
CHANGE LOG

xint 1.3e

2019/04/05

1.3e (2019/04/05) p. 2
1.3d (2019/01/06) p. 2
1.3c (2018/06/17) p. 3
1.3b (2018/05/18) p. 3
1.3a (2018/03/07) p. 4
1.3 (2018/03/01) p. 4
1.2q (2018/02/06) p. 5
1.2p (2017/12/05) p. 5
1.2o (2017/08/29) p. 6
1.2n (2017/08/06) p. 7
1.2m (2017/07/31) p. 7
1.2l (2017/07/26) p. 7
1.2k (2017/01/06) p. 8
1.2j (2016/12/22) p. 9
1.2i (2016/12/13) p. 10
1.2h (2016/11/20) p. 11
1.2g (2016/03/19) p. 11
1.2f (2016/03/12) p. 12
1.2e (2015/11/22) p. 13
1.2d (2015/11/18) p. 13
1.2c (2015/11/16) p. 13
1.2b (2015/10/29) p. 14
1.2a (2015/10/19) p. 14
1.2 (2015/10/10) p. 14
1.1c (2015/09/12) p. 15
1.1b (2015/08/31) p. 15

1.1a (2014/11/07) p. 15
1.1 (2014/10/28) p. 16
1.09n (2014/04/01) p. 18
1.09m (2014/02/26) p. 18
1.09kb (2014/02/13) p. 18
1.09k (2014/01/21) p. 19
1.09j (2014/01/09) p. 19
1.09i (2013/12/18) p. 19
1.09h (2013/11/28) p. 20
1.09g (2013/11/22) p. 21
1.09f (2013/11/04) p. 21
1.09e (2013/10/29) p. 21
1.09d (2013/10/22) p. 21
1.09c (2013/10/09) p. 22
1.09b (2013/10/03) p. 22
1.09a (2013/09/24) p. 22
1.08b (2013/06/14) p. 23
1.08a (2013/06/11) p. 23
1.08 (2013/06/07) p. 23
1.07 (2013/05/25) p. 23
1.06b (2013/05/14) p. 24
1.06 (2013/05/07) p. 24
1.05 (2013/05/01) p. 24
1.04 (2013/04/25) p. 24
1.03 (2013/04/14) p. 25
1.0 (2013/03/28) p. 25

Source: xint.dtx 1.3e 2019/04/05 (doc 2019/04/05)
Author: Jean-Francois Burnol
Info: Expandable operations on big integers, decimals, fractions
License: LPPL 1.3e

1

1.3e (2019/04/05)

Incompatible changes

• When defining functions, sub-expressions can only use the\xint(float)expr...\relax syntax.
One can not use there the \xint(float)eval wrappers (anyhow they add overhead and can be
replaced with the lower level syntax).

Improvements and new features

• The xinttrig library is automatically loaded by xintexpr. It provides direct and inverse trigono-
metrical functions using either degrees or radians with a precision of up to (a bit less than) 60
digits. It is for the most part implemented using high level user interface, but will probably get
some optimizations in future (and perhaps extension to more digits).

• The xintlog library is automatically loaded by xintexpr. It uses poormanlog to provide logarithms
and exponentials with almost 9 digits of precision. Extended precision is for a future release.

• xintexpr: \xintdefefunc, \xintdeffloatefunc, \xintdefiiefunc define functions which
are not protected against expansion in the definition of other functions; refer to xint.pdf for the
related explanations.

Notice that whole area of \xintdef(e)func, \xintNewExpr, \xintNewFunction is complex
and to be considered still as work in progress as it has a number of shortcomings.

• xintexpr: inv(), ilog10(), sfloat(), behaviour of qfloat() slightly modified.

• xintexpr: \xintensuredummy, \xintrestorelettervar.

• The optional argument of \xintfloatexpr or \xintfloateval (it must be at start of braced
argument) can be negative; it then means to trim (and round) from the output at float precision that
many least significant digits.

Bug fixes

• Some bugfixes related to user functions with no variables at all; they were dysfunctional.

1.3d (2019/01/06)

Incompatible changes

• xintexpr: the gcd() and lcm() functions formerly converted their arguments to integers via
\xintNum. They now handle general input with no such modification.

• xintexpr: former \xinteval, \xintieval, \xintiieval, and \xintfloateval renamed to
\xintexpro, \xintiexpro, \xintiiexpro, and \xintfloatexpro.

Improvements and new features

• xintexpr: the gcd() and lcm()multi-arguments functions have been refactored to handle general
fractions. The dependency on xintgcd is removed.

• xintexpr: three-way branching \xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr
conditional macros.

2

http://ctan.org/pkg/poormanlog

• xintexpr: \xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc
to “undefine” functions.

• xintexpr: \xintunassignvar really makes the (multi-letter) variable unknown (formerly, it only
gave it value zero),

• xintexpr: functions isone() and isint().

• xintexpr: \xinteval, \xintieval, \xintiieval, and \xintfloateval as synonyms to
\xinttheexpr...\relax etc. . . , but with the (comma-separated) expression as a usual braced
macro argument.

Bug fixes

• xintcore, xintexpr : division in \xintiiexpr was broken for a zero dividend and a one-digit
divisor (e.g. 0//7) since 1.2p due to a bug in \xintiiDivMod for such arguments. The bug was
signaled (thanks to Kpym for report) and fixed shortly after 1.3c release but I then completely
forgot to upload a bugfix release to CTAN at that time, apologies for that.

1.3c (2018/06/17)

Improvements and new features

• xintexpr: with \xintglobaldefstrue, \xintdefvar, \xintdeffunc, \xintNewExpr et
al. make definitions with global scope.

• xintexpr: qraw() for fast input of (very many) comma separated numbers (in suitable raw format).

• xintexpr: the colon in the := part of the syntax for \xintdefvar and variants is now optional;
and if present it may be an active character or have any (reasonable) catcode.

• xintexpr: \xintdefvar, \xintdeffunc and their variants try to set the catcode of the semi-colon
which delimits their arguments; of course this will not work if that catcode is already frozen.

• \xintUniformDeviate is better documented and sourcexint.pdf is better hyperlinked and
includes indices for the macros defined by each package.

Bug fixes

• xintfrac: since 1.3 release, it loaded xintgcd in contradiction to what the documentation says
(hence also xintexpr loaded xintgcd automatically). There is no actual dependency so the loading
is removed for now.

1.3b (2018/05/18)

Improvements and new features

All additions related to randomness are marked as work-in-progress. They require an engine providing
the \(pdf)uniformdeviate primitive.

• xintkernel: \xintUniformDeviate.

• xint: \xintRandomDigits, \xintXRandomDigits, \xintiiRandRange, \xintiiRandRangeAtoB.

3

• xintfrac: support macros (not public, mainly because internal format for floats is surely not final)
for random() and qrand().

• xintexpr: random(), qrand(), and randrange(A[, B]).

• xintexpr: when a function foo() is declared via \xintdeffunc (et al.) to be parameter-less, it
can be used as foo(); formerly foo(nil) syntax was required.

• The usual provision of user manual “improvements”.

1.3a (2018/03/07)

Removed

• xintcore, xint, xintfrac: removal of the internal macros which were used at 1.2o to add a
deprecation mechanism; all deprecated macros have been removed at 1.3 so there was no reason
to keep the code used for deprecating them.

Improvements and new features

• xintexpr: new conditionals ifone() and ifint().

• xintfrac: \xintREZ is faster on inputs having one hundred digits or more.

• Added to the user manual mention of macros such as \xintDivFloor, \xintMod,
\xintModTrunc, which had been left out so far.

Bug fixes

• xintexpr: the mechanism for adjunction to the expression parsers of user defined functions was
refactored and improved at previous release1.3: in particular recursive definitions became possible.
But an oversight made these recursive functions quite inefficient (to remain polite.) This release
fixes the problem.

1.3 (2018/03/01)

Incompatible changes

• xintcore, xint, xintfrac: all macros deprecated at 1.2o got removed.

• xintfrac: addition and subtraction of a/b and c/d now use the l.c.m. of the denominators.
Similarly the macro supporting the modulo operator /: uses a l.c.m. for the denominator of the
result.

• xintexpr: the addition, subtraction, modulo /:, and the mod() and divmod() functions produce
generally smaller denominators (see previous item).

• xintexpr: formerly, the internal macros which are internally associated to user-declared functions
were using comma separated parameter texts. They now do not use such commas (their meanings,
which may again change in future, are written for information to the log under\xintverbosetrue).

4

Improvements and new features

• xintexpr: user-defined functions may now be of a recursive nature. This was made possible by
a refactoring of the \xintNewExpr mechanism. It became both leaner and more extensive than
formerly.

• xintfrac: new macros \xintPIrr and \xintDecToString. The latter is a backport of a polexpr
0.4 utility, and it is to be considered unstable.

• xintexpr: new function preduce() associated with \xintPIrr.

1.2q (2018/02/06)

Improvements and new features

• xintexpr: tacit multiplication extended to cases such as 3!4!5! or (1+2)3.

Bug fixes

• xintcore: sadly, refactoring at 1.2l of subtraction left an extra character in an inner macro causing
breakage in some rare circumstances. This should not have escaped our test suite!

1.2p (2017/12/05)

Incompatible changes

• xintgcd: \xintBezout{a}{b}’s output consists of {u}{v}{d} with u*a+v*b==d, with d the
GCD. Formerly it was {a}{b}{u}{v}{d}, and with u*a-v*b==d.

• xintgcd: \xintBezout{0}{0} expands to {0}{0}{0}. Formerly (since 1.2l) it raised
InvalidOperation.

• xintcore: \xintiiMod is now associated with floored division. The former meaning (associated
with truncated division) is available as \xintiiModTrunc.

• xintfrac: \xintMod is now associated with floored division. The former meaning is available as
\xintModTrunc.

• xintexpr: the // operator and its associated modulo 'mod' (or /:) now correspond to floored
division, like the Python language //, %, and divmod(x, y). Formerly they had been associated
to truncated division. This is breaking change for operands of opposite signs.

Improvements and new features

• xinttools: \xintListWithSep, which had remained unchanged since its introduction at 1.04
(2013/04/25), was rewritten for increased speed.

• xintexpr: \xintdefvar’s syntax is extended to allow simultaneous assignments. Examples:
\xintdefvar x1, x2, x3 := 1, 3**10, 3**20; or \xintdefiivar A, B := B, A
'mod' B; for already defined variables A and B.

• xintexpr: added divmod() to the built-in functions. It is associated with floored division, like the
Python language divmod(). Related support macros added to xintcore, and xintfrac.

5

Bug fixes

• xintgcd: \xintBezout{6}{3} (for example) expanded to {6}{3}{-0}{-1}{3}, but the -0
should have been 0.

• xintgcd: it still used macro \xintiAbs although the latter had been deprecated from xintcore.

• xintexpr: in float expressions the // and /: (aka 'mod') operators did not round their operands
to the float precision prior to computing with them, contrarily to other infix arithmetic operators
and to the mod(f,g) function; thus, mod(f,g) and f 'mod' g were not completely equivalent.

• various documentation fixes; in particular, the partial dependency of xintcfrac on xinttools had
not been mentioned.

1.2o (2017/08/29)

Incompatible changes

• xint: \xintAND, \xintOR, . . . and similar Boolean logic macros do not apply anymore \xintNum
(or \xintRaw if xintfrac is loaded), to their arguments (often, from internal usage of \xintSgn),
but only f-expand them (using e.g. \xintiiSgn). This is kept un-modified even if loading
xintfrac.

Deprecated

Deprecated macros raise an error but, generally, then expand as in former releases. They will all get
removed at some future release.

• xintcore: \xintiOpp, \xintiAbs, \xintiAdd, \xintiSub, \xintiMul, \xintiDivision,
\xintiQuo, \xintiRem, \xintiDivRound, \xintiDivTrunc, \xintiMod, \xintiSqr,
\xintiPow, and \xintiFac are deprecated. Only the ii-named variants get defined.

• xintcore: \xintCmp and\xintSgn are deprecated from xintcore (which only defines\xintiiCmp
and \xintiiSgn) as they actually belong to xintfrac.

• xintcore: \xintiiFDg, resp. \xintiiLDg, are renamed \xintFDg, resp. \xintLDg. Former
denominations are deprecated.

• xint: \xintMON, \xintMMON, \xintiMax, \xintiMin, \xintiMaxof, \xintiMinof,
\xintiSquareRoot, \xintiSqrt, \xintiSqrtR, \xintiBinomial, and \xintiPFactorial
are deprecated. Only ii-named variants get defined.

• xint: \xintEq, \xintGeq, \xintGt, \xintLt, \xintGtorEq, \xintLtorEq, \xintIsZero,
\xintIsNotZero, \xintIsOne, \xintOdd, \xintEven, \xintifSgn, \xintifCmp,
\xintifEq, \xintifGt, \xintifLt, \xintifZero, \xintifNotZero, \xintifOne,
\xintifOdd, are deprecated. These macros belong to xintfrac. Package xint defines only the
ii-named variants.

• xint: \xintNeqwas renamed to\xintNotEqwhich however is only provided by xintfrac. Package
xint defines \xintiiNotEq, and \xintNeq is deprecated.

• xint: \xintNot was renamed to \xintNOT, former denomination is deprecated. See also item
about Boolean logic macros in the Incompatible Changes section.

6

1.2n (2017/08/06)

Incompatible changes

• xintbinhex does not load package xintcore anymore, but only xintkernel.

Improvements and new features

• xintbinhex has only xintkernel as dependency.

• Macros of xintbinhex have been improved for speed and increased maximal sizes of allowable
inputs.

1.2m (2017/07/31)

Incompatible changes

• xintbinhex: the length of the input is now limited. The maximum size depends on the macro and
ranges from about 4000 to about 19900 digits.

• xintbinhex: \xintCHexToBin is now the variant of \xintHexToBin which does not remove
leading binary zeroes: N hex-digits give on output exactly 4N binary digits.

Improvements and new features

• xintbinhex: all macros have been rewritten using techniques from the 1.2 release (they had
remained unmodified since 1.08 of 2013/06/07.) The new macros are faster but limited to a few
thousand digits. The 1.08 routines could handle tens of thousands of digits, but not in a reasonable
time.

Bug fixes

• user manual: the Changes section wrongly stated at 1.2l that the macros of xintbinhex had been
made robust against non terminated input such as \number\mathcode`\-. Unfortunately the
author fell into the trap of believing his own documentation and he forgot to actually implement
the change. Now done.

• user manual: the PDF bookmarks were messed up.

• xint, xintfrac: \xintGeq, \xintMax, \xintMin, suffered from some extra overhead. This was
caused by use of some auxiliaries from the very early days which got redefined at some stage. This
is fixed here with some additional efficiency improvements and pruning of old code.

1.2l (2017/07/26)

Removed

• \xintiiSumExpr, \xintiiPrdExpr (xint) and \xintSumExpr, \xintPrdExpr (xintfrac).
They had not been formally deprecated, but had been left un-documented since 1.09d
(2013/10/22).

• internal macro \xint_gob_til_xint_relax removed.

7

Improvements and new features

• the underscore character _ is accepted by the xintexpr parsers as a digit separator (the space
character already could be used for improved readability of big numbers). It is not allowed as first
character of a number, as it would then be mis-interpreted as the start of a possible variable name.

• some refactoring in xintcore auxiliary routines and in \xintiiSub and \xintiiCmp for some
small efficiency gains.

• code comments in xintcore are better formatted, but remain sparse.

• xintcore, xint, xintfrac, . . . : some macros were not robust against arguments whose
expansion looks forward for some termination (e.g. \number\mathcode`\-), and par-
ticularly, most were fragile against inputs using non-terminated \numexpr (such as
\xintiiAdd{\the\numexpr1}{2} or \xintRaw{\numexpr1}). This was not a bug per
se, as the user manual did not claim such inputs were legal, but it was slightly inconvenient. Most
macros (particularly those of xintfrac) have now been made robust against such inputs. Some
macros from xintcore primarily destined to internal usage still accept only properly terminated
arguments such as \the\mathcode`\-<space> or \the\numexpr1\relax.

The situation with expressions is unchanged: syntax such as \xintexpr \numexpr1+2\relax
is illegal as the ending \relax token will get swallowed by the \numexpr; but it is needed by
the xintexpr-ession parser, hence the parser will expand forward and presumably end with in an
“illegal token” error, or provoke some low-level TeX error (N.B.: a closing brace } for example
can not terminate an xintexpr-ession, the parser must find a \relax token at some point). Thus
there must be in this example a second \relax.

• experimental code for error conditions; there is no complete user interface yet, it is done in
preparation for next major release and is completely unstable and undocumented.

Bug fixes

• xintbinhex: since 1.2 (2015/10/10), \xintHexToDec was broken due to an undefined macro
(it was in xint.sty, but the module by itself is supposedly dependent only upon xintcore.sty).

• xintgcd: macro \xintBezout produced partially wrong output if one of its two arguments was
zero.

• xintfrac: the manual said one could use directly \numexpr compatible expressions in arithmetic
macros (without even a \numexpr encapsulation) if they were expressed with up to 8 tokens. There
was a bug if these 8 tokens evaluated to zero. The bug has been fixed, and up to 9 tokens are now
accepted. But it is simpler to use \the\numexpr prefix and not to worry about the token count. . .
The ending \relax is now un-needed.

1.2k (2017/01/06)

Incompatible changes

• macro \xintFloat which rounds its input to a floating point number does not print anymore
10.0...0eN to signal an upwards rounding to the next power of ten. The mantissa has in all cases
except the zero input exactly one digit before the decimal mark.

• some floating point computations may differ in the least significant digits, due to a change in the
rounding algorithm applied to macro arguments expressed as fractions and to an improvement in
precision regarding half-integer powers in expressions. See next.

8

Improvements and new features

• the initial rounding to the target precision P which is applied by the floating point macros from
xintfrac to their arguments achieves the exact (aka correct) rounding even for inputs which are
fractions with more than P+2 digits in their numerators and denominators (>1.) Hence the computed
values depend only on the arguments as rational numbers and not upon their representatives. This
is not relevant to expressions (xintexpr), because the \xintfloatexpr parser sees there / as an
operator and does not (apart from special constructs) get to manipulate fractions as such.

• \xintnewdummy is public interface to a 1.2e macro which serves to declare any given catcode 11
character as a dummy variable for expressions (xintexpr). This is useful for Unicode engines (the
Latin letters being already all pre-declared as dummy variables.)

• added \xintiSqrtR, there was only \xintiiSqrtR alongside \xintiSqrt and \xintiiSqrt
(xint).

• added non public \xintLastItem:f:csv to xinttools for faster last() function, and improved
\xintNewExpr compatibility. Also \xintFirstItem:f:csv.

Bug fixes

• the 1.2f half-integer powers computed within \xintfloatexpr had a silly rounding to the target
precision just before the final square-root extraction, thus possibly losing some precision. The 1.2k
implementation keeps guard digits for this final square root extraction. As for integer exponents, it
is guaranteed that the computed value differs from the exact one by less than 0.52 ulp (for inputs
having at most \xinttheDigits digits.)

• more regressions from 1.2i were fixed: \xintLen (xint, xintfrac) and \xintDouble (xintcore)
had forgotten that their argument was allowed to be negative. A regression test suite is now in place
and is being slowly expanded to cover more macros.

• \xintiiSquareRoot{0} now produces {1}{1}, which fits better the general documented be-
haviour of this macro than 11.

1.2j (2016/12/22)

Improvements and new features

• xinttools and xintexpr:

1. slightly improves the speed of \xintTrim.

2. speed gains for the handlers of comma separated lists implementing Python-like slicing
and item extraction. Relevant non (user) documented macros better documented in
sourcexint.pdf.

• significant documentations tweaks (inclusive of suppressing things!), and among them two beautiful
hyperlinked tables with both horizontal and vertical rules which bring the documentation of the
xintexpr syntax to a kind of awe-inspiring perfection. . . except that implementation of some math
functions is still lacking.

Bug fixes

• fix two 1.2i regressions caused by undefined macros (\xintNthElt in certain branches and
[list][N] item extraction in certain cases.) The test files existed but were not executed prior to
release. Automation in progress.

9

1.2i (2016/12/13)

Incompatible changes

• \xintDecSplit second argument must have no sign (former code replaced it with its absolute
value, a sign now may cause an error.)

Removed

• deprecated macros \xintifTrue, \xintifTrueFalse, \xintQuo, \xintRem, \xintquo,
\xintrem.

Improvements and new features

• xintkernel: \xintLength is faster. New macros:

– \xintLastItem to fetch the last item from its argument,

– \romannumeral\xintgobble for gobbling many (up to 531440) upstream braced items or
tokens.

– \romannumeral\xintreplicatewhich is copied over from the expl3\prg_replicate:nn
with some minor changes.

• xinttools: general token list handling routines \xintKeep, \xintTrim and \xintNthElt are
faster; but the novel \xintTrim can only remove up to a maximum of 531440 items.

Also, \xintFor partially improves on some issues which are reported upon in the documentation.

• some old macros have been rewritten entirely or partially using techniques which xint started using
in release 1.2:

– xintcore: \xintDouble, \xintHalf, \xintInc, \xintDec, \xintiiLDg, \xintDSR
(originally from xint), a novel \xintDSRr.

– xint: \xintDSH, \xintDSx, \xintDecSplit, \xintiiE.

– xintfrac: as a result of the above \xintTrunc, \xintRound and \xintXTrunc got faster.
But the main improvement for them is with decimal inputs which formerly had not been
treated separately from the general fraction case. Also, \xintXTrunc does not anymore
create a dependency of xintfrac on xinttools.

• the documentation has again been (slightly) re-organized; it has a new sub-section on the Miller-
Rabin primality test, to illustrate some use of \xintNewFunction for recursive definitions.

• the documentation has dropped the LaTeX “command” terminology (which had been used initially
in 2013 for some forgotten reasons and should have been removed long ago) and uses only the more
apt “macro”, as after all, all of xint is about expansion of macros (plus the use of \numexpr).

Bug fixes

• \xintDecSplitL and \xintDecSplitR from xint produced their output in a spurious brace pair
(bug introduced in 1.2f).

10

1.2h (2016/11/20)

Improvements and new features

• new macro\xintNewFunction in xintexpr which allows to extend the parser syntax with functions
in situations where \xintdeffunc is not usable (typically, because dummy variables are used over
a not yet determined range of values because it depends on the variables).

• after three years of strict obedience to xint prefix, now \thexintexpr, \thexintiexpr,
\thexintfloatexpr, and \thexintiiexpr are provided as synonyms to \xinttheexpr, etc. . .

Bug fixes

• the (cond)?{foo}{bar} operator from xintexpr mis-behaved in certain circumstances (such as
an empty foo).

• the xintexpr 1.2f binomial function (which uses \xintiiBinomial from xint.sty or
\xintFloatBinomial from xintfrac.sty) deliberately raised an error for binomial(x,y) with
y<0 or x<y. This was unfortunate, and it now simply evaluates to zero in such cases.

• similarly the pfactorial function was very strict and pfactorial(x,y) deliberately raised an
out-of-range error if not used with non-negative integers with x less than y. It now avoids doing
that and allows negative arguments.

• the add and mul from xintexpr, which work with dummy variables since 1.1, raised an error since
1.2c 2015/11/16 when the dummy variable was given an empty range (or list) of values, rather
than producing respectively 0 and 1 as formerly.

1.2g (2016/03/19)

Incompatible changes

• inside expressions, list item selector [L][n] counts starting at zero, not at one. This is more
coherent with [L][a:b] which was already exactly like in Python since its introduction. A
function len(L) replaces earlier [L][0].

• former iter keyword now called iterr. Indeed it matched with rrseq, the new iter (which was
somehow missing from 1.1) is the one matching rseq. Allows to iterate more easily with a “list”
variable.

Improvements and new features

• in xintexpr.sty: list selectors [L][n] and [L][a:b] are more efficient: the earlier 1.1 routines
did back and forth conversions from comma separated values to braced tokens, the 1.2g routines
use macros from xinttools.sty handling directly the encountered lists of comma separated values.

• in xinttools.sty: slight improvements in the efficiency of the \xintNthElt, \xintKeep,
\xintTrim routines and new routines handling directly comma separated values. The latter are
not included in the user manual (they are not \long, they don’t make efforts to preserve some
braces, do not worry about spaces, all those worries being irrelevant to the use in expressions for
list selectors).

• a slight speed improvement to \xintFloatSqrt in its quest of correct rounding.

11

• float multiplication and division handle more swiftly operands (non-fractional) with few digits,
when the float precision is large.

• the syntax of expressions is described in a devoted chapter of the documentation; an example shows
how to implement (expandably) the Brent-Salamin algorithm for computation of Pi using iter in
a float expression.

1.2f (2016/03/12)

Incompatible changes

• no more \xintFac macro but \xintiFac/\xintiiFac/\xintFloatFac.

Improvements and new features

• functions binomial, pfactorial and factorial in both integer and float versions.
• macros \xintiiBinomial, \xintiiPFactorial (xint.sty) and \xintFloatBinomial,
\xintFloatPFactorial (xintfrac.sty). Improvements to \xintFloatFac.

• faster implementation and increased accuracy of float power macros. Half-integer exponents are
now accepted inside float expressions.

• faster implementation of both integral and float square root macros.
• the float square root achieves correct (aka exact) rounding in arbitrary precision.
• modified behaviour for the \xintPFloat macro, used by \xintthefloatexpr to prettify its

output. It now opts for decimal notation if and only if scientific notation would use an exponent
between -5 and 5 inclusive. The zero value is printed 0. with a dot.

• the float macros for addition, subtraction, multiplication, division now first round their two operands
to P, not P+2, significant places before doing the actual computation (P being the target precision).
The same applies to the power macros and to the square root macro.

• the documentation offers a more precise (and accurate) discussion of floating point issues.
• various under-the-hood code improvements; the floatexpr operations are chained in a faster way,

from skipping some unneeded parsing on results of earlier computations. The absence of a real
inner data structure for floats (incorporating their precisions, for one) is however still a bit hair
raising: currently the lengths of the mantissas of the operands are computed again by each float
macro or expression operation.

• (TeXperts only) the macros defined (internally) from \xintdeffunc et al. constructs do not
incorporate an initial \romannumeral anymore.

• renewed desperate efforts at improving the documentation by random shuffling of sections and well
thought additions; cuts were considered and even performed.

Bug fixes

• squaring macro \xintSqr from xintfrac.sty was broken due to a misspelled sub-macro name.
Dates back to 1.1 release of 2014/10/28 :-((.

• 1.2c’s fix to the subtraction bug from 1.2 introduced another bug, which in some cases could
create leading zeroes in the output, or even worse. This could invalidate other routines using
subtractions, like \xintiiSquareRoot.

• the comparison operators were not recognized by \xintNewIIExpr and \xintdefiifunc con-
structs.

12

1.2e (2015/11/22)

Improvements and new features

• macro \xintunassignvar.

• slight modifications of the logged messages in case of \xintverbosetrue.

• a space in \xintdeffunc f(x)<space>:= expression ; is now accepted.

• documentation enhancements: the Quick Sort section with its included code samples has been
entirely re-written; the Commands of the xintexpr package section has been extended and reviewed
entirely.

Bug fixes

• in xintfrac: the \xintFloatFac from release 1.2 parsed its argument only through \numexpr
but it should have used \xintNum.

• in xintexpr: release 1.2d had broken the recognition of sub-expressions immediately after variable
names (with tacit multiplication).

• in xintexpr: contrarily to what 1.2d documentation said, tacit multiplication was not yet always
done with enhanced precedence. Now yes.

1.2d (2015/11/18)

Improvements and new features

• the function definitions done by \xintdeffunc et al., as well as the macro declarations by
\xintNewExpr et al. now have only local scope.

• tacit multiplication applies to more cases, for example (x+y)z, and always ties more than standard
* infix operator, e.g. x/2y is like x/(2*y).

• some documentation enhancements, particularly in the chapter on xintexpr.sty, and also in the code
source comments.

Bug fixes

• in xintcore: release 1.2c had inadvertently broken the \xintiiDivRound macro.

1.2c (2015/11/16)

Improvements and new features

• macros\xintdeffunc, \xintdefiifunc, \xintdeffloatfunc and boolean\ifxintverbose.

• on-going code improvements and documentation enhancements, but stopped in order to issue this
bugfix release.

Bug fixes

• in xintcore: recent release 1.2 introduced a bug in the subtraction (happened when 00000001 was
found under certain circumstances at certain mod 8 locations).

13

1.2b (2015/10/29)

Bug fixes

• in xintcore: recent release 1.2 introduced a bug in the division macros, causing a crash when the
divisor started with 99999999 (it was attempted to use with 1+99999999 a subroutine expecting
only 8-digits numbers).

1.2a (2015/10/19)

Improvements and new features

• added \xintKeepUnbraced, \xintTrimUnbraced (xinttools) and fixed documentation of
\xintKeep and \xintTrim regarding brace stripping.

• added \xintiiMaxof/\xintiiMinof (xint).

• TeX hackers only: replaced all code uses of\romannumeral-`0by the quicker\romannumeral`&&@
(ˆ being used as letter, had to find another character usable with catcode 7).

Bug fixes

• in xintexpr: recent release 1.2 introduced a bad bug in the parsing of decimal numbers and as a
result \xinttheexpr 0.01\relax expanded to 0 ! (sigh. . .)

1.2 (2015/10/10)

Removed

• the macros \xintAdd, \xintSub, \xintMul, \xintMax, \xintMin, \xintMaxof, \xintMinof
are removed from package xint, and only exist in the versions from xintfrac. With only xintcore
or xint loaded, one must use \xintiiAdd, \xintiiSub, . . . , or \xintiAdd, \xintiSub, etc. . .

Improvements and new features

• the basic arithmetic implemented in xintcore has been entirely rewritten. The mathematics remains
the elementary school one, but the TeX implementation achieves higher speed (except, regarding
addition/subtraction, for numbers up to about thirty digits), the gains becoming quite significant
for numbers with hundreds of digits.

• the inputs must have less than 19959 digits. But computations with thousands of digits take time.

• a previously standing limitation of \xintexpr, \xintiiexpr, and of \xintfloatexpr to num-
bers of less than 5000 digits has been lifted.

• a qint function is provided to help the parser gather huge integers in one-go, as an exception to its
normal mode of operation which expands token by token.

• \xintFloatFac macro for computing the factorials of integers as floating point numbers to a
given precision. The ! postfix operator inside \xintfloatexpr maps to this new macro rather
than to the exact factorial as used by \xintexpr and \xintiiexpr.

14

• there is more flexibility in the parsing done by the macros from xintfrac on fractional input: the
decimal parts of both the numerator and the denominator may arise from a separate expansion via
\romannumeral-`0. Also the strict A/B[N] format is a bit relaxed: Nmay be anything understood
by \numexpr (it could even be empty but that possibility has been removed by later 1.2f release.)

• on the other hand an isolated dot . is not legal syntax anymore inside the expression parsers: there
must be digits either before or after. It remains legal input for the macros of xintfrac.

• added \ht, \dp, \wd, \fontcharht, etc. . . to the tokens recognized by the parsers and expanded
by \number.

• an obscure bug in package xintkernel has been fixed, regarding the sanitization of catcodes: under
certain circumstances (which could not occur in a normal LaTeX context), unusual catcodes could
end up being propagated to the external world.

• an effort at randomly shuffling around various pieces of the documentation has been done.

1.1c (2015/09/12)

• bugfix regarding macro \xintAssign from xinttools which did not behave correctly in some
circumstances (if there was a space before \to, in particular).

• very minor code improvements, and correction of some issues regarding the source code formatting
in sourcexint.pdf, and minor issues in Makefile.mk.

1.1b (2015/08/31)

• bugfix: some macros needed by the integer division routine from xintcore had been left in xint.sty
since release 1.1. This for example broke the \xintGCD from xintgcd if package xint was not
loaded.

• Slight enhancements to the documentation, particularly in the Read this first section.

1.1a (2014/11/07)

• fixed a bug which prevented \xintNewExpr from producing correctly working macros from a
comma separated replacement text.

• \xintiiSqrtR for rounded integer square root; former \xintiiSqrt already produced truncated
integer square root; corresponding function sqrtr added to \xintiiexpr..\relax syntax.

• use of straight quotes in the documentation for better legibility.

• added \xintiiIsOne, \xintiiifOne, \xintiiifCmp, \xintiiifEq, \xintiiifGt,
\xintiiifLt, \xintiiifOdd, \xintiiCmp, \xintiiEq, \xintiiGt, \xintiiLt,
\xintiiLtorEq, \xintiiGtorEq, \xintiiNeq, mainly for efficiency of \xintiiexpr.

• for the same reason, added \xintiiGCD and \xintiiLCM.

• added the previously mentioned ii macros, and some others from 1.1, to the user manual. But
their main usage is internal to \xintiiexpr, to skip unnecessary overheads.

• various typographical fixes throughout the documentation, and a bit of clean up of the code
comments. Improved \Factors example of nested subs, rseq, iter in \xintiiexpr.

15

1.1 (2014/10/28)

Incompatible changes

• in \xintiiexpr, / does rounded division, rather than the Euclidean division (for positive argu-
ments, this is truncated division). The // operator does truncated division,

• the : operator for three-way branching is gone, replaced with ??,

• 1e(3+5) is now illegal. The number parser identifies e and E in the same way it does for the
decimal mark, earlier versions treated e as E rather as infix operators of highest precedence,

• the add and mul have a new syntax, old syntax is with `+` and `*` (left quotes mandatory), sum
and prd are gone,

• no more special treatment for encountered brace pairs {..} by the number scanner, a/b[N] notation
can be used without use of braces (the N will end up as is in a \numexpr, it is not parsed by the
\xintexpr-ession scanner),

• in earlier releases, place holders for \xintNewExpr could either be denoted #1, #2, . . . or also
$1, $2, . . . Only the usual # form is now accepted and the special cases previously treated via the
second form are now managed via a protect(...) function.

• xintfrac: \xintFloor and \xintCeil add a trailing /1[0] to their (integer) output. New
\xintiFloor and \xintiCeil do not.

Removed

• \xintnumexpr, \xintthenumexpr, \xintNewNumExpr: use \xintiexpr, \xinttheiexpr,
\xintNewIExpr.

Deprecated

• \xintDivision, \xintQuo, \xintRem: use \xintiDivision, \xintiQuo, \xintiRem.

• \xintMax, \xintMin, \xintAdd, \xintSub, \xintMul (xint): their usage without xintfrac is
deprecated; use \xintiMax, \xintiMin, \xintiAdd, \xintiSub, \xintiMul.

• the & and | as Boolean operators in xintexpr-essions are deprecated in favour of && and ||.
The single letter operators might be assigned some other meaning in some later release (bitwise
operations, perhaps). Do not use them.

Improvements and new features

• new package xintcore has been split off xint. It contains the core arithmetic macros (it is loaded
by LaTeX package bnumexpr),

• neither xint nor xintfrac load xinttools. Only xintexpr does,

• whenever some portion of code has been revised, often use has been made of the \xint_dothis
and \xint_orthat pair of macros for expandably branching,

• these tiny helpful macros, and a few others are in package xintkernel which contains also the
catcode and loading order management code, initially inspired by code found in Heiko Oberdiek’s
packages,

16

• the source code, which was suppressed from xint.pdf in release 1.09n, is now compiled into a
separate file sourcexint.pdf,

• faster handling by \xintAdd, \xintSub, \xintMul, . . . of the case where one of the arguments
is zero,

• the \xintAdd and \xintSub macros from package xintfrac check if one of the denominators is
a multiple of the other, and only if this is not the case do they multiply the denominators. But
systematic reduction would be too costly,

• this naturally will be also the case for the + and - operations in \xintexpr,

• xint added \xintiiDivRound, \xintiiDivTrunc, \xintiiMod for rounded and truncated divi-
sion of big integers (next to \xintiiQuo and \xintiiRem),

• with xintfrac loaded, the \xintNum macro does \xintTTrunc (which is truncation to an integer,
same as \xintiTrunc {0}),

• added \xintMod to xintfrac for modulo operation with fractional numbers,

• added \xintiFloor and \xintiCeil to xintfrac,

• \xintiexpr, \xinttheiexpr admit an optional argument within brackets [d], they round the
computation result (or results, if comma separated) to d digits after decimal mark, (the whole
computation is done exactly, as in xintexpr),

• \xintfloatexpr, \xintthefloatexpr similarly admit an optional argument which serves to
keep only d digits of precision, getting rid of cumulated uncertainties in the last digits (the whole
computation is done according to the precision set via \xintDigits),

• \xinttheexpr and \xintthefloatexpr pretty-print if possible, the former removing unit de-
nominator or [0] brackets, the latter avoiding scientific notation if decimal notation is practical,

• the // does truncated division and /: is the associated modulo,

• multi-character operators &&, ||, ==, <=, >=, !=, **,

• multi-letter infix binary words 'and', 'or', 'xor', 'mod' (straight quotes mandatory),

• functions even, odd,

• \xintdefvar A3:=3.1415; for variable definitions (non expandable, naturally), usable in sub-
sequent expressions; variable names may contain letters, digits, underscores. They should not start
with a digit, the @ is reserved, and single lowercase and uppercase Latin letters are predefined to
work as dummy variables (see next),

• generation of comma separated lists a..b, a..[d]..b,

• Python syntax-like list extractors [list][n:], [list][:n], [list][a:b] allowing negative
indices, but no optional step argument, and [list][n] (n=0 for the number of items in the list),

• functions first, last, reversed,

• itemwise operations on comma separated lists a*[list], etc.., possible on both sides a*[list]ˆb,
and obeying the same precedence rules as with numbers,

• add and mul must use a dummy variable: add(x(x+1)(x-1), x=-10..10),

• variable substitutions with subs: subs(subs(add(xˆ2+yˆ2,x=1..y),y=t),t=20),

• sequence generation using seq with a dummy variable: seq(xˆ3, x=-10..10),

• simple recursive lists with rseq, with @ given the last value, rseq(1;2@+1,i=1..10),

• higher recursion with rrseq, @1, @2, @3, @4, and @@(n) for earlier values, up to n=K where K is
the number of terms of the initial stretch rrseq(0,1;@1+@2,i=2..100),

17

• iteration with iter which is like rrseq but outputs only the last K terms, where K was the number
of initial terms,

• inside seq, rseq, rrseq, iter, possibility to use omit, abort and break to control termination,

• n++ potentially infinite index generation for seq, rseq, rrseq, and iter, it is advised to use
abort or break(..) at some point,

• the add, mul, seq, . . . are nestable,

• \xintthecoords converts a comma separated list of an even number of items to the format
expected by the TikZ coordinates syntax,

• completely new version \xintNewExpr, protect function to handle external macros. The dollar
sign $ for place holders is not accepted anymore, only the standard macro parameter #. Not all
constructs are compatible with \xintNewExpr.

Bug fixes

• \xintZapFirstSpaces hence also \xintZapSpaces from package xinttools were buggy when
used with an argument either empty or containing only space tokens.

• \xintiiexpr did not strip leading zeroes, hence \xinttheiiexpr 001+1\relax did not obtain
the expected result . . .

• \xinttheexpr \xintiexpr 1.23\relax\relax should have produced 1, but it produced 1.23

• the catcode of ; was not set at package launching time.

• the \XINTinFloatPrd:csv macro name had a typo, hence prd was non-functional in
\xintfloatexpr.

1.09n (2014/04/01)

• the user manual does not include by default the source code anymore: the \NoSourceCode toggle
in file xint.tex has to be set to 0 before compilation to get source code inclusion (later release
1.1 made source code available as sourcexint.pdf).

• bug fix (xinttools) in \XINT_nthelt_finish (this bug was introduced in 1.09i of 2013/12/18
and showed up when the index N was larger than the number of elements of the list).

1.09m (2014/02/26)

• new in xinttools: \xintKeep keeps the first N or last N elements of a list (sequence of braced
items); \xintTrim cuts out either the first N or the last N elements from a list.

• new in xintcfrac: \xintFGtoC finds the initial partial quotients common to two numbers or
fractions f and g; \xintGGCFrac is a clone of \xintGCFrac which however does not assume that
the coefficients of the generalized continued fraction are numeric quantities. Some other minor
changes.

1.09kb (2014/02/13)

• bug fix (xintexpr): an aloof modification done by 1.09i to \xintNewExpr had resulted in a
spurious trailing space present in the outputs of all macros created by \xintNewExpr, making
nesting of such macros impossible.

18

• bug fix (xinttools): \xintBreakFor and \xintBreakForAndDo were buggy when used in the
last iteration of an \xintFor loop.

• bug fix (xinttools): \xintSeq from 1.09k needed a \chardef which was missing from
xinttools.sty, it was in xint.sty.

1.09k (2014/01/21)

• inside \xintexpr..\relax (and its variants) tacit multiplication is implied when a number or
operand is followed directly with an opening parenthesis,

• the " for denoting (arbitrarily big) hexadecimal numbers is recognized by \xintexpr and its
variants (package xintbinhex is required); a fractional hexadecimal part introduced by a dot . is
allowed.

• re-organization of the first sections of the user manual.

• bug fix (xinttools, xint, . . .): forgotten catcode check of " at loading time has been added.

1.09j (2014/01/09)

• (xint) the core division routines have been re-written for some (limited) efficiency gain, more
pronounced for small divisors. As a result the computation of one thousand digits of π is close to
three times faster than with earlier releases.

• some various other small improvements, particularly in the power routines.

• (xintfrac) a macro \xintXTrunc is designed to produce thousands or even tens of thousands of
digits of the decimal expansion of a fraction. Although completely expandable it has its use limited
to inside an \edef, \write, \message, It can thus not be nested as argument to another
package macro.

• (xintexpr) the tacit multiplication done in \xintexpr..\relax on encountering a count register
or variable, or a \numexpr, while scanning a (decimal) number, is extended to the case of a sub
\xintexpr-ession.

• \xintexpr can now be used in an \edef with no \xintthe prefix; it will execute completely
the computation, and the error message about a missing \xintthe will be inhibited. Previously,
in the absence of \xintthe, expansion could only be a full one (with \romannumeral-`0), not
a complete one (with \edef). Note that this differs from the behavior of the non-expandable
\numexpr: \the or \number (or \romannumeral) are needed not only to print but also to trigger
the computation, whereas \xintthe is mandatory only for the printing step.

• the default behavior of \xintAssign is changed, it now does not do any further expansion beyond
the initial full-expansion which provided the list of items to be assigned to macros.

• bug fix (xintfrac): 1.09i did an unexplainable change to \XINT_infloat_zero which broke the
floating point routines for vanishing operands =:(((

• bug fix: the 1.09i xint.ins file produced a buggy xint.tex file.

1.09i (2013/12/18)

• (xintexpr) \xintiiexpr is a variant of \xintexpr which is optimized to deal only with (long)
integers, / does a euclidean quotient.

19

• deprecated: \xintnumexpr, \xintthenumexpr, \xintNewNumExpr are renamed, respectively,
\xintiexpr, \xinttheiexpr, \xintNewIExpr. The earlier denominations are kept but are to
be removed at some point.

• it is now possible within \xintexpr...\relax and its variants to use count, dimen, and skip
registers or variables without explicit \the/\number: the parser inserts automatically \number
and a tacit multiplication is implied when a register or variable immediately follows a number or
fraction. Regarding dimensions and \number, see the further discussion in Dimensions.

• (xintfrac) conditional \xintifOne; \xintifTrueFalse renamed to \xintifTrueAelseB;
macros \xintTFrac (fractional part, mapped to function frac in \xintexpr-essions),
\xintFloatE.

• (xinttools) \xintAssign admits an optional argument to specify the expansion type to be used:
[] (none, default), [o] (once), [oo] (twice), [f] (full), [e] (\edef),. . . to define the macros

• xinttools defines \odef, \oodef, \fdef (if the names have already been assigned, it uses
\xintoodef etc. . .). These tools are provided for the case one uses the package macros in a
non-expandable context. \oodef expands twice the macro replacement text, and \fdef applies
full expansion. They are useful in situations where one does not want a full \edef. \fdef appears
to be faster than \oodef in almost all cases (with less than thousand digits in the result), and even
faster than \edef for expanding the package macros when the result has a few dozens of digits.
\oodef needs that expansion ends up in thousands of digits to become competitive with the other
two.

• some across the board slight efficiency improvement as a result of modifications of various types
to fork macros and branching conditionals which are used internally.

• bug fix (xint): \xintAND and \xintOR inserted a space token in some cases and did not expand as
promised in two steps :-(((bug dating back to 1.09a I think; this bug was without consequences
when using & and | in \xintexpr-essions, it affected only the macro form).

• bug fix (xintcfrac): \xintFtoCCv still ended fractions with the [0]’s which were supposed to
have been removed since release 1.09b.

• deprecated: \xintifTrueFalse, \xintifTrue; use \xintifTrueAelseB.

1.09h (2013/11/28)

• parts of the documentation have been re-written or re-organized, particularly the discussion of
expansion issues and of input and output formats.

• the expansion types of macro arguments are documented in the margin of the macro descriptions,
with conventions mainly taken over from those in the LaTeX3 documentation.

• a dependency of xinttools on xint (inside \xintSeq) has been removed.

• (xintgcd) \xintTypesetEuclideAlgorithm and \xintTypesetBezoutAlgorithm have been
slightly modified (regarding indentation).

• (xint) macros xintiSum and xintiPrd are renamed to \xintiiSum and \xintiiPrd.

• (xinttools) a count register used in 1.09g in the \xintFor loops for parsing purposes has been
removed and replaced by use of a \numexpr.

• the few uses of \loop have been replaced by \xintloop/\xintiloop.

• all macros of xinttools for which it makes sense are now declared \long.

20

1.09g (2013/11/22)

• a package xinttools is detached from xint, to make tools such as\xintFor, \xintApplyUnbraced,
and \xintiloop available without the xint overhead.

• expandable nestable loops \xintloop and \xintiloop.
• bugfix: \xintFor and \xintFor* do not modify anymore the value of \count 255.

1.09f (2013/11/04)

• (xint) \xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB,
for expandably stripping away leading and/or ending spaces.

• \xintCSVtoList by default uses \xintZapSpacesB to strip away spaces around commas (or at
the start and end of the comma separated list).

• also the \xintFor loop will strip out all spaces around commas and at the start and the end of its
list argument; and similarly for \xintForpair, \xintForthree, \xintForfour.

• \xintFor et al. accept all macro parameters from #1 to #9.
• for reasons of inner coherence some macros previously with one extra i in their names (e.g.
\xintiMON) now have a doubled ii (\xintiiMON) to indicate that they skip the overhead of parsing
their inputs via \xintNum. Macros with a single i such as \xintiAdd are those which maintain
the non-xintfrac output format for big integers, but do parse their inputs via \xintNum (since
release 1.09a). They too may have doubled-i variants for matters of programming optimization
when working only with (big) integers and not fractions or decimal numbers.

1.09e (2013/10/29)

• (xint) \xintintegers, \xintdimensions, \xintrationals for infinite \xintFor loops, in-
terrupted with \xintBreakFor and \xintBreakForAndDo.

• \xintifForFirst, \xintifForLast for the \xintFor and \xintFor* loops,
• the \xintFor and xintFor* loops are now \long, the replacement text and the items may contain

explicit \par’s.
• conditionals \xintifCmp, \xintifInt, \xintifOdd.
• bug fix (xint): the \xintFor loop (not \xintFor*) did not correctly detect an empty list.
• bug fix (xint): \xintiSqrt {0} crashed. :-((
• the documentation has been enriched with various additional examples, such as the the quick sort

algorithm illustrated or the various ways of computing prime numbers.
• the documentation explains with more details various expansion related issues, particularly in

relation to conditionals.

1.09d (2013/10/22)

• bug fix (xint): \xintFor* is modified to gracefully handle a space token (or more than one)
located at the very end of its list argument (as the space before \do in \xintFor* #1 in
{{a}{b}{c}<space>} \do {stuff}; spaces at other locations were already harmless). Fur-
thermore this new version f-expands the un-braced list items. After \def\x{{1}{2}} and
\def\y{{a}\x {b}{c}\x }, \y will appear to \xintFor* exactly as if it had been defined
as \def\y{{a}{1}{2}{b}{c}{1}{2}}.

• same bug fix for \xintApplyInline.

21

1.09c (2013/10/09)

• (xintexpr) added bool and togl to the \xintexpr syntax; also added \xintboolexpr and
\xintifboolexpr.

• added \xintNewNumExpr.

• the factorial ! and branching ?, :, operators (in \xintexpr...\relax) have now less precedence
than a function name located just before,

• (xint) \xintFor is a new type of loop, whose replacement text inserts the comma separated values
or list items via macro parameters, rather than encapsulated in macros; the loops are nestable up
to four levels (nine levels since 1.09f) and their replacement texts are allowed to close groups as
happens with the tabulation in alignments,

• \xintForpair, \xintForthree, \xintForfour are experimental variants of \xintFor,

• \xintApplyInline has been enhanced in order to be usable for generating rows (partially or
completely) in an alignment,

• command \xintSeq to generate (expandably) arithmetic sequences of (short) integers,

• again various improvements and changes in the documentation.

1.09b (2013/10/03)

• various improvements in the documentation,

• more economical catcode management and re-loading handling,

• removal of all those [0]’s previously forcefully added at the end of fractions by various macros of
xintcfrac,

• \xintNthElt with a negative index returns from the tail of the list,

• macro \xintPRaw to have something like what \xintFrac does in math mode; i.e. a \xintRaw
which does not print the denominator if it is one.

1.09a (2013/09/24)

• (xintexpr) \xintexpr..\relax and \xintfloatexpr..\relax admit functions in their
syntax, with comma separated values as arguments, among them reduce, sqr, sqrt, abs,
sgn, floor, ceil, quo, rem, round, trunc, float, gcd, lcm, max, min, sum,
prd, add, mul, not, all, any, xor.

• comparison (<, >, =) and logical (|, &) operators.

• the command \xintthe which converts \xintexpressions into printable format (like \the with
\numexpr) is more efficient, for example one can do \xintthe\x if \x was defined to be an
\xintexpr..\relax:

\def\x{\xintexpr 3^57\relax}
\def\y{\xintexpr \x^(-2)\relax}
\def\z{\xintexpr \y-3^-114\relax}
\xintthe\z

• \xintnumexpr .. \relax (now renamed \xintiexpr) is \xintexpr round(..) \relax.

• \xintNewExpr now works with the standard macro parameter character #.

22

• both regular \xintexpr-essions and commands defined by \xintNewExprwill work with comma
separated lists of expressions,

• commands \xintFloor, \xintCeil, \xintMaxof, \xintMinof (package xintfrac),
\xintGCDof, \xintLCM, \xintLCMof (package xintgcd), \xintifLt, \xintifGt,
\xintifSgn, \xintANDof, . . .

• The arithmetic macros from package xint now filter their operands via \xintNum which means
that they may use directly count registers and \numexpr-essions without having to prefix them by
\the. This is thus similar to the situation holding previously already when xintfrac was loaded.

• a bug (xintfrac) introduced in 1.08b made \xintCmp crash when one of its arguments was zero.
:-((

1.08b (2013/06/14)

• (xintexpr) Correction of a problem with spaces inside \xintexpr-essions.

• (xintfrac) Additional improvements to the handling of floating point numbers.

• section Use of count registers documenting how count registers may be directly used in arguments
to the macros of xintfrac.

1.08a (2013/06/11)

• (xintfrac) Improved efficiency of the basic conversion from exact fractions to floating point num-
bers, with ensuing speed gains especially for the power function macros \xintFloatPow and
\xintFloatPower,

• Better management by \xintCmp, \xintMax, \xintMin and \xintGeq of inputs having big
powers of ten in them.

• Macros for floating point numbers added to the xintseries package.

1.08 (2013/06/07)

• (xint and xintfrac) Macros for extraction of square roots, for floating point numbers
(\xintFloatSqrt), and integers (\xintiSqrt).

• new package xintbinhex providing conversion routines to and from binary and hexadecimal bases.

1.07 (2013/05/25)

• The xintexpr package is a new core constituent (which loads automatically xintfrac and xint) and
implements the expandable expanding parser

\xintexpr . . . \relax,

and its variant

\xintfloatexpr . . . \relax

allowing on input formulas using the infix operators +, -, *, /, and ˆ, and arbitrary levels of
parenthesizing. Within a float expression the operations are executed according to the current
value set by \xintDigits. Within an \xintexpr-ession the binary operators are computed
exactly.

To write the \xintexpr parser I benefited from the commented source of the l3fp parser; the
\xintexpr parser has its own features and peculiarities. See its documentation.

23

• The floating point precision D is set (this is a local assignment to a \mathchar variable) with
\xintDigits := D; and queried with \xinttheDigits. It may be set to anything up to 32767.1
The macro incarnations of the binary operations admit an optional argument which will replace
pointwise D; this argument may exceed the 32767 bound.

• The xintfrac macros now accept numbers written in scientific notation, the \xintFloat command
serves to output its argument with a given number D of significant figures. The value of D is either
given as optional argument to \xintFloat or set with \xintDigits := D;. The default value
is 16.

1.06b (2013/05/14)

• Minor code and documentation improvements. Everywhere in the source code, a more modern
underscore has replaced the @ sign.

1.06 (2013/05/07)

• Some code improvements, particularly for macros of xint doing loops.

• New utilities in xint for expandable manipulations of lists:

\xintNthElt, \xintCSVtoList, \xintRevWithBraces

• The macros did only a double expansion of their arguments. They now fully expand them (using
\romannumeral-`0). Furthermore, in the case of arguments constrained to obey the TeX bounds
they will be inserted inside a \numexpr..\relax, hence completely expanded, one may use count
registers, even infix arithmetic operations, etc. . .

1.05 (2013/05/01)

Minor changes and additions to xintfrac and xintcfrac.

1.04 (2013/04/25)

• New component xintcfrac devoted to continued fractions.

• xint: faster division.

• xint: added expandable macros \xintListWithSep and \xintApply to handle token lists.

• xintfrac: added \xintRound.

• xintseries has a new implementation of \xintPowerSeries based on a Horner scheme, and new
macro \xintRationalSeries. Both to help deal with the denominator buildup plague.

• tex xint.dtx extracts style files (no need for a xint.ins).

• Bug fix (xintfrac): \xintIrr {0} crashed.

1but values higher than 100 or 200 will presumably give too slow evaluations.

24

1.03 (2013/04/14)

• New modules xintfrac (expandable operations on fractions) and xintseries (expandable partial
sums with xint package).

• Slightly improved division and faster multiplication (the best ordering of the arguments is chosen
automatically).

• Added illustration of Machin algorithm to the documentation.

1.0 (2013/03/28)

Initial announcement:

The xint package implements with expandable TeX macros the basic arithmetic operations
of addition, subtraction, multiplication and division, as applied to arbitrarily long numbers
represented as chains of digits with an optional minus sign.

The xintgcd package provides implementations of the Euclidean algorithm and of its type-
setting.

The packages may be used with Plain and with LaTeX.

25

