:

e for x>0, R coincides with the x least significant digits. If x equals or exceeds the length of
N the first piece L will thus be empty,

e for x=0, R is empty, and L is all of N,

e for x<0, the first piece L consists of the |x| most significant digits and the second piece R
gets the remaining ones. If x equals or exceeds the length of N the second piece R will thus be
empty.

This macro provides public interface to some functionality which is primarily of internal in-
terest. It operates only (after f-expansion) on " “strings'' of digits tokens: leading zeroes are
allowed but a leading sign (even a minus sign) will provoke an error.

Breaking change with 1.2i: formerly N<O was replaced by its absolute value. Now, a sign (positive
or negative) will create an error.

8.4 \xintDecSplitL, \xintDecSplitR

\xintDecSplitL{x}{N} returns the first piece (unbraced) from the \xintDecSplit output.
\xintDecSplitR{x}{N} returns the second piece (unbraced) from the \xintDecSplit output.

76

num
fx %

num

X fx

num

X fx

num
X fx

ffx

ffx

ffx

ffx

ffx

8 Macros of the xint package

8.5 \xintiiE

\xintiiE{N}{x} serves to extend N with x zeroes. The parameter x must be non-negative. The same
output would be obtained via \xintDSH{-x}{N}, except for N=0, as \xintDSH{-x}{N} multiplies N by
102x hence produces 0 if N=0 whereas \xintiiE{0}{x} produces x+1 zeros.

\xintiiE {03}{91}\par
00

8.6 \xintDSH

\xintDSH{x}{N} is parametrized decimal shift. When x is negative, it is like iterating \xintDSL
x| times (i.e. multiplication by 107*). When x positive, it is like iterating \xintDSR x times
(and is more efficient), and for a non-negative N this is thus the same as the quotient from the
euclidean division by 104x.

8.7 \xintDSHr, \xintDSx

\xintDSHr{x}{N} expects x to be zero or positive and it returns then a value R which is correlated
to the value Q returned by \xintDSH{x}{N} in the following manner:

e if N is positive or zero, Q and R are the quotient and remainder in the euclidean division by
104x (obtained in a more efficient manner than using \xintiDivision),

e if N is negative let Q1 and R1 be the quotient and remainder in the euclidean division by 104
x of the absolute value of N. If Q1 does not vanish, then Q=-Q1 and R=R1. If Ql vanishes, then
Q=0 and R=-R1.

e for x=0, Q=N and R=0.

So one has N = 102x Q + R if Q turns out to be zero or positive, and N = 104x Q - R if Q turns out
to be negative, which is exactly the case when N is at most -104x.

\xintDSx{x}{N} for x negative is exactly as \xintDSH{x}{N}, i.e. multiplication by 107*. For x
zero or positive it returns the two numbers {Q}{R} described above, each one within braces. So Q
is \xintDSH{x}{N}, and R is \xintDSHr{x}{N}, but computed simultaneously.

8.8 \xintiiEq
\xintiiEq{N}{M} returns 1 if N=M, 0 otherwise.
8.9 \xintiiNotEq

\xintiiNotEq{N}{M} returns 0 if N=M, 1 otherwise.
Former denomination \xintiiNeq is deprecated.

8.10 \xintiiGeq

\xintiiGeq{N}{M} returns 1 if the absolute value of the first number is at least equal to the
absolute value of the second number. If |N|<|M| it returns O.
Important: the macro compares absolute values.

8.11 \xintiiGt

\xintiiGt{N}{M} returns 1 if N>M, O otherwise.

8.12 \xintiiLt

\xintiiLt{N}{M} returns 1 if N<M, 0 otherwise.

I

ffx

ffx

f*

fnnn %

fnn %

fnn %

8 Macros of the xint package

8.13 \xintiiGtorEq

\xintiiGtorEq{N}{M} returns 1 if N>M, O otherwise. Extended by xintfrac to fractions.

8.14 \xintiiLtorEq

\xintiiLtorEq{N}{M} returns 1 if N<M, 0 otherwise.

8.15 \xintiiIsZero

\xintiiIsZero{N} returns 1 if N=0, 0 otherwise.

8.16 \xintiiIsNotZero

\xintiiIsNotZero{N} returns 1 if N!=0, 0 otherwise.

8.17 \xintiiIsOne

\xintiiIsOne{N} returns 1 if N=1, 0 otherwise.

8.18 \xintiiOdd

\xintiiOdd{N} is 1 if the number is odd and 0 otherwise.

8.19 \xintiiEven

\xintiiEven{N} is 1 if the number is even and 0 otherwise.

8.20 \xintiiMON

\xintiiMON{N} computes (-1)AN.
\xintiiMON {-280914019374101929}
-1

8.21 \xintiiMMON

\xintiiMMON{N} computes (-1)A{N-1}.
\xintiiMMON {280914019374101929}
1

8.22 \xintiiifSgn

\xintiiifSgn{(N)}{(A)}{(B)}{{(C)} executes either the (4), (B) or {C) code, depending on its first
argument being respectively negative, zero, or positive.

8.23 \xintiiifZero

\xintiiifZero{(N)}{(IsZero)}{{IsNotZero)} expandably checks if the first mandatory argument N (a
number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or
not. It then either executes the first or the second branch.

Beware that both branches must be present.

8.24 \xintiiifNotZero

\xintiiifNotZero{(N)}{(IsNotZero)}{(IsZero)} expandably checks if the first mandatory argument N
is not zero or is zero. It then either executes the first or the second branch.
Beware that both branches must be present.

78

fnn %

ffnnn %

ffnn %

ffnn %

ffnn %

fnn %

8 Macros of the xint package

8.25 \xintiiifOne

\xintiiifOne{(N)}{(IsOne)}{(IsNotOne)} expandably checks if the first mandatory argument N is one
or not one. It then either executes the first or the second branch. Beware that both branches must
be present.

8.26 \xintiiifCmp

\xintiiifCmp{(A)}{(B)}{(A<B)}{(A=B)}{(A>B)} compares its first two arguments and chooses accord-
ingly the correct branch.

8.27 \xintiiifEq

\xintiiifEq{(A)}{(B)}{(A=B)}{(not(A=B))} checks equality of its two first arguments and executes
the corresponding branch.

8.28 \xintiiifGt

\xintiiifGt{(A)}{(B)}{(4>B)}{(not(A>B))} checks if A > B and executes the corresponding branch.

8.29 \xintiiifLt

\xintiiifLt{(A)}{(B)}{(A<B)}{(not (A<B))} checks if A < B and executes the corresponding branch.

8.30 \xintiiifOdd

\xintiiifOdd{(A)}{(A odd)}{(A even)} checks if A is and odd integer and executes the corresponding
branch.

8.31 \xintiiSum

\xintiiSum{(braced things)} after expanding its argument expects to find a sequence of tokens (or
braced material). Each is f-expanded, and the sum of all these numbers is returned.
\xintiiSum{{1233}{-98763450}{\xintiiFac{7}}{\xintiiMul{33473}{591}}}\newline
\xintiiSum{1234567890}\newline
\xintiiSum{1234}\newline
\xintiiSum{}
-96780210
45
10
0
A sum with only one term returns that number: \xintiiSum {{-12343}}=-1234. Attention that \xint)
iiSum {-1234} is not legal input and would make the TgX run fail.

8.32 \xintiiPrd

\xintiiPrd{(braced things)} after expanding its argument expects to find a sequence of (of braced
items or unbraced single tokens). Each is expanded (with the usual meaning), and the product of
all these numbers is returned.

\xintiiPrd{{-9876}{\xintiiFac{7}}{\xintiiMul{33473}{591}}}\newline

\xintiiPrd{123456789123456789}\newline

\xintiiPrd {1234}\newline

\xintiiPrd{}

79

f*

f %
fx

num num
X

X *

8 Macros of the xint package

-98458861798080
131681894400
24
1

Attention that \xintiiPrd {-1234} is not legal input and would make the TgX compilation fail.

$24{2003}34{100}7A{100}=\printnumber

{\xintiiPrd {{\xintiiPow {2}{2003}}{\xintiiPow {3}{100}}{\xintiiPow {73}{100}}}}$

220031007100 _ 5678727931661577575766279517007548402324740266374015348974459614815426412965499)
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892)
7862988084382716133376

With xintexpr, the syntax is the natural one:

$27{20033A4{100}7A{100}=\printnumber{\xinttheiiexpr 24200 * 34100 *» 7A100\relax}$
220031007100 _ 5678727931661577575766279517007548402324740266374015348974459614815426412965499)
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892)
7862988084382716133376

8.33 \xintiiSquareRoot

\xintiiSquareRoot{N} returns two braced integers {M}{d} which satisfy d>0 and M*2-d=N with M the
smallest (hence if N=k*2 is a perfect square then M=k+1, d=2k+1).

\xintAssign\xintiiSquareRoot {17000000000000000000000000}\to\A\B

\xintiiSub{\xintiiSqr\A}\B=\A\string*2-\B
17000000000000000000000000=412310562561842-2799177881924

A rational approximation to \/ﬁ is M- % which is a majorant and the error is at most 1/2M (if N
is a perfect square k*2 this gives k+1/(2k+2), not k.)

Package xintfrac has \xintFloatSqrt for square roots of floating point numbers.

8.34 \xintiiSqrt, \xintiiSqrtR

\xintiiSqrt{N} computes the largest integer whose square is at most equal to N. \xintiiSqrtR pro-
duces the rounded, not truncated, square root.

\begin{itemize}[nosep]

\item \xintiiSqrt {3000000000000000000000000000000000000}

\item \xintiiSqrtR {3000000000000000000000000000000000000}

\item \xintiiSqrt {\xintiiE {3}{100}}

\end{itemize}

e 1732050807568877293

e 1732050807568877294

e 173205080756887729352744634150587236694280525381038

8.35 \xintiiBinomial

\xintiiBinomial{x}{y} computes binomial coefficients.

If x<0 an out-of-range error is raised. Else, if y<0® or if x<y the macro evaluates to 0 (it was a
bit unfortunate that the 1.2f version deliberately raised an out-of-range error for the cases y<0
and y>x, with a positive x.)

The allowable range is 0 < x < 99999999. But this theoretical range includes binomial coeffi-
cients with more than the roughly 19950 digits that the arithmetics of xint can handle. In such
cases, the computation will end up in a low-level TgX error after a long time.

It turns out that (g;ggg) has 19565 digits and (2‘21888) has 19264 digits. The latter can be evaluated
(this takes a long long time) but presumably not the former (I didn't try). Reasonable feasible
evaluations are with binomial coefficients not exceeding about one thousand digits.

The binomial function is available in the xintexpr parsers.

\xinttheiiexpr seq(binomial(100,i), i=47..53)\relax

80

num num
X

X

8 Macros of the xint package

84413487283064039501507937600, 93206558875049876949581681100, 98913082887808032681188722800,
100891344545564193334812497256, 98913082887808032681188722800, 93206558875049876949581681100,
84413487283064039501507937600

See \xintFloatBinomial from package xintfrac for the float variant, used in \xintfloatexpr.

In order to evaluate binomial coefficients (}) with x > 99999999, or even x > 231 but y is not
too large, one may use an ad hoc function definition such as:

\xintdeffunc mybigbinomial (x,y):="* (x-y+1..[1]..X)//y!;%

% without [1], x would have been limited to < 2431

\printnumber{\xinttheexpr mybigbinomial (98765432109876543210,10)\relax}
243380987419407555927295331730581461770706694796697930385102111467840658436985818785823237102
27360575372715482389633359878460739973726786576925067784100587971261422326652270975592667517)
4871960261

To get this functionality in macro form, one can do:

\xintNewIIExpr\MyBigBinomial [2]{ = (#1-#2+1..[1]..#1)//#2'}

\printnumber{\MyBigBinomial {987654321098765432103}{10}}
243380987419407555927295331730581461770706694796697930385102111467840658436985818785823237102
273605753727154823896333598784607399737267865769250677841005879712614223266522709755926675172
4871960261

As we used \xintNewIIExpr, this macro will only accept strict integers. Had we used \xintNewExpr
the \MyBigBinomial would have accepted general fractions or decimal numbers, and computed the
product at the numerator without truncating them to integers; but the factorial at the denominator
would truncate its argument.

8.36 \xintiiPFactorial

\xintiiPFactorial{a}{b} computes the partial factorial (a+1)(a+2)...b. For a=b the product is
considered empty hence returns 1.

The allowed range with 1.2f was 0 < a < b < 99999999.

It was a bit unfortunate with 1.2f that the code deliberately raised an error if this condition
was not obeyed by the arguments.

Starting with 1.2h, -100000000 < a,b < 99999999 is accepted. The rule is to interpret the
formula as the product of the j's such that a < j < b, hence in particular if a > b the product is
empty and the macro evaluates to 1.

Only for 0 < a < b is the behaviour to be considered stable. For a > b or negative arguments, the
definitive rules have not yet been fixed.

\xintiiPFactorial {100}{130}

69293021885203871012298422845822803287591970060789350400000000

This theoretical range allows computations whose result values would have more than the roughly
19950 digits that the arithmetics of xint can handle. In such cases, the computation will end up
in a low-level TfX error after a long time.

The pfactorial function is available in the xintexpr parsers.

\xinttheiiexpr pfactorial(100,130)\relax
69293021885203871012298422845822803287591970060789350400000000

See \xintFloatPFactorial from package xintfrac for the float variant, used in \xintfloatexpr.

In case values are needed with b > 99999999, or even b > 23!, but b - a is not too large, one may
use an ad hoc function definition such as:

\xintdeffunc mybigpfac(a,b):="+* (a+l..[1]..b);%

% without [1], b would have been limited to < 2431

\printnumber{\xinttheexpr mybigpfac(98765432100,98765432120)\relax}
78000855017567528067298107313023778438653002029049647467208196028116499434050587656870489322)
99630604482236853566403912561449912587404607844104078121472675461815442734098676283450069933)
322948600573016997034009566576640000

81

ffx

ffx

f— xf %

f— s f%

fnn %

Changed
(1.20)

fnn %

ffx

ffx

8 Macros of the xint package

8.37 \xintiiMax

\xintiiMax{N}{M} returns the largest of the two in the sense of the order structure on the relative
integers (i.e. the right-most number if they are put on a line with positive numbers on the right):
\xintiiMax {-5}{-63}=-5.

8.38 \xintiiMin

\xintiiMin{N}{M} returns the smallest of the two in the sense of the order structure on the rel-
ative integers (i.e. the left-most number if they are put on a line with positive numbers on the
right): \xintiiMin {-5}{-6}=-6.

8.39 \xintiiMaxof

\xintiiMaxof{{a}{b}{c}...} returns the maximum. The list argument may be a macro, it is f-expanded
first.

8.40 \xintiiMinof

\xintiiMinof{{a}{b}{c}...} returns the minimum. The 1list argument may be a macro, it is f-expanded
first.

8.41 \xintifTrueAelseB

\xintifTrueAelseB{(f)}{(true branch)}{(false branch)} is a synonym for \xintiiifNotZero.
\xintiiifnotzero is lowercase companion macro.

Note 1: as it does only f-expansion on its argument it fails with inputs such as --0. But with
xintfrac loaded, it does work fine if nested with other xintfrac macros, because the output format
of such macros is fine as input to \xintiiifNotZero. This remark applies to all other «Boolean
logic» macros next.

Note 2: prior to 1.20 this macro was using \xintifNotZero which applies \xintNum to its argument
(or gets redefined by xintfrac to handle general decimal numbers or fractions). Hence it would
have worked with input such as --0. But it was decided at 1.20 that the overhead was not worth it.
The same remark applies to the other «Boolean logic» type macros next.

8.42 \xintifFalseAelseB

\xintifFalseAelseB{(f)}{(false branch)}{(true branch)} is a synonym for \xintiiifZero.
\xintiiifzero is lowercase companion macro.

8.43 \xintNOT

\xintNOT is a synonym for \xintiiIsZero.
\xintiiiszero serves as lowercase companion macro.
Its former name was \xintNot which is now deprecated and will be removed at some future release.

8.44 \xintAND

\xintAND{f}{g} returns 1 if £!=0 and g!=0 and 0 otherwise.

8.45 \xintOR

\xintOR{f}{g} returns 1 if f!=0 or g!=0 and 0 otherwise.

82

ffx

f—):i‘f*

f— *f%

f— *f%

Num

f *%

Deprecated!
(1.20)

Deprecated!
(1.20)

8 Macros of the xint package

8.46 \xintXOR

\xintXOR{f}{g} returns 1 if exactly one of f or g is true (i.e. non-zero), else 0.

8.47 \xintANDof

\xintANDof{{a}{b}{c}...} returns 1 if all are true (i.e. non zero) and 0 otherwise. The list ar-
gument may be a macro, it (or rather its first token) is f-expanded first to deliver its items.

8.48 \xintORof

\xintORof{{a}{b}{c}...} returns 1 if at least one is true (i.e. does not vanish), else it produces
0. The list argument may be a macro, it is f-expanded first.

8.49 \xintXORof

\xintXORof{{a}{b}{c}...} returns 1 if an odd number of them are true (i.e. do not vanish), else it
produces 0. The list argument may be a macro, it is f-expanded first.

8.50 \xintLen

\xintLen is originally an alias for \xintilen. But with xintfrac loaded its meaning is modified
to accept more general inputs.

8.51 Deprecated macros (they require xintfrac)

These macros get their definitive definitions only from loading xintfrac. With only xint loaded
they raise an error message (but then operate as in former releases.) They will get removed from
xint at some future release: \xintEq, \xintNeq, \xintGeq, \xintGt, \xintLt, \xintGtorEq, \xint)
LtorEq, \xintIsZero, \xintIsNotZero, \xintIsOne, \xintOdd, \xintEven, \xintifSgn, \xintifCmp,
\xintifEq, \xintifGt, \xintifLt, \xintifZero, \xintifNotZero, \xintifOne, \xintifOdd.

With the exception of \xintNeq which is renamed to \xintNotEq, the above listed macros belong
to xintfrac, which extends their scope to handle decimal numbers and fractions (\xintOdd, \xin)
tEven, \xintifOdd will test the argument after truncation to an integer.) Thus loading xintfrac
overrides the xint deprecations.

8.52 Deprecated macros using \xintNum

These macros filter their arguments via \xintNum. They are deprecated and will be removed at some
future release: \xintMON, \xintMMON, \xintiMax, \xintiMin, \xintiMaxof, \xintiMinof, \xintiSqua
reRoot, \xintiSqrt, \xintiSqrtR, \xintiBinomial, \xintiPFactorial.

83

9 Macros of the xintfrac package

9 Macros of the xintfrac package

First version of this package was in release 1.03 (2013/04/14) of the xint bundle.

O o0 NO VI D WN =

BB R WWWWWwWwWwwWwwWNNDNNDNDNDNDNDNDNRRRRRRRRRR
N R O WOWOONOVIEAE WNREOOUOONOWVIAE WNREOWOVWOOLONO VIR WNRO

\xintNum.......... 85
\XintRaw 85
\xintNumerator 85
\xintDenominator 85
\xintRawWithZeros 86
\XintREZ 86
\XIntIrr ... 86
\XIntJrr 86
\xintPRaw............, 86
\xintTrunc............, 87
\XINtXTrunc.covvi e e 87
\xintTFrac..........., 90
\xintRound............................. 90
\xintFloor............................. 90
\xintCeil 91
\XIntiTrunc.........ccoviiiiii e 91
\XIintTTrunc.......... ..., 91
\xintiRound............................ 91
\xintiFloor............................ 91
\xintiCeil............ 91
\XintE 91
\XintCmp 92
\XIntEqQ ... 92
\XintNotEq............ ..., 92
\XintGeq 92
\XIntGt ... 92
\XINtLE oo 92
\XintGtorEq............. 92
\xintLtorEq............. ..., 92
\XintIsSZero.......... ..., 92
\xintIsNotZeroccuvuvun... 92
\XIntIsOne........cooiiiiieiinnnnnnn.. 92
\XintOdd 92
\xintEven............ 92
\XintifSgn........... 93
\xintifZero............. 93
\xintifNotZero 93
\xintifOne.......... ... oo, 93
\xintifOdd.............. 93
\XintifCmp........... 93
\XintifEq.......... 93
\XIntifGt......... 93

.43
.44
.45
.46
.47
.48
.49
.50
.51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72
.73
.74
.75
.76
.77
.78
.79
.80
.81
.82
.83

\xintifLt.......... 93
\xintifInt........... 93
\XIntSgn ... 94
\XINTOPD .o oot 94
\XintAbs 94
\XintAdd 94
\xintSub 94
\xintMul 94
\XIntDiv 94
\xintDivTrunc 94
\xintDivRound 94
\XIntSqQr ... 94
\XintPow 94
\xintFac 95
\xintBinomial 95
\xintPFactorial 95
\XINtMaX .. oo 95
\XintMin 95
\xintMaxof........... 95
\xintMinof.............. 95
\xintSum........... 95
\XintPrd 96
\xintDigits, \xinttheDigits 96
\xintFloat............................. 96
\xintPFloat............................ 97
\xintFloatE................. 98
\xintFloatAdd 98
\xintFloatSub 98
\xintFloatMul 99
\xintFloatDiv 99
\xintFloatPowc.c.u.... 99
\xintFloatPower 99
\xintFloatSqrt 100
\xintFloatFac 101
\xintFloatBinomial.................... 101
\xintFloatPFactorial 101
\xintFrac............ 102
\xintSignedFrac 102
\xintFwOver.........., 102
\xintSignedFwOver 102
\xintLen 102

xintfrac loads automatically xintcore and xint and inherits their macro definitions. Only these
two are redefined: \xintNum and \xintLen. As explained in subsection 3.4 and subsection 3.5 the
interchange format for the xintfrac macros, i.e. A/B[N], is not understood by the ii-named macros
of xintcore/xint which expect the so-called strict integer format. Hence, to use such an ii-macro
with an output from an xintfrac macro, an extra \xintNum wrapper is required. But macros already
defined by xintfrac cover most use cases hence this should be a rarely needed.

9 Macros of the xintfrac package

Frac
In the macro descriptions, the variable f and the margin indicator stand for the xintfrac input

format for integers, scientific numbers, and fractions as described in subsection 3.4.

As in the xint.sty documentation, x stands for something which internally will be handled in a
\numexpr. It may thus be an expression as understood by \numexpr but its evaluation and interme-
diate steps must obey the TgX bound.

The output format for most macros is the A/B[N] format but naturally the float macros use the
scientific notation on output. And some macros are special, for example \xintTrunc produces dec-
imal numbers, \xintIrr produces an A/B with no [N], \xintiTrunc and \xintiRound produce integers
without trailing [N] either, etc. ..

num
X

9.1 \xintNum

Frac
* The original \xintNum from xint is made a synonym to \xintTTrunc (whose description is to be found

farther in this section).

Attention that for example \xintNum{lel®0000} expands to the needed 100001 digits...

The original \xintNum from xintcore which does not understand the fraction slash or the scien-
tific notation is still available under the name \xintiNum.

9.2 \xintRaw

Frac
* This macro "prints' the fraction f as it is received by the package after its parsing and expansion,

in a form A/B[N] equivalent to the internal representation: the denominator B is always strictly
positive and is printed even if it has value 1.
\xintRaw{\the\numexpr 571x987\relax.123e-10/\the\numexpr-201+59\relax e-7}
-563577123/142[-6]
No simplification is done, not even of common zeroes between numerator and denominator:
\xintRaw {178000/25600000}
178000/25600000[0]

9.3 \xintNumerator

Frac
f * The input data is parsed as if by \xintRaw into A/B[N] format and the macro outputs A if N<=0, or A

extended by N zeroes if N>0.
\xintNumerator {178000/25600000[17]3}\newline
\xintNumerator {312.289001/20198.27}\newline
\xintNumerator {178000e-3/256e5}\newline
\xintNumerator {178.000/25600000}

17800000000000000000000

312289001

178000

178000

9.4 \xintDenominator
Frac
f * The input data is parsed as if by \xintRaw into A/B[N] format and the macro outputs B if N>0, or B

extended by |N| zeroes if N<=0.
\xintDenominator {178000/25600000[17]}\newline
\xintDenominator {312.289001/20198.27}\newline
\xintDenominator {178000e-3/256e5}\newline
\xintDenominator {178.000/25600000}

25600000

20198270000

25600000000

25600000000

85

Frac

f

Frac

f

Frac

Frac

f

Frac

*

*

*

*

9 Macros of the xintfrac package

9.5 \xintRawWithZeros

This macro parses the input and outputs A/B, with A as would be returned by \xintNumerator{f} and

B as would be returned by \xintDenominator{f}.
\xintRawWithZeros{178000/25600000[17]}\newline
\xintRawWithZeros{312.289001/20198.27}\newline
\xintRawWithZeros{178000e-3/256e5}\newline
\xintRawWithZeros{178.000/25600000}\newline
\xintRawWithZeros{\the\numexpr 571%987\relax.123e-10/\the\numexpr-201+59\relax e-7}

17800000000000000000000/25600000

312289001/20198270000

178000/25600000000

178000/25600000000

-563577123/142000000

9.6 \xintREZ

The input is first parsed into A/B[N] as by \xintRaw, then trailing zeroes of A and B are suppressed
and N is accordingly adjusted.

\xintREZ {178000/25600000[17]}
178/256[15]

9.7 \xintIrr

This puts the fraction into its unique irreducible form:

\xintIrr {178.256/256.178}, \xintIrr {178000/25600000[17]}
6856/9853, 695312500000000/1

The current implementation does not cleverly first factor powers of 2 and 5, and \xintIrr {2/3)
[100]} will execute the Euclidean division of 2-104{100} by 3, which is a bit stupid as it could
have known that the 100 trailing zeros can not bring any divisibility by 3.

Starting with release 1.08, \xintIrr does not remove the trailing /1 when the output is an inte-
ger. This was deemed better for various (questionable?) reasons, anyway the output format is since
always A/B with B>0, even in cases where it turns out that B=1. Use \xintPRaw on top of \xintIrr if
it is needed to get rid of such a trailing /1.

9.8 \xintJrr

This also puts the fraction into its unique irreducible form:

\xintJrr {178.256/256.178}
6856/9853

This is (supposedly, not tested for ages) faster than \xintIrr for fractions having some big
common factor in the numerator and the denominator.

\xintJrr {\xintiiPow{\xintiiFac {15}}{3}/%

\xintiiPrd{{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}}}

1001/51705840

But to notice the difference one would need computations with much bigger numbers than in this
example. As \xintIrr, \xintJrr does not remove the trailing /1 from a fraction reduced to an inte-
ger.

9.9 \xintPRaw

PRaw stands for " “pretty raw''. It does like \xintRaw apart from removing the [N] part if N=0 and
removing the B if B=1.

\xintPRaw {123e10/321e10}, \xintPRaw {123e9/321e10}, \xintPRaw {\xintIrr{861/123}}
123/321, 123/321[-11, 7

86

Frac
num
x f

Frac
num y
x f

*

W

9 Macros of the xintfrac package

9.10 \xintTrunc

\xintTrunc{x}{f} returns the integral part, a dot (standing for the decimal mark), and then the
first x digits of the decimal expansion of the fraction f, except when the fraction is (or evaluates
to) zero, then it simply prints 0 (with no dot).

The argument x must be non-negative, the behavior is currently undefined when x<0 and will
provoke errors.

Except when the input is (or evaluates to) exactly zero, the output contains exactly x digits
after the decimal mark, thus the output may be 0.00...0 or -0.00...0, indicating that the original

fraction was positive, respectively negative.

Warning: it is not yet decided is this behaviour is definitive.

Currently xintfrac has no notion of a positive zero or a negative zero. Hence transitivity
of \xintTrunc is broken for the case where the first truncation gives on output 0.00...0 or -
0.00...0: a second truncation to less digits will then output 0, whereas if it had been applied
directly to the initial input it would have produced 0.00...0 or respectively -0.00...0 (with
less zeros).

If xintfrac distinguished zero, positive zero, and negative zero it would be possible to
maintain transitivity.

The problem would also be fixed, even without distinguishing a negative zero on input, if
\xintTrunc always produced 0.00...0 (with no sign) when the mathematical result is zero, dis-
carding the information on original input being positive, zero, or negative.

I have multiple times hesitated about what to do and must postpone again final decision.

\xintTrunc {16}{-803.2028/20905.298}\newline
\xintTrunc {20}{-803.2028/20905.298}\newline
\xintTrunc {10}{\xintPow {-11}{-11}}\newline
\xintTrunc {12}{\xintPow {-11}{-11}}\newline
\xintTrunc {50}{\xintPow {-11}{-11}}\newline
\xintTrunc {12}{\xintAdd {-1/33}{3/9}}\par

-0.0384210165289200

-0.03842101652892008523

-0.0000000000

-0.000000000003
-0.00000000000350493899481392497604003313162598556370

0

The digits printed are exact up to and including the last one.

9.11 \xintXTrunc

\xintXTrunc{x}{f} is similar to \xintTrunc with the following important differences:

e it is completely expandable but not f-expandable, as is indicated by the hollow star in the

margin,
e hence it can not be used as argument to the other package macros, but as it f-expands its {f}

argument, it accepts arguments expressed with other xintfrac macros,
e it requires x>0,

e contrarily to \xintTrunc the number of digits on output is not limited to about 19950 and may

go well beyond 100000 (this is mainly useful for outputting a decimal expansion to a file),

e when the mathematical result is zero, it always prints it as 0.00...0 or -0.00...0 with x zeros

after the decimal mark.

87

9 Macros of the xintfrac package

Warning: transitivity is broken too (see discussion of \xintTrunc), due to the sign in the last
item. Hence the definitive policy is yet to be fixed.

Transitivity is here in the sense of using a first \edef and then a second one, because it is
not possible to nest \xintXTrunc directly as argument to itself. Besides, although the number of
digits on output isn't limited, nevertheless x should be less than about 19970 when the number of
digits of the input (assuming it is expressed as a decimal number) is even bigger: \xintXTrunc{
30000} {\Z} after \edef\Z{\xintXTrunc{60000}{1/66049} raises an error in contrast with a direct
\xintXTrunc{30000}{1/66049}. But \xintXTrunc{30000}{123.456789} works, because here the number
of digits originally present is smaller than what is asked for, thus the routine only has to add
trailing zeros, and this has no limitation (apart from TgX main memory) .

\xintXTrunc will expand fully in an \edef or a \write (\message, \wlog, ...) or in an \xint-
expr-ession, or as list argument to \xintFor=.

Here is an example session where the user checks that the decimal expansion of 1/66049 = 1/2572
has the maximal period length 257 % 256 = 65792 (this period length must be a divisor of ¢(66049)
and to check it is the maximal one it is enough to show that neither 32896 nor 256 are periods.)

$ rlwrap etex -jobname worksheet-66049

This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016) (preloaded format=etex)

restricted \writel8 enabled.

wxxintfrac.sty

entering extended mode

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintfrac.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xint.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintcore.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintkernel.sty))))

%% we load xinttools for \xintKeep, etc... \xintXTrunc itself has no more

%% any dependency on xinttools.sty since 1.2i

#\input xinttools.sty
(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xinttools.sty)

#\def\m#1; {\message{#1}}

*\m \the\numexpr 257%257\relax;

66049

=*\m \the\numexpr 257%256\relax;

65792

%% Thus 1/66049 will have a period length dividing 65792.

%% Let us first check it is indeed periodical.
*\edef\Z{\xintXTrunc{66000}{1/66049}}

%% Let's display the first decimal digits.

*\m \xintXTrunc{2083}{\Z};
0.00001514027464458205271843631243470756559523989765174340262532362337052794137
6856576178291874214598252812306015231116292449545034746930309315810988811337037
6538630410755651107511090251177156353616254598858423

%% let's now fetch the trailing digits

#*\m \xintKeep{65792-660003}{\Z};% 208 trailing digits
0000151402746445820527184363124347075655952398976517434026253236233705279413768

5657617829187421459825281230601523111629244954503474693030931581098881133703765
38630410755651107511090251177156353616254598858423

88

9 Macros of the xintfrac package

%% yes they match! we now check that 65792/2 and 65792/257=256 aren't periods.
*\m \xintXTrunc{2563}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137
6856576178291874214598252812306015231116292449545034746930309315810988811337037
6538630410755651107511090251177156353616254598858423291798513225029902042423049
554118911717058547442

*\m \xintXTrunc{256+2563}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137
6856576178291874214598252812306015231116292449545034746930309315810988811337037
6538630410755651107511090251177156353616254598858423291798513225029902042423049
5541189117170585474420505987978621932201850141561567926842192917379521264515738
3154930430438008145467758785144362518736089872670290239064936637950612424109373
3440324607488379839210283274538600130206361943405653378552286938485064119063119
8049932625777831609865402958409665551333

%% now with 65792/2=32896. Problem: we can't do \xintXTrunc{32896+100}{\Z}

%% but only direct \xintXTrunc{32896+100}{1/66049}. Anyway we want to nest it
%% hence let's do it all with (slower) \xintKeep, \xintKeepUnbraced.
#*\m \xintKeep {-100}{\xintKeepUnbraced{2+65792/2+100}{\Z}};

9999848597253554179472815636875652924344047601023482565973746763766294720586231
434238217081257854017
#% This confirms 32896 isn't a period length.

%% To conclude let's write the 66000 digits to the log.
*\wlog{\Z}

%% We want always more digits:
*\wlog{\xintXTrunc{150000}{1/66049}}

=\bye
The acute observer will have noticed that there is something funny when one compares the first
digits with those after the middle-period:
0000151402746445820527184363124347075655952398976517434026253236233705279413768. ..
9999848597253554179472815636875652924344047601023482565973746763766294720586231. ..
Mathematical exercise: can you explain why the two indeed add to 9999...9999?
You can try your hands at this simpler one:
1/49=\xintTrunc{42+5}{1/49}...\newline
\xintTrim{2}{\xintTrunc{21}{1/49}}\newline
\xintKeep{-21}{\xintTrunc{423}{1/49}}
1/49=0.02040816326530612244897959183673469387755102040. ..
020408163265306122448
979591836734693877551
This was again an example of the type 1/N with N the square of a prime. One can also find counter-
examples within this class: 1/3142 and 1/3742 have an odd period length (465 and respectively 111)
hence they can not exhibit the symmetry.

89

Frac

num Frac

X

Frac

f

*

*

*

9 Macros of the xintfrac package

Mathematical challenge: prove generally that if the period length of the decimal expansion
of 1/pAr (with p a prime distinct from 2 and 5 and r a positive exponent) is even, then the
previously observed symmetry about the two halves of the period adding to a string of nine's
applies.

9.12 \xintTFrac

\xintTFrac{f} returns the fractional part, f=trunc(f)+frac(f). Thus if f<0, then -1<frac(f)<=0
and if >0 one has 0<= frac(f)<l. The T stands for '"Trunc', and there should exist also simi-
lar macros associated respectively with "Round', Floor', and "Ceil', each type of rounding to
an integer deserving arguably to be associated with a fractional ' "modulo''. By sheer laziness,
the package currently implements only the " "modulo'' associated with “Truncation'. Other types
of modulo may be obtained more cumbersomely via a combination of the rounding with a subsequent
subtraction from f.

Notice that the result is filtered through \xintREZ, and will thus be of the form A/B[N], where
neither A nor B has trailing zeros. But the output fraction is not reduced to smallest terms.

The function call in expressions (\xintexpr, \xintfloatexpr) is frac. Inside \xintexpr..\rela)
x, the function frac is mapped to \xintTFrac. Inside \xintfloatexpr..\relax, frac first applies
\xintTFrac to its argument (which may be an exact fraction with more digits than the floating
point precision) and only in a second stage makes the conversion to a floating point number with
the precision as set by \xintDigits (default is 16).

\xintTFrac {1235/97}, \xintTFrac {-1235/97}\newline

\xintTFrac {1235.973}, \xintTFrac {-1235.973}\newline

\xintTFrac {1.122435727e5}\par
71/97[0], -71/97[0]

973/1[-3], -973/1[-3]
5727/1[-4]

9.13 \xintRound

\xintRound{x}{f} returns the start of the decimal expansion of the fraction f, rounded to x digits
precision after the decimal point. The argument x should be non-negative. Only when f evaluates
exactly to zero does \xintRound return 0 without decimal point. When f is not zero, its sign is
given in the output, also when the digits printed are all zero.

\xintRound {16}{-803.2028/20905.298}\newline

\xintRound {20}{-803.2028/20905.298}\newline

\xintRound {10}{\xintPow {-11}{-11}}\newline

\xintRound {12}{\xintPow {-11}{-11}}\newline

\xintRound {12}{\xintAdd {-1/33}{3/9}}\par
-0.0384210165289201
-0.03842101652892008523
-0.0000000000
-0.000000000004
0

9.14 \xintFloor

\xintFloor {f} returns the largest relative integer N with N < f.
\xintFloor {-2.13}, \xintFloor {-2}, \xintFloor {2.13}
-3/1[0], -2/1[0], 2/1[0] Note the trailing [0], see \xintiFloor if it is not desired.

90

Frac

f

num Frac

f

Frac

Frac
num
x f

Frac

f

Frac

f

Frac num
f

*

*

*

*

*

*

X

9 Macros of the xintfrac package

9.15 \xintCeil

\xintCeil {f} returns the smallest relative integer N with N > f.
\xintCeil {-2.13}, \xintCeil {-2}, \xintCeil {2.13}
-2/1[0], -2/1[0], 3/1[0]

9.16 \xintiTrunc

\xintiTrunc{x}{f} returns the integer equal to 10*x times what \xintTrunc{x}{f} would produce.
\xintiTrunc {16}{-803.2028/20905.298}\newline
\xintiTrunc {10}{\xintPow {-11}{-11}}\newline
\xintiTrunc {12}{\xintPow {-11}{-11}}\par
-384210165289200
0
-3
In particular \xintiTrunc{0}{f}'s output is in strict integer format contrarily to \xintTrunc{?
03} {f} which produces an output with a decimal mark, except if f turns out to be zero.

9.17 \xintTTrunc

\xintTTrunc{f} truncates to an integer (truncation towards zero). This is the same as \xintiTrun)
c {0}{f} and also the same as \xintNum.

9.18 \xintiRound

\xintiRound{x}{f} returns the integer equal to 10*x times what \xintRound{x}{f} would return.
\xintiRound {16}{-803.2028/20905.298}\newline
\xintiRound {10}{\xintPow {-11}{-11}}\par
-384210165289201
0
In particular \xintiRound{0}{f}'s output is in strict integer format contrarily to \xintRound{?
0} {f} which produces an output with a decimal mark, except if f turns out to be zero.

9.19 \xintiFloor

\xintiFloor {f} does the same as \xintFloor but without the trailing /1[0].
\xintiFloor {-2.13}, \xintiFloor {-2}, \xintiFloor {2.13}
-3, -2, 2

9.20 \xintiCeil

\xintiCeil {f} does the same as \xintCeil but its output is without the /1[0].
\xintiCeil {-2.13}, \xintiCeil {-2}, \xintiCeil {2.13}
-2, -2, 3

9.21 \xintE

\xintE {f}{x} multiplies the fraction f by 10*. The second argument x must obey the TgX bounds.
Example:

\count 255 123456789 \xintE {10}{\count 255}
10/1[123456789] Don't feed this example to \xintNum!

91

9 Macros of the xintfrac package

9.22 \xintCmp

FracFrac
f f * This compares two fractions F and G and produces -1, 0, or 1 according to F<G, F=G, F>G.

For choosing branches according to the result of comparing f and g, see \xintifCmp.

9.23 \xintEq

* \xintEq{f}{g} returns 1 if f=g, O otherwise.

Frac Frac
f f

9.24 \xintNotEq

Frac Frac
f £ * \xintNotEq{f}{g} returns 0 if f=g, 1 otherwise.

Former denomination \xintNeq is deprecated.

9.25 \xintGeq

Frac Frac
* This compares the absolute values of two fractions. \xintGeq{f}{g} outputs 1 if [f| > |g| and 0 if
not.
Important: the macro compares absolute values.
9.26 \xintGt
Frac Frac

* \xintGt{f}{g} returns 1 if f>g, 0 otherwise.

9.27 \xintLt

Frac Frac
* \xintLt{f}{g} returns 1 if f<g, 0 otherwise.

9.28 \xintGtorEq

Frac Frac
f £ % \xintGtorEq{f}{g} returns 1 if f>g, 0 otherwise. Extended by xintfrac to fractions.

9.29 \xintLtorEq

FracFrac
f f * \xintLtorEq{f}{g} returns 1 if £<g, 0 otherwise.

9.30 \xintIsZero

f* \xintIsZero{f} returns 1 if f=0, 0 otherwise.

9.31 \xintIsNotZero

f* \xintIsNotZero{f} returns 1 if f!=0, 0 otherwise.

9.32 \xintIsOne

f* \xintIsOne{f} returns 1 if f=1, 0 otherwise.

9.33 \xintOdd

fx \xintOdd{f} returns 1 if the integer obtained by truncation is odd, and 0 otherwise.

9.34 \xintEven

f* \xintEven{f} returns 1 if the integer obtained by truncation is even, and 0 otherwise.

92

Frac

f nnn %

Frac
f nn %

Frac
f nn %

Frac
f nn %

Frac
f nnx%

rac Frac

f nnnx

Frac Frac

f

f nnx%

Frac Frac

f

f nnx%

Frac Frac

f

f nnx

Frac
f nn %

9 Macros of the xintfrac package

9.35 \xintifSgn

\xintifSgn{{f)}{(B)}{{C)} executes either the (A), (B) or (C) code, depending on its first argument
being respectively negative, zero, or positive.

9.36 \xintifZero

\xintifZero{(f)}{(IsZero)}{(IsNotZero)} expandably checks if the first mandatory argument N (a
number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or
not. It then either executes the first or the second branch.

Beware that both branches must be present.

9.37 \xintifNotZero

\xintifNotZero{(N)}{(IsNotZero)}{(IsZero)} expandably checks if the first mandatory argument f
is not zero or is zero. It then either executes the first or the second branch.
Beware that both branches must be present.

9.38 \xintifOne

\xintifOne{(N)}{(IsOne)}{(IsNotOne)} expandably checks if the first mandatory argument f is one
or not one. It then either executes the first or the second branch. Beware that both branches must
be present.

9.39 \xintifOdd

\xintifOdd{(N)}{{odd)}{(not odd)} expandably checks if the first mandatory argument f, after
truncation to an integer, is odd or even. It then executes accordingly the first or the second
branch. Beware that both branches must be present.

9.40 \xintifCmp

\xintifCmp{{(£)I{(g)I{(if f<g)}{(if f=g)}{(if £>g)} compares its first two arguments and chooses
accordingly the correct branch.

9.41 \xintifEq

\xintifEq{(£)}{(g)}{(YES)}{(NO)} checks equality of its two first arguments and executes accord-
ingly the YES or the NO branch.

9.42 \xintifGt
\xintifGt{(£)}{(g)}{(YES)}{(NO)} checks if f > g and in that case executes the YES branch.

9.43 \xintifLt
\xintifLt{(£)}{{g)}H{(YES)}{(NO)} checks if f < g and in that case executes the YES branch.

9.44 \xintifInt

\xintifInt{f}{YES branch}{NO branch} expandably chooses the YES branch if f reveals itself after
expansion and simplification to be an integer.

93

9 Macros of the xintfrac package

9.45 \xintSgn

Frac
* The sign of a fraction.
9.46 \xintOpp
Frac
* The opposite of a fraction. Note that \xintOpp {3} produces -3/1[0] whereas \xintiiOpp {3} pro-
duces -3.
9.47 \xintAbs
Frac

* The absolute value. Note that \xintAbs {-2}=2/1[0] where \xintiiAbs {-2} outputs =2.

9.48 \xintAdd

FracFrac
f f * Computes the addition of two fractions.

Checks if one denominator is a multiple of the other. Else multiplies the denominators.
9.49 \xintSub
Frac Frac
* Computes the difference of two fractions (\xintSub{F}{G} computes F-G).
Checks if one denominator is a multiple of the other. Else multiplies the denominators.
9.50 \xintMul

* Computes the product of two fractions.
No reduction attempted.

Frac Frac
f f

9.51 \xintDiv

FracFrac
f f * Computes the quotient of two fractions. (\xintDiv{F}{G} computes F/G).

No reduction attempted.

9.52 \xintDivTrunc

Frac Frac
* Computes the quotient of two arguments then truncates to an integer.

9.53 \xintDivRound

Frac Frac
f £ % Computes the quotient of the two arguments then rounds to an integer.

9.54 \xintSqr
Frac
f * Computes the square of one fraction.

9.55 \xintPow

Frac Num
\xintPow{f}{x}: computes fAx with f a fraction and x possibly also, but x will first get truncated

to a (positive or negative) integer.

The output will now always be in the form A/B[n] (even if the exponent vanishes: \xintPow {2/3})
{03=1/1[01).

Within an \xintiiexpr..\relax the infix operator * is mapped to \xintiiPow; within an \xint-
expr-ession it is mapped to \xintPow.

94

Num

f

Num Num

f

f

Num Num
f f

Frac Frac

*

*

*

*

ffx

Frac Frac
f f

f— =

f— =

f— =

ffx

Frac

f

Frac

f

Frac

f

*

*

*

9 Macros of the xintfrac package

9.56 \xintFac

This is a convenience variant of \xintiiFac which applies \xintNum to its argument. Notice however
that the output will have a trailing [0] according to the xintfrac format for integers.

The \xintiFac variant which does not add this [0] is deprecated and will be removed at some future
release.

9.57 \xintBinomial

This is a convenience variant of \xintiiBinomial which applies \xintNum to its arguments. Notice
however that the output will have a trailing [0] according to the xintfrac format for integers.

The \xintiBinomial variant which does not add this [0] is deprecated and will be removed at some
future release.

9.58 \xintPFactorial

This is a convenience variant of \xintiiPFactorial which applies \xintNum to its arguments. Notice
however that the output will have a trailing [0] according to the xintfrac format for integers.

The \xintiPFactorial variant which does not add this [0] is deprecated and will be removed at
some future release.

9.59 \xintMax

The maximum of two fractions. Beware that \xintMax {2}{3} produces 3/1[0]. The original, for use
with integers only with no need of normalization, is available as \xintiiMax: \xintiiMax {2}{3}
=3.

\xintMax {2.5}{7.2}
72/1[-1]

9.60 \xintMin

The maximum of two fractions. Beware that \xintMax {2}{3} produces 3/1[0]. The original, for use
with integers only with no need of normalization, is available as \xintiiMin: \xintiiMin {2}{3}
=2.

\xintMin {2.53}{7.2}
25/1[-1]

9.61 \xintMaxof

The maximum of any number of fractions, each within braces, and the whole thing within braces.
\xintMaxof {{1.233}{1.2299}{1.2301}} and \xintMaxof {{-1.233}{-1.2299}{-1.2301}}
12301/1[-4] and -12299/1[-4]

9.62 \xintMinof

The minimum of any number of fractions, each within braces, and the whole thing within braces.
\xintMinof {{1.23}{1.2299}{1.2301}} and \xintMinof {{-1.23}{-1.2299}{-1.2301}}
12299/1[-4] and -12301/1[-4]

9.63 \xintSum

This computes the sum of fractions. The output will now always be in the form A/B[n]. The original,
for big integers only (in strict format), is available as \xintiiSum.
\xintSum {{1282/2196921}{-281710/291927}{4028/28612}}

95

Frac

f—o» f %

[x

Frac
num
1 £ %

New with
1.2k

Changed
(1.2k)

9 Macros of the xintfrac package

-15113784906302076/18350036010217404[0]
No simplification attempted.

9.64 \xintPrd

TThis computes the product of fractions. The output will now always be in the form A/B[n]. The
original, for big integers only (in strict format), is available as \xintiiPrd.

\xintPrd {{1282/2196921}{-281710/291927}{4028/28612}}
-1454721142160/18350036010217404[0]

No simplification attempted.
$\xintIsOne {21921379213/21921379213}\neq\xintIsOne {1.00000000000000000000000000000001}$
1#0

9.65 \xintDigits, \xinttheDigits

The syntax \xintDigits := D; (where spaces do not matter) assigns the value of D to the number of
digits to be used by floating point operations. The default is 16. The maximal value is 32767. The
macro \xinttheDigits serves to print the current value.

9.66 \xintFloat

The macro \xintFloat [P]{f} has an optional argument P which replaces the current value of \xintt)
heDigits. The fraction f is then printed in scientific notation with a rounding to P digits.

That is, on output: the first digit is from 1 to 9, it is possibly prefixed by a minus sign and
is followed by a dot and P-1 digits, then a lower case e and an exponent N. The trailing zeroes are
not trimmed.

There is currently one exceptional case: the zero value, which gets output as 0.e0. It is
yet to be decided what the final policy will be.

Starting with 1.2k, when the input is a fraction AeN/BeM the output always is the correct round-
ing to P digits. Formerly, this was guaranteed only when A and B had at most P+2 digits, or when B
was 1 and A was arbitrary, but in other cases it was only guaranteed that the difference between
the original fraction and the rounding was at most 0.6 unit in the last place (of the output), hence
the output could differ in the last digit (and earlier ones in case of chains of zeros or nines)
from the correct rounding.

Also: for releases 1.2j and earlier, in the special case when A/B ended up being rounded up to
the next power of ten, the output was with a mantissa of the shape 10.0...0eN. However, this worked
only for B=1 or when both A and B had at most P+2 digits, because the detection of the rounding-
up to next power of ten was done not on original A/B but on an approximation A'/B', and it could
happen that A'/B' was itself being rounded down to a power of ten which however was a rounding up
of original A/B. With the 1.2j refactoring which achieves correct rounding in all cases, it was
decided not to add to the code the extra overhead of detecting with 100% fiability the rounding up
to next power of ten (such overhead would necessitate alterations of the algorithm and as a result
we would end up with a slightly less efficient one; it would make sense in a model where inputs
have their intrinsic precisions which is obeyed by the implementation of the basic operations,
but currently the design decision for the floating point macros is that when the target precision
is P the inputs are rounded first to P digits before further processing.)

{\def\x{99999999999999994999999999999999,/999999999999999999999999999999991}%

\xintFor #1 in {13, 14, 15, 16, 17, 18, 19, 47, 48, 49, 50, 79, 80, 81}

\do{#1: \xintFloat[#1]{\x}\xintifForLast{\par}{\newline}}}%

13: 1.000000000000e0
14: 1.0000000000000e0
15: 1.00000000000000e0

96

[n}l(m] Frch N
=

16:
17:
18:
19:
47:
48:
49:
50:
79:
80:
81:

As
di

20:

5.
5.
5.

0.

9 Macros of the xintfrac package

.999999999999999%e-1

.9999999999999995e-1

.99999999999999950e-1

.999999999999999500e-1

.9999999999999995000000000000000000000000000000e-1
.99999999999999949999999999999999999999999999999%e-1
.999999999999999499999999999999999999999999999995e-1
.9999999999999994999999999999999999999999999999950e-1
.999999999999999499999999999999999999999999999995000000000000000000000000000000e-1
.9999999999999994999999999999999999999999999999949999999999999999999999999999999%e-1
.99999999999999949999999999999999999999999999999499999999999999999999999999999995e-1
an aside, which is illustrated by the above, rounding is not transitive in the number of kept
gits.

{\def\x{137893789173289739179317/138901380138013983}%

O OV VW VW WVWWwuuouououoo

\xintFor* #1 in {\xintSeq{4}{20}}
\do{#1: \xintFloat[#1]{\x}\newline}}%

\xintFloat{5/9999999999999999}\newline

\xintFloat[32]{5/9999999999999999}\newline
\xintFloat[48]{5/9999999999999999}\par
1 9.927e6

.9275e6

.92746e6

.927460e6

.9274600e6

.92745997e6

.927459975e6

.9274599746e€6

.92745997457e6

.927459974572e6

.9274599745717e6
.92745997457166e6
.927459974571665e6
.9274599745716647e6
.92745997457166465e6
.927459974571664655e6
9.9274599745716646545e6
000000000000001e-16
0000000000000005000000000000001e-16
00000000000000050000000000000005000000000000001e-16

o v W VoV

O VW VW VW VWU oovoovoo

67 \xintPFloat

The macro \xintPFloat [P]{f} is like \xintFloat but " “pretty-prints'' the output. Its behaviour
has changed with release 1.2f: there is only one simplification rule now which is that decimal no-
tation (with possibly needed extra zeros) is used in place of scientific notation when the exponent
would end up being between -5 and 5 inclusive.

If the input vanishes the output will be 0. with a a decimal mark.>®

\xintthefloatexpr applies this macro to its output (or each of its outputs, if comma separated).
Currently trailing zeros are not trimmed.

\begingroup\def\test #1{#1${}\to{}$\xintPFloat{#1}}%

\string\xintDigits\ at \xinttheDigits

56

Currently there are no subnormal numbers, and no underflow because the exponent is only limited by the maximal TEX number;

thus underflow situations would manifest themselves via low-level arithmetic overflow errors.

97

num_, Frac pum

Xx] f 'x

Frac Frac
wum
X f

um.. Frac Frac
x]

*

*

*

9 Macros of the xintfrac package

\begin{itemize}[nosep]

\item \test {0}

\item \test {1.23456789%e-7}

\item \test {1.23456789e-6}

\item \test {1.23456789%e-5}

\item \test {1.23456789%e-4}

\item \test {1.23456789%e-3}

\item \test {1.23456789%e-2}

\item \test {1.23456789%e-1}

\item \test {1.23456789e0}

\item \test {1.23456789%el}

\item \test {1.23456789%e2}

\item \test {1.23456789e3}

\item \test {1.23456789¢e4}

\item \test {1.23456789%e5}

\item \test {1.23456789e6}

\item \test {1.23456789e7}

\end{itemize}

\endgroup
\xintDigits at 16

e 0 — 0.

e 1.23456789e-7 — 1.234567890000000e-7
.23456789%e-6 — 1.234567890000000e-6
.23456789e-5 — 0.00001234567890000000
.23456789%e-4 — 0.0001234567890000000
.23456789e-3 — 0.001234567890000000
.23456789e-2 — 0.01234567890000000
.23456789%9e-1 — 0.1234567890000000
.23456789e0 — 1.234567890000000
.23456789%e1 — 12.34567890000000
.23456789%e2 — 123.4567890000000
.23456789e3 — 1234.567890000000
.23456789e4 — 12345.67890000000
.23456789e5 — 123456.7890000000
.23456789e6 — 1.234567890000000e6
.23456789e7 — 1.234567890000000e7

L]
T T A U T G T O G T T

9.68 \xintFloatE

\xintFloatE [P]{f}{x} multiplies the input f by 10%, and converts it to float format according to
the optional first argument or current value of \xinttheDigits.

\xintFloatE {1.23e37}{53}
1.230000000000000e90

9.69 \xintFloatAdd

\xintFloatAdd [P]{f}{g} first replaces f and g with their float approximations f' and g' to P
significant places or to the precision from \xintDigits. It then produces the sum f'+g', correctly
rounded to nearest with the same number of significant places.

9.70 \xintFloatSub

\xintFloatSub [P]{f}{g} first replaces f and g with their float approximations f' and g' to P
significant places or to the precision from \xintDigits. It then produces the difference f'-g'
correctly rounded to nearest P-float.

98

Frac Frac
um
x] f f

Frac Frac
um
x] f f

num_, Frac pum

x] f x

*

*

*

f %

Frac Num
num
x] f

9 Macros of the xintfrac package

9.71 \xintFloatMul

\xintFloatMul [P]{f}{g} first replaces f and g with their float approximations f' and g' to P (or \
xinttheDigits) significant places. It then correctly rounds the product f'+g' to nearest P-float.
See subsection 3.2 for more.

It is obviously much needed that the author improves its algorithms to avoid going through
the exact 2P or 2P-1 digits before throwing to the waste-bin half of those digits !

9.72 \xintFloatDiv

\xintFloatDiv [P]{f}{g} first replaces f and g with their float approximations f' and g' to P
(or \xinttheDigits) significant places. It then correctly rounds the fraction f'/g' to nearest
P-float.

See subsection 3.2 for more.

Notice in the special situation with f and g integers that \xintFloatDiv [P]{f}{g} will not
necessarily give the correct rounding of the exact fraction f/g. Indeed the macro arguments are
each first individually rounded to P digits of precision. The correct syntax to get the correctly
rounded integer fraction f/g is \xintFloat[P]{f/g}.

9.73 \xintFloatPow

\xintFloatPow [P]{f}{x} uses either the optional argument P or in its absence the value of \xintt)
heDigits. It computes a floating approximation to f/x.

The exponent x will be handed over to a \numexpr, hence count registers are accepted on input for
this x. And the absolute value |x| must obey the TgX bound.

The argument f is first rounded to P significant places to give f'. The output Z is such that the
exact f'*x differs from Z by an absolute error less than 0.52 ulp(Z).

\xintFloatPow [8]{3.1415}{1234567890}
1.6122066e613749456

9.74 \xintFloatPower

\xintFloatPower[P]{f}{g} computes a floating point value fAg where the exponent g is not con-
strained to be at most the TgX bound 2147483647. It may even be a fraction A/B but must simplify to
a (possibly big) integer. The exponent of the output however must at any rate obey the TgX bound.

The argument f is first rounded to P significant places to give f'. The output Z is then such that
the exact f'+g differs from Z by an absolute error less than 0.52 ulp(Z).

This is the macro which is used for the * (or **) infix operators in \xintthefloatexpr...\rela)
x. In this context (but not directly with the macro,) half-integer exponents are allowed. This is
handled via an integer power followed by a square-root extraction. The exponent is first rounded
to nearest integer or half-integer so that the computation never raises errors (except naturally
for negative exponent and zero f.) The 0.52 ulp(Z) bound applies with half-integer exponents too.

Notice that this is a bound on the distance from f'Ag to Z, as f always gets rounded to P or
\xinttheDigits digits. The distance from fAg to Z can be much worse if g is very large. Roughly,
when g is negligible compared to 104P, we get an extra difference of up to about 50g ulp(Z) which
completely dwarfs the 0.52 ulp(Z). Thus, if f has strictly more than P digits, then the computation
must be done with an elevated working precision P'. For example with g=1000 we should use P'=P+6
to achieve a total error at worst slightly bigger than 0.55 ulp(Z) after the final rounding from
P' to P digits to get Z.

Examples:57

57 \np is formatting macro from the http://ctan.org/pkg/numprint package.

99

http://ctan.org/pkg/numprint

[x

num. Frac

]

f *

9 Macros of the xintfrac package

\np{\xintFloatPower [8]{3.1415}{3e9}}\newline% Notice that 3e9>2431

\np{\xintFloatPower [48]{1.1547}{\xintiiPow {2}{35}}}\newline
1.431,772,9 x 101,491,411, 192
2.785,837,382,571,371,438,495,789, 880, 733,698,213, 205, 183,990, 48 x 102> 146,424,193
235 = 34359738368 exceeds TX's bound, but what counts is the exponent of the result which, while
dangerously close to 23! is not quite there yet.

With expressions:

{\xintDigits:=48;\np{\xintthefloatexpr 1.1547A(2435)\relax}}
2.785,837,382,571,371,438,495, 789,880, 733,698,213, 205, 183,990, 48 x 102> 146,424,193

There is a subtlety here that the 2435 will be evaluated as a floating point number but fortu-
nately it only has 11 digits, hence the final evaluation is done with a correct exponent. It would
have been safer, and also more efficient to code the above rather as:
\xintthefloatexpr 1.1547A\xintiiexpr 2435\relax\relax
Here is an example with 12416 as exponent, which has 18 digits (=184884258895036416).
{\xintDigits:=12;\np{\xintthefloatexpr (l+le-8)A\xintiiexpr 12A16\relax\relax}}\newline
\np{\xintthefloatexpr (l+le-8)A\xintiiexpr 12416\relax\relax}\newline
{\xintDigits:=27;\np{\xintthefloatexpr (l+le-8)A(12A16)\relax}}\newline
{\xintDigits:=48;\np{\xintthefloatexpr (l+le-8)A(12A16)\relax}}
.879,985, 676,69 x 10802,942,130
.879,985, 676,694, 948 x 10802,942,130
.879,985, 676,694,948, 388,381, 844, 07 x 10802,942,130
.879,985, 676,694,948, 388, 381, 844,074, 802, 295, 996, 746,413, 609, 97 x 10302,942,130
There is an important difference between \xintFloatPower[Q]{X}{Y} and \xintthefloatexpr[Q] 2
XAY\relax: in the former case the computation is done with Q digits or precision,58 whereas with
\xintthefloatexpr[Q] the evaluation of the expression proceeds with \xinttheDigits digits of pre-
cision, and the final result is then rounded to Q digits: thus this makes real sense only if used
with Q<\xinttheDigits.

ST Y

9.75 \xintFloatSqrt

\xintFloatSqrt[P]{f} computes a floating point approximation of vV, either using the optional
precision P or the value of \xinttheDigits.

More precisely since 1.2f the macro achieves so-called correct rounding: the produced value is
the rounding to P significant places of the abstract exact value, if the input has itself at most
P digits (and an arbitrary exponent).

\xintFloatSqrt [89]{10}\newline

\xintFloatSqrt [89]{100}\newline

\xintFloatSqrt [89]1{123456789}\par
3.1622776601683793319988935444327185337195551393252168268575048527925944386392382213442481e0
1.00e1
1.1111111060555555440541666143353469245878409860134351071458570675251471479496366736579136e4

And now some tests to check that correct rounding applies correctly (sic):

The argument has 16 digits, hence escapes initial rounding:\newline

\xintFloatSqrt {5625000075000001}\newline

This one gets rounded hence same value is computed:\newline

\xintFloatSqrt {5625000075000001.4}\newline

but actual value is more like:\newline

\xintFloatSqrt [24]{5625000075000001.4}\newline

\xintFloatSqrt [32]{5625000075000001.4}\newline

The argument has 48 digits, hence escapes initial rounding:\newline

\xintFloatSqrt [48]{562500000000000000000000750000000000000000000001}\newline

\xintFloatSqrt [64]{562500000000000000000000750000000000000000000001}\newline

\xintFloatSqrt [80]{562500000000000000000000750000000000000000000001}\newline

58 if X and Y themselves stand for some floating point macros with arguments, their respective evaluations obey the precision
\xinttheDigits or as set optionally in the macro calls themselves.

100

num.

[x

num

[x1]

['x']

Num
] £ %

Num Num

f f %

Num Num

f %

Changed
(1.2h)

9 Macros of the xintfrac package

The argument has 16 digits, hence escapes initial rounding:

7.500000050000000e7

This one gets rounded hence same value is computed:

7.500000050000000e7

but actual value is more like:

7.50000005000000076666666e7

7.5000000500000007666666615555556e7

The argument has 48 digits, hence escapes initial rounding:
7.50000000000000000000000500000000000000000000000e23
7.500000000000000000000005000000000000000000000005000000000000000e23
7.5000000000000000000000050000000000000000000000049999999999999999999999966666667e23
(we observe in passing illustrations that rounding to nearest is not transitive.)

9.76 \xintFloatFac

\xintFloatFac[P]{f} returns the factorial with either \xinttheDigits or P digits of precision.
The exact theoretical value differs from the calculated one Y by an absolute error strictly less
than 0.6 ulp(Y).
$1000!\approx{}$\xintFloatFac [30]{1000}
1000! ~ 4.02387260077093773543702433923e2567 The computation proceeds via doing explicitely the
product, as the Stirling formula cannot be used for lack so far of exp/log.
The maximal allowed argument is 99999999, but already 100000! currently takes, for 16 digits of
precision, a few seconds on my laptop (it returns 2.824229407960348e456573).
The factorial function is available in \xintfloatexpr:
\xintthefloatexpr factorial(1000)\relax % same as 1000!
4.023872600770938e2567

9.77 \xintFloatBinomial

\xintFloatBinomial [P]{x}{y} computes binomial coefficients with either \xinttheDigits or P dig-
its of precision.

When x<0 an out-of-range error is raised. Else (this was changed in 1.2h, see subsection 8.35),
if y<0® or if x<y the macro evaluates to 0.e0.

The exact theoretical value differs from the calculated one Y by an absolute error strictly less
than 0.6 ulp(Y).

${3000\choose 1500}\approx{}$\xintFloatBinomial [24]{3000}{1500}
(329%) ~ 1.79196793754756005073269e901

The binomial function is available in \xintfloatexpr:

\xintthefloatexpr binomial (3000, 1500)\relax
1.791967937547560e901

The computation is based on the formula (x-y+1)...x/y! (here one arranges y<=x-y naturally).

9.78 \xintFloatPFactorial

\xintFloatPFactorial [P]{x}{y} computes the product (x+1)...y.

The inputs x and y must evaluate to non-negative integers less in absolute value than 108. For
x=y the product is considered empty hence the returned value is 1.

It was a bit unfortunate with 1.2f that the code deliberately raised an error if the condition
0<=x<=y<1048 was violated. See subsection 8.36 for the now prevailing rules.

But only for the range 0<=x<=y<1048 is it to be considered that the behaviour is fixed and will
not change in the future.

The exact theoretical value differs from the calculated one Y by an absolute error strictly less
than 0.6 ulp(Y).

101

Frac

Frac

Frac

f

Frac

Frac

f

*

*

*

*

*

9 Macros of the xintfrac package

The pfactorial function is available in \xintfloatexpr:
\xintthefloatexpr pfactorial(2500,5000)\relax
2.595989917947957e8914

9.79 \xintFrac

This is a BIX only macro, to be used in math mode only. It will print a fraction, internally rep-
resented as something equivalent to A/B[n] as \frac {A}{B}102n. The power of ten is omitted when
n=0, the denominator is omitted when it has value one, the number being separated from the power of
ten by a \cdot. $\xintFrac {178.000/25600000}$ gives %10‘3, $\xintFrac {178.000/1}$ gives
178000 - 1073, $\xintFrac {3.5/5.7}$ gives g—;, and $\xintFrac {\xintNum {\xintiiFac{10}/\xintii»
Sar{\xintiiFac {5}}}}$ gives 252. As shown by the examples, simplification of the input (apart
from removing the decimal points and moving the minus sign to the numerator) is not done automati-
cally and must be the result of macros such as \xintIrr, \xintREZ, or \xintNum (for fractions being
in fact integers.)

9.80 \xintSignedFrac

This is as \xintFrac except that a negative fraction has the sign put in front, not in the numera-
tor.
\[\xintFrac{-355/113}=\xintSignedFrac {-355/113}\]
-355 355

113 113

9.81 \xintFwOver

This does the same as \xintFrac except that the \over primitive is used for the fraction (in case
the denominator is not one; and a pair of braces contains the A\over B part). $\xintFwOver {1782

.000/25600000}$ gives 51£5038-1073, $\xintFwOver {178.000/1}$ gives 178000 - 1073, $\xintFwOver 2

{3.5/5.7}% gives %, and $\xintFwOver {\xintNum {\xintiiFac{10}/\xintiiSqr{\xintiiFac {5}1}1}}$
gives 252.

9.82 \xintSignedFwOver

This is as \xintFwOver except that a negative fraction has the sign put in front, not in the numer-
ator.
\[\xintFwOver{-355/113}=\xintSignedFwOver {-355/113}\]
-355 355

113 113

9.83 \xintLen

The original \xintLen macro is extended to accept a fraction on input: the length of A/B[n] is the
length of A plus the length of B plus the absolute value of n and minus one (an integer input as N
is internally represented in a form equivalent to N/1[0] so the minus one means that the extended
\xintLen behaves the same as the original for integers).
\xintLen{201710/298219}=\xintLen{201710}+\xintLen{298219}-1\newline
\xintLen{1234/1}=\xintLen{1234}=\xintLen{1234[0]}=\xintiLen{1234}\newline
\xintLen{-1e3/5.425} (\xintRaw {-1e3/5.425})\par
11=6+6-1
4=4=4=4
10 (-1/5425[6])

102

9 Macros of the xintfrac package

The length is computed on the A/B[n] which would have been returned by \xintRaw, as illustrated
by the last example above.

\xintLen is only for use with such (scientific) numbers or fractions. See also \xintNthElt from
xinttools. See also \xintLength (which however does not expand its argument) from xintkernel for
counting more general tokens (or rather braced items).

103

X %

X *

X *

10 Macros of the xintexpr package

10 Macros of the xintexpr package

.1 The \xintexpr expressions 104 | .12 Using an expression parser within another
.2 \numexpr or \dimexpr expressions, count (0] 2 L= 116
and dimension registers and variables 107 | .13 The \xintthecoords macro 116
.3 Catcodes and spaces 107 | .14 \xintifboolexpr 117
.4 Expandability, \xinteval 108 | .15 \xintifboolfloatexpr 117
.5 Memory considerations 108 | .16 \xintifbooliiexpr..................... 117
.6 The \xintNewExXpr macro 109 .17 \xintNewFloatExpr..................... 118
.7 The \xintNewFunction macro 114 .18 \xintNewIEXprccviuuen... 118
.8 \xintiexpr, \xinttheiexpr............. 114 .19 \xintNewIIEXpr 118
.9 \xintiiexpr, \xinttheiiexpr 114 .20 \xintNewBoOlEXpr 118
.10 \xintboolexpr, \xinttheboolexpr 115 .21 Technicalities 118
.11 \xintfloatexpr, \xintthefloatexpr.... 115 | .22 Acknowledgements (2013/05/25) 119

The xintexpr package was first released with version 1.07 (2013/05/25) of the xint bundle. It
was substantially enhanced with release 1.1 from 2014/10/28.

Release 1.2 removed a limitation to numbers of at most 5000 digits, and there is now a float
variant of the factorial. Also the " “pseudo-functions'' gint, qfrac, qfloat ('q' for quick), were
added to handle very big inputs and avoid scanning it digit per digit.

The package loads automatically xintfrac and xinttools (it is now the only arithmetic package
from the xint bundle which loads xinttools).

e for using the gcd and lcm functions, it is necessary to load package xintgcd.
\xinttheexpr lcm (2A5%7%13A10%17A5,243%13A15%1943,743*%13%2342)\relax

2894379441338000036761046087608864

e for allowing hexadecimal numbers (uppercase letters) on input, it is necessary to load package
xintbinhex.

\xinttheexpr "A*"Bx"Cx"D*"D*"F, "FF.FF, reduce("FF.FFF + 16*-3)\relax
3346200, 25599609375[-8], 256

Please refer to section 2 for a more detailed description of the syntax elements for expressions.

10.1 The \xintexpr expressions

An xintexpression is a construct \xintexpr{expandable_expression)\relax where the expandable ex-
pression is read and completely expanded from left to right.

An \xintexpr...\relax must end in a \relax (which will be absorbed). Like a \numexpr expression,
it is not printable as is, nor can it be directly employed as argument to the other package macros.
For this one must use one of the three equivalent forms:

¢ \thexintexpr{expandable_expression)\relax, or
e \xinttheexpr(expandable_expression)\relax, or
e \xintthe\xintexpr({expandable_expression)\relax.

The computations are done exactly, and with no simplification of the result. See \xintfloatexpr
for a similar parser which rounds each operation inside the expression to \xinttheDigits digits
of precision.

As an alternative and equivalent syntax to

\xintexpr round(<expression>, D)\relax

104

10 Macros of the xintexpr package

there is®®

\xintiexpr [D] <expression> \relax
The parameter D must be zero or positive.®® Perhaps some future version will give a meaning to using
a negative .61

e the expression may contain arbitrarily many levels of nested parenthesized sub-expressions,

e the expression may contain explicitely or from a macro expansion a sub-expression \xintexpr.)
..\relax, which itself may contain a sub-expressions etc. ..

e to let sub-contents evaluate as a sub-unit it should thus be either
1. parenthesized,

2. or a sub-expression \xintexpr...\relax.

e to use an expression as argument to the other package macros, or more generally to macros which
expand their arguments, one must use the \xinttheexpr...\relax or \xintthe\xintexpr...\relax
forms.

e similarly, printing the result itself must be done with these forms.

e one should not use \xinttheexpr...\relax as a sub-constituent of an \xintexpr...\relax but
only the \xintexpr...\relax form which is more efficient in this context.

e each xintexpression, whether prefixed or not with \xintthe, is completely expandable and ob-
tains its result in two expansion steps.

See section 2 for the primary information on built-in operators and functions. This section now
adds some complementary information.

e An expression is built the standard way with opening and closing parentheses, infix opera-
tors, and (big) numbers, with possibly a fractional part, and/or scientific notation (except
for \xintiiexpr which only admits big integers). All variants work with comma separated ex-
pressions. On output each comma will be followed by a space. A decimal number must have digits
either before or after the decimal mark.

e As everything gets expanded, the characters ., +, -, *, /, A, ', &, |, ?, :, <, >, =, (), ", 1,
[, @ and the comma , should not (if used in the expression) be active. For example, the French
language in Babel system, for pdfBIgX, activates !, ?, ; and :. Turn off the activity before the
expressions.

Alternatively the macro \xintexprSafeCatcodes resets all characters potentially needed by
\xintexpr to their standard catcodes and \xintexprRestoreCatcodes restores the status pre-
vailing at the time of the previous \xintexprSafeCatcodes.

e Count registers and \numexpr-essions are accepted (LaTeX's counters can be inserted using \v2
alue) natively without \the or \number as prefix. Also dimen registers and control sequences,
skip registers and control sequences (BIX's lengths), \dimexpr-essions, \glueexpr-essions are
automatically unpacked using \number, discarding the stretch and shrink components and giving
the dimension value in sp units (1/65536th of a TX point). Furthermore, tacit multiplication
is implied, when the (count or dimen or glue) register or variable, or the (\numexpr or \dimex)
pr or \glueexpr) expression is immediately prefixed by a (decimal) number. See subsection 2.3
for the complete rules of tacit multiplication.

59 For truncation rather than rounding, one uses \xintexpr trunc(<expression>, D)\relax. 60 p—g corresponds to using round
d(<expression>) not round(<expression>,0) which would leave a trailing dot. Same for trunc. There is also function float for
floating point rounding to \xinttheDigits or the given number of significant digits as second argument. %1 Thanks to KT for
this suggestion. Sorry for the delay in implementing it... matter of formatting the output and corresponding choice of user interface
are still in need of some additional thinking.

105

10 Macros of the xintexpr package

e With a macro \x defined like this:

\def\x {\xintexpr \a + \b \relax} or \edef\x {\xintexpr \a+\b\relax}
one may then do \xintthe\x, either for printing the result on the page or to use it in some other
macros expanding their arguments. The \edef does the computation immediately but keeps it in an
internal private format. Naturally, the \edef is only possible if \a and \b are already defined.
With both approaches the \x can be inserted in other expressions, as for example (assuming
naturally as we use an \edef that in the "yet-to-be computed' case the \a and \b now have some
suitable meaning):

\edef\y {\xintexpr \xA3\relax}

e There is also \xintboolexpr ... \relax and \xinttheboolexpr ... \relax. Same as \xintexpr
with the final result converted to 1 if it is not zero. See also \xintifboolexpr (subsec-
tion 10.14) and the bool and togl functions in section 10. Here is an example:

\xintNewBoolExpr \AssertionA[3]{ #1 && (#2]||#3) }

\xintNewBoolExpr \AssertionB[3]{ #1 || (#2&) }

\xintNewBoolExpr \AssertionC[3]{ xor(#1,#2,#3) }

{\centering\normalcolor\xintFor #1 in {0,1} \do {%

\xintFor #2 in {0,1} \do {%

\xintFor #3 in {0,1} \do {%
#1 AND (#2 OR #3) is \textcolor[named]{OrangeRed}{\AssertionA {#1}{#2}{#3}}\hfil
#1 OR (#2 AND #3) is \textcolor[named]{OrangeRed}{\AssertionB {#1}{#2}{#3}}\hfil
#1 XOR #2 XOR #3 1is \textcolor[named]{OrangeRed}{\AssertionC {#1}{#2}{#3}}\\}}}}

0 AND (OOR 0) is 0 O OR (0 AND 0) is O 0 XOR 0 XOR 0 is 0
0 AND (OOR 1) is O OOR (0AND 1) is O OXOROXOR1is 1
0 AND (10R0) is O OOR (1AND 0) is O 0O XOR 1XOR 01is'1
0 AND (10R 1) is O OOR (1AND 1) is 1 0 XOR 1 XO0R 11is 0
1 AND (OOR0) is O 10R (0 AND 0) is 1 1XORO0OXORO is 1
1AND (OOR 1) is 1 10R (0 AND 1) is 1 1XORO0OXOR11is 0
1AND (10RO0) is 1 10R (1ANDO) is 1 1 XOR 1XOR01is 0
1AND (10R 1) is 1 10R (1AND 1) is 1 1XOR1XO0R1is 1

This example used for efficiency \xintNewBoolExpr. See also the subsection 10.6.

e There is \xintfloatexpr ... \relax where the algebra is done in floating point approximation
(also for each intermediate result). Use the syntax \xintDigits:=N; to set the precision. De-
fault: 16 digits.

\xintthefloatexpr 24100000\relax: 9.990020930143845e30102
The square-root operation can be used in \xintexpr, it is computed as a float with the precision
set by \xintDigits or by the optional second argument:

\xinttheexpr sqrt(2,60)\relax\newline
Here the [60] is to avoid truncation to |\xinttheDigits| of precision on output.\newline
\printnumber{\xintthefloatexpr [60] sqrt(2,60)\relax}

141421356237309504880168872420969807856967187537694807317668[-59]
Here the [60] is to avoid truncation to \xinttheDigits of precision on output.
1.41421356237309504880168872420969807856967187537694807317668

Floats are quickly indispensable when using the power function , as exact results will eas-
ily have hundreds, if not thousands, of digits.

\xintDigits:=48;\xintthefloatexpr 24100000\relax

9.99002093014384507944032764330033590980429139054e30102
Only integer and (in \xintfloatexpr...\relax) half-integer exponents are allowed.

e if one uses macros within \xintexpr..\relax one should obviously take into account that the
parser will not see the macro arguments, hence once cannot use the syntax there, except if the
arguments are themselves wrapped as \xinttheexpr...\relax and assuming the macro f-expands
these arguments.

106

10 Macros of the xintexpr package

10.2 \numexpr or \dimexpr expressions, count and dimension registers and
variables

Count registers, count control sequences, dimen registers, dimen control sequences (like \parind
ent), skips and skip control sequences, \numexpr, \dimexpr, \glueexpr, \fontdimen can be inserted
directly, they will be unpacked using \number which gives the internal value in terms of scaled
points for the dimensional variables: 1pt = 65536 sp (stretch and shrink components are thus dis-
carded).

Tacit multiplication (see subsection 2.3) is implied, when a number or decimal number prefixes
such a register or control sequence. BIgX lengths are skip control sequences and BIEX counters
should be inserted using \value.

Release 1.2 of the \xintexpr parser also recognizes and prefixes with \number the \ht, \dp,
and \wd TX primitives as well as the \fontcharht, \fontcharwd, \fontchardp and \fontcharic e-TX
primitives.

In the case of numbered registers like \count255 or \dimen® (or \ht0®), the resulting digits
will be re-parsed, so for example \count255 0 is like 100 if \the\count255 would give 10. The same
happens with inputs such as \fontdimen6\font. And \numexpr 35+52\relax will be exactly as if 87
as been encountered by the parser, thus more digits may follow: \numexpr 35+52\relax 000 is like
87000. If a new \numexpr follows, it is treated as what would happen when \xintexpr scans a number
and finds a non-digit: it does a tacit multiplication.

\xinttheexpr \numexpr 351+877\relax\numexpr 1000-125\relax\relax{} is the same

as \xinttheexpr 1228%875\relax.

1074500 is the same as 1074500.

Control sequences however (such as \parindent) are picked up as a whole by \xintexpr, and the
numbers they define cannot be extended extra digits, a syntax error is raised if the parser finds
digits rather than a legal operation after such a control sequence.

A token list variable must be prefixed by \the, it will not be unpacked automatically (the parser
will actually try \number, and thus fail). Do not use \the but only \number with a dimen or skip, as
the \xintexpr parser doesn't understand pt and its presence is a syntax error. To use a dimension
expressed in terms of points or other TgX recognized units, incorporate it in \dimexpr...\relax.

Regarding how dimensional expressions are converted by TX into scaled points see also subsec-
tion 3.7.

10.3 Catcodes and spaces

Active characters may (and will) break the functioning of \xintexpr. Inside an expression one may
prefix, for example a : with \string. Or, for a more radical way, there is \xintexprSafeCatcodes.
This is a non-expandable step as it changes catcodes.

10.3.1 \xintexprSafeCatcodes

This macro sets the catcodes of the relevant characters to safe values. This is used internally by
\xintNewExpr (restoring the catcodes on exit), hence \xintNewExpr does not have to be protected
against active characters.

Attention however that if the whole

\xintNewExpr \foo [N] {<expression with #1,...>}
has been fetched as a macro argument, it will be too late then for \xintNewExpr to sanitize the
catcodes of the (active) characters within the expression.

10.3.2 \xintexprRestoreCatcodes

Restores the catcodes to the earlier state.

Spaces inside an \xinttheexpr...\relax should mostly be innocuous (except inside macro argu-
ments) .

107

10 Macros of the xintexpr package

\xintexpr and \xinttheexpr are for the most part agnostic regarding catcodes: (unbraced) dig-
its, binary operators, minus and plus signs as prefixes, dot as decimal mark, parentheses, may be
indifferently of catcode letter or other or subscript or superscript, ..., it doesn't matter.®%?

The characters +, -, =, /, A, ', &, |, ?, :, <, > =, (D), ", [, 1, ;, the dot and the comma
should not be active if in the expression, as everything is expanded along the way. If one of them
is active, it should be prefixed with \string.

The exclamation mark ! should have its standard catcode: with catcode letter it is used inter-
nally and hence will confuse the parsers if it comes from the expression.

Digits, slash, square brackets, minus sign, in the output from an \xinttheexpr are all of catcode
12. For \xintthefloatexpr the "e' in the output has its standard catcode " “letter''.

A macro with arguments will expand and grab its arguments before the parser may get a chance to
see them, so the situation with catcodes and spaces is not the same within such macro arguments.

10.4 Expandability, \xinteval

As is the case with all other package macros \xintexpr f-expands (in two steps) to its final (non-
printable) result; and \xinttheexpr f-expands (in two steps) to the chain of digits (and possibly
minus sign -, decimal mark ., fraction slash /, scientific e, square brackets [,]) representing
the result.

Starting with 1.09j, an \xintexpr..\relax can be inserted without \xintthe prefix inside an \ede)
f, ora\write. It expands to a private more compact representation (five tokens) than \xinttheexpr
or \xintthe\xintexpr.

The material between \xintexpr and \relax should contain only expandable material.

The once expanded \xintexpr is \romannumeral®\xinteval. And there is similarly \xintieval, \xi2
ntiieval, and \xintfloateval. For the other cases one can use \romannumeral-"0 as prefix. For an
example of expandable algorithms making use of chains of \xinteval-uations connected via \expand)
after see subsection 2.9.

An expression can only be legally finished by a \relax token, which will be absorbed.

It is quite possible to nest expressions among themselves; for example, if one needs inside
an \xintiiexpr...\relax to do some computations with fractions, rounding the final result to an
integer, one just has to insert \xintiexpr...\relax. The functioning of the infix operators will
not be in the least affected from the fact that the surrounding " “environment'' is the \xintiiexpr
one.

10.5 Memory considerations

The parser creates an undefined control sequence for each intermediate computation evaluation:
addition, subtraction, etc...Thus, a moderately sized expression might create 10, or 20 such
control sequences. On my TgX installation, the memory available for such things is of circa 200,
000 multi-letter control words. So this means that a document containing hundreds, perhaps even
thousands of expressions will compile with no problem.

Besides the hash table, also TgX main memory is impacted. Thus, if xintexpr is used for computing
plotsf’3, this may cause a problem. In my testing and with current TL2015 memory settings, I ran
into problems after doing about ten thousand evaluations (for example (#1+#2)=#3-#1=#3-#2+#3))
each with number having hundreds of digits. Typical error message can be:

./testaleatoires.tex:243: TeX capacity exceeded, sorry [pool size=6134970].

<argument> ...19140037877484848545931233090884903

There is a (partial) solution. %

A document can possibly do tens of thousands of evaluations only if some identical formulae are
being used repeatedly, with varying arguments (from previous computations possibly) or coming

92 Furthermore, although \xintexpr uses \string, it is escape-char agnostic. It should work with any \escapechar setting including
-1. 93 this is not very probable as so far xint does not include a mathematical library with floating point calculations, but provides

only the basic operations of algebra. %4 which convinced me that | could stick with the parser implementation despite its potential
impact on the hash-table and other parts of TEX's memory.

108

10 Macros of the xintexpr package

from data being fetched from a file. Most certainly, there will be a a few dozens formulae at most,
but they will be used again and again with varying inputs.

With the \xintNewExpr macro, it is possible to convert once and for all an expression containing
parameters into an expandable macro with parameters. Only this initial definition of this macro
actually activates the \xintexpr parser and will (very moderately) impact the hash-table: once
this unique parsing is done, a macro with parameters is produced which is built-up recursively
from the \xintAdd, \xintMul, etc... macros, exactly as it would be necessary to do without the
facilities of the xintexpr package.

Notice that since 1.2c the \xintdeffunc construct allows an alternative to \xintNewExpr whose
syntax uses arbitrary letters rather than macro parameters #1, #2, ..., #9. The declared function
must still be used inside an expression, but its use will need only as many \csname's as were needed
for the function arguments plus one more for encapsulating the function result.

10.6 The \xintNewExpr macro

The macro is used as:
\xintNewExpr{\myformula} [n]{(stuff)}, where

e (stuff) will be inserted inside \xinttheexpr . . . \relax,

e n is an integer between zero and nine, inclusive, which is the number of parameters of \myfor)
mula,

e the placeholders #1, #2, ..., #n are used inside (stuff) in their usual rc“)le,65 66

e the [n] is mandatory, even for n=0.%

e the macro \myformula is defined without checking if it already exists, KX users might prefer
to do first \newcommand=\myformula {} to get a reasonable error message in case \myformula
already exists,

e the protection against active characters is done automatically (as long as the whole thing has
not already been fetched as a macro argument and the catcodes correspondingly already frozen).

It will be a completely expandable macro entirely built-up using \xintAdd, \xintSub, \xintMw)
1, \xintDiv, \xintPow, etc. .. as corresponds to the expression written with the infix operators.
Macros created by \xintNewExpr can thus be nested.

\xintNewFloatExpr \FA [2]{(#1+#2)210}

\xintNewFloatExpr \FB [2]{sqrt(#1=#2)}
\begin{enumerate}[nosep]

\item \FA {5}{5}

\item \FB {30}{10}

\item \FA {\FB {303}{10}}{\FB {403}{20}}

\end{enumerate}

1. 1.000000000000000e10
2. 17.32050807568877
3. 3.891379490446502e16

The use of \xintNewExpr circumvents the impact of the \xintexpr parsers on TgX's memory: it is
useful if one has a formula which has to be re-evaluated thousands of times with distinct inputs
each with dozens, or hundreds of digits.

A " formula'' created by \xintNewExpr is thus a macro whose parameters are given to a possibly
very complicated combination of the various macros of xint and xintfrac. Consequently, one can
not use at all any infix notation in the inputs, but only the formats which are recognized by the
xintfrac macros.

65 if \xintNewExpr is used inside a macro, the #'s must be doubled as usual. %® the #'s will in pratice have their usual catcode,
but category code other #'s are accepted too. 7 there is some use for \xintNewExpr[0] compared to an \edef as \xintNewExpr

has some built-in catcode protection.

109

10 Macros of the xintexpr package

This is thus quite different from a macro with parameters which one would have defined via a
simple \def or \newcommand as for example:

\newcommand\myformula [1]{\xinttheexpr (#1)/3\relax}
Such a macro \myformula, if it was used tens of thousands of times with various big inputs would
end up populating large parts of TgX's memory. It would thus be better for such use cases to go for:

\xintNewExpr\myformula [1]{#123\relax}
Here naturally the situation is over-simplified and it would be even simpler to go directly for
the use of the macro \xintPow or \xintPower.

\xintNewExpr tries to do as many evaluations as are possible at the time the macro parameters
are still parameters. Let's see a few examples. For this I will use \meaning which reveals the
contents of a macro.

1. the examples use a mysterious \fixmeaning macro, which is there to get in the display \roman)
numeral " AA@ rather than the frankly cabalistic \romannumeral " which made the admiration of
the readers of the documentation dated 2015/10/19 (the second ° stood for an ascii code zero
token as per T1 encoded newtxtt font). Thus the true meaning is *~"fixed'' to display something
different which is how the macro could be defined in a standard tex source file (modulo, as one
can see in example, the use of characters such as : as letters in control sequence names) . Prior
to 1.2a, the meaning would have started with a more mundane \romannumeral-"0, but I decided at
the time of releasing 1.2a to imitate the serious guys and switch for the more hacky yet \romay
nnumeral® AA@ everywhere in the source code (not only in the macros produced by \xintNewExpr),
or to be more precise for an equivalent as the caret has catcode letter in xint's source code,
and I had to use another character.

2. the meaning reveals the use of some private macros from the xint bundle, which should not be
directly used. If the things look a bit complicated, it is because they have to cater for many
possibilities.

3. the point of showing the meaning is also to see what has already been evaluated in the con-
struction of the macros.

\xintNewIIExpr\FA [1]{13%25*78*#1+2826+292}\fixmeaning\FA
macro:#1->\romannumeral AA@\xintCSV::csv {\xintiiAdd {\xintiiMul {25350} {#1}3}{825192}}

\xintNewIExpr\FA [2]{(3/5%9/7+13/11=#1-#2)=3A7}

\printnumber{\fixmeaning\FA}
macro:#1#2->\romannumeral " AA@\xintSPRaw: :csv {\xintRound::csv {0}{\xintMul {\xintSub {\xintMw
1 {351/385[0]}{#1}3{#233{2187/1[0]}}}

% an example with optional parameter

\xintNewIExpr\FA [3]{[24] (#1+#2)/(#1-#2)*#3}

\printnumber{\fixmeaning\FA}
macro:#1#2#3->\romannumeral " A*@\xintSPRaw: :csv {\xintRound: :csv {24}{\xintDiv {\xintAdd {#1}{2
#2}}{\xintPow {\xintSub {#1}{#2}}{#3}}}}

\xintNewFloatExpr\FA [2]{[12] 3.1415A3=#1-#2A5}

\printnumber{\fixmeaning\FA}
macro:#1#2->\romannumeral " AA@\xintPFloat::csv {12} {\XINTinFloatSub {\XINTinFloatMul {310035332
39837500[-14]1}{#1}}{\XINTinFloatPowerH {#23}{5}}}

\XxintNewEXpr\DET [9]{ #1x#5*#9+#2=#6=#T7+#3*#4*H#B-#1+#0=#B8-#2+#A*#I-#3*#5*#7 }

\printnumber{\fixmeaning\DET}
macro: #1#2#3#4#5#6#7#8#9->\romannumeral * AA@\xintSPRaw: :csv {\xintSub {\xintSub {\xintSub {\xi2
ntAdd {\xintAdd {\xintMul {\xintMul {#1}{#5}}{#9}}{\xintMul {\xintMul {#2}{#63}}{#7}}}{\xintMul
{\xintMul {#3}{#43}3{#8}}}{\xintMul {\xintMul {#1}{#6}}{#8}}}{\xintMul {\xintMul {#2}{#4}}{#9}3}
FH\xintMul {\xintMul {#3}{#5}}{#7}}}

Notice that since 1.2c it is perhaps more natural to do:

% attention that «ad» would try to use non-existent variable "ad"

110

10 Macros of the xintexpr package

\xintdeffunc det2(a, b, ¢, d) := axd - bxc ;
% This is impossible because we must use single letters :
% \xintdeffunc det3(x_11, x_12, x_13, x_21, x_22, x_23, x_31, x_32, x_33) :=
% x_11 » det2 (x_22, x_23, x_32, x_33) + x_21 = det2 (x_32, x_33, x_12, x_13)
% + x_31 = det2 (x_12, x_13, x_22, x_23);
\xintdeffunc det3 (a, b, ¢, u, v, w, X, y, z) := ax*v#z + b*wsx + c¥ury - b¥urz - c*vxx - arwxy ;
\xinttheexpr det3 (1,1,1,1,2,4,1,3,9), det3 (1,10,100,1,100,10000,1,1000,1000000),
90%900%990, reduce(det3 (1,1/2,1/3,1/2,1/3,1/4,1/3,1/4,1/5))\relax\newline
\xintdeffunc det3bis (a, b, ¢, u, v, w, X, y, z) :=
axdet2(v,w,y,z)-b*det2(u,w,x,z)+c*det2(u,v,x,y);
\pdfsetrandomseed 123456789 % xint.pdf should be predictable from xint.dtx !
\xinttheexpr subs(subs(subs(subs(subs(subs(subs(subs(subs(
% we use one extra pair of parentheses to hide the commas from the subs
(a, b, ¢, u, v, w, x, y, z, det3 (a, b, ¢, u, v, w, x, vy, 2),
det3bis (a, b, ¢, u, v, w, X, y, z)),
z=\pdfuniformdeviate 1000), y=\pdfuniformdeviate 1000), x=\pdfuniformdeviate 1000),
w=\pdfuniformdeviate 1000), v=\pdfuniformdeviate 1000), u=\pdfuniformdeviate 1000),
c=\pdfuniformdeviate 1000), b=\pdfuniformdeviate 1000), a=\pdfuniformdeviate 1000)\relax
2, 80190000, 80190000, 1/2160
339, 694, 33, 664, 31, 921, 891, 763, 353, 188129929, 188129929
The last computation with its nine nested subs can be coded more economically (and efficiently),
exploiting the fact that a single dummy variable can expand to a whole list:
\pdfsetrandomseed 123456789 % xint.pdf should be predictable from xint.dtx !
\xinttheexpr subs((L, det3(L), det3bis(L)), % parentheses used to hide the inner commas
L=\pdfuniformdeviate 1000, \pdfuniformdeviate 1000, \pdfuniformdeviate 1000,
\pdfuniformdeviate 1000, \pdfuniformdeviate 1000, \pdfuniformdeviate 1000,
\pdfuniformdeviate 1000, \pdfuniformdeviate 1000, \pdfuniformdeviate 1000)\relax
339, 694, 33, 664, 31, 921, 891, 763, 353, 188129929, 188129929
With \xintverbosetrue we will find in the log:
Function det3 for \xintexpr parser associated to \XINT_ expr_userfunc_det3 w
ith meaning macro:#1,#2,#3,#4,#5,#6,#7,#8,#9,->\xintSub {\xintSub {\xintSub {\x
intAdd {\xintAdd {\xintMul {\xintMul {#1}{#5}}{#9}}{\xintMul {\xintMul {#2}{#6}
FH#73{\xintMul {\xintMul {#3}{#4}}{#8}}}{\xintMul {\xintMul {#2}{#4}3}{#9}}}{\
xintMul {\xintMul {#3}{#5}}{#7}}}{\xintMul {\xintMul {#1}{#6}}{#8}}
Package xintexpr Info: (on line 11)
Function det3bis for \xintexpr parser associated to \XINT_expr_userfunc_det
3bis with meaning macro:#1,#2,#3,#4,#5,#6,#7,#8,#9,->\xintAdd {\xintSub {\xintM
ul {#1}{\xintSub {\xintMul {#5}{#9}}{\xintMul {#6}{#8}}}}{\xintMul {#2}{\xintSu
b {\xintMul {#4}{#9}}{\xintMul {#6}{#7}3}}}}{\xintMul {#3}{\xintSub {\xintMul {#
43 {#83}}{\xintMul {#53}{#73}}}}

Lists, including Python-like selectors, are compatible with\xintNewExpr:68
\xintNewExpr\Foo[5]{\empty [#1..[#2]..#3][#4:#5]}
\begin{itemize}[nosep]
\item |\Foo{1}{3}{903}{203{30}|->\Foo{1}{3}{90}{20}{30}
\item |[\Foo{1}{3}{903}{-40}{-15}|->\Foo{1}{3}{903}{-40}{-15}
\item |\Foo{1.2343}{-0.123}{-10}{3}{7}|->\Foo{1.234}{-0.123}{-10}{3}{7}
\end{itemize}
\fdef\test {\Foo {0}{103}{100}{3}{6}}\meaning\test +++
e \Foo{1}{3}{90}{20}{30}->61, 64, 67, 70, 73, 76, 79, 82, 85, 88
e \Foo{1}{3}{90}{-40}{-15}->1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52,
55, 58, 61, 64, 67, 70, 73
e \Foo{1.234}{-0.123}{-10}{3}{7}->865[-3], 742[-3], 619[-3], 496[-3]
macro:->30, 40, 50+++
In this last example the macro \Foo will not be able to handle an empty #4 or #5: this is only

%8 The \empty token is optional here, but it would be needed in case of \xintNewFloatExpr or \xintNewIExpr.

111

10 Macros of the xintexpr package

possible in an expression, because the parser identifies]J[: or :] and handles them appropriately.
During the construction of \Foo the parser will find][#4: and not][:.

The \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc declarators added to xintexpr since
release 1.2c are based on the same underlying mechanism as \xintNewExpr, \xintNewIIExpr, ...
The discussion that follows applies to them too.

10.6.1 Conditional operators and \NewExpr

The ? and ?? conditional operators cannot be parsed by \xintNewExpr when they contain macro param-
eters #1,. .., #9 within their scope. However replacing them with the functions if and, respec-
tively ifsgn, the parsing should succeed. And the created macro will not evaluate the branches to
be skipped, thus behaving exactly like ? and ?? would have in the \xintexpr.

\xintNewExpr\Formula [3]{ if((#1>#2) && (#2>#3), sqrt(#1-#2)*sqrt(#2-#3), #1r2+#3/#2) }%

\printnumber{\fixmeaning\Formula }
macro:#1#2#3->\romannumeral " AA@\xintSPRaw: :csv {\xintiiifNotZero {\xintAND {\xintGt {#1}{#2}}
{\xintGt {#2}{#3}}}{\xintMul {\XINTinFloatSqrtdigits {\xintSub {#1}{#2}}}{\XINTinFloatSqrtdigl
its {\xintSub {#23}{#3}}}}{\xintAdd {\xintPow {#1}{2}}{\xintDiv {#3}{#2}}}}

This formula (with its \xintiiifNotZero) will gobble the false branch without evaluating it when
used with given arguments.

Remark: the meaning above reveals some of the private macros used by the package. They are not
for direct use.

Another example

\xintNewExpr\myformula[3]{ ifsgn(#1,#2/#3,#2-#3,#2=#3) 1%

\fixmeaning\myformula
macro:#1#2#3->\romannumeral " AA@\xintSPRaw: :csv {\xintiiifSgn {#1}{\xintDiv {#2}{#3}}{\xintSub
{#23{#331}{\xintMul {#2}{#3}}}

Again, this macro gobbles the false branches, as would have the operator ?? inside an \xintexp)
r-ession.

10.6.2 External macros and \xintNewExpr; the protect function

For macros within such a created xint-formula macro, there are two cases:

e the macro does not involve the numbered parameters in its arguments: it may then be left as is,
and will be evaluated once during the construction of the formula,

e it does involve at least one of the macro parameters as argument. Then:

IS

the following way: protect(\macro {#1}).

{ the whole thing (macro + argument) should be protect-ed, not in the BIX sense (!), but in

Here is a silly example illustrating the general principle: the macros here have equivalent
functional forms which are more convenient; but some of the more obscure package macros of xint
dealing with integers do not have functions pre-defined to be in correspondance with them, use
this mechanism could be applied to them.

\xintNewExpr\formulaA[2] {protect (\xintRound{#1}{#2}) - protect(\xintTrunc{#1}{#2})1}%

\printnumber{\fixmeaning\formulaA}

\xintNewIIExpr\formulaB [3]{rem(#1,quo(protect(\the\numexpr #2\relax),#3))}%
\noindent\printnumber{\fixmeaning\formulaB }

112

10 Macros of the xintexpr package

macro:#1#2->\romannumeral " AA@\xintSPRaw: :csv {\xintSub {\xintRound {#1}{#2}}{\xintTrunc {#1}{2
#2313}
macro:#1#2#3->\romannumeral " AA@\xintCSV: :csv {\xintiiRem {#1}{\xintiiQuo {\the \numexpr #2\rel)
ax 1{#33}1}}

Only macros involving the #1, #2, etc. . . should be protected in this way; the +, *, etc. . . symbols,
the functions from the \xintexpr syntax, none should ever be included in a protected string.

10.6.3 Limitations of \xintNewExpr and \xintdeffunc

\xintNewExpr will pre-evaluate everything as long as it does not contain the macro parameters #)
1, #2, ... and the special measures to take when these are inside branches to ? and ?? (replace
these operators by if and ifsgn) or as arguments to macros external to xintexpr (use protect) were
discussed in subsubsection 10.6.1 and subsubsection 10.6.2.

The main remaining limitation is that expressions with dummy variables are compatible with
\xintNewExpr only to the extent that the iterated-over list of values does not depend on the macro
parameters #1, #2, ... For example, this works:

\xintNewExpr \FA [2] {reduce(add((t+#1)/(t+#2), t=0..5))}

\FA {13{1}, \FA {1}{2}, \FA {2}{3}

6, 617/140, 1339/280 but the 5 can not be abstracted into a third argument #3.

There are no restriction on using macro parameters #1, #2, ... with list constructs. For example,
this works:

\xintNewIExpr \FB [3] {[4] "+ ([1/3..[#1/3]..#2]=#3)}

\begin{itemize}[nosep]

\item \FB {13}{10/3}{100} % (1/3+2/3+...+10/3)*100

\item \FB {5}{5}{20} % (1/3+46/3+11/3) =20

\item \FB {3}{4}{1} % (1/3+4/3+7/3+10/3)*1

\end{itemize}

e 1833.3333

e 120.0000

e 7.3333

Some simple expressions with add or mul can be also expressed with "+ and "= and list oper-
ations. But there is no hope for seq, iter, etc... if the #1, #2, ... are used inside the list

argument: seq(x(x+#1) (x+#2) ,x=1..#3) is currently not compatible with \xintNewExpr. But seq(x(x2
+#1) (x+#2), x=1..10) has no problem.

All the preceeding applies identically for \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc
which share the same routines as \xintNewExpr, \xintNewIIExpr, ..., replacing the #1, #2,
in the discussion by the letters used as function arguments.

There is a final syntax restriction which however applies only to \xintNewExpr et. al., and not
to \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc : it is possible to use sub-expressions only
if they use \xintexpr, those with \xinttheexpr are illegal.

\xintNewExpr \FC [4] {#1+\xintexpr #2=#3\relax + #4}

\printnumber{\fixmeaning\FC}
macro: #1#2#3#4->\romannumeral * AA@\xintSPRaw: :csv {\xintAdd {\xintAdd {#1}{\xintMul {#23}{#3}} 3}
{#4}}
works, but already

\xintNewExpr \FD [1] {#1+\xinttheexpr 1\relax}
doesn't. On the other hand

\xintdeffunc FD(t) := t + \xinttheexpr 1\relax ;
and even
\xintdeffunc FE(t,u) := t + \xinttheexpr u\relax ;

have no issue. Anyway, one should never use \xinttheexpr for sub-expressions but only \xintexpr,
so this restriction on the \xintNewExpr syntax isn't really one.

113

New with

1.2h

New with

1.2h

10 Macros of the xintexpr package

10.7 The \xintNewFunction macro

See subsubsection 2.6.3 for its documentation.

10.8 \xintiexpr, \xinttheiexpr

Equivalent to doing \xintexpr round(...)\relax (more precisely, round is applied to each one of
the evaluated values, if the expression was comma separated). Thus, only the final result value
is rounded to an integer. Half integers are rounded towards +oco for positive numbers and towards
-oo for negative ones.

An optional parameter d>0 within brackets, immediately after \xintiexpr is allowed: it in-
structs the expression to do its final rounding to the nearest value with that many digits af-
ter the decimal mark, i.e., \xintiexpr [d] <expression>\relax is equivalent (in case of a single
expression) to \xintexpr round(<expression>, d)\relax.

\xintiexpr [0] ... is the same as \xintiexpr59
If truncation rather than rounding is needed use (in case of a single expression, naturally) \x
intexpr trunc(...)\relax for truncation to an integer or \xintexpr trunc(...,d)\relax for trun-

cation to a decimal number with d>0 digits after the decimal mark.

Perhaps in the future some meaning will be given to using negative value for the optional param-
eter d.”°

\thexintiexpr is synonym to \xinttheiexpr.

10.9 \xintiiexpr, \xinttheiiexpr

This variant does not know fractions. It deals almost only with long integers. Comma separated
lists of expressions are allowed.

It maps / to the rounded quotient. The operator // is, like in \xintexpr...\relax, mapped
to truncated division. The euclidean quotient (which for positive operands is like the trun-
cated quotient) was, prior to release 1.1, associated to /. The function quo(a,b) can still be
employed.

The \xintiiexpr-essions use the "ii' macros for addition, subtraction, multiplication, power,
square, sums, products, euclidean quotient and remainder.

The round, trunc, floor, ceil functions are still available, and are about the only places where
fractions can be used, but / within, if not somehow hidden will be executed as integer rounded
division. To avoid this one can wrap the input in gqfrac: this means however that none of the normal
expression parsing will be executed on the argument.

To understand the illustrative examples, recall that round and trunc have a second (non nega-
tive) optional argument. In a normal \xintexpr-essions, round and trunc are mapped to \xintRound
and \xintTrunc, in \xintiiexpr-essions, they are mapped to \xintiRound and \xintiTrunc.

\xinttheiiexpr 5/3, round(5/3,3), trunc(5/3,3), trunc(\xintDiv {5}{3},3),

trunc(\xintRaw {5/3},3)\relax{} are problematic, but

%

\xinttheiiexpr 5/3, round(qfrac(5/3),3), trunc(qfrac(5/3),3), floor(qfrac(5/3)),

ceil(qfrac(5/3))\relax{} work!

2, 2000, 2000, 2000, 2000 are problematic, but 2, 1667, 1666, 1, 2 work!

On the other hand decimal numbers and scientific numbers can be used directly as arguments to
the num, round, or any function producing an integer.

69 Incidentally using round(. .., 0) in place of round(...) in \xintexpr would leave a trailing dot in the produced value. 70 Thanks
to KT for this suggestion.

114

New with
1.2h

New with
1.2h

10 Macros of the xintexpr package

Scientific numbers will be represented with as many zeroes as necessary, thus one does not
want to insert num(1e100000) for example in an \xintiiexpression !

\xinttheiiexpr num(13.4567e3)+num(10000123e-3)\relax % should (num truncates) compute 13456+10000
23456

The reduce function is not available and will raise un error. The frac function also. The sqr)
t function is mapped to \xintiiSqrt which gives a truncated square root. The sqrtr function is
mapped to \xintiiSqrtR which gives a rounded square root.

One can use the Float macros if one is careful to use num, or round etc. . .on their output.

\xinttheiiexpr \xintFloatSqrt [20]{2}, \xintFloatSqrt [20]{3}\relax % no operations

\noindent The next example requires the |round|, and one could not put the |+| inside it:
\xinttheiiexpr round(\xintFloatSqrt [20]{2},19)+round(\xintFloatSqrt [20]{3},19)\relax

(the second argument of |round| and |trunc| tells how many digits from after the

decimal mark one should keep.)
14142135623730950488[-19], 17320508075688772935[-19]
The next example requires the round, and one could not put the + inside it:

31462643699419723423

(the second argument of round and trunc tells how many digits from after the decimal mark one
should keep.)

The whole point of \xintiiexpr is to gain some speed in integer-only algorithms, and the above
explanations related to how to nevertheless use fractions therein are a bit peripheral. We ob-
served (2013/12/18) of the order of 30% speed gain when dealing with numbers with circa one hundred
digits (1.2: this info may be obsolete).

\thexintiiexpr is synonym to \xinttheiiexpr.

10.10 \xintboolexpr, \xinttheboolexpr

Equivalent to doing \xintexpr ...\relax and returning 1 if the result does not vanish, and 0 is
the result is zero. As \xintexpr, this can be used on comma separated lists of expressions, and
will return a comma separated list of 0's and 1's.
\thexintboolexpr is synonym to \xinttheboolexpr.
There is slight quirk in case it is used as a sub-expression: the boolean expression needs at
least one logic operation else the value is not standardized to 1 or 0, for example we get from
\xinttheexpr \xintboolexpr 1.23\relax\relax\newline
123[-2]
which is to be compared with
\xinttheboolexpr 1.23\relax

A related issue existed with \xinttheexpr \xintiexpr 1.23\relax\relax, which was fixed with 1.2
1 release, and I decided back then not to add the needed overhead also to the \xintboolexpr context,
as one only needs to use ?(1.23) for example or involve the 1.23 in any logic operation like 1.23 'a)
nd' 3.45, or involve the \xintboolexpr ..\relax itself with any logical operation, contrarily to
the sub-\xintiexpr case where \xinttheexpr 1+\xintiexpr 1.23\relax\relax did behave contrarily
to expectations until 1.1.

10.11 \xintfloatexpr, \xintthefloatexpr

\xintfloatexpr...\relax is exactly like \xintexpr...\relax but with the four binary operations

115

New with
1.2h

10 Macros of the xintexpr package

and the power function are mapped to \xintFloatAdd, \xintFloatSub, \xintFloatMul, \xintFloatDiv
and \xintFloatPower, respectively. 71

The target precision for the computation is from the current setting of \xintDigits. Comma sep-
arated lists of expressions are allowed.

An optional (positive) parameter within brackets is allowed: the final float will have that many
digits of precision. This is provided to get rid of possibly irrelevant last digits, thus makes
sense only if this parameter is less than the \xinttheDigits precision.

Since 1.2f all float operations first round their arguments; a parsed number is not rounded prior
to its use as operand to such a float operation.

\thexintfloatexpr is synonym to \xintthefloatexpr.

\xintDigits:=36;

\xintthefloatexpr (1/13+1/121)*(1/179-1/173)/(1/19-1/18)\relax

0.00564487459334466559166166079096852897

\xintthefloatexpr\xintexpr (1/13+1/121)*(1/179-1/173)/(1/19-1/18)\relax\relax

0.00564487459334466559166166079096852912

The latter is the rounding of the exact result. The former one has its last three digits wrong
due to the cumulative effect of rounding errors in the intermediate computations, as compared to
exact evaluations.

I recall here from subsection 3.2 that with release 1.2f the float macros for addition, sub-
traction, multiplication and division round their arguments first to P significant places with P
the asked-for precision of the output; and similarly the power macros and the square root macro.
This does not modify anything for computations with arguments having at most P significant places
already.

10.12 Using an expression parser within another one

This was already illustrated before. In the following:

\xintthefloatexpr \xintexpr add(l/i, i=1234..1243)\relax *100\relax
5.136088460396579e-210, the inner sum is computed exactly. Then it will be rounded to \xinttheD)
igits significant digits, and then its power will be evaluated as a float operation. One should
avoid the "\xintthe" parsers in inner positions as this induces digit by digit parsing of the inner
computation result by the outer parser. Here is the same computation done with floats all the way:

\xintthefloatexpr add(1l/i, i=1234..1243)2100\relax
5.136088460396643e-210

Not surprisingly this differs from the previous one which was exact until raising to the 100th
power.

The fact that the inner expression occurs inside a bigger one has nil influence on its behaviour.
There is the limitation though that the outputs from \xintexpr and \xintfloatexpr can not be used
directly in \xinttheiiexpr integer-only parser. But one can do:

\xinttheiiexpr round(\xintfloatexpr 3.14410\relax)\relax % or trunc
93174

10.13 The \xintthecoords macro

It converts a comma separated list into the format for list of coordinates as expected by the TikZ
coordinates syntax. The code had to work around the problem that TikZ seemingly allows only a max-
imal number of about one hundred expansion steps for the list to be entirely produced. Presumably
to catch an infinite loop.
\begin{figure} [htbp]
\centering\begin{tikzpicture}[scale=10]\xintDigits:=8;
\clip (-1.1,-.25) rectangle (.3,.25);
\draw [blue] (-1.1,0)--(1,0);

71 Since 1.2f the ~ handles half-integer exponents, contrarily to \xintFloatPower.

116

Xnn %

Xxnnx

Xnn %

10 Macros of the xintexpr package

\draw [blue] (0,-1)--(0,+1);
\draw [red] plot[smooth] coordinates {%
\xintthecoords % (converts what is next into (x1, yl) (x2, y2)... format)
\xintfloatexpr seq((x*2-1,mul (x-t,t=-1+[0..4]/2)),x=-1.2..[0.1]..+1.2) \relax };
\end{tikzpicture}
\caption{Coordinates with \cs{xintthecoords}.}
\end{figure}

Figure 1. Coordinates with \xintthecoords.

\xintthecoords should be followed immediately by \xintfloatexpr or \xintiexpr or \xintiiexpr,
but not \xintthefloatexpr, etc. ..

Besides, as TikZ will not understand the A/B[N] format which is used on output by \xintexpr, \xi)
ntexpr is not really usable with \xintthecoords for a TikZ picture, but one may use it on its own,
and the reason for the spaces in and between coordinate pairs is to allow if necessary to print on
the page for examination with about correct line-breaks.

\edef\x{\xintthecoords \xintexpr rrseq(l/2,1/3; @1+@2, x=1..20)\relax }

\meaning\x +++
macro:->(1/2, 1/3) (5/6, 7/6) (12/6, 19/6) (31/6, 50/6) (81/6, 131/6) (212/6, 343/6) (555/6,
898/6) (1453/6, 2351/6) (3804/6, 6155/6) (9959/6, 16114/6) (26073/6, 42187/6)+++

10.14 \xintifboolexpr

\xintifboolexpr{<expr>}{YES}{NO} does \xinttheexpr <expr>\relax and then executes the YES or the
NO branch depending on whether the outcome was non-zero or zero. <expr> can involve various & and
|, parentheses, all, any, xor, the bool or togl operators, but is not limited to them: the most
general computation can be done, the test is on whether the outcome of the computation vanishes or
not.

Will not work on an expression composed of comma separated sub-expressions.

10.15 \xintifboolfloatexpr

\xintifboolfloatexpr{<expr>}{YES}{NO} does \xintthefloatexpr <expr>\relax and then executes
the YES or the NO branch depending on whether the outcome was non zero or zero.

10.16 \xintifbooliiexpr

\xintifbooliiexpr{<expr>}{YES}{NO} does \xinttheiiexpr <expr>\relax and then executes the YES
or the NO branch depending on whether the outcome was non zero or zero.

117

10 Macros of the xintexpr package

10.17 \xintNewFloatExpr

This is exactly like \xintNewExpr except that the created formulas are set-up to use \xintthefloa)
texpr. The precision used for the computation will be the one given by \xinttheDigits at the time
of use of the created formulas. However, the numbers hard-wired in the original expression will
have been evaluated with the then current setting for \xintDigits.

\xintNewFloatExpr \f [1] {sqrt(#1)}

\f {2} (with \xinttheDigits{} of precision).

{\xintDigits := 32;\f {2} (with \xinttheDigits{} of precision).}

\xintNewFloatExpr \f [1] {sqrt(#1)=sqrt(2)}
\f {2} (with \xinttheDigits {} of precision).

{\xintDigits := 32;\f {2} (?? we thought we had a higher precision. Explanation next)}

The sqrt(2) in the second formula was computed with only \xinttheDigits{} of
precision. Setting |\xinttheDigits| to a higher value at the time of definition will
confirm that the result above is from a mismatch of the precision for |[sqrt(2)| at
the time of its evaluation and the precision for the new |sqrt(2)| with [#1=2] at
the time of use.

{\xintDigits := 32;\xintNewFloatExpr \f [1] {sqrt(#1)=*sqrt(2)}

\f {2} (with \xinttheDigits {} of precision)}
1.414213562373095 (with 16 of precision).

1.4142135623730950488016887242097 (with 32 of precision).

2.000000000000000 (with 16 of precision).

1.9999999999999999309839899395125 (?? we thought we had a higher precision. Explanation next)

The sqrt(2) in the second formula was computed with only 16 of precision. Setting \xinttheDigit
s to a higher value at the time of definition will confirm that the result above is from a mismatch
of the precision for sqrt(2) at the time of its evaluation and the precision for the new sqrt(2)
with #1=2 at the time of use.

2.0000000000000000000000000000000 (with 32 of precision)

10.18 \xintNewIExpr

Like \xintNewExpr but using \xinttheiexpr.

10.19 \xintNewIIExpr

Like \xintNewExpr but using \xinttheiiexpr.

10.20 \xintNewBoolExpr

Like \xintNewExpr but using \xinttheboolexpr.

10.21 Technicalities

As already mentioned \xintNewExpr\myformula[n] does not check the prior existence of a macro \my)
formula. And the number of parameters n given as mandatory argument within square brackets should
be (at least) equal to the number of parameters in the expression.

Obviously I should mention that \xintNewExpr itself can not be used in an expansion-only con-
text, as it creates a macro.

The \escapechar setting may be arbitrary when using \xintexpr.

118

0 |

10 Macros of the xintexpr package

The format of the output of \xintexpr(stuff)\relax is a ! (with catcode 11) followed by various
things:

\edef\f {\xintexpr 1.23410\relax }\meaning\f
macro:->!\XINT_expr_usethe \XINT_protectii \XINT_expr_print \.=792594609605189126649/1[-20]

Note that \xintexpr expands in an \edef, contrarily to \numexpr which is non-expandable, if
not prefixed by \the, \number, or \romannumeral or in some other context where TgX is building
a number. See subsection 2.9 for some illustration.

I decided to put all intermediate results (from each evaluation of an infix operators, or of
a parenthesized subpart of the expression, or from application of the minus as prefix, or of the
exclamation sign as postfix, or any encountered braced material) inside \csname...\endcsname, as
this can be done expandably and encapsulates an arbitrarily long fraction in a single token (left
with undefined meaning), thus providing tremendous relief to the programmer in his/her expansion
control.

As the \xintexpr computations corresponding to functions and infix or postfix operators
are done inside \csname...\endcsname, the f-expandability could possibly be dropped and one
could imagine implementing the basic operations with expandable but not f-expandable macros
(as \xintXTrunc.) I have not investigated that possibility.

Syntax errors in the input such as using a one-argument function with two arguments will generate
low-level TgX processing unrecoverable errors, with cryptic accompanying message.

Some other problems will give rise to "error messages' macros giving some indication on the
location and nature of the problem. Mainly, an attempt has been made to handle gracefully missing
or extraneous parentheses.

However, this mechanism is completely inoperant for parentheses involved in the syntax of the se)
g, add, mul, subs, rseq and rrseq functions, and missing parentheses may cause the parser to fetch
tokens beyond the ending \relax necessarily ending up in cryptic low-level TgX-errors.

Note that the ,<letter>= part must be visible, it can not arise from expansion (the equal sign
does not have to be an equal sign, it can be any token and will be gobbled). However for iter, iter
r, rseq, rrseq, the initial values delimited by a ; are parsed in the normal way, and in particular
may be braced or arise from expansion. This is useful as the ; may be hidden from \xintdeffunc as {;2
} for example. Again, this remark does not apply to the comma , which precedes the <letter>= part.
The comma will be fetched by delimited macros and must be there. Nesting is handled by checking
(again using suitable delimited macros) that parentheses are suitably balanced.

Note that \relax is mandatory (contrarily to the situation for \numexpr).

10.22 Acknowledgements (2013/05/25)

I was greatly helped in my preparatory thinking, prior to producing such an expandable parser, by
the commented source of the 13fp package, specifically the 13fp-parse.dtx file (in the version
of April-May 2013; I think there was in particular a text called " "roadmap'' which was helpful).
Also the source of the calc package was instructive, despite the fact that here for \xintexpr the
principles are necessarily different due to the aim of achieving expandability.

119

http://www.ctan.org/pkg/l3kernel

Changed
(1.2n)

Changed
(1.2n)

Changed
(1.2m)

Changed
(1.2m)

11 Macros of the xintbinhex package

11 Macros of the xintbinhex package

.1 \xintDecToHexXc.cocvruuunuen.. 121 .5 \xintBinToHexouvon.. 121
.2 \xintDecToBin 121 .6 \xintHexToBin 122
.3 \xintHexToDeC 121 .7 \xintCHexToBin 122
.4 \xintBinToDecCo iiuinnn. 121

This package provides expandable conversions of (big) integers to and from binary and hexadec-
imal.

First version of this package was in the 1.08 (2013/06/07) release of xint. Its routines remained
un-modified until their complete rewrite at release 1.2m (2017/07/31). The new macros are faster,
using techniques from the 1.2 (2015/10/10) release of xintcore. But the inputs are now limited to
a few thousand digits, whereas the 1.08 could handle (slowly...) tens of thousands of digits.

Table 3 recapitulates the maximal allowed sizes (they got increased at 1.2n): for macro \xin)
tFooToBar in the first column, the value in the second column is the maximal N such that \edef\2
X{\xintFooToBar{<N digits>}} does not raise an error with standard TgX memory parameters (input
stack size=5000, expansion depth=10000, parameter stack size=10000). The tests were done with
TL2017 and etex. Nested calls will allow slightly lesser values only. The third column gives the
corresponding maximal size of output. The fourth column gives the TgX parameter cited in the error
message when trying with N+1 digits.

Max length of input -> length of output Limiting factor

\xintDecToHex 6014 4995 input stack size=5000
\xintDecToBin 6014 19979 input stack size=5000
\xintHexToDec 8298 9992 input stack size=5000
\xintBinToDec 19988 6017 input stack size=5000
\xintBinToHex 19988 4997 input stack size=5000
\xintHexToBin 4996 19984 input stack size=5000
\xintCHexToBin 4997 19988 input stack size=5000

Table 3: Maximal sizes of inputs (at 1.2n) for xintbinhex macros

Roughly, base 10 numbers are limited to 6000 digits, hexadecimal numbers to (almost) 5000 dig-
its, and binary numbers to (almost) 20000 digits. With the surprising exception of \xintHexToDec
which allows almost 8300 hexadecimal digits on input.

The argument is first f-expanded. It may optionally have a unique leading minus sign (a plus
sign is not allowed), and leading zeroes.

An input (possibly signed) with no leading zeroes is guaranteed to give an output without lead-
ing zero, with the sole, deliberate, exception of \xintCHexToBin: from N hexadecimal digits it
produces 4N binary digits, hence possibly with up to three leading zeroes (if the input had none.)

Inputs with leading zeroes usually produce outputs with an unspecified, case-dependent, number
of leading zeroes (\xintBinToHex always uses the minimal number of hexadecimal digits needed to
represent the binary digits, inclusive of leading zeroes if present.)

The macros converting from binary or decimal are robust against non terminated inputs like \the)
\numexpr 2+3 or \the\mathcode \-. The macro \xintHexToDec also but not \xintHexToBin and \xint-
CHexToBin (anyway there are no primitive in (e)-TgX to my knowledge which will generate hexadecimal
digits and may force expansion of next token).

Hexadecimal digits A..F must be in uppercase. Category code for them on input may be letter or
other. On output they are of category code letter, and in uppercase.

120

11 Macros of the xintbinhex package

Low-level unrecoverable errors will happen if for example a supposedly binary input contains
other digits than ® and 1. Inputs can not start with a Ob, 0x, #x, " or similar prefix: only dig-
its/letters according to the binary, decimal, or hexadecimal notation.

With this package loaded additionally to xintexpr, hexadecimal input is possible in expres-
sions: simply by using the prefix ". Such hexadecimal numbers may have a fractional part. Lowercase
hexadecimal letters are currently not recognized as such in expressions. Currently the p postfix
notation from standard programming languages standing for an extra power of two multiplicand is
not implemented.

11.1 \xintDecToHex

Converts from decimal to hexadecimal.

\xintDecToHex{2718281828459045235360287471352662497757247093699959574966967627724076630353)
547594571382178525166427427466391932003}
->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DACI918Y
814C63

11.2 \xintDecToBin

Converts from decimal to binary.

\xintDecToBin{2718281828459045235360287471352662497757247093699959574966967627724076630353)
547594571382178525166427427466391932003}
->1000110101001001110010111110001100110100101001001101010010111000001010001111101111101000012
010100000010111100100010100111000111110000010110001011111000100000110110001000111000100100012
011101011101111001010110101011101100000101110110011100011010010011100101111010001101101110012
110010001101100011000000011001010010011011010111111001101111101101011001001000110001000000102
100110001100011

11.3 \xintHexToDec

Converts from hexadecimal to decimal.

\xintHexToDec{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603)
2936BF37DAC918814C63}
->2718281828459045235360287471352662497757247093699959574966967627724076630353547594571382172
8525166427427466391932003

11.4 \xintBinToDec

Converts from binary to decimal.

\xintBinToDec{1000110101001001110010111110001100110100101001001101010010111000001010001111)
101111101000010101000000101111001000101001110001111100000101100010111110001000001101100010002
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010
001101101110011100100011011000110000000110010100100110110101111110011011111011010110010010002
11000100000010100110001100011}
->2718281828459045235360287471352662497757247093699959574966967627724076630353547594571382172
8525166427427466391932003

11.5 \xintBinToHex

Converts from binary to hexadecimal. The input is first zero-filled to 4N binary digits, hence the
output will have N hexadecimal digits (thus, if the input did not have a leading zero, the output
will not either).

121

fx*
Changed
(1.2m)

11 Macros of the xintbinhex package

\xintBinToHex{1000110101001001110010111110001100110100101001001101010010111000001010001111)
101111101000010101000000101111001000101001110001111100000101100010111110001000001101100010002
111000100100010111010111011110010101101010111011000001011101100111000110100100111001011110102
001101101110011100100011011000110000000110010100100110110101111110011011111011010110010010002
11000100000010100110001100011}
->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918)
814C63

11.6 \xintHexToBin

Converts from hexadecimal to binary. Up to three leading zeroes of the output are trimmed.

\xintHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6030
2936BF37DAC918814C63}
->1000110101001001110010111110001100110100101001001101010010111000001010001111101111101000012
010100000010111100100010100111000111110000010110001011111000100000110110001000111000100100012
011101011101111001010110101011101100000101110110011100011010010011100101111010001101101110012
110010001101100011000000011001010010011011010111111001101111101101011001001000110001000000102
100110001100011

11.7 \xintCHexToBin

Converts from hexadecimal to binary. Same as \xintHexToBin, but an input with N hexadecimal digits
will give an output with exactly 4N binary digits, leading zeroes are not trimmed.
\xintCHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C60
32936BF37DAC918814C63}
->0001000110101001001110010111110001100110100101001001101010010111000001010001111101111101002
001010100000010111100100010100111000111110000010110001011111000100000110110001000111000100102
001011101011101111001010110101011101100000101110110011100011010010011100101111010001101101112
001110010001101100011000000011001010010011011010111111001101111101101011001001000110001000000
010100110001100011
This can be combined with \xintBinToHex for round-trips preserving leading zeroes for 4N binary
digits numbers, whereas using \xintHexToBin gives reproducing round-trips only for 4N binary num-
bers numbers not starting with 0000.
This zero-fills to 4N digits the input, hence gives here a leading zero in output:
\xintBinToHex{0001111}\newline
Chaining, we end up with 4N-3 digits, as three binary zeroes are trimmed:
\xintHexToBin{\xintBinToHex{0001111}}\newline
But this will always reproduce the initial input zero-filled to length 4N:
\xintCHexToBin{\xintBinToHex{0001111}}\par
Another example (visible space characters manually inserted):\newline
$000000001111101001010001\xrightarrow{\text{\string\xintBinToHex}}
\xintBinToHex{000000001111101001010001}\xrightarrow{\text{\string\xintHexToBin\hphantom{X}}}
\text{\textvisiblespace\textvisiblespace\textvisiblespace}
\xintHexToBin{\xintBinToHex{000000001111101001010001}}$\newline
$000000001111101001010001\xrightarrow{\text{\string\xintBinToHex}}
\xintBinToHex{000000001111101001010001}\xrightarrow{\text{\string\xintCHexToBin}}
\xintCHexToBin{\xintBinToHex{000000001111101001010001}}$
\par
This zero-£fills to 4N digits the input, hence gives here a leading zero in output: OF
Chaining, we end up with 4N-3 digits, as three binary zeroes are trimmed: 01111
But this will always reproduce the initial input zero-filled to length 4N: 00001111
Another example (visible space characters manually inserted):

\xintBinToHex \xintHexToBin
000000001111101001010001 ———— > 00FA51] ——— ,.,..000001111101001010001
\xintBinToHex \xintCHexToBin

000000001111101001010001 ————— > 00FA51 ——— > 000000001111101001010001

122

Num Num

f f %

ffx

Num
f— = f

Num Num

f f

*

*

ffx

Num
f—o = f

Num Num

*

f %

12 Macros of the xintgcd package

12 Macros of the xintgcd package

.1 \xintGCD, \xintiiGCD 123 .6 \xintEuclideAlgorithm 124
.2 \xintGCDof......... 123 .7 \xintBezoutAlgorithm 124
.3 \xintLCM, \xintiilLCM 123 .8 \xintTypesetEuclideAlgorithm 124
A4 \xintLCMof........, 123 .9 \xintTypesetBezoutAlgorithm.......... 125
.5 \xintBezout............................ 123

This package was included in the original release 1.0 (2013/03/28) of the xint bundle.

Since release 1.09a the macros filter their inputs through the \xintNum macro, so one can use
count registers, or fractions as long as they reduce to integers.

Since release 1.1, the two ~ " typeset'' macros require the explicit loading by the user of package
xinttools.

12.1 \xintGCD, \xintiiGCD

\xintGCD{N}{M} computes the greatest common divisor. It is positive, except when both N and M
vanish, in which case the macro returns zero.

\xintGCD{10000}{1113}=1

\xintiiGCD{123456789012345}{9876543210321}=3

\xintiiGCD skips the \xintNum overhead.

12.2 \xintGCDof

\xintGCDof{{a}{b}{c}...} computes the greatest common divisor of all integers a, b, ... The list
argument may be a macro, it is f-expanded first and must contain at least one item.

12.3 \xintLCM, \xintiiLCM

\xintGCD{N}{M} computes the least common multiple. It is ® if one of the two integers vanishes.
\xintiiLCM skips the \xintNum overhead.

12.4 \xintLCMof

\xintLCMof{{a}{b}{c}...} computes the least common multiple of all integers a, b, ... The list
argument may be a macro, it is f-expanded first and must contain at least one item.

12.5 \xintBezout

\xintBezout{N}{M} returns five numbers A, B, U, V, D within braces. A is the first (expanded, as
usual) input number, B the second, D is the GCD, and UA - VB = D.
\oodef\X{\xintBezout {10000}{1113}}\meaning\X\par
\xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D
A: \meaning\A\newline
B: \meaning\B\newline
U: \meaning\U\newline
V: \meaning\V\newline
D: \meaning\D\par
\xintAssign {\xintBezout {123456789012345}{9876543210321}}\to\A\B\U\V\D
A: \meaning\A\newline
\meaning\B\newline
\meaning\U\newline
\meaning\V\newline
\meaning\D\par

O< acw

123

Num Num

f f %

Num Num
*

Num Num

12 Macros of the xintgcd package

macro:->{10000}{11133}{-131}{-1177}{1}
A: macro:->10000

: macro:->1113

: macro:->-131

: macro:->-1177

: macro:->1

A: macro:->123456789012345
: macro:->9876543210321

: macro:->256654313730

: macro:->3208178892607

: macro:->3

< cw

U< cw

12.6 \xintEuclideAlgorithm

\xintEuclideAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and
remainders.

\edef\X{\xintEuclideAlgorithm {100003}{1113}}\meaning\X
macro:->{5}{10000} {13 {1113}{8}{1096}{1}{173{64}{8}{2}{1}{8}{0}

The first token is the number of steps, the second is N, the third is the GCD, the fourth is M then
the first quotient and remainder, the second quotient and remainder, .. .until the final quotient
and last (zero) remainder.

12.7 \xintBezoutAlgorithm

\xintBezoutAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and
remainders. Furthermore it computes the entries of the successive products of the 2 by 2 matrices

((11 (1)) formed from the quotients arising in the algorithm.

\edef\X{\xintBezoutAlgorithm {10000}{1113}}\printnumber{\meaning\X}
macro:->{5}{100003{03{13{1}{1113}{1}{03{83{1096} {8} {1} {1}{17}{93{13{64}{83{584}3{65}{2}{1}{11L
773{1313}{8}{03{10000}{1113}

The first token is the number of steps, the second is N, then 0, 1, the GCD, M, 1, 0, the first
quotient, the first remainder, the top left entry of the first matrix, the bottom left entry, and
then these four things at each step until the end.

12.8 \xintTypesetEuclideAlgorithm

Requires explicit loading by the user of package xinttools.
This macro is just an example of how to organize the data returned by \xintEuclideAlgorithm.
Copy the source code to a new macro and modify it to what is needed.
\xintTypesetEuclideAlgorithm {123456789012345}{9876543210321}
123456789012345 = 12 X 9876543210321 + 4938270488493
9876543210321 = 2 X 4938270488493 + 2233335
4938270488493 = 2211164 X 2233335 + 536553
2233335 =4 x 536553 + 87123
536553 =6 x 87123 + 13815
87123 =6 X 13815 +4233
13815 =3X%x4233+1116
4233 =3x 1116 + 885
1116 = 1 x 885 + 231
885 =3X%x231+192
231 =1x%x192+39
192 =4%X39+36
39=1x%x36+3

124

12 Macros of the xintgcd package
36=12X3+0

12.9 \xintTypesetBezoutAlgorithm

Numnum Requires explicit loading by the user of package xinttools.
f f This macro is just an example of how to organize the data returned by \xintBezoutAlgorithm. Copy
the source code to a new macro and modify it to what is needed.
\xintTypesetBezoutAlgorithm {10000}{1113}
10000 =8 x 1113 + 1096
8=8X1+0
1=8x0+1
1113 =1Xx 1096 + 17
9=1%Xx8+1
1=1X1+0
1096 =64 X 17+ 8
584 =64X%X9+8
65=64%x1+1
17=2%Xx8+1
1177 =2 X584 +9
131=2X65+1
8=8%x1+0
10000 =8 x 1177 + 584
1113 =8X131+65
131 X 10000 - 1177 X 1113 =-1

125

num num Frac
x x f

*

13 Macros of the xintseries package

13 Macros of the xintseries package

.1 \xintSeries.......... 126 .7 \xintFxPtPowerSeries 134
.2 \xintiSeries 127 .8 \xintFxPtPowerSeriesX 135
.3 \xintRationalSeries................... 128 .9 \xintFloatPowerSeries 136
.4 \xintRationalSeriesX 131 .10 \xintFloatPowerSeriesX 136
.5 \xintPowerSeries 132 .11 Computinglog2and m.................. 137
.6 \xintPowerSeriesX..................... 134

This package was first released with version 1.03 (2013/04/14) of the xint bundle.
Frac Num
The f expansion type of various macro arguments is only a f if only xint but not xintfrac

is loaded. The macro \xintiSeries is special and expects summing big integers obeying the strict
format, even if xintfrac is loaded.

The arguments serving as indices are of the 3 expansion type.

In some cases one or two of the macro arguments are only expanded at a later stage not immedi-
ately.

13.1 \xintSeries

\xintSeries{A}{B}{\coeff} computes Zﬁzg\coeff{n}. The initial and final indices must obey the \n)
umexpr constraint of expanding to numbers at most 2431-1. The \coeff macro must be a one-parameter
f-expandable macro, taking on input an explicit number n and producing some number or fraction
\coeff{n}; it is expanded at the time it is needed.

\def\coeff #1{\xintiiMON{#1}/#1.5} % (-1)*n/(n+1/2)

\fdef\w {\xintSeries {0}{50}{\coeff}} % we want to re-use it

\fdef\z {\xintlrr {\w}[0]} % the [0] for a microsecond gain.

% \xintJrr preferred to \xintIrr: a big common factor is suspected.

% But numbers much bigger would be needed to show the greater efficiency.

\[\sum_{n=03}2{n=50} \frac{(-1)An}{n+\fracl2} = \xintFrac\z \]

“io (-1)™ _ 173909338287370940432112792101626602278714

n+% © 110027467159390003025279917226039729050575

n=0

The definition of \coeff as \xintiiMON{#1}/#1.5 is quite suboptimal. It allows #1 to be a big
integer, but anyhow only small integers are accepted as initial and final indices (they are of the
num . . .

X type). Second, when the xintfrac parser sees the #1.5 it will remove the dot hence create a
denominator with one digit more. For example 1/3.5 turns internally into 10/35 whereas it would
be more efficient to have 2/7. For info here is the non-reduced \w:

24489212733740439818553118189578822128979076445102691650390625 10!
154936248757874299375548246172975814272155426442623138427734375

It would have been bigger still in releases earlier than 1.1: now, the xintfrac \xintAdd routine
does not multiply blindly denominators anymore, it checks if one is a multiple of the other. How-
ever it does not practice systematic reduction to lowest terms.

A more efficient way to code \coeff is illustrated next.

\def\coeff #1{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2=#1+1\relax [0]}%

% The [0] in \coeff is a tiny optimization: in its presence the \xintfracname parser

% sees something which is already in internal format.

\fdef\w {\xintSeries {03}{503}{\coeff}}

\[\sum_{n=03}2{n=50} \frac{(-1)An}{n+\fracl2}=\xintFrac\w\]

rio -nr ~ 164344324681565538708346588536037139153384730

n+% 103975956465623552858889521778607543952793375

n=0
The reduced form \z as displayed above only differs from this one by a factor of 945.

126

num num
X

X fx

13 Macros of the xintseries package

\def\coeffleibnitz #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}
\cnta 1
\loop % in this loop we recompute from scratch each partial sum!
% we can afford that, as \xintSeries is fast enough.
\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} 1}%
\xintTrunc {12}{\xintSeries {1}{\cntal}{\coeffleibnitz}}\dots
\endgraf
\ifnum\cnta < 30 \advance\cnta 1 \repeat

1. 1.000000000000. . . 11. 0.736544011544. . . 21. 0.716390450794. . .
2. 0.500000000000. . . 12. 0.653210678210. . . 22. 0.670935905339. ..
3. 0.833333333333. .. 13. 0.730133755133. .. 23. 0.714414166209. . .
4. 0.583333333333. .. 14. 0.658705183705. . . 24. 0.672747499542. . .
5. 0.783333333333. .. 15. 0.725371850371. . . 25. 0.712747499542. . .
6. 0.616666666666. . . 16. 0.662871850371. . . 26. 0.674285961081. . .
7. 0.759523809523. . . 17. 0.721695379783. . . 27. 0.711322998118. . .
8. 0.634523809523. .. 18. 0.666139824228. . . 28. 0.675608712404. . .
9. 0.745634920634. . . 19. 0.718771403175. . . 29. 0.710091471024. . .
10. 0.645634920634. . . 20. 0.668771403175. . . 30. 0.676758137691. . .

13.2 \xintiSeries

\xintiSeries{A}{B}{\coeff} computes zﬁiﬁ\coeff{n} where \coeff{n} must f-expand to a (possibly
long) integer in the strict format.

\def\coeff #1{\xintiTrunc {40} {\xintiiMON{#1}/#1.5}}%

% better:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr 2*\xintiiMON{#1}\relax/\the\numexpr 2=#1+1\relax [0]}}%
% better still:
\def\coeff #1{\xintiTrunc {40}
{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2x#1+1\relax [0]}}%
% (-1)An/(n+1/2) times 10440, truncated to an integer.
\[\sum_{n=03}2{n=50} \frac{(-1)*n}{n+\fracl2} \approx
\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\dots\]

n=50 -D"
:E: T ~ 1.5805993064935250412367895069567264144810

n+7

n=0
We should have cut out at least the last two digits: truncating errors originating with the first
coefficients of the sum will never go away, and each truncation introduces an uncertainty in the
last digit, so as we have 40 terms, we should trash the last two digits, or at least round at 38
digits. It is interesting to compare with the computation where rounding rather than truncation
is used, and with the decimal expansion of the exactly computed partial sum of the series:
\def\coeff #1{\xintiRound {40} % rounding at 40
{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2=#1+1\relax [0]}}%
% (-1)An/(n+1/2) times 10440, rounded to an integer.
\[\sum_{n=0}*{n=50} \frac{(-1)An}{n+\fracl2} \approx
\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]1}\]
\def\exactcoeff #1%
{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%
\[\sum_{n=03}*{n=50} \frac{(-1)*n}{n+\fraci2}
= \xintTrunc {50}{\xintSeries {03}{50}{\exactcoeff}}\dots\]

~ 1.5805993064935250412367895069567264144804

127

Frac Frac
| num
x f f

13 Macros of the xintseries package

n=50
-1
Z ()1 =1.58059930649352504123678950695672641448068680288367 ...

n+7

n=0
This shows indeed that our sum of truncated terms estimated wrongly the 39th and 40th digits of the
exact result’? and that the sum of rounded terms fared a bit better.

13.3 \xintRationalSeries

\xintRationalSeries{A}{B}{f}{\ratio} evaluates ZEZ?F(n), where F(n) is specified indirectly via
the data of f=F(A) and the one-parameter macro \ratio which must be such that \macro{n} expands to
F(n)/F(n-1). The name indicates that \xintRationalSeries was designed to be useful in the cases
where F(n) /F(n-1) is a rational function of n but it may be anything expanding to a fraction. The
macro \ratio must be an expandable-only compatible macro and expand to its value after iterated
full expansion of its first token. A and B are fed to a \numexpr hence may be count registers or
arithmetic expressions built with such; they must obey the TX bound. The initial term f may be a
macro \f, it will be expanded to its value representing F(A).
\def\ratio #1{2/#1[0]}% 2/n, to compute exp(2)
\cnta 0 % previously declared count
\begin{quote}
\loop \fdef\z {\xintRationalSeries {0}{\cnta}{l}{\ratio }}%
\noindent$\sum_{n=03}+{\the\cnta} \frac{2*n}{n!}=
\xintTrunc{12}\z\dots=
\xintFrac\z=\xintFrac{\xintIrr\z}$\vtop to 5pt{}\par
\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}
>0, 2 =1.000000000000-- = 1= 1
L, 2 =3.000000000000---=3=3
2 2 =5.000000000000--- =10 =5
3 02 =6.333333333333...=38 =
4 4 =7.000000000000 - = 168 - 7
S 02 =7.266666666666 - = 812 = 109
8,2 =7.355555555555. .. = 3236 _ 331
7 o X =7.380952380952 - = 37200 - 155
8 2 =7.387301587301. .- = 227856 _ 2327
o, 2 =7.388712522045 - - = 2881216 _ 20947
10 2% =7.388994708994 - - - = 26813184 _ 34913
rléo rZTT =7.389046015712 - - - = 23994991467800702 = 12624257951
rléo 121_:] =7.389054566832 - - - = 3457399030618690600 = 69931525853
Zrléo 121_:] =7.389055882389--- = 466202171082004860702 = 124092777082051
n0 121_[: =7.389056070325--- = 68474117685229811270902 - 34124556373582259
rléo 121_[: =7.389056095384--- = 228%2;%22%% = 4673188501027847551

72 as the series is alternating, we can roughly expect an error of V40 and the last two digits are off by 4 units, which is not

contradictory to our expectations.

128

13 Macros of the xintseries package

1:’1120 rZTT =7.389056098516--- = 12504952929768698828189090004 = 1251722863679612551

izo 121_? =7.389056098884 - - - = 2365258618974432589089669040400 = 126107401924235737451

n0 rZTT = 7.389056098925 - -+ = LHIRTIET = Toseoorzs

220 o7 = 7.389056098930 - - - = FREHFERENT = Pl isorcers
12120 121_? =7.389056098930- - - = 1274937269851290402811671686141080(50506 = 698258706728348633383112959

\def\ratio #1{-1/#1[0]13}% -1/n,

\cnta 0 % previously declared count

\begin{quote}
\loop

comes from the series of exp(-1)

\fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%
\noindent$\sum_{n=0}*{\the\cnta} \frac{(-1)An}{n!}=
\xintTrunc{203}\z\dots=\xintFrac{\z}=\xintFrac{\xintIrr\z}$%
\vtop to 5pt{}\par
\ifnum\cnta<2® \advance\cnta 1 \repeat

\end{quote}
0 (LT
n=0 " n!
G
n=0 n!
121:0 (_nl!)n =0
Zﬁ:o (_n_ll)n =0
;11:0 (_n_ll)n =0
oo (_n_ll)n =0
r61:o (_nl!)n =0
171:0 (_nl!)n =0
Zﬁ:o (_nl!)n =0
Zg:o (;11|)“ =0
no0 (_nll)n =0
n20 (_nll)n =0
n20 (_nl!)n =0
Zl:’llio (_nl!)n =0
nz0 (Lll)n =0
n20 (_nl!)n =0
720 (_n_ll)n =0
11110 (_n_ll)n =0
Illio (_n_ll)n =0
ZaZo (_nll)n =0
o0 (_nl!)n =0

=0---

=1.00000000000000000000 - - -

=0=0

.50000000000000000000 - - -

.33333333333333333333---

.37500000000000000000 - - -

.36666666666666666666 - - -

.36805555555555555555 - - -

.36785714285714285714 - - -

.36788194444444444444 - - -

.36787918871252204585 - - -

.36787944132128159905 - - -

.36787944117216190628 - - -

.36787944117144217323 - - -

.36787944117144232120 - - -

.36787946428571428571--- =

.36787943923360590027 - - - =

.36787944116069116069 - - - =

.36787944117139718991 - - - =

.36787944117144498468 - - - =

.36787944117144232942 - - - =

.36787944117144232161--- =

1=1
1_1
272

2_1

6~ 3

9 _3

24 — 8
44 _ 11
120 — 30
265 _ 53
720 T 144
1854 _ 103
5040 — 280
14833 _ 2119
40320 ~ 5760

133496 _ 16687
362880 45360

1334961 16481

3628800 ~ 44800

14684570 _ 1468457
39916800 ~ 3991680

176214841 _ 16019531
479001600 ~— 43545600

2290792932 _ 63633137
6227020800 ~ 172972800

32071101049 _ 2467007773
87178291200 ~ 6706022400

481066515734 _ 34361893981
1307674368000 — 93405312000

7697064251745 _ 15549624751
20922789888000 ~ 42268262400

130850092279664 _ 8178130767479
355687428096000 ~ 22230464256000

2355301661033953 _ 138547156531409
6402373705728000 ~ 376610217984000

44750731559645106 _ 92079694567171
121645100408832000 ~ 250298560512000
895014631192902121 _ 4282366656425369

2432902008176640000 ~ 11640679464960000

129

13 Macros of the xintseries package

We can incorporate an indeterminate if we define \ratio to be a macro with two parameters: \de)
f\ratioexp #1#2{\xintDiv{#1}{#23}3}% x/n: x=#1, n=#2. Then, if \x expands to some fraction x, the
macro

\xintRationalSeries {0}{b}{1}{\ratioexp{\x}}
will compute ang x"/n!:

\cnta 0

\def\ratioexp #1#2{\xintDiv{#1}{#2}}% #1/#2

\loop

\noindent

$\sum_{n=03}2{\the\cnta} (.57)*n/n! = \xintTrunc {50}

{\xintRationalSeries {0}{\cnta}{l1}{\ratioexp{.57}}}\dots$
\vtop to 5pt {}\endgraf
\ifnum\cnta<50 \advance\cnta 10 \repeat
gzo(.57)“/n! =1.00.. ..

;go(.57)“/ni =1.76826705137947002480668058035714285714285714285714 . ..
igo(.57)“/ni =1.76826705143373515162089324271187082272833005529082.. ..
320(.57)“/n1 =1.76826705143373515162089339282382144915484884979430. ..
400(57)"/n! =1.76826705143373515162089339282382144915485219867776. ..

Z (.57)™/n! =1.76826705143373515162089339282382144915485219867776. .

Observe that in this last example the x was directly inserted; if it had been a more complicated
explicit fraction it would have been worthwile to use \ratioexp\x with \x defined to expand to
its value. In the further situation where this fraction x is not explicit but itself defined via a
complicated, and time-costly, formula, it should be noted that \xintRationalSeries will do again
the evaluation of \x for each term of the partial sum. The easiest is thus when x can be defined as
an \edef. If however, you are in an expandable-only context and cannot store in a macro like \x the
value to be used, a variant of \xintRationalSeries is needed which will first evaluate this \x and
then use this result without recomputing it. This is \xintRationalSeriesX, documented next.

Here is a slightly more complicated evaluation:

\cnta 1

\begin{multicols}{2}

\loop \fdef\z {\xintRationalSeries

{\cnta}

{2*\cnta-1}

{\xintiiPow {\the\cntal}{\cnta}/\xintiiFac{\cnta}}
{\ratioexp{\the\cnta}}}%

\fdef\w {\xintRationalSeries {0}{2*\cnta-1}{1}{\ratioexp{\the\cnta}}}%

\noindent

$\sum_{n=\the\cnta}*{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta*n}{n!'!}/%

\sum_{n=03}4{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta*n}{n!}
\xintTrunc{8}{\xintDiv\z\w}\dots$ \vtop to 5pt{}\endgraf
\ifnum\cnta<2® \advance\cnta 1 \repeat

\end{multicols}

B/l 3 =0.50000000. .. Y7 L3l 9 = 0.54191055 ...
Yo 5/ Y3 o5 =0.52631578.. . n19 10519 10 _ 0 54048295 ..

o3 o1/ oo oy =0.53804347 .. 21 Lt w2l LT 53907332,

T A =0.54317053... >3 12“/2 o 2% =0.53772178.. ..
Yo s i/ Yoo 27 =0.54502576. . »25, 1525 131 -0 53644744 ...

1oy sl 8- 0.54518217... a7 MRy >2r 18- 0.53525726. ..
Y8, L/ e L= 0.54445274 . 2. 15“/2 o % = 0.53415135...

B/ y L & =0.54327992. . y3L 160531 160 _ 53312615 ..

130

um Frac Frac
X

f fx

13 Macros of the xintseries package

33 17" 33 17" _ 37 19" 37 19" _
B,/ 338, 1 = 0.53217628. .. 3 o2/ 33 1 = 0.53047810. ..
Y3 B33 18 = 0.53129566. .. 2300 B 330, 2 = 0.52971771 ...

13.4 \xintRationalSeriesX

\xintRationalSeriesX{A}{B}{\first}{\ratio}{\g} is a parametrized version of \xintRationalSeries
where \first is now a one-parameter macro such that \first{\g} gives the initial term and \ratio
is a two-parameter macro such that \ratio{n}{\g} represents the ratio of one term to the previ-
ous one. The parameter \g is evaluated only once at the beginning of the computation, and can thus
itself be the yet unevaluated result of a previous computation.

Let \ratio be such a two-parameter macro; note the subtle differences between

\xintRationalSeries {A}{B}{\first}{\ratio{\g}}

and \xintRationalSeriesX {A}{B}{\first}{\ratio}{\g}.
First the location of braces differ... then, in the former case \first is a no-parameter macro
expanding to a fractional number, and in the latter, it is a one-parameter macro which will use \2
g. Furthermore the X variant will expand \g at the very beginning whereas the former non-X former
variant will evaluate it each time it needs it (which is bad if this evaluation is time-costly, but
good if \g is a big explicit fraction encapsulated in a macro).

The example will use the macro \xintPowerSeries which computes efficiently exact partial sums
of power series, and is discussed in the next section.

\def\firstterm #1{1[0]}% first term of the exponential series

% although it is the constant 1, here it must be defined as a

% one-parameter macro. Next comes the ratio function for exp:

\def\ratioexp #1#2{\xintDiv {#1}{#23}3}% x/n

% These are the (-1)*{n-1}/n of the log(l+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(l+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes E(L(a/10)) for a=1,...,12.

\begin{multicols}{3}\raggedcolumns

\cnta 0

\loop

\noindent\xintTrunc {18}{%

\xintRationalSeriesX {0}{9}{\firstterm}{\ratioexp}
{\xintPowerSeries{1}{10}{\coefflog}{\the\cnta[-1]}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

\end{multicols}
1.000000000000000000. . . 1.499954310225476533. . . 1.907197560339468199. . .
1.099999999999083906. . . 1.599659266069210466. . . 1.845117565491393752. .
1.199999998111624029. .. 1.698137473697423757. . . 1.593831932293536053. .
1.299999835744121464. . . 1.791898112718884531. .
1.399996091955359088. . . 1.870485649686617459. . .

These completely exact operations rapidly create numbers with many digits. Let us print in full
the raw fractions created by the operation illustrated above:

E(L(1[-1]))=837588191708763593233567174687168686839043767250040308005177927752494629866184)
007635859046126459421356378683685505198743151968256,/7614438106449646789860733747200000000001[2
-90] (length of numerator: 129)

E(L(12[-2]))=85281706791717040474336745569417595859595883484964778227548803968303902814014)
62750410775245075221639397742094514261221418681795641855210942699861990610743717023845402454
66764149586292947053094306437899694978421745516544/761443810644964678986073374720000000000[-2
180] (length of numerator: 219)

131

Frac Frac
| num
x f f

13 Macros of the xintseries package

E(L(123[-3]))=8551013993474841738233155784033291664723025750879587881703381129666246322497)
19142331115922733076372551695958545295492787962370297931258555533483817301699338027676688217)
119374626466595481228434620385193134459556100336250033905803253996685925486649200488748729352
7193753147231854444914269381901852177272347295744/761443810644964678986073374720000000000[-22
70] (length of numerator: 309)

We see that the denominators here remain the same, as our input only had various powers of ten as
denominators, and xintfrac efficiently assemble (some only, as we can see) powers of ten. Notice
that 1 more digit in an input denominator seems to mean 90 more in the raw output. We can check that
with some other test cases:

E(L(1/7))=246928403777284535542005925363994435551841707513610888309477702059412077893312772
8456047080539072743831005696/216062353313908320166111873421327988666012866884203817376345172)
792064291516013203517727545795543040000000000[0] (length of numerator: 108; length of denomina-
tor: 108)

E(L(1/71))=316930031144209937736015410952165198861974946963681201299603912857458602147711%
41617633287791743518431089068458413689544226451199649958198207101271260417461397348496443539)
24405185605375986452422252984559104,/312528225156095910823136583628983100903663468032171880552
1790955992081064883107035602301495479192714019555648341802720770137585408881952071159334971%
4372055039374604062422190122738418253432587550720000000000[0] (length of numerator: 206; length
of denominator: 206)

E(L(1/712))=300356435377840602055967040841188592538909311419930838799656013626071029784174
496819290884958041362038132421744055614153154268292413172870530372734533290558141538915173252
75694112320026364569495366534918031439051104610487529796192058205725999641657806615904929048)
98946463533146662233869249,/29993517810522090976696848959176310536177550755703969736435921535)
22460410892328532539738041911202121412424715881734049254716640082470987340985151932504281494»
24064596788874441470533147848207863549778847000617103264666638782677019019130113930837421531»
810478062025966102914017525760000000000[0] (length of numerator: 288; length of denominator:
288)

Thus decimal numbers such as 0.123 (equivalently 123[-3]) give less computing intensive tasks
than fractions such as 1/712: in the case of decimal numbers the (raw) denominators originate in
the coefficients of the series themselves, powers of ten of the input within brackets being treated
separately. And even then the numerators will grow with the size of the input in a sort of linear
way, the coefficient being given by the order of series: here 10 from the log and 9 from the exp,
so 90. One more digit in the input means 90 more digits in the numerator of the output: obviously
we can not go on composing such partial sums of series and hope that xint will joyfully do all at
the speed of light!

Hence, truncating the output (or better, rounding) is the only way to go if one needs a gen-
eral calculus of special functions. This is why the package xintseries provides, besides \xint-
Series, \xintRationalSeries, or \xintPowerSeries which compute exact sums, \xintFxPtPowerSeries
for fixed-point computations and a (tentative naive) \xintFloatPowerSeries.

13.5 \xintPowerSeries

\xintPowerSeries{A}{B}{\coeff}{f} evaluates the sum Zﬂzﬁ\coeff{n} - f". The initial and final in-
dices are given to a \numexpr expression. The \coeff macro (which, as argument to \xintPowerSeries
is expanded only at the time \coeff{n} is needed) should be defined as a one-parameter expandable
macro, its input will be an explicit number.

The f can be either a fraction directly input or a macro \f expanding to such a fraction. It
is actually more efficient to encapsulate an explicit fraction f in such a macro, if it has big
numerators and denominators ("big' means hundreds of digits) as it will then take less space in
the processing until being (repeatedly) used.

This macro computes the exact result (one can use it also for polynomial evaluation), using a
Horner scheme which helps avoiding a denominator build-up (this problem however, even if using a

132

13 Macros of the xintseries package

naive additive approach, is much less acute since release 1.1 and its new policy regarding \xint-
Add) .

\def\geom #1{1[0]} % the geometric series

\def\f {5/17[0]}

\[\sum_{n=0}4{n=20} \Bigl(\frac 5{17}\Bigr)“n

=\xintFrac{\xintIrr{\xintPowerSeries {03}{20}{\geom}{\£f}}}

=\xintFrac{\xinttheexpr (17421-5421)/12/17+20\relax}\]

Eif(s)n _ 5757661159377657976885341 69091933912531895722624092

17/ ~ 4064231406647572522401601 48770776879770870268819212

n=0

\def\coefflog #1{1/#1[0]1}% 1/n
\def\f {1/2[0]}%
\[\log 2 \approx \sum_{n=1}+{20} \fracl{n\cdot 2n}
= \xintFrac {\xintIrr {\xintPowerSeries {1}{20}{\coefflog}{\£f}}}\]
\[\log 2 \approx \sum_{n=1}+{50} \fracl{n\cdot 2-n}
= \xintFrac {\xintIrr {\xintPowerSeries {1}{503}{\coefflog}{\£f}}}\]

20
1 42299423848079
log2 = 2; =

n-20 61025172848640

1 60463469751752265663579884559739219
log2 = :E] =

n-20 87230347965792839223946208178339840

\setlength{\columnsep}{Opt}
\begin{multicols}{3}
\cnta 1 % previously declared count
\loop % in this loop we recompute from scratch each partial sum!
% we can afford that, as \xintPowerSeries is fast enough.
\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}

{\xintPowerSeries {1}{\cnta}{\coefflog}{\f}}\dots

\endgraf

\ifnum \cnta < 30 \advance\cnta 1 \repeat

\end{multicols}

1. 0.500000000000. . . 11. 0.693109245355. .. 21. 0.693147159757. ..
2. 0.625000000000. . . 12. 0.693129590407. . . 22. 0.693147170594. ..
3. 0.666666666666. . . 13. 0.693138980431. .. 23. 0.693147175777. . .
4. 0.682291666666. . . 14. 0.693143340085. .. 24. 0.693147178261. . .
5. 0.688541666666. . . 15. 0.693145374590. . . 25. 0.693147179453. ..
6. 0.691145833333. .. 16. 0.693146328265. . . 26. 0.693147180026. . .
7. 0.692261904761. . . 17. 0.693146777052. . . 27. 0.693147180302. . .
8. 0.692750186011. . . 18. 0.693146988980. . . 28. 0.693147180435. . .
9. 0.692967199900. . . 19. 0.693147089367. . . 29. 0.693147180499. .
10. 0.693064856150. . . 20. 0.693147137051. . . 30. 0.693147180530. . .

\def\coeffarctg #1{1/\the\numexpr\ifodd #1 -2=#1-1\else2=#1+1\fi\relax }%

% the above gives (-1)*n/(2n+1). The sign being in the denominator,

% #x%x% no [0] should be added s,

% else nothing is guaranteed to work (even if it could by sheer luck)

% Notice in passing this aspect of \numexpr:

% #xxx \numexpr -(1)\relax is ilegal !!! =¥

\def\f {1/25[0]3}% 1/5*2

\[\mathrm{Arctg} (\fracl15)\approx \fracl5\sum_{n=03}+{15} \frac{(-1)An}{(2n+1)25*n}
= \xintFrac{\xintIrr {\xintDiv {\xintPowerSeries {0}{15}{\coeffarctg}{\£f}}{5}}1}\1]

133

wum num Frac Frac
x x f

num num

X X

Frac Frac nyp
f f

X

13 Macros of the xintseries package
1 ii -n" ~165918726519122955895391793269168

1
Arctg(=) = — =
5 5 (2n+1)25" 840539304153062403202056884765625

n=0

13.6 \xintPowerSeriesX

This is the same as \xintPowerSeries apart from the fact that the last parameter f is expanded once
and for all before being then used repeatedly. If the f parameter is to be an explicit big fraction
with many (dozens) digits, rather than using it directly it is slightly better to have some macro
\g defined to expand to the explicit fraction and then use \xintPowerSeries with \g; but if f has
not yet been evaluated and will be the output of a complicated expansion of some \f, and if, due to
an expanding only context, doing \edef\g{\f} is no option, then \xintPowerSeriesX should be used
with \f as last parameter.

\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)*{n-1}/n of the log(l+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(l+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes L(E(a/10)-1) for a=1,..., 12.

\begin{multicols}{3}\raggedcolumns

\cnta 1

\loop

\noindent\xintTrunc {18}{%

\xintPowerSeriesX {1}{10}{\coefflog}

{\xintSub
{\xintRationalSeries {0}{9}{1[0]}{\ratioexp{\the\cntal[-1]}}}
{1}3}}\dots
\endgraf
\ifnum\cnta < 12 \advance \cnta 1 \repeat
\end{multicols}
0.099999999998556159. . . 0.499511320760604148. . . -1.597091692317639401. . .
0.199999995263443554. . . 0.593980619762352217. . . -12.648937932093322763. .
0.299999338075041781. .. 0.645144282733914916. . . -66.259639046914679687. . .
0.399974460740121112. .. 0.398118280111436442. . . -304.768437445462801227. .

13.7 \xintFxPtPowerSeries

\xintFxPtPowerSeries{A}{B}{\coeff}{f}{D} computes Eig\coeff{n} -f" with each term of the series
truncated to D digits after the decimal point. As usual, A and B are completely expanded through
their inclusion in a \numexpr expression. Regarding D it will be similarly be expanded each time
it is used inside an \xintTrunc. The one-parameter macro \coeff is similarly expanded at the time
it is used inside the computations. Idem for f. If f itself is some complicated macro it is thus
better to use the variant \xintFxPtPowerSeriesX which expands it first and then uses the result
of that expansion.

The current (1.04) implementation is: the first power f7A is computed exactly, then trun-
cated. Then each successive power is obtained from the previous one by multiplication by the
exact value of f, and truncated. And \coeff{n}-fAn is obtained from that by multiplying by \co
eff{n} (untruncated) and then truncating. Finally the sum is computed exactly. Apart from that
\xintFxPtPowerSeries (where FxPt means " fixed-point') is like \xintPowerSeries.

There should be a variant for things of the type), cn% to avoid having to compute the factorial
from scratch at each coefficient, the same way \xintFxPtPowerSeries does not compute fAn from
scratch at each n. Perhaps in the next package release.

134

num num
X X
FracFracnyp
f f

X

13 Macros of the xintseries package

1
e 2 x
1.00000000000000000000 0.60653056795634920635 0.60653065971263344622
0.50000000000000000000 0.60653066483754960317 0.60653065971263342289
0.62500000000000000000 0.60653065945526069224 0.60653065971263342361
0.60416666666666666667 0.60653065972437513778 0.60653065971263342359
0.60677083333333333333 0.60653065971214266299 0.60653065971263342359
0.60651041666666666667 0.60653065971265234943 0.60653065971263342359
0.60653211805555555555 0.60653065971263274611

\def\coeffexp #1{1/\xintiiFac {#1}[0]}% 1/n!

\def\f {-1/2[0]3}% [0] for faster input parsing

\cnta 0 % previously declared \count register

\noindent\loop

$\xintFxPtPowerSeries {0}{\cnta}{\coeffexp}{\£}{20}$\\

\ifnum\cnta<19 \advance\cnta 1 \repeat\par

\xintFxPtPowerSeries {0}{19}{\coeffexp}{\f}{25}= 0.6065306597126334236037992

It is no difficulty for xintfrac to compute exactly, with the help of \xintPowerSeries, the
nineteenth partial sum, and to then give (the start of) its exact decimal expansion:

XlIltPOWeISeIleS 0} 19}{ CoeffeXpH f}'

=0.606530659712633423603799152126. ..
Thus, one should always estimate a priori how many ending digits are not reliable: if there are N
terms and N has k digits, then digits up to but excluding the last k may usually be trusted. If we
are optimistic and the series is alternating we may even replace N with VIV to get the number k of
digits possibly of dubious significance.

13.8 \xintFxPtPowerSeriesX

\xintFxPtPowerSeriesX{A}{B}{\coeff}{\f}{D} computes, exactly as \xintFxPtPowerSeries, the sum
of \coeff{n}-\fAn from n=A to n=B with each term of the series being truncated to D digits after
the decimal point. The sole difference is that \f is first expanded and it is the result of this
which is used in the computations.

Let us illustrate this on the numerical exploration of the identity

log(1+x) = -log(1l/(1+x))
Let L(h)=log(1+h), and D(h)=L(h)+L(-h/(1+h)). Theoretically thus, D(h)=0 but we shall evaluate
L(h) and -h/(1+h) keeping only 10 terms of their respective series. We will assume h < 0.5. With
only ten terms kept in the power series we do not have quite 3 digits precision as 210 = 1024. So it
wouldn't make sense to evaluate things more precisely than, say circa 5 digits after the decimal
points.

\cnta 0

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]1}% (-1)*{n-1}/n

\def\coeffalt #1{\the\numexpr\ifodd#1 -1\elsel\fi\relax [0]}% (-D*n

\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }1}%

\xintAdd {\xintFxPtPowerSeriesX {1}{10}{\coefflog}{\the\cnta [-2]}{5}}

{\xintFxPtPowerSeriesX {1}{10}{\coefflog}
{\xintFxPtPowerSeriesX {1}{10}{\coeffalt}{\the\cnta [-2]13}{5}}
{5}}\endgraf
\ifnum\cnta < 49 \advance\cnta 7 \repeat
\end{multicols}

135

L

[x

num. numnum

P}l(“al F}I(‘HC X
£ f

*

num. numnum
X

1 x

13 Macros of the xintseries package

D(0/100): 0/1[0] D(28/100): 4/1[-5]

D(7/100): 2/1[-5] D(35/100): 4/1[-5]
D(14/100): 2/1[-5] D(42/100): 9/1[-5]
D(21/100): 3/1[-5] D(49/100): 42/1[-5]

Let's say we evaluate functions on [-1/2,+1/2] with values more or less also in [-1/2,+1/2] and
we want to keep 4 digits of precision. So, roughly we need at least 14 terms in series like the
geometric or log series. Let's make this 15. Then it doesn't make sense to compute intermediate
summands with more than 6 digits precision. So we compute with 6 digits precision but return only
4 digits (rounded) after the decimal point. This result with 4 post-decimal points precision is
then used as input to the next evaluation.

\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }1}%

\dtt{\xintRound{4}

{\xintAdd {\xintFxPtPowerSeriesX {1}{15}{\coefflog}{\the\cnta [-2]}{6}}
{\xintFxPtPowerSeriesX {1}{15}{\coefflog}
{\xintRound {4}{\xintFxPtPowerSeriesX {1}{15}{\coeffalt}
{\the\cnta [-2]}{6}}}

{6}}%
}}\endgraf
\ifnum\cnta < 49 \advance\cnta 7 \repeat
\end{multicols}
D(0/100): O D(28/100): -0.0001
D(7/100): 0.0000 D(35/100): -0.0001
D(14/100): 0.0000 D(42/100): -0.0000
D(21/100): -0.0001 D(49/100): -0.0001
Not bad... I have cheated a bit: the " four-digits precise' numeric evaluations were left un-

rounded in the final addition. However the inner rounding to four digits worked fine and made the
next step faster than it would have been with longer inputs. The morale is that one should not use
the raw results of \xintFxPtPowerSeriesX with the D digits with which it was computed, as the last
are to be considered garbage. Rather, one should keep from the output only some smaller number
of digits. This will make further computations faster and not less precise. I guess there should
be some macro to do this final truncating, or better, rounding, at a given number D'<D of digits.
Maybe for the next release.

13.9 \xintFloatPowerSeries

\xintFloatPowerSeries[P]{A}{B}{\coeff}{f} computes Zﬂj\coeff{n} -f" with a floating point pre-
cision given by the optional parameter P or by the current setting of \xintDigits.

In the current, preliminary, version, no attempt has been made to try to guarantee to the final
result the precision P. Rather, P is used for all intermediate floating point evaluations. So
rounding errors will make some of the last printed digits invalid. The operations done are first
the evaluation of f*A using \xintFloatPow, then each successive power is obtained from this first
one by multiplication by f using \xintFloatMul, then again with \xintFloatMul this is multiplied
with \coeff{n}, and the sum is done adding one term at a time with \xintFloatAdd. To sum up, this
is just the naive transformation of \xintFxPtPowerSeries from fixed point to floating point.

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}

-6.9314718e-1

13.10 \xintFloatPowerSeriesX

\xintFloatPowerSeriesX[P]{A}{B}{\coeff}{f} is like \xintFloatPowerSeries with the difference
that f is expanded once and for all at the start of the computation, thus allowing efficient chain-

136

Frac Frac
f f

*

13 Macros of the xintseries package

ing of such series evaluations.
\def\coeffexp #1{1/\xintiiFac {#1}[0]}% 1/n! (exact, not float)
\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%
\xintFloatPowerSeriesX [8]{0}{30}{\coeffexp}
{\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]1}}
5.0000001e-1

13.11 Computing log2 and

In this final section, the use of \xintFxPtPowerSeries (and \xintPowerSeries) will be illustrated
on the (expandable... why make things simple when it is so easy to make them difficult!) computa-
tions of the first digits of the decimal expansion of the familiar constants log2 and 7.

Let us start with log2. We will get it from this formula (which is left as an exercise):

log(2)=-21og(1-13/256)-51og(1-1/9)

The number of terms to be kept in the log series, for a desired precision of 102{-D} was
roughly estimated without much theoretical analysis. Computing exactly the partial sums with
\xintPowerSeries and then printing the truncated values, from D=0 up to D=100 showed that it worked
in terms of quality of the approximation. Because of possible strings of zeroes or nines in the ex-
act decimal expansion (in the present case of log2, strings of zeroes around the fourtieth and the
sixtieth decimals), this does not mean though that all digits printed were always exact. In the
end one always end up having to compute at some higher level of desired precision to validate the
earlier result.

Then we tried with \xintFxPtPowerSeries: this is worthwile only for D's at least 50, as the exact
evaluations are faster (with these short-length f's) for a lower number of digits. And as expected
the degradation in the quality of approximation was in this range of the order of two or three
digits. This meant roughly that the 3+1=4 ending digits were wrong. Again, we ended up having to
compute with five more digits and compare with the earlier value to validate it. We use truncation
rather than rounding because our goal is not to obtain the correct rounded decimal expansion but
the correct exact truncated one.

\def\coefflog #1{1/#1[0]1}% 1/n

\def\xa {13/256[0]}% we will compute log(1-13/256)

\def\xb {1/9[0]}% we will compute log(1-1/9)

\def\LogTwo #1%

% get log(2)=-21log(1-13/256)- 5log(1l-1/9)

{% we want to use \printnumber, hence need something expanding in two steps

% only, so we use here the \romannumeral® method
\romannumeral®\expandafter\LogTwoDoIt \expandafter
% Nb Terms for 1/9:
{\the\numexpr #1%150/143\expandafter}\expandafter
% Nb Terms for 13/256:
{\the\numexpr #1=100/129\expandafter}\expandafter
% We print #1 digits, but we know the ending ones are garbage
{\the\numexpr #1\relax}% allows #1 to be a count register

}%

\def\LogTwoDoIt #1#2#3%

% #1=nb of terms for 1/9, #2=nb of terms for 13/256,

{% #3=nb of digits for computations, also used for printing

\xinttrunc {#3} % lowercase form to stop the \romannumeral® expansion!
{\xintAdd
{\xintMul {2}{\xintFxPtPowerSeries {1}{#2}{\coefflog}{\xa}{#3}}}
{\xintMul {5}{\xintFxPtPowerSeries {1}{#1}{\coefflog}{\xb}{#3}}}%

1%

}%

\noindent $\log 2 \approx \LogTwo {60}\dots$\endgraf

137

13 Macros of the xintseries package

\noindent${}\approx{}$\printnumber{\LogTwo {65}}\dots\endgraf

\noindent${}\approx{}$\printnumber{\LogTwo {70}}\dots\endgraf
log2 ~ 0.693147180559945309417232121458176568075500134360255254120484. ..

~ 0.69314718055994530941723212145817656807550013436025525412068000711. . .
~ 0.6931471805599453094172321214581765680755001343602552541206800094933723. . .

Here is the code doing an exact evaluation of the partial sums. We have added a +1 to the number
of digits for estimating the number of terms to keep from the log series: we experimented that this
gets exactly the first D digits, for all values from D=0 to D=100, except in one case (D=40) where
the last digit is wrong. For values of D higher than 100 it is more efficient to use the code using
\xintFxPtPowerSeries.

\def\LogTwo #1% get log(2)=-2log(1-13/256)- 5log(1-1/9)

{%

\romannumeral®\expandafter\LogTwoDoIt \expandafter
{\the\numexpr (#1+1)*150/143\expandafter}\expandafter
{\the\numexpr (#1+1)*100/129\expandafter}\expandafter
{\the\numexpr #1\relax}%

1%

\def\LogTwoDoIt #1#2#3%

{% #3=nb of digits for truncating an EXACT partial sum

\xinttrunc {#3}
{\xintAdd
{\xintMul {2}{\xintPowerSeries {1}{#2}{\coefflog}{\xa}}}
{\xintMul {5}{\xintPowerSeries {1}{#1}{\coefflog}{\xb}}}%
1%

3%

Let us turn now to Pi, computed with the Machin formula (but see also the approach via the Brent-
Salamin algorithm with \xintfloatexpr) Again the numbers of terms to keep in the two arctg series
were roughly estimated, and some experimentations showed that removing the last three digits was
enough (at least for D=0-100 range). And the algorithm does print the correct digits when used
with D=1000 (to be convinced of that one needs to run it for D=1000 and again, say for D=1010.)
A theoretical analysis could help confirm that this algorithm always gets better than 104{-D}
precision, but again, strings of zeroes or nines encountered in the decimal expansion may falsify
the ending digits, nines may be zeroes (and the last non-nine one should be increased) and zeroes
may be nine (and the last non-zero one should be decreased).

\def\coeffarctg #1{\the\numexpr\ifodd#1l -1\elsel\fi\relax/%

\the\numexpr 2=#1+1\relax [0]}%

%\def\coeffarctg #1l{\romannumeral®\xintmon{#1}/\the\numexpr 2=#1+1\relax }%

\def\xa {1/25[0]13}% 1/542, the [0] for faster parsing

\def\xb {1/57121[0]3}% 1/23942, the [0] for faster parsing

\def\Machin #1{% #1 may be a count register, \Machin {\mycount} is allowed

\romannumeral®\expandafter\MachinA \expandafter
% number of terms for arctg(1l/5):
{\the\numexpr (#1+3)=*5/7\expandafter}\expandafter
% number of terms for arctg(l/239):
{\the\numexpr (#1+3)*10/45\expandafter}\expandafter
% do the computations with 3 additional digits:
{\the\numexpr #1+3\expandafter}\expandafter
% allow #1 to be a count register:
{\the\numexpr #1\relax }}%
\def\MachinA #1#2#3#4%
{\xinttrunc {#4}
{\xintSub
{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}
{\xintMul{4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%
13%
\begin{framed}

138

13 Macros of the xintseries package

\[\pi = \Machin {60}\dots \]
\end{framed}

m=3.141592653589793238462643383279502884197169399375105820974944 . ..

Here is a variant\MachinBis, which evaluates the partial sums exactly using \xintPowerSeries,
before their final truncation. No need for a " "+3'' then.
\def\MachinBis #1{% #1 may be a count register,
% the final result will be truncated to #1 digits post decimal point
\romannumeral®\expandafter\MachinBisA \expandafter
% number of terms for arctg(l/5):
{\the\numexpr #1=5/7\expandafter}\expandafter
% number of terms for arctg(l/239):
{\the\numexpr #1x10/45\expandafter}\expandafter
% allow #1 to be a count register:
{\the\numexpr #1\relax }}%
\def\MachinBisA #1#2#3%
{\xinttrunc {#3} %
{\xintSub
{\xintMul {16/5}{\xintPowerSeries {0}{#1}{\coeffarctg}{\xa}}}
{\xintMul{4/239}{\xintPowerSeries {0} {#2}{\coeffarctg}{\xb}}}%
11%
Let us use this variant for a loop showing the build-up of digits:
\begin{multicols}{2}
\cnta 0 % previously declared \count register
\loop \noindent
\centeredline{\dtt{\MachinBis{\cnta}}}%
\ifnum\cnta < 30
\advance\cnta 1 \repeat

\end{multicols}
3.141592653589793
3. 3.1415926535897932
3.1 3.14159265358979323
3.14 3.141592653589793238
3.141 3.1415926535897932384
3.1415 3.14159265358979323846
3.14159 3.141592653589793238462
3.141592 3.1415926535897932384626
3.1415926 3.14159265358979323846264
3.14159265 3.141592653589793238462643
3.141592653 3.1415926535897932384626433
3.1415926535 3.14159265358979323846264338
3.14159265358 3.141592653589793238462643383
3.141592653589 3.1415926535897932384626433832
3.1415926535897 3.14159265358979323846264338327
3.14159265358979 3.141592653589793238462643383279
You want more digits and have some time? compile this copy of the \Machin with etex (or pdftex):
% Compile with e-TeX extensions enabled (etex, pdftex, ...)

\input xintfrac.sty

\input xintseries.sty

% pi = 16 Arctg(1l/5) - 4 Arctg(1/239) (John Machin's formula)

\def\coeffarctg #1{\the\numexpr\ifodd#1l -1\elsel\fi\relax/%
\the\numexpr 2=#1+1\relax [0]}%

\def\xa {1/25[0]1}%

139

13 Macros of the xintseries package

\def\xb {1/57121[0]}%
\def\Machin #1{%
\romannumeral®\expandafter\MachinA \expandafter
{\the\numexpr (#1+3)=*5/7\expandafter}\expandafter
{\the\numexpr (#1+3)*10/45\expandafter}\expandafter
{\the\numexpr #1+3\expandafter}\expandafter
{\the\numexpr #1\relax }}%
\def\MachinA #1#2#3#4%
{\xinttrunc {#4}
{\xintSub
{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}
{\xintMul {4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

11%

\pdfresettimer

\fdef\Z {\Machin {1000}}

\odef\W {\the\pdfelapsedtime}

\message{\Z}

\message{computed in \xintRound {2}{\W/65536} seconds.}

\bye

This will log the first 1000 digits of m after the decimal point. On my laptop (a 2012 model)
this took about 5.05 seconds last time I tried.”? 74

As mentioned in the introduction, the file pi.tex by D. RoeGeL shows that orders of magnitude
faster computations are possible within TgX, but recall our constraints of complete expandability
and be merciful, please.

Why truncating rather than rounding? One of our main competitors on the market of scientific com-
puting, a canadian product (not encumbered with expandability constraints, and having barely ever
heard of TgX ;-), prints numbers rounded in the last digit. Why didn't we follow suit in the macros
\xintFxPtPowerSeries and \xintFxPtPowerSeriesX? To round at D digits, and excluding a rewrite or
cloning of the division algorithm which anyhow would add to it some overhead in its final steps,
xintfrac needs to truncate at D+1, then round. And rounding loses information! So, with more time
spent, we obtain a worst result than the one truncated at D+1 (one could imagine that additions and
so on, done with only D digits, cost less; true, but this is a negligeable effect per summand com-
pared to the additional cost for this term of having been truncated at D+1 then rounded) . Rounding
is the way to go when setting up algorithms to evaluate functions destined to be composed one after
the other: exact algebraic operations with many summands and an f variable which is a fraction are
costly and create an even bigger fraction; replacing f with a reasonable rounding, and rounding
the result, is necessary to allow arbitrary chaining.

But, for the computation of a single constant, we are really interested in the exact decimal
expansion, so we truncate and compute more terms until the earlier result gets validated. Finally
if we do want the rounding we can always do it on a value computed with D+1 truncation.

73 With 1.09i and earlier xint, this used to be 42 seconds; starting with 1.093, and prior to 1.2, it was 16 seconds (this was probably
due to a more efficient division with denominators at most 9999). The 1.2 xintcore achieves a further gain at 5.6 seconds. 74 With
\xintDigits :=1001;, the non-optimized implementation with the iter of xintexpr fame using the Brent-Salamin algorithm, took,
last time | tried (1.2i), about 7 seconds on my laptop (the last two digits were wrong, which is ok as they serve as guard digits),
and for obtaining about 500 digits, it was about 1.7s. This is not bad, taking into account that the syntax is almost free rolling
speech, contrarily to the code above for the Machin formula computation; we would like to use the quadratically convergent
Brent-Salamin algorithm for more digits, but with such computations with numbers of one thousand digits we are beyond the
border of the reasonable range for xint. Innocent people not knowing what it means to compute with TEX, and with the extra
constraint of expandability will wonder why this is at least thousands of times slower than with any other language (with a little
Python program using the Decimal library, | timed the Brent-Salamin algorithm to 4.4ms for about 1000 digits and 1.14ms for 500
digits.) | will just say that for example digits are represented and manipulated via their ascii-code ! all computations must convert
from ascii-code to cpu words; furthermore nothing can be stored away. And there is no memory storage with 0(1) time access... if
expandability is to be verified.

140

http://www.ctan.org/pkg/pi

14 Macros of the xintcfrac package

14 Macros of the xintcfrac package

.1 Package overview 141 16 \XINtCtoCvV. ..ottt 151
.2 \XintCFrac............c ... 146 .17 \xintGCtoCv......... ... 151
.3 \XIntGCFrac..........coviiiiinnnnn.. 147 18 \xintFtoCv...... ... 152
4 \XIntGGCFracccvviunuunnnnn. 147 19 \xintFtoCCv...... 152
.5 \XintGCtoGCX, 147 20 \xintCntoF...... 152
.6 \xintFtoC......... 148 .21 \xintGCntoF............., 152
.7 \xintFtoCs........... 148 .22 \xintCntoCs..........coiiiiiiinnn .. 153
.8 \XINtFtoCX 148 .23 \xintCntoGC.............ccoiiin... 153
L9 \XIntFtoGC............ ..., 148 .24 \xintGCntoGC, 154
.10 \xintFGtoC......... 149 .25 \xintCstoGC........... 154
.11 \xXintFtoCC..o 149 .26 \xintiCstoF, \xintiGCtoF, \xintiCstoCv
.12 \xintCstoF ... 149 \xintiGCtoCv 154
13 \xintCtoF 150 .27 \XintGCtoGC............. ..., 154
.14 \xintGCtoF........ ..., 150 | .28 Euler'snumbere........................ 155
.15 \xintCstoCv........ ..., 151

First version of this package was included in release 1.04 (2013/04/25) of the xint bundle.
It was kept almost unchanged until 1.09m of 2014/02/26 which brings some new macros: \xintFtoC,
\xintCtoF, \xintCtoCv, dealing with sequences of braced partial quotients rather than comma sep-
arated ones, \xintFGtoC which is to produce " “guaranteed'' coefficients of some real number known
approximately, and \xintGGCFrac for displaying arbitrary material as a continued fraction; also,
some changes to existing macros: \xintFtoCs and \xintCntoCs insert spaces after the commas, \xint-
CstoF and \xintCstoCv authorize spaces in the input also before the commas.

This section contains:

1. an overview of the package functionalities,
2. a description of each one of the package macros,

3. further illustration of their use via the study of the convergents of e.

14.1 Package overview

The package computes partial quotients and convergents of a fraction, or conversely start from co-
efficients and obtain the corresponding fraction; three macros \xintCFrac, \xintGCFrac and \xint-
GGCFrac are for typesetting (the first two assume that the coefficients are numeric quantities
acceptable by the xintfrac \xintFrac macro, the last one will display arbitrary material), the
others can be nested (if applicable) or see their outputs further processed by other macros from
the xint bundle, particularly the macros of xinttools dealing with sequences of braced items or
comma separated lists.

A simple continued fraction has coefficients [c®,cl,...,cN] (usually called partial quotients,
but I dislike this entrenched terminology), where c® is a positive or negative integer and the
others are positive integers.

Typesetting is usually done via the amsmath macro \cfrac:

\[c_0 + \cfrac{1}{c_1+\cfracl{c_2+\cfracl{c_3+\cfracl{\ddots}}}}\]

141

14 Macros of the xintcfrac package

1
Co +
1
C1 +
1
Co +
1
c3 +
Here is a concrete example:
\[\xintFrac {208341/66317}=\xintCFrac {208341/66317}\1%
208341 1
66317 1
7+
1
15+
1
1+

1
292 + —
2

But it is the macro \xintCFrac which did all the work of computing the continued fraction and
using \cfrac from amsmath to typeset it.

A generalized continued fraction has the same structure but the numerators are not restricted
to be 1, and numbers used in the continued fraction may be arbitrary, also fractions, irrationals,
complex, indeterminates.’® The centered continued fraction is an example:

\[\xintFrac {915286/188421}=\xintGCFrac {5+-1/7+1/39+-1/53+-1/13}

=\xintCFrac {915286/188421}\]

915286 1 1
=5- =4+
188421

39 -

53 - — 38 +

1+ —
12

The macro \xintGCFrac, contrarily to \xintCFrac, does not compute anything, it just typesets
starting from a generalized continued fraction in inline format, which in this example was input
literally. We also used \xintCFrac for comparison of the two types of continued fractions.

To let TgX compute the centered continued fraction of f there is \xintFtoCC:

\[\xintFrac {915286/188421}\to\xintFtoCC {915286/188421}\]

915286 5 1/7+1/39 1/53 1/13

188421 0T " ’ i
The package macros are expandable and may be nested (naturally \xintCFrac and \xintGCFrac must
be at the top level, as they deal with typesetting).

\[\xintGCFrac {\xintFtoCC{915286/188421}}\]

75 xintcfrac may be used with indeterminates, for basic conversions from one inline format to another, but not for actual
computations. See \xintGGCFrac.

142

14 Macros of the xintcfrac package

39 -

1

53 - —
13

The “inline' format expected on input by \xintGCFrac is

ap +bo/a; +by/az +by/az+ - +bp-2/an-1+bn-1/an
Fractions among the coefficients are allowed but they must be enclosed within braces. Signed in-
tegers may be left without braces (but the + signs are mandatory). No spaces are allowed around the
plus and fraction symbols. The coefficients may themselves be macros, as long as these macros are
f-expandable.

\[\xintFrac{\xintGCtoF {1+-1/57+\xintPow {-33}{7}/\xintiiQuo {1323}{25}}}

= \xintGCFrac {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}\]

1907 !
1902

2187

57 - ——
5

To compute the actual fraction one has \xintGCtoF:

\[\xintFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {1323}{25}3}}\]
1907

1902
For non-numeric input there is \xintGGCFrac.
\[\xintGGCFrac {a_0+b_0/a_1+b_1/a_2+b_2/\ddots+\ddots/a_{n-1}+b_{n-13}/a_n}\]

bo

ap +
by

ai +

b
ap +

bn-1

dn-1 +
dn

For regular continued fractions, there is a simpler comma separated format:
\[-7,6,19,1,33\to\xintFrac{\xintCstoF{-7,6,19,1,33}}=\xintCFrac{\xintCstoF{-7,6,19,1,33}}\]

-28077 1
= +

-7,6,19,1,33 — -
4108

1+—
33

The macro \xintFtoCs produces from a fraction f the comma separated list of its coefficients.
\[\xintFrac{1084483/398959}=[\xintFtoCs{1084483/398959}1\]
1084483

398959

If one prefers other separators, one can use the two arguments macros \xintFtoCx whose first
argument is the separator (which may consist of more than one token) which is to be used.
\[\xintFrac{2721/1001}=\xintFtoCx {+1/(}{2721/10013})\cdots)\]

=[2,1,2,1,1,4,1,1,6,1,1,8,1,1, 10, 2]

143

14 Macros of the xintcfrac package

%:2+1/(1+1/(2+1/(1+1/(1+1/(4+1/(1+1/(1+1/(6+1/(2)...)

This allows under Plain TX with amstex to obtain the same effect as with BIgX+\amsmath+\xintCFrac:
$$\xintFwOver{2721/1001}=\xintFtoCx {+\cfracl\\ }{2721/1001}\endcfrac$$

As a shortcut to \xintFtoCx with separator 1+/, there is \xintFtoGC:

2721/1001=\xintFtoGC {2721/1001}
2721/1001=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+41/6+1/2 Let us compare in that case with the output of
\xintFtoCC:

2721/1001=\xintFtoCC {2721/1001}
2721/1001=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2 To obtain the coefficients as a sequence of braced num-
bers, there is \xintFtoC (this is a shortcut for \xintFtoCx {}). This list (sequence) may then
be manipulated using the various macros of xinttools such as the non-expandable macro \xint-
AssignArray or the expandable \xintApply and \xintListWithSep.

Conversely to go from such a sequence of braced coefficients to the corresponding fraction there
is \xintCtoF.

The “\printnumber' (subsection 1.3) macro which we use in this document to print long numbers
can also be useful on long continued fractions.

\printnumber{\xintFtoCC {35037018906350720204351049,/244241737886197404558180}}
143+1/2+1/5+-1/4+-1/4+-1/4+-1/3+1/2+1/2+1/6+-1/22+1/2+1/10+-1/5+-1/11+-1/3+1/4+-1/2+1/2+1/4+)
-1/2+1/23+1/3+1/8+-1/6+-1/9 1f we apply \xintGCtoF to this generalized continued fraction, we
discover that the original fraction was reducible:

\xintGCtoF {143+1/2+...+-1/9}=2897319801297630107/20197107104701740

When a generalized continued fraction is built with integers, and numerators are only 1's or -2
1's, the produced fraction is irreducible. And if we compute it again with the last sub-fraction
omitted we get another irreducible fraction related to the bigger one by a Bezout identity. Doing
this here we get:

\xintGCtoF {143+1/2+...+-1/63}=328124887710626729/2287346221788023
and indeed:

2897319801297630107 328124887710626729 1
20197107104701740 2287346221788023

The various fractions obtained from the truncation of a continued fraction to its initial terms
are called the convergents. The macros of xintcfrac such as \xintFtoCv, \xintFtoCCv, and others
which compute such convergents, return them as a list of braced items, with no separator (as does
\xintFtoC for the partial quotients). Here is an example:

\[\xintFrac{915286/188421}\to

\xintListWithSep{, }{\xintApply\xintFrac{\xintFtoCv{915286/188421}}}\]
915286 34 1297 1331 69178 70509 915286

— 4)) , ,
188421 7 267 274 14241 14515 188421

\[\xintFrac{915286/188421}\to
\xintListWithSep{, }{\xintApply\xintFrac{\xintFtoCCv{915286/188421}}}\]
915286 34 1331 70509 915286

N ,
188421 7 274 14515 188421

We thus see that the "centered convergents' obtained with \xintFtoCCv are among the fuller list
of convergents as returned by \xintFtoCv.

Here is a more complicated use of \xintApply and \xintListWithSep. We first define a macro which
will be applied to each convergent:

\newcommand{\mymacro}[1] {$\xintFrac{#1}=[\xintFtoCs{#1}]$\vtop to 6pt{}}
Next, we use the following code:

$\xintFrac{49171/18089}\to{}$

\xintListWithSep {, }{\xintApply{\mymacro}{\xintFtoCv{49171/18089}}}
It produces:

144

14 Macros of the xintcfrac package

49171 _ _ 8 _ 11 _ 19 _ 87 _ 106 _
18089_>2_[2]’ 3—[3]’ §—[2’112]! T_[2’1!3]! 7_[2’1!212]1 ﬁ_[2!112’11114]1 ﬁ_
(2,1,2,1,1,51, 2 =12,1,2,1,1,4,21, & =12,1,2,1,1,4,1,1,6], 27 =(2,1,2,1,1,4, 1, 1, 7],

22l -12,1,2,1,1,4,1,1,6,2], 32 =12,1,2,1,1,4,1,1,6,1,1,8], 21 =-12,1,2,1,1,4,1,1,6,1, 1, 8, 2]
The macro \xintCntoF allows to specify the coefficients as a function given by a one-parameter

macro. The produced values do not have to be integers.
\def\cn #1{\xintiiPow {2}{#1}}% 24n

\[\xintFrac{\xintCntoF {6}{\cn}}=\xintCFrac [1]{\xintCntoF {6}{\cn}}\]

3541373 1
=1+
2449193

32+ —
64

Notice the use of the optional argument [1] to \xintCFrac. Other possibilities are [r] and (de-
fault) [c].
\def\cn #1{\xintPow {2}{-#1}}%
\[\xintFrac{\xintCntoF {6}{\cn}}=\xintGCFrac [r]{\xintCntoGC {6}{\cn}}=
[\xintFtoCs {\xintCntoF {6}{\cn}}]1\]

3159019 1
=1+
2465449

=[1,3,1,1,4,14,1,1,1,1,79,2,1,1, 2]
1

1

We used \xintCntoGC as we wanted to display also the continued fraction and not only the fraction
returned by \xintCntoF.

There are also \xintGCntoF and \xintGCntoGC which allow the same for generalized fractions. An
initial portion of a generalized continued fraction for m is obtained like this

\def\an #1{\the\numexpr 2*#1+1\relax }%

\def\bn #1{\the\numexpr (#1+1)+*(#1+1)\relax }%

\[\xintFrac{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}} =

\cfrac{4}{\xintGCFrac{\xintGCntoGC {5}{\an}{\bn}}} =
\xintTrunc {10}{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}}\dots\]

145

Frac

14 Macros of the xintcfrac package

92736 4
= =3.1414634146...
29520 1
1+
4
3+
9
5+
16
7+
25
9+ —
11

We see that the quality of approximation is not fantastic compared to the simple continued frac-
tion of m with about as many terms:
\[\xintFrac{\xintCstoF{3,7,15,1,292,1,1}}=
\xintGCFrac{3+1/7+1/15+1/1+1/292+1/1+1/1}=
\xintTrunc{10}{\xintCstoF{3,7,15,1,292,1,1}}\dots\]

208341 1
=3+
66317

=3.1415926534...

15 +

1+

292 +

1
1+ -

When studying the continued fraction of some real number, there is always some doubt about how
many terms are valid, when computed starting from some approximation. If £ < x < g and £, g both
have the same first K partial quotients, then x also has the same first K quotients and convergents.
The macro \xintFGtoC outputs as a sequence of braced items the common partial quotients of its two
arguments. We can thus use it to produce a sure list of valid convergents of m for example, starting
from some proven lower and upper bound:

$$\pi\to [\xintListWithSep{,?}

{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}, \dots]$$

\noindent$\pi\to\xintListWithSep{,\allowbreak\;}

{\xintApply{\xintFrac}
{\xintCtoCv{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}}}, \dots$
r—[3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,...]

22 333 103993 104348 208341 312689 833719 1146408 4272943 5419351 80143857

355
m =3, 7, 06+ T13: 33102 ' 33215 ' 66317 ' 09532 * 265381’ 364913 * 1360120' 1725033 25510582
165707065 245850922 411557987

52746197 * 78256779 ’ 131002976’ "

14.2 \xintCFrac

\xintCFrac{f} is a math-mode only, BIX with amsmath only, macro which first computes then displays
with the help of \cfrac the simple continued fraction corresponding to the given fraction. It
admits an optional argument which may be [1], [r] or (the default) [c] to specify the location of
the one's in the numerators of the sub-fractions. Each coefficient is typeset using the \xint-
Frac macro from the xintfrac package. This macro is f-expandable in the sense that it prepares
expandably the whole expression with the multiple \cfrac's, but it is not completely expandable
naturally as \cfrac isn't.

146

nnf x

14 Macros of the xintcfrac package

14.3 \xintGCFrac

\xintGCFrac{a+b/c+d/e+f/g+h/...+x/y} uses similarly \cfrac to prepare the typesetting with the a)
msmath \cfrac (BIX) of a generalized continued fraction given in inline format (or as macro which
will f-expand to it). It admits the same optional argument as \xintCFrac. Plain TgX with amstex
users, see \xintGCtoGCx.

\[\xintGCFrac {1+\xintPow{1l.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}\]

3375-1073
1+ ——m

‘ vilw

N

720

This is mostly a typesetting macro, although it does provoke the expansion of the coefficients.
See \xintGCtoF if you are impatient to see this specific fraction computed.

It admits an optional argument within square brackets which may be either [1], [c] or [r]. De-
fault is [c] (numerators are centered).

Numerators and denominators are made arguments to the \xintFrac macro. This allows them to be
themselves fractions or anything f-expandable giving numbers or fractions, but also means however
that they can not be arbitrary material, they can not contain color changing macros for example.
One of the reasons is that \xintGCFrac tries to determine the signs of the numerators and chooses
accordingly to use + or -.

14.4 \xintGGCFrac

\xintGGCFrac{a+b/c+d/e+f/g+h/...+x/y} is a clone of \xintGCFrac, hence again BIfX specific with

package amsmath. It does not assume the coefficients to be numbers as understood by xintfrac. The

macro can be used for displaying arbitrary content as a continued fraction with \cfrac, using only

plus signs though. Note though that it will first f-expand its argument, which may be thus be one

of the xintcfrac macros producing a (general) continued fraction in inline format, see \xintFtoCx

for an example. If this expansion is not wished, it is enough to start the argument with a space.
\[\xintGGCFrac {1+q/1+q*2/1+q*3/1+q*4/1+q*5/\ddots}\]

14.5 \xintGCtoGCx

\xintGCtoGCx{sepa}{sepb}{a+b/c+d/e+f/...+x/y} returns the list of the coefficients of the gen-
eralized continued fraction of f, each one within a pair of braces, and separated with the help of
sepa and sepb. Thus

\xintGCtoGCx :;{1+2/3+4/5+6/7} gives 1:2;3:4;5:6;7
The following can be used byt Plain TgX+amstex users to obtain an output similar as the ones pro-
duced by \xintGCFrac and \xintGGCFrac:

$$\xintGCtoGCx {+\cfrac}{\\}{a+b/...}\endcfrac$$

$$\xintGCtoGCx {+\cfrac\xintFwOver}{\\\xintFwOver}{a+b/...}\endcfrac$$

147

n

Frac

Frac

Frac

f

Frac

*

*

*

*

14 Macros of the xintcfrac package

14.6 \xintFtoC

\xintFtoC{f} computes the coefficients of the simple continued fraction of f and returns them as
a list (sequence) of braced items.

\fdef\test{\xintFtoC{-5262046,/89233}}\texttt{\meaning\test}
macro:->{-59}{33}{273}{100}

14.7 \xintFtoCs

\xintFtoCs{f} returns the comma separated list of the coefficients of the simple continued frac-
tion of f. Notice that starting with 1.09m a space follows each comma (mainly for usage in text
mode, as in math mode spaces are produced in the typeset output by TgX itself).

\[\xintSignedFrac{-5262046/89233} \to [\xintFtoCs{-5262046/89233}]1\]

5262046
-———— — [-59, 33, 27, 100]
89233

14.8 \xintFtoCx

\xintFtoCx{sep}{f} returns the list of the coefficients of the simple continued fraction of f
separated with the help of sep, which may be anything (and is kept unexpanded). For example, with
Plain TgX and amstex,
$$\xintFtoCx {+\cfracl\\ }{-5262046/89233}\endcfracs
will display the continued fraction using \cfrac. Each coefficient is inside a brace pair { },
allowing a macro to end the separator and fetch it as argument, for example, again with Plain TX
and amstex:
\def\highlight #1{\ifnum #1>200 \textcolor{red}{#1}\else #1\fi}
$$\xintFtoCx {+\cfracl\\ \highlight}{104348/33215}\endcfrac$$
Due to the different and extremely cumbersome syntax of \cfrac under BIX it proves a bit tortuous
to obtain there the same effect. Actually, it is partly for this purpose that 1.09m added \xint-
GGCFrac. We thus use \xintFtoCx with a suitable separator, and then the whole thing as argument
to \xintGGCFrac:
\def\highlight #1{\ifnum #1>200 \fcolorbox{blue}{white}{\boldmath\color{red}$#1$3}%
\else #1\fi}
\[\xintGGCFrac {\xintFtoCx {+1/\highlight}{208341/66317}}\]

—_

_

14.9 \xintFtoGC

\xintFtoGC{f} does the same as \xintFtoCx{+1/}{f}. Its output may thus be used in the package
macros expecting such an “inline format'.

566827/208524=\xintFtoGC {566827/208524}
566827/208524=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/1+1/1+1/8+1/1+1/1+1/11

148

14 Macros of the xintcfrac package

14.10 \xintFGtoC

Frac Frac
f f \xintFGtoC{f}{g} computes the common initial coefficients to two given fractions f and g. Notice

that any real number f<x<g or f>x>g will then necessarily share with f and g these common initial
coefficients for its regular continued fraction. The coefficients are output as a sequence of
braced numbers. This list can then be manipulated via macros from xinttools, or other macros of
xintcfrac.
\fdef\test{\xintFGtoC{-5262046,/89233}{-5314647/90125}}\texttt{\meaning\test}
macro:->{-59}{33}{27}
\fdef\test{\xintFGtoC{3.141592653}{3.141592654}}\texttt{\meaning\test}
macro:->{3}{7}{15}{1}
\fdef\test{\xintFGtoC{3.1415926535897932384}{3.1415926535897932385} }\meaning\test
macro:->{3}{7} {153 {1} {292 {1} {13 {13 {23 {1} {3} {1 {14} {2} {13 {13 {2} {2} {2}
\xintRound {30}{\xintCstoF{\xintListWithSep{,}{\test}}}
3.141592653589793238386377506390
\xintRound {30}{\xintCtoF{\test}}
3.141592653589793238386377506390
\fdef\test{\xintFGtoC{1.414213562373093}{1.4142135623731}}\meaning\test

macro:->{1}{2}{2}{2} {2} {2} {2 {2 {2 {2} {2} {2} {2} {2} {2} {2} {2} {2} {2}

14.11 \xintFtoCC

* \xintFtoCC{f} returns the "centered' continued fraction of f, in “inline format'.
566827/208524=\xintFtoCC {566827/208524}
566827/208524=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2+1/9+-1/2+1/11
\[\xintFrac{566827/208524} = \xintGCFrac{\xintFtoCC{566827/208524}}\]

Frac

566827 1
208524

14.12 \xintCstoF

f* \xintCstoF{a,b,c,d,...,z} computes the fraction corresponding to the coefficients, which may be
fractions or even macros expanding to such fractions. The final fraction may then be highly re-
ducible. Starting with release 1.09m spaces before commas are allowed and trimmed automatically
(spaces after commas were already silently handled in earlier releases).

\[\xintGCFrac {-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}=
\xintSignedFrac{\xintCstoF {-1,3,-5,7,-9,11,-13}}=\xintSignedFrac{\xintGCtoF
{-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}}\]

149

14 Macros of the xintcfrac package

. 1 75887 75887
-1+ = = -
118187 118187

-9+
1
11+ —

-13
\[\xintGCFrac{{1/2}+1/{1/3}+1/{1/4}+1/{1/5}}=\xintFrac{\xintCstoF {1/2,1/3,1/4,1/5}}\]
1 1 159

B
2 66

W=
—_

ST
Gl |

A generalized continued fraction may produce a reducible fraction (\xintCstoF tries its best not
to accumulate in a silly way superfluous factors but will not do simplifications which would be
obvious to a human, like simplification by 3 in the result above).

14.13 \xintCtoF

fx \xintCtoF{{a}{b}{c}...{z}} computes the fraction corresponding to the coefficients, which may be
fractions or even macros.
\xintCtoF {\xintApply {\xintiiPow 3}{\xintSeq {1}{5}}}
14946960/4805083
\[\xintFrac{14946960/4805083}=\xintCFrac {14946960/4805083}\]

14946960 !
4805083

27 +

1

81+ —
243

In the example above the power of 3 was already pre-computed via the expansion done by \xintAppl)
y, but if we try with \xintApply { \xintiiPow 3} where the space will stop this expansion, we can
check that \xintCtoF will itself provoke the needed coefficient expansion.

14.14 \xintGCtoF

fx \xintGCtoF{a+b/c+d/e+f/g+...... +v/w+x/y} computes the fraction defined by the inline general-
ized continued fraction. Coefficients may be fractions but must then be put within braces. They
can be macros. The plus signs are mandatory.
\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}} =
\xintFrac{\xintGCtoF {l1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}} =
\xintFrac{\xintIrr{\xintGCtoF
{1+\xintPow{1.5}{3}/{1/73}+{-3/5}/\xintiiFac {6}}}}\]

150

14 Macros of the xintcfrac package

-3
3375-1077 88629000 29543
~ 3579000 1193

\[\xintGCFrac{{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}} =
\xintFrac{\xintGCtoF {{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}}} \]
1 % 4270

i g
2 4140

Uil
N|—=

U=
+
wlun| olw

The macro tries its best not to accumulate superfluous factor in the denominators, but doesn't
reduce the fraction to irreducible form before returning it and does not do simplifications which
would be obvious to a human.

14.15 \xintCstoCv

f* \xintCstoCv{a,b,c,d,...,z} returns the sequence of the corresponding convergents, each one
within braces.

It is allowed to use fractions as coefficients (the computed convergents have then no reason to
be the real convergents of the final fraction). When the coefficients are integers, the conver-
gents are irreducible fractions, but otherwise it is not necessarily the case.

\xintListWithSep:{\xintCstoCv{1,2,3,4,5,6}}
1/1:3/2:10/7:43/30:225/157:1393/972

\xintListWithSep:{\xintCstoCv{1,1/2,1/3,1/4,1/5,1/6}}
1/1:3/1:9/7:45/19:225/159:1575/729

\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintCstoCv {\xintPow

{-.3}{-53},7.3/4.57,\xintCstoF{3/4,9,-1/3}}3}\]
-100000 -72888949 -2700356878

— —
243 177390 6567804

14.16 \xintCtoCv

f* \xintCtoCv{{a}{b}{c}...{z}} returns the sequence of the corresponding convergents, each one
within braces.
\fdef\test{\xintCtoCv {11111111111}}\texttt{\meaning\test}
macro:->{1/1}{2/1}{3/23}{5/3}3{8/5}{13/8}{21/13}{34/21}{55/34}{89/55}{144/89}

14.17 \xintGCtoCv

fx \xintGCtoCv{a+b/c+d/e+f/g+...... +v/w+x/y} returns the list of the corresponding convergents.
The coefficients may be fractions, but must then be inside braces. Or they may be macros, too.
The convergents will in the general case be reducible. To put them into irreducible form, one
needs one more step, for example it can be done with \xintApply\xintIrr.
\[\xintListWithSep{, }{\xintApply\xintFrac
{\xintGCtoCv{3+{-2}/{7/23}+{3/4}/12+{-563}/3}}}\]
\[\xintListWithSep{, }{\xintApply\xintFrac{\xintApply\xintIrr
{\xintGCtoCv{3+{-2}/{7/23}+{3/4}/12+{-563}/3}}}}\]

151

14 Macros of the xintcfrac package

17 834 1306
73427 542
17 139 653
"7 577 271

14.18 \xintFtoCv
Frac

f * \xintFtoCv{f} returns the list of the (braced) convergents of f, with no separator. To be treated
with \xintAssignArray or \xintListWithSep.
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCv{5211/3748}}}\]
4 7 25 32 57 317 374 691 5211

1o - — 5 — 5 — 5 — 5 — 5 — 5
2 3 5 18 23 41 228 269 497 3748

14.19 \xintFtoCCv

* \xintFtoCCv{f} returns the list of the (braced) centered convergents of f, with no separator. To
be treated with \xintAssignArray or \xintListWithSep.
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCCv{5211/3748}}}\]
4 7 32 57 374 691 5211

l1>->D -5 — > - - _ —
23 41 269 497 3748

Frac

14.20 \xintCntoF

X f* \xintCntoF{N}{\macro} computes the fraction f having coefficients c(j)=\macro{j} for j=0,1,...,2
N. The N parameter is given to a \numexpr. The values of the coefficients, as returned by \macro do
not have to be positive, nor integers, and it is thus not necessarily the case that the original
c(j) are the true coefficients of the final f£.

\def\macro #1{\the\numexpr 1+#1l=#1\relax} \xintCntoF {5}{\macro}
72625/49902[0]

This example shows that the fraction is output with a trailing number in square brackets (rep-
resenting a power of ten), this is for consistency with what do most macros of xintfrac, and does
not have to be always this annoying [0] as the coefficients may for example be numbers in scien-
tific notation. To avoid these trailing square brackets, for example if the coefficients are known
to be integers, there is always the possibility to filter the output via \xintPRaw, or \xintIrr
(the latter is overkill in the case of integer coefficients, as the fraction is guaranteed to be
irreducible then).

14.21 \xintGCntoF

x ff* \xintGCntoF{N}{\macroA}{\macroB} returns the fraction f corresponding to the inline generalized
continued fraction a®+b®/al+bl/a2+....+b(N-1)/aN, with a(j)=\macroA{j} and b(j)=\macroB{j}. The
N parameter is given to a \numexpr.
\def\coeffA #1{\the\numexpr #1+4-3*((#1+2)/3)\relax 1}%
\def\coeffB #1{\the\numexpr \ifodd #1 -\fi 1\relax }% (-1)*n
\[\xintGCFrac{\xintGCntoGC {6}{\coeffA}{\coeffB}} =
\xintFrac{\xintGCntoF {6}{\coeffA}{\coeffB}}\]

152

14 Macros of the xintcfrac package

! 39
25

1+

1
3-—
1

There is also \xintGCntoGC to get the "inline format' continued fraction.

14.22 \xintCntoCs
X * \xintCntoCs{N}{\macro} produces the comma separated list of the corresponding coefficients, from
n=0 to n=N. The N is given to a \numexpr.
\xintCntoCs {5}{\macro}
1, 2, 5, 10, 17, 26
\[\xintFrac{\xintCntoF{5}{\macro}}=\xintCFrac{\xintCntoF {5}{\macro}}\]
72625
=1+
49902 1

10 +

17+ —
26

14.23 \xintCntoGC
fx \xintCntoGC{N}{\macro} evaluates the c(j)=\macro{j} from j=0 to j=N and returns a continued frac-

tion written in inline format: {c(®)}+1/{c(1)}+1/...+1/{c(N)}. The parameter N is given to a \num)
expr. The coefficients, after expansion, are, as shown, being enclosed in an added pair of braces,

they may thus be fractions.
\def\macro #1{\the\numexpr\ifodd#1 -1-#1\elsel+#1\fi\relax/\the\numexpr 1+#1x#1\relax}

\fdef\x{\xintCntoGC {5}{\macro}}\meaning\x
\[\xintGCFrac{\xintCntoGC {5}{\macro}}\]
macro:->{1/\the \numexpr 1+0*0\relax }+1/{-2/\the \numexpr 1+1*1\relax }+1/{3/\the \numexpr

1+2*2\relax }+1/{-4/\the \numexpr 1+3*3\relax }+1/{5/\the \numexpr 1+4*4\relax }+1/{-6/\the

\numexpr 1+5*5\relax }

num
X

153

14 Macros of the xintcfrac package

14.24 \xintGCntoGC

x ff* \xintGCntoGC{N}{\macroA}{\macroB} evaluates the coefficients and then returns the corresponding
{a0}+{b0}/{al}+{b1}/{a2}+...+{b(N-1)}/{aN} inline generalized fraction. N is givent to a \nume)
xpr. The coefficients are enclosed into pairs of braces, and may thus be fractions, the fraction
slash will not be confused in further processing by the continued fraction slashes.

\def\an #1{\the\numexpr #1l+#1=#1+1\relax}%

\def\bn #1{\the\numexpr \ifodd#1l -\fi 1x(#1+1)\relax}%

$\xintGCntoGC {5}{\an}{\bn}=\xintGCFrac {\xintGCntoGC {5}{\an}{\bn}} =

\displaystyle\xintFrac {\xintGCntoF {5}{\an}{\bn}}$\par

! _ 5797655
3712466

1+1/2+-2/9+3/28+-4/65+5/126=1+
2 -
9+
28 -

65 + —
126

14.25 \xintCstoGC

f* \xintCstoGC{a,b,..,z} transforms a comma separated list (or something expanding to such a list)
into an ‘inline format' continued fraction {a}+1/{b}+1/...+1/{z}. The coefficients are just
copied and put within braces, without expansion. The output can then be used in \xintGCFrac for

example.
\[\xintGCFrac {\xintCstoGC {-1,1/2,-1/3,1/4,-1/5}}=\xintSignedFrac{\xintCstoF {-1,1/2,-1/3,1/4,-1/5}}\]

1 145
-1+
83

1
I
5

=

14.26 \xintiCstoF, \xintiGCtoF, \xintiCstoCv, \xintiGCtoCv

fx Essentially the same as the corresponding macros without the “i', but for integer-only input.
Infinitesimally faster, mainly for internal use by the package.

14.27 \xintGCtoGC

fx \xintGCtoGC{a+b/c+d/e+f/g+...... +v/w+x/y} expands (with the usual meaning) each one of the co-
efficients and returns an inline continued fraction of the same type, each expanded coefficient
being enclosed within braces.
\fdef\x {\xintGCtoGC {1+\xintPow{1l.5}{3}/{1/7}+{-3/5}/%
\xintiiFac {6}+\xintCstoF {2,-7,-5}/16}} \meaning\x
macro:->{1}+{3375/1[-31}/{1/7}+{-3/5}/{720}+{67/36}/{16}
To be honest I have forgotten for which purpose I wrote this macro in the first place.

154

14 Macros of the xintcfrac package

14.28 Euler's number e

Let us explore the convergents of Euler's number e. The volume of computation is kept minimal by

the following steps:

a comma separated list of the first 36 coefficients is produced by \xintCntoCs,

this is then given to \xintiCstoCv which produces the list of the convergents (there is also
\xintCstoCv, but our coefficients being integers we used the infinitesimally faster \xint-
iCstoCv),

then the whole list was converted into a sequence of one-line paragraphs, each convergent
becomes the argument to a macro printing it together with its decimal expansion with 30 digits
after the decimal point.

A count register \cnta was used to give a line count serving as a visual aid: we could also have
done that in an expandable way, but well, let's relax from time to time. .

\def\cn #1{\the\numexpr\ifcase \numexpr #1+3-3*((#1+2)/3)\relax

1\orl\or2*(#1/3)\fi\relax }

% produces the pattern 1,1,2,1,1,4,1,1,6,1,1,8,... which are the
% coefficients of the simple continued fraction of e-1.
\cnta 0

\def\mymacro #1{\advance\cnta by 1

\noindent

\hbox to 3em {\hfil\small\dtt{\the\cnta.} }%
$\xintTrunc {30}{\xintAdd {1[0]}{#1}}\dots=
\xintFrac{\xintAdd {1[0]}{#13}}$}%

\xintListWithSep{\vtop to 6pt{}\vbox to 12pt{}\par}

{\xintApply\mymacro{\xintiCstoCv{\xintCntoCs {35}{\cn}}}}

1. 2.000000000000000000000000000000 - =2

2. 3.000000000000000000000000000000 - - - = 3
3. 2.666666666666666666666666666666 - - - = 5

4. 2.750000000000000000000000000000 - - - = 4L

5. 2.714285714285714285714285714285 - - = 12

6. 2.718750000000000000000000000000 - - - = §7
7.2.717948717948717948717948717948 - - - = 12

8. 2.718309859154929577464788732394 - - - = 13

9. 2.718279569892473118279569892473 - - - = 12&
10. 2.718283582089552238805970149253 - - - = 157
11. 2.718281718281718281718281718281 - - - = 2724
12. 2.718281835205992509363295880149 - - - = 23223
13. 2.718281822943949711891042430591 - - - = £32%6
14. 2.718281828735695726684725523798 - - - = $217L
15. 2.718281828445401318035025074172 - - - = 317638
16. 2.718281828470583721777828930962 - - - = 399827

155

14 Macros of the xintcfrac package

17. 2.718281828458563411277850606202 - - - = 1084483

18. 2.718281828459065114074529546648 - - - = 13280623

19. 2.718281828459028013207065591026 - - - = 122100

20. 2.718281828459045851404621084949 - - - = 25225723

21. 2.718281828459045213521983758221 - - - = $10103312

22. 2.718281828459045254624795027092 - - - = 18331041

23. 2.718281828459045234757560631479 - - - = 378455323

24. 2.718281828459045235379013372772 - - - = 14013652089

25. 2.718281828459045235343535532787 - - - = 11802109042

26. 2.718281828459045235360753230188 - - - = 28875761031

27. 2.718281828459045235360274593941 - - - = 332623823200

28. 2.718281828459045235360299120911 - - - = 533300582331

29. 2.718281828459045235360287179900 - - - = 1398127402431
30. 2.718281828459045235360287478611 - - - = 2232609624551
31. 2.718281828459045235360287464726 - - - = 23624177020682
32. 2.718281828459045235360287471503 - - - = 6150226651233
33. 2.718281828459045235360287471349 - - - = 1038925163353808
34. 2.718281828459045235360287471355 - - - = 0850733550050 1
35. 2.718281828459045235360287471352 - - - = £.240085533,854
36. 2.718281828459045235360287471352 - - - = 350012820700174.7

One can with no problem compute much bigger convergents. Let's get the 200th convergent. It
turns out to have the same first 268 digits after the decimal point as e- 1. Higher convergents get
more and more digits in proportion to their index: the 500th convergent already gets 799 digits
correct! To allow speedy compilation of the source of this document when the need arises, I limit
here to the 200th convergent.

\fdef\z {\xintCntoF {199}{\cn}}%

\begingroup\parindent Opt \leftskip 2.5cm

\indent\llap {Numerator = }\printnumber{\xintNumerator\z}\par

\indent\llap {Denominator = }\printnumber{\xintDenominator\z}\par

\indent\llap {Expansion = }\printnumber{\xintTrunc{268}\z}\dots\par\endgroup

Numerator = 568964038871896267597523892315807875293889017667917446057232024547192296961118)
23017524386017499531081773136701241708609749634329382906
Denominator = 331123817669737619306256360816356753365468823729314438156205615463246659728581)
86546133769206314891601955061457059255337661142645217223
Expansion = 1.7182818284590452353602874713526624977572470936999595749669676277240766303535)
4759457138217852516642742746639193200305992181741359662904357290033429526059562
307381323286279434907632338298807531952510190115738341879307021540891499348841)
675092447614606680822648001684774118. . .

One can also use a centered continued fraction: we get more digits but there are also more com-

putations as the numerators may be either 1 or -1.

156

15 Macros of the xinttools package

15 Macros of the xinttools package

.1 \xintRevWithBraces.................... 157 .14 \xintiloop, \xintiloopindex,
\xintZapFirstSpaces, \xintouteriloopindex,
\xintZapLastSpaces, \xintZapSpaces, \xintbreakiloop, \xintbreakiloopanddo
\xintZapSpacesB 157 \xintiloopskiptonext

3 \xintCSVtoList, 158 \xintiloopskipandredo 165

4 \xintNthElt........... 159 .15 \xintApplyInline...................... 168

.5 \xintKeep i 160 .16 \xintFor, \xintFor* 169

.6 \xintKeepUnbraced..................... 160 .17 \xintifForFirst, \xintifForLast 172

7 \xintTrim............cciiiiiiiinain.. 161 .18 \xintBreakFor, \xintBreakForAndDo.... 172

8 \xintTrimUnbraced..................... 161 .19 \xintintegers, \xintdimensions

.9 \xintListWithSep 161 \xintrationals 172

L10 \xintApply....... 162 .20 \xintForpair, \xintForthree

.11 \xintApplyUnbraced.................... 162 \xintForfour 174

L2 \xintSeq ... 163 21 \xintAssign..............ciiiiiiin. 174

.13 \xintloop, \xintbreakloop, .22 \xintAssignArray 175
\xintbreakloopanddo, .23 \xintDigitsOf 175
\xintloopskiptonext................... 163 .24 \xintRelaxXArraycoouee.n. 175

These utilities used to be provided within the xint package; since 1.09g (2013/11/22) they have
been moved to an independently usable package xinttools, which has none of the xint facilities
regarding big numbers. Whenever relevant release 1.09h has made the macros \long so they accept
\par tokens on input.

The completely expandable utilities (up to \xintiloop) are documented first, then the non ex-
pandable utilities.

A brief overview is in section 4 and section 5 has more examples of use of macros of this package.

15.1 \xintRevWithBraces

\xintRevWithBraces{(list)} first does the f-expansion of its argument then it reverses the order
of the tokens, or braced material, it encounters, maintaining existing braces and adding a brace
pair around each naked token encountered. Space tokens (in-between top level braces or naked to-
kens) are gobbled. This macro is mainly thought out for use on a (list) of such braced material;
with such a list as argument the f-expansion will only hit against the first opening brace, hence
do nothing, and the braced stuff may thus be macros one does not want to expand.

\edef\x{\xintReviiithBraces{12345}}

\meaning\x:macro:->{5}{4}{3}{2}{1}

\edef\y{\xintRevWithBraces\x}

\meaning\y:macro:->{1}{2}{3}{4}{5}
The examples above could be defined with \edef's because the braced material did not contain
macros. Alternatively:

\expandafter\def\expandafter\w\expandafter

{\romannumeral®\xintrevwithbraces{{\A}{\B}{\C}{\D}{\E}}}

\meaning\w:macro:->{\E }{\D }{\C }{\B }{\A }
The macro \xintReverselithBracesNoExpand does the same job without the initial expansion of its
argument.

15.2 \xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB

\xintZapFirstSpaces{(stuff)} does not do any expansion of its argument, nor brace removal of any
sort, nor does it alter (stuff) in anyway apart from stripping away all leading spaces.

157

15 Macros of the xinttools package

This macro will be mostly of interest to programmers who will know what I will now be talking
about. The essential points, naturally, are the complete expandability and the fact that no brace
removal nor any other alteration is done to the input.

TX's input scanner already converts consecutive blanks into single space tokens, but \xintZa)
pFirstSpaces handles successfully also inputs with consecutive multiple space tokens. However,
it is assumed that (stuff) does not contain (except inside braced sub-material) space tokens of
character code distinct from 32.

It expands in two steps, and if the goal is to apply it to the expansion text of \x to define \y,
then one should do: \expandafter\def\expandafter\y\expandafter {\romannumeral®\expandafter\xi)
ntzapfirstspaces\expandafter{\x}}.

Other use case: inside a macro as \edef\x{\xintZapFirstSpaces {#1}} assuming naturally that #1
is compatible with such an \edef once the leading spaces have been stripped.

\xintZapFirstSpaces { \a { \X } { \b \Y } }>\a {\X} {\b\Y } +++

\xintZapLastSpaces{{(stuff)} does not do any expansion of its argument, nor brace removal of any
sort, nor does it alter (stuff) in anyway apart from stripping away all ending spaces. The same
remarks as for \xintZapFirstSpaces apply.

\xintZapLastSpaces { \a { \X } { \b \Y } }>\a {\X 3} {\b\Y }+++

\xintZapSpaces{(stuff)} does not do any expansion of its argument, nor brace removal of any sort,
nor does it alter (stuff) in anyway apart from stripping away all leading and all ending spaces.
The same remarks as for \xintZapFirstSpaces apply.

\xintZapSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB{(stuff)} does not do any expansion of its argument, nor does it alter (stuff)
in anyway apart from stripping away all leading and all ending spaces and possibly removing one
level of braces if (stuff) had the shape <spaces>{braced}<spaces>. The same remarks as for \xint-
ZapFirstSpaces apply.

\xintZapSpacesB { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB { { \a { \X } { \b \Y } } }>\a{\X} {\b\Y } +++

The spaces here at the start and end of the output come from the braced material, and are not
removed (one would need a second application for that; recall though that the xint zapping macros
do not expand their argument).

15.3 \xintCSVtoList

\xintCSVtoList{a,b,c...,z} returns {a}{b}{c}...{z}. A list is by convention in this manual simply
a succession of tokens, where each braced thing will count as one item (“items'' are defined
according to the rules of TgX for fetching undelimited parameters of a macro, which are exactly
the same rules as for BX and macro arguments [they are the same things]). The word "list' in
“comma separated list of items' has its usual linguistic meaning, and then an " “item'' is what is
delimited by commas.

So \xintCSVtoList takes on input a "comma separated list of items' and converts it into a "TX
list of braced items'. The argument to \xintCSVtoList may be a macro: it will first be f-expanded.
Hence the item before the first comma, if it is itself a macro, will be expanded which may or may not
be a good thing. A space inserted at the start of the first item serves to stop that expansion (and
disappears). The macro \xintCSVtoListNoExpand does the same job without the initial expansion of
the list argument.

Apart from that no expansion of the items is done and the list items may thus be completely
arbitrary (and even contain perilous stuff such as unmatched \if and \fi tokens).

Contiguous spaces and tab characters, are collapsed by TX into single spaces. All such spaces

around commas’® , as well as the spaces at the start and the spaces at the end of the

76 and multiple space tokens are not a problem; but those at the top level (not hidden inside braces) must be of character code
32.

158

15 Macros of the xinttools package

list.”” The items may contain explicit \par's or empty lines (converted by the TX input parsing
into \par tokens).

\xintCSVtolList {1 ,{ 2,3 ,4,5%}, a, {b,T3 U, {c,d}, {{x,vyv}1}}

->{1}{2, 3, 4, 5Ha}{{b, T} U{ c,d}{ {x, y}}

One sees on this example how braces protect commas from sub-lists to be perceived as delimiters
of the top list. Braces around an entire item are removed, even when surrounded by spaces before
and/or after. Braces for sub-parts of an item are not removed.

We observe also that there is a slight difference regarding the brace stripping of an item: if
the braces were not surrounded by spaces, also the initial and final (but no other) spaces of the
enclosed material are removed. This is the only situation where spaces protected by braces are
nevertheless removed.

From the rules above: for an empty argument (only spaces, no braces, no comma) the output is {}
(a list with one empty item), for * "<opt. spaces>{}<opt. spaces>'' the output is {} (again a list
with one empty item, the braces were removed), for " { }'' the output is {} (again a list with one
empty item, the braces were removed and then the inner space was removed), for *~° { }'' the output
is {} (again a list with one empty item, the initial space served only to stop the expansion, so
this was 1like " " { }'' as input, the braces were removed and the inner space was stripped), for ~° {
} '' the output is { } (this time the ending space of the first item meant that after brace removal
the inner spaces were kept; recall though that TgX collapses on input consecutive blanks into one
space token), for " °,'' the output consists of two consecutive empty items {}{}. Recall that on
output everything is braced, a {} is an ~“empty'' item. Most of the above is mainly irrelevant for
every day use, apart perhaps from the fact to be noted that an empty input does not give an empty
output but a one-empty-item list (it is as if an ending comma was always added at the end of the
input).

\def\y{ \a,\b,\c,\d,\e} \xintCSVtoList\y->{\a }{\b }{\c }{\d }{\e }

\def\t {{\if},\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

\xintCSVtoList\t->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

The results above were automatically displayed using TgX's primitive \meaning, which adds a
space after each control sequence name. These spaces are not in the actual braced items of the
produced lists. The first items \a and \if were either preceded by a space or braced to prevent
expansion. The macro \xintCSVtoListNoExpand would have done the same job without the initial ex-
pansion of the list argument, hence no need for such protection but if \y is defined as \def\y{\a,?
\b,\c,\d,\e} we then must do:

\expandafter\xintCSVtoListNoExpand\expandafter {\y}

Else, we may have direct use:

\xintCSVtoListNoExpand {\if,\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

-=>{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

Again these spaces are an artefact from the use in the source of the document of \meaning (or rather
here, \detokenize) to display the result of using \xintCSVtoListNoExpand (which is done for real
in this document source).

For the similar conversion from comma separated list to braced items 1list, but without removal of

1 * spaces around the commas, there is \xintCSVtoListNonStripped and \xintCSVtoListNonStrippedNoExpand.

15.4 \xintNthElt

x £ \xintNthElt{x}{(list)} gets (expandably) the xth item of the (list). A braced item will lose one
level of brace pairs. The token list is first f-expanded.
Items are counted starting at one.
\xintNthElt {3}{{agh}\u{zzz}\v{Z}} is zzz
\xintNthElt {3}{{agh}\u{{zzz}}\v{Z}} is {zzz}

77 let us recall that this is all done completely expandably... There is absolutely no alteration of any sort of the item apart from
the stripping of initial and final space tokens (of character code 32) and brace removal if and only if the item apart from intial and
final spaces (or more generally multiple char 32 space tokens) is braced.

159

num
X nx

num

X fx

15 Macros of the xinttools package

\xintNthElt {2}{{agh}\u{{zzz}}\v{Z}} is \u

\xintNthElt {37}{\xintiiFac {100}}=9 is the thirty-seventh digit of 100!.

\xintNthElt {10} {\xintFtoCv {566827/208524}}=1457/536

is the tenth convergent of 566827/208524 (uses xintcfrac package).

\xintNthElt {7}{\xintCSVtolList {1,2,3,4,5,6,7,8,9}}=7

\xintNthElt {0}{\xintCSVtolist {1,2,3,4,5,6,7,8,9}}=9

\xintNthElt {-3}{\xintCSVtolList {1,2,3,4,5,6,7,8,9}}=7

If x=0, the macro returns the length of the expanded list: this is not equivalent to \xintLength
which does no pre-expansion. And it is different from \xintLen which is to be used only on integers
or fractions.

If x<0, the macro returns the |x|th element from the end of the list. Thus for example x=-1 will
fetch the last item of the list.

\xintNthElt {-5}{{{agh}}\u{zzz}\v{Z}} is {agh}

The macro \xintNthEltNoExpand does the same job but without first expanding the list argument:
\xintNthEltNoExpand {-4}{\u\v\w T\x\y\z} is T.

If x is strictly larger (in absolute value) than the length of the 1list then \xintNthElt produces
empty contents.

15.5 \xintKeep

\xintKeep{x}{(list)} expands the token list argument L and produces a new list, depending on the
value of x:

e if x>0, the new list contains the first x items from L (counting starts at one.) Each such item
will be output within a brace pair. Use \xintKeepUnbraced is this is not desired. This means
that if the list item was braced to start with, there is no modification, but if it was a token
without braces, then it acquires them.

e if x>=length(L), the new list is the old one with all its items now braced.

e if x=0 the empty list is returned.

e if x<0 the last |x| elements compose the output in the same order as in the initial list; as the
macro proceeds by removing head items the kept items end up in output as they were in input:
no added braces.

e if x<=-length(L) the output is identical with the input.

\xintKeepNoExpand does the same without first f-expanding its list argument.

\fdef\test {\xintKeep {17}{\xintKeep {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{{1}{2}{33}{43}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{{13}{2}{3}{4}{5}{63}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-73}{123456789}}\meaning\test\par

macro:->{32}{33}{34}{35}{36}{37}{383{393{403{413{42}{433{44}{45}{46}{47}{48}
macro:->{1}{2}{3}{4}{5}{6}{7}

macro:->{3}{4}{5}{63{7}{8}{9}

macro:->{1}{2}{33{4}{53{6}{7}

macro:->3456789

15.6 \xintKeepUnbraced

Same as \xintKeep but no brace pairs are added around the kept items from the head of the list in
the case x>0: each such itemwill lose one level of braces. Thus, to remove braces from all items of
the list, one can use \xintKeepUnbraced with its first argument larger than the length of the list;
the same is obtained from \xintListWithSep{}{(list)}. But the new list will then have generally
many more items than the original ones, corresponding to the unbraced original items.

For x<0® the macro is no different from \xintKeep. Hence the name is a bit misleading because
brace removal will happen only if x>0.

160

15 Macros of the xinttools package

\xintKeepUnbracedNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintKeepUnbraced {10}{\xintSeq {1}{100}}}\meaning\test\par
\noindent\fdef\test {\xintKeepUnbraced {7}{{1}{2}{3}{4}{5}{63}{7}{8}{9}}}\meaning\test\par
\noindent\fdef\test {\xintKeepUnbraced {-73}{{1}{2}{3}{4}{5}{63}{7}{8}{9}}}\meaning\test\par
\noindent\fdef\test {\xintKeepUnbraced {7}{123456789}}\meaning\test\par
\noindent\fdef\test {\xintKeepUnbraced {-73}{123456789}}\meaning\test\par

macro:->12345678910

macro:->1234567

macro:->{3}{4}{5}{63{7}{8}{9}

macro:->1234567

macro:->3456789

15.7 \xintTrim

"X * \xintTrim{x}{(list)} expands the list argument and gobbles its first x elements.

e if x>0, the first x items from L are gobbled. The remaining items are not modified.
e if x>=length(L), the returned list is empty.
e if x=0 the original list is returned (with no added braces.)
e if x<0 the last |x| items of the list are removed. The head items end up braced in the output.
Use \xintTrimUnbraced if this is not desired.
e if x<=-length(L) the output is empty.
\xintTrimNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintTrim {17}{\xintTrim {-69}{\xintSeq {1}{100}}}}\meaning\test\par
\noindent\fdef\test {\xintTrim {7}{{1}{23}{3}{43}{5}{6}{73{8}{9}}}\meaning\test\par
\noindent\fdef\test {\xintTrim {-7}{{13}{2}{3}{4}{5}{63}{7}{8}{9}}}\meaning\test\par
\noindent\fdef\test {\xintTrim {7}{123456789}}\meaning\test\par
\noindent\fdef\test {\xintTrim {-7}{123456789}}\meaning\test\par
macro:->{18}{19}{203{213{22}3{23}{24} {253 {26} {27} {28} {29} {30} {31}
macro:->{8}{9}
macro:->{1}{2}
macro:->89
macro:->{1}{2}

15.8 \xintTrimUnbraced

Same as \xintTrim but in case of a negative x (cutting items from the tail), the kept items from
the head are not enclosed in brace pairs. They will lose one level of braces. The name is a bit
misleading because when x>0 there is no brace-stripping done on the kept items, because the macro
works simply by gobbling the head ones.
\xintTrimUnbracedNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintTrimUnbraced {-90}{\xintSeq {1}{100}}}\meaning\test\par
\noindent\fdef\test {\xintTrimUnbraced {7}{{1}{2}{3}{43}{5}{6}{7}{8}{9}}}\meaning\test\par
\noindent\fdef\test {\xintTrimUnbraced {-73}{{1}{2}{3}{4}{5}{63}{73{8}{9}}}\meaning\test\par
\noindent\fdef\test {\xintTrimUnbraced {7}{123456789}}\meaning\test\par
\noindent\fdef\test {\xintTrimUnbraced {-7}{123456789}}\meaning\test\par
macro:->12345678910
macro:->{8}{9}
macro:->12
macro:->89
macro:->12

15.9 \xintListWithSep

\xintListWithSep{sep}{(list)} inserts the separator sep in-between all items of the given list.

161

nfx

nn %

ffx

fnx

ffx

fnx

15 Macros of the xinttools package

The items will be unbraced. The separator may be a macro but will not be pre-expanded. The list
argument is f-expanded.

\edef\foo {\xintListWithSep{,}{{1}{2}{3}}}\meaning\foo\newline

\edef\foo {\xintListWithSep{:}{\xintiiFac{20}}}\meaning\foo\par
macro:->1,2,3
macro:->2:4:3:2:9:0:2:0:0:8:1:7:6:6:4:0:0:0:0

An empty input gives an empty output, a singleton gives a singleton, and the separator is used
starting with at least two elements. Using an empty separator has the net effect of unbracing the
braced items constituting the (list) (then the new list will generally have many more " ‘items''
than the original one).

The macro \xintListWithSepNoExpand does the same job without the initial expansion.

15.10 \xintApply

\xintApply{\macro}{(list)} expandably applies the one parameter macro \macro to each item in the
(list) given as second argument and returns a new list with these outputs: each item is given one
after the other as parameter to \macro which is expanded at that time (as usual, i.e. fully for what
comes first), the results are braced and output together as a succession of braced items (if \mac)
ro is defined to start with a space, the space will be gobbled and the \macro will not be expanded;
it is allowed to have its own arguments, the list items serve as last arguments to \macro). Hence
\xintApply{\macro}{{1}{23}{3}} returns {\macro{1}}{\macro{2}}{\macro{3}} where all instances of
\macro have been already f-expanded.

Being expandable, \xintApply is useful for example inside alignments where implicit groups make
standard loops constructs usually fail. In such situation it is often not wished that the new list
elements be braced, see \xintApplyUnbraced. The \macro does not have to be expandable: \xintApply
will try to expand it, the expansion may remain partial.

The (list) may itself be some macro expanding (in the previously described way) to the list of
tokens to which the macro \macro will be applied. For example, if the (list) expands to some posi-
tive number, then each digit will be replaced by the result of applying \macro on it.

\def\macro #1{\the\numexpr 9-#1\relax}

\xintApply\macro{\xintiiFac {203}3}=7567097991823359999

The macro \xintApplyNoExpand does the same job without the first initial expansion which gave
the (list) of braced tokens to which \macro is applied.

15.11 \xintApplyUnbraced

\xintApplyUnbraced{\macro}{{list)} is like \xintApply. The difference is that after having ex-
panded its list argument, and applied \macro in turn to each item from the list, it reassembles
the outputs without enclosing them in braces. The net effect is the same as doing
\xintListWithSep {}{\xintApply {\macro}{(list)}}
This is useful for preparing a macro which will itself define some other macros or make assign-
ments, as the scope will not be limited by brace pairs.
\def\macro #1{\expandafter\def\csname myself#l\endcsname {#1}}
\xintApplyUnbraced\macro{{elta}{eltb}{eltc}}
\begin{enumerate}[nosep,label=(\arabic{*})]
\item \meaning\myselfelta
\item \meaning\myselfeltb
\item \meaning\myselfeltc
\end{enumerate}
(1) macro:->elta
(2) macro:->eltb
(3) macro:->eltc
The macro \xintApplyUnbracedNoExpand does the same job without the first initial expansion
which gave the (list) of braced tokens to which \macro is applied.

162

15 Macros of the xinttools package

15.12 \xintSeq

num. numnum

[x] x X x \xintSeq[d]{x}{y} generates expandably {x}{x+d}... up to and possibly including {y} if d>0 or down
to and including {y} if d<®. Naturally {y} is omitted if y-x is not amultiple of d. If d=0 the macro
returns {x}. If y-x and d have opposite signs, the macro returns nothing. If the optional argument
d is omitted it is taken to be the sign of y-x. Hence \xintSeq {1}{0} is not empty but {1}{0}. But
\xintSeq [1]{1}{0} is empty.

The arguments x and y are expanded inside a \numexpr so they may be count registers or a KX
\value{countername}, or arithmetic with such things.

\xintListWithSep{,\hskip2pt plus 1pt minus 1pt }{\xintSeq {12}{-25}}
12, 11, 10,9,8,7,6,5,4,3,2,1,0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15,
-16, -17, -18, -19, -20, -21, -22, -23, -24, -25

\xintiiSum{\xintSeq [3]{1}{1000}}
167167

When the macro is used without the optional argument d, it can only generate up to about 5000

= { numbers, the precise value depends upon some TgX memory parameter (input save stack).

With the optional argument d the macro proceeds differently (but less efficiently) and does not

stress the input save stack.

15.13 \xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext

L
IXg

\xintloop{stuff)\if<test>...\repeat is an expandable loop compatible with nesting. However to
break out of the loop one almost always need some un-expandable step. The cousin \xintiloop is
\xintloop with an embedded expandable mechanism allowing to exit from the loop. The iterated
macros may contain \par tokens or empty lines.

If a sub-loop is to be used all the material from the start of the main loop and up to the end of
the entire subloop should be braced; these braces will be removed and do not create a group. The
simplest to allow the nesting of one or more sub-loops is to brace everything between \xintloop
and \repeat, being careful not to leave a space between the closing brace and \repeat.

As this loop and \xintiloop will primarily be of interest to experienced TgX macro programmers,
my description will assume that the user is knowledgeable enough. Some examples in this document
will be perhaps more illustrative than my attemps at explanation of use.

One can abort the loop with \xintbreakloop; this should not be used inside the final test, and
one should expand the \fi from the corresponding test before. One has also \xintbreakloopanddo
whose first argument will be inserted in the token stream after the loop; one may need a macro
such as \xint_afterfi to move the whole thing after the \fi, as a simple \expandafter will not be
enough.

One will usually employ some count registers to manage the exit test from the loop; this breaks
expandability, see \xintiloop for an expandable integer indexed loop. Use in alignments will be
complicated by the fact that cells create groups, and also from the fact that any encountered un-
expandable material will cause the TX input scanner to insert \endtemplate on each encountered &
or \cr; thus \xintbreakloop may not work as expected, but the situation can be resolved via \xin)
t_firstofone{&} or use of \TAB with \def\TAB{&}. It is thus simpler for alignments to use rather
than \xintloop either the expandable \xintApplyUnbraced or the non-expandable but alignment com-
patible \xintApplyInline, \xintFor or \xintForx.

As an example, let us suppose we have two macros \A{{i)}{(j)} and \B{(i)}{(j)} behaving like
(small) integer valued matrix entries, and we want to define a macro \C{(i)}{(j)} giving the ma-
trix product (i and j may be count registers). We will assume that \A[I] expands to the number of
rows, \A[J] to the number of columns and want the produced \C to act in the same manner. The code is
very dispendious in use of \count registers, not optimized in any way, not made very robust (the
defined macro can not have the same name as the first two matrices for example), we just wanted to

163

15 Macros of the xinttools package

quickly illustrate use of the nesting capabilities of\xintloop.78
\newcount\rowmax \newcount\colmax \newcount\summax
\newcount\rowindex \newcount\colindex \newcount\sumindex
\newcount\tmpcount
\makeatletter
\def\MatrixMultiplication #1#2#3{%
\rowmax #1[I]\relax
\colmax #2[J]\relax
\summax #1[J]\relax
\rowindex 1
\xintloop % loop over row index i
{\colindex 1
\xintloop % loop over col index k
{\tmpcount 0
\sumindex 1
\xintloop % loop over intermediate index j
\advance\tmpcount \numexpr #l\rowindex\sumindex=#2\sumindex\colindex\relax
\1ifnum\ sumindex<\summax
\advance\sumindex 1
\repeat }%
\expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname
{\the\tmpcount}%
\1ifnum\colindex<\colmax
\advance\colindex 1
\repeat }%
\1ifnum\rowindex<\rowmax
\advance\rowindex 1
\repeat
\expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}%
\expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}%
\def #3##1{\ifx[##1\expandafter\Matrix@helper@size
\else\expandafter\Matrix@helper@entry\fi #3{##13}}%
1%
\def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }%
\def\Matrix@helper@entry #1#2#3%
{\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }%
\def\A #1{\ifx[#1\expandafter\A@size
\else\expandafter\A@entry\fi {#1}}%
\def\A@size #1#2]1{\ifx I#23\elsed4\fil}% 3rows, 4columns
\def\A@entry #1#2{\the\numexpr #1l+#2-1\relax}% not pre-computed...
\def\B #1{\ifx[#1\expandafter\B@size
\else\expandafter\B@entry\fi {#1}}%
\def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns
\def\B@entry #1#2{\the\numexpr #1l-#2\relax}% not pre-computed...
\makeatother
\MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D
\MatrixMultiplication\C\D\E \MatrixMultiplication\C\E\F
\begin{multicols}2
\[\begin{pmatrix}
\A11&\A12&\A13&\A14\\
\A21&\A22&\A23&\A24\\
\A31&\A32&\A33&\A34
\end{pmatrix}
\times
\begin{pmatrix}

78 for a more sophisticated implementation of matrix multiplication, inclusive of determinants, inverses, and display utilities, with
entries big integers or decimal numbers or even fractions see http://tex.stackexchange.com/a/143035/4686 from November 11,
2013

164

http://tex.stackexchange.com/a/143035/4686

15 Macros of the xinttools package

\B11&\B12&\B13\\
\B21&\B22&\B23\\
\B31&\B32&\B33\\
\B41&\B42&\B43
\end{pmatrix}

\begin{pmatrix}
\C11&\C12&\C13\\
\C21&\C22&\C23\\
\C31&\C32&\C33

\end{pmatrix}\]

\[\begin{pmatrix}
\C11&\C12&\C13\\
\C21&\C22&\C23\\
\C31&\C32&\C33

\end{pmatrix}+2 = \begin{pmatrix}
\D11&\D12&\D13\\
\D21&\D22&\D23\\
\D31&\D32&\D33

\end{pmatrix}\]

\[\begin{pmatrix}
\C11&\C12&\C13\\
\C21&\C22&\C23\\
\C31&\C32&\C33

\end{pmatrix}+3 = \begin{pmatrix}
\E11&\E12&\E13\\
\E21&\E22&\E23\\
\E31&\E32&\E33

\end{pmatrix}\]

\[\begin{pmatrix}
\C11&\C12&\C13\\
\C21&\C22&\C23\\
\C31&\C32&\C33

\end{pmatrix}*4 = \begin{pmatrix}
\F11&\F12&\F13\\
\F21&\F22&\F23\\
\F31&\F32&\F33

\end{pmatrix}\]

\end{multicols}

20 10 O 20880 10160 -560
0 -1 -2 26 12 -2| =|24624 11968 -688
1 0 -1 32 14 -4 28368 13776 -816

2 4
20 10 O 660 320 -20 20 10 O 663840 322880 -18080

26 12 -2| =768 376 ~-16 26 12 -2| =|781632 380224 -21184
32 14 -4 876 432 -12 32 14 -4 899424 437568 -24288

15.14 \xintiloop, \xintiloopindex, \xintouteriloopindex, \xintbreakiloop,
\xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo

\xintiloop[start+delta](stuff)\if<test> ... \repeat is a completely expandable nestable loop.

165

L

X

15 Macros of the xinttools package

complete expandability depends naturally on the actual iterated contents, and complete expansion
will not be achievable under a sole f-expansion, as is indicated by the hollow star in the margin;
thus the loop can be used inside an \edef but not inside arguments to the package macros. It can be
used inside an \xintexpr..\relax. The [start+delta] is mandatory, not optional.

This loop benefits via \xintiloopindex to (a limited access to) the integer index of the iter-
ation. The starting value start (which may be a \count) and increment delta (id.) are mandatory
arguments. A space after the closing square bracket is not significant, it will be ignored. Spaces
inside the square brackets will also be ignored as the two arguments are first given to a \numexpr)
...\relax. Empty lines and explicit \par tokens are accepted.

As with \xintloop, this tool will mostly be of interest to advanced users. For nesting, one
puts inside braces all the material from the start (immediately after [start+delta]) and up to
and inclusive of the inner loop, these braces will be removed and do not create a loop. In case
of nesting, \xintouteriloopindex gives access to the index of the outer loop. If needed one could
write on its model a macro giving access to the index of the outer outer loop (or even to the nth
outer loop).

The \xintiloopindex and \xintouteriloopindex can not be used inside braces, and generally
speaking this means they should be expanded first when given as argument to a macro, and that this
macro receives them as delimited arguments, not braced ones. Or, but naturally this will break ex-
pandability, one can assign the value of \xintiloopindex to some \count. Both \xintiloopindex and
\xintouteriloopindex extend to the litteral representation of the index, thus in \ifnum tests, if
it comes last one has to correctly end the macro with a \space, or encapsulate it in a \numexpr..\2
relax.

When the repeat-test of the loop is, for example, \ifnum\xintiloopindex<10® \repeat, this means
that the last iteration will be with \xintiloopindex=10 (assuming delta=1). There is also \ifnum)
\xintiloopindex=10 \else\repeat to get the last iteration to be the one with \xintiloopindex=10.

One has \xintbreakiloop and \xintbreakiloopanddo to abort the loop. The syntax of \xintbreakil)
oopanddo is a bit surprising, the sequence of tokens to be executed after breaking the loop is not
within braces but is delimited by a dot as in:

\xintbreakiloopanddo <afterloop>.etc.. etc... \repeat
The reason is that one may wish to use the then current value of \xintiloopindex in <afterloop> but
it can't be within braces at the time it is evaluated. However, it is not that easy as \xintiloopil
ndex must be expanded before, so one ends up with code like this:

\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.%

etc.. etc.. \repeat
As moreover the \fi from the test leading to the decision of breaking out of the loop must be
cleared out of the way, the above should be a branch of an expandable conditional test, else one
needs something such as:

\xint_afterfi{\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.}%

\fi etc..etc.. \repeat

There is \xintiloopskiptonext to abort the current iteration and skip to the next, \xintiloopskip-
andredo to skip to the end of the current iteration and redo it with the same value of the index
(something else will have to change for this not to become an eternal loop...).

Inside alignments, if the looped-over text contains a & or a \cr, any un-expandable material
before a \xintiloopindex will make it fail because of \endtemplate; in such cases one can always
either replace & by a macro expanding to it or replace it by a suitable \firstofone{&}, and simi-
larly for \cr.

As an example, let us construct an \edef\z{...} which will define \z to be a list of prime num-
bers:

\begingroup

\edef\z

{\xintiloop [10001+2]

{\xintiloop [3+2]

166

15 Macros of the xinttools package

\ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax
\xintouteriloopindex,
\expandafter\xintbreakiloop
\fi
\ifnum\xintouteriloopindex=\numexpr
(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax
\else
\repeat
}% no space here
\ifnum \xintiloopindex < 10999 \repeat }%
\meaning\z\endgroup
macro:->10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103,
10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243,
10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337,
10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487,
10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631,
10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753,
10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891,
10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, and we should have taken
some steps to not have a trailing comma, but the point was to show that one can do that in an \edef !
See also subsection 5.2 which extracts from this code its way of testing primality.
Let us create an alignment where each row will contain all divisors of its first entry. Here is
the output, thus obtained without any count register:
\begin{multicols}2
\tabskiplex \normalcolor
\halign{&\hfil#\hfil\cr
\xintiloop [1+1]
{\expandafter\bfseries\xintiloopindex &
\xintiloop [1+1]
\ifnum\xintouteriloopindex=\numexpr
(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax
\xintiloopindex&\fi
\ifnum\xintiloopindex<\xintouteriloopindex\space % CRUCIAL \space HERE
\repeat \cr }%
\ifnum\xintiloopindex<30

\repeat

}

\end{multicols}

11 161 2 4 8 16

212 17 1 17

313 181 2 3 6 9 18

4 1 2 4 19 1 19

515 201 2 4 5 10 20

6 12 3 6 211 3 7 21

717 221 2 11 22

812 4 8 23 1 23

913 9 241 2 3 4 6 8 12 24
101 2 5 10 251 5 25
111 11 261 2 13 26
121 2 3 4 6 12 27 1 3 9 27
131 13 281 2 4 7 14 28
141 2 7 14 29 1 29
151 3 5 15 301 2 3 5 6 10 15 30

We wanted this first entry in bold face, but \bfseries leads to unexpandable tokens, so the \exp)
andafter was necessary for \xintiloopindex and \xintouteriloopindex not to be confronted with a

167

15 Macros of the xinttools package

hard to digest \endtemplate. An alternative way of coding:
\tabskiplex
\def\firstofone #1{#13}%
\halign{&\hfil#\hfil\cr
\xintiloop [1+1]
{\bfseries\xintiloopindex\firstofone{&}%
\xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr
(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax
\xintiloopindex\firstofone{&}\fi
\ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL
\repeat \firstofone{\cr}}%
\ifnum\xintiloopindex<3® \repeat }

The next utilities are not compatible with expansion-only context.

15.15 \xintApplyInline

o#*f \xintApplyInline{\macro}{(list)} works non expandably. It applies the one-parameter \macro to the
first element of the expanded list (\macro may have itself some arguments, the list item will be
appended as last argument), and is then re-inserted in the input stream after the tokens resulting
from this first expansion of \macro. The next item is then handled.

This is to be used in situations where one needs to do some repetitive things. It is not expand-
able and can not be completely expanded inside a macro definition, to prepare material for later
execution, contrarily to what \xintApply or \xintApplyUnbraced achieve.

\def\Macro #1{\advance\cnta #1 , \the\cnta}

\cnta 0

0\xintApplyInline\Macro {3141592653}.

0, 3, 4, 8, 9, 14, 23, 25, 31, 36, 39. The first argument \macro does not have to be an expandable
macro.

\xintApplyInline submits its second, token list parameter to an f-expansion. Then, each un-
braced item will also be f-expanded. This provides an easy way to insert one list inside another.
Braced items are not expanded. Spaces in-between items are gobbled (as well as those at the start
or the end of the list), but not the spaces inside the braced items.

\xintApplyInline, despite being non-expandable, does survive to contexts where the executed \»
macro closes groups, as happens inside alignments with the tabulation character &. This tabular
provides an example:

\centerline{\normalcolor\begin{tabular}{ccc}

N & $NA2$ & $N23$ \\ \hline

\def\Row #1{ #1 & \xintiiSqr {#1} & \xintiiPow {#1}{3} \\ \hline }%

\xintApplyInline \Row {\xintCSVtolList{17,28,39,50,61}}
\end{tabular}}\medskip

N N2 N3

17 289 4913

28 784 21952

39 1521 59319

50 2500 125000

61 3721 226981

We see that despite the fact that the first encountered tabulation character in the first row
close a group and thus erases \Row from TgX's memory, \xintApplyInline knows how to deal with this.

168

15 Macros of the xinttools package

Using \xintApplyUnbraced is an alternative: the difference is that this would have prepared all
rows first and only put them back into the token stream once they are all assembled, whereas with
\xintApplyInline each row is constructed and immediately fed back into the token stream: when one
does things with numbers having hundreds of digits, one learns that keeping on hold and shuffling
around hundreds of tokens has an impact on TgX's speed (make this " "thousands of tokens'' for the
impact to be noticeable).

One may nest various \xintApplyInline's. For example (see the table on the current page):

\begin{figure=}[ht!]

\centering\phantomsection\label{float}

\def\Row #1{#1:\xintApplyInline {\Item {#1}}{0123456789}\\ }%

\def\Item #1#2{&\xintiiPow {#1}{#2}}%

\centeredline {\begin{tabular}{ccccccccccc} &0&1&2&3&4&5&6&7&8&9\\ \hline
\xintApplyInline \Row {0123456789}

\end{tabular}}
\end{figure=}
0 1 2 3 4 5 6 7 8 9
0 1 0 O 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 8 16 32 64 128 256 512
3 1 3 9 27 81 243 729 2187 6561 19683
4 1 4 16 64 256 1024 4096 16384 65536 262144
5 1 5 25 125 625 3125 15625 78125 390625 1953125
6 1 6 36 216 1296 7776 46656 279936 1679616 10077696
7 1 7 49 343 2401 16807 117649 823543 5764801 40353607
8 1 8 64 512 4096 32768 262144 2097152 16777216 134217728
9 1 9 81 729 6561 59049 531441 4782969 43046721 387420489

One could not move the definition of \Item inside the tabular, as it would get lost after the
first &. But this works:

\begin{tabular}{ccccccccccc}

&0&1&2&3&48&58&6&7&8&9\\ \hline
\def\Row #1{#1:\xintApplyInline {&\xintiiPow {#1}}{0123456789}\\ 1%
\xintApplyInline \Row {0123456789}

\end{tabular}

A limitation is that, contrarily to what one may have expected, the \macro for an \xintApplyInl)
ine can not be used to define the \macro for a nested sub-\xintApplyInline. For example, this does
not work:

\def\Row #1{#1:\def\Item ##1{&\xintiiPow {#1}{##1}}%
\xintApplyInline \Item {0123456789}\\ }%
\xintApplyInline \Row {0123456789} % does not work
But see \xintFor.

15.16 \xintFor, \xintFor=*

\xintFor is a new kind of for loop.79 Rather than using macros for encapsulating list items, its
behavior is like a macro with parameters: #1, #2, ..., #9 are used to represent the items for up
to nine levels of nested loops. Here is an example:

\xintFor #9 in {1,2,3} \do {%

79 first introduced with xint 1.09c of 2013/10/09.

169

15 Macros of the xinttools package

\xintFor #1 in {4,5,6} \do {%
\xintFor #3 in {7,8,9} \do {%

\xintFor #2 in {10,11,12} \do {%

$$#9\times#1\times#3\times#2=\xintiiPrd{{#1}{#2}{#3}{#9313%$}1}}
This example illustrates that one does not have to use #1 as the first one: the order is arbitrary.
But each level of nesting should have its specific macro parameter. Nine levels of nesting is
presumably overkill, but I did not know where it was reasonable to stop. \par tokens are accepted
in both the comma separated list and the replacement text.

TXnical notes:

e The #1 is replaced in the iterated-over text exactly as in general TX macros or BX com-
mands. This spares the user quite a few \expandafter's or other tricks needed with loops
which have the values encapsulated in macros, like BX's \@for and \@tfor.

e \xintFor (and \xintFor=) isn't purely expandable: one can not use it inside an \edef. But
it may be used, as will be shown in examples, in some contexts such as BIgX's tabular which
are usually hostile to non-expandable loops.

e \xintFor (and \xintFor=) does some assignments prior to executing each iteration of the
replacement text, but it acts purely expandably after the last iteration, hence if for
example the replacement text ends with a \\, the loop can be used insided a tabular and be
followed by a \hline without creating the dreaded " "Misplaced \noalign'' error.

e Tt does not create groups.
e It makes no global assignments.

e The iterated replacement text may close a group which was opened even before the start of
the loop (typical example being with & in alignments).

\begin{tabular}{rccccc}
\hline
\xintFor #1 in {A, B, C} \do {%
#1:\xintFor #2 in {a, b, c, d, e} \do {&($ #2 \to #1 $)I\\ }%
\hline
\end{tabular}

A: (a—>A) (Mb—A) (c—>A W—oA) (e—>h
B: (a—B) (Wb—>B) (c—B) (d—B) (e—>B)
C: @0 (b—-0 (>0 W—0 (E—0

e There is no facility provided which would give access to a count of the number of itera-
tions as it is technically not easy to do so it in a way working with nested loops while
maintaining the " “expandable after done'' property; something in the spirit of \xint-
iloopindex is possible but this approach would bring its own limitations and complica-
tions. Hence the user is invited to update her own count or BIgX counter or macro at each
iteration, if needed.

e A \macro whose definition uses internally an \xintFor loop may be used inside another
\xintFor loop even if the two loops both use the same macro parameter. The loop definition
inside \macro must use ## as is the general rule for definitions done inside macros.

e \xintFor is for comma separated values and \xintFor* for lists of braced items; their
respective expansion policies differ. They are described later.

170

15 Macros of the xinttools package

Regarding \xintFor:

e the spaces between the various declarative elements are all optional,

e in the list of comma separated values, spaces around the commas or at the start and end are
ignored,

e if an item must contain itself its own commas, then it should be braced, and the braces will
be removed before feeding the iterated-over text,

e the list may be a macro, it is expanded only once,

e items are not pre-expanded. The first item should be braced or start with a space if the list
is explicit and the item should not be pre-expanded,

e empty items give empty #1's in the replacement text, they are not skipped,

e an empty list executes once the replacement text with an empty parameter value,

e the list, if not a macro, ‘must be braced. ‘

#*fn Regarding \xintForx:

e it handles lists of braced items (or naked tokens),

e it f-expands the list,

e and more generally it f-expands each naked token encountered before assigning the #1 values
(gobbling spaces in the process); this makes it easy to simulate concatenation of multiple
lists\x, \y: if \x expands to {1}{2}{3} and \y expands to {4}{5}{6} then {\x\y} as argument to
\xintFor* has the same effect as {{1}{2}{3}{4}{5}{6}}.

For a further illustration see the use of \xintFor* at the end of subsection 2.9.

e spaces at the start, end, or in-between items are gobbled (but naturally not the spaces inside
braced items),

e except if the list argument is a macro (with no parameters), ‘ it must be braced. ‘,

e an empty list leads to an empty result.

The macro \xintSeq which generates arithmetic sequences is to be used with \xintFor* as its

output consists of successive braced numbers (given as digit tokens).

\xintForx #1 in {\xintSeq [+2]{-7}{+2}}\do {stuff

with #1\xintifForLast{\par}{\newline}}
stuff with -7
stuff with -5
stuff with -3
stuff with -1
stuff with 1

When nesting \xintFor* loops, using \xintSeq in the inner loops is inefficient, as the arith-

metic sequence will be re-created each time. A more efficient style is:

\edef\innersequence {\xintSeq[+2]{-503}{50}}%

\xintFor* #1 in {\xintSeq {13}{27}} \do

{\xintFor* #2 in \innersequence \do {stuff with #1 and #23}%
. some other macros .. }

This is a general remark applying for any nesting of loops, one should avoid recreating the inner

lists of arguments at each iteration of the outer loop.

When the loop is defined inside a macro for later execution the # characters must be doubled.?8®

For example:
\def\T{\def\z {}%
\xintFor* ##1 in {{u}{v}{w}} \do {%
\xintFor ##2 in {x,y,z} \do {%
\expandafter\def\expandafter\z\expandafter {\z\sep (##1,##2)} }%

3%
}%
\T\def\sep {\def\sep{, }}\z
w,x), (u,y), (u,2), (v,x), (v,y), (v,2), (w,x), (w,y), (w,2)
Similarly when the replacement text of \xintFor defines a macro with parameters, the macro char-
acter # must be doubled.
80

sometimes what seems to be a macro argument isn't really; in \raisebox{lcm}{\xintFor #1 in {a,b,c}\do {#1}} no doubling
should be done.

171

nn %

15 Macros of the xinttools package
The iterated macros as well as the list items are allowed to contain explicit \par tokens.

15.17 \xintifForFirst, \xintifForLast

\xintifForFirst {YES branch}{NO branch} and \xintifForLast {YES branch} {NO branch} execute the
YES or NO branch if the \xintFor or \xintFor=* loop is currently in its first, respectively last,
iteration.

Designed to work as expected under nesting (but see frame next.) Don't forget an empty brace pair
{} if a branch is to do nothing. May be used multiple times in the replacement text of the loop.

Pay attention to these implementation features:

e if an inner \xintFor loop is positioned before the \xintifForFirst or \xintifForLast of
the outer loop it will contaminate their settings. This applies also naturally if the
inner loop arises from the expansion of some macro located before the outer conditionals.

One fix is to make sure that the outer conditionals are expanded before the inner loop
is executed, e.g. this will be the case if the inner loop is located inside one of the
branches of the conditional.

Another approach is to enclose, if feasible, the inner loop in a group of its own.

e if the replacement text closes a group (e.g. from a & inside an alignment), the condition-
als will lose their ascribed meanings and end up possibly undefined, depending whether
there is some outer loop whose execution started before the opening of the group.

The fix is to arrange things so that the conditionals are expanded before TX encounters
the closing-group token.

15.18 \xintBreakFor, \xintBreakForAndDo

One may immediately terminate an \xintFor or \xintFor* loop with \xintBreakFor.

As it acts by clearing up all the rest of the replacement text when encountered, it will not
work from inside some \if...\fi without suitable \expandafter or swapping technique.

Also it can't be used from inside braces as from there it can't see the end of the replacement
text.

There is also \xintBreakForAndDo. Both are illustrated by various examples in the next section
which is devoted to " " forever'' loops.

15.19 \xintintegers, \xintdimensions, \xintrationals

If the list argument to \xintFor (or \xintFor*, both are equivalent in this context) is \xint-
integers (equivalently \xintegers) or more generally \xintintegers[start+delta] (the whole
within braces!)sl, then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run
through the arithmetic sequence of (short) integers with initial value start and increment delt)
a (default values: start=1, delta=1; if the optional argument is present it must contains both of
them, and they may be explicit integers, or macros or count registers). The #1 (or #2, ..., #9)
will stand for \numexpr <opt sign><digits>\relax, and the litteral representation as a string of
digits can thus be obtained as | \the#1 | or \number#1. Such a #1 can be used in an \ifnum test with
no need to be postfixed with a space or a \relax and one should not add them.

If the list argument is \xintdimensions or more generally \xintdimensions[start+delta] (within
braces!), then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run through the

81 the start+delta optional specification may have extra spaces around the plus sign of near the square brackets, such spaces are
removed. The same applies with \xintdimensions and \xintrationals.

172

15 Macros of the xinttools package

arithmetic sequence of dimensions with initial value start and increment delta. Default values: s
tart=0pt, delta=1pt; if the optional argument is present it must contain both of them, and they may
be explicit specifications, or macros, or dimen registers, or length macros in BIX (the stretch
and shrink components will be discarded). The #1 will be \dimexpr <opt sign><digits>sp\relax,
from which one can get the litteral (approximate) representation in points via \the#l. So #1 can
be used anywhere TgX expects a dimension (and there is no need in conditionals to insert a \rela)
x, and one should not do it), and to print its value one uses . The chosen representation
guarantees exact incrementation with no rounding errors accumulating from converting into points
at each step.

If the list argument to \xintFor (or \xintForx) is \xintrationals or more generally \xint-
rationals[start+delta] (within braces!), then \xintFor does an infinite iteration where #1 (or
#2, ..., #9) will run through the arithmetic sequence of xintfrac fractions with initial value
start and increment delta (default values: start=1/1, delta=1/1). This loop works only with xint-
frac loaded. if the optional argument is present it must contain both of them, and they may be given
in any of the formats recognized by xintfrac (fractions, decimal numbers, numbers in scientific
notations, numerators and denominators in scientific notation, etc...) , or as macros or count
registers (if they are short integers). The #1 (or #2, ..., #9) will be an a/b fraction (without
a [n] part), where the denominator b is the product of the denominators of start and delta (for
reasons of speed #1 is not reduced to irreducible form, and for another reason explained later st)
art and delta are not put either into irreducible form; the input may use explicitely \xintIrr to
achieve that).

\begingroup\small

\noindent\parbox{\dimexpr\linewidth-3em}{\color[named] {OrangeRed}%

\xintFor #1 in {\xintrationals [10/21+1/21]} \do

{#1=\xintifInt {#1}

{\textcolor{blue}{\xintTrunc{10}{#1}}}
{\xintTrunc{10}{#1}}% display in blue if an integer
\xintifGt {#1}{1.123}{\xintBreakFor}{, 1%

1}
\endgroup\smallskip
10/21=0.4761904761, 11/21=0.5238095238, 12/21=0.5714285714, 13/21=0.6190476190,
14/21=0.6666666666, 15/21=0.7142857142, 16/21=0.7619047619, 17/21=0.8095238095,
18/21=0.8571428571, 19/21=0.9047619047, 20/21=0.9523809523, 21/21=1.0000000000,

22/21=1.0476190476, 23/21=1.0952380952, 24/21=1.1428571428
The example above confirms that computations are done exactly, and illustrates that the two
initial (reduced) denominators are not multiplied when they are found to be equal. It is thus
recommended to input start and delta with a common smallest possible denominator, or as fixed
point numbers with the same numbers of digits after the decimal mark; and this is also the reason
why start and delta are not by default made irreducible. As internally the computations are done
with numerators and denominators completely expanded, one should be careful not to input numbers
in scientific notation with exponents in the hundreds, as they will get converted into as many
zeroes.
\noindent\parbox{\dimexpr.7\linewidth}{\raggedright
\xintFor #1 in {\xintrationals [0.000+0.125]} \do
{\edef\tmp{\xintTrunc{3}{#1}3}%
\xintifInt {#1}
{\textcolor{blue}{\tmp}}
{\tmp}%
\xintifGt {#1}{2}{\xintBreakFor}{, 1%
}}\smallskip
0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000, 1.125,

1.250, 1.375, 1.500, 1.625, 1.750, 1.875, 2.000, 2.125

We see here that \xintTrunc outputs (deliberately) zero as 0, not (here) 0.000, the idea being
not to lose the information that the truncated thing was truly zero. Perhaps this behavior should
be changed? or made optional? Anyhow printing of fixed points numbers should be dealt with via
dedicated packages such as numprint or siunitx.

173

15 Macros of the xinttools package

15.20 \xintForpair, \xintForthree, \xintForfour

on The syntax is illustrated in this example. The notation is the usual one for n-uples, with paren-
theses and commas. Spaces around commas and parentheses are ignored.
{\centering\begin{tabular}{cccc}
\xintForpair #1#2 in { (A, a) , (B, b)), (C, c) } \do {%
\xintForpair #3#4 in { (X , x) , CY , y) , (Z , z) } \do {%
$\Biggl ($\begin{tabular}{cc}

-#1- & -#3-\\
-#4- & -#2-\\
\end{tabular}$\Biggr) $&}\\\noalign{\vskipl\jot}}%

\end{tabular}\\}

S I Dy B D
-X- -a- -y- -a- -z- -a-

SN I D B
-x- -b- -y- -b- -z- -b-

)
-X- -C- -y- -c- -z- -C-

\xintForpair must be followed by either #1#2, #2#3, #3#4, ..., or #8#9 with #1 usable as an
alias for #1#2, #2 as alias for #2#3, etc ... and similarly for \xintForthree (using #1#2#3 or
simply #1, #2#3#4 or simply #2, .. .) and \xintForfour (with #1#2#3#4 etc...).

Nesting works as long as the macro parameters are distinct among #1, #2, ..., #9. A macro which

expands to an \xintFor or a \xintFor(pair, three, four) can be used in another one with no constraint
about using distinct macro parameters.
\par tokens are accepted in both the comma separated list and the replacement text.

15.21 \xintAssign

\xintAssign{braced things)\to{as many cs as they are things) defines (without checking if some-
thing gets overwritten) the control sequences on the right of \to to expand to the successive
tokens or braced items located to the left of \to. \xintAssign is not an expandable macro.
f-expansion is first applied to the material in front of \xintAssign which is fetched as one
argument if it is braced. Then the expansion of this argument is examined and successive items are
assigned to the macros following \to. There must be exactly as many macros as items. No check is
done. The macro assignments are done with removal of one level of brace pairs from each item.

After the initial f-expansion, each assigned (brace-stripped) item will be expanded according
to the setting of the optional parameter.

For example \xintAssign [e]... means that all assignments are done using \edef. With [f] the
assignments will be made using \fdef. The default is simply to make the definitions with \def,
corresponding to an empty optional paramter []. Possibilities for the optional parameter are: []2
, [gl, [el, [x], [o], [gol, [00], [gool, [f], [gf]. For example [00] means a double expansion.

\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R

\meaning\Q\newline

\meaning\R\newline

\xintAssign {{\xintiiDivision{1000000000000}{133333333}}}\to\X

\meaning\X\newline

\xintAssign [00]{{\xintiiDivision{1000000000000}{133333333}}}\to\X

\meaning\X\newline

\xintAssign \xintiiPow{7}{13}\to\SevenToThePowerThirteen

\meaning\SevenToThePowerThirteen\par
macro:->7500
macro:->2500

174

fN

15 Macros of the xinttools package

macro:->\xintiiDivision {1000000000000}{133333333}
macro:->{75003}{2500}
macro:->96889010407

Two special cases:

e if after this initial expansion no brace is found immediately after \xintAssign, it is assumed
that there is only one control sequence following \to, and this control sequence is then de-
fined via \def (or what is set-up by the optional parameter) to expand to the material between
\xintAssign and \to.

e if the material between \xintAssign and \to is enclosed in two brace pairs, the first brace
pair is removed, then the f-expansion is immediately stopped by the inner brace pair, hence
\xintAssign now finds a unique item and thus defines only a single macro to be this item, which
is now stripped of the second pair of braces.

Note: prior to release 1.09j, \xintAssign did an \edef by default for each item assignment but

it now does \def corresponding to no or empty optional parameter.

It is allowed for the successive braced items to be separated by spaces. They are removed during
the assignments. But if a single macro is defined (which happens if the argument after f-expansion
does not start with a brace), naturally the scooped up material has all intervening spaces, as it
is considered a single item. But an upfront initial space will have been absorbed by f-expansion.

\def\X{ {a} {b} {c} {d} }\def\Y { u {a} {b} {c} {d} }

\xintAssign\X\to\A\B\C\D

\xintAssign\Y\to\Z

\meaning\A, \meaning\B, \meaning\C, \meaning\D+++\newline

\meaning\Z+++\par
macro:->a, macro:->b, macro:->c, macro:->d+++
macro:->u {a} {b} {c} {d} +++

As usual successive space characters in input make for a single TiX space token.

15.22 \xintAssignArray

\xintAssignArray(braced things)\to\myArray first expands fully what comes immediately after \xi)
ntAssignArray and expects to find a list of braced things {A}{B}... (or tokens). It then defines
\myArray as a macro with one parameter, such that \myArray{x} expands to give the xth braced thing
of this original list (the argument {x} itself is fed to a \numexpr by \myArray, and \myArray
expands in two steps to its output). With 0 as parameter, \myArray{0} returns the number M of
elements of the array so that the successive elements are \myArray{1}, ..., \myArray{M}.
\xintAssignArray \xintBezout {1000}{113}\to\Bez
will set \Bez{0} to 5, \Bez{1} to 1000, \Bez{2} to 113, \Bez{3} to -20, \Bez{4} to -177, and \Bez{5}
to 1: (-20) X 1000 - (-177) x 113 = 1. This macro is incompatible with expansion-only contexts.
\xintAssignArray admits an optional parameter, for example \xintAssignArray [e] means that
the definitions of the macros will be made with \edef. The empty optional parameter (default)
means that definitions are done with \def. Other possibilities: [], [o], [oo], [f]. Contrarily
to \xintAssign one can not use the g here to make the definitions global. For this, one should
rather do \xintAssignArray within a group starting with \globaldefs 1.

15.23 \xintDigitsOf

This is a synonym for \xintAssignArray, to be used to define an array giving all the digits of a

given (positive, else the minus sign will be treated as first item) number.
\xintDigitsOf\xintiiPow {7}{500}\to\digits

7°90 has \digits{0}=423 digits, and the 123rd among them (starting from the most significant) is

\digits{123}=3.

15.24 \xintRelaxArray

175

15 Macros of the xinttools package

\xintRelaxArray\myArray (globally) sets to \relax all macros which were defined by the previous
\xintAssignArray with \myArray as array macro.

This documentation has been compiled without the source code, which is available in the separate file:
sourcexint.pdf,

which will open in a PDF viewer via texdoc sourcexint.pdf. To produce a single file including both the

user documentation and the source code, run tex xint.dtx to generate xint.tex (if not already avail-

able), then edit xint.tex to set the \NoSourceCode toggle to ®, then run thrice latex on xint.tex and

finally dvipdfmx on xint.dvi. Alternatively, run pdflatex either directly on xint.dtx, or on xint.tex
with \NoSourceCode set to 0.

176

	Title page
	Contents
	Dependency graph
	Read this first
	First examples
	Quick overview (expressions with xintexpr)
	Printing big numbers on the page
	Randomly chosen examples
	More examples, some quite elaborate, within this document
	Installation instructions
	Changes

	The syntax of xintexpr expressions
	Contents
	Built-in operators and precedences
	Built-in functions
	Tacit multiplication
	More examples with dummy variables
	User defined variables
	User defined functions
	List operations
	Analogies and differences of \xintiiexpr with \numexpr
	Chaining expressions for expandable algorithmics

	The xint bundle
	Contents
	Characteristics
	Floating point evaluations
	Expansion matters
	Input formats for macros
	Output formats of macros
	Count registers and variables
	Dimension registers and variables
	\ifcase, \ifnum, ... constructs
	No variable declarations are needed
	When expandability is too much
	Possible syntax errors to avoid
	Error messages
	Package namespace, catcodes
	Origins of the package

	Some utilities from the xinttools package
	Assignments
	Utilities for expandable manipulations
	A new kind of for loop
	A new kind of expandable loop

	Additional examples using xinttools or xintexpr or both
	Completely expandable prime test
	Another completely expandable prime test
	Miller-Rabin Pseudo-Primality expandably
	A table of factorizations
	Another table of primes
	Factorizing again
	The Quick Sort algorithm illustrated

	Macros of the xintkernel package
	Contents
	\odef, \oodef, \fdef
	\xintReverseOrder
	\xintLength
	\xintLastItem
	\xintreplicate
	\xintgobble

	Macros of the xintcore package
	Contents
	\xintiNum
	\xintDouble
	\xintHalf
	\xintInc
	\xintDec
	\xintDSL
	\xintDSR
	\xintDSRr
	\xintFDg
	\xintLDg
	\xintiiSgn
	\xintiiOpp
	\xintiiAbs
	\xintiiAdd
	\xintiiCmp
	\xintiiSub
	\xintiiMul
	\xintiiSqr
	\xintiiPow
	\xintiiFac
	\xintiiDivision
	\xintiiQuo
	\xintiiRem
	\xintiiDivRound
	\xintiiDivTrunc
	\xintiiMod
	\xintNum
	Deprecated macros

	Macros of the xint package
	Contents
	\xintiLen
	\xintReverseDigits
	\xintDecSplit
	\xintDecSplitL, \xintDecSplitR
	\xintiiE
	\xintDSH
	\xintDSHr, \xintDSx
	\xintiiEq
	\xintiiNotEq
	\xintiiGeq
	\xintiiGt
	\xintiiLt
	\xintiiGtorEq
	\xintiiLtorEq
	\xintiiIsZero
	\xintiiIsNotZero
	\xintiiIsOne
	\xintiiOdd
	\xintiiEven
	\xintiiMON
	\xintiiMMON
	\xintiiifSgn
	\xintiiifZero
	\xintiiifNotZero
	\xintiiifOne
	\xintiiifCmp
	\xintiiifEq
	\xintiiifGt
	\xintiiifLt
	\xintiiifOdd
	\xintiiSum
	\xintiiPrd
	\xintiiSquareRoot
	\xintiiSqrt, \xintiiSqrtR
	\xintiiBinomial
	\xintiiPFactorial
	\xintiiMax
	\xintiiMin
	\xintiiMaxof
	\xintiiMinof
	\xintifTrueAelseB
	\xintifFalseAelseB
	\xintNOT
	\xintAND
	\xintOR
	\xintXOR
	\xintANDof
	\xintORof
	\xintXORof
	\xintLen
	Deprecated macros (they require xintfrac)
	Deprecated macros using \xintNum

	Macros of the xintfrac package
	Contents
	\xintNum
	\xintRaw
	\xintNumerator
	\xintDenominator
	\xintRawWithZeros
	\xintREZ
	\xintIrr
	\xintJrr
	\xintPRaw
	\xintTrunc
	\xintXTrunc
	\xintTFrac
	\xintRound
	\xintFloor
	\xintCeil
	\xintiTrunc
	\xintTTrunc
	\xintiRound
	\xintiFloor
	\xintiCeil
	\xintE
	\xintCmp
	\xintEq
	\xintNotEq
	\xintGeq
	\xintGt
	\xintLt
	\xintGtorEq
	\xintLtorEq
	\xintIsZero
	\xintIsNotZero
	\xintIsOne
	\xintOdd
	\xintEven
	\xintifSgn
	\xintifZero
	\xintifNotZero
	\xintifOne
	\xintifOdd
	\xintifCmp
	\xintifEq
	\xintifGt
	\xintifLt
	\xintifInt
	\xintSgn
	\xintOpp
	\xintAbs
	\xintAdd
	\xintSub
	\xintMul
	\xintDiv
	\xintDivTrunc
	\xintDivRound
	\xintSqr
	\xintPow
	\xintFac
	\xintBinomial
	\xintPFactorial
	\xintMax
	\xintMin
	\xintMaxof
	\xintMinof
	\xintSum
	\xintPrd
	\xintDigits, \xinttheDigits
	\xintFloat
	\xintPFloat
	\xintFloatE
	\xintFloatAdd
	\xintFloatSub
	\xintFloatMul
	\xintFloatDiv
	\xintFloatPow
	\xintFloatPower
	\xintFloatSqrt
	\xintFloatFac
	\xintFloatBinomial
	\xintFloatPFactorial
	\xintFrac
	\xintSignedFrac
	\xintFwOver
	\xintSignedFwOver
	\xintLen

	Macros of the xintexpr package
	Contents
	The \xintexpr expressions
	\numexpr or \dimexpr expressions, count and dimension registers and variables
	Catcodes and spaces
	Expandability, \xinteval
	Memory considerations
	The \xintNewExpr macro
	The \xintNewFunction macro
	\xintiexpr, \xinttheiexpr
	\xintiiexpr, \xinttheiiexpr
	\xintboolexpr, \xinttheboolexpr
	\xintfloatexpr, \xintthefloatexpr
	Using an expression parser within another one
	The \xintthecoords macro
	\xintifboolexpr
	\xintifboolfloatexpr
	\xintifbooliiexpr
	\xintNewFloatExpr
	\xintNewIExpr
	\xintNewIIExpr
	\xintNewBoolExpr
	Technicalities
	Acknowledgements (2013/05/25)

	Macros of the xintbinhex package
	Contents
	\xintDecToHex
	\xintDecToBin
	\xintHexToDec
	\xintBinToDec
	\xintBinToHex
	\xintHexToBin
	\xintCHexToBin

	Macros of the xintgcd package
	Contents
	\xintGCD, \xintiiGCD
	\xintGCDof
	\xintLCM, \xintiiLCM
	\xintLCMof
	\xintBezout
	\xintEuclideAlgorithm
	\xintBezoutAlgorithm
	\xintTypesetEuclideAlgorithm
	\xintTypesetBezoutAlgorithm

	Macros of the xintseries package
	Contents
	\xintSeries
	\xintiSeries
	\xintRationalSeries
	\xintRationalSeriesX
	\xintPowerSeries
	\xintPowerSeriesX
	\xintFxPtPowerSeries
	\xintFxPtPowerSeriesX
	\xintFloatPowerSeries
	\xintFloatPowerSeriesX
	Computing log(2) and pi

	Macros of the xintcfrac package
	Contents
	Package overview
	\xintCFrac
	\xintGCFrac
	\xintGGCFrac
	\xintGCtoGCx
	\xintFtoC
	\xintFtoCs
	\xintFtoCx
	\xintFtoGC
	\xintFGtoC
	\xintFtoCC
	\xintCstoF
	\xintCtoF
	\xintGCtoF
	\xintCstoCv
	\xintCtoCv
	\xintGCtoCv
	\xintFtoCv
	\xintFtoCCv
	\xintCntoF
	\xintGCntoF
	\xintCntoCs
	\xintCntoGC
	\xintGCntoGC
	\xintCstoGC
	\xintiCstoF, \xintiGCtoF, \xintiCstoCv, \xintiGCtoCv
	\xintGCtoGC
	Euler's number e

	Macros of the xinttools package
	Contents
	\xintRevWithBraces
	\xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB
	\xintCSVtoList
	\xintNthElt
	\xintKeep
	\xintKeepUnbraced
	\xintTrim
	\xintTrimUnbraced
	\xintListWithSep
	\xintApply
	\xintApplyUnbraced
	\xintSeq
	\xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext
	\xintiloop, \xintiloopindex, \xintouteriloopindex, \xintbreakiloop, \xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo
	\xintApplyInline
	\xintFor, \xintFor*
	\xintifForFirst, \xintifForLast
	\xintBreakFor, \xintBreakForAndDo
	\xintintegers, \xintdimensions, \xintrationals
	\xintForpair, \xintForthree, \xintForfour
	\xintAssign
	\xintAssignArray
	\xintDigitsOf
	\xintRelaxArray

